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Abstract

Graphical models based on Directed Acyclic Graphs (DAGs) are a very common

tool in many scientific areas for the investigation of dependencies among variables.

Typically, the objective is to infer models from the data or measuring dependence

relationships between variables. The set of all (marginal and) conditional inde-

pendencies encoded by a DAG determines its Markov property. However, it is

well known that we cannot distinguish between DAGs encoding the same set of

conditional independencies (Markov equivalent DAGs) using observational data.

Markov equivalent DAGs are then collected in equivalence classes each one rep-

resented by an Essential Graph (EG), also called Completed Partially Directed

Graph (CPDAG). When the interest is in model selection it is then convenient

to explore the EG space, rather than the whole DAG space, even if the number

of EGs increases super-exponentially with the number of vertices. An exhaustive

enumeration of all EGs is not feasible and so structural learning in the EG space

has been confined to small dimensional problems. However, to avoid such limit,

several methods based on Markov chains have been proposed in recent years.

In many applications (such as genomics) we have both observational and in-

terventional data produced after an exogenous perturbation of some variables or

from randomized intervention experiments. The concept of intervention is strictly

related to the causal interpretation of a DAG. Interventions destroy the original

causal dependency on the intervened variables and modify the Markov property

of a DAG. This results in a finer partition of DAGs into equivalence classes, each

one represented by an Interventional Essential Graph (I-EG). Hence, model se-
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lection of DAGs in the presence of observational and interventional data can be

performed over the I-EG space, thus improving the identifiability of the true data

generating model.

In this work we deal with the problem of Gaussian DAG model selection from

a Bayesian perspective. In particular, we adopt an objective Bayes approach

based on the notion of fractional Bayes factor. We then obtain a closed formula

to compute the marginal likelihood of an I-EG given a collection of observational

and interventional data. Next, we construct a Markov chain to explore the I-

EG space possibly accounting for sparsity constraints. Hence, we propose an

MCMC algorithm to approximate the posterior distribution of I-EGs and provide

a quantification of inferential uncertainty by measuring some features of interest,

such as probabilities of edge inclusion. We apply our methodology, that we name

Objective Bayesian Interventional Essential graph Search (OBIES) to simulation

settings and to the analysis of protein-signaling data, where a collection of obser-

vations measured under different experimental conditions can be interpreted as

interventional data.
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Chapter 1

Introduction

In recent years, Directed Acyclic Graphs (DAGs) have become a very popular and

attractive tool for the investigation of dependencies among variables. Applications

of DAG models in various scientific areas abound, especially in genomics and

biology; see for instance Sachs et al. (2005), Nagarajan et al. (2013). Typically,

the true DAG generating model is unknown and then the objective is to perform

model selection by scoring graphs belonging to a suitable model space.

In this Chapter we introduce two topics which are at the basis of the current

work: graphical models and objective Bayes model comparison. In particular,

in Section 1.1 we give an overview of graphical models both from a non-causal

(observational) and interventional perspective. In Section 1.2 we then introduce

objective Bayes methods for model comparison with reference to the most common

techniques in literature. Finally, we present the structure and the main results of

the thesis in Section 1.3.

1.1 Graphical models

Graphical models are widely used to represent dependency relationships among

potentially many variables. One of the main objectives in graphical modelling is

to discover connections between variables, or “learning a model from the data”,

where such model can be used as an approximation to our past experience (Fried-

1



2 1. Introduction

man, 2004). This process is also called structural learning ; see for instance Chick-

ering (2002). From a probabilistic perspective, we can use a graph-based represen-

tation to encode a complex distribution over a high dimensional space (Koller &

Friedman, 2009). A graph is made up of two components: a set of nodes (or ver-

tices) and a set of edges. Nodes are associated to variables, while edges correspond

to direct probabilistic interactions among them. Different typologies of graphical

models are present in literature. Graphical models based on undirected graphs,

also called Markov random fields are particularly used in spatial statistics (Besag,

1974). In the following, we focus on Directed Acyclic Graphs (DAGs). These are

commonly used in many scientific areas, principally in biology and genomics; see

for instance Friedman (2004), Sachs et al. (2005), Shojaie & Michailidis (2009).

A DAG encodes a set of independencies between variables which are of the form

“Y is independent of X given Z”. As an example, consider a set of variables Y =

{Y1, Y2, Y3, Y4} measuring four distinct gene expressions. One can be interested in

discovering dependence relationships among them. Let f(·) be a joint probability

distribution over Y and assume the representation through DAG D in Figure 1.1.

Y1 Y2

Y3 Y4

Y1

Y3

Y2

Y4

D DI

Figure 1.1: A DAG D representing dependence relationships among four variables and

the intervention DAG DI obtained after an intervention on Y2.

As we associate each variable to a node in the DAGD, we constrain the probability

distribution of Y by the edges in D. Hence, we can write

fD(y1 . . . , y4) = f(y1)f(y2 | y1)f(y3 | y1)f(y4 | y2, y3). (1.1)

All the (marginal and) conditional independencies between variables can be de-
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duced from the DAG using the notion of d-separation (Pearl, 2000) or the moral

graph representation (Lauritzen, 1996). For instance, in D, Y2 is independent of

Y3 given Y1. Equivalently, we write Y2⊥⊥Y3 |Y1; see also Section 3.1 for details.

The factorization in Equation (1.1) determines the Markov property of DAG

D. It is well known that different DAGs can encode the same set of conditional in-

dependencies, and thus one cannot distinguish between Markov equivalent DAGs

using observational data; see Chickering (2002). All DAGs encoding the same

conditional independencies form a Markov equivalence class, which can be repre-

sented by a Completed Partially Directed Acyclic Graph (CPDAG) (Chickering,

2002), also called Essential Graph (EG) by Andersson et al. (1997). An EG is

a particular chain graph whose chain components are decomposable undirected

graphs linked by arrowheads; see Lauritzen (1996). Hence, an EG may contain

both directed and undirected edges. In general, the number of undirected edges

can be used as a measure of complexity of “causal learning” (He & Geng, 2008).

DAGs have also a natural causal interpretation; see for instance Pearl (2000).

In addition, causal inference is strictly related to the concept of intervention. The

causal structure of a DAG can be discovered by means of interventions on vari-

ables from randomized experiments or from exogenous perturbations of the true

data generating model (Eberhardt & Scheines, 2007). In general, an intervention

can be realized by “forcing the value of one or several random variables of the

system to chosen values” (Hauser & Bühlmann, 2012). In doing so, we destroy

the original causal dependency on the intervened variables. Assume for instance

an intervention on Y2 in DAG D of Figure 1.1. This results in the intervention

DAG DI . Hence, the post-intervention distribution of Y can be obtained using

the do-operator (Pearl, 1995) as

fDI (y1 . . . , y4 | do(Y2 = ỹ2)) = f(y1)f̃(y2)f(y3 | y1)f(y4 | y2, y3). (1.2)

A natural extension of the Markov equivalence property of DAGs, called inter-

ventional Markov equivalence is formalized in Hauser & Bühlmann (2012). They

show that the interventional Markov equivalence property defines a finer parti-
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tion of DAGs into equivalence classes, each one represented by an interventional

essential graph which is still a chain graph with decomposable chain components.

As discussed in Chapter 4, through interventions on variables it is then possi-

ble to identify the direction of undirected edges and then distinguish between

(observationally) Markov equivalent DAGs.

In this work we generally assume that the structure of the DAG governing

the joint distribution of Y is unknown. Hence, when the objective is to infer the

true data generating (DAG) model, modelling jointly observational and interven-

tional data can greatly improve the identifiability of the true underlying DAG.

In this perspective, we perform graphical model selection by learning interven-

tional Markov equivalence classes of DAGs. In particular, we tackle the problem

through the Bayes factor (Kass & Raftery, 1995) by adopting an objective Bayes

approach. In the following section we then give an overview of objective Bayes

model comparison principles.

1.2 Objective Bayes model comparison

Let Y1, . . . , Yq be a collection of real valued random variables from which we

observe n i.i.d. q-dimensional observations yi (i = 1, . . . , n) collected in the data

matrix Y . A statistical modelM consists in a probability density function fM(·)

assigned to Y1, . . . , Yq. We assume fM(·) belonging to some parametric family and

then write fM(y1, . . . , yq |θM) where θM is a vector parameter taking values in

the parametric space ΘM. Moreover, a Bayesian model can be expressed through

the joint distribution

f(y1, . . . , yq,θM,M) = fM(y1, . . . , yq |θM)p(θM)p(M)

which encodes assumptions on the sampling distribution of the data, fM(y1, . . . ,

yq |θM), together with a prior belief on θM, p(θM), and the model itself, p(M).

Such factorization is particularly relevant when the interest is in model selection.

To this end, suppose to have a collection of K different models, M1, . . . ,MK .
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Given the collection of observations Y , we might be interested in computing the

posterior model probability of Mk for each k = 1, . . . , K,

p(Mk |Y ) =
m(Y |Mk)p(Mk)∑
km(Y |Mk)p(Mk)

∝ m(Y |Mk)p(Mk),

which is proportional to the product of two terms. The first, m(Y |Mk), is

the marginal distribution of the data Y under model Mk (also called marginal

likelihood of Mk when the emphasis is on model Mk) which is defined as

m(Y |Mk) =

∫
θk∈Θk

fk(Y |θk)p(θk)dθk,

where fk(Y |θk) =
∏n

i=1 fk(Yi |θk) is the sampling distribution of the data. The

marginal data distribution typically represents the most demanding element for

the computation of posterior model probabilities. The second term is the prior

probability of modelMk which can be set in absence of substantive information to

1/K but is often “modified” in other cases, such as regression variable selection or

graphical modelling; see also Chapter 5. When the objective is the comparison of

two models,M1 andM2, we can consider the ratio of posterior model probabilities

p(M1 |Y )

p(M2 |Y )
=

p(M1)

p(M2)
· f1(Y |M1)

f2(Y |M2)
.

This is made up by two terms; the second one, which is usually the dominant

term especially when the sample size n is large, is the so-called Bayes factor of

model M1 against M2, BF1,2(Y ) for short; see also O’Hagan & Forster (2004).

A Bayesian approach for model selection requires the specification of prior

distributions for each model parameter. If a subjective approach is adopted, these

priors should be based on some prior information gathered from past experience or

from experts’ knowledge. Pericchi (2005) underlines some limits of pure subjective

Bayesian analysis. The first one concerns prior elicitations; when the number

of parameters is large, a huge number of prior elicitations can be problematic

especially in lack of substantive prior information. This problem is not negligible in

graphical modelling where the number of parameters typically grows exponentially
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in the number of variables. The second one is related to model comparison via

Bayes factors which can be “very nonrobust with respect to seemingly innocent

prior”. At last, subjective approaches typically prevent connectivity (and then

compatibility) of the conditional priors. We are now able to introduce the main

principles of objective Bayes model comparison.

LetM1, . . . ,MK be a collection of K distinct models for the data Y , pNk (θk),

k = 1, . . . , K, some ordinary (objective) non informative priors. The correspond-

ing marginal distribution of Y is then

mN(Y |Mk) =

∫
θk∈Θk

fk(Y |θk)pN(θk)dθk.

It is well known that objective priors are often improper and then defined only

up to an arbitrary constants. Hence, they cannot be used naively to compute

marginal likelihoods and Bayes factors; see Berger et al. (2001).

In the last decades several objective Bayes methods were proposed. Among

these we mention the Intrinsic Bayes Factor (IBF), the Expected Posterior Prior

(EPP) and the Fractional Bayes Factor (FBF) approaches. The latter is at the

basis of the methodology developed in this work, while the others represent valid

(although not trivial) alternative approaches. Most of the objective Bayes meth-

ods are based on the notion of minimal training sample. Let Y (l) be a subset of

the sample Y . Y (l) is proper if 0 < mN(Y (l) |Mk) < ∞ for all Mk; moreover,

Y (l) is minimal if it is proper and no subset is proper.

We start from the intrinsic Bayes factor approach. Let Y (l), l = 1, . . . , L,

be a collection of proper and minimal training samples of size n0 “as small as

possible”, so that the updated posterior mN(Y (l) |Mk) under each model Mk

becomes proper. Then, Y (l) are used to convert the improper priors pNk (θk) to

proper posteriors pNk (θk |Y (l)). The Bayes factor of model Mk against Mk′ for

the rest of the data Y (−l) is then

BFk,k′(Y , l) =

∫
fk(Y (−l) |θk,Y (l))pNk (θk |Y (l))dθk∫
fk′(Y (−l) |θk′ ,Y (l))pNk′(θk′ |Y (l))dθk′

.
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BFk,k′(Y , l) depends on the choice of l. Hence, BFk,k′(Y , l) are “averaged” over all

the possible training samples Y (l), l = 1, . . . , L, usually by taking the arithmetic

mean or the median. In the first case we get

BFIk,k′(Y ) =
1

L

L∑
l=1

BFk,k′(Y , l). (1.3)

The result is the so-called intrinsic Bayes factor; see Berger & Pericchi (1996) for

further details.

We now consider the expected posterior prior approach. Let Y ∗ be an imag-

inary training sample generated by f ∗(·), so that f ∗(Y ∗) is the density of Y ∗.

We start assuming noninformative priors pNk (θk), k = 1, . . . , K. The posterior

distribution of θk given Y ∗ is then

p∗k(θk |Y ∗) =
fk(Y

∗ |θk,Y ∗)pNk (θk |Y ∗)∫
fk(Y ∗ |θk,Y ∗)pNk (θk |Y ∗)dθk

.

The expected posterior prior (EPP) for model Mk is obtained as an expectation

with respect to f ∗(Y ∗) of the posteriors p∗k(θk |Y ∗),

p∗k(θk) =

∫
p∗k(θk |Y ∗)f ∗(Y ∗)dY ∗,

where f ∗(Y ∗) is common for all models. See Perez & Berger (2002) for details.

The intrinsic prior approach was introduced by Berger & Pericchi (1996). Let

Mk, k = 1, 2, be two nested models, each one consisting in a density fk(Y |θk)

and a conventional, typically improper prior pNk (θk). Suppose that f1(·) is nested

in f2(·). We can start by observing that the intrinsic Bayes factor as defined in

Equation (1.3) is not properly a Bayes factor. This means that the condition

BFIk,k′(Y ) =
1

BFIk′,k(Y )

is not in general satisfied. Hence, we call intrinsic priors, pIk(θk), k = 1, 2, any

two priors such that

BFIk,k′(Y ) = BFk,k′(Y )
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as n→∞, being

BFk,k′(Y ) =

∫
fk(Y |θk,Y )pIk(θk |Y )dθk∫
fk′(Y |θk′ ,Y )pIk′(θk′ |Y )dθk′

;

see also Casella & Moreno (2006) for details.

The fractional Bayes factor approach for model comparison was first intro-

duced by O’Hagan (1995). Let pNk (θk) be a default prior for modelMk, b ∈ (0, 1).

Basically, the FBF approach uses a fraction of the whole likelihood, {fk(Y |θk)}b

to make the improper prior pNk (θk) proper. The implied fractional prior thus ob-

tained is then combined with the discounted likelihood {fk(Y |θk)}1−b to compute

the posterior pk(θk |Y ) under each model Mk. A common choice is b = n0/n,

1 < n0 < n, where n0 is the minimum training sample size such that the implied

fractional prior is proper. The main difference between the first two approaches is

that the FBF does not use training samples to compute Bayes factors but rather

a discounted likelihood, which requires only the choice of n0, which is typically

equal for each model Mk. A more detailed exposition of the FBF approach is

given in Section 2.3 of the current work.

An alternative approach, although not “purely objective” but still based on

discounted likelihoods, concerns the so-called power priors, which were originally

proposed by Ibrahim & Chen (2000) in a regression context. Suppose we have

some historical data Y0 of size n0 from some previous study. The power prior is

defined as the normalized likelihood function based on the historical data raised

to a power a0, where 0 < a0 < 1. Typically, as in the FBF approach, a0 is

set as small as possible so that the dependence on historical data is weak. The

implied power prior is then combined with the “complete” likelihood based on

Y to compute posterior distributions. A recent approach which combines power

priors and EPP, named power-expected-posterior priors, is presented in Fouskakis

et al. (2015) within the context of variable selection for Gaussian linear models.
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1.3 Structure and main results of the thesis

In this thesis we approach the problem of model selection of Gaussian graphical

models from an objective Bayes perspective. We consider a multivariate setting

where we collect both observational and interventional data, the latter produced

after an exogenous perturbation of the data generating model. To this end, we

directly score Markov equivalence classes of DAGs by deriving a closed formula for

the marginal likelihood of an interventional essential graph. Our approach relies

on the methodology for model comparison of decomposable undirected graphs

developed by Consonni & La Rocca (2012) and Consonni et al. (2017). This is

extended to model comparison of essential graphs in the presence of observational

and interventional data. Then, we propose an MCMC strategy to explore the

interventional essential graph space and perform structural learning of Markov

equivalence classes of DAGs. The rest of the thesis is organized as follows.

In Chapter 2 we first summarize some notation and background on graphical

models. Then, we focus on Gaussian multivariate models. We give closed for-

mulas for the computation of the marginal distribution of Gaussian data using

proper (subjective) priors under different sampling assumptions. Next, we con-

sider the same problem from an objective perspective using the fractional Bayes

factor approach. We pay particular attention to the choice of priors for model

comparison of Gaussian DAG models and show how the previous results can be

used to compute the marginal likelihood of any DAG model.

In Chapter 3 we introduce the Markov equivalence property of DAGs and the

notion of essential graph. We use the results of Chapter 2 to compute the marginal

likelihood of an essential graph given a collection of observational data. In Chapter

4 we discuss interventions on DAGs together with interventional Markov equiva-

lence, as introduced by Hauser & Bühlmann (2012). We extend the methodology

of Chapter 3 for the computation of the marginal likelihood of an interventional

essential graph in the presence of both observational and interventional data.

In Chapter 5 we introduce Markov chains on Markov equivalence classes of
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DAGs based on the proposal of He et al. (2013). These are used for the exploration

of the interventional essential graph space and for the construction of an MCMC

algorithm to perform structural learning of Markov equivalence classes of DAGs.

In Chapter 6 we apply the proposed methodology to simulation settings and to

the analysis of the protein-signaling data of Sachs et al. (2005). Finally, we present

in Chapter 7 some conclusions and possible future developments. In Appendix we

also collect some useful definitions and theoretical results.



Chapter 2

Gaussian Graphical Models

In this chapter we introduce Gaussian graphical models. To this end, we first

resume in Section 2.1 some notation and theory about graphs which must be

intended as supporting material for the topics presented in this work; for an

exhaustive introduction to graphical models see for instance Pearl (2000). Then,

we move to a Gaussian framework (Section 2.2). Here we assume that the normally

distributed random variable Y is the responsible of the data generating process of

a collection of i.i.d. observations. Starting from proper (informative) priors for the

unconstrained model parameters (mean vector and precision matrix), we compute

the marginal distribution of such Gaussian data. Next, we deal with the same

problem from an objective Bayes perspective, relying on the notion of fractional

Bayes factor (Section 2.3). By exploiting the methodology for prior construction

resumed in Section 2.4, the previous results are then used to compute the marginal

likelihood of Gaussian DAG models, that is when the sampling distribution (and

so the precision matrix of Y ) is constrained by a DAG.

2.1 Graph notation and background

A graph G is a pair (V,E) where V = {1, . . . , q} is a set of vertices (or nodes) and

E ⊆ V × V a set of edges. Let u, v ∈ V , u 6= v. If (u, v) ∈ E and (v, u) /∈ E we

say that G contains the directed edge u→ v. If instead (u, v) ∈ E and (v, u) ∈ E

11
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we say that G contains the undirected edge u− v. Two vertices u, v are adjacent

if they are connected by an edge (directed or undirected). Moreover, if u − v is

in G we say that u is a neighbor of v in G. The neighbor set of v is denoted by

neG(v); the common neighbor set of u and v is then neG(u, v) = neG(u) ∩ neG(v).

For any pair of distinct nodes u, v ∈ V we say that u is a parent of v if u → v.

Conversely, we say that v is a son of u. The set of all parents of u in G is denoted

by paG(u).

A graph is called directed (undirected, UG) if it contains only directed (undi-

rected) edges. A sequence of distinct vertices {v0, v1, . . . , vk} in G is a path from

v0 to vk if G contains vj−1−vj or vj−1 → vj for all j = 1, . . . , k. A path is directed

(undirected) if all edges are directed (undirected). Moreover, we say that a path

is partially directed if it contains at least one directed edge. If there exists a path

from v0 to vk we also say that vk is a descendant of v0. A sequence of nodes

{v0, v1, . . . , vk} with v0 = vk such that vj−1 − vj or vj−1 → vj for all j = 1, . . . , k

is called a cycle. A cycle is then directed (undirected) if it contains only directed

(undirected) edges. Let A ⊆ V . We denote with GA = (A,EA) the subgraph of

G = (V,E) induced by A, whose edge set EA = {(u, v) ∈ V |u ∈ A, v ∈ A}. An

undirected (sub)graph is complete if its vertices are all adjacent.

A particular class of undirected graphs is represented by decomposable graphs,

also called chordal or triangulated ; see for instance Lauritzen (1996). An undi-

rected graph is decomposable if every cycle of length l ≥ 4 has a chord, that is

two nonconsecutive adjacent vertices. For a decomposable graph G on the set of

vertices V , a complete subset that is maximal with respect to inclusion is called a

clique; see for instance graph G in Figure 2.1. Let C = {C1, . . . , CK} be a perfect

sequence of cliques of the decomposable graph G (Lauritzen, 1996, p.18). We

introduce for k = 2, . . . , K the three types of sets

Hk = C1 ∪ · · · ∪ Ck,

Sk = Ck ∩Hk−1,

Rk = Ck \Hk−1,
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G G<

1 2

3 4

1 2

3 4

Figure 2.1: A decomposable graph G on the set of vertices V = {1, 2, 3, 4}; the cycle

{1, 2, 4, 3} of length l = 4 contains the chord 1−4. G has the perfect sequence of cliques

{C1, C2}, with C1 = {1, 2, 4}, C2 = {1, 3, 4}, and then H2 = V, S2 = {1, 4}, R2 = {3}.

G< is the perfect directed version of G.

which are called history, separators and residuals respectively, and set R1 = H1 =

C1, S1 = Ø. Note that C1 ∪R2 ∪ · · · ∪RK = V and also Rk ∩Rk′ = Ø. Moreover,

it is possible to number the vertices of a decomposable graph starting from those

in C1, then those in R1, R2 and so on. In doing so we obtain a perfect numbering

of vertices ; see again Lauritzen (1996). Given a perfect numbering of the vertices

in G we can construct its perfect directed version G< by directing its edges from

lower to higher numbered vertices; see also Figure 2.1.

A graph with only directed edges is called a Directed Acyclic Graph (DAG

for short, denoted by D) if it does not contain cycles. Let u, v be two distinct

vertices of a DAG. If there exists a (directed) path from u to v but no paths from

v to u, we say that u is an ancestor of v; conversely, v is a descendant of u. We

then denote with an(v) and de(v) the set of all ancestors and descendants of v

respectively.

A graph with no semi-directed cycles that may contain both directed and

undirected edges is called a chain graph (CG) or simply partially directed acyclic

graph (PDAG). For a chain graph G we call chain component τ ⊆ V a set of nodes

that are joined by an undirected path. The set of chain components of a CG is

denoted by T . See for instance Figure 2.2. A subgraph of the form u → z ← v,

where there are no edges between u and v, is called a v-structure (or immorality).

