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Abstract

Subdivision schemes are able to produce functions, which are smooth up to pixel accu-

racy, in a few steps through an iterative process. They take as input a coarse control

polygon and iteratively generate new points using some algebraic or geometric rules.

Therefore, they are a powerful tool for creating and displaying functions, in particular

in computer graphics, computer-aided design, and signal analysis.

A lot of research on univariate subdivision schemes is concerned with the conver-

gence and the smoothness of the limit curve, especially for schemes where the new points

are a linear combination of points from the previous iteration. Much less is known for

non-linear schemes: in many cases there are only ad hoc proofs or numerical evidence

about the regularity of these schemes. For schemes that use a geometric construction,

it could be interesting to study the continuity of geometric entities. Dyn and Hormann

[2012] propose sufficient conditions such that the subdivision process converges and the

limit curve is tangent continuous. These conditions can be satisfied by any interpolatory

scheme and they depend only on edge lengths and angles. The goal of my work is to

generalize these conditions and to find a sufficient constraint, which guarantees that a

generic interpolatory subdivision scheme gives limit curves with continuous curvature.

To require the continuity of the curvature it seems natural to come up with a condition

that depends on the difference of curvatures of neighbouring circles. The proof of the

proposed condition is not completed, but we give a numerical evidence of it.

A key feature of subdivision schemes is that they can be used in different fields of

approximation theory. Due to their well-known relation with multiresolution analysis

they can be exploited also in image analysis. In fact, subdivision schemes allow for an

efficient computation of the wavelet transform using the filterbank. One current issue in

signal processing is the analysis of anisotropic signals. Shearlet transforms allow to do

it using the concept of multiple subdivision schemes. One drawback, however, is the big

number of filters needed for analysing the signal given. The number of filters is related

to the determinant of the expanding matrix considered. Therefore, a part of my work

is devoted to find expanding matrices that give a smaller number of filters compared

to the shearlet case. We present a family of anisotropic matrices for any dimension d

with smaller determinant than shearlets. At the same time, these matrices allow for the

definition of a valid directional transform and associated multiple subdivision schemes.
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Introduction

The first subdivision scheme is given by De Rham [1947]. Later on, two other famous

schemes are introduced by Chaikin [1974]; Deslauriers and Dubuc [1989]. The basic

idea of subdivision is to start with a coarse control polygon and iteratively generate new

points that converge to a smooth limit curve. The new points are generated from the

previous ones using some algebraic or geometric rules.

The idea is not new, because it is the same principle that Archimedes used in The

Measurement of a Circle to approximate a circle by increasing the number of vertices of

a regular polygon (see Fig. 1). But, with the invention of computers, it becomes a faster

and cheaper way to plot a curve. These two characteristics allow for the exploitation

in graphic design: even complex smooth curves can be described in terms of a small

number of control points, and the curves themselves can be generated efficiently by

applying just few subdivision steps. Other advantages include the rotational invariance

and the locality of the subdivision rules. On the one hand, this means that the resulting

limit curve can be rotated and translated by applying the same transformations to the

initial control points. On the other hand, changing the position of one of the control

points influences only a small part of the limit curve.

Subdivision schemes are a powerful tool not only for graphic design, because the

connection with multiresolution analysis theory allows to exploit them also in signal

processing and in general in the approximation theory. Whenever we define a multires-

olution analysis to approximate a function at different levels, subdivision schemes are

p0
0

p0
1

p0
2

p0
3

p1
1

p1
3

p1
5

p1
7

Figure 1. ”First“ attempt of iterative process to approximate a circle by Archimedes.
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2 Introduction

used to efficiently compute the approximation.

Motivation

The thesis is focused on both applications: one in designing curves and studying their

geometric regularity (Part I), and one in image processing using subdivision schemes to

generate a directional multiple multiresolution analysis to analyse anisotropic phenom-

ena (Part II).

Being an iterative process, the first inquiry about a subdivision scheme is if it con-

verges. For this reason a lot of research on subdivision schemes concerns the conver-

gence and the smoothness of the limit curve [Dyn and Levin, 1995; Dyn, 2002; Wallner

and Dyn, 2005]. Linear schemes are well investigated in this sense. A linear scheme

is a scheme where the new points are a linear combination of points from the previous

iteration. A famous example of linear scheme is the family of interpolatory 2N-point

schemes presented by Deslauriers and Dubuc [1989]; where the new points are a linear

combination of 2N points from the previous step.

There are other schemes, called non-linear schemes, where the new points depend

in a non-linear way on the points from the previous step or they are computed with a

geometric construction. Examples of such schemes are the incenter scheme [Deng and

Wang, 2010; Hernández-Mederos et al., 2013], the angle-based 4-point scheme or the

circle-based 4-point scheme [Dyn and Hormann, 2012]. The name of these schemes is

evocative of the fact that the construction depends on some geometric quantities. These

types of schemes are not generally exploited, because of the difficulties to study their

convergence, but they are an interesting tool to guarantee some geometric properties

of the limit curve. Usually, for non-linear schemes with a geometric construction, ad

hoc proofs are provided or there is only numerical evidence of the regularity of the limit

curve.

The first paper that tries to cover this lack of studies is that of Dyn and Hormann

[2012] where they give sufficient conditions on the convergence and tangent continuity

of an interpolatory geometric scheme. The peculiarity of their approach is to study the

regularity of a curve considering entities like tangents and curvatures that are indepen-

dent on the curve parametrization. In this way they require the geometric continuity of

the limit curve instead of the analytic continuity of the derivatives.

The conditions that Dyn and Hormann [2012] present depend on the edge length and

the external angle of the triangles defined by three consecutive point of the subdivision

process. In particular, the summability of the sequence of maximum edge lengths gives

the convergence of the scheme, while the summability of the maximum modulo of angles

ensures that the limit curve is tangent continuous.

The conditions proposed by Dyn and Hormann [2012] give at maximum the G1 con-

tinuity of the limit curve. In the literature there are some geometric schemes [Deng and

Wang, 2010; Deng and Ma, 2012, 2014; Hernández-Mederos et al., 2013] that claim to

generate limit curve with continuous curvature. In order to give a proof of this regularity



3 Introduction

in the first part of my work I focus on finding a geometric condition for the curvature

continuity of the limit curve. The curvature of a curve at a point p can be defined as

the reciprocal of the radius of the osculating circle. An osculating circle is the limit of

the circles passing through three point q, p, r when q and r converge to p. With this in

mind, we consider the curvatures of the circles passing through three consecutive points

and we take their difference. The core of my work is to prove that the summability of

this sequence is sufficient for generating a limit curve with continuous curvature. Unfor-

tunately, the proof is not completed but we give a numerical evidence of the proposed

condition and of the missing points in the proof.

Different is the use of subdivision schemes in image analysis. Due to their relation

with a multiresolution analysis, interpolatory subdivision schemes allow for the construc-

tion of a filterbank that can be used to analyse and synthesize a signal (see e.g [Chui,

1992b; Madych, 1993; Mallat, 1989; Meyer, 1995; Strang and Nguyen, 1996]).

One crucial issue in signal processing is the analysis of anisotropic signals with the

aim to catch directionality of the signal. When dealing with anisotropic phenomena,

wavelets do not provide optimally sparse representations. For this reason directional

transforms were introduced [Candès and Donoho, 2004; Labate et al., 2005; Do and

Vetterli, 2005]. Among them, the shearlets transform is interesting because it is con-

nected to a multiresolution analysis similar to those of wavelets: the multiple multireso-

lution analysis [Kutyniok and Sauer, 2009; Kutyniok et al., 2012]. Related to a multiple

multiresolution analysis, there were introduced the multiple subdivision schemes [Sauer,

2010]. A multiple subdivision scheme is a scheme where in each iteration the expanding

matrix Mi and the subdivision scheme Si are chosen from a finite dictionary {Mi ,Si}i∈Zs
.

The expanding matrices Mi are the key ingredient in a multiresolution analysis be-

cause there are responsible for the refinement. For the multiple subdvision scheme we re-

quire that all the combinations of Mi are expanding, namely the set of matrices {Mi}i∈Zs

are jointly expanding. In order to define a directional transform, it is crucial that the

expanding matrices satisfy the slope resolution property. All the directions in the space

can be reached applying an appropriate combination of the matrices Mi to a reference

line.

In the shearlets case the expanding matrices considered are the product of a diagonal

matrix, the so-called parabolic matrix, with a pseudo rotation matrix called shear matrix

and they satisfy all the previous properties [Sauer, 2012]. The drawback is that the

diagonal matrix considered has large determinant that leads to a high number of filters

and a quite substantial complexity in implementations.

In the second part of my work I want to overcome this problem by studying the

existence of different matrices that allow us to define a directional transform in any di-

mension d with smaller determinant. We propose a family of shear-like matrices, product

of an anisotropic diagonal matrix and a shear matrix, whose determinant, for increas-

ing d , is considerable lower than the shearlet case. We prove that in any dimension the

elements of this family are expanding, jointly expanding and they provide the slope res-
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olution property. In this sense we are able to define an appropriate directional transform

suitable for image analysis. For dimension d > 2, we also study the possibility of relax-

ing the structure of the matrix considering the general case of an anisotropic expanding

matrix with small determinant.

Structure

The thesis is divided in two parts, one about subdivision schemes for curve design and

the second one about schemes for image analysis. Before these two parts, in Chapter 1,

I introduce the main concepts about subdivision schemes that I will use along the thesis.

In particular, in Section 1.1, I recall some general background notions about succes-

sions and series. I give the definition of subdivision schemes and the main classifica-

tion between linear, non-linear, interpolatory, approximating, stationary, non-stationary

schemes in Section 1.2. The main results presented in the literature about the conver-

gence and regularity of the limit curve are recalled in Section 1.3. Finally, in Section 1.4,

I give some examples of linear schemes.

In Part I of the thesis I focus on curve design and the study of sufficient conditions

to require a certain order of geometric regularity. In Chapter 2, I recall the main differ-

ences between analytic continuity and geometric continuity (Sec. 2.1) and I give some

examples of geometric schemes (Sec. 2.2). In Chapter 3, I present the work of Dyn and

Hormann [2012] showing, in Section 3.1, the sufficient conditions that generate a G1

continuous limit curve by an interpolatory scheme. In Section 3.2 I display some exam-

ples of geometric schemes that satisfy these conditions. Chapter 4 is mainly devoted to

explain the results of the collaboration with Kai Hormann during the period that I spent

at Università della Svizzera italiana. In Section 4.1 I present the condition that we elab-

orate in order to ensure that a geometric interpolatory subdivision scheme generates a

limit curve with continuous curvature. In order to test the validity of this condition, we

made some numerical examples that I report in Section 4.2. Finally in Section 4.3 there

are my attempts to prove that the condition suggested is sufficient to generate curvature

continuous limit curve. The proof is not complete but I give a numerical evidence of the

missing points.

In Part II of the thesis I study which matrices allow to define a directional transform

suitable for image analysis. Before giving the detail of my work, I present the problem

introducing wavelets and shearlet theory respectively in Chapters 5 and 6. It is nec-

essary to recall the general definition of the wavelet transform (Sec. 5.1) in order to

explain the relation with multiresolutive analysis and subdivision schemes (Sec. 5.2).

Furthermore, in Section 5.3 we introduce the theory of filterbanks that allows to exploit

subdivision schemes for the analysis of a signal. The same description is given for the

shearlet transform (Sec. 6.1) exploiting in this case the more general concept of multi-

ple multiresolution analysis and multiple subdivision scheme (Sec. 6.2). In Chapter 7 I

present the joint work with Mira Bozzini, Milvia Rossini and Tomas Sauer, in particular

Section 7.1 shows which are the fundamental properties that the expanding matrices
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have to satisfy in order to generate a directional transform. Then, in Section 7.2 I intro-

duce a new family of integer matrices with minimum determinant in the set of matrices

that are product of an anisotropic diagonal matrix and a shear matrix. Moreover, the

proposed set of matrices satisfies all the previous properties. In Section 7.3 I study the

possibility for any dimension d > 2 to relax the structure of the expanding matrices

in order to minimize even more the value of the determinant. The effectiveness of the

presented matrices is shown by several numerical examples on images in Section 7.4.
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Chapter 1

Subdivision schemes

Subdivision schemes are the common background of my research presented in this the-

sis. It is worthwhile to make a little excursion on the basic notions and results about

subdivision schemes in literature.

Definition 1.1. A subdivision scheme S takes an ordered set of control points P = {pi}i∈Z ⊂
Rd and iteratively generates new points

P0 := P, P j+1 := SP j , j ≥ 0,

by applying some simple rules

p
j+1

νi
= f0(p

j

i−k
, . . . , p

j

i+k
), p

j+1

νi+1
= f1(p

j

i−k
, . . . , p

j

i+k
), . . . , p

j+1

νi+ν−1
= fν−1(p

j

i−k
, . . . , p

j

i+k
).

(1.1)

The points are denoted by two indices: the lower index i indicates the position of

the point inside the control polygon, the upper index j indicates the level of subdivision.

Figure 1.1 shows a simple example of univariate subdivision scheme where the points of

the previous level are kept by the scheme and a new point is inserted between each pair

of old points.

The number of rules for computing the new points is called the arity ν of a subdivi-

sion scheme. The arity also coincides with the factor by which the number of points is

multiplied in each step. For instance, a binary scheme duplicates the number of control

p j
i
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→
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Figure 1.1. Two iterations of a univariate binary subdivision scheme.
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8 1 Subdivision schemes

points and a ternary scheme triplicates the points. If the functions fn, n = 0, . . . ,ν− 1

depend on at most 2k + 1 points, then 2k + 1 is called the support of the subdivision

scheme.