See for example 5 → 6 ← 7 in Figure 2.2. The skeleton of a graph G is the
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G Gτ2
1 2 3

4 5

6

7

3

4 5

Figure 2.2: A chain graph G with set of chain components T = {τ1, τ2, τ3, τ4}, τ1 =

{1, 2}, τ2 = {3, 4, 5}, τ3 = {6}, τ4 = {7}; Gτ2 is the subgraph induced by τ2.

undirected graph on the same set of vertices obtained by removing the orientation

of all its edges.

2.2 Marginal data distribution

In this section we focus on Gaussian models. We consider a multivariate frame-

work where Y = (Y1, . . . , Yq)
> is a q-dimensional random variable and Y a

n × q data matrix of i.i.d. observations from Y . yi denotes the i-th row in Y ,

i = 1, . . . , n. We analyse three cases. In the first one we consider Gaussian data

with zero expectation, where the only parameter on interest is the covariance (or

precision) matrix of Y . In the second the approach is extended to Gaussian data

with non-zero mean, while in the last we consider a multivariate linear regression

model and then allows for the presence of explanatory variables (covariates) too.

In all the cases we assume that the precision matrix governing the distribution of

Y ∼ N (·) is unconstrained, that is it has no zero entries; equivalently, there are

no conditional independencies between the Yjs. This corresponds to the case in

which Ω is Markov with respect to a complete DAG; see also Chapter 3.

The objective is the computation of m(YA), the marginal data distribution of

the n×|A| matrix YA containing columns indexed by A ⊆ {1, . . . , q} in Y , which

is of particular interest for the current work. All the results are obtained using

conjugate priors for model parameters based on Wishart and Normal-Wishart

distributions. For references see Geisser & Cornfield (1963) or Gelman et al.
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(2004). General definitions and detailed proofs are also reported in Appendix..

Gaussian data with zero expectation

Assume first that

(Y1, . . . , Yq) |µ,Ω ∼ Nq(0,Ω−1),

where Ω is a symmetric and positive definite (s.p.d.) but otherwise unconstrained

q × q precision matrix. Assume

Ω ∼ Wq

(
a,R

)
,

with a ∈ R, a > q − 1, and R a q × q s.p.d. matrix. Let A ⊆ {1, . . . q} and Ā its

complement. Then

m(YA) = (π)−
n|A|

2 ·
Γ|A|
(a−|Ā|+n

2

)
Γ|A|
(a−|Ā|

2

) · |RAA|
a−|Ā|

2

|RAA + SAA|
a−|Ā|+n

2

, (2.1)

where S =
∑n

i=1 yiy
>
i and SAA denotes the |A| × |A| matrix containing rows and

columns indexed by A in S; similarly for RAA. See also Appendix B.1.

Gaussian data with non-zero expectation

Assume now that

(Y1, . . . , Yq) |µ,Ω ∼ Nq(µ,Ω−1),

where µ is the q× 1 mean vector and Ω the q× q unconstrained precision matrix.

Assume

µ |Ω ∼ Nq
(
m0, (aµΩ)−1

)
,

Ω ∼ Wq

(
aΩ,R

)
,

with m0 a q × 1 vector, aµ, aΩ ∈ R (aΩ > q − 1) and R a q × q s.p.d. matrix.

Given A ⊆ {1, . . . q} and Ā its complement, we have

m(YA) = (π)−
n|A|

2 ·
(

aµ
aµ + n

) |A|
2

·
Γ|A|
(aΩ−|Ā|+n

2

)
Γ|A|
(aΩ−|Ā|

2

)
· |RAA|

aΩ−|Ā|
2∣∣RAA + SAA + aµn

aµ+n
S0,AA

∣∣aΩ−|Ā|+n
2

, (2.2)
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where S =
∑n

i=1(yi − ȳ)(yi − ȳ)>,S0 = (ȳ −m0)(ȳ −m0)> and ȳ the q × 1

vector of sample means. S0,AA is then the |A|×|A| matrix with rows and columns

indexed by A in S0; similarly for RAA and SAA. See also Appendix B.2.

Gaussian multivariate linear regression

Let Y be a n× q matrix of responses from Y1, . . . , Yq, X a n× (p+ 1) matrix of

observations from a set of p explanatory variables (including the unit vector for

the intercept) and B a (p+1)×q matrix of coefficients describing the effect of the

explanatory variables on the responses. A Gaussian multivariate linear regression

model can be written as

Y = XB +E,

where E is a n × q matrix of error terms, E ∼ Nn,q(0, In,Ω−1), In the n × n

identity matrix, Ω the unconstrained column precision matrix and 0 is the n× q

null mean matrix. Equivalently, we can write using the matrix Normal notation

(Appendix A.2)

Y |B,Ω ∼ Nn,q(XB, In,Ω−1).

Assume now

B |Ω ∼ Np+1,q

(
B,C−1,Ω−1

)
,

Ω ∼ Wq

(
a,R

)
,

with B a (p+ 1)× q matrix, C (p+ 1)× (p+ 1), a ∈ R (a > q− 1) and R a q× q

s.p.d. matrix. Let A ⊆ {1, . . . q}, Ā its complement. Then

m(YA |X) =
|C|

|A|
2 |RAA|

a−|Ā|
2 Γq

(a−|Ā|+n
2

)
2
|A|n

2

(2π)
n|A|

2 |C +X>X|
|A|
2 |RAA + Ê>AÊA +DAA|

a−|Ā|+n
2 Γ|A|

(a−|Ā|
2

) ,
(2.3)

where

Ê = Y −XB̂, B̂ =
(
X>X

)−1
X>Y

and ÊA = YA−XB̂A, being B̂A the n×|A| submatrix of B̂ with columns indexed

by A. See Appendix B.3 for details.
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2.3 Fractional Bayes factor

In this section we briefly resume the Fractional Bayes Factor (FBF) as originally

introduced by O’Hagan (1995); see also O’Hagan & Forster (2004). We then

adopt the FBF approach to compute the marginal likelihood of the three Gaussian

models described in Section 2.2, starting from objective (default) priors.

2.3.1 General setting

Let M1,M2 be two distinct models for the data Y . In a Bayesian model com-

parison framework (Section 1.2), we might be interested in computing the Bayes

factor of M1 over M2,

BF(M1,M2) =
f(Y |M1)

f(Y |M2)
=
m1(Y )

m2(Y )
,

where

mk(Y ) =

∫
f(Y |θk)p(θk)dθk

is the marginal likelihood of model Mk (k = 1, 2) given the data Y . To this end

we focus on the computation of mk(Y ). In lack of substantive prior information,

we would like to set p(θk) = pD(θk), where the latter is some objective default

(non-informative) parameter prior. As mentioned in Section 1.2, objective priors

are often improper and cannot be naively used to compute marginal likelihoods.

Let b = b(n), 0 < b < 1, be a fraction of the number of observations n. The

fractional marginal likelihood of model Mk is defined as

mk(Y ; b) =

∫
fk(Y |θk)pD(θk)dθk∫
f bk(Y |θk)pD(θk)dθk

, (2.4)

where f bk(Y |θk) = {fk(Y |θk)}b is the sampling density under model Mk raised

to the b-th power (fractional likelihood) and the two integrals are assumed to be

finite and non-zero. Equation (2.4) can be rewritten as

mk(Y ; b) =

∫
f 1−b
k (Y |θk)pF (θk | b,Y )dθk,
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where pF (θk | b,Y ) ∝ f bk(Y |θk)pD(θk) is the implied fractional prior (actually

a “posterior” based on the fractional likelihood and the default prior). In other

terms, we first consider a fraction b of the data Y which is used to make the default

prior proper. The latter is then combined with the residual (1− b) fraction of the

likelihood to compute the posterior. The fractional prior depends on the choice

of b, that we would like to take as small as possible so that the dependence of the

prior on the data will be weak. O’Hagan suggests the default choice b = n0/n

where n0 is the minimal training sample size such that the fractional marginal

likelihood is well defined. Other choices are possible, but Moreno (1997) argues

in favor of the default choice. For general properties of the fractional Bayes factor

see also O’Hagan (1995).

2.3.2 FBF for Gaussian data

Of particular interest for the current work is the use of the FBF to compute the

marginal distribution of Gaussian data. To this end, we analyse the three cases

presented in Section 2.2 from an objective Bayes perspective where parameter

priors are obtained using the fractional Bayes factor. Default priors pD(·) herein

adopted assure the implied fractional priors to be conjugate to the Gaussian mod-

els. The objective is again the computation of m(YA), the marginal data distribu-

tion of the n×|A| matrix YA containing columns indexed by A ⊆ {1, . . . , q} in Y .

For a detailed discussion about the use of FBFs in the more general framework of

exponential families see Consonni & La Rocca (2012). Detailed proofs reported in

Appendix C can also be found in Consonni & La Rocca (2012) and Consonni et al.

(2017) within the context of Gaussian data with non-zero mean and multivariate

regression respectively.

Gaussian data with zero expectation

Consider the case in which

(Y1, . . . , Yq) |Ω ∼ Nq(0,Ω−1),
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where Ω is the q × q unconstrained precision matrix. We start assuming the

default prior for Ω,

pD(Ω) ∝ |Ω|
aD−q−1

2 ,

(Geisser & Cornfield, 1963) and setting the fraction b equal to n0/n, n0 < n.

Given A ⊆ {1, . . . , q} and Ā its complement, we obtain

mF (YA) = (π)−
(n−n0)|A|

2 ·
Γ|A|
(
aD−|Ā|+n

2

)
Γ|A|
(aD−|Ā|+n0

2

) · (n0

n

) |A|(aD−|Ā|+n0)

2

· |SAA|−
n−n0

2 , (2.5)

where S =
∑n

i=1 yiy
>
i and SAA is corresponding |A| × |A| submatrix; see also

Appendix C.1.

Gaussian data with non-zero expectation

Assume now

(Y1, . . . , Yq) |Ω ∼ Nq(µ,Ω−1),

where µ is the q× 1 mean vector and Ω the q× q unconstrained precision matrix.

Assume the default prior for (µ,Ω),

pD(µ,Ω) ∝ |Ω|
aD−q−1

2 ,

and set b = n0/n, n0 < n. Given A ⊆ {1, . . . , q}, we obtain

mF (YA) = (π)−
(n−n0)|A|

2 ·
Γ|A|
(aD−|Ā|+n−1

2

)
Γ|A|
(
aD−|Ā|+n0−1

2

) ·(n0

n

) |A|(aD−|Ā|+n0)

2

· |RAA|−
n−n0

2 (2.6)

where R =
∑n

i=1 eie
>
i , ei = yi − ȳ, and RAA is the corresponding |A| × |A|

submatrix; see Appendix C.2 for a detailed proof.

Gaussian multivariate linear regression

Consider now the multivariate linear regression model described in Section 2.2,

Y |B,Ω ∼ Nn,q(XB, In,Ω−1),
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where B is a (p+1)×q matrix of coefficients and E a n×q matrix of error terms,

E ∼ Nn,q(0, In,Ω−1). Assume the default prior for (B,Ω),

pD(B,Ω) ∝ |Ω|
aD−q−1

2 .

Setting b = n0/n, n0 < n, the marginal likelihood of YA, A ⊆ {1, . . . , q}, is given

by

mF (YA |X) = (π)−
(n−n0)|A|

2
Γ|A|
(aD−|Ā|+n−p−1

2

)
Γ|A|
(aD−|Ā|+n0−p−1

2

)(n0

n

) |A|(aD−|Ā|+n0)

2 |Ê>AÊA|−
n−n0

2 .

(2.7)

with Ê as in Equation (2.3). See also Appendix C.3 for detailed results.

2.4 Priors for graphical model comparison

Geiger & Heckerman (2002) propose a method to construct parameter priors for

model choice among DAG models. To this end, they introduce a set of assumptions

that permits the construction of parameter priors for every DAG model starting

from a small number of assessments. Such assumptions are “naturally” satisfied

by discrete DAG models with conjugate priors (Multinomial-Dirichlet models)

and Gaussian DAG models with Normal-Wishart priors. They then derive a

formula to compute the marginal likelihood of any DAG model given a set of i.i.d.

observations. The main consequence of their approach is that Markov equivalent

DAGs have the same marginal likelihood. In this section we show how the general

results of Section 2.2 can be used to compute the marginal likelihood of any DAG

model by taking advantage of these assumptions. We then extend such approach

to the case of decomposable graphs.

2.4.1 Comparison of DAG models

The approach of Geiger & Heckerman relies on five assumptions. The first three

(complete model equivalence, regularity, likelihood modularity) concern the sam-

pling distribution of the data. From these it follows that, in the presence of
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observational data, we cannot distinguish between two complete DAG models

since they have the same marginal likelihood. Assumptions 4 and 5 concern in-

stead the parameter distribution. Let θj be the model parameter indexing vertex

j in any DAG model; see also Chapter 3. Assumption 4 (prior modularity) says

that, given two distinct DAG models with the same set of parents for vertex j,

the parameter prior for θj should be the same in both. Equivalently,

p(θj | Dh) = p(θj | Dk)

for any pair of distinct DAGs Dh and Dk such that paDh(j) = paDk(j). Finally,

Assumption 5 (global parameter independence) states that for every DAG model

D, the parameters θj should be a priori independent, that is

p(θ | D) =

q∏
j=1

p(θj | D).

As a consequence of such conditions, it is then sufficient to specify a prior for

the parameter of a complete DAG model; the parameter prior for each other

(not complete) DAG model can be derived automatically. For instance, with

reference to Gaussian DAG models with non-zero mean we only need to set the

hyperparameters of a complete DAG model, that is µ0, aµ, aΩ,R in the priors

for model Nq(µ,Ω−1) (Section 2.2). This result is summarized by the following

theorem.

Theorem 2.4.1 (Geiger & Heckerman (2002)). Let DC be any complete DAG

model. The marginal likelihood of any DAG D given the data Y is given under

assumptions 1-5 of Geiger & Heckerman (2002) by

mD(Y ) =

q∏
j=1

mDC (YfaD(j))

mDC (YpaD(j))
,

where faD(j) = paD(j) ∪ j is the family of node j in D.

Proof. See Theorem 2 in Geiger & Heckerman (2002).
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As an important consequence of Theorem 2.4.1, Markov equivalent DAGs have

the same marginal likelihood and so they are score equivalent. It follows that

model selection of DAG models satisfying such assumptions can be performed in

the space of representative models rather than in the whole space of DAGs; see for

instance Madigan et al. (1996). This is at the basis of the methodology presented

in Chapter 3, where model selection is performed by searching over the space of

Markov equivalence classes of DAGs. Therefore, we can use Formulas (2.1), (2.2)

and (2.3) of Section 2.2, which hold (only) for complete DAG models (equivalently,

when Ω is unconstrained), to compute the marginal likelihood of any Gaussian

model, that is when the sampling distribution is constrained by a DAG. The

assumptions of Geiger & Heckerman are in fact satisfied by the Gaussian models

with Normal-Wishart priors presented in Section 2.2.

2.4.2 Comparison of decomposable UG models

We are now interested in evaluating the marginal distribution of the data when

the sampling distribution is Markov with respect to a decomposable UG; see

Section 2.1. Recall (Lauritzen, 1996) that the density under a decomposable UG

G factorizes as

fG(Y |θG) =

∏
C∈CG f(YC |θG)∏
S∈SG f(YS |θG)

, (2.8)

where CG is the set of cliques and SG the set of separators of G. Moreover, it is

well known that any decomposable UG G is Markov equivalent to some DAG D.

Lemma 2.4.1. Let G = (V,E) be a decomposable undirected graph, CG and SG
its sets of cliques and separators; G< a perfect directed version of G and θG< its

parameter. Let m(Y ) be the marginal data distribution of Y under any complete

DAG. Then

mG<(Y ) =

∏
C∈CG m(YC)∏
S∈SG m(YS)

, (2.9)

where YA denotes the submatrix of Y with columns indexed by A ⊆ V .
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Proof. For a decomposable undirected graph G, let {C1, . . . , CK} be the corre-

sponding perfect sequence of cliques, R1, . . . , RK the residuals and S1, . . . , SK the

separators, such that R1 = C1, S1 = Ø and C2 = R2∪S2, . . . , CK = Rk∪Sk. Then

fG(Y |θG) =
K∏
k=1

fG(YCk |θG)
fG(YSk |θG)

=
K∏
k=1

fG(YRk∪Sk |θG)
fG(YSk |θG)

=
K∏
k=1

fG(YRk |YSk ;θG).

Consider now G<, a perfect directed version of G. Then

fG<(Y |θG<) =
K∏
k=1

∏
j∈Rk

fG<
(
YRk,j |YSk ,YRk,1 , . . . ,YRk,j−1

;θG<),

where Rk,j is the j -th element in Rk. Then, under Assumptions 1-5 of Geiger &

Heckerman (2002) we obtain

mG<(Y ) =
K∏
k=1

∏
j∈Rk

m(YSk∪Rk,1∪···∪Rk,j)

m(YSk∪Rk,1∪···∪Rk,j−1
)

=
K∏
k=1

m(YSk∪Rk)

m(YSk)

=

∏
C∈CG m(YC)∏
S∈SG m(YS)

.

Lemma 2.4.1 gives a formula to compute the marginal likelihood of a decomposable

UG model, when the assumptions of Geiger & Heckerman hold, starting from

the marginal data distribution obtained under a complete DAG; see Consonni &

La Rocca (2012) and Consonni et al. (2017). Starting from proper (informative)

priors for the parameter of a complete DAG model, we then obtain the marginal

data distribution of any subset YA as in the more general setting of Section 2.3.2.

Then, since the marginal likelihood of a decomposable UG is equal to the marginal

likelihood of any of its perfect directed versions G<, we can use Formula (2.3) to

compute (2.8). This is summarized in Proposition 2.4.1.



24 2. Gaussian Graphical Models

Proposition 2.4.1. Let Y |B,Ω ∼ Nn,q(XB, In,Ω−1) with Ω Markov with re-

spect to a decomposable undirected graph G. Then, under the assumptions 1-5 of

Geiger & Heckerman (2002),

mG(Y |X) =

∏
C∈CG m(YC |X)∏
S∈SG m(YS |X)

with m(YC |X),m(YS |X) as in Formula (2.3).

2.4.3 Objective comparison of decomposable UG models

We now use the FBF approach to compute the marginal likelihood of a decom-

posable UG model. Under a complete DAG, consider the multivariate linear

regression model of Section 2.2,

Y |B,Ω ∼ Nn,q(XB, In,Ω−1), (2.10)

with Ω unconstrained. Starting from the default prior for (B,Ω),

pD(B,Ω) ∝ |Ω|
aD−q−1

2 ,

one obtains the implied fractional prior as in the FBF setting of Section 2.3,

pF (B,Ω) ∝ |Ω|
aD+n0−p−q−2

2 · exp
{
−n0

2
tr
(
Ω
{

(B − B̂)>C̃ (B − B̂) + R̃
})}

;

(2.11)

see also Appendix C.3. The distribution (2.11) is a matrix normal Wishart, which

is conjugate to model (2.10). It follows that to evaluate the marginal likelihood of

the decomposable UG G we can adopt the same approach of Section 2.4.2. Specif-

ically, we start computing the fractional marginal likelihood under any complete

DAG model,

mF (Y |X) =

∫ ∫ [
f(Y |X;B,Ω)

]n−n0
n pF (B,Ω)dBdΩ. (2.12)

Then, we use (2.12) to compute the fractional marginal likelihood of the decom-

posable UG model G,

mF
G (Y |X) =

∏
C∈CG m

F (YC |X)∏
S∈SG m

F (YS |X)
,
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with mF (YC |X),mF (YS |X) as in Formula (2.7).

An alternative objective Bayes method for model selection of Gaussian decom-

posable UGs is presented in Carvalho & Scott (2009). They consider a zero-mean

normally distributed random vector, Y ∼ Nq(0,ΣG) where ΣG is the covariance

matrix constrained by the decomposable UG G. Their approach is based on

an Hyper-Inverse Wishart (HIW) distribution for Σ (Dawid & Lauritzen, 1993),

Σ | G ∼ HIW G(b,D), which naturally resembles the factorization over cliques and

separators in (2.8),

p(Σ | G) =

∏
C∈CG p(ΣC | G, d,DC)∏
S∈SG p(ΣS | G, d,DS)

.

Then, they develop a default version of the HIW prior for constrained covariance

matrices, called hyper-inverse Wishart g-prior, which corresponds to the implied

fractional prior obtained using our FBF approach; see Consonni & La Rocca

(2012) for a detailed discussion.
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Chapter 3

Model Comparison of Gaussian

Essential Graphs

A Directed Acyclic Graph (DAG) is a graphical model encoding a set of condi-

tional independencies between q random variables (Pearl, 2000). Given a set of

multivariate observations, we assume that the data generating model is faithful

to a given DAG. DAGs encoding the same set of conditional independencies are

called Markov equivalent and are uniquely represented by an Essential Graph

(EG), also called Completed Partially Directed Graph (CPDAG). When the ob-

jective is model selection of graphical models it is then convenient to explore the

EG space rather than the space of DAGs (Andersson et al., 1997), although the

number of EGs still increases super-exponentially with the number of vertices

(Gillispie & Perlman, 2002).

In this Chapter we introduce the Markov equivalence property of DAGs. We

then focus on EGs which represent one of the model space of interest for the model

selection problem described in the current work. Hence, we consider a Gaussian

framework and compute the marginal likelihood of an EG adopting an objective

Bayes approach based on the notion of fractional Bayes factor. For a concise

background on graphical models please refer to Section 2.1.

27
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3.1 Markov equivalence and essential graphs

Consider q random variables Y1, . . . , Yq with joint probability density function

f(y) = f(y1, . . . , yq) and a graph G = (V,E). As we associate each variable Yj to

a vertex in V ∈ G, we constrain f(y) by the edges in E ∈ G and then write fG(y).

Consider now the case in which G is a DAG D on the set of vertices V . Then,

fD(y) =
∏
j∈V

f(yj |ypaD(j)). (3.1)

fD(y) encodes a set of (marginal and) conditional independences among Y1, . . . ,Yq

that can be read off from the covariance and (conditional) precision matrices of

the random vector (Y1, . . . , Yq) or directly from the DAG using the notion of

d-separation; see Pearl (2000) for details. Le ΣD be the covariance matrix of

Y1, . . . , Yq, with (k, j) element equal to Cov(Yk, Yj) and ΩD = Σ−1
D the corre-

sponding precision matrix. We remark that a zero entry at (k, j) in ΣD implies a

marginal independence between Yk and Yj, while in ΩD corresponds to a condi-

tional independence between Yk and Yj given all the remaining variables. For any

two DAGs D1 and D2, we then say that D1 and D2 are Markov equivalent if and

only if they encode the same (marginal and) conditional independencies.

Example 3.1.1. Consider the following DAGs D1,D2,D3 on q = 3 nodes and

three random variables Y1, Y2, Y3 with joint density f(y).

D1 D2 D3

1 2

3

21

3

1

3

2

The corresponding implied factorizations of f(y) under each DAG are then

fD1(y) = f(y1)f(y2 | y1)f(y3 | y2),

fD2(y) = f(y2)f(y1 | y2)f(y3 | y2),

fD3(y) = f(y1)f(y3)f(y2 | y1, y3).
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Assume now for each DAG D the following set of linear equations

Yj | D =
∑

k∈paD(j)

βk,jYj + εj, j = 1, 2, 3,

with εj ∼ N (0, σ2
j ) and Cov(εk, εj) = 0 for k 6= j. Equivalently, we assume

βk,j 6= 0 if and only if k → j. For each DAG we can derive the corresponding

covariance and precision matrices (we only highlight the non-zero entries with ∗):

ΣD1 =


0 ∗ ∗

∗ 0 ∗

∗ ∗ 0

 , ΣD2 =


0 ∗ ∗

∗ 0 ∗

∗ ∗ 0

 , ΣD3 =


0 ∗ 0

∗ 0 ∗

0 ∗ 0

 ;

ΩD1 =


0 ∗ 0

∗ 0 ∗

0 ∗ 0

 , ΩD2 =


0 ∗ 0

∗ 0 ∗

0 ∗ 0

 , ΩD3 =


0 ∗ ∗

∗ 0 ∗

∗ ∗ 0

 .
In the simple case q = 3, the only conditional independencies we can derive are

“among two variables given the third” and so ΣD and ΩD contain all the possible

independence relations among pairs of variables. We observe that D1 and D2

encode the same marginal and conditional independencies, while D3 implies the

additional marginal independence between Y1 and Y2, Y1⊥⊥Y2, while Y1 and Y3

are not conditionally independent given Y2, Y1��⊥⊥Y3 |Y2. Hence, D1 and D2 are

Markov equivalent, while D3 is not.

All the (marginal and) conditional independencies between variables can be also

read from the DAG itself using the notion of d-separation (Pearl, 2000); an al-

ternative approach is proposed by Lauritzen (1996) and based on the concept of

moral graph. Let D = (V,E) be a DAG. The moral graph of D, Dm, is the undi-

rected graph with the same vertex set of D and u− v if and only if either u→ v

or u← v are in D or u and v are involved in a v -structure u→ z ← v.

Lemma 3.1.1 (Lauritzen (1996)). Let D = (V,E) be a DAG. Then A⊥⊥B |S

whenever A and B are separated by S in (Dan(A∪B∪S))
m, the moral graph of the

smallest ancestral set containing A ∪B ∪ S.
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Consider for instance Figure 1.1 in Section 1.1 We observe that Y2 and Y3 are

separated by Y1 in the moral graph of Y2 ← Y1 → Y3 and so Y2⊥⊥Y3 |Y1. On

the contrary, Y2 and Y3 are not separated in the moral graph of Y2 → Y4 ← Y3.

Hence, Y2��⊥⊥Y3 |Y4. Alternative formulations of Markov properties are also present

in literature; see for instance Drton (2009) and Roverato (2005) for a detailed

discussion. The following Theorem by Verma & Pearl (1991) provides a graphical

criterion to establish whether two DAGs are Markov equivalent.

Theorem 3.1.1 (Verma & Pearl (1991)). Two DAGs D1 and D2 are Markov

equivalent if and only if they have the same skeleton and the same v-structures.

For example, in Figure 3.1 we have three Markov equivalent DAGs, D1,D2,D3.

They have in fact the same skeleton and v -structures (2→ 4← 3).

Let [D] be the Markov equivalence class of D, that is the set of all DAGs that

are Markov equivalent to D. Starting from a DAG D, the objective is now to

construct [D]. We know from Theorem 3.1.1 that all DAGs in the equivalence

class [D] have the same skeleton and the same v -structures of D. However, other

directed edges might occur in each member of [D]. As an example, starting from

DAG D1 in Figure 3.1, we construct its Markov equivalence class [D1]. Since

2 → 4 ← 3 is a v -structure, we have that 2 → 4 and 4 ← 3 must occur in each

DAG in [D1]. Next, we can reverse 1→ 3 in 1← 3 and obtain D2 ∈ [D1]. Then,

changing 1 → 2 in 1 ← 2 is only possible in D1 (giving D3 ∈ [D1]) since in D2

would create an additional v -structure 2 → 1 ← 3. Moreover, reversing 1 → 4

would create a cycle in D1,D2 and D3. Therefore, there are no other possible

orientations for the edges in D1. The Markov equivalence class of D1 is then

[D1] = {D1,D2,D3}. This kind of reasoning leads to the following definitions.

Definition 3.1.1. Let D be a DAG. An edge u→ v is essential in D if it occurs

in all D∗ ∈ [D].

Definition 3.1.2. Let G be a graph. An arrow u → v is strongly protected in

G if it occurs in at least one of the following four configurations as an induced
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subgraph of G:

u v

z

u v

z

u

z

v u

z

w

v

(i) (ii) (iii) (iv)

Consider for instance Figure 3.1; it is easy to see that 2→ 4, 3→ 4 and 1→ 4 are

strongly protected in D1 since they occur in configurations (ii), (ii) and (iii) of

Definition 3.1.2 respectively. Moreover, 1 → 2 (1 → 3) is also strongly protected

in D2 (D3) for configuration (i). We can now introduce the notion of essential

graph (Andersson et al., 1997).

Definition 3.1.3. Let D be a DAG and [D] its Markov equivalence class. The

essential graph of D is defined as G(D) :=
⋃
D∗∈[D]D∗.

D1 D2 D3 G(D1)

1 2

3 4

1 2

43

1

43

2 1 2

3 4

Figure 3.1: An equivalence class with three Markov equivalent DAGs D1, D2, D3 and

the representative EG G(D1).

For a given Markov equivalence class [D], the corresponding EG G(D) is defined as

the union of all DAGs D∗ ∈ [D], where such union is to be intended with respect

to the edge sets of each D∗ ∈ [D]. An EG then might contain both directed as

well as undirected edges. From Definition 3.1.1 all the essential edges of D are

directed in G(D) while the others undirected, since their orientation can vary from

a DAG to another within the same equivalence class [D]. In Figure 3.1, G(D1)
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is the EG associated to the equivalence class [D1] = {D1,D2,D3}. The following

Theorem by Andersson et al. (1997) gives necessary and sufficient conditions for

a graph G = (V,E) to be the EG of some DAG D.

Theorem 3.1.2 (Andersson et al. (1997)). A graph G is the essential graph of a

DAG D if and only if

1. G is a chain graph;

2. for each chain component τ ∈ T , Gτ is chordal;

3. G has no induced subgraphs of the form u→ v − z (flags);

4. every arrow u→ v is strongly protected.

For a chain graph G = (V,E) with set of chain components T (see Section

2.1), the joint p.d.f. of Y1, . . . , Yq, f(y), factorizes as

fG(y) =
∏
τ∈T

fGτ (yτ |ypaG(τ)), (3.2)

where yτ denotes the subset of y = (y1, . . . , yq) indexed by τ ⊆ V ; see for example

Andersson et al. (2001). Such factorization will be useful for the computation of

the marginal likelihood of an EG (Section 3.2 and 4.2).

In this work, the set of all EGs with a given number of nodes q is generally taken

as the model space of interest. For instance, in Figure 3.2 we have the set of all

EGs with q = 3 nodes. When the objective is model selection of graphical models,

it is well known that searching based on equivalence classes of DAGs can be more

efficient than exploring the whole space on DAGs; see for instance Chickering

(2002). However, an exhaustive enumeration of all possible Markov equivalent

DAGs is computationally infeasible since the number of possible orientations of

all edges that do not participate in the v -structures of a DAG grows exponentially

in the number of such edges and superexponentially in the number of vertices

(Andersson et al., 1997). The exact enumeration of all EGs with a given number

of nodes is infeasible as well. Indeed, only EGs with a small number of nodes
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G1 G2 G3 G4

21

3

1 2

3

2

3

1 2

3

1

G5 G6 G7 G8

1 2

3

1

3

2 2

3

1

3

21

G9 G10 G11

3

1 2 21

3

1 2

3

Figure 3.2: The set of all EGs on q = 3 nodes.

have been studied in detail in the literature; see for instance Gillispie & Perlman

(2002). Nevertheless, in order to study properties of larger sets of EGs, Markov

chain based algorithms were developed in recent years; see for instance He et al.

(2013). We will discuss Markov chains on EGs in Section 5.1.
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3.2 Gaussian Essential Graphs

In this section we consider Gaussian graphical models. The objective is to perform

model selection of DAGs by scoring EGs using a Bayesian approach. To this end,

we introduce objective priors for model selection based on the notion of fractional

Bayes factor (Section 2.3) and compute the marginal likelihood of an EG given a

set of observational data. The main ingredient of the current methodology is the

result for Bayesian comparison of Gaussian multivariate regression models (Sec-

tion 2.3.2) applied to decomposable UG models (Section 2.4.3); see also Consonni

et al. (2017). The closed formula for the marginal likelihood thus obtained can be

used to perform structural learning of EGs as described in Section 5.2. In Section

4.2 we extend the current approach to an interventional setting.

3.2.1 Likelihood and prior factorization

Let G = (V,E) be an EG. We consider a multivariate setting comprising q variables

Y1, . . . , Yq from which we collect nmultivariate observations y1, . . . ,yn, where yi =

(yi,1, . . . , yi,q)
>, i = 1, . . . , n. We assume that these q-dimensional observations

are i.i.d. from a parametric family of sampling distributions. From the theory

presented in Andersson et al. (2001) and Drton & Eichler (2006), the joint density

of yi relative to the chain graph G factorizes as

fG(yi |θG) =
∏
τ∈T

fGτ (yi,τ |yi,paG(τ),θGτ ), (3.3)

where Gτ is the (undirected) subgraph induced by G on τ (Section 2.1), while

yi,τ = (yij, j ∈ τ)> denotes the (column) subvector of yi whose components are

indexed by the vertices in the chain component τ ⊆ V ; similarly for yi,paG(τ), where

paG(τ) denotes the parents in G of nodes contained in τ . Moreover, θG is the global

parameter indexing the graphical model G, while θGτ is a local parameter for chain

component τ indexing the conditional sampling distribution of yi,τ given yi,paG(τ).

If we let θG ∈ ΘG and θτ ∈ Θτ , we find ΘG = ×τ∈T Θτ , i.e., the components θGτ s

of θG are variation independent (Drton & Eichler, 2006). We now collect all n
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observations y1, . . . ,yn into the (n, q) data matrix Y ,

Y =


y>1
...

y>n

 (3.4)

and then denote with Yτ the n×|τ | matrix containing selected columns indexed by

τ in Y ; similarly for the n×|paG(τ)| matrix YpaG(τ). Recall that the observations,

conditionally on G, are i.i.d.; hence we obtain

fG(Y |θG) =
n∏
i=1

∏
τ∈T

fGτ (yi,τ |yi,paG(τ),θGτ )

=
∏
τ∈T

fGτ (Yτ |YpaG(τ),θGτ ). (3.5)

Since the θGτ s are variation independent, we can further assume that the prior on

θG factorizes as

p(θG) =
∏
τ∈T

p(θGτ ); (3.6)

see also Castelo & Perlman (2004). Condition (3.6) extends the assumption of

global (parameter) independence, which is typical for DAG models (Cowell et al.,

1999, p. 193), to CG models. In this way we obtain

mG(Y ) =

∫
ΘG

fG(Y |θG)p(θG)dθG

=
∏
τ∈T

∫
ΘGτ

fGτ (Yτ |YpaG(τ),θGτ )p(θGτ )dθGτ

=
∏
τ∈T

mGτ (Yτ |YpaG(τ)). (3.7)

From (3.7) it appears that the marginal distribution for the data matrix Y admits

the same chain graph factorization that holds under the sampling distribution

(3.5).

3.2.2 Marginal likelihood

Consider now a set of observations y1, . . . ,yn which, conditionally on their mean

vector µ and their precision matrix ΩD (inverse of the covariance matrix ΣD), are
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i.i.d. Nq(µ,Ω−1
D ), with ΩD Markov with respect to a DAG D. Let G be the EG

for the equivalence class of D. Then, we can write the factorization in the first

display of (3.5) as

fGτ (yi,τ |yi,paG(τ),θGτ ) = N|τ |(yi,τ |µτ + Γτ (yi,paG(τ) − µi,paG(τ)),Ω
−1
Gτ ), (3.8)

or equivalently, letting ατ = µτ − Γτµi,paG(τ),

fGτ (yi,τ |yi,paG(τ),θGτ ) = N|τ |(yi,τ |ατ + Γτyi,paG(τ),Ω
−1
Gτ ), (3.9)

i = 1, . . . , n, being ατ + Γτyi,paG(τ) = E(yi,τ |yi,paG(τ),ατ ,ΩGτ ), Γτ the ma-

trix of regression parameters and ΩGτ the conditional precision matrix, Ω−1
Gτ =

Var(yi,τ |yi,paG(τ),ατ ,ΩGτ ); see also Appendix A.2. Recall from Theorem 3.1.2

that ΩGτ is Markov with respect to a decomposable (chordal) graph Gτ . Collect-

ing terms we can write

fGτ (yi,τ |yi,paG(τ),θGτ ) = N|τ |(yi,τ |B>τ xi,τ ,Ω−1
Gτ ), (3.10)

where

xi,τ =

 1

yi,paG(τ)

 ; Bτ =

 α>τ
Γ>τ

 . (3.11)

Notice that the matrix Bτ consists of unconstrained components; this follows

from Theorem 3.1.2 since Gτ has no flags and then all nodes within the same

chain component have the same parents. Letting

Xτ =


x>1,τ

...

x>n,τ

 , (3.12)

we can write

Yτ |Xτ ,Bτ ,ΩGτ ∼ Nn,|τ |(XτBτ , In,Ω
−1
Gτ ), (3.13)

so that

fG(Y |X,µ,Ω) =
∏
τ∈T

Nn,|τ |(Yτ |XτBτ , In,Ω
−1
Gτ ), (3.14)
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where X is the collection (column binding) of the Xτ s.

Because of global parameter independence (3.6), we only need to specify priors

separately for each chain component τ . Let Ωτ denote the precision matrix of the

variables in τ under a complete graph. A default prior on (Bτ ,Ωτ ), with Ωτ

s.p.d., is

pD(Bτ ,Ωτ ) ∝ |Ωτ |
aD−|τ |−1

2 ; (3.15)

see also 2.3.2. Using the prior (3.15) and setting the fraction b equal to n0/n,

n0 < n, the fractional prior for model (3.13) is given by

pF (Bτ ,Ωτ ) ∝ |Ωτ |
aD+n0−|paG(τ)|−|τ |−2

2

· exp
{
−n0

2
tr
(
Ωτ

{
(Bτ − B̂τ )

>C̃τ (Bτ − B̂τ ) + R̃τ

})}
,(3.16)

where B̂τ = (X>τXτ )
−1X>τ Yτ , Êτ = (Yτ − XτB̂τ ), C̃τ = n−1X>τXτ , and

R̃τ = n−1Ê>τ Êτ . The distribution (3.16) is a matrix normal Wishart, which is con-

jugate to the sampling model (3.13); see also Appendix C.3. Distribution (3.16)

is proper under two conditions: i) aD + n0 − |paG(τ)| > |τ |; ii) n > |τ |+ |paG(τ)|;

Condition ii) is a sparsity condition on the graph structure. Condition i) becomes

n0 > |paG(τ)|+ 1, upon setting aD = |τ | − 1.

To evaluate the EG G we need to compute the marginal likelihood for each

Gτ , τ ∈ T , mGτ (Yτ |YpaG(τ)) in Formula (3.7). For the decomposable graph Gτ , let

Cτ be its set of (maximal) cliques and Sτ be the corresponding set of separators.

Then

mGτ (Yτ |Xτ ) =

∏
C∈Cτ mGτ (YC,τ |Xτ )∏
S∈Sτ mGτ (YS,τ |Xτ )

; (3.17)

see Dawid & Lauritzen (1993). Hence, from the theory resumed in Section 2.4.3,

to compute the marginal likelihood mGτ (Yτ |Xτ ) we need a formula for the density

of YJ,τ , the submatrix of Yτ containing the columns indexed by J . The result is

obtained from the marginal likelihood of a Gaussian multivariate regression model
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(Consonni et al., 2017); see also Section 2.3.2. Hence

mGτ (YJ,τ |Xτ ) = π−
(n−n0)|J|

2

Γ|J |

(
aD+n−|paG(τ)|−1−|J̄ |

2

)
Γ|J |

(
aD+n0−|paG(τ)|−1−|J̄ |

2

)
·
(n0

n

) |J|(aD+n0−|J̄|)
2 |Ê>J,τÊJ,τ |−

n−n0
2 , (3.18)

where J̄ = τ \ J , so that |J̄ | = |τ | − |J |, and ÊJ,τ = (YJ,τ − XτB̂J,τ ), with

B̂J,τ = (X>τXτ )
−1X>τ YJ,τ .

We compute m(YC,τ |Xτ ) and m(YS,τ |Xτ ) in (4.10) by setting J = C and

J = S, respectively, in (3.18). Finally, using (3.7), we can recover the overall

marginal likelihood of G given Y , by multiplying each element in (4.10),

mG(Y ) =
∏
τ∈T

mGτ (Yτ |Xτ ). (3.19)

In the following we report a simple four-node example to emphasize the likeli-

hood factorization with respect to an EG. The same example is recalled in Section

4.2 to show how a similar factorization can be obtained in an interventional set-

ting.

Example 3.2.1. Consider the following EG G with q = 4 nodes and set of chain

components T = {τ1, τ2}, τ1 = {1, 2, 3}, τ2 = {4}.

1 2

3 4

Observations y1, . . . ,yn from (Y1, . . . , Y4) are then collected in the n × 4 data

matrix Y . We are interested in evaluating model G by scoring it. From equation

(3.5) we obtain the factorization with respect to graph G,

fG
(
Y |θG

)
= fGτ1

(
Yτ1 |YpaG(τ1),θτ1

)
· fGτ2

(
Yτ2 |YpaG(τ2),θτ2

)
.
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Then, assuming y1, . . . ,yn i.i.d. N4(µ,Ω−1
G ), with ΩG Markov with respect to the

EG G we can write

fGτ1
(
Yτ1 |YpaG(τ1),θτ1

)
= Nn,|τ1|

(
Yτ1 |Xτ1Bτ1 , In,Ω

−1
Gτ1

)
,

fGτ2
(
Yτ2 |YpaG(τ2),θτ2

)
= Nn,|τ2|

(
Yτ2 |Xτ2Bτ2 , In,Ω

−1
Gτ2

)
,

with

Xτ1 =
[

1
]
, Bτ1 =

[
µ1 µ2 µ3

]
,

Xτ2 =
[

1 y1 y2 y3

]
, Bτ2 =


µ4

β1,4

β2,4

β3,4

 ,

ΩGτ1 =


ω1 ω12 ω13

ω21 ω2 0

ω13 0 ω3

 , ΩGτ2 =
[
ω4

]
.
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Chapter 4

Model Comparison with

Observational and Interventional

Data

In many areas, such as biology, we may have both observational and interventional

data, the latter produced after a perturbation of the unknown data generating pro-

cess. Interventions can be realized by forcing one or several variables of the system

to “chosen values”. In doing so, we destroy the original causal dependency on the

intervened variables and modify the Markov property of the DAG model. This

results in a finer partition of DAGs into equivalence classes, each one represented

by an interventional essential graph. Hence, modelling jointly observational and

interventional data can greatly improve the identifiability of the true data gener-

ating model.

In this chapter we extend the methodology for model comparison of Gaussian

essential graphs (Chapter 3) to an interventional setting. After a short background

on interventions on DAGs and interventional Markov equivalence, we present our

approach to compute the marginal likelihood of an interventional essential graph

given a collection of observational and interventional data.

41
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4.1 Interventional essential graphs

The concept of intervention on DAGs goes back to Pearl (1995) and it is strictly

related to the causal interpretation of a DAG model. A natural extension of the

Markov equivalence property (interventional Markov equivalence) is then formal-

ized in Hauser & Bühlmann (2012). They show that the interventional Markov

equivalence property defines a finer partition of DAGs into equivalence classes,

each one represented by a chain graph called Interventional Essential Graph (I-

EG). In this section we introduce interventions on DAGs and resume the main

results concerning I-EGs developed by Hauser & Bühlmann (2012). Of particular

interest for the current work is the characterization theorem of an I-EG, which

represents an extension of Theorem 4.1 in Andersson et al. (1997) for essential

graphs. Such result has important consequences both for the computation of the

marginal likelihood of an I-EG in the Gaussian setting of Section 4.2 and for the

construction of a Markov chain on the I-EG space (Section 5.1), the two main

components of the model selection problem we deal with in this work.

4.1.1 Interventions on DAGs

Let Y1, . . . , Yq be a collection of random variables whose sampling distribution is

constrained by a DAG D = (V,E). This implies the factorization (see also Section

3.1)

fD(y) =
∏
j∈V

f(yj |ypaD(j)). (4.1)

where paD(j) is the set of parents of node j in D. Let now I ⊆ V and YI =

{Yj, j ∈ I} the corresponding subset of random variables. Following Pearl (2000),

we define an intervention on I as the action of setting or forcing YI to the value

of a random variable UI with density f̃(·) such that UI is independent of Yj, for

each j ∈ paD(I); see also Hauser & Bühlmann (2012). We call I an intervention

target. For a given DAG D, an intervention on I destroys the original causal

dependence between YI and its parents in D and leads to the following definition
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D D{2} D{2,4}

1 2

3 4

1

3 4

2 1

3

2

4

Figure 4.1: A DAG D and two intervention DAGs for the targets {2} and {2, 4}.

of intervention DAG.

Definition 4.1.1. Let D = (V,E) be a DAG, I ⊆ V an intervention target. We

call intervention graph of D the DAG DI = (V,EI), with EI := {(u, v) : (u, v) ∈

E, v /∈ I}.

Consider for instance Figure 4.1. Starting from DAG D we assume an intervention

on I = {2} and then obtain the corresponding intervention DAG D{2} by removing

all edges u→ 2. Similarly, assuming I = {2, 4} we obtainD{2,4} by removing edges

u → 2 and v → 4. The post-intervention joint distribution of Y1, . . . , Yq is then

obtained using the truncated factorization

fDI (y |YI ← UI) =
∏
j /∈I

f(yj |ypaD(j))
∏
j∈I

f̃(yj). (4.2)

Equivalently, we say that the sampling distribution of Y1, . . . , Yq is constrained by

DAG DI . With I = Ø (no interventions are performed) and using the convention

fDØ(y |YØ ← UØ) = fD(y), Equation (4.2) reduces to Equation (4.1), which holds

in the observational setting.

4.1.2 Interventions and Markov equivalence

Consider now a set of intervention targets I = {Ik, k = 1, . . . , K}, also called a

family of targets. Each target is associated to a random variable UIk with density

f̃k(·) assigned to the corresponding set of random variables YIk . We also assume

UIk independent of UIh , for each k 6= h. From the previous section we have
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that, for a given DAG D, an intervention on the target I destroys the original

dependencies on YI encoded by D. Therefore, if we want to infer the complete

structure (skeleton) of D we must require each edge in D to appear at least in

one of the intervention DAGs DI . This property is formalized in the following

definition.

Definition 4.1.2. Let I be a family of targets. We say that I is conservative if

for each j ∈ V there is at least one I ∈ I such that j /∈ I.

We only remark that if Ø ∈ I, that is we have observational data as well, then I

is conservative. The Markov equivalence property of DAGs is now extended to the

interventional setting. We know that two DAGs D1 and D2 are (observationally)

Markov equivalent if fD1(·) and fD2(·) encode the same conditional independencies

(Section 3.1). Markov equivalence with respect to a family of intervention targets

I states that D1 and D2 are interventionally Markov equivalent if fDI1(·) and

fDI2(·) encode the same conditional independenicies for each I ∈ I. Theorem

4.1.1 provides a graphical criterion to establish if D1 and D2 are Markov equivalent

under the conservative family of targets I.

Theorem 4.1.1 (Hauser & Bühlmann (2012)). Let D1 and D2 be two DAGs

and I a conservative family of targets. We say that D1 and D2 are I-Markov

equivalent (D1 ∼I D2) if for each I ∈ I, DI1 and DI2 have the same skeleton and

v-structures.