1.1 Background material

A subdivision scheme associates a sequence of points to a given finite set of points. In

this sense we should recall some basic notions on sequences.

The space of bi-infinite sequences from Zd to R is denoted by ℓ(Zd). Instead with

ℓp(Z
d) we denote the sequences with finite p-norm

‖c‖ℓp(Z
d ) =

�∑

α∈Zd

|c(α)|p
�1/p

<∞

where 1≤ p <∞. For p =∞ we consider the sequences with norm

‖c‖ℓ∞(Zd ) = sup
α∈Zd

|c(α)| .

Finally, ℓ00(Z
d) is composed of all sequences from Zd toRwith finite support. We denote

by ℓd(Z) the vector sequences from Z to Rd . So a subdivision scheme is an operator

S : ℓd
00(Z)→ ℓd

00(Z).

Since we consider infinite and finite sequences all along the thesis, it is useful to recall

some general results on Cauchy sequences, convergent and summable scalar sequences.

For further details see [Rudin et al., 1964].

Definition 1.2. An infinite scalar sequence a = {an}n∈N ∈ ℓ(N) converges to A if for every

ε > 0, there exists an integer n0 such that |an − A|< ε for any n≥ n0 and we write

lim
n→∞

an = A.

Definition 1.3. A sequence a = {an} ∈ ℓ(N) is called a Cauchy sequence if for any ε > 0,

there exists n0 such that |an − am|< ε for any n, m ≥ n0.

For Cauchy sequences there is a well-known result.

Theorem 1.1. In Rd , d ∈ N, every Cauchy sequence converges.

An example of an infinite sequence is the geometric sequence.

Definition 1.4. A sequence a = {an} ∈ ℓ(N) is called a geometric sequence if there exists

some µ ∈ R such that for all n ∈ N he have an+1/an = µ. The general term of the sequence

can be rewritten as an = cµn with some constant c.

Different values of µ give different behaviour of the geometric sequence.
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Proposition 1.2. Let µ 6= 0, in the limit the geometric sequence an = µ
n behave as

lim
n→∞

µn =






+∞ µ > 1

1 µ = 1

0 |µ| < 1

∄ µ ≤ −1

From the definition of sequences we define the concept of series.

Definition 1.5. Given a sequence a = {an} ∈ ℓ(N) we associate another sequence

sn =

n∑

k=1

ak

called the partial sum. If the sequence {sn} is convergent and converges to s <∞, then the

series ∞∑

n=1

an = s <∞

converges. In this case the sequence {an} is called summable. Otherwise, if the sequence

{sn} diverge, the corresponding series diverges.

Definition 1.3 of a Cauchy sequence gives a sufficient and necessary condition for the

convergence of the series.

Proposition 1.3. A sequence {ak} is summable if and only if for every ε > 0 there exists

some n0 such that �����

m∑

k=n

ak

����� < ε

for any m > n≥ n0.

Proposition 1.4. If the series
∑

an converges, then the general term of the series converges

to zero, limn→∞ an = 0.

Note that convergence to 0 of the general term an is a necessary but not a sufficient

condition to have the convergence of the series.

Applying Proposition 1.4 to a geometric sequence it is possible to prove

Proposition 1.5. The series
∞∑

n=0

µn =
1

1−µ
converges if and only if |µ|< 1.

To compare the behaviour of two different sequences we recall the big O notation

and the concept of asymptotic sequences.
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Definition 1.6. Given two sequences {an}n∈N and {bn}n∈N we say that an = O(bn) if there

exists a constant c > 0 such that there exists some n0, such that for all n≥ n0,

|an| ≤ c |bn| .

Two sequences {an}n∈N and {bn}n∈N are called asymptotic an ∼ bn if for all ε > 0,

there exists some n0 such that for all n≥ n0,
����
an

bn

− 1

���� < ε ⇒ lim
n→∞

an

bn

= 1

For more details we refer to [Erdélyi, 2010; Knuth, 1976].

Simple operations like summation and multiplication are well-defined on big O no-

tation:

(i) O(an)O(bn) = O(an bn).

(ii) O(an) +O(an) = O(an).

(iii) If the sequence an = O(1) is bounded then O(an) +O(a2
n) = O(an).

Proof: Let bn = O(an) and dn = O(a2
n). By Definition 1.6 there exist c1, c2 > 0

such that

|bn| ≤ c1 |an| , |dn| ≤ c2 |an|2 .

Moreover an = O(1) implies that there exists some c3 > 0 such that |an| ≤ c3.

Putting all together we obtain

|bn + dn| ≤ |bn|+ |dn| ≤ c1 |an|+ c2 |an|2 = (c1 + c2 |an|) |an| ≤ (c1 + c2c3) |an| .

In Chapters 3 and 4 we give some sufficient conditions for the regularity of the limit

curve generated by the scheme in terms of summability of a sequence. In the proof of the

curvature continuity (Proposition 4.9) we require a stricter condition then summability.

Definition 1.7. A sequence {an}n∈N is said to behave like a convergent geometric sequence

if there exists some 0< µ < 1 such that

an = O(µn) ⇒ |an| ≤ cµn,

where c is a positive constant.

1.2 Classification of subdivision schemes

Once we have defined a subdivision scheme, we can classify the subdivision schemes

with respect to certain characteristics. Here we present the main types of schemes that

we consider throughout the thesis.
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Figure 1.2. Subdivision process for an interpolatory scheme (top) and an approximating scheme

(bottom).

1.2.1 Interpolatory vs approximating schemes

The first characterization that we consider is between interpolatory and approximating

schemes.

If the first rule in (1.1) is the Dirac delta function f0 = δ, then the subdivision scheme

keeps the points from the previous step,

p
j+1

νi
= δi,k p

j

k
= p

j

i

and is called interpolatory. This denomination comes from the fact that the limit curve

passes through the starting points (see Fig. 1.2). Otherwise, if the first rule f0 in (1.1)

is generic, then the scheme is called approximating. In this case the limit curve approxi-

mates the initial control polygon (see Fig. 1.2).

An example of an interpolatory subdivision scheme is the well-known 4-point scheme

by Deslauriers and Dubuc [1989] with rules

p
j+1

2i
= p

j

i
, (1.2)

p
j+1

2i+1
= − 1

16
p

j

i−1
+

9

16
p

j

i
+

9

16
p

j

i+1
− 1

16
p

j

i+2
.

It is a binary scheme where the even points p
j+1

2i
are the points kept from the previous

step while the odd points p
j+1

2i+1
are new points computed as a linear combination of 4

points from the previous step. The name of the scheme comes from the value of the

support. The action of (1.2) is displayed in Figure 1.3.
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Figure 1.3. Construction of the new point

for the 4-point scheme.
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Figure 1.4. Construction of the new points

for the B-spline scheme.

An example of an approximating scheme is the quadratic B-spline scheme with rules

p
j+1

2i
=

1

4
p

j
i−1
+

3

4
p

j
i
, (1.3)

p
j+1

2i+1
=

3

4
p

j

i
+

1

4
p

j

i+1
.

In this case both the even and odd points are a linear combination of two points from

the previous level. So the support of the scheme is 2. From Figure 1.4 we can observe

that the points at level j are discarded at level j + 1 and new points are computed. The

name of the scheme is due to the fact that if we consider as starting points the Delta

sequence δ = (. . . , 0,1,0, . . .) the limit curve generated is the quadratic B-spline basic

function centred at the origin.

For all the rest of the thesis we consider only interpolatory schemes. The reasons for

this choice are many and are explained better in the following chapters.

1.2.2 Linear vs non-linear schemes

In the two previous examples, the 4-point scheme (1.2) and the quadratic B-spline

scheme (1.3), the new points are a linear combination of points from the previous level.

If the rules of the subdivision scheme (1.1) are such that the new points at level j + 1

are linear combinations of the points at level j,

p
j+1

i
= (SP j)i =

k∑

ℓ=−k

ai−νℓ p
j

ℓ
, (1.4)

then we call S a linear subdivision scheme. Equation (1.4) collects in one expression all

the ν rules in (1.1). If we want to separate the different rules, then we need to write i

modulo ν

p
j+1

νi
= (SP j)νi =

k∑

ℓ=−k

aν(i−ℓ) p
j

ℓ
, p

j+1

νi+1
= (SP j)νi+1 =

k∑

ℓ=−k

aν(i−ℓ)+1 p
j

ℓ
, . . . (1.5)
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The vector a = {ai}i∈Z ∈ ℓ00(Z) includes all the coefficients of the rules and is called

the mask of the scheme. For the 4-point scheme (1.2) the mask is

a[4] =

§
. . . , 0,− 1

16
,0,

9

16
,1,

9

16
,0,− 1

16
,0, . . .

ª
, (1.6)

while the mask of the quadratic B-spline is

a[B] =

§
1

4
,
3

4
,
3

4
,
1

4

ª
. (1.7)

The submasks of the scheme are the vectors that collects the coefficients of the rules

in (1.5). They can be extracted from the mask considering the elements modulo the

arity ν. In the case of binary schemes we have two submasks: the even submask a[0]
and the odd submask a[1]. They are called in this way because the even submask extracts

the even elements of the mask, while the odd submask takes all the odd elements. For

example, the mask of the 4-point scheme can be split into

a[0] = {. . . , 0,1,0, . . .}, a[1] =
1

16
{−1,9,9,−1}.

An interpolatory scheme can be easily recognized, because the even submask is the delta

sequence δ0,i .

Expression (1.4) gives the rules for a linear univariate scheme. For arbitrary dimen-

sion d the subdivision rules of a linear scheme become

p
j+1

i
= (SP j)i =

∑

ℓ∈Zd

ai−Mℓ p
j

ℓ
, (1.8)

where i ∈ Zd and M is an expanding matrix, namely a matrix with all eigenvalues greater

than 1 in absolute value. We always consider masks a with a finite number of coefficients,

a ∈ ℓ00(Z
d). In this general case the arity of the scheme is given by the determinant of

the matrix M , ν = |det M |. For example, in two dimensions (d = 2) with M =
�

2 0
0 2

�
the

rules appear as

p
j+1

i,k
=
∑

n,m∈Z
ai−2n,k−2m p j

n,m, i, k ∈ Z.

Differently, a non-linear scheme is a subdivision process where the rules fk, k =

0, . . . ,ν − 1 have a non-linear dependency on the points from the previous level. This

definition includes a wide range of subdivision schemes and we distinguish between

different types of non-linear rules. One type are manifold-valued schemes, where the

non linearity of the schemes is determined by adapting a linear scheme to the geometry of

a manifold (see [Wallner and Dyn, 2005; Wallner, 2006; Xie and Yu, 2007; Moosmüller,

2016]). Other non-linear schemes are generated by substitution of a linear average

with a non-linear one as the geometric mean, see [Schaefer et al., 2008]. The 4-point

scheme rules are defined by evaluating an interpolating polynomial. A non-linear version
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Figure 1.5. In the bisector scheme the point p
j+1

2i+1
lies on the orthogonal bisector of the edge
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j

i p
j

i+1
.

interpolates functions different from polynomials, see [Oswald, 2004; Xie and Yu, 2005],

or it interpolates a piece smooth function as in the ENO (Essentially Non Oscillatory) and

WENO (Weighted ENO) schemes, see [Harten et al., 1987; Liu et al., 1994].

My work addresses instead the class of so-called geometric schemes where the new

points are computed with a geometric construction. By construction this type of schemes

commute with similarity transformations: rotating and shifting the limit curve has the

same effect as rotating and translating the initial points. An example of a family of

geometric schemes is the bisector scheme. It is a binary interpolatory scheme where the

new points p
j+1

2i+1
lie on the bisector of the edge

−−−−→
p

j
i
p

j
i+1

p
j+1

2i+1
=

p
j

i
+ p

j

i+1

2
+ tan

�
δ

j+1

2i+1

2

�
(p

j

i+1
− p

j

i
)⊥

2
, (1.9)

(see. Fig 1.5). The scheme is specified by giving an expression for the angle δ
j+1

2i+1
.

Clearly the new point p
j+1

2i+1
depends non linearly on the points p

j
i

and p
j
i+1

from the

previous level.

The first example of a geometric scheme is presented by Sabin and Dodgson [2004].

Other examples can be found in [Cashman et al., 2013; Chalmovianskỳ and Jüttler, 2007;

Deng and Wang, 2010; Deng and Ma, 2012, 2014; Hernández-Mederos et al., 2013; Dyn

and Hormann, 2012; Yang, 2006; Zhao et al., 2009], some of them are presented in

Section 2.2 in order to be used as numerical examples.

1.2.3 Stationary vs non-stationary schemes

Another distinction can be made between stationary and non stationary schemes. All the

schemes considered until now are stationary. A non-stationary scheme is a subdivision

operator where the rules depend on the level j of iteration,

p
j+1

νi
= f

( j)
0
(p

j

i−k
, . . . , p

j

i+k
), . . . , p

j+1

νi+ν−1
= f

( j)
ν−1
(p

j

i−k
, . . . , p

j

i+k
).
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The rules f
( j)

k
, k = 0, . . . ,ν−1, are level dependent or in general they can change between

different levels. In case of linear schemes

p
j+1

i
=
∑

ℓ∈Z
a
( j)

i−νℓ p
j

ℓ
,

the mask itself depends on the level of iteration.

In the first part of the thesis we focus on stationary subdivision schemes while in

the second part we introduce a generalization of non-stationary schemes called multiple

schemes (see Definition 6.6). In this case we will see that in each iteration we change

not only the subdivision rule but also the expanding matrix and the arity of the scheme.