Theorem 4.1.1 is a generalization to the interventional case of Theorem 1

of Verma & Pearl (1991) (see also Section 3.1); when I = {Ø} the two results

coincide and we also say thatD1 andD2 are Markov equivalent in the observational

sense. As a consequence, D1 and D2 are I-Markov equivalent if the corresponding

intervention DAGs DI1 and DI2 are Markov equivalent in the observational sense

for each I ∈ I. From Theorem 4.1.1 it also follows that D1 and D2 are I-Markov

equivalent if they have the same skeleton and the same v -structures (they are

Markov equivalent in the observational sense) and DI1 and DI2 have the same

skeleton for each I ∈ I. See also Theorem 10 in Hauser & Bühlmann (2012).
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D1 D2 D3

1 2

3 4

1 2

43

1

43
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Figure 4.2: An equivalence class with three Markov equivalent DAGs D1, D2, D3.

Assuming I = {Ø, {2}}, D3 is no longer I-Markov equivalent to D1 and D2.

Let now [D]I be the I-Markov equivalence class of D, that is the set of all

DAGs that are I-Markov equivalent to D. As a consequence of Theorem 4.1.1

we have that interventions based on a conservative family of targets define a finer

partition of DAGs into equivalence classes. This is not true in general when I is

not conservative as discussed in Hauser & Bühlmann (2012).

4.1.3 Interventions and essential graphs

Each interventional Markov equivalence class can be uniquely represented by a

special chain graph called interventional essential graph. In the following we

introduce the notion of interventional essential graph (I-EG) together with the

corresponding characterization theorem.

Definition 4.1.3. Let D be a DAG and I a conservative family of targets. The

I-essential graph of D is defined as IG(D) =
⋃
D∗∈[D]I

D∗.

Clearly, IG(D) =I G(D∗) for each D∗ ∈ [D]I . In the sequel we often use IG to

identify an I-EG without making explicit its originating DAG.

In Figure 4.3, we have two I-EGs for the family of targets I = {Ø, {2}}, defining a

partition of the equivalence class {D1,D2,D3} of Figure 4.2 which was represented

by G.

Definition 4.1.4. Let D be a DAG. An edge u→ v ∈ D is I-essential in D if it

occurs in all D∗ ∈ [D]I.
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G IG1 IG2
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3 4
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3

2

4

1

43
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Figure 4.3: An EG G and two I-EGs IG1 and IG2 for I = {Ø, {2}}. G is the representa-

tive of the Markov equivalence class {D1,D2,D3} in Figure 4.2 which is partitioned into

two I-Markov equivalence classes: {D1,D2} represented by IG1 and {D3} represented

by IG1 ≡ D3.

It is easy to show that for a given edge u → v, if there exists an intervention

target I ∈ I such that |{u, v}∩ I| = 1 then u→ v is I-essential. This means that

if in some EG we have an undirected edge u− v, with an intervention on a target

I such that |{u, v}∩ I| = 1 (for example I = {u}) we can identify the orientation

of u− v and then distinguish between u→ v and u← v.

Definition 4.1.5. Let G be a graph. An arrow u→ v ∈ G is strongly I-protected

in G if there is some I ∈ I such that |(u, v) ∩ I| = 1 or the arrow u → v occurs

in at least one of the following four configurations as an induced subgraph of G:

u v

z

u v

z

u

z

v u

z

w

v

(i) (ii) (iii) (iv)

Consider for instance DAG D1 in Figure 4.2. It is easy to see that 2→ 4, 3→ 4,

1→ 4 are strongly I-protected since they occur in configurations (ii), (ii) and (iii)

respectively. Moreover, assuming I = {Ø, {2}}, 1 → 2 is strongly I-protected

as well and then results in the I-EG IG1 of D1 in Figure 4.3. For simplicity of

notation, in the following we will denote an I-EG (IG) by G when the family I
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is clear from the context. We can now give the characterization theorem of an

I-EG.

Theorem 4.1.2 (Hauser & Bühlmann (2012)). Let D be a DAG on the set of

vertices V and I a conservative family of targets. A graph G is the I-essential

graph of D if and only if

1. G is a chain graph;

2. for each chain component τ ∈ T , Gτ is chordal;

3. G has no induced subgraphs of the form u→ v − z (flags);

4. every arrow u→ v is strongly I-protected;

5. G has no line u−v for which there exists some I ∈ I such that |I∩{u, v}| = 1.

While Conditions 1, 2, 3 are the same as in Theorem 3.1.2 of Section 3.1, Con-

dition 4 is a natural extension of the corresponding one. Condition 5 is instead

specific to the interventional setting and of particular interest for this work. It

says that, given a family of targets I, each I-EG IG is such that it has no chain

components containing nodes on which at least one intervention was performed

together with nodes on which no interventions were done. As mentioned, this re-

sult has important consequences both for the derivation of the marginal likelihood

of a chain graph in Section 4.2 and for the construction of a Markov chain on the

I-EG space (Section 5.1).

4.2 Gaussian interventional essential graphs

In this section we extend the methodology for the computation of the marginal

likelihood of an essential graph (Section 3.2) to the interventional setting described

in Section 4.1. In doing so, we derive a method to perform model selection of

Gaussian graphical models in the presence of interventional data. To this end

we first introduce the data structure together with the likelihood factorization
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for a chain graph. As for the observational case, all the results are based on the

marginal likelihood of multivariate regression graphical models. We assume again

objective priors and then obtain conjugate priors based on the fractional Bayes

factor for both standard and interventional model parameters that we assume a

priori independent.

4.2.1 Likelihood and prior factorization

In the interventional setting of Section 4.1 a dataset consists in a collection of mul-

tivariate observations each one associated to an intervention target. In particular,

we assume to have, for each target Ik ∈ I (k = 1, . . . , K) nIk ≡ n(k) i.i.d. q-variate

observations from the sampling distribution of (Y1, . . . , Yq) |YIk ← UIk collected

in the (n(k), q) matrix Y Ik ≡ Y k. By binding the matrices Y k, Ik ∈ I, we then

obtain the (n, q) data matrix Y , where n =
∑

k n
(k). Recall from Theorem 4.1.2

that an I-essential graph G = (V,E) is a chain graph with set of chain components

T . Therefore we can write the factorization

fG (Y |ΘG) =
∏
τ∈T

fGτ
(
Yτ |YpaG(τ),ΘGτ

)
, (4.3)

where Yτ denotes selected columns of the data matrix Y corresponding to the

subset τ ⊆ V . ΘG is instead a global parameter indexing the graphical model G

and ΘGτ a local parameter for chain component τ .

For simplicity, consider first the case in which |Ik| = 1 for all Ik ∈ I, that

is assume single-node interventions. Let ISq be the set of all I-EGs on q nodes.

From Condition 5 of Theorem 4.1.2 we have that each I-EG G ∈ ISq contains a

chain component τ = Ik for each Ik ∈ I. Recall that τ ⊆ V indexes columns of

the data matrix Y , while Ik refers to subsets of rows. Then, we can write for each

Ik ∈ I and τ ∈ T

fGτ
(
Y k
τ |Y k

paG(τ),ΘGτ
)

=

fGτ
(
Y k
τ |Y k

paG(τ),θGτ
)

if Ik 6= τ ,

f̃Gτ
(
Y k
τ |ψk

Gτ

)
if Ik = τ ,

(4.4)
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where Y k
τ denotes columns indexed by τ of Y k. The first case of Equation (4.4)

is the usual factorization for subgraph Gτ which holds for all Y k
τ such that Ik 6= τ ,

that is when no interventions are performed on chain component Ik = τ . The

second case corresponds instead to the (intervention) density f̃Gτ (·), where the

intervention on Ik destroys the original dependence between node Ik = τ and its

parents. Moreover, ψk
Gτ is a parameter modelling the effect of the intervention on

chain component τ , while θGτ is the chain component parameter of the conditional

distribution of those observations not arising from an intervention on τ . Implicitly

we assume that θGτ does not depend on Ik. Assuming now y1, . . . ,yn independent

we can write

fGτ
(
Yτ |YpaG(τ),ΘGτ

)
=

∏
Ik 6=τ

fGτ
(
Y k
τ |Y k

paG(τ),θGτ
)
·
∏
Ik=τ

f̃Gτ
(
Y k
τ |ψk

Gτ

)
= fGτ

(
Y ∗τ |Y ∗paG(τ),θGτ

)
·
∏
Ik=τ

f̃Gτ
(
Y k
τ |ψk

Gτ

)
, (4.5)

being Y ∗τ a (n∗τ , |τ |) matrix collecting all the observations Y k
τ such that Ik 6= τ .

See also the simple example with q = 4 nodes at the end of the current section.

We now extend the likelihood factorization in Equation (4.5) to the more

general setting |Ik| ≥ 1, Ik ∈ I. Let Iτ =
{
Ik ∈ I : |Ik ∩ τ | > 0

}
be the set of all

the intervention targets that act on chain component τ . We can write for Yτ

fGτ
(
Yτ |YpaG(τ),ΘGτ

)
=

∏
Ik /∈Iτ

fGτ
(
Y k
τ |Y k

paG(τ),θGτ
)
·
∏
Ik∈Iτ

f̃Gτ
(
Y k
τ |ψk

Gτ

)
= fGτ

(
Y ∗τ |Y ∗paG(τ),θGτ

)
·
∏
Ik∈Iτ

f̃Gτ
(
Y k
τ |ψk

Gτ

)
, (4.6)

where again Y ∗τ is a (n∗τ , |τ |) matrix collecting all the observations Y k
τ such that

Ik /∈ Iτ . As for the observational setting we assume that the prior on ΘG factorizes

as

p(ΘG) =
∏
τ∈T

p(ΘGτ ), (4.7)

while for each chain component parameter ΘGτ we assume θGτ a priori independent

of ψk
Gτ , for all Ik ∈ Iτ . Hence, we obtain

p(ΘGτ ) = p(θGτ ) ·
∏
Ik∈Iτ

p
(
ψk
Gτ

)
, (4.8)
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which extends global parameter independence (Equation (3.6) in Section 3.2) to

the interventional setting. The marginal likelihood for the I-EG G given the data

Y is then

mG(Y ) =
∏
τ∈T

∫
fGτ (Yτ |YpaG(τ),ΘGτ )p(ΘGτ )dΘGτ

=
∏
τ∈T

mGτ (Yτ |YpaG(τ)). (4.9)

From Theorem 4.1.2 in Section 4.1 recall that Gτ is a decomposable (chordal)

graph. Let Cτ be its set of (maximal) cliques and Sτ the corresponding set of

separators. Then

mGτ (Yτ |Xτ ) =

∏
C∈Cτ mGτ (YC,τ |Xτ )∏
S∈Sτ mGτ (YS,τ |Xτ )

, (4.10)

where

mGτ (YJ,τ |Xτ ) = mGτ
(
Y ∗J,τ |X∗τ

)
·
∏
Ik∈Iτ

mGτ
(
Y k
τ

)
and J ⊆ τ refers to a generical clique or separator of Gτ .

4.2.2 Marginal likelihood

Let I be a conservative family of targets, G an I-EG. Recall that for each τ , all

the observations Y k
τ such that Ik /∈ Iτ are collected in the (n∗τ , |τ |) matrix Y ∗τ .

For each observation y∗i,τ in Y ∗τ assume

fGτ
(
y∗i,τ |y∗i,paG(τ),θGτ

)
= N|τ |

(
y∗i,τ |ατ + Γτy

∗
i,paG(τ),Ω

−1
Gτ

)
, (4.11)

i = 1, . . . , n, whereατ+Γτy
∗
i,paG(τ) denotes the conditional mean, ατ+Γτy

∗
i,paG(τ) =

E(y∗i,τ |y∗i,paG(τ),ατ ,ΩGτ ), Γτ is the matrix of regression parameters and ΩGτ the

conditional precision matrix, Ω−1
Gτ = Var(y∗i,τ |y∗i,paG(τ),ατ ,ΩGτ ); see also Section

3.2.2. Now, letting

x∗i,τ =

 1

y∗i,paG(τ)

 , Bτ =

 α>τ
Γ>τ

 , (4.12)
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we can write

fGτ
(
y∗i,τ |y∗i,paG(τ),θGτ

)
= N|τ |

(
y∗i,τ |B>τ x∗i,τ ,Ω−1

Gτ

)
. (4.13)

As for the observational case, the matrix Bτ consists of unconstrained component

since the I-EG G has no flags (Condition 3 of Theorem 4.1.2). In matrix notation

we can write

fGτ
(
Y ∗τ |Y ∗paG(τ),θτ

)
= Nn∗τ ,|τ |

(
Y ∗τ |X∗τBτ , In∗ ,Ω

−1
Gτ

)
, (4.14)

being

X∗τ =


x∗>1,τ

...

x∗>n∗,τ

 .

Because of global parameter independence (4.8), we can specify priors sepa-

rately for each chain component τ . Let Ωτ denote the precision matrix of the

variables in τ under a complete graph. Under the fractional Bayes setting de-

scribed in Section 2.3 we start assuming the default prior on (Bτ ,Ωτ ),

p(Bτ ,Ωτ ) ∝ |Ωτ |
aD−|τ |−1

2 . (4.15)

The implied fractional prior is then obtained as in the Gaussian multivariate

regression model resumed in Section 2.2 by setting b = b∗ = n∗0/n
∗. Then, the

marginal data distribution of Y ∗τ can be computed accordingly. In particular, for

any subset J ⊆ τ (selected columns indexed by J of Y ∗τ ) we obtain from Formula

(2.7) in Section 2.3.2,

mGτ
(
Y ∗J,τ |X∗τ

)
= (π)−

(n∗τ−n
∗
0)|J|

2 ·
Γ|J |

(
aD+n∗τ−|paG(τ)|−1−|J̄ |

2

)
Γ|J |

(
aD+n∗0−|paG(τ)|−1−|J̄ |

2

)
·
(
n∗0
n∗

) |J|(aD+n∗0−|J̄|)
2

|Ê∗>J,τÊ∗J,τ |−
n∗−n∗0

2 . (4.16)

We remark that Formula (4.16) holds provided that aD + n∗0 − |paG(τ)| > |τ |,

n∗τ > |τ |+ |paG(τ)|. Focus now on the densities f̃Gτ (·) of Formula (4.6). Assuming
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for each yki,τ , Ik ∈ Iτ ,

f̃Gτ
(
yki,τ |ψk

Gτ

)
= N|τ |

(
yki,τ | δkτ , (Φk

τ )
−1
)
, (4.17)

we obtain

f̃Gτ
(
Y k
τ |ψk

τ

)
= Nn(k),|τ |

(
Y k
τ |∆k

τ , In(k) , (Φk
τ )
−1
)
, (4.18)

where ψk
τ =

(
∆k

τ ,Φ
k
τ

)
is the chain component parameter modelling the effect of

the intervention with target Ik on the chain component τ and

∆k
τ = 1n(k)δk>τ , (4.19)

being 1n(k) the unit vector of length n(k). A default prior for
(
∆k

τ ,Φ
k
τ

)
is then

p
(
∆k

τ ,Φ
k
τ

)
∝ |Φk

τ |
akD−|τ |−1

2 .

Setting b = b(k) = n
(k)
0 /n

(k)
τ , we obtain from Formula (2.6) the marginal data

distribution of Y k
J,τ , for Ik ∈ Iτ ,

mGτ (Y
k
J,τ ) = (π)−

(n(k)
τ −n

(k)
0 )|J|

2 ·
Γ|J |

(
a

(k)
D +n

(k)
τ −1−|J̄ |
2

)
Γ|J |

(
a

(k)
D +n

(k)
0 −1−|J̄ |
2

)

·

(
n

(k)
0

n
(k)
τ

) |J|(a(k)
D

+n
(k)
0 −|J̄|)

2

|Ŷ k>
J,τ Ŷ

k
J,τ |−

n
(k)
τ −n

(k)
0

2 , (4.20)

where Ŷ k
J,τ = Y k

J,τ − 1n(k)Ȳ k
J,τ and Ȳ k

J,τ is the 1× |J | mean vector of Y k
J,τ . Observe

that in such case we don’t have a conditional structure any longer due to effect of

the intervention on τ . Equivalently, Formula (4.20) can be derived from Equation

(4.16) by setting paG(τ) = Ø. We remark that Formula (4.20) holds provided that

a
(k)
D + n

(k)
0 > |τ |, n(k)

τ > |τ |.

Example 4.2.1. Under the family of targets I = {Ø, {2}}, consider the following

I-EG G. The set of chain components of G is T = {τ1, τ2, τ3} with τ1 = {1, 3}, τ2 =

{2}, τ3 = {4}.
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1

3

2

4

Given the family of targets I, a dataset consists in a pair (Y Ø,Y {2})>, where we

denote with Y Ø the nØ × 4 matrix of observational data, with Y {2} the n{2} × 4

matrix of interventional data with target {2} and n = nØ +n{2}. We are interested

in evaluating model G by scoring it. Given the likelihood factorization

fG (Y |ΘG) =
∏
τ∈T

fGτ
(
Yτ |YpaG(τ),Θτ

)
,

we obtain from Equation (4.5)

fGτ1
(
Yτ1 |YpaG(τ1),Θτ1

)
= fGτ1

(
Y Ø
τ1
|Y Ø

paG(τ1),θτ1
)
· fGτ1

(
Y {2}τ1

|Y {2}paG(τ1),θτ1
)

= fGτ1
(
Yτ1 |YpaG(τ1),θτ1

)
,

fGτ2
(
Yτ2 |YpaG(τ2),Θτ2

)
= fGτ2

(
Y Ø
τ2
|Y Ø

paG(τ2),θτ2
)
· f̃Gτ2

(
Y {2}τ2

|ψ{2}τ2
)
,

fGτ3
(
Yτ3 |YpaG(τ3),Θτ3

)
= fGτ3

(
Y Ø
τ3
|Y Ø

paG(τ3),θτ3
)
· fGτ3

(
Y {2}τ3

|Y {2}paG(τ3),θτ3
)

= fGτ3
(
Yτ3 |YpaG(τ3),θτ3

)
.

According to the notation used in Formula (4.5), we have Y ∗τ1 ≡ Yτ1 ,Y
∗
τ2
≡ Y Ø

τ2

and Y ∗τ3 ≡ Yτ3. From Equation (4.14) we obtain for fGτ1 (·)

fGτ1
(
Yτ1 |YpaG(τ1),Θτ1

)
= Nn,|τ1|(Yτ1 |Xτ1Bτ1 , In,Ω

−1
τ1

),

where

Xτ1 =
[

1n

]
; Bτ1 =

[
µ1 µ3

]
.

Then, for fGτ2 (·) we can write according to Equations (4.14) and (4.18),

fGτ2
(
Yτ2 |YpaG(τ2),Θτ2

)
= NnØ,|τ2|(Y

Ø
τ2
|XØ

τ2
Bτ2 , In,Ω

−1
τ2

)

· Nn{2},|τ2|(Y
{2}
τ2
|∆{2}τ2 , In{2} , (Φ

{2}
τ )−1)
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where

XØ
τ2

=
[

1nØ yØ
1

]
; Bτ2 =

 µ2

β1,2

 .
Finally, for fGτ3 (·) we have

fGτ3
(
Yτ3 |YpaG(τ3),Θτ3

)
= Nn,|τ3|(Yτ3 |Xτ3Bτ3 , In,Ω

−1
τ3

),

with

Xτ3 =
[

1n y1 y2 y3

]
; Bτ3 =


µ4

β1,4

β2,4

β3,4

 .



Chapter 5

MCMC Methods

In this chapter we introduce the Markov Chain Monte Carlo (MCMC) methods

that we adopt to perform structural learning of (interventional) essential graphs (I-

EGs). To this end, we first construct a Markov chain on (interventional) Markov

equivalence classes of DAGs that we use to explore the I-EG space and study

related properties of interest (Section 5.1). The same is at the basis of the MCMC

algorithm presented in Section 5.2 which allows for posterior inference on the

model space. All the algorithms herein presented are implemented in R (?).

5.1 Markov chains on equivalence classes of DAGs

Markov chains represents a fundamental tool in model selection problems both

from a Bayesian and a frequentist perspective. Once we collect a set of observa-

tions that we assume to be faithful to some statistical model (e.g. a DAG), we

might be interested in evaluating all possible models belonging to a given space

in order to “identify” the true data generating model or approximate the poste-

rior distribution across models; see also Chapter 1.2. However, this is infeasible

in many cases since the enumeration of such models is not possible or compu-

tationally demanding. Furthermore, in a Bayesian setting, the construction of a

Markov chain on the model space is even fundamental when the objective is the

approximation of posterior model probabilities (or related features) via MCMC

55
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procedures. In this section we resume Markov chains on EGs as introduced by

Chickering (2002) and He et al. (2013) and then provide a coherent extension to

the interventional setting described in Section 4.1.

5.1.1 Operators on graphs

From our perspective, a set of EGs can be taken in general as the model space. We

can consider for instance the set of all EGs on q nodes (denoted by Sq) or a proper

subset. In the following we will often refer to the concept of sparsity. Let |G| be

the number of edges (directed or undirected) in the EG G. Given a threshold M

we say that G is sparse if |G| ≤ M . M is usually a small multiple of the number

of nodes q, for instance M = rq with r ∈ [1, 3] (He et al., 2013). We then denote

with Srq the set of all EGs on q nodes satisfying the sparsity constraint |G| ≤ rq.

Observe that if rq ≥ q(q − 1)/2, Srq and Sq coincide; when not specified Srq will

include the case Sq as well. Our definition of sparsity is the same of He et al.

(2013); other definitions of sparsity concern the maximum number of adjacent

nodes in the graph, that is the maximum neighbourhood size.

To construct a Markov chain on EGs we first need to define the transitions

among them. Chickering (2002) introduces a set of operators that can modify

locally an EG. In other words, each operator involves a pair (or a triple) of nodes

only. We consider six types of operators: inserting an undirected edge (InsertU for

short), deleting an undirected edge (DeleteU), inserting a directed edge (InsertD),

deleting a directed edge (DeleteD), making a v -structure (MakeV) and removing

a v -structure (RemoveV). Each operator is then determined by two parts: the

type and the modified edges. Therefore, the modified graph of an operator on G

is the same as G except for the modified edges.

The modified graph of an operator on G is not in general an EG. For example

in Figure 5.1, starting from the EG G, the modified graphs G1,G2 and G4 are not

EGs. Anyway, such operator can be valid as well in the sense that might result in

a transition to an EG (He et al., 2013); see Definition 5.1.1. This is substantially
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G G1 G2 G3
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3 4
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3 4
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1
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1 2
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Figure 5.1: An EG G and the six corresponding modified graphs of the operators

InsertU 1−4 (G1), InsertD 2→ 3 (G2), DeleteU 1−2 (G3), DeleteD 2→ 4 (G4), MakeV

2→ 1← 3 (G5), RemoveV 2→ 4← 3 (G6).

different from other authors, for instance Madigan et al. (1996), that admit only

operators whose modified graph is an EG, which significantly reduces the number

of possible transitions from each state (EG) of the chain. A valid operator is then

defined as follows.

Definition 5.1.1. Let G be an EG. An operator on G is valid if (1) the modi-

fied graph of the operator is a PDAG and has a consistent extension and (2) all

modified edges in the modified graph occur in the resulting EG.

Recall that a consistent extension of a Partially Directed Acyclic Graph (PDAG)

G is a DAG on the same underlying set of edges, with the same orientations on

the directed edges of G and the same set of v -structures (Dor & Tarsi, 1992). The

two conditions of Definition 5.1.1 guarantee that a valid operator on the EG G

brings about another EG (1) and the operator is effective (2), that is the modified

edges of the operator appear in the resulting EG. In Figure 5.2, starting from the

EG G(0) we obtain the modified graph G∗ of the operator RemoveV 2 → 4 ← 3.

G∗ is not an EG but admits a consistent extension (G∗∗) and then condition (1)

is satisfied. Moreover, since the modified edges 2− 4− 3 occur the resulting EG
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G(0) G∗ G∗∗ G(1)

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Figure 5.2: A graph G(0), the corresponding modified graph of the operator RemoveV

2→ 4← 3 (G∗), a consistent extension of G∗ (G∗∗) and the resulting EG G(1).

Operator Sparsity conditions

InsertU x− y (iu1) |G| < M

InsertD x→ y (id1) |G| < M

Table 5.1: Sparsity conditions for operators InsertU, InsertD.

G(1), the operator is valid.

Chickering (2002) and He et al. (2013) introduce a set of conditions that guar-

antee the validity of each operator. Such conditions are based on graphical features

of the EG and the modified edges of each operator. We summarize them in Table

5.2, where Πx = paG(x), Ωxy = Πx ∩ Ny and Nx = neG(x); see also Section 2.1.

Observe that in order to guarantee that the resulting EG of an operator is in Srq ,

which generally depends on a sparsity constraint, the condition |G| < M where

M = rq must be satisfied as well for the operators InsertU and InsertD on the

EG G. In other terms, if the number of edges in G is equal to the upper bound

M an edge addition is no longer possible. Such conditions are denoted by iu1 and

id1 and reported in Table 5.1.

For each EG G ∈ Srq , let now OG be the corresponding set of valid operators.

The set of all valid operators on Srq is then

O =
⋃
G∈Srq

OG. (5.1)

Hence, we can define a Markov chain {G(t)} on Srq as follows.
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Operator Validity conditions

InsertU x− y (iu21) Πx = Πy

(iu22) every undirected path from x to y con-

tains a node in Nx,y

DeleteU x− y (du1) Nx,y is a clique

InsertD x→ y (id21) Πx 6= Πy

(id22) Ωx,y is a clique

(id23) every partially directed path from y to x

contains a node in Ωx,y

DeleteD x→ y (dd1) Ny is a clique

MaveV x− z − y (mv1) every undirected path between x and y

contains a node in Nx,y

RemoveV x→ z ← y (rv11) Πx = Πy

(rv12) Πx ∩Nx,y = Πz \ {x, y}

(rv13) every undirected path between x and y

contains a vertex in Nx,y

Table 5.2: Six types of operators with the corresponding validity conditions.
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Definition 5.1.2. The Markov chain {G(t)} determined by a set of valid operators

O is generated as follows: start at an arbitrary EG G(0) ∈ Srq and repeat the

following steps for t = 0, 1, . . . :

1. at the t-th step we are at an EG G(t);

2. we choose an operator oG(t) uniformly from OG(t) ; if the resulting EG G∗ of

oG(t) is in Srq , we move to G∗ and set G(t+1) = G∗; otherwise we stay at G(t)

and set G(t+1) = G(t).

5.1.2 Markov chains and related properties

In this paragraph we resume some properties of finite discrete-time Markov chains.

Let pGG′ be the one-step transition probability from G to G ′ for any EG G and

G ′ in Srq . A Markov chain {G(t)} on Srq is irreducible if starting at any state it

can reach any EG in Srq . If {G(t)} is irreducible, there exists a unique distribution

π = (πG,G ∈ Srq ) satisfying balance equations

πG =
∑
G∈Srq

πG′pG′G; (5.2)

see for instance Norris (1997), Theorems 1.7.7 and 1.5.6. Then, an irreducible

Markov chain {G(t)} is reversible if there exists a probability distribution π such

that

πGpGG′ = πG′pG′G. (5.3)

In addition, π is the unique stationary distribution of the discrete-time Markov

chain {G(t)} if it is finite, reversible, and irreducible. In our case, a Markov chain

on a set of EGs is reversible if the operators that determine the transitions among

its states are reversible. He et al. (2013) introduce further properties of O with

related conditions that guarantee that the Markov chain {G(t)} is irreducible and

reversible. These properties are distinguishability, irreducibility and reversibility.

According to distinguishability, for each G ∈ Srq and each of its direct successors
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Operator Perfectness condition

InsertU x− y (iu3) for any u that is a common child of x, y in G, both

x → u and y → u occur in the resulting EG of

InsertU x− y

InsertD x→ y (id3) for any u that is a common child of x, y in G, y →

u occurs in the resulting EG of InsertD x→ y

DeleteD x→ y (dd2) for any v that is a parent of y but not a parent of

x, directed edge v → y in G occurs in the resulting

EG of DeleteD x→ y

Table 5.3: Perfectness conditions for operators InsertU, InsertD and DeleteD.

G ′, there is a unique operator that transforms G in G ′. It follows that, for each

G ∈ Srq , different operators in OG result in different EGs. Equivalently, there is a

one-to-one correspondence between operators in OG and resulting EGs (the direct

successors of G). Irreducibility states that, starting from G ∈ Srq , there is a positive

probability to reach any other EG in Srq via a sequence of operators. Finally,

according to reversibility, if G ′ is a direct successor of G, then G is also a direct

successor of G ′. A collection of valid operators satisfying these three properties is

said to be perfect. In Table 5.3 we report three conditions for operators InsertU,

InsertD, DeleteD which guarantee that OG is perfect. See also the original paper

for further details about these properties.

To prove such conditions in an efficient way, three algorithms based on the

notion of strong protection (see Definition 3.1.2) are also provided by the authors

(He et al. 2013, Supplement).

One of the main advantages of the above mentioned properties is that the

stationary probabilities πG can be calculated efficiently if the Markov chain is

reversible. Let |OG| be the number of operators in OG; the transition probability
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pGG′ is given by

pGG′ =

1/|OG|, if G ′ is a direct successor of G;

0, otherwise.

(5.4)

An important result is summarized in Proposition 1 of He et al. (2013) which

characterizes the stationary distribution of {G(t)}.

Proposition 5.1.1. For the Markov chain {G(t)} on Srq generated according to

Definition 5.1.2, if O is perfect then:

1. the Markov chain {G(t)} is irreducible and reversible;

2. there exists a unique stationary distribution π of {G(t)} and πG ∝ |OG|.

In Figure 5.3 we have the one-step transition matrix P for a Markov chain on

S3, the set of all EGs on q = 3 nodes (see Figure 3.2 in Section 3.1). It is easy

to prove that the corresponding Markov chain is irreducible and reversible. Its

stationary distribution is then

π ∝ (3, 3, 3, 3, 4, 4, 4, 1, 1, 1, 3)>.

5.1.3 Exploring the EG space

The Markov chain summarized in the previous section can be used to describe

properties of a set of EGs. This is the main objective of He et al. (2013). A sample

of EGs is obtained as the result of a Markov chain and a feature of interest (for

instance the number of undirected edges) is calculated for each EG. The aim is

then to approximate the distribution of such feature. In this case the stationary

distribution of the chain, π, plays an essential role in the sense that samples thus

obtained if re-weighted according to π can be considered as uniformly generated

from the EG space under consideration. Without going into the details we simply

obtain some results that are particularly relevant when model selection of EGs
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P =



0 1/3 1/3 1/3 0 0 0 0 0 0 0

1/3 0 0 0 1/3 0 1/3 0 0 0 0

1/3 0 0 0 1/3 1/3 0 0 0 0 0

1/3 0 0 0 0 1/3 1/3 0 0 0 0

0 1/4 1/4 0 0 0 0 0 0 1/4 1/4

0 0 1/4 1/4 0 0 0 0 1/4 0 1/4

0 1/4 0 1/4 0 0 0 1/4 0 0 1/4

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1/3 1/3 1/3 0 0 0 0


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G3

G4

G5
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Figure 5.3: One-step transition matrix for a Markov chain on S3, the set of all EGs on

q = 3 nodes (labelled as in Figure 3.2 of Section 3.1). Each probability pGiGj is obtained

from Equation (5.4) according to conditions of Tables 5.2 and 5.3.
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Figure 5.4: Box-plots of the proportion of undirected edges in the EG space with

q = {5, 10, 20} nodes and sparsity parameter r = {1, 1.5, 2}.

is performed in an interventional setting (Chapter 4). In Figure 5.4 we have

the distribution of the proportion of undirected edges in the EG space Srq , for

q ∈ {5, 10, 20} and r ∈ {1, 1.5, 2}. The number of undirected edges in an EG can

be used in general as a measure of complexity of causal learning (He & Geng,

2008). Intuitively, if most EGs in the space have a large number of undirected

edges, many interventions may be needed to direct them and then improve the

identifiability of the true data generating DAG. From Figure 5.4 it appears that

the proportion of undirected edges is relatively small and decreasing in q. Hence,

it seems to be possible to infer the directions of the undirected edges via a “small”

number of interventions.

5.1.4 Extension to the I-EG space

We now discuss how to extend the Markov chain above resumed in the interven-

tional setting of Section 4.1. In such a case we are interested in exploring a set
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of interventional essential graphs (I-EGs). Please recall that the I-EG space de-

pends on the family of intervention targets I (see Section 4.1). For a given I we

then denote with ISq the set of all I-EGs IG on q nodes, with ISrq the set of all

I-EGs satisfying the sparsity constraint on |IG| (see Section 5.1.1). We introduce

a novel definition of validity, called I-validity, which is a natural extension of

Definition 5.1.1 to the interventional setting. Related conditions that guarantee

I-validity (iuI2 , id
I
2 , rv

I
2 ) are then provided.

Definition 5.1.3. Let I be a conservative family of targets, IG an I-EG. An

operator on IG is I-valid if (1) the modified graph of the operator is a PDAG and

has a consistent extension and (2) all modified edges in the modified graph occur

in the resulting I-EG.

Similarly to Definition 5.1.1, the two conditions guarantee that an I-valid operator

on IG brings about another I-EG and the operator is effective. Recall now the

following proposition from Theorem 4.1.2 in Section 4.1.

Proposition 5.1.2. Let I be a conservative family of targets, IG an I-EG. Then

IG has no line x− y for which there exists some I ∈ I such that |{x, y} ∩ I| = 1.

We first focus on the operator InsertU.

Let x, y be two non adjacent vertices and suppose to have I ≡ x for some

I ∈ I, so that |{x, y}∩ I| = 1. Suppose then to apply the operator InsertU x− y.

We know from Proposition 5.1.2 that x−y does not occur in any IG ∈ ISq. Hence,

the modified edge x − y cannot occur in the modified graph of the operator and

then InsertU x− y is not I-valid.

It follows that an additional necessary condition to insert the undirected edge

x − y is that |{x, y} ∩ I| 6= 1 for all I ∈ I (iu2I), which means that x and y are

not singularly involved in any intervention. The I-validity condition for InsertU

is then the following.

Definition 5.1.4. Given the family of targets I, the operator InsertU x − y on

the I-EG IG is I-valid (iuI2 ) if and only if (iu2I) |{x, y} ∩ I| 6= 1 for all I ∈ I,

(iu21) Πx = Πy, (iu22) every undirected path from x to y contains a node in Nx,y.
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IG

1 2 3

54

Figure 5.5: An I-EG IG for I = {Ø, {1, 2}, {4}}. Operator InsertU 1 − 2 is I-valid

according to Definition 5.1.4, while InsertU 2− 4 is not since (iu2I) does not hold.

For instance, in Figure 5.5, given the family of targets I = {Ø, {1, 2}, {4}}, the

operator InsertU 1 → 2 is I-valid according to 5.1.4. However, InsertU 2 → 4 is

not since condition iu2I is not satisfied.

Consider now the operator InsertD. As a consequence of Proposition 5.1.2, we

now have “more” directed edges (less undirected) in addition to the ones that we

had in the (observational) EG space. The insertion of a directed edge x → y is

also possible when |{x, y} ∩ I| = 1 for some I ∈ I (id2I) provided that such an

insertion results in an I-EG. More specifically, for two non adjacent vertices x

and y, suppose that |{x, y} ∩ I| = 1 for some I ∈ I. In such case condition id21

(Table 5.2) is not necessary anymore for InsertD x→ y. See also Figure 5.6. We

only need to assure that the insertion of x→ y results in a chain graph with the

features of an I-EG which is guaranteed by conditions id22 and id23; see He et al.

(2013) for details. Hence, the I-validity condition for the operator InsertD x→ y

can be stated as follows.

Definition 5.1.5. Given the family of targets I, the operator InsertD x→ y on

the I-EG IG is I-valid (idI2 ) if and only if one of the following statements holds:

1. InsertD x → y is valid according to Definition 5.1.1 (or equivalently id2

holds);

2. (id2I) |{x, y} ∩ I| = 1 for some I ∈ I, (id22) Ωx,y is a clique, (id23) every

partially directed path from y to x contains a node in Ωx,y.
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IG

21
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5

Figure 5.6: An I-EG IG for I = {Ø, {1, 2}, {5}}. Operator InsertD 1 → 4 is I-valid

according to Condition 2 of Definition 5.1.5, while InsertD 3→ 4 is not.

Consider for instance Figure 5.6 and the family of targets I = {Ø, {1, 2}, {5}}.

The operator InsertD 1→ 4 is I-valid, since Condition 1 of Definition 5.1.5 holds

for the target I = {1, 2}, while InsertD 3→ 4 is not.

At last, consider the operator RemoveV x → z ← y. Such operator basically

converts two directed edges x→ y ← z into the undirected v -structure x− y− z.

Suppose first that |{x, z, y}∩I| = 1 for some I ∈ I. Then, the operator RemoveV

x → y ← z cannot be I-valid because it would result in x − y − z which does

not occur in any IG ∈ ISq according to Proposition 5.1.2. Hence, condition

|{x, z, y}∩ I| 6= 1 is necessary. Moreover, suppose that |{x, z, y}∩ I| = 2 for some

I ∈ I. As before, the operator cannot result in a valid transition to any IG for

Proposition 5.1.2. Then, condition |{x, z, y} ∩ I| 6= 2 is also necessary. Suppose

now that |{x, z, y} ∩ I| = 0 for all I ∈ I, which means that no interventions

are made on the three nodes. Since Proposition 5.1.2 is satisfied, we obtain that

the insertion of x− z − y is allowed (provided that rv1 holds as well). Similarly,

if |{x, z, y} ∩ I| = 3 for all I ∈ I, then Proposition 5.1.2 is satisfied for both

(x, z) and (z, y). Therefore, a necessary condition for the I-validity of RemoveV

x→ z ← y is that |{x, z, y} ∩ I| ∈ {0, 3} for all I ∈ I.

Definition 5.1.6. Given the family of targets I, the operator RemoveV x→ z ←

y on the I-EG IG is I-valid (rvI1 ) if and only if (rv1I) |{x, z, y} ∩ I| ∈ {0, 3} for

all I ∈ I, (rv11) Πx = Πy, (rv12) Πx ∩Nx,y = Πz \ {x, y}, (rv13) every undirected

path from x to y contains a node in Nx,y.
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IG
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Figure 5.7: An I-EG IG for I = {Ø, {1, 2}}. Operator RemoveV 2 → 4 ← 3 is not

I-valid according to Definition 5.1.6.

For the remaining operators, DeleteU, DeleteD and MakeV, validity condi-

tions are exactly the same as in the observational setting. In fact, the first two

operators do not involve any intervention target; they change the skeleton of the

I-EG they are applied to, which always results in a different I-EG, provided that

validity holds. Instead, the operator MakeV introduces a v -structure, which is a

distinguishing feature of I-EGs and then brings about a different I-EG. In the fol-

lowing six definitions we also extend the reversibility conditions of He et al. (2013)

(Table 5.3) to the interventional setting. Recall that an operator is perfect if and

only if it satisfies four conditions: validity, distinguishability, irreducibility and re-

versibility. For a given I-EG G (we skip for simplicity the I subscript from IG) on

which the six types of operators are defined, let IUG, DUG, IDG, DDG,MVG, RVG

be the corresponding sets of perfect operators. These are constructed according

to the following definitions.

Definition 5.1.7 (Perfect set IUG). For any two vertices x, y that are not adjacent

in G, the operator InsertU x− y on G is in IUG if and only if

– |G| < M (iu1),

– InsertU x− y is I-valid (iuI2 ),

– for any u that is a common child of x, y in G, both x→ u and y → u occur

in the resulting I-EG of InsertU x− y (iu3).
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Definition 5.1.8 (Perfect set DUG). For any undirected edge x − y in G, the

operator DeleteU x− y on G is in DUG if and only if DeleteU x− y is valid (du1).

Definition 5.1.9 (Perfect set IDG). For any two vertices x, y that are not adjacent

in G, the operator InsertD x→ y on G is in IDG if and only if

– |G| < M (id1),

– InsertD x→ y is I-valid (idI2 ),

– for any u that is a common child of x, y in G, y → u occurs in the resulting

I-EG of InsertD x− y (id3).

Definition 5.1.10 (Perfect set DDG). For any directed edge x → y in G, the

operator DeleteD x→ y on G is in DDG if and only if

– DeleteD x→ y is valid (dd1),

– for any v that is a parent of y but not a parent of x, directed edge v → y in

G occurs in the resulting I-EG of DeleteD x→ y (dd2).

Definition 5.1.11 (Perfect set MVG). For any subgraph x − z − y in G, the

operator MakeV x→ z ← y on G is in MVG if and only if MakeV x→ z ← y is

valid (mv1).

Definition 5.1.12 (Perfect set RVG). For any v-structure x → z ← y in G, the

operator RemoveV x→ z ← y on G is in RVG if and only if RemoveV x→ z ← y

is I-valid (rvI1 ).

Consider now the distribution of the proportion of undirected edges in the

I-EG space ISrq . As mentioned, this feature is particularly interesting in an inter-

ventional setting because in principle we can improve the identifiability of the true

data generating DAG by performing interventions on nodes. As a consequence,

we “reduce” the number of undirected edges in the model space. Consider for in-

stance the I-EG space with sparsity parameter r = 1, IS1
q , which corresponds to
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Figure 5.8: Box-plots of the proportion of undirected edges in the I-EG space with q ∈

{5, 10, 20} and sparsity parameter r = 1 under three scenarios: p = 0 (no interventions),

p = 0.2 (interventions on 20% of nodes), p = 0.4 (interventions on 40% of nodes).

the setting in which interventions appear to be more effective; see Figure 5.4. Let

p ∈ [0, 1] be the proportion of intervened nodes. For each q ∈ {5, 10, 20} we then

consider three scenarios. In the first no interventions are performed, p = 0, in the

second (third) we randomly assign to distinct single-node interventions (that is

|I| = 1 for each I ∈ I) the 20% (40%) of the nodes, p = 0.2 (p = 0.4). Figure 5.8

shows that the proportion of undirected edges rapidly decreases as we increase the

number of intervened nodes. Moreover, since the proportion of undirected edges

is decreasing in q, interventions are particularly effective for a moderate number

of nodes.

5.1.5 Algorithms and further details

In the following we describe the implementation of the Markov chain on I-EGs

introduced in the current section together with some illustrative examples. For a

given I-EG G, we first need to construct the corresponding perfect set of operators
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OG. To this end we introduce five sets. Let IG be the set of all non adjacent pairs

of vertices in G, UG, DG, V
D
G , V U

G the set of undirected edges, directed edges,

directed v -structure and undirected v -structures in G respectively. We use them

to construct the set of all possible operators we are are going to test; see also

the example in Table 5.4. Then, for a given I-EG G, the corresponding perfect

set of operators is constructed according to Algorithm 2. Algorithm 1 returns a

Markov chain of size T on the set of all I-EGs on q vertices satisfying the sparsity

constraint |G| < M (M = rq).

Algorithm 1: Construction of a Markov chain on the I-EG space

Data: q (number of vertices), M (maximum number of edges),

T (length of the Markov chain), I (family of intervention targets)

Result: A Markov chain {G(t), |OG(t)|}

1 Start from G(0) (e.g. the empty graph);

2 for t = 1, . . . , T do

3 Construct the set of operators OG(t) according to Algorithm 2 and

compute |OG(t)|;

4 Randomly sample an operator oG(t) in OG(t) ;

5 Apply oG(t) to G(t) and obtain G(t+1) as the resulting I-EG of the

operator

6 end

Consider for instance the EG G(0) in Figure 5.9. We first construct the five

sets IG(0) , UG(0) , DG(0) , V D
G(0) , V

U
G(0) (first column of Table 5.4) and then check the

corresponding operators to construct the perfect set OG(0) . We obtain

OG(0) = {InsertD 1→ 4, DeleteU 1− 2, DeleteU 1− 3, DeleteD 2→ 4,

DeleteD 3→ 4, RemoveV 2→ 4← 3, MakeV 2→ 1← 3}

and then |OG(0)| = 7. Hence, the transition probability from G(0) to any of its

direct successors G ′ is pG(0),G′ = 1/7. Next, we randomly sample an operator



72 5. MCMC Methods

Algorithm 2: Construction of the perfect set of operators OG
Data: An I-EG G, a family of intervention targets I

Result: The corresponding perfect set of operators OG
1 Set OG as empty set;

2 For each undirected edge x− y in UG, consider the operator DeleteU

x− y and add it to OG if du1 holds;

3 For each directed edge x→ y in DG, consider the operator DeleteD x→ y

and add it to OG if dd1, dd2 hold;

4 For each directed v -structure x→ y ← z in V D
G , consider the operator

RemoveV x→ y ← z and add it to OG if rvI1 holds;

5 For each undirected v -structure x− y − z in V U
G , consider the operator

MakeV x→ y ← z and add it to OG if mv1;

6 if |G| < M (id1, iu1) then

7 for each pair of vertices (x, y) in IG;

8 consider InsertU x− y and add it to OG if iuI2 , iu3 hold;

9 consider InsertD x→ y and add it to OG if idI2 , id3 hold;

10 consider InsertD x← y and add it to OG if idI2 , id3 hold.

11 end
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G(0) G(1)

1 2

3 4

→

1 2

3 4

Figure 5.9: A step of a Markov chain on the EG space S4. We start from the EG G(0);

from the perfect set of operators OG(0) we randomly sample oG(0) = DeleteD 3→ 4 and

obtain the resulting EG G(1) of the operator.

Set G(0)
IG(0)

IG {(1, 4), (2, 3)} {(1, 4), (2, 3)}

UG {(1, 2), (1, 3)} {(1, 3)}

DG {(2, 4), (3, 4)} {(1, 2), (2, 4), (3, 4)}

V D
G {(2, 4, 3)} {(2, 4, 3)}

V U
G {(2, 1, 3)} Ø

Table 5.4: Five sets of nodes involved in the construction of the sets of possible operators

on G(0) and IG(0) to be tested.

oG(0) ∈ OG(0) , for instance oG(0) = DeleteD 3→ 4, and obtain G(1) as the resulting

EG.

Given I = {Ø, {2}}, consider now the I-EG IG(0) in Figure 5.10. From the

five sets listed in the second column of Table 5.4 we obtain

OIG(0) = {InsertD 1→ 4, DeleteU 1− 3, DeleteD 1→ 2,

DeleteD 3→ 4, InsertD 2→ 3, InsertD 3→ 2}

by checking the corresponding conditions. We randomly sample operator DeleteD

3→ 4 and obtain IG(1) as the resulting I-EG.