For an extensive explanation we refer to Section 6.2.

1.3 Regularity of subdivision schemes

The main effort in subdivision schemes is to study the convergence and the regularity

of the schemes. Let focus on stationary schemes, by repeating infinitely many times the

subdivision operator S, it is natural to ask if the sequence of points generated, {p j

i
, i ∈

I} j≥0 ∈ ℓd(Z) with I ⊂ Z a closed interval, converges or not.

Definition 1.8. A univariate stationary subdivision scheme S is called convergent, if for

any closed interval I ⊂ Z and any set P0 = {p0
i
, i ∈ I} of control points there exists a

continuous limit function f∞ : R→ Rd such that

lim
j→∞

sup
i∈I

�� f∞(i/ν j)− (S j P0)i
�� = 0,

and f∞ 6= 0 for some initial data P0. The scheme S is said to be Cn continuous, if f∞ ∈
Cn(R).

If we consider the piecewise linear functions f j , which interpolate the points of the

scheme at certain values of the parametrization,

f j

�
i

ν j

�
= p

j
i
,

then Definition 1.12 means that the sequence of functions f j is uniformly convergent,

lim
j→∞

f j = f∞,

as shown in Figure 1.6.

Applying infinitely many times a subdivision scheme S to the delta sequence δ =

{δi,0, i ∈ Z}, we obtain a function φ that is called the basic limit function,

φ := lim
j→∞

S
jδ = S

∞δ. (1.10)
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Figure 1.6. Uniform convergence of piecewise linear functions f j to the limit curve f∞.

This function is like a basis for any limit function generated by the scheme. In fact, for

any initial points P0 = {p0
i
} and f∞ = lim j→∞ S

j P0, then

f∞(x) =
∑

i∈Z
p0

i φ(x − i). (1.11)

Furthermore, if we consider a linear subdivision scheme with mask a, then the basic

limit function φ is a refinable function, [Micchelli and Prautzsch, 1989]

φ(x) =
∑

k∈Z
akφ(νx − k). (1.12)

This follows from the definition of the linear scheme,

φ(x) = (S∞a δ)(x) = S
∞
a (Saδ)(x) =

∑

k∈Z
akφ(νx − k).

The spaces

Vj = span{φ(ν j · −k), k ∈ Z} =
¨

f (x) =
∑

k∈Z
ckφ(ν

j x − k), k ∈ Z
«

,

spanned by φ, are nested, that is Vj ⊂ Vj+1, due to the refinability of φ (1.12). The

generation property (1.11) and the refinable property (1.12) of the basic limit function

allow to define a multiresolution analysis. We can associate a multiresolution analysis

to any linear stationary scheme, this allows to exploit the subdivision schemes in image

analysis. The definition of a multiresolution analysis and further explanations are given

in Section 5.2.

In general it is hard to prove the convergence of a scheme using Definition 1.12

because we should know a priori the expression of the limit function f∞. In literature

there are several sufficient and necessary conditions to require a certain regularity.

For a generic linear scheme (1.8) the mask a is such that
∑

k∈Zd

ak = ν,

where ν = |det M |.
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Proposition 1.6 [Han and Jia, 1998]. A necessary condition for the uniform convergence

of the linear stationary scheme Sa (1.8) with arity ν = |det M | is that

∑

k∈Z
ai−Mk = 1, ∀i ∈ Zd . (1.13)

For a univariate binary scheme it is equivalent to require that

∑

i∈Z
a2i =

∑

i∈Z
a2i+1 = 1,

as proved in [Dyn et al., 1991]. Equation (1.13) is often called sum rule of order one.

Once we consider a univariate linear scheme with arity ν (1.4), it is possible to

rewrite the rules in matrix form P j+1 = SaP j ,





p
j+1

νi−k
...

p
j+1

νi

p
j+1

νi+1
...

p
j+1

νi+k





=





a[0],−k · · · a[0],k 0
...

...
...

...

a[ν−1],−k · · · a[ν−1],k 0

0 a[0],−k · · · a[0],k
...

...
...

...

0 a[ν−1],−k · · · a[ν−1],k









p
j

i−k
...

p
j

i

p
j
i+1
...

p
j

i+k





, (1.14)

introducing the subdivision matrix Sa. The eigenvalues and eigenvectors of the subdivi-

sion matrix Sa give other necessary conditions for the regularity of the limit curve.

Proposition 1.7 [Dyn et al., 1991]. Let Sa be the subdivision matrix associated with the

stationary subdivision scheme Sa, whose eigenvalues are sorted in decreasing modulus. If

the subdivision scheme Sa is convergent, then

1= λ0 > |λ1| .

Proposition 1.8 [Warren, 1995]. Let Sa be a subdivision matrix with eigenvalues ordered

by decreasing modulus. If the associated subdivision scheme Sa produces C k continuous

limit functions, then

λi =
1

νi
, i = 0, . . . , k.

The analysis with the local subdivision matrix can be useful in the multivariate setting

for the analysis of the regularity in a neighbourhood of an extraordinary point. I do not

give further details, if you are interested see [Peters and Reif, 2008].

Studying the subdivision matrix of linear stationary schemes gives only necessary

conditions. To obtain sufficient conditions for the regularity of the scheme we introduce

the concept of Laurent polynomials as done in [Dyn, 1992, 2002].



18 1 Subdivision schemes

Definition 1.9. Given a finite sequence a ∈ ℓ00(Z
d), we call

a∗(z) =
∑

k∈Zd

akzk, z ∈ (C \ {0})d ,

where zk =
�
z

k1

1
, . . . , z

kd

d

�
, the Laurent polynomial of a.

If a is the mask of a linear subdivision scheme, then the polynomial a∗(z) is denom-

inated the symbol of the scheme.

In terms of the Laurent polynomials, the sum rule of order one (1.13) corresponds

to

a∗(1) = ν, a∗(ξ) = 0 with ξ ∈ E =

§
exp

�
2πi

ν
j

�
, j = 1, . . . ,ν− 1

ª
, (1.15)

as shown in [Han and Jia, 1998; Conti and Hormann, 2011] for a univariate linear

scheme with any arity ν. In general the sum rules of order n+ 1 are

a∗(1) = ν, max
k≤n

max
ξ∈E

����
dka∗(ξ)

dzk

����= 0. (1.16)

Corollary 1.9. A necessary condition for a univariate linear stationary scheme Sa (1.8)

with arity ν to be convergent is that the symbol of the scheme satisfies

a∗(1) = ν, a∗(ξk) = 0,

for any k = 1, . . . , d − 1 and ξk = exp
�

2πi
ν k
�
.

In the binary case the necessary conditions become

a∗(1) = 2, a∗(−1) = 0, (1.17)

namely that the symbol a∗ can be rewritten as

a∗(z) = (1+ z)b∗(z), (1.18)

for a certain polynomial b∗(z), such that b∗(1) = 1.

We denote with ∇ : ℓ(Z)→ ℓ(Z) the difference operator

∇c = {∇ci = ci − ci−1, i ∈ Z} . (1.19)

Proposition 1.10. The polynomial b∗(z) is the symbol of the difference scheme

∇(Sap) = Sb∇p.
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Proof: We can observe that the refinement equation

p
j+1

i
=
∑

k∈Z
ai−2kp

j

k

turns out to be

(p j+1)∗(z) = a∗(z)(p j)∗(z2),

in the Laurent formalism. Then, the Laurent polynomial associated with the difference

of points ∇p
j
i
= p

j
i
− p

j
i−1

is

(∇p j)∗(z) = (1− z)(p j)∗(z).

Using (1.18) we conclude that b∗(z) is the symbol related to the difference scheme

(∇p j+1)∗(z) = (1− z)(p j+1)∗(z) = (1− z)a∗(z)(p j)∗(z2) = b∗(z)(1− z2)(p j)∗(z2)

= b∗(z)(∇p j)∗(z2).

Using the symbol of the difference scheme b∗(z), Dyn [2002] gives a sufficient con-

dition for the convergence and regularity of a binary linear scheme Sa.

Proposition 1.11 [Dyn, 2002]. The univariate linear stationary scheme Sa converges if

and only if the corresponding scheme for the differences b∗(z) = a∗(z)
1+z is contractive for any

initial data.

Definition 1.10. A scheme S is contractive if there exist some µ < 1 and L ∈ N such that

max
i∈Z




p
j+L
i




 < µmax
i∈Z




p
j
i




 . (1.20)

In case of a univariate linear scheme Sa this is equivalent to require that



(Sa)
L



∞ = ‖Sa(L)‖∞ =max

¨∑

k∈Z

���a(L)
i−2L k

��� : i = 0,1, . . . , 2L − 1

«
< 1 (1.21)

where a(L) is the mask of the scheme with symbol

a∗
(L)
(z) = a∗(z)a∗(z2) . . . a∗(zL).

Proposition 1.12 [Dyn, 2002]. If the scheme Sb is contractive, then the limit curves of the

univariate linear scheme Sa with symbol

a∗(z) =
�

1+ z

2

�n

(1+ z)b∗(z)

are Cn continuous.
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The previous results on Laurent polynomials are presented in the simple case of uni-

variate binary schemes. They can be generalized to any arity ν by observing that (1.15)

factorizes the symbol a∗(z) into

a∗(z) = (1+ z + . . .+ zν−1)b∗(z),

where b∗(z) is again the symbol of the difference scheme (∇Sa = Sb∇).

Proposition 1.13. The univariate linear scheme Sa with arity ν converges if and only if the

corresponding scheme for the differences b∗(z) = a∗(z)
1+z+...+zν−1 is contractive for any initial

data.

Instead, if we want to generalize in the multivariate setting, then we should take into

account the geometry of the mesh of points. The factorization of the symbol is different

if we consider quadrilateral or triangular meshes. Both cases are treated in [Dyn, 2002].

In the multivariate setting the difference operator ∇ : ℓ(Zd)→ ℓ(Zd) can be applied

along different directions e ∈ Zd ,

∇ec = {ci − ci−e, i ∈ Zd}. (1.22)

In a quadrilateral setting the direction chosen are the vectors along different axes ek ∈ Zd

such that (ek)i = δi,k. For example, in the bivariate case we consider e1 = (1,0)T and

e2 = (0,1)T .

Proposition 1.14 [Dyn, 2002]. Let Sa be a bivariate linear scheme with symbol

a∗(z1, z2) = (1+ z1)(1+ z2)b(z1, z2)

and the difference schemes related to the two directions e1 and e2 are defined as

b∗1(z1, z2) =
a(z1, z2)

(1+ z1)
= (1+ z2)b(z1, z2),

b∗2(z1, z2) =
a(z1, z2)

(1+ z2)
= (1+ z1)b(z1, z2).

The scheme Sa converges if and only if the schemes Sb1
and Sb2

are contractive.

Proposition 1.15 [Dyn, 2002]. Let a bivariate linear scheme Sa with symbol

a∗(z1, z2) =

�
1+ z1

2

�n+1 �1+ z2

2

�n+1

b∗(z1, z2)

be given. If the n+ 2 symbols

b∗i (z1, z2) =

�
1+ z1

2

�n+1−i �1+ z2

2

�i

b∗(z1, z2)

are contractive for i = 0, . . . , n+ 1, then Sa generates Cn limit functions.
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In case of a triangular mesh: we have to consider also the difference along e3 =

(1,1)T . In this case the convergence results are slightly different.

Proposition 1.16 [Dyn, 2002]. Let Sa be a bivariate linear scheme on a triangular mesh

with symbol of the form

a∗(z1, z2) = (1+ z1)(1+ z2)(1+ z1z2)b
∗(z1, z2),

and the symbols of the difference schemes along the direction ei, i = 1,2,3 are

b∗1(z1, z2) =
a∗(z1, z2)

(1+ z1)
, b∗2(z1, z2) =

a∗(z1, z2)

(1+ z2)
, b∗3(z1, z2) =

a∗(z1, z2)

(1+ z1z2)
.

The scheme Sa is convergent if and only if the schemes Sbi
, i = 1,2,3, are contractive.

All these results can be generalized to dimension d for any arity ν = |det M | using

the concept of the canonical factor introduced in [Sauer, 2010]. The definition of the

canonical factor and more details are given in Section 6.2.

In the univariate setting the sum rule (1.13) gives the factor (1 + z) of the symbol

a∗(z). In the multivariate case we need to be more careful, because the symbol belongs

to the quotient ideal 〈z2 − 1〉 : 〈z − 1〉, so we can have different factorizations. In this

case, it can be useful to come back to the general equation

∇Sa = Sb∇ (1.23)

of Proposition 1.10 and to use the formalism of the spectral radius.

Definition 1.11. Let us consider a matrix M ∈ Rn×n. The spectral radius of the matrix is

defined as

ρ(M) :=max{|λ1| , . . . , |λn|}= lim
r→∞
‖M r‖

1
r .

Analogously, if we take a set of matrices {M j} j∈Zm
= {M0, . . . , Mm−1}, withZm := {0, . . . , m−

1}, then

ρ
�
{M j} j∈Zm

�
= lim

r→∞
max
ε∈Zr

m








r∏

i=1

Mεi








1
r

represents the joint spectral radius of the set.

Considering the mask a of a binary scheme with finite support in {0, . . . , k}d we

introduce the matrices

Aε =
�
a(2α− β + ε), α,β ∈ {0, . . . , k − 1}d

	
, ε ∈ {0,1}d

and the space V = {v ∈ ℓ({0, . . . , k}d) :
∑
α∈{0,...,k}d v(α) = 0}. Using the general relation

(1.23), Charina et al. [2005a] prove that

ρ(Aε|V ) = ρ(Sb|∇)
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where

ρ(Aε|V ) = lim
r→∞



∇S r
aδ


 1

r ,

ρ(Sb|∇) = lim
r→∞



S r
b|∇


 1

r = lim
r→∞

max
‖∇c‖=1



S r
b∇c



 1
r .