Algorithm 1 can be adapted for an accelerated version. For a given I-EG G let O∗G
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IG(0)
IG(1)

1 2

3 4

→

1 2

3 4

Figure 5.10: Two steps of a Markov chain on the I-EG space IS4. We start from

the I-EG IG(0); from the perfect set of operators O
IG(0) we randomly sample operator

DeleteD 3→ 4 and obtain the resulting I-EG IG(1) of the operator.

be the set of all possible operators obtained from IG, UG, DG, V
D
G , V U

G and |O∗G|

its cardinality. We are interested in computing |OG|. Instead of testing all the

operators in O∗G we consider a sample without replacement OcheckG of size [α|O∗G|],

α ∈ (0, 1), where [x] denotes the closest integer value to x. We then check all the

operators in OcheckG and construct the perfect set ÕG. Let |ÕG| be the number of

perfect operators in OcheckG ; an appropriate estimate of |OG| is then

|OG|est =
|ÕG|
|OcheckG |

· |O∗G|.

The accelerated version of Algorithm 1 provides an approximation of the quan-

tity |OG| which depends on the value of α. Details for the choice of the acceleration

parameter α and the implementation of such algorithm in the EG space can be

found in He et al. (2013).

This is easily adapted to the I-EG space and substitutes step 3 in Algorithm

1, where instead of computing |OG(t)| we estimate it through |OG(t) |est.
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5.2 MCMC for structural learning

In this section we illustrate the MCMC algorithm that we adopt to perform struc-

tural learning of Gaussian graphical models. In doing so, we focus on the Inter-

ventional Essential Graph (I-EG) space described in Section 4.1 and then perform

model selection and posterior inference of graphical models by directly scoring I-

EGs; see Section 4.2. To this end we first define a proposal distribution based on

the Markov chain on the I-EG space of Section 5.1. Next, we specify a prior on

the I-EG space through a beta-binomial distribution on the number of edges in

the graph. These two quantities are then combined with the marginal likelihood

of the I-EGs to compute the acceptance rate of a standard Metropolis Hastings

algorithm which approximates the posterior distribution over the I-EG space.

5.2.1 Markov chains on I-EGs for model selection

In the previous section we introduced Markov chains on Markov equivalence

classes of DAGs together with an extension to the interventional setting based

on the proposal of He et al. (2013). The objective was to explore the I-EG space

under sparsity constraints on the maximum number of edges and describe some

features of interest (for instance the proportion of undirected edges).

The set of operators presented in Section 5.1.1 satisfies some optimality con-

ditions. Among these, it guarantees that starting at any graph G(0) there is a non

zero probability to reach any other graph in the space (reversibility). However,

when the objective is “model selection using scoring criteria to identify models”

(Chickering, 2002), such set of operators can not be sufficient to guarantee an

efficient exploration of the model space.

Let G(t) represent the graph visited at time t. In an MCMC setting, a new graph

G ′ is then proposed and accepted with some probability α (Section 5.2.2) which

“strongly” depends on the score (marginal likelihood) assigned to graph G ′. It

follows that even if pG(t),G′ is not negligible, the transition from G(t) to G ′ can be

accepted with a very small probability if there is a little evidence from the data
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in favour of model G ′. Anyway, this can be very problematic if the transition to

a “high score” model G ′′ passes through G ′. In addition, the convergence of the

MCMC can be very slow and even difficult to be reached. To avoid this kind of

problem, we “reinstate” from Chickering (2002) the operator ReverseD x → y

which is not needed for the Markov chain to be irreducible and reversible but it

adds “extra connectivity” to the model space. We also highlight that such operator

does not affect the properties of distinguishability, irreducibility and reversibility

of the resulting Markov chain (Section 5.1.2). Validity conditions for the operator

ReverseD x→ y are given in Table 5.5; see also Chickering (2002).

Operator Validity conditions

ReverseD x→ y (rd1) Ωy,x is a clique

(rd2) every partially directed path from x to

y that does not include the edge x → y

contains a node in Ωy,x ∪Ny

Table 5.5: Validity conditions for the operator ReverseD x→ y.

Moreover, when the operator is adopted in an interventional setting under the

family of targets I, no additional validity conditions are required. This happens

because the operator ReverseD x→ y applies to a directed edge whose presence,

conditionally on the information about the intervened nodes enclosed in I, has

already been tested in InsertD x→ y.

5.2.2 MCMC scheme

Let I be a family of intervention targets, ISq the set of all I-EGs on q nodes and

G ∈ ISq any I-EG belonging to the space ISq. ISrq is then the set of all I-EGs on

q nodes satisfying the sparsity constraint |G| ≤ rq (see Section 5.1.1). For a given

I-EG G we first need to construct the corresponding perfect set of operators OG
which is used to compute the transition probability pG,G′ = 1/|OG|. In a standard
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MCMC scheme we then randomly sample an operator oG ∈ OG and obtain G ′ by

applying oG to G. This corresponds to sampling from a proposal distribution for

G ′ | G. We assign coherently

q(G ′ | G) = 1/|OG|.

Let DG be the set of all directed edges of G. Then, a sample from the proposal

distribution of G ′ given G is obtained according to Algorithm 3.

Algorithm 3: Sampling from the proposal distribution of G ′ | G

Data: An I-EG G, a family of intervention targets I

Result: A direct successor of G, G ′, and the transition probability

q(G ′ | G ′)

1 Set OG as empty set;

2 Construct the perfect set of operators OG as in Algorithm 2;

3 For each directed edge x→ y in DG, consider the operator ReverseD

x→ y and add it to OG if rd1, rd2 hold;

4 Randomly sample an operator oG ∈ OG;

5 Apply oG to G and obtain G ′ as the resulting I-EG of the operator;

6 Compute q(G ′ | G) = 1/|OG|.

Let mG(Y ) be the marginal likelihood of graph G given the data Y , p(G) a prior

on G and q(G | ·) a proposal distribution. In order to have an appropriate posterior

sample of I-EGs, the transition from G to G ′ proposed by Algorithm 3 is accepted

with probability

α = min

{
1;
mG′(Y )

mG(Y )
· p(G

′)

p(G)
· q(G | G

′)

q(G ′ | G)

}
. (5.5)

As the prior on G, p(G), a common assumption is a beta-binomial on the adiacency

matrix of Gu, where Gu is the skeleton of G (same arcs as in G, but with no

orientation),

Gu(j) |π
i.i.d∼ Ber(π), j = 1, . . . , q(q − 1)/2,

π ∼ Beta(a, b), (5.6)
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being Gu(j) the j-th element of the vectorized lower triangular part of the adjacency

matrix of Gu and q(q−1)/2 the maximum number of edges in an I-EG on q nodes;

see also Bhadra & Mallick (2013). Notice that the prior on G only depends on

the skeleton of the graph: two I-EGs with the same number of edges (directed

or undirected) will be assigned the same prior probability. More elaborate priors,

specifically targeted to EGs, to our knowledge are not available in the literature,

and are beyond the scope of the present work. The ratio between the priors on

G ′ and G is then

p(G ′)
p(G)

=
Γ(|G ′|+ a)

Γ(|G|+ a)
·

Γ
(
q(q−1)

2
− |G ′|+ b

)
Γ
(
q(q−1)

2
− |G|+ b

) , (5.7)

where |G| denotes the number of edges in G. A common choice for a and b is

a = b = 1 so that π ∼ Unif(0, 1). However, to favor sparsity, we can set a < b

which implies E(π) < 0.5. Further details for the choice of a and b are given in the

simulation setting of Chapter 6. Finally, an MCMC on ISrq can be constructed as

in Algorithm 4.

Algorithm 4: An MCMC on the I-EG space ISrq

Data: G(0) (an arbitrary initial graph), T (length of the chain)

Result: A sample {G(t)} from p(G |Y ),G ∈ ISrq
1 Start from G(0) (e.g. the empty graph);

2 for t = 1, . . . , T do

3 set G = G(t−1);

4 sample G ′ and compute q(G ′ | G) as in Algorithm 3;

5 compute the probability of acceptance α in Formula (5.5);

6 update G(t) = G ′ with probability α, G(t) = G(t−1) with probability

(1− α);

7 end



Chapter 6

Experiments

In this chapter we apply our methodology, that we name Objective Bayes In-

terventional Essential graph Search (OBIES), to simulation settings and to the

analysis of protein-signaling data (Sachs et al., 2005). In addition, we compare

OBIES with the Greedy Interventional Equivalence Search (GIES) method intro-

duced by Hauser & Bühlmann (2012) and implemented in the R package pcalg

(?); see also Hauser & Bhlmann (2015). To this end, we start with some con-

siderations about the need to choose a single model estimate (even in a Bayesian

setting) for comparison purposes.

6.1 Preliminaries

For a collection of distinct models, {Mk, k = 1, . . . , K}, and given the data Y ,

assume to have computed the posterior probabilities p(Mk |Y ); see also Section

1.2. We accept the general thinking that “in principle, all inference and predic-

tion should be based on the overall joint posterior distribution”, like in Bayesian

model averaging techniques (Pericchi, 2005). However, in many cases a single

model estimate is required. Barbieri & Berger (2004) highlights that the highest

probability model, that is the model with the highest posterior probability asso-

ciated, is not in general an optimal choice from a predictive viewpoint. Instead,

in a Gaussian linear regression setting, it was shown that the median probability

79
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model is predictively optimal. In such context, the median probability model is

obtained by including all variables whose posterior inclusion probability is greater

than 0.5.

In an MCMC framework, once we observe {M(0), . . . ,M(T )} as the result of an

MCMC algorithm on a specific model space, the objective is typically to approxi-

mate the posterior distribution across models or equivalently to estimate posterior

model probabilities; see again Section 1.2. The number of visits of each model

over the total number of iterations T is generally used as such approximation.

In model selection of graphical models, the median probability model can be

naively constructed by including all edges whose probability of inclusion is greater

than 0.5. More specifically, we start defining the marginal posterior probability of

inclusion of the edge u→ v given the data Y as

pu→v(Y ) =
∑
G∈Su→v

p(G |Y ), (6.1)

where Su→v is the set of visited I-EGs containing the directed edge u→ v (recall

that an undirected edge u − v is equivalent to u → v and v → u). The median

probability (graph) model is then defined as the graph containing only those di-

rected edges u→ v such that pu→v(Y ) > 0.5. In general, the median probability

model thus obtained is not guaranteed to be an I-EG, but it is a partially directed

acyclic graph (PDAG). From the median probability model G, which may contain

both directed and undirected edges, we first obtain a directed version (DAG) as

follows. We start taking all the directed edges in G. Then, for each undirected

edge u− v in G we take u → v if and only if pu→v(Y ) > pv→u(Y ). Finally, from

the DAG D thus obtained, we construct the corresponding I-EG, that is the rep-

resentative of the interventional equivalence class of D. This is done through the

function dag2essgraph in the R package pcalg (?). We call such result projected

median probability (graph) model. We then use the projected median probability

model for comparison purposes, typically when a single graph estimate is required

to compute distance-based indexes between models (e.g the structural Hamming

distance with respect to the true DAG).
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The median probability model specifies a threshold for edge inclusion k = 0.5.

Alternatively, it is possible to choose k by looking at the expected false discovery

rate (FDR) (Benjamini & Hochberg, 1995).

Set for simplicity pu→v(Y ) ≡ pu→v; see Equation (6.1). Then, we can define

the expected FDR for a given threshold k ∈ [0, 1] as

FDR(k) =

∑q
u=1

∑
u6=v(1− pu→v)I(pu→v ≥ k)∑q
u=1

∑
u6=v I(pu→v ≥ k)

, (6.2)

being I the indicator function. More specifically, we can start constructing for a

grid of thresholds a collection of projected quantile probability models. Each one,

being associated to a value of k ∈ [0, 1], is obtained by including all edges such

that pu→v > k and then constructing the corresponding projection over the I-EG

space (as for the median probability model). Assuming that the projected quantile

probability model of order k is the true model, FDR(k) provides a measure of

evidence against such assumption. The denominator of (6.2) corresponds to the

number of edges in the projected quantile probability model of order k. The

numerator is instead the sum of the “probabilities of non inclusion” (1−pu→v) for

those edges that are included in the estimated graph, thus representing a measure

of false positiveness. One can show that FDR(k) is a non decreasing function of

k. Hence, one can select k so that the expected FDR is below a desired level,

typically 0.05. See also Peterson et al. (2015) for the adoption of the FDR in

multiple Gaussian graphical model selection.

6.2 Simulations

In this section we apply OBIES to simulated data sets. We first describe the data

generating process of a collection of observational and interventional data under a

given DAG D and a family of intervention targets I. We then set the parameters

of the MCMC algorithm described in Section 5.2 and present our results on a

variety of simulation scenarios. At last, we compare OBIES with the Greedy

Interventional Equivalence Search (GIES) method.
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6.2.1 Simulation setting

A simulation framework is characterized by the triple (q, nØ, p), where q ∈ {5, 10,

20, 40} is the number of nodes, nØ ∈ {100, 200, 500, 1000} the number of obser-

vational data and p ∈ {0, 0.2, 0.4, 0.8} the proportion of intervened nodes. For

simplicity we consider multiple but single-node interventions, that is |Ik| = 1

for each Ik ∈ I. As an example, for q = 5 we will consider scenarios with no

interventions (observational case, p = 0), interventions on one node randomly

chosen, I = {Ø, {u}}, u ∈ {1, . . . , 5} (p = 0.2), interventions on two nodes

I = {Ø, {u}, {v}}, u, v ∈ {1, . . . , 5}, u 6= v (p = 0.4) and similarly for p = 0.8.

For each target of intervention Ik we then set the number of interventional data as

n(k)(q, nØ) = nØq/100. Table 6.1 summarizes the simulation setting parameters.

nØ = 100 nØ = 200 nØ = 500 nØ = 1000

q = 5 n(k) = 5 n(k) = 10 n(k) = 25 n(k) = 50

q = 10 n(k) = 10 n(k) = 20 n(k) = 50 n(k) = 100

q = 20 n(k) = 20 n(k) = 40 n(k) = 100 n(k) = 200

q = 40 n(k) = 40 n(k) = 80 n(k) = 200 n(k) = 400

Table 6.1: Simulation setting parameters; number of interventional data for each target

Ik, n
(k), as a function of the number of nodes q and the number of observational data

nØ.

6.2.2 Data generation

For each scenario, 40 datasets, corresponding to 40 true DAGs, are generated.

Each dataset, which contains both observational and interventional data, is ob-

tained as follows. For a given q, we randomly generate a topologically ordered

DAG D with probability of edge inclusion pedge = 3/(2q−2) (Peters & Bühlmann,

2014). The DAG thus obtained is the responsible of a data generating process
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and implies the set of equations

Yi,j = µj +
∑

k∈paD(j)

βk,jYi,k + εi,j, (6.3)

for i = 1, . . . , nØ, j = 1, . . . , q, where εi,j ∼ N (0, σ2
j ) and Yi,j are independent

with respect to i. For each j we fix µj = 0 and σ2
j = 1, while regression coeffi-

cients βk,j are uniformly chosen in the interval [−1,−0.1] ∪ [0.1, 1], still following

Peters & Bühlmann (2014). An observational dataset of size nØ is then generated

accordingly.

Next, for a given p (proportion of intervened nodes) we randomly sample

without replacement [pq] nodes in {1, . . . , q} which represents intervention targets

of size one, I1, . . . , Ipq. For each Ik we first obtain the corresponding intervention

DAG DIk (see Section 4.1) which implies the set of equations

Yi,j =


µj +

∑
k∈paD(j)

βk,jYi,k + εi,j if j 6= Ik,

δj + εi,j if j = Ik,

(6.4)

for i = 1, . . . , n(k), j = 1, . . . , q, where again εi,j ∼ N (0, σ2
j ), εi,j ∼ N (0, φ2

j) and

Yi,j are independent with respect to i. For each j we fix δj = 0 and φ2
j = 0.1. n(k)

interventional data are then generated accordingly.

6.2.3 MCMC parameters

For the MCMC algorithm of Section 5.2 we need to choose the hyperparameters a

and b of the prior p(G) which is involved in the acceptance probability α (Formula

5.5). We fix a = 1, b = (2q− 2)/3− 1, so that E(π) = 3/(2q− 2). In this way the

expected prior edge inclusion probability resembles the sparse simulation setting

as defined in Section 6.2.2. We note however that all the results are generally

insensitive to the choice of a and b, because the ratio of marginal likelihoods

mG′(Y )/mG(Y ) is by far the leading factor in the acceptance probability of the

proposed I-EG.
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As describe in Chapter 5.1 we can also constrain the I-EG space ISq to a

subspace ISrq with no more than a given number of edges (rq), so that sparsity

can be introduced to improve structural learning. Specifically, we fix r = 2, that

is we require that the number of edges is not higher than 2 the number of nodes.

This threshold is well above the number of edges expected in the true DAG in

each simulation scenario (3.75, 7.5, 15 and 30 edges respectively for 5, 10, 20 and

40 nodes). For each scenario, an MCMC is then implemented in the following

way: on the basis of pilot runs, we choose the total number of iterations T and

the initial burn-in period to remove from the calculation of the final estimate

of the graph. The pilot runs are also used as a diagnostic tool of appropriate

MCMC convergence and mixing. We choose T = {5000, 25000, 50000, 100000} for

q = {5, 10, 20, 40} respectively.

6.2.4 Results

In the following we present some results from the application of OBIES to the sim-

ulation scenarios described in the previous paragraphs. To understand how much

interventions can improve the identifiability of the true data generating DAG, we

measure the Structural Hamming Distance (SHD) between the projected median

probability model and the true DAG. The SHD represents the number of edge

insertions, deletions or flips needed to transform the estimated I-EG into the true

I-EG. Please note that, under each setting defined by q, the benchmark of our

comparison is represented by the same set of (40) true DAGs. In Figure 6.1 we

report the boxplots of the SHD values over the 40 replicates under the simulation

settings defined by q, nØ and p. For each q and nØ we observe that as the propor-

tion of intervened nodes p increases, the SHDs between estimated graph and true

DAG become smaller. Moreover, such reduction is all the more effective as nØ

(and so nI , see Table 6.1) grows. As q increases, modelling jointly observational

and interventional data produced under p = 0.2 results in a substantial reduction

of the SHDs with respect to the true DAG. With reference to the q = 20 setting,
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we observe that interventions on the 40% of nodes randomly chosen are sufficient

to strongly reduce the uncertainty around the true DAG estimate, especially for

large sample sizes. This means that we have hope to discover the true DAG model

via a small number of interventions selected according to an optimal design of ex-

periments. In Table 6.2 we also report summary statistics (mean and standard

deviation) of the SHDs represented in Figure 6.1. The behaviour observed in

Figure 6.1 is confirmed by the average SHDs too.

As mentioned, our I-EG estimate is the projected median probability model.

The median probability model specifies a threshold for edge inclusion of 0.5. By

varying this threshold one obtains distinct projected quantile probability models.

Each such model can be used as an I-EG estimate. Let TP denotes the number

of true positive, that is the number of edges in the true DAG that are estimated

correctly, and FP the number of edges in the estimated graph that are not present

in the true DAG (false positive). Remember that an undirected edge u − v is

equivalent to u → v and v → u. Figure 6.2 reports for the setting q = 40, nØ =

{200, 500} and p ∈ {0, 0.2, 0.4}, the Receiver Operating Characteristic (ROC)

plots for the projected quantile probability models, obtained by “averaging” with

respect to the 40 simulations.
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q = 5 nØ = 100 nØ = 200 nØ = 500 nØ = 1000

p = 0 4.95 (2.06) 4.45 (1.95) 4.28 (1.84) 3.79 (2.05)

p = 0.2 3.30 (1.45) 3.05 (1.43) 2.00 (1.50) 1.90 (1.35)

p = 0.4 2.88 (1.73) 2.25 (1.74) 1.91 (1.35) 1.80 (1.18)

q = 10 nØ = 100 nØ = 200 nØ = 500 nØ = 1000

p = 0 6.78 (3.69) 5.78 (3.58) 5.20 (3.32) 5.08 (3.25)

p = 0.2 3.70 (2.03) 3.35 (1.90) 3.17 (2.31) 2.88 (2.21)

p = 0.4 3.10 (1.85) 2.17 (1.74) 2.13 (1.51) 1.50 (1.13)

q = 20 nØ = 100 nØ = 200 nØ = 500 nØ = 1000

p = 0 11.07 (3.11) 9.57 (2.16) 8.40 (2.09) 8.00 (2.04)

p = 0.2 5.47 (2.72) 4.80 (2.43) 3.70 (1.91) 3.05 (1.52)

p = 0.4 4.25 (2.06) 3.25 (1.75) 1.32 (1.27) 1.15 (0.98)

q = 40 nØ = 100 nØ = 200 nØ = 500 nØ = 1000

p = 0 21.75 (3.30) 18.75 (2.93) 16.45 (2.43) 15.35 (3.37)

p = 0.2 13.18 (3.74) 11.97 (3.48) 12.07 (3.27) 9.98 (3.30)

p = 0.4 8.40 (3.49) 8.00 (3.54) 7.12 (4.77) 6.38 (3.73)

Table 6.2: Mean (standard deviation) of the structural Hamming distances between

OBIES estimate and true DAG over 40 data sets for number of nodes q ∈ {5, 10, 20, 40},

nØ ∈ {100, 200, 500, 1000} and p ∈ {0, 0.2, 0.4}.
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Figure 6.2: ROC plots (averaged over the 40 simulations) of the projected quantile

probability model estimates for q = 40, nØ = {200, 500} and proportion of intervened

nodes p = 0 (+), p = 0.2 (◦), p = 0.4 (•).
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6.2.5 Comparison with GIES

The Greedy Equivalence Search (GES) algorithm is a search-and-score method,

based on maximum likelihood estimation, which provides an estimate of the true

EG using the greedy equivalence search algorithm of Chickering (2002). Through

additions and deletions of single edges, GES maximizes a score function in the

space of the EGs. An extension of the GES algorithm, named Greedy Interven-

tional Equivalence Search (GIES) algorithm, for structural learning of interven-

tional essential graphs, was then introduced by Hauser & Bühlmann (2012). GES

(and also GIES) can be implemented with different optimization criteria. Orig-

inally, it was proposed with the Bayesian Information Criterion (Schwarz, 1978)

because of consistency. Anyway, any score equivalent and decomposable function

can be adopted (Hauser & Bühlmann, 2012). In the following, we implement GIES

for three different optimization criteria: the Bayesian Information Criterion and

the Extended Bayesian Information Criterion with tuning coefficient γ ∈ {0.5, 1}

recommended in Foygel & Drton (2010); see also Chen & Chen (2008). We then

refer to these three benchmarks as GIES 0, GIES 0.5 and GIES 1 respectively.

For each scenario and method we evaluate the performance in learning the

graphical structure of the true DAG in terms of misspecification rate, specificity,

sensitivity, precision and Matthews correlation coefficient, defined as

MISR = FN+FP
q(q−1)

, SPE = TN
TN+FP

, SEN = TP
TP+FN

,

PRE = TP
TP+FP

, MCC = TP ·TN−FP ·FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

,

where TP , TN , FP , FN are the numbers of true positives, true negatives, false

positives and false negatives (respectively). The results in the simulation settings

with number of nodes q = 20, nØ ∈ {100, 200, 500, 1000} and p ∈ {0, 0.2, 0.4}

are summarized in Tables 6.3 and 6.4: with the exception of MISR, better per-

formances correspond to higher indicators. We can observe that for all indicators

and scenarios, OBIES is better than GIES 0.5, GIES 1 most of the time and it is

almost uniformly better than GIES 0.
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Figure 6.3: Computational time (in seconds) of 1000 MCMC iterations of OBIES, as

a function of the sample size nØ for fixed number of nodes q = 10 (left panel) and

as a function of q for nØ = 100 (right panel), averaged over 40 simulated datasets

corresponding to the p = 0.2 scenario.