The “contractivity” of the difference scheme gives the regularity and Hölder continuity

of the subdivision scheme, similar to the Laurent formalism.

Proposition 1.17 [Charina et al., 2005b]. Let Sa be a linear scheme such that there exists

a difference scheme Sb that satisfies (1.23). The scheme Sa is convergent if and only if

ρ(Sb|∇)< 1.

Iterating the difference relation (1.23) and this proposition we have a subdivision

scheme with higher order of regularity. In the univariate setting the spectral radius also

gives the Hölder regularity of the limit curve.

Proposition 1.18 [Daubechies and Lagarias, 1992; Dyn, 1992]. Let a ∈ ℓ(Z), then Sa

converges to a continuous function if and only if the mask satisfies the sum rules (1.13) and

ρ(Aε|V ) = ρ < 1. Moreover, the Hölder exponent of the limit function is − log2ρ.

The results obtained using the spectral radius are the same as those obtained with

the Laurent formalism, but it is interesting to observe that even if we are considering

two different factorizations b1 and b2 of a we have the same value for the restricted

spectral radius ρ(Sb1
|∇) = ρ(Sb2

|∇) (see [Charina et al., 2005b]). This can be useful in

the multivariate setting.

The results presented so far can be applied only to stationary linear schemes. In the

non-stationary setting the definition of convergence is slightly different.

Definition 1.12. A non-stationary subdivision scheme {S( j), j ≥ 0} is called convergent,

if for any closed interval I ⊂ Z and any set P0 = {p0
i
, i ∈ I} of control points there exists a

continuous limit function f∞ : R→ Rd such that

lim
j→∞

sup
i∈I

�� f∞(i/ν j)− (S( j−1) · · ·S(0)P0)i
�� = 0,

and f∞ 6= 0 for some initial data P0. The scheme is said to be Cn continuous, if f∞ ∈
Cn(R).

At each iteration we apply a different scheme. In order to study the regularity of

non-stationary schemes, we can exploit the concept of asymptotic equivalence with a

stationary scheme.

Proposition 1.19 [Dyn and Levin, 1995]. Consider a stationary subdivision scheme Sa

with arity ν and a non-stationary scheme {Sa( j), j ∈ N} with the same arity and support

width. If Sa is Cn continuous and

∞∑

k=0

νnk


Sa( j) − Sa




∞ <∞, (1.24)
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then the non-stationary scheme {Sa( j), j ∈ N} is Cn continuous.

Two schemes that satisfy (1.24) are called asymptotically equivalent of order n+1. A

weaker condition than asymptotic equivalence is the concept of asymptotically similarity.

Definition 1.13 [Conti et al., 2015]. Two subdivision schemes {Sa( j), j ≥ 0} and {Sb( j), j ≥
0} are asymptotically similar if

lim
j→∞



a( j) − b( j)


= 0.

In order to exploit the asymptotically similarity of a non-stationary scheme {Sa( j), j ≥
0} with arity ν we have to consider a relaxed version of the sum rule (1.16). A non-

stationary scheme satisfies the approximate sum rules of order n+ 1 if the sequences

α j = a∗
( j)
(1)− ν and β j =max

k≤n
max
ξ∈E\{1}

ν− jk

�����
dka∗

( j)
(ξ)

dzk

����� , (1.25)

with E =
�
exp

�
2πi
ν ℓ
�

, ℓ = 1, . . . ,ν− 1
	
, satisfy

∞∑

j=1

α j <∞,

∞∑

j=1

ν jnβ j <∞,

see [Charina et al., 2017].

Proposition 1.20 [Charina et al., 2017; Conti et al., 2015]. If a non-stationary subdivi-

sion scheme {Sa( j), j ≥ 0} satisfies the approximate sum rule of order n+ 1, and is asymp-

totically similar to a stationary subdivision scheme Sa that is Cn continuous, then also the

non-stationary scheme is Cn continuous.

Instead, to study the regularity of a non-linear scheme we can use the proximity

condition introduced by Wallner and Dyn [2005]; Wallner [2006]. First of all they intro-

duce a convergence condition that is equivalent to requiring that the difference scheme

is contractive as in Definition 1.10.

Definition 1.14 [Wallner and Dyn, 2005]. A scheme S satisfies a convergence condition

with µ0 < 1 if 

∇Sℓ



∞ ≤ µ

ℓ
0 ‖∇p‖∞ , ∀ℓ ∈ N and ∀p ∈ Rd . (1.26)

Definition 1.15 [Wallner and Dyn, 2005]. Given a linear subdivision scheme Sa and a

generic scheme S, the two schemes satisfy the proximity condition if for any set of points

for which

sup
i∈Z
‖pi+1 − pi‖= ‖∇p‖∞ < ε,

there exists a positive constant C such that

‖Sap− Sp‖∞ ≤ C ‖∇p‖2∞ . (1.27)
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Proposition 1.21 [Wallner and Dyn, 2005]. Let a linear scheme Sa and a generic scheme

S satisfy the proximity condition (1.27) for any set of points such that ‖∇p‖< ε. Moreover,

suppose that Sa satisfies a convergence condition (1.26) with µ0 < 1, then there exists δ > 0

and µ̄0 < 1 such that S satisfies a convergence condition (1.26) with µ̄0 for any set of points

such that ‖∇p‖ < δ. Choosing δ small enough we can have µ0 − µ̄0 arbitrary small.

The conditions for higher order regularity of a scheme S are given in [Wallner, 2006].

In Section 3.1 we will see that a similar condition to (1.20) and (1.26) is proposed

by Dyn and Hormann [2012] as a sufficient condition in order to a have a convergent

geometric scheme.

Moreover, Ewald et al. [2015] use something similar to the proximity condition

(1.27) to prove the Hölder continuity for Geometric Local Uniform Equilinear schemes,

also called GLUE schemes. A GLUE scheme is a scheme that commute with similarities

which rules depend on a finite number of points and they apply everywhere. Moreover,

if we consider as control polygon a segment, then it is mapped to a segment with half

spacing. Ewald et al. [2015] introduce the relative distortion that measures the devi-

ation of a set of points from the linear behaviour. The decay of this relative distortion

gives the existence and regularity of a geometric scheme like in Proposition 1.21.

1.4 Examples of subdivision schemes

In this section we recall some examples of stationary interpolatory linear schemes. We

restrict ourself on this type of schemes because throughout the work we focus only on

interpolatory schemes and examples of non-linear scheme are presented in Section 2.2.

All the scheme presented in this section and Section 2.2 are used for numerical tests.

1.4.1 2N-point schemes

The family of 2N-point schemes by Deslauriers and Dubuc [1989], is the most famous

family of interpolatory schemes. The name states the fact that the new points are linear

combinations of 2N points from the previous level of iteration. An example of such

schemes is the 4-point scheme with rules (1.2) already presented in Section 1.2. Here

we want to explain the general construction.

The general rules of the binary 2N-point scheme for N ∈ N are given by

p
j+1

2i+ℓ
=

N−1∑

n=−N

Li−n,2N−1

�
t
( j+1)

2i+ℓ

�
p

j
i−n

, ℓ = {0,1},

where Li−n,2N−1 is the Lagrange fundamental polynomial of degree 2N − 1 associated

with the knots t
( j)

i−n
= i−n

2 j and n = −N , . . . , N − 1. A Lagrange polynomial associate to
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the knots {t i}N−1
−N is defined as

Li,2N−1(t) =

N−1∏

k=−N
k 6=i

(t − tk)

(t i − tk)
(1.28)

and has the fundamental property

Li,2N−1(tk) = δi,k. (1.29)

Applying (1.29) in the previous rules for the 2N-points scheme we can deduce that it is

an interpolatory scheme

p
j+1

2i
= p

j

i
, (1.30)

p
j+1

2i+1
=

N−1∑

n=−N

Li−n,2N−1

�
2i + 1

2 j+1

�
p

j

i−n
.

Let us compute the masks for the different schemes for some values of N .

• N = 1

Consider the two linear Lagrange polynomials (n = −1,0)

Li+1,1

�
2i + 1

2 j+1

�
=

2i+1
2 j+1 − i

2 j

i+1
2 j − i

2 j

=
1/2 j+1

1/2 j
=

1

2

Li,1

�
2i + 1

2 j+1

�
=

2i+1
2 j+1 − i+1

2 j

i
2 j − i+1

2 j

=
−1/2 j+1

−1/2 j
=

1

2

and the rules for the 2-point scheme become

p
j+1

2i
= p

j
i
, (1.31)

p
j+1

2i+1
=

1

2
p

j
i
+

1

2
p

j
i+1

.

These rules insert at each level the mean of the two neighbouring points from the

previous level, as shown in Figure 1.7. The mean of two points p
j

i
, p

j

i+1
lies on the

edge
−−−−→
p

j

i
p

j

i+1
, so in the limit the scheme reproduces the initial control polygon and

we expect that the scheme is C0 continuous. From (1.31) the mask of the scheme

and the symbol are

a[2] =

§
1

2
,1,

1

2

ª
, (a[2])∗(z) =

1

2
(1+ z)2,

so the mask and the symbol of the difference scheme are

b[2] =

§
1

2
,
1

2

ª
, (b[2])∗(z) =

1

2
(1+ z).

As the difference scheme is contractive
�

b[2]




∞ = 1/2

�
, the 2-point scheme is

convergent (C0 continuous) according to Proposition 1.11.
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• N = 2

Consider the 4-point scheme. Computing the Lagrange polynomials we found the

coefficients state in (1.2)

Li−1,3

�
2i + 1

2 j+1

�
=

0∏

n=−2

2n+ 1

2(n− 1)
= − 1

16
,

Li,3

�
2i + 1

2 j+1

�
=

1∏

n=−2
n6=0

2n+ 1

2n
=

9

16
,

Li+1,3

�
2i + 1

2 j+1

�
=

1∏

n=−2
n6=−1

2n+ 1

2(n+ 1)
=

9

16
,

Li+2,3

�
2i + 1

2 j+1

�
=

0∏

n=−2

2n+ 1

2(n+ 2)
= − 1

16
.

The mask and symbol of the scheme are

a[4] =

§
− 1

16
,0,

9

16
,1,

9

16
,0,− 1

16

ª
, (a[4])∗(z) =

�
1+ z

2

�4

z−3(−1+ 4z − z2)

and Figure 1.3 shows the new point generated by this scheme. The associated

difference scheme has the contractive mask

b[4] =
1

16
{−1,1,8,8,1,−1} , with



b[4]



∞ =

5

8
< 1.

By Proposition 1.11 the 4-point scheme is convergent. In order to study if the

scheme is C1 continuous we factorize the symbol (a[4])∗

(a[4])∗(z) =
(1+ z)2

2

(1+ z)2(−1+ 4z − z2)

8z3
=
(1+ z)2

2
(c[4])∗(z)

and we consider the mask of the second-order differences

c[4] =
1

8
{−1,2,6,2,−1} (1.32)

Since the norm of the mask is


c[4]




∞ = 1, we need to iterate the scheme to check

if it is contractive. Iterating the scheme related to c[4] one time, we obtain

c
[4]

(2)
=

1

64
{1,−2,−8,2,7,16,32,16,7,2,−8,−2,1} ,




c
[4]

(2)




 < 1.

Hence the scheme is C1 continuous by Proposition 1.12. The scheme has Hölder

regularity C2−ε, but it is not C2, because the mask of the third-order differences,

d[4] =
1

4
{−1,3,3− 1},




d
[4]

(L)





∞
= 1 ∀L ∈ N,

is not contractive.
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• N = 3

The Lagrange polynomials

Li−n,5

�
2i + 1

2 j+1

�
=

2∏

k=−3
k 6=n

2k+ 1

2(k− n)
,

for n= −3, . . . , 2, give the coefficients into the rules of the 6-point scheme

p
j+1

2i
= p

j

i
(1.33)

p
j+1

2i+1
=

3

256
p

j
i−2
− 25

256
p

j
i−1
+

150

256
p

j
i
+

150

256
p

j
i+1
− 25

256
p

j
i+2
+

3

256
p

j
i+3

.

Figure 1.8 show the position of the new point p
j+1

2i+1
. The mask and the symbol of

the scheme are

a[6] =
1

28
{3,0,−25,0,150,256,150,0,−25,0,3},

(a[6])∗(z) =
�

1+ z

2

�6 3− 18z + 38z2 − 18z3 + 3z4

4z5
.

To prove that the 6-point scheme is convergent we have to study the difference

scheme

(a[6])∗(z) = (1+ z)
(1+ z)5(3− 18z + 38z2 − 18z3 + 3z4)

28z5
= (1+ z)(b[6])∗(z),

b[6] =
1

256
{3,−3,−22,22,128,128,22,−22,−3,3}.