We investigate the computational time of the proposed methodology as a func-

tion of the number of nodes q and of the sample size nØ: in the left panel of Figure

6.3 we report the time in seconds spent by our algorithm to perform 1000 MCMC

iterations for q = 20, p = 0.2 and nØ between 50 and 10000, whilst in the right

panel we show the computational time for nØ = 100, p = 0.2 and q between 5 and

100 (all the results are averaged over the 40 simulated datasets). Algorithms were

run on a Intel Core i7-8550U machine. The results suggest that the dependence

of time on nØ and q is, respectively, approximately linear and exponential.
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6.3 Protein-signaling data

In this section we apply OBIES to the protein-signaling data set of Sachs et al.

(2005). Data consist in a collection of observations measured under different ex-

perimental conditions and then can be considered as purely interventional. In the

original work of Sachs et al. (2005) the objective was to infer a single DAG, whilst

Friedman et al. (2008) used the same dataset to learn a single undirected graph.

More recently, Peterson et al. (2015) analyzed the dataset from a multiple graphs

perspective. In particular, they infer an undirected graph for each experimental

condition, allowing for the possibility of shared structural features among graphs.

We adopt the methodology developed in the interventional setting of Section

4.2 to perform structural learning of interventional essential graphs. We then

compare OBIES with the Greedy Interventional Equivalence Search method.

6.3.1 Data set

The data set, provided as a supplement to Sachs et al. (2005), is based on si-

multaneous measurements of multiple phosphorylated proteins and phospholipid

components in individual primary human immune system cells. Observations are

obtained from intracellular multicolor flow cytometry, which allows for simulta-

neous measurements in individual cells and then turns out in a large number of

observations. Flow cytometry can also be used to measure protein modification

states which from our perspective are interpreted as interventions on observed

variables. Measurements of q = 11 phosphorylated proteins and phospholipids

are collected after a series of stimulatory cues and inhibitory interventions ob-

tained from the administration of reagents, each one being the responsible of the

perturbation of a signaling node. This results in a collection of nine datasets,

each containing observations measured under the same experimental condition.

In Figure 6.4 we have a signaling network with different points of intervention.

Signaling nodes in colour are measured directly, while in grey are not. See Sachs

et al. (2005) for further details.
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Figure 6.4: From Sachs et al. (2005). A classic signaling network with points of inter-

vention. Signaling nodes in color are measured directly, while signaling nodes in grey

are not. The interventions classified as activators are colored green and inhibitors are

colored red.
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Y k Y 1 Y 2 Y 3 Y 4 Y 5 Y 6

Ik Mek PIP2 Akt PKA PKC PKC

n(k) 723 707 913 810 911 799

Table 6.5: Intervention targets and sample sizes for the six datasets included in the

study.

Since our method cannot deal with interventions on latent variables, we con-

sider the six datasets associated to interventions on observed variables, that is

nodes representing variables which are measured directly. In Table 6.5 we report,

for each dataset Y k included in the study, the corresponding intervention target

Ik and sample size. Please observe that we have two different datasets with the

same target (PKC). For simplicity of notation variables included in the dataset

are also numbered from 1 to 11 according to the original dataset of Sachs et al.

(2005).

6.3.2 Model searching and results

We apply OBIES to learn the structure of an I-EG from the dataset Y ={
Y 1, . . . , Y 6

}
; see Table 6.5. The corresponding family of intervention targets is

I = {{2}, {4}, {7}, {8}, {9}, {9}}.

Please observe that I is conservative according to Definition 4.1.2. We explore the

I-EG space ISr11 with sparsity parameter r = 2, which corresponds to a maximum

number of edges of 22; see also Section 5.1.1. For the prior distribution p(G)

(Section 5.2.2) we set a = 1, b = (2q − 2)/3 − 1. We use an accelerated version

of the Markov chain step described in Algorithm 1, by fixing the acceleration

parameter α = 0.5 (proportion of tested operators to compute p(G ′ | G)). We then

run T = 100000 iterations of Algorithm 4 with a burn-in period of 20000. This

results in the MCMC output {G(t)}, t = 20001, . . . , 100000, that we use to make

posterior inference on the I-EG space.
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Figure 6.5: MCMC traceplot of visited I-EGs log-scores.

In Figure 6.5 we have the traceplot of the visited I-EGs log-score, which corre-

sponds to the logarithm of mG(t)(Y )p(G(t)) and it is proportional to the poste-

rior probability of G(t), p(G(t) |Y ). Figure 6.7 contains the heat map with the

marginal posterior probabilities of edge inclusion computed according to Formula

6.1 in Section 6.1. In Table 6.6 we also report the marginal posterior probabil-

ities of inclusion of the “top” 14 edges, pu→v, that is those edges that are most

often present in the MCMC output. We can use such information to construct

the median probability graph model, by including those edges u → v such that

pu→v(Y ) > 0.5. Alternatively, we can compute for a grid of thresholds k ∈ (0, 1)

the expected false discovery rate FDR(k) as defined in Equation (6.2) and then

choose the maximum value of k such that FDR(k) < 0.05. In doing so, we obtain

k∗ = 0.480. See Figure 6.6.

Hence, we obtain the corresponding I-EG estimate by including all edges such

that pu→v(Y ) > 0.480. We observe that the resulting graph of Figure 6.8 is an

I-EG and then no projection to the I-EG space is required; see also Section 6.1.

Finally, we compare OBIES estimate of Figure 6.8 with the Greedy Interven-
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Figure 6.6: Expected false discovery rate FDR(k) as a function of the threshold k.
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u → v pu→v u → v pu→v

Mek → Raf 1.000 JNK → Mek 1.000

PIP2 → PLC 1.000 Akt → PKA 0.993

PIP2 → PIP3 1.000 PKC → Mek 0.906

Erk → PKA 1.000 PLC → PIP3 0.519

Akt → Erk 1.000 PIP3 → PLC 0.481

PKC → p38 1.000 JNK → PIP2 0.376

PKC → JNK 1.000 Akt → JNK 0.188

Table 6.6: Marginal posterior probabilites of inclusion for the top 14 edges.
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Figure 6.8: OBIES estimate obtained from the FDR criterion.
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Figure 6.9: Estimated I-EG under GIES 0 (a), GIES 0.5 (b) and GIES 1 (c).

tional Equivalence Search method (Hauser & Bühlmann, 2012). GIES is again

computed for three different optimization criteria: the Bayesian Information Cri-

terion (GIES 0) and the Extended Bayesian Information Criterion with tuning

coefficient γ ∈ {0.5, 1} (GIES 0.5 and GIES 1 respectively); see also Section 6.2.5.

Results with I-EG estimates are reported in Figure 6.9. As we can see, the tuning

parameter can be used to intensify sparsity of the resulting graph. If compared

with the GIES 0.5, our OBIES estimate of Figure 6.8 exhibits 9 edges in common.

Instead, it appears that edge JNK → Mek is reversed in GIES 0.5, while PKC →

Mek is not present.
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Chapter 7

Conclusions and Further Work

Observational data cannot distinguish among Directed Acyclic Graphs (DAGs)

encoding the same set of conditional independencies, that is among Markov equiv-

alent DAGs. Each Markov equivalence class is represented by a special chain

graph, known as Completed Partially Directed Graph (CPDAG) or Essential

Graph (EG). Inteventional data from exogenous perturbations of variables or ran-

domized intervention experiments lead to a finer partition of DAGs into equiva-

lence classes, each one represented by an Interventional Essential Graph (I-EG),

thus improving the identifiability of the true DAG generating model.

In this thesis we presented an objective Bayes approach based on the notion

of fractional Bayes factor for model selection of Gaussian graphical models in

the presence of both observational and interventional data. In addition, we pro-

posed an MCMC sampler to explore the I-EG space under sparsity constraints and

learning Markov equivalence classes of DAGs. We applied the proposed methodol-

ogy, named OBIES, to simulation settings and to the analysis of protein-signaling

data (Sachs et al., 2005), providing comparisons with the Greedy Interventional

Equivalence Search (GIES) algorithm of Hauser & Bühlmann (2012).

We illustrated through simulations that OBIES is highly competitive with the

Extended BIC GES, here considered for two different optimization criterion, and

it outperforms BIC GES in producing a point estimate of the underlying I-EG. On

101
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the other hand, being fully Bayesian, our method yields a posterior distribution

on the I-EG space. Accordingly, it can provide not only single estimate of the

I-EG, but also an uncertainty evaluation of other features of interest, such as

probabilities of edge inclusion. Finally, being objective, it is virtually free from

prior specifications.

Randomized intervention experiments can be used to improve the identifiabil-

ity of the true data generating model (He & Geng, 2008). By extending the family

of intervention targets, (at least in principle) one can reduce each (observational)

Markov equivalence class to a single DAG, because all edges that were undirected

in the original essential graphs become directed. Ideally, one can identify the true

underlying data generating model (rather than a large equivalence class) by means

of a small number of interventions selected according to an optimal experimental

plane. The analysis of such problem from a design of experiments perspective is

currently under investigation.

The protein-signaling dataset was collected under distinct experimental con-

ditions. From the theory presented in Sachs et al. (2005) each experimental con-

dition can be interpreted as an intervention on some variables, both observed

or latent. We analyse jointly all the datasets corresponding to interventions on

one of the observed variables to infer a unique graphical structure (I-EG). An-

other possibility is to analyse all the datasets jointly in order to exploit potential

shared features among single graphs (one for each dataset) from a multiple-graphs

perspective. Joint structural learning for multiple Gaussian undirected graphical

models is carried out in Peterson et al. (2015) through a suitable Markov random

field prior which encourages common edges, as well as a spike-and-slab prior on

the parameters that measure network relatedness. More recently, Tan et al. (2016)

apply multiple Gaussian graphical models based on G-Wishart priors to metabo-

lik association networks, using a logistic regression structure to link probability

of edge inclusions among graphs.



Appendix A

Some multivariate distributions

In the following we briefly resume some theory about the multivariate random

variables involved in this work. For further details see for instance Gelman et al.

(2004), Lauritzen (1996) or Geisser & Cornfield (1963). As a matter of notation,

we use bold characters for both vectors and matrices; however, just to avoid

confusion, we use standard capital letters for random vectors while bold capital

letters for the corresponding matrices of observations.

A.1 Multivariate Normal distribution

Let Y be a q-dimensional random vector. We say that Y = (Y1, . . . Yq)
> has

a multivariate Normal distribution conditionally on the mean vector µ and the

covariance matrix Σ,

Y |µ,Σ ∼ Nq(µ,Σ),

where µ is a q-dimensional vector and Σ a q × q symmetric and positive definite

matrix, if its probability density function is given by

f(y |Σ) = (2π)−
q
2 |Σ|−

1
2 exp

{
− 1

2
(y − µ)>Σ−1(y − µ)

}
.

Equivalently, we can express f(y |Σ) in terms of the precision matrix Ω = Σ−1:

Y |Ω,µ ∼ Nq(µ,Ω−1),
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f(y |Ω) = (2π)−
q
2 |Ω|

1
2 exp

{
− 1

2
(y − µ)>Ω(y − µ)

}
.

Let now A ⊂ {1, . . . , q}, Ā = {1, . . . , q} \ A and YA, YĀ the corresponding sub-

vectors of Y with components indexed by A and Ā respectively. Accordingly, we

partition µ, Σ and Ω as

µ =

 µA
µĀ

 , Σ =

 ΣAA ΣAĀ

ΣBA ΣĀĀ

 , Ω =

 ΩAA ΩAĀ

ΩĀA ΩĀĀ

 ,
where ΣAĀ = Σ>

ĀA
and ΩAĀ = Ω>

ĀA
. For the marginal and conditional distribu-

tions of YA we have the two following results:

YA |µ,Σ ∼ N|A|
(
µA,ΣAA

)
,

YA |YĀ;µ,Σ ∼ N|A|
(
µA|Ā,ΣA|Ā

)
,

where

µA|Ā = µA + ΣAĀΣ−1
ĀĀ

(
YĀ − µĀ

)
, ΣA|Ā = ΣAA −ΣAĀΣ−1

ĀĀ
ΣĀA;

see Lauritzen (1996, p. 254). Moreover, recall that

ΣA|Ā = Ω−1
AA = ΣAA −ΣAĀΣ−1

ĀĀ
ΣĀA = Ω−1

AA,

ΩA|Ā = Σ−1
AA = ΩAA −ΩAĀΩ−1

ĀĀ
ΩĀA = Σ−1

AA.

Therefore, ΩAA corresponds to the precision matrix of the conditional distribution

YA |YĀ. It follows that, for each pair of disjoint subsets I, J ⊂ {1, . . . , q}, ΩIJ =

0 implies a conditional independence between YI and YJ , given the remaining

variables, while ΣIJ = 0 corresponds to a marginal independence between YI and

YJ .

A.2 Matrix Normal distribution

Let Y be a n×q random matrix. We say that Y has a matrix Normal distribution

with mean matrix M , row covariance matrix Φ and column covariance matrix Σ,

Y |M ,Φ,Σ ∼ Nn,q(M ,Φ,Σ),
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if its probability density function is given by

f(Y |M ,Φ,Σ) = (2π)−
nq
2 |Φ|−

q
2 |Σ|−

n
2

· exp

{
− 1

2
tr
(
Σ−1(Y −M)>Φ−1(Y −M)

)}
,

where M is a n × q matrix, Φ a n × n symmetric and positive definite (s.p.d.)

matrix and Σ a q×q s.p.d. matrix. Please observe that in such case we do not make

distinction between capital and lowercase letters to specify the random variable

Y and its realization (both are of course matrices). Equivalently, in terms of

Ω = Σ−1 (the column precision matrix ) and K = Φ−1 (the row precision matrix )

we can write

f(Y |M ,K,Ω) = (2π)−
nq
2 |K|

q
2 |Ω|

n
2

· exp

{
− 1

2
tr
(
Ω(Y −M)>K(Y −M )

)}
.

Let now A ⊂ {1, . . . , q} and YA the corresponding n × |A| submatrix of Y con-

taining columns indexed by A in Y . Similarly for Ā = {1, . . . , q} \ A and YĀ. If

M , Σ and Ω are partitioned accordingly,

M =
[
MA MĀ

]
, Σ =

 ΣAA ΣAĀ

ΣĀA ΣĀĀ

 , Ω =

 ΩAA ΩAĀ

ΩĀA ΩĀĀ

 ,
we can write for the marginal and conditional distributions of YA

YA |M ,Φ,Σ ∼ Nn,|A|
(
MA,Φ,ΣAA

)
,

YA |YĀ;M ,Φ,Σ ∼ Nn,|A|
(
MA|Ā,Φ,ΣA|Ā

)
,

where

MA | Ā = MA −
(
YĀ −MĀ

)
ΩĀAΩ−1

ĀĀ
, ΣA | Ā = Ω−1

AA.

A.3 Wishart distribution

Let Ω be a q × q s.p.d. matrix. We say that Ω has a Wishart distribution with

parameters a ∈ R (a > q − 1) and R a q × q s.p.d. matrix,

Ω | a,R ∼ Wq(a,R),
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if its probability density function is given by

f(Ω | a,R) = 2−
aq
2

[
Γq

(a
2

)]−1

|R|
a
2 |Ω|

a−q−1
2 exp

{
− 1

2
tr
(
RΩ

)}
∝ |Ω|

a−q−1
2 exp

{
− 1

2
tr
(
RΩ

)}
.

A useful result is then contained in the following theorem.

Theorem A.3.1. Let Ω | a,R ∼ Wq(a,R), with R a s.p.d. matrix and a > q−1.

Given A ⊂ {1, . . . , q}, Ā = {1, . . . , q} \ A and the corresponding partitions of Ω

and R,

Ω =

 ΩAA ΩAĀ

ΩĀA ΩĀĀ

 , R =

 RAA RAĀ

RĀA RĀĀ

 ,
we have that

ΩA|Ā ∼ W|A|(a− |Ā|,RAA).

See also Lauritzen (1996, p. 261) for further properties of the Wishart distribution.
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Marginal distribution of Gaussian

data: conjugate analysis

In the following we report some results about the marginal distribution of Gaussian

data under three different settings: Gaussian data with zero-expectation, Gaussian

data with non-zero mean and the Gaussian multivariate linear regression model.

In all cases we assume standard (informative) conjugate priors based on Wishart

and Normal-Wishart distributions. Given the n × q matrix of observations Y ,

we then obtain a formula to compute the marginal data distribution of YA, the

n×|A| submatrix of Y containing columns indexed by A ⊂ {1, . . . , q}. For details

see for instance Gelman et al. (2004) and Geisser & Cornfield (1963).

B.1 Gaussian data with zero mean

Consider n q-variate observations yi = (yi,1, . . . , yi,q)
>, i = 1, . . . , n, from (Y1, . . . , Yq) |Ω ∼

Nq(0,Ω−1) collected in the n×q matrix Y . The likelihood function can be written
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as

f(Y |Ω) =
n∏
i=1

p(yi |Ω)

=
n∏
i=1

(2π)−
q
2 |Ω|

1
2 exp

{
− 1

2
y>i Ωyi

}
= (2π)−

nq
2 |Ω|

n
2 exp

{
− 1

2
tr(SΩ)

}
,

with S =
∑n

i=1 yiy
>
i .

A standard conjugate prior for Ω is Ω ∼ Wq(a,R),

p(Ω) = c(a, q) · |R|
a
2 · |Ω|

a−q−1
2 exp

{
− 1

2
tr
(
RΩ

)}
,

where

c(a, q) = 2−
aq
2

[
Γq

(a
2

)]−1

.

The prior normalizing constant is then

c(a, q) · |R|
a
2 .

B.1.1 Posterior

The posterior distribution of Ω is obtained as

p(Ω |Y ) ∝ p(Y |Ω) · p(Ω)

∝ |Ω|
n
2 exp

{
− 1

2
tr(SΩ)

}
· |Ω|

a−q−1
2 exp

{
− 1

2
tr
(
RΩ

)}
= |Ω|

a+n−q−1
2 exp

{
− 1

2
tr
[(
R+ S

)
Ω
]}
,

from which we get

Ω |Y ∼ Wq

(
a+ n,R+ S

)
.

The posterior normalizing constant is then

c(a+ n, q) · |R+ S|
a+n

2 ,

c(a+ n, q) = 2−
(a+n)q

2

[
Γq

(a+ n

2

)]−1

.
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B.1.2 Marginal likelihood

The marginal likelihood for the Gaussian model Nq(0,Ω−1) given the data Y can

be obtained, up to the constant term (2π)−
nq
2 , as the ratio of prior and posterior

normalizing constants,

m(Y ) = (2π)−
nq
2 · c(a, q)

c(a+ n, q)
· |R|a2
|R+ S|a+n

2

= (π)−
nq
2 ·

Γq
(
a+n

2

)
Γq
(
a
2

) · |R|a2
|R+ S|a+n

2

. (B.1)

Given A ⊂ {1, . . . , q} and YA the corresponding n × |A| submatrix of Y we are

also interested in computing m(YA), the marginal data distribution of YA. From

the theory resumed in Paragraph A.1 we know that

YA |µ,Σ ∼ N|A|
(
µA,Ω

−1
A|Ā

)
.

Moreover, from Theorem A.3.1, we have

ΩA|B ∼ W|A|(a− |B|,RAA),

where RAA is the |A| × |A| submatrix of R with rows and columns indexed by A

and |Ā| = q − |A|. Hence,

m(YA) = (2π)−
n|A|

2 · c(a− |Ā|, |A|)
c(a− |Ā|+ n, |A|)

· |RAA|
a−|Ā|

2

|RAA + SAA|
a−|Ā|+n

2

= (π)−
n|A|

2 ·
Γ|A|
(a−|Ā|+n

2

)
Γ|A|
(a−|Ā|

2

) · |RAA|
a−|Ā|

2

|RAA + SAA|
a−|Ā|+n

2

, (B.2)

where SAA is the submatrix of S with rows and columns indexed by A in S.

B.2 Gaussian data with non-zero mean

Assuming µ and Ω unknown, we consider n q-variate observations yi = (yi,1, . . . , yi,q),

i = 1, . . . , n, from (Y1, . . . , Yq)
> |µ,Ω ∼ Nq(µ,Ω−1) collected in the n× q matrix
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Y . The likelihood function is then

f(Y |µ,Ω) =
n∏
i=1

p(yi |Ω)

∝
n∏
i=1

|Ω|
1
2 exp

{
− 1

2
(yi − µ)>Ω(yi − µ)

}
= (2π)−

nq
2 |Ω|

n
2 exp

{
− 1

2
tr(ΩSµ)

}
,

being

Sµ =
n∑
i=1

(yi − µ)(yi − µ)>.

Standard conjugate priors for µ and Ω are

µ |Ω ∼ Nq
(
m0, (aµΩ)−1

)
,

Ω ∼ Wq

(
aΩ,R

)
and then

p(µ,Ω) = c(aµ, aΩ, q) · |Ω|
1
2 exp

{
− 1

2
aµ(µ−m0)>Ω(µ−m0)

}
· |R|

aΩ
2 |Ω|

a−q−1
2 exp

{
− 1

2
tr
(
RΩ

)}
,

where

c(aµ, aΩ, q) = (2π)−
q
2a

q
2
µ · 2−

aΩq

2

[
Γq

(aΩ

2

)]−1

.

The prior normalizing constant is

c(aµ, aΩ, q) · |R|
aΩ
2 .

B.2.1 Posterior

The posterior distribution of (µ,Ω) is

µ |Ω,Y ∼ Nq
(
µn,

[
(aµ + n)Ω)

]−1)
,

Ω |Y ∼ Wq

(
aΩ + n,R+ S +

aµn

aµ + n
S0

)
,
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where

µn =
aµ

aµ + n
m0 +

n

aµ + n
ȳ,

S =
n∑
i=1

(yi − ȳ)(yi − ȳ)>, S0 = (ȳ −m0)(ȳ −m0)>

and ȳ the q × 1 vector of sample means of Y1, . . . , Yq; see for instance Gelman

et al. (2004). The posterior normalizing constant is then

c(aµ + n, aΩ + n, q) ·
∣∣∣∣R+ S +

aµn

aµ + n
S0

∣∣∣∣
aΩ+n

2

,

c(aµ + n, aΩ + n, q) = (2π)−
q
2 (aµ + n)

q
2 · 2−

(aΩ+n)q

2

[
Γq

(aΩ + n

2

)]−1

.

B.2.2 Marginal likelihood

The marginal likelihood for the Gaussian model Nq(µ,Ω−1) given the data Y is

obtained as

m(Y ) = (2π)−
nq
2 · c(aµ, aΩ, q)

c(aµ + n, aΩ + n, q)
· |R|

aΩ
2∣∣R+ S + aµn

aµ+n
S0

∣∣aΩ+n

2

= (π)−
nq
2 ·
(

aµ
aµ + n

) q
2

·
Γq
(
aΩ+n

2

)
Γq
(
aΩ

2

) · |R|
aΩ
2∣∣R+ S + aµn

aµ+n
S0

∣∣aΩ+n

2

. (B.3)

Let now A ⊂ {1, . . . , q} and YA the corresponding n× |A| submatrix of Y . From

Paragraph A.1 we know that

YA |µ,Σ ∼ N|A|
(
µA,Ω

−1
A|Ā

)
,

µA |Ω ∼ N|A|
(
m0A, (aµΩA|Ā)−1

)
.