By Proposition 1.11 the 6-point scheme is convergent, because the difference scheme

is contractive,


b[6]




∞ < 1. To study if the scheme generates limit curves with

higher order regularity we use Proposition 1.12 and we study the scheme for higher

order differences. The scheme of the second-order differences is given by

(a[6])∗(z) =
(1+ z)2

2

(1+ z)4(3− 18z + 38z2 − 18z3 + 3z4)

27z5
=
(1+ z)2

2
(c[6])∗(z),

c[6] =
1

128
{3,−6,−16,38,90,38,−16,−6,3} (1.34)

and is contractive,




c
[6]

(2)





∞
< 1. By Proposition 1.12, the 6-point scheme is C1

continuous and also C2 continuous because the scheme of third-order differences

(a[6])∗(z) =
(1+ z)3

4

(1+ z)3(3− 18z + 38z2 − 18z3 + 3z4)

26z5
=
(1+ z)3

4
(d[6])∗(z),

d[6] =
1

64
{3,−9,−7,45,45,−7,−9,3}
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p j
i

p j
i+1

p j
i_1

p j
i+2

p j
2
+
i
1
+1

p j
2
+
i
1
+2

p j
2
+
i
1
_
1

Figure 1.7. Construction of the new point

for the 2-point scheme.

p j
2
+
i
1
+1p j

i
p j

i+1

p j
i_1

p j
i+2

p j
i+3

p j
i_2

Figure 1.8. Construction of new point for

the 6-point scheme.

is contractive,




d
[6]

(2)





∞
< 1. Instead the scheme is not C3 continuous because the

scheme

(a[6])∗(z) =
(1+ z)4

8

(1+ z)2(3− 18z + 38z2 − 18z3 + 3z4)

25z5
=
(1+ z)4

8
( f [6])∗(z),

f [6] =
1

32
{3,−12,5,40,5,−12,3},

have


 f [6]




∞ > 1.

Note that the regularity of the 2N-point schemes does not grow linearly with N , to

find the exact regularity see [Daubechies and Lagarias, 1992].

The examples of 2N-point schemes presented until now are binary scheme, but in

general Deslauriers and Dubuc [1989] define schemes for any arity ν. The general rules

are

p
j+1

νi+ℓ
=

N−1∑

n=−N

Li−n,2N−1

�
νi + ℓ

ν j+1

�
p

j

i−n
, ℓ= {0, . . . ,ν− 1},

where we now consider as knots t
( j)

i−n
= i−n

ν j with n= −N , . . . , N −1. By the fundamental

property of the Lagrange polynomial (1.29) the scheme is interpolatory. In the simple

case of 2-point scheme we can easily deduce the rules. In fact, the Lagrange polynomials

give

Li,2

�
νi + ℓ

ν j+1

�
=

vi+ℓ
ν j+1 − i+1

ν j

i
ν j − i+1

ν j

= 1− ℓ
ν

,

Li+1,2

�
νi + ℓ

ν j+1

�
=

vi+ℓ
ν j+1 − i

ν j

i+1
ν j − i

ν j

=
ℓ

ν
,
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for ℓ = 0, . . . ,ν− 1. The mask and the symbol of the 2-point scheme with arity ν are

a =
1

ν
{1,2, . . . ,ν−1,ν,ν−1, . . . , 2,1}, a∗(z) =

z−(ν−1)

ν
(1+ z+ . . .+ zν−1)2. (1.35)

Using Proposition 1.13 we can prove that the 2-point scheme converges for any arity

ν. Let us consider the difference scheme such that

a∗(z) = (1+ z + . . .+ zν−1)
1+ z + . . .+ zν−1

νzν−1
= (1+ z + . . .+ zν−1)b∗(z),

b =
1

ν
{1,1, . . . , 1}.

The norm is

‖b‖∞ =max
i

¨∑

ℓ∈Z

|bνℓ+i|
«
=

1

ν
< 1,

hence the difference scheme is contractive and the 2-point scheme converge.

1.4.2 4-point scheme with tension parameter

p j
i_1

p j
i

p j
i+1

p j
i+2

p j
2
+
i
1
+1

Figure 1.9. Construction of the new point for the 4-point scheme with tension parameter w =

1/32. The points generated by the 2-point scheme and the 4-point scheme are shown, for

comparison, in dash line.

Another interesting example of an interpolatory linear scheme is the 4-point scheme

with tension parameter w [Dyn et al., 1987]. It is defined as

p
j+1

2i
= p

j

i
(1.36)

p
j+1

2i+1
= −wp

j

i−1
+

�
1

2
+w

�
p

j

i
+

�
1

2
+w

�
p

j

i+1
−wp

j

i+2
,

and has mask

a =

§
−w, 0,

1

2
+w, 1,

1

2
+w, 0,−w

ª
.
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In the special case w = 0 it reproduces the rules of the 2-point scheme, while for w =

1/16 we obtain the 4-point scheme. This scheme is a combination of the 2-point and the

4-point scheme. In fact,

a = (1− 16w)

§
1

2
,1,

1

2

ª
+ 16w

§
− 1

16
,0,

9

16
,1,

9

16
,0,− 1

16

ª

= (1− 16w) a[2] + 16w a[4].

If we take w = 1/32, then the resulting scheme is the mean of the 2-point and the 4-

point scheme. The position of the new point p
j+1

2i+1
in this case is shown in Figure 1.9.

The points, connected with dash lines, are the points generated by the 2-point scheme

and the 4-point scheme. We observe that p
j+1

2i+1
is not exactly the mean of the points

generated by the 2-point and the 4-point scheme but it is between these two points.

Varying w, also changes the regularity of the scheme, because the 2-point scheme is

only convergent, while the 4-point scheme is C1 continuous. In [Dyn et al., 1991] the

behaviour of the scheme for different w is studied and they prove that if w ∈
�
−1

2 , 1
2

�
then

the scheme is C0 continuous, while the scheme is also C1 continuous if w ∈
�
0,
p

5−1
8

�
.

In the next chapters, we present some interpolatory geometric schemes, we give some

results to study their regularity and we use them as numerical examples.
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Outline

Linear schemes are well understood and studied (see e.g. [Conti and Hormann, 2011;

Dyn et al., 1991, 1987; Dyn, 2002, 1992; Han and Jia, 1998]), but sometimes the result-

ing limit curves have some artefacts like loops and cups. For this reason, it is interesting

to consider geometric subdivision schemes.

A geometric subdivision scheme is a non-linear scheme that, in each iteration, uses

a geometric construction to generate the new points. In this way, the geometry of the

initial control polygon is taken into account in the resulting limit curve. This produces

less artefacts in the limit curve than a linear scheme.

The problem with geometric schemes is the lack of tools to study their regularity. We

cannot use the well-known results of the linear case for this type of schemes, and it is

complicate to find new methods.

Some studies are done for special cases of non-linear schemes, as those proposed by

Floater and Micchelli [1998]; Schaefer et al. [2008]. These schemes take a binary linear

scheme and they replace the binary linear average, as the arithmetic mean, with a non-

linear average, as the harmonic mean or the geometric mean. This type of non-linear

schemes is strictly related to their relative linear schemes and they inherit from them the

smoothness.

Another possible approach uses the concept of asymptotic equivalence [Dyn and

Levin, 1995] or the proximity condition [Wallner and Dyn, 2005] to a linear scheme. For

example, Sabin and Dodgson [2004] show that the circle-preserving 4-point scheme is

asymptotically equivalent to the linear 4-point scheme of Deslauriers and Dubuc [1989]

and it inherits its C1 continuity. The proximity condition is used instead by Wallner

[2006] to prove the regularity of manifold-valued schemes. These two conditions do not

cover all the possible non-linear schemes. For example the schemes presented in [Dyn

and Hormann, 2012] do not satisfy the proximity condition. Moreover, the asymptotic

equivalence and the proximity condition, with a linear scheme, allow to study the ana-

lytic continuity of the limit curve. This type of continuity needs that the limit curve is

parametrized. For other non-linear schemes ad-hoc proofs are proposed, like in [Yang,

2006; Zhao et al., 2009; Deng and Wang, 2010; Hernández-Mederos et al., 2013], or

only numerical evidence of the regularity of the limit curve is given [Deng and Ma, 2012,

2014; Cashman et al., 2013]. Dyn and Hormann [2012] are the first to give geometric

conditions such that a non-linear interpolatory scheme converges and produces tangent
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continuous limit curve. The key features of these conditions are the possibility to apply

them to any type of interpolatory scheme and they are purely geometric, so they do not

rely on any parametrization of the limit curve. Dyn and Hormann [2012] study the ge-

ometric continuity of the limit curve. The Gn continuity with respect to Cn continuity is

independent on the parametrization of the curve and depends on geometric entities like

edges, angles, tangents, circles.

In Section 2.1 we analyse the main differences between Cn continuity and Gn conti-

nuity giving some examples of curves that have one type of continuity and not the other.

The conditions given by Dyn and Hormann [2012] are presented in Chapter 3. These

conditions depend only on geometric quantities like edge lengths and angles generated

by the subdivision control polygon. In particular, Dyn and Hormann [2012] show that

the summability of maximum edge length is sufficient to have a convergent subdivision

scheme, while the summability of the maximum of angles in absolute value gives a tan-

gent continuous limit curve. These conditions prove the G1 continuity of a geometric

scheme.

In the literature there are some subdivision schemes [Deng and Wang, 2010; Deng

and Ma, 2012, 2014; Hernández-Mederos et al., 2013] that claim to generate limit curves

with continuous curvature. Therefore, my work is devoted on extending the conditions

of Dyn and Hormann [2012], finding sufficient conditions for an interpolatory scheme to

generate G2 continuous limit curves. Instead of edges and angles, in this case we consider

the circles passing through three consecutive points generated by the subdivision process.

We look at the maximum difference of curvatures between neighbouring circles and we

claim that the summability of this sequence is responsible to generate limit curves that

are G2 continuous. Unfortunately the proof is not complete yet; in Chapter 4 we give the

idea of the proof and the results that we already proved with some numerical evidence

for the missing points. Moreover, we present also some numerical examples to support

the correctness of the proposed condition.
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Chapter 2

Geometric subdivision schemes

All previous attempts to prove the regularity of a geometric subdivision scheme use the

concept of asymptotic equivalence, proximity condition, or they are proofs suited for

very specific subdivision schemes. As we saw in Section 1.3 the asymptotic equivalence

and the proximity condition, even if they are general methods, provide only the analytic

continuity of the limit curve. In this chapter we define what Gn continuity means and we

make a comparison between analytic Cn continuity and geometric Gn continuity, giving

some examples of curves with different type of regularity. The aim is to explain why it

is necessary to change the approach if we consider geometric schemes.

In the second part of the chapter we recall some examples of geometric subdivision

schemes presented in the literature that we use to test our sufficient condition. Finally,

we introduce a new scheme that is designed to satisfy our G2 condition.

2.1 Cn continuity vs Gn continuity

It is worthwhile to analyse the differences between a curve that is Cn continuous and a

curve that is Gn continuous. For this reason, we recall some basic notions of differential

geometry (see e.g. [Do Carmo, 1976]).

Definition 2.1. A parametrized curve is a continuous map C : I ⊂ R→ R2, where I is an

interval of R.

Definition 2.2. A parametrized curve is Cn continuous, if it is n times differentiable and

for any x0 ∈ I

lim
x→x−0

C
(ℓ)(x) = lim

x→x+
0

C
(ℓ)(x) = C

(ℓ)(x0), ℓ = 0, . . . , n.

C
(ℓ) denotes the ℓ-th derivative of the curve C .
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36 2 Geometric subdivision schemes

Suppose that a curve is twice differentiable at any point and C
′(x) 6= 0, then the

tangent vector and the curvature of the curve C are defined as

t = t(x) =
C
′(x)

‖C ′(x)‖ ,

k = k(x) =
det(C ′(x),C ′′(x))

‖C ′(x)‖3
. (2.1)

The determinant of two vectors is equal to the cross product of two bidimensional vec-

tors. If C
′(x) 6= 0 for any x ∈ I, the parametrization of the curve is said regular.

The concept of Cn continuity is strictly related to the parametrization of the curve,

while geometric continuity is invariant with respect to the parametrization. First of all

we need to introduce the concepts of tangents and curvature for an arbitrary curve in-

dependently of the parametrization.

We use the definitions given by Dyn and Hormann [2012] because they introduce

sufficient conditions to require the G1 continuity depending only on edges, angles and

tangents.

Definition 2.3. Any two distinct points p, q ∈ R2 determine a directed line
−→pq from p to

q with direction (q − p)/‖q− p‖.

Definition 2.4. The signed angle ∢(s, t) between two directed lines s and t is the angle

between the two directions measured from s to t, where counterclockwise angles are positive

and clockwise angles are negative. For parallel directed lines s and t, we have ∢(s, t) = 0 if
−→s = −→t or ∢(s, t) = π if −→s = −−→t .

Definition 2.5. Let C be a continuous curve and p, q two points on the curve. A direct line

t is the directed tangent at p if the directed line −→pq converges to t as q approaches p along

C from the right and −→qp converges to t as q approaches p from the left.

Definition 2.6. A curve C is said G1 continuous if it has a directed tangent at each point

p ∈ C and if the directed tangent at q ∈ C converges to the one at p as q approaches p

along C .

This means that there are no jumps in the direction of the tangents along the curve.

In general, analytic continuity C1 does not implies geometric continuity G1.

Example 2.1. Consider the curve

C (x) = (x3, x2), x ∈ [−1,1].

The first derivative at zero is zero but if we consider a sequence of points that converges to

zero from the left they define the tangent t = (0,−1). Instead if we consider a sequence

of points that converges to zero from right, the directed tangent is (0,1). The tangents

lie on the same line but with opposite directions as can be seen in Figure 2.1.



37 2 Geometric subdivision schemes

-1 0 1

1

(x3,x2)

t

t

Figure 2.1. Example of a C1 continu-

ous curve that is not G1 continuous:

C (x) = (x3, x2) for x ∈ [−1,1].

q

p

r

m

±

¯®

½

°

Figure 2.2. Circle passing through

q, p and r.

In the same way for the G2 continuity we consider a definition of the curvature that

is independent of the parametrization of the curve.

Definition 2.7. Let q, p, r be three points in R2. A discrete interpolating circle C is the

circle passing through three points q, p, r. The absolute value of the discrete curvature k is

the inverse of the radius

|k| = 1

‖p−m‖ , (2.2)

where m is the center of the circle, see Figure 2.2. The curvature is positive if q, p and r are

in clockwise order otherwise is negative.

The concept of discrete curvature allows us to give a definition of curvature based

on the notion of the osculating circle (see e.g. [Do Carmo, 1976; Farin, 2002]).

Definition 2.8. Let C be a curve and q, p, r three points on the curve itself. If the discrete

interpolating circle passing through q, p, r converges to a circle when q approaches p along

the curve from the left and r approaches p along the curve from the right, then this limit

circle is called osculating circle. The tangent of the circle at p is the directed tangent of the

curve at p. The curvature of the curve at p is the reciprocal of the radius of the osculating

circle.

If the three points q, p and r are collinear at limit, then the osculating circle degen-

erates to the straight line passing through these points. In this case the direct tangent is

give by
−→pr and the curvature is zero.

Considering the discrete circle passing through q, p, r non collinear points (see

Fig. 2.2), direct computations give the radius as

‖q−m‖ =
1
2 ‖r − q‖

sin(|γ|/2) ,
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where we consider the absolute value of the angle, because the radius of a circle is always

positive. Any angle inscribed in a circle is half the central angle that subtends the same

arc, so

|γ| = 2π− 2 |ρ|= 2π− 2(π− |δ|) = 2 |δ| ,

and,

‖q−M‖ = ‖r − q‖
2 sin(|δ|) .

Then, the discrete curvature (with sign) at the point p is

k =
2 sin(δ)

‖r − q‖ . (2.3)

The sign of the discrete curvature is given by the sign of the angle δ. In Figure 2.2,

δ is positive, which is the reason why in Definition 2.7 we say the discrete curvature is

positive for a clockwise triple of points. Moreover, if the three points q, p, r are collinear,

then the angle δ = 0 and also the curvature is zero.

It is possible to show that the curvature of the osculating circle is equivalent to the

usual definition of curvature for a parametric curve (2.1). Let us consider a twice dif-

ferentiable parametric curve C at a point C (x) = p. We define the points q and r on C

as

q = C (x)−C
′(x)∆x1+C

′′(x)
∆x2

1

2
+O(∆x3

1
),

r = C (x) +C
′(x)∆x2+C

′′(x)
∆x2

2

2
+O(∆x3

2),

such that they converge to p with two different velocities ∆x1,∆x2→ 0. The unsigned

curvature of C at p is the limit of the discrete curvature

lim
∆xi→0

k(p) = lim
∆xi→0

2 sin(|δ|)
‖r − q‖ ,

for i = 1,2. The norm of the cross product between two bidimensional vectors a and b

is

‖a× b‖ = |det(a, b)| = ‖a‖‖b‖ sin(∢(a, b)).
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Using the definitions of q, r we have

lim
∆xi→0

k(p) = lim
∆xi→0

2 sin(|δ|)
‖r − q‖ = lim

∆xi→0

2


−→qp×−→pr




‖p− q‖‖r − p‖‖r − q‖

= lim
∆xi→0

2





�
C
′(x)∆x1 −C

′′(x)
∆x2

1

2

�
×
�
C
′(x)∆x2 +C

′′(x)
∆x2

2

2

�






C ′(x)∆x1 −C ′′(x)

∆x2
1

2








C ′(x)∆x2+C ′′(x)

∆x2
2

2








C ′(x)(∆x1 +∆x2) +C ′′(x)

∆x2
2
−∆x2

1

2






= lim
∆xi→0

2




(C ′(x)×C
′′(x))

∆x1∆x2
2

2 + (−C ′′(x)×C
′(x))

∆x2
1∆x2

2






∆x1∆x2




C ′(x)−C ′′(x)∆x1

2








C ′(x) +C ′′(x)∆x2

2








C ′(x)(∆x1 +∆x2) +C ′′(x)

∆x2
2
−∆x2

1

2






= lim
∆xi→0

(∆x2 +∆x1)


C ′(x)×C

′′(x)







C ′(x)−C ′′(x)∆x1

2








C ′(x) +C ′′(x)∆x2

2








C ′(x)(∆x1 +∆x2) +C ′′(x)

∆x2
2−∆x2

1

2






= lim
∆xi→0



C ′(x)×C
′′(x)







C ′(x)−C ′′(x)∆x1

2








C ′(x) +C ′′(x)∆x2

2








C ′(x) +C ′′(x)∆x2−∆x1

2






=



C ′(x)×C
′′(x)





‖C ′(x)‖3
=

��det(C ′(x),C ′′(x))
��

‖C ′(x)3‖ ,

for i = 1,2, which is equal to (2.1). We eliminate the higher terms because they decay

to zero and they are irrelevant from a computational point of view. Moreover, we exploit

the properties of the cross product.

The advantage of using the discrete curvature (2.3) instead of (2.1) is that the curve

does not have to be twice differentiable and we do not need an explicit parametrization.

Moreover, using (2.3) in a geometric subdivision scheme, we exploit only the angles and

edges defined by the points. We are now able to define a G2 continuous curve.

Definition 2.9. A curve is said to be G2 continuous if there exists an osculating circle at

each point p ∈ C and the curvature of the osculating circle at q ∈ C converges to the

curvature at p as q approaches p along C .

Example 2.2. Consider the curve

C (x) =

� �
sin
�
π
2 x3

�
, cos

�
π
2 x3

�
− 1

�
x ∈ [−1,0)�

sin
�
π
2 x3

�
, 1− cos

�
π
2 x3

��
x ∈ [0,1]

,

displayed in Figure 2.3. The curve is composed by two sectors of unit circles: it is G1 but

not G2 continuous at zero because the two circles have opposite curvatures. With the

previous parametrization the curve C is C2 continuous, in fact the second derivative is

C
′′(x) =

� �
3πt cos

�
π
2 x3

�
− 9

4π
2 t4 sin

�
π
2 x3

�
,−3πt sin

�
π
2 x3

�
− 9

4π
2t4 cos

�
π
2 x3

��
�
3πt cos

�
π
2 x3

�
− 9

4π
2 t4 sin

�
π
2 x3

�
, 3πt sin

�
π
2 x3

�
+ 9

4π
2t4 cos

�
π
2 x3

�� ,

and we have limx→0− C
′′(x) = limx→0+ C

′′(x) = (0,0).
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t

_
1
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Figure 2.3. Example of a C2 continuous curve

that is not G2 continuous because it is composed

by two circles with opposite curvatures.

p

q

r

®

m

¯

¾
+

t

¾
{

Figure 2.4. Discrete circle with

tangent t and angles α and σ+.

This example shows that the continuity of the second derivative does not imply the con-

tinuity of the curvature.

In Definition 2.7 we define the discrete interpolating circle as the circle passing

through three points. In general, a circle can be described in several equivalent ways:

1. the circle with center m and radius ‖p−m‖,

2. the circle passing through three points q, p and r,

3. the circle with tangent line t at p and curvature k.

4. the circle with tangent line t at p and passing through p and r.

These are the different descriptions that we use throughout the thesis. For each different

description of the circle we can compute the curvature in different ways.

Lemma 2.1. Let t be the tangent at p of the circle passing through q, p, r, then

σ+ := ∢(
−→pr, t) = ∢(−→qr ,

−→qp), and σ− := ∢(−t,−→pq) = ∢(−→rp,
−→rq).

Proof: For the definition of the angles σ+, σ−, α, β we refer to Figure 2.4, and

α= ∢(−→qr ,
−→qp) =

1

2
∢(
−→mr,
−→mp) = σ+,

because an angle inscribed in the circle is half of the central angle that subtends the same

arc and some relations between complementary angles (see Fig. 2.4). In the same way

we have

σ− = β = ∢(
−→pr,
−→qr).

Then, the curvature of a circle with tangent t at p and passing through r or q is

k(p, r, t) =
2 sin(σ+)

‖p− r‖ or k(q, p, t) =
2 sin(σ−)

‖p− q‖ .
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Figure 2.5. The sequences of points {qn}n and {rn}n that

converge to p respectively from the left and right.

p
-

0

k-1

p0

k+1

p
-

0

k´ 
p0

k

Figure 2.6. Limit curve generated

by control points p0
i

(2.7).

This remark allows us to prove that the osculating circle of a curve C at p is the limit

of two sequences of circles with tangent t and passing through p, qn and p, rn, as qn and

rn converge to p (see Fig. 2.5).

Proposition 2.2. Let C be a G1 continuous curve. Consider two sequences of points {qn}n∈N
and {rn}n∈N on C , which both converge to the same point p ∈ C , respectively from the left

and from the right. We denote by k(qn, p, t) the curvature of the circle that has the tangent t

of the curve at p as directed tangent and passes through p and qn, and likewise the curvature

of the circle with tangent t, passing through p and rn, by k(p, rn, t). If the two sequences

of curvatures converge to the same limit

lim
n→∞

k(qn, p, t) = k̄ = lim
n→∞

k(p, rn, t),

then

(i) they converge to the same limit of the sequence of discrete curvatures

lim
n→∞

k(qn, p, rn) = k̄.

(ii) k̄ is the curvature of the curve C at p.

Proof: Let us consider two sequences of points {qn} and {rn} on a curve C that approach

p respectively from the left and the right and t the tangent of the curve at p (see Fig. 2.5).

The curvature of the circle that has tangent t of the curve at p as directed tangent

and passes through p and qn is

k(qn, p, t) =
2 sinσ−
‖p− qn‖

. (2.4)

Analogously the curvature of the circle passing through rn is

k(p, rn, t) =
2 sinσ+

‖rn − p‖ . (2.5)
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By hypothesis, both the the sequences converge to k̄.

The discrete curvature of the circle passing through qn, p and rn is

k(qn, p, rn) =
2 sinδn

‖rn − qn‖
.

From Figure 2.5 and Lemma 2.1 we observe that

δn = αn + βn = σn,+ +σn,− = ∢(
−→prn, tn) +∢(tn, t) +∢(t, tn) +∢(tn,

−→qnp) = σ+ +σ−,

(2.6)

‖rn − qn‖= ‖p− qn‖ cosαn + ‖rn − p‖ cosβn.

Thus, the discrete curvature becomes

k(qn, p, rn) =
2 sinδn

‖rn − qn‖
=

2 sin(σ+ +σ−)

‖p− qn‖ cosαn + ‖rn − p‖ cosβn

=
2 sin(σ+) cos(σ−) + 2 sin(σ−) cos(σ+)

‖rn − p‖ cosβn + ‖p− qn‖ cosαn

.

Since qn and rn converge to p, we can assume that from a certain n on, both |αn| and

|βn| are smaller than π/2 and the cosine of these angles is positive. Using (2.4), (2.5)

and Lemma 2.3, the discrete curvature k(qn, p, rn) is bounded,

k(qn, p, rn) ≥min

§
k(p, rn, t)

cos(σ−)

cos(βn)
; k(qn, p, t)

cos(σ+)

cos(αn)

ª
,

k(qn, p, rn) ≤max

§
k(p, rn, t)

cos(σ−)

cos(βn)
; k(qn, p, t)

cos(σ+)

cos(αn)

ª
.

Using the relations between the angles in (2.6), the behaviour of the two terms, when

n→∞, is

lim
n→∞

k(p, rn, t)
cos(σ−)

cos(βn)
= lim

n→∞
k(p, rn, t)

cos(βn −∢(tn, t))

cos(βn)

= lim
n→∞

k(p, rn, t)
cos(βn) cos(∢(tn, t)) + sin(βn) sin(∢(tn, t))

cos(βn)

= lim
n→∞

k(p, rn, t) (cos(∢(tn, t)) + tan(βn) sin(∢(tn, t)))

= k̄.

From the definition of the discrete interpolating circle we have that the sequence of

curvatures k(qn, p, rn) converges to the curvature of the curve at p, and the sequence of

tangents tn of the discrete circles converges to the directed tangent t of the curve at p,
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limn→∞∢(tn, t) = 0. Moreover, by hypothesis k(p, rn, t) converge to k̄. Analogously,

lim
n→∞

k(qn, p, t)
cos(σ+)

cos(αn)
= lim

n→∞
k(qn, p, t)

cos(αn +∢(tn, t))

cos(αn)

= lim
n→∞

k(qn, p, t)
cos(αn) cos(∢(tn, t))− sin(αn) sin(∢(tn, t))

cos(αn)

= lim
n→∞

k(qn, p, t) (cos(∢(tn, t))− tan(αn) sin(∢(tn, t)))

= k̄.

Using the squeeze theorem we then conclude

lim
n→∞

k(qn, p, rn) = k̄.

This general result is used later in the proof of our condition for G2 continuous curves

generated by an interpolatory scheme (see Section 4.3.2).

Lemma 2.3. For any a, b ∈ R and c, d > 0 we have

min

§
a

c
,

b

d

ª
≤ a + b

c + d
≤max

§
a

c
,

b

d

ª
.

Proof: If

a

c
≤ b

d
⇒ a ≤ bc

d

b ≥ ad
c

⇒
a+b
c+d ≤

b( c
d +1)

c+d ≤
b
d

a+b
c+d ≥

a(1+ d
c )

c+d ≥
a
c

.

Otherwise

a

c
>

b

d
⇒ b < ad

c

a > bc
d

⇒
a+b
c+d <

a(1+ d
c )

c+d < a
c

a+b
c+d >

b( c
d +1)

c+d > b
d

.