Moreover, from Theorem A.3.1 we have

ΩA|B ∼ W|A|(a− |B|,RAA),
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where RAA is the |A| × |A| submatrix of R with rows and columns indexed by A

and |Ā| = q − |A|. Hence,

m(YA) = (2π)−
n|A|

2 · c(aµ, aΩ − |Ā|, |A|)
c(aµ, aΩ − |Ā|+ n, |A|)

· |RAA|
aΩ−|Ā|

2∣∣RAA + SAA + aµn

aµ+n
S0,AA

∣∣aΩ−|Ā|+n
2

= (π)−
n|A|

2 ·
(

aµ
aµ + n

) |A|
2

·
Γ|A|
(aΩ−|Ā|+n

2

)
Γ|A|
(aΩ−|Ā|

2

) · |RAA|
aΩ−|Ā|

2∣∣RAA + SAA + aµn

aµ+n
S0,AA

∣∣aΩ−|Ā|+n
2

,(B.4)

where SAA and S0,AA are the submatrices of S and S0 containing rows and

columns indexed by A in S and S0 respectively.

B.3 Multivariate linear regression

Let Y be a n× q matrix of responses from the q random variables Y1, . . . , Yq, X a

n× (p+ 1) matrix of observations from a set of p explanatory variables (including

the unit vector for the intercept) andB a (p+1)×q matrix of coefficients describing

the effect of the explanatory variables on the responses. A Gaussian multivariate

linear regression model can be written in matrix notation as

Y = XB +E,

where E is a n× q matrix of error terms, E ∼ Nn,q(0, In,Ω−1), with In the n×n

identity matrix, Ω is the s.p.d. (unconstrained) column precision matrix and 0

the n× q null matrix. Equivalently we write

Y |B,Ω ∼ Nn,q
(
XB, In,Ω

−1
)

and then

f(Y |B,Ω) = (2π)−
nq
2 |Ω|

n
2 exp

{
− 1

2
tr
[
Ω(Y −XB)>(Y −XB)

]}
.

Letting B̂ =
(
X>X

)−1
X>Y , we can write

f(Y |B,Ω) = (2π)−
nq
2 |Ω|

n
2

· exp

{
− 1

2
tr
[
Ω
{

(B − B̂)>X>X(B − B̂) + Ê>Ê
}]}

,

where Ê = Y −XB̂.
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B.3.1 Prior

A conjugate prior for (B,Ω) is given by

B |Ω ∼ Np+1,q

(
B,C−1,Ω−1

)
,

Ω ∼ Wq

(
a,R

)
,

whose probability densities are

p(B |Ω) = (2π)−
1
2
q(p+1)|C|

q
2 |Ω|

p+1
2 exp

{
− 1

2
tr
[
Ω(B −B)>C(B −B)

]}
p(Ω) =

[
Γq

(a
2

)]−1

2−
aq
2 |R|

a
2 |Ω|

a−q−1
2 exp

{
− 1

2
tr
(
RΩ

)}
The joint prior p(B,Ω) ∝ p(B |Ω)p(Ω) is then

p(B,Ω) ∝ |Ω| 12 [(p+1)+(a−q−1)]

K(C,R, a)
exp

{
− 1

2
tr
[
Ω
(
(B −B)>C(B −B) +R

)]}
,

where

K(C,R, a) =
(2π)

q(p+1)
2 Γq

(
a
2

)
2
aq
2

|C| q2 |R|a2

is the prior normalizing constant.

B.3.2 Posterior

The posterior distribution of (B,Ω) is

B |Ω,Y ∼ Np+1,q

(
B̄, (C +X>X)−1,Ω−1

)
Ω |Y ∼ Wq

(
a+ n,R+ Ê>Ê +D

)
,

where

B̄ = (C +X>X)−1(X>Y +CB)

D = (B − B̂)>
(
C−1 + (X>X)−1

)−1
(B − B̂);

see also Geisser (1965). Hence,

p(B |Ω,Y ) = (2π)
q(p+1)

2 |C +X>X|
q
2 |Ω|

p+1
2

· exp

{
− 1

2
tr
[
Ω
(
(B − B̄)>(C +X>X)(B − B̄)

)]}
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p(Ω |Y ) =
|R+ Ê>Ê +D|a+n

2

2
q(a+n)

2 Γq
(
a+n

2

) |Ω|
a+n−q−1

2 exp

{
− 1

2
tr
[
Ω
(
R+ Ê>Ê +D

)]}
The joint density is then

p(B,Ω |Y ) = K−1(C +X>X,R+ Ê>Ê +D, a+ n)

· |Ω|
p+1

2 exp

{
− 1

2
tr
[
Ω
(
(B − B̄)>(C +X>X)−1(B − B̄)

)]}
· |Ω|

a+n−q−1
2 exp

{
− 1

2
tr
[
Ω
(
R+ Ê>Ê +D

)]}
where

K(C +X>X,R+ Ê>Ê +D, a+ n) =
(2π)

q(p+1)
2 Γq

(
a+n

2

)
2
q(a+n)

2

|C +X>X| q2 |R+ Ê>Ê +D|a+n
2

is the posterior normalizing constant.

B.3.3 Marginal likelihood

The marginal data distribution is obtained (up to a constant term) as the ratio

between prior and posterior normalizing constants,

m(Y |X) =
(2π)−

nq
2 K−1(C,R, a)

K−1(C +X>X,R+ Ê>Ê +D, a+ n)

=
|C| q2 |R|a2 Γq

(
a+n

2

)
2
qn
2

(2π)
nq
2 |C +X>X| q2 |R+ Ê>Ê +D|a+n

2 Γq
(
a
2

) . (B.5)

Let now A ⊂ {1, . . . , q}, YA the corresponding n × |A| submatrix of Y and BA

the (p+1)×|A| submatrix of B, whose columns contain the regression coefficients

for the selected responses in YA. From the theory resumed in Paragraphs A.2 and

A.3, we obtain for the regression model restricted to the subset A,

YA |B,Ω ∼ Nn,|A|
(
XBA, In,Ω

−1
AA

)
,

with the corresponding priors

BA |Ω ∼ Np+1,|A|
(
BA,C

−1,Ω−1
A|Ā

)
,

ΩA|Ā ∼ W|A|
(
a− |Ā|,RAA

)
,
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where BA is the submatrix of B with columns indexed by |A| and |Ā| = q −

|A|. The marginal likelihood of YA is then obtained by coherently updating the

normalizing constants involved in m(Y ). Hence,

m(YA |X) =
(2π)−

n|A|
2 K−1(C,RAA, a− |Ā|)

K−1(C +X>X,RAA + Ê>AÊA +DAA, a− |Ā|+ n)
(B.6)

=
|C|

|A|
2 |RAA|

a−|Ā|
2 Γq

(
a−|Ā|+n

2

)
2
|A|n

2

(2π)
n|A|

2 |C +X>X|
|A|
2 |RAA + Ê>AÊA +DAA|

a−|Ā|+n
2 Γ|A|

(a−|Ā|
2

) ,
where ÊA = YA −XB̂A, while n,C and X are unchanged.
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Appendix C

Marginal likelihood of Gaussian

models: FBF setting

In the following we adopt an objective Bayes approach based on the Fractional

Bayes Factor (FBF) (Section 2.3) to evaluate the marginal likelihood of the Gaus-

sian models presented in Section B. As before, we are interested in computing the

marginal likelihood with respect to the n×|A| matrix YA which contains columns

indexed by A ⊂ {1, . . . , q} in Y . The same results can be found in Consonni &

La Rocca (2012) and Consonni et al. (2017) with reference to Gaussian data with

zero expectation and multivariate Gaussian linear regression.

C.1 Gaussian data with zero mean

Consider the case in which (Y1, . . . , Yq) |Ω ∼ Nq(0,Ω−1) (Paragraph B.1). The

likelihood function given the n× q data matrix Y can be written as

f(Y |Ω) = (2π)−
nq
2 |Ω|

n
2 exp

{
− 1

2
tr(SΩ)

}
,

with S =
∑n

i=1 yiy
>
i .

117
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C.1.1 Fractional prior

We start assuming the default prior for Ω,

pD(Ω) ∝ |Ω|
aD−q−1

2 .

The implied fractional prior (see Section ??) is then

pF (Ω | b,Y ) ∝ f b(Y |Ω)pD(Ω)

∝
[
(2π)−

nq
2 |Ω|

n
2 exp

{
− 1

2
tr(SΩ)

}]b
|Ω|

aD−q−1

2

Setting b = n0/n we obtain

pF (Ω | b,Y ) ∝ (2π)−
n0q

2 |Ω|
aD+n0−q−1

2 exp

{
− 1

2
tr(n0ΩS̄)

}
where S̄ = 1

n
S so that the fractional prior is

Ω | b,Y ∼ Wq

(
aD + n0, n0S̄

)
.

The prior normalizing constant (see Section A.3) is

c(aD + n0, q) · |n0S̄|
aD+n0

2 ,

c(aD + n0, q) = 2−
(aD+n0)q

2

[
Γq

(aD + n0

2

)]−1

.

C.1.2 Posterior

The posterior distribution of Ω is obtained in the FBF setting of Section 2.3 as

p(Ω | b,Y ) ∝ f 1−b(Y |Ω)pF (Ω | b,Y )

=

[
(2π)−

nq
2 |Ω|

n
2 exp

{
− 1

2
tr(SΩ)

}]n−n0
n

· |Ω|
aD+n0−q−1

2 exp

{
− 1

2
tr(n0ΩS̄)

}
∝ |Ω|

aD+n−q−1

2 exp

{
− 1

2
tr
[
Ω(S̃ + n0S̄)

]}
,

being

S̃ =
n− n0

n
S = (n− n0)S̄.
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Moreover, S̃ + n0S̄ = nS̄ = S so that

p(Ω |n0,Y ) ∝ (2π)−
(n−n0)q

2 |Ω|
aD+n−q−1

2 exp

{
− 1

2
tr
(
ΩS
)}
.

Hence,

Ω |n0,Y ∼ Wq

(
aD + n,S

)
.

The posterior normalizing constant is

c(aD + n, q) · |S|
aD+n

2 ,

c(aD + n, q) = 2−
(aD+n)q

2

[
Γq

(aD + n

2

)]−1

.

C.1.3 Marginal likelihood

The fractional marginal likelihood for the Gaussian model Nq(0,Ω−1) is obtained

in analogy with the standard conjugate case described in Section B.1 as

mF (Y ) = (2π)−
(n−n0)q

2 · c(aD + n0, q)

c(aD + n, q)
· |n0S̄|

aD+n0
2

|S|
aD+n

2

= (π)−
(n−n0)q

2 ·
Γq
(
aD+n

2

)
Γq
(
aD+n0

2

) · |n0S̄|
aD+n0

2

|S|
aD+n

2

= (π)−
(n−n0)q

2 ·
Γq
(
aD+n

2

)
Γq
(
aD+n0

2

) · (n0

n

) q(aD+n0)

2

· |S|−
n−n0

2 . (C.1)

The fractional marginal likelihood with respect to YA, the submatrix of Y with

columns indexed by A is obtained accordingly as

mF (YA) = (2π)−
(n−n0)|A|

2 · c(aD − |Ā|+ n0, |A|)
c(aD − |Ā|+ n, |A|)

· |n0S̄AA|
aD−|Ā|+n0

2

|SAA|
aD−|Ā|+n

2

(C.2)

= (π)−
(n−n0)|A|

2 ·
Γ|A|
(
aD−|Ā|+n

2

)
Γ|A|
(aD−|Ā|+n0

2

) · (n0

n

) |A|(aD−|Ā|+n0)

2

· |SAA|−
n−n0

2 ,

where SAA is the submatrix of S with rows and columns indexed by A and |Ā| =

q − |A|.
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C.2 Gaussian data with non-zero mean

Assume now (Y1, . . . , Yq) |µ,Ω ∼ Nq(µ,Ω−1) as in Section B.2. Given the n× q

data matrix Y , the likelihood function can be written as

f(Y |µ,Ω) =
n∏
i=1

p(yi |Ω)

= (2π)−
nq
2 |Ω|

n
2 exp

{
− 1

2
tr(ΩSµ)

}
= (2π)−

nq
2 |Ω|

n
2 exp

{
− 1

2
tr
[
Ω
{
n(µ− ȳ)>(µ− ȳ) +

n∑
i=1

eie
>
i

}]}
where ei = yi − ȳ; see also Gelman et al. (2004).

C.2.1 Fractional prior

We start assuming the default prior for (µ,Ω),

pD(µ,Ω) ∝ |Ω|
aD−q−1

2 .

The implied fractional prior is then

pF (Ω | b,Y ) ∝ f b(Y |µ,Ω)pD(µ,Ω).

Setting b = n0/n we obtain

pF (µ,Ω |n0,Y ) ∝ |Ω|
n0
2 exp

{
− n0

2
tr
[
Ω
{

(µ− ȳ)>(µ− ȳ) + R̄
}]}

· |Ω|
aD−q−1

2

= |Ω|
n0
2 exp

{
− n0

2
tr
[
Ω
{

(µ− ȳ)>(µ− ȳ)
}]}

· |Ω|
aD−q−1

2 exp

{
− n0

2
tr
(
ΩR̄

)}
,

where

R̄ =
1

n
R =

1

n

n∑
i=1

eie
>
i .
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Multiplying and dividing by |n0Ω|
1
2 we obtain

µ |Ω, n0,Y ∼ Nq
(
ȳ, (n0Ω)−1

)
,

Ω |n0,Y ∼ Wq

(
aD + n0 − 1, n0R̄

)
.

The prior normalizing constant is then

c(aD + n0 − 1, q) · |n0R̄|
aD+n0−1

2 ,

c(aD + n0 − 1, q) = (2π)−
q
2n

q
2
0 · 2−

(aD+n0−1)q

2

[
Γq

(
aD + n0 − 1

2

)]−1

.

C.2.2 Posterior

The posterior distribution of (µ,Ω) under the FBF setting is obtained as

p(µ,Ω | b,Y ) ∝ f 1−b(Y |µ,Ω)pF (µ,Ω | b,Y )

∝
[
(2π)−

nq
2 |Ω|

n
2 exp

{
− 1

2
tr
[
Ω
{
n(µ− ȳ)>(µ− ȳ) +R

}]}]1−b

· |n0Ω|
1
2 exp

{
− 1

2
tr
[
n0Ω

{
(µ− ȳ)>(µ− ȳ)

}]}
· |Ω|

aD+n0−q−2

2 exp

{
− 1

2
tr
[
n0ΩR̄

]}
.

Setting b = n0/n we obtain

p(µ,Ω |n0,Y ) ∝ |Ω|
n−n0

2 exp

{
− n− n0

2
tr
[
Ω
{

(µ− ȳ)>(µ− ȳ) + R̄
}]}

· |n0Ω|
1
2 exp

{
− n0

2
tr
[
Ω
{

(µ− ȳ)>(µ− ȳ)
}]}

· |Ω|
aD+n0−q−2

2 exp

{
− n0

2
tr
[
Ω(R̄+ S̄)

]}
and so

p(µ,Ω |Y , b) ∝ |Ω|
1
2 exp

{
− n

2
tr
[
Ω
{

(µ− ȳ)>(µ− ȳ)
}]}

· |Ω|
aD+n−q−2

2 exp

{
− 1

2
tr
[
ΩR

]}
.
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Therefore we get

µ |Ω, b,Y ∼ Nq
(
µ̄, (nΩ)−1

)
Ω | b,Y ∼ Wq

(
aD + n− 1,R

)
.

The posterior normalizing constant is then

c(aD + n− 1, q) · |R|
aD+n−1

2 ,

c(aD + n− 1, q) = (2π)−
q
2n

q
2 · 2−

(aD+n−1)q

2

[
Γq

(
aD + n− 1

2

)]−1

.

C.2.3 Marginal likelihood

The fractional marginal likelihood for the Gaussian model Nq(µ,Ω−1) given the

data Y is obtained as

mF (Y ) = (2π)−
(n−n0)q

2 · c(aD + n0 − 1, q)

c(aD + n− 1, q)
· |n0R̄|

aD+n0−1

2

|R|
aD+n−1

2

= (π)−
(n−n0)q

2 ·
Γq
(
aD+n−1

2

)
Γq
(
aD+n0−1

2

)(n0

n

) q
2

· |n0n
−1R|

aD+n0−1

2

|R|
aD+n−1

2

= (π)−
(n−n0)q

2 ·
Γq
(
aD+n−1

2

)
Γq
(
aD+n0−1

2

) · (n0

n

) q(aD+n0)

2

· |R|−
n−n0

2 , (C.3)

since R is a q × q matrix and so

|n0n
−1R|

aD+n0−1

2 =
(n0

n

) q(aD+n0−1)

2 |R|
aD+n0−1

2 .

In analogy with the standard conjugate case described in Section B.2, we obtain

the fractional marginal likelihood with respect to YA as

mF (YA) = (2π)−
(n−n0)|A|

2 · c(aD − |Ā|+ n0 − 1, |A|)
c(aD − |Ā|+ n− 1, |A|)

· |n0R̄AA|
aD−|Ā|+n0−1

2

|RAA|
aD−|B|+n−1

2

= (π)−
(n−n0)|A|

2 ·
Γ|A|
(aD−|Ā|+n−1

2

)
Γ|A|
(aD−|Ā|+n0−1

2

) · (n0

n

) |A|(aD−|Ā|+n0)

2

· |RAA|−
n−n0

2 .(C.4)
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C.3 Multivariate linear regression

Consider now the Gaussian multivariate linear regression model of Section B.3,

Y |B,Ω ∼ Nn,q
(
XB, In,Ω

−1
)

and assume the default prior for (B,Ω),

pD(B,Ω) ∝ |Ω|
aD−q−1

2 .

C.3.1 Fractional prior

The fractional prior is obtained as

pF (B,Ω | b,Y ) ∝ f b(Y |B,Ω)pD(B,Ω).

Setting b = n0/n we obtain

f b(Y |B,Ω) =

[
(2π)−

nq
2 |Ω|

n
2 exp

{
− 1

2
tr
[
Ω
{

(B − B̂)>X>X(B − B̂) + Ê>Ê
}]}]n0

n

= (2π)−
n0q

2 |Ω|
n0
2 exp

{
− n0

2n
tr
[
Ω
{

(B − B̂)>X>X(B − B̂) + Ê>Ê
}]}

∝ |Ω|
n0
2 exp

{
− n0

2
tr
[
Ω
{

(B − B̂)>C̃(B − B̂) + R̃
}]}

where

C̃ =
1

n
X>X, R̃ =

1

n
Ê>Ê.

Therefore we can write the fractional prior for (B,Ω) as

pF (B,Ω |n0,Y ) ∝ |Ω|
aD−q−1

2 |Ω|
n0
2 exp

{
− n0

2
tr
[
Ω
{

(B − B̂)>C̃(B − B̂)
}]}

· exp

{
− n0

2
tr
[
ΩR̃

]}
.

Hence, by multiplying and dividing by |Ω|p+1, we get

B |Ω, b,Y ∼ Np+1,q

(
B̂, (n0C̃)−1,Ω−1

)
,

Ω | b,Y ∼ Wq

(
aD + n0 − p− 1, n0R̃

)
.

The prior normalizing constant is

K(n0C̃, n0R̃, aD + n0 − p− 1) =
(2π)

q(p+1)
2 Γq

(
aD+n0−p−1

2

)
2
q(aD+n0−p−1)

2

|n0n−1X>X| q2 |n0n−1Ê>Ê|
aD+n0−p−1

2
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C.3.2 Posterior

The posterior distribution of (B,Ω) is obtained from

p(B,Ω |Y ) ∝ f 1−b(Y |B,Ω)pF (B,Ω |n0,Y ),

where

f 1−b(Y |B,Ω) =

[
(2π)−

nq
2 |Ω|

n
2 exp

{
− 1

2
tr
[
Ω
{

(B − B̂)>X>X(B − B̂) + Ê>Ê
}]}]n−n0

n

∝ |Ω|
n−n0

2 exp

{
− n− n0

2
tr
[
Ω
{

(B − B̂)>C̃(B − B̂) + R̃
}]}

.

Hence,

p(B,Ω |Y ) ∝ |Ω|
n−n0

2 exp

{
− n− n0

2
tr
[
Ω
{

(B − B̂)>C̃(B − B̂) + R̃
}]}

· |Ω|
aD−q−1

2 |Ω|
n0
2 exp

{
− n0

2
tr
[
Ω
{

(B − B̂)>C̃(B − B̂) + R̃
}]}

∝ |Ω|
aD−q−1

2 |Ω|
n
2 exp

{
− n

2
tr
[
Ω
{

(B − B̂)>C̃(B − B̂) + R̃
}]}

= |Ω|
aD−q−1

2 |Ω|
n
2 exp

{
− 1

2
tr
[
Ω
{

(B − B̂)>X>X(B − B̂)
}]}

· exp

{
− 1

2
tr
[
Ω
{
Ê>Ê

}]}
.

Again, by multiplying and dividing by |Ω|p+1, we get

B |Ω,Y ∼ Np+1,q

(
B̂, (X>X)−1,Ω−1

)
,

Ω |Y ∼ Wq

(
aD + n− p− 1, Ê>Ê

)
.

The posterior normalizing constant is then

K(X>X, Ê>Ê, aD + n− p− 1) =
(2π)

q(p+1)
2 Γq

(
aD+n−p−1

2

)
2
q(aD+n−p−1)

2

|X>X| q2 |Ê>Ê|
aD+n−p−1

2

.
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C.3.3 Marginal likelihood

The fractional marginal likelihood is obtained as

mF (Y |X) = (2π)−
(n−n0)q

2
K−1(n0C̃, n0R̃, aD + n0 − p− 1)

K−1(X>X, Ê>Ê, aD + n− p− 1)

= (2π)−
(n−n0)q

2 · |n0n
−1X>X| q2 |n0n

−1Ê>Ê|
aD+n0−p−1

2

|X>X| q2 |Ê>Ê|
aD+n−p−1

2

·
Γq
(
aD+n−p−1

2

)
Γq
(
aD+n0−p−1

2

) · 2
q(aD+n−p−1)

2

2
q(aD+n0−p−1)

2

.

Moreover, since X>X is a (p+ 1)× (p+ 1) matrix, we have

|n0n
−1X>X|

q
2 =

(n0

n

) q(p+1)
2 |X>X|

q
2

and similarly for the q × q matrix Ê>Ê. Hence,

mF (Y |X) = (2π)−
(n−n0)q

2 ·
(n0

n

) q(p+1)
2 |Ê>Ê|−

n−n0
2 ·

Γq
(
aD+n−p−1

2

)
Γq
(
aD+n0−p−1

2

)
·
(n0

n

) q(aD+n0−p−1)

2
2
q(n−n0)

2

and then

mF (Y |X) = (π)−
(n−n0)q

2 ·
Γq
(
aD+n−p−1

2

)
Γq
(
aD+n0−p−1

2

) · (n0

n

) q(aD+n0)

2 · |Ê>Ê|−
n−n0

2 . (C.5)

Let now A ⊂ {1, . . . , q}, YA the corresponding n×|A| submatrix of Y and BA the

(p + 1) × |A| submatrix of B, whose columns contain the regression coefficients

for the selected responses in YA. In analogy with the standard conjugate case

described in Section B.3, we obtain the fractional marginal likelihood with respect

to YA as

mF (YA |X) =
K(X>X, Ê>AÊA, aD − |Ā|+ n− p− 1)

(2π)
(n−n0)|A|

2 K(n0C̃, n0R̃AA, aD − |Ā|+ n0 − p− 1)

and then

mF (YA |X) = (π)−
(n−n0)|A|

2
Γ|A|
(aD−|Ā|+n−p−1

2

)
Γ|A|
(aD−|Ā|+n0−p−1

2

)(n0

n

) |A|(aD−|Ā|+n0)

2 |Ê>AÊA|−
n−n0

2 ,

(C.6)

being |Ā| = q − |A| and ÊA = YA −X>B̂A.
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