Before we introduce some examples of geometric subdivision schemes, we have to

remark that a subdivision scheme can hardly generate a G1 or G2 limit curve for all input

data. For example, if we consider as control points

p0
i =






(i, 0) i < −k,

(0,0) |i| ≤ k,

(0, i) i > k,

(2.7)

then any subdivision scheme with support 2k + 1 generates a limit curve composed by

two perpendicular straight half lines as in Figure 2.6. In order to avoid this strange con-

figuration, for the rest of the thesis we suppose that we cannot consider control polygons

with identical points.
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2.2 Examples of geometric subdivision schemes

Here we recall some non-linear subdivision schemes presented in the literature that use a

geometric construction. These schemes are of our interest, because they allow us to test

the conditions, given in the following chapters, to study the convergence and regularity

of the limit curve.

We introduce some notations that we use in the definitions of geometric schemes. At

level j of the subdivision process we denote with

e
j
i
=




p
j
i+1
− p

j
i






the edge length of
−−−−→
p

j

i
p

j

i+1
. Considering three consecutive points p

j

i−1
, p

j

i
and p

j

i+1
gener-

ated by the subdivision scheme, they define a triangle with angles

α
j

i
:=∢(

−−−−−→
p

j

i−1
p

j

i+1
,
−−−−→
p

j

i−1
p

j

i
), β

j

i
:=∢(

−−−−→
p

j

i
p

j

i+1
,
−−−−−→
p

j

i−1
p

j

i+1
), δ

j

i
:=∢(

−−−−→
p

j

i
p

j

i+1
,
−−−−→
p

j

i−1
p

j

i
),

(see Fig. 2.7). By a geometric constraint, for every triangle we have

α
j

i
+ β

j

i
= δ

j

i
.

The three consecutive points p
j

i−1
, p

j

i
and p

j

i+1
define also a circle passing through them,

whose curvature is denoted by k
j

i
(see Fig. 2.8). Using (2.3), the curvature k

j

i
is com-

puted using the external angle δ
j

i
and the edge length e

j

i
,

k
j

i
=

2 sinδ
j

i

e
j
i

.
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2.2.1 Incenter scheme

One example is the incenter scheme proposed by Deng and Wang [2010]. It takes as

input a set of control points P0 and tangents T 0 = {t0
i
} for each point. It is interpolatory,

so p
j+1

2i
= p

j

i
, and each new point p

j+1

2i+1
is the incenter of the triangle formed by the edge

−−−−→
p

j
i
p

j
i+1

and the two tangent lines t
j
i

and −t
j
i+1

,

p
j+1

2i+1
= p

j
i
+

sin

�
θ

j

i

2

�

sin

�
γ

j
i
+θ

j
i

2

� R

�
−
γ

j
i

2

� �
p

j
i+1
− p

j
i

�

where γ
j
i

:= ∢(t
j
i
,
−−−−→
p

j
i
p

j
i+1
) and θ

j
i

:= ∢(
−−−−→
p

j
i
p

j
i+1

, t
j
i+1
), (see Fig. 2.9). With R(θ) we indi-

cate the rotation matrix

R(θ) =

�
cos(θ) − sin(θ)

sin(θ) cos(θ)

�
.

For any new point p
j+1

i
, they choose provisional tangents u

j+1

i
such that

u
j+1

2i
= t

j

i
, u

j+1

2i+1
=

p
j

i+1
− p

j

i


p
j
i+1
− p

j
i





.

The previous tangents are kept at the interpolating points, while at the new points the

tangents are defined with the same direction as the edge
−−−−→
p

j

i
p

j

i+1
. Then, the new angles

are

γ̄
j+1

2i
= θ̄

j+1

2i
=
γ

j
i

2
, γ̄

j+1

2i+1
= θ̄

j+1

2i+1
=
θ

j
i

2
.

Deng and Wang [2010] claim that in order to obtain a curvature continuous subdivision

scheme the tangents should be adjusted,

t
j+1

i
= R

�
σ

j+1

i

�
u

j+1

i
with σ

j+1

i
=
ε γ̄

j+1

i
γ̄

j+1

i−1

γ̄
j+1

i
+ γ̄

j+1

i−1

r
j+1

i
− r

j+1

i−1

r
j+1

i
+ r

j+1

i−1

,

where 0 < ε ≤ 1/2 and r
j+1

i
is the radius of the circle passing through p

j+1

i
and p

j+1

i+1

with tangents u
j+1

i
and u

j+1

i+1
,

r
j+1

i
=




p
j+1

i+1
− p

j+1

i






2 sin
�
γ̄

j+1

i

� .

Once the tangents have been adjusted, also the angles γ
j+1

i
and θ

j+1

i
are adjusted with

the same value

γ
j+1

i
= γ̄

j+1

i
+σ

j+1

i
, θ

j+1

i
= θ̄

j+1

i
−σ j+1

i+1
.
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Figure 2.9. Construction of the new points for the incenter scheme (a) and the new tangents (b).

In the end, the scheme does not interpolate the initial tangents due to the correction with

σ
j+1

i
, for this reason it is not a Hermite scheme. In [Hernández-Mederos et al., 2013]

a generalization of the incenter scheme is presented that does not correct the tangents

and is really a Hermite scheme.

Deng and Wang [2010] prove that the limit curve generated by the incenter scheme

is G1 continuous and claim that it is also G2 continuous. In the next chapters, we use

this scheme to test out sufficient conditions in order to guarantee G1 and G2 continuity

of the limit curve.

2.2.2 Angle-based 4-point scheme

The angle-based 4-point scheme is introduced in [Dyn and Hormann, 2012] as an ex-

ample of a scheme that satisfies the G1 condition presented there. It is an interpolatory

bisector scheme (1.9),

p
j+1

2i+1
=

p
j
i
+ p

j
i+1

2
+ tan

�
α

j+1

2i+1

� (p j
i+1
− p

j
i
)⊥

2
,

such that

α
j+1

2i+1
= β

j+1

2i+1
=
δ

j

i
+δ

j

i+1

8
.

The scheme depends on 4 points because the new point p
j+1

2i+1
is constructed by quadri-

secting and averaging the external angles δ
j

i
and δ

j

i+1
(see Fig. 2.10). Using the general

relations between angles,

δ
j+1

2i
= δ

j

i
−α j+1

2i+1
− β j

2i−1
, δ

j+1

2i+1
= α

j+1

2i+1
+ β

j+1

2i+1
, (2.8)
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we obtain in the specific case of the angle-based 4-point scheme,

δ
j+1

2i
= δ

j
i
−
δ

j
i
+δ

j
i+1

8
−
δ

j

i−1
+δ

j

i

8
=
−δ j

i−1
+ 6δ

j
i
−δ j

i+1

8
, δ

j+1

2i+1
=
δ

j
i
+δ

j
i+1

4
. (2.9)

Note that the coefficients in (2.9) are the same as the mask of the second-order differ-

ences for the 4-point scheme (1.32).

The angle-based 4-point scheme generates a circle whenever the initial points are

vertices of a regular polygon. In this case all the initial external angles are equal δ0
i = δ

0

and in the following levels δ j = 2− jδ0, thanks to (2.9). Then, the scheme produces

a sequence of regular polygons with common radius and centre, because the scheme

is interpolatory. In the limit the regular polygons converge to the circle with the same

radius and centre.

We postpone the discussion of G1 continuity of this scheme to Section 3.2.

2.2.3 Circle-based 4-point scheme

Also the circle-based 4-point scheme is presented in [Dyn and Hormann, 2012] as an

example of scheme that satisfies the G1 condition given. It is an interpolatory bisector

scheme where they average two circles. Namely, they consider the two circles that pass

through p
j

i−1
, p

j

i
, p

j

i+1
and p

j

i
, p

j

i+1
, p

j

i+2
respectively and their intersections ql and qr

with the perpendicular bisector of the edge
−−−−→
p

j
i
p

j
i+1

; see Figure 2.11. The new point

p
j+1

2i+1
is not the mean of ql and qr , but averages the angles θl = ∢(

−−−−→
p

j

i
p

j

i+1
,
−−→
p

j

i
ql) and

θr = ∢(p
j

i
p

j

i+1
, p

j

i
qr), so that

α
j+1

2i+1
= β

j+1

2i+1
=
θl + θr

2
.
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By some geometric considerations, we observe that θl = α
j
i
/2 and θr = β

j
i+1
/2, giving

the relation

α
j+1

2i+1
= β

j+1

2i+1
=
α

j

i
+ β

j

i+1

4
. (2.10)

Introducing (2.10) into the general relations for δ
j+1

2i
and δ

j
2i+1

(2.8), we obtain

δ
j+1

2i
=
−α j

i
+ 3δ

j

i
− β j

i+1

4
, δ

j+1

2i+1
=
α

j

i
+ β

j

i+1

2
. (2.11)

This type of scheme clearly reproduces circles if the starting points are sampled on a

common circle. If all the points lie on a circle, then the generating points ql and qr are

the same point which lies again on the same circle. Every point generated by the scheme

is on the circle and, at the limit, the scheme generates the circle itself.

For an arbitrary control polygon, the limit curve is circle-shaped as shown in Fig-

ure 2.12 (top left). This example is suited to show how a geometric scheme takes into

account the geometry of the control polygon. Considering a control polygon with differ-

ent edge lengths, a linear scheme, like the 4-point scheme, can produce artifacts, as can

be observed in Figure 2.12 (right). Instead the circle based 4-point scheme follows the

geometry of the control polygons (Fig. 2.12 left).

2.2.4 Circle-based 6-point scheme

In order to further test our condition for G2 continuity, let us consider an interpolatory

geometric scheme that is expected to produce limit curves with continuous curvatures.

For simplicity, we choose a bisector scheme,

p
j+1

2i+1
=

p
j

i
+ p

j

i+1

2
+ tan

�
δ

j+1

2i+1

2

�
(p

j

i+1
− p

j

i
)⊥

2
.

To define the angle δ
j+1

2i+1
we take inspiration from two different schemes: the angle-

based 4-point scheme and the circle preserving variant of the 4-point scheme presented

by Sabin and Dodgson [2004].

From the angle-based 4-point scheme, we keep the idea of using the mask of the

second-order differences for the 4-point scheme to compute the new external angle δ
j+1

2i+1

with respect to the angles δ
j
i
, δ

j
i+1

(2.9). To gain regularity with respect to the angle-

based 4-point scheme, we consider the mask of the second-order differences of the 6-

point scheme (1.34). We choose the 6-point scheme, because it generates curves that

are C2 continuous (see Section 1.4).

Floater and Micchelli [1998] observe that the 4-point scheme is such that the second

divided difference at a point p
j+1

2i+1
is the mean of the second divided difference at the

points p
j

i
and p

j

i+1
. Sabin and Dodgson [2004] “translate” this idea to the discrete inter-

polating circles: the new point p
j+1

2i+1
is constructed such that the discrete curvature at
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Figure 2.12. Limit curves generated by the circle 4-point scheme (top left) and the 4-point

scheme (top right). The bottom figures zoom to the limit curves close to the point p10.
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this point, denoted with k
j+1

2i+1
, is the mean of the discrete curvatures of the old points,

k
j+1

2i+1
=

k
j
i
+ k

j
i+1

2
. (2.12)

The same idea is used in [Cashman et al., 2013] in a generalization of the Lane–Reisenfeld

algorithm. The averaging coefficients used in (2.12) are twice the odd submask {1/4,1/4}
of the mask of second-order differences for the 4-point scheme (1.32).

In our case, the idea is to apply twice the odd submask

1

64
{−3,19,19,−3}

of the second-order differences of the 6-point scheme (1.34) to the discrete curvature,

requiring that

k
j+1

2i+1
= − 3

32
k

j

i−1
+

19

32
k

j

i
+

19

32
k

j

i+1
− 3

32
k

j

i+2
. (2.13)

Then, the external angle δ
j+1

2i+1
is computed using the definition of discrete curvature,

k
j+1

2i+1
=

2 sin(δ
j+1

2i+1
)




p
j
i
− p

j
i+1





.

In order to find δ
j+1

2i+1
we should have

k
j+1

2i+1

2




p
j

i
− p

j

i+1




 = sin(δ
j+1

2i+1
) in the interval

[−1,1]. Unfortunately, this is not true for an arbitrary initial control polygon. A pos-

sibility is to apply some iterations of another scheme and then the circle-based 6-point

scheme. In the numerical tests if the scheme is not defined for the control polygon con-

sidered, we apply one iteration of the 4-point scheme with tension parameter w= 1/32

that gives a new control polygon quite close to the initial one, then we can apply safely

the circle-based 6-point scheme.

With equation (2.13), we require that the discrete curvature at the new point p
j+1

2i+1

is a linear combination of the discrete curvatures of the points from the previous level j.

Thus, we expect that the curvature of the limit curve changes continuously. Moreover, we

think that (2.13) helps to prove certain conditions on the curvature, even if the discrete

curvature k
j+1

i
does not satisfy a nice recursion formula as (2.8).

Using a different scheme in the first steps of subdivision, does not change the regular-

ity of the limit curve. In the next chapter, we use this subdivision scheme to numerically

test the proposed G2 condition.

The circle-based 6-point scheme is a circle preserving scheme once all the initial

points lie on the same circle. In this case, the discrete curvatures at the starting level are

all equal k0
i
= k and, since the coefficients in (2.13) sum up to 1, we have k

j+1

2i+1
= k

j
i
= k

for all j ≥ 0. If we consider a line as a circle with 0 curvature, then the scheme retains

also lines.



Chapter 3

Geometric sufficient conditions for

convergence and tangent continuity

As pointed out in Section 1.3, when dealing with geometric subdivision schemes there

are few general tools that can be used to prove the convergence to a limit curve and its

regularity. For a geometric subdivision scheme it is worthwhile to study the continuity

of geometric quantities like tangents and curvatures. In this chapter we recall the suffi-

cient conditions presented by Dyn and Hormann [2012] to require that an interpolatory

subdivision scheme is convergent and generates curves with tangent continuity (G1 con-

tinuity). The key feature of this work is that the conditions requested are independent

on the parametrization, they only depend on geometric quantities like edge lengths and

angles. The conditions given are generic and can be applied to any binary interpola-

tory scheme. The restriction on interpolatory schemes is necessary because the proof is

point-based, in the sense that they fix a generic point of the control polygon and study

the behaviour of angles, edges, secants around this point in the limit. Since the scheme

is interpolatory, any generated point belongs to the limit curve and the limit behaviour

of angles, edges, secants gives the behaviour of lengths and tangents of the limit curve

in a neighbourhood of the point. Ewald [2016] tries to generalize the conditions given

by Dyn and Hormann [2012] to the case of non planar curves and non interpolatory

schemes. Ewald [2016] proves that the summability of the edge length is a necessary

condition for the convergence of schemes where the even rule is continuous on a set of

null points. An extension of the G1 condition has not been found yet.

In Section 3.2 we show which geometric schemes from Section 2.2 satisfy the condi-

tions proposed by Dyn and Hormann [2012].

3.1 G1 sufficient conditions

The classic definition of convergence (Definition 1.12) for a subdivision scheme requires

a parametrization. The notion of convergence is related to the uniform convergence of

51
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piecewise linear functions f j : R→ R2, j ∈ N, that interpolate the points of the scheme

p
j

i
at certain values of the parametrization.

In order to study the convergence without an explicit parametrization, Dyn and Hor-

mann [2012] look at the distance between the midpoint of the edge
−−−−→
p

j
i
p

j
i+1

and the

corresponding inserted point p
j+1

2i+1
(see Fig. 3.1),

d
j

i
=







p

j

i
+ p

j

i+1

2
− p

j+1

2i+1






 . (3.1)

They consider the supremum of these distances at level j,

d j = sup
i∈Z

d
j

i
,

and the sequence of these suprema

d = {d j} j≥0.

The value of d j gives the distance between the two control polygons at level j + 1 and

level j 

 f j+1 − f j



∞ = sup

t∈R



 f j+1(t)− f j(t)


 = d j.

Thus, the uniform convergence of the functions f j implies that d j is a null sequence,

namely a sequence that converges to zero.

Theorem 3.1 [Dyn and Hormann, 2012]. If S is convergent, then d is a null sequence.

A similar necessary condition can be given considering the sequence of edge lengths

(see Fig. 3.1),

e
j

i
=




p
j

i+1
− p

j

i




 . (3.2)

In the same way, we study the sequence of suprema

e j = sup
i∈Z

e
j
i
, e = {e j} j≥0,

and it is clear that the behaviour of e is equal to the behaviour of the sequence d .

Proposition 3.2 [Dyn and Hormann, 2012]. The sequence e is a null sequence if and only

if d is a null sequence.

Unfortunately, the convergence to zero is not sufficient to prove that the subdivision

scheme is convergent, we need a stricter condition.

Theorem 3.3 [Dyn and Hormann, 2012]. If d is summable then S is convergent.

The summability of d is sometimes hard to verify, so Dyn and Hormann [2012] show

that it is equivalent to requiring the summability of e, the sequence of edge lengths.
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Proposition 3.4 [Dyn and Hormann, 2012]. The sequence e is summable if and only if d

is summable.

It is not surprising that we ask for the summability of the edge lengths sequence. In

fact, if e is a geometric sequence with ratio µ < 1, then the decay

e j+1

e j
=

supi∈Z




p
j+1

i+1
− p

j+1

i






supi∈Z




p
j

i+1
− p

j

i





= µ

is equivalent to requiring the contractivity of the difference scheme (1.20) or the con-

vergence condition (1.26) in the proximity setting.

In the particular case of a bisector schemes (1.9), where the new point p
j+1

2i+1
lies on

the bisector of the edge
−−−−→
p

j
i
p

j
i+1

, the convergence of the scheme is related to the external

angles

δ
j
i

:= ∢(
−−−−→
p

j
i
p

j
i+1

,
−−−−→
p

j
i−1

p
j
i
), (3.3)

between two consecutive edges (see Fig. 3.3). In a bisector scheme, as shown in Fig-

ure 3.2, we have

e
j+1

2i
=

e
j

i

2 cos
�
δ

j+1

2i+1
/2
� .

As before, we define the sequence of suprema of external angles in each level j,

δ j = sup
i∈Z

���δ j

i

��� and δ = {δ j} j≥0.

Theorem 3.5 [Dyn and Hormann, 2012]. If S is a bisector scheme andδ is a null sequence,

then S is convergent.
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i and p
j

i p
j

i+1
both con-

verge to the direct tangent t.

Defining the angles

α
j
i
= ∢(
−−−−−→
p

j
i−1

p
j
i+1

,
−−−−→
p

j
i−1

p
j
i
), β

j
i
= ∢(
−−−−→
p

j
i
p

j
i+1

,
−−−−−→
p

j
i−1

p
j
i+1
), δ

j
i
= α

j
i
+ β

j
i
, (3.4)

as in Figure 3.3, the sequences

α j = sup
i∈Z

���α j

i

��� , α= {α j} j≥0 and β j = sup
i∈Z

���β j

i

��� , β = {β j} j≥0,

behave like δ.

Lemma 3.6 [Dyn and Hormann, 2012]. The sequence δ is a null sequence, if and only if

both α and β are null sequences.

Furthermore, it turns out that the behaviour of δ controls also the existence of con-

tinuous varying directed tangents along the curve.

Theorem 3.7 [Dyn and Hormann, 2012]. If S is convergent and δ is summable, then the

limit curve is G1 continuous.

Corollary 3.8. If S is a bisector scheme and δ is summable, then S is convergent and the

limit curve is G1 continuous.

Tangent continuity is related to the sequence of angles δ. By Definition 2.5 the tan-

gent at a point p is the line to which both the right and the left edge converge. Requiring

that δ decays to zero, means that both edges converge to the same line, the tangent (see

Fig. 3.4).

We recall some intermediate results from [Dyn and Hormann, 2012] that we need

later for the proof of our new results.

The secants through the left and right neighbours of p
j

i
,

s
j
i
=
−−−−−→
p

j
i−1

p
j
i+1

,

allow to show the existence of a direct tangent in each point p
j

i
of the subdivision scheme.
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Lemma 3.9 [Dyn and Hormann, 2012]. If S is convergent and δ is summable, then there

exists a limit secant s̄
j

i
through p

j

i
for all i ∈ Z and j ≥ 0.

Lemma 3.10 [Dyn and Hormann, 2012]. If S is convergent and δ is summable, then the

limit secant s̄ is the directed tangent line to the limit curve at p.

In order to prove that the limit tangents s̄ change continuously along the limit curve,

they prove that for a fixed point p0 with limit tangent s̄0, the points p
j

i
and the edges

−−−−→
p

j

i
p

j

i+1
in the right neighbourhood of p0, 0 < i < 2 j− j0 and j ≥ j0, are in the positive

ε–cone,

C+(ε) = C+(p0, s̄0,ε) =
�

x :
��∢(−−→p0 x , s̄0)

�� ≤ ε
	

. (3.5)

Lemma 3.11 [Dyn and Hormann, 2012]. If S is convergent and δ is summable, then there

exists for any ε > 0 some j0 such that p
j

i
∈ C+(ε) for 1≤ i ≤ 2 j− j0 and j ≥ j0.

Lemma 3.12 [Dyn and Hormann, 2012]. If S is convergent and δ is summable, then there

exists for any ε > 0 some j0 such that

����∢(
−−−−→
p

j

i
p

j

i+1
, s̄0)

���� ≤ ε for j ≥ j0 and 0≤ i < 2 j− j0 .

Summing up, Dyn and Hormann [2012] prove that the summability of edge lengths

and external angles sequences are responsible for different orders of regularity of the

limit curve.

Summability Regularity

Edge length e ⇒ Convergence (3.6)

External angle δ ⇒ G1continuity (3.7)

3.2 Examples of G1 subdivision scheme

Dyn and Hormann [2012] introduce two subdivision schemes that satisfy the conditions

(3.6) and (3.7) and both are geometric variations of the 4-point scheme: the angle-

based 4-point scheme and the circle-based 4-point scheme, that we presented in Section

2.2. Both schemes are bisector schemes. By Corollary 3.8 it is sufficient to check that

the δ sequence is summable, in order to prove that the schemes are convergent and G1

continuous.

Angle-based 4-point scheme

In the angle-based 4-point scheme, the new angles are defined as the mean of the exter-

nal angles δ
j
i

and δ
j
i+1

quadrisected,

α
j+1

2i+1
= β

j+1

2i+1
=
δ

j
i
+δ

j
i+1

8
.
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Hence, the new external angles are a linear combination of the external angles from the

previous level (2.9)

δ
j+1

2i
=
−δ j

i−1
+ 6δ

j
i
−δ j

i+1

8
, δ

j+1

2i+1
=
δ

j
i
+δ

j
i+1

4
.

We look at relations of this type in order to show that the δ sequence is summable. In

this case one iteration is not sufficient, because
��δ j+1

�� ≤ δ j . Iterating another time we

find

δ
j+2

4i
=
−δ j

i−1
+ 4δ

j
i
−δ j

i+1

8
, δ

j+2

4i+1
=
−δ j

i−1
+ 8δ

j
i
+δ

j
i+1

32
,

δ
j+2

4i+2
=
δ

j
i−1
+ 7δ

j
i
+ 7δ

j
i+1
+δ

j
i+2

64
, δ

j+2

4i+3
=
δ

j
i−1
+ 8δ

j
i
−δ j

i+1

32
.

So, ��δ j+2
�� ≤max

§
3

4
,

5

16
,

1

4
,

5

16

ª
δ j =

3

4
δ j,

and δ is summable. Therefore, the angle-based 4-point scheme is G1 continuous.

Circle-based 4-point scheme

For the circle-based 4-point scheme we show in (2.10) that the angles are defined as

α
j+1

2i+1
= β

j+1

2i+1
=
α

j
i
+ β

j
i+1

4
,

and the external angles are

δ
j+1

2i
=
−α j

i
+ 3δ

j
i
− β j

i+1

4
, δ

j+1

2i+1
=
α

j
i
+ β

j
i+1

2
.

Whenever i is an odd index we have α
j

i
= β

j

i
= δ

j

i
/2, by definition of the bisector scheme.

So, the external angles are bounded by

���δ j+1

2i

��� ≤ 5

4
δ j,

���δ j+1

2i+1

��� ≤ 3

4
δ j.

Unfortunately, these relations are not sufficient to prove that theδ sequence is summable.

Computing the relation for another step, we find

���δ j+2

4i

��� ≤ δ j,

���δ j+2

4i+1

���≤ 13

16
δ j ,

���δ j+2

4i+2

���≤ 19

16
δ j ,

���δ j+2

4i+3

��� ≤ 13

16
δ j,

and again we cannot conclude that δ sequence is summable. Denoting with µk the

maximum bound at the level j+k, Dyn and Hormann [2012] show that after 10 iteration

they find a bound µ10 < 1 such that
��δ j+k

��≤ µ10δ
j. In the end, the sequence of external

angles δ turns out to be summable and the circle-based 4-point scheme is G1 continuous.
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Incenter scheme

We already mentioned that also the incenter scheme is G1 continuous. The proof does

not use the summability of δ (3.7) because, by introducing the correction terms into

the tangents, the expression of the angles become complicated. Instead in [Hernández-

Mederos et al., 2013], the G1 condition (3.7) is used to prove that the generalization

of the incenter scheme produces limit curves that are tangent continuous. The same is

done also for two other schemes [Deng and Ma, 2012, 2014]. In both cases, (3.7) is

satisfied and the schemes turn out to be G1 continuous.
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Chapter 4

Geometric condition for curvature

continuity

Following the idea of Dyn and Hormann [2012], in the Section 4.1 of this chapter, we

suggest a sufficient condition in order to have a limit curve with continuous curvature

(G2 continuity).

The correctness of this condition is discussed and tested in Section 4.2 with some

numerical examples of G2 continuous schemes.

In Section 4.3 we first give the idea of the proof divided in three main steps. Then,

we present what we already proved: the first step is completely proved while there is

missing a part of the second step. This missing part does not allow us to prove completely

also the third step. In particular, we show that at any point of the subdivision scheme

there exists a limit circle but we do not prove yet that this circle is the osculating circle

to the limit curve. Once we prove this, the denseness of the points generated by the

scheme on the limit curve allows us to conclude that the curvature of the limit curve is

continuous.

4.1 G2 sufficient condition

We saw in Section 2.1 that a curve is G2 continuous if there exists at every point an

osculating circle and if the curvatures of two osculating circles at neighbouring points

are ε-close (cf. Definition 2.9). The osculating circle at a point p is defined as the limit

position of the discrete interpolating circles at p (see Definition 2.8).

In order to satisfy these conditions we study the curvature k
j
i

of the discrete interpo-

lating circle passing through three consecutive points p
j

i−1
, p

j

i
, p

j

i+1
and we introduce

∇k
j
i

:=

���k j
i+1
− k

j
i

��� . (4.1)

If e
j

i
measures the distance between two consecutive points and δ

j

i
measures the angle

59
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between two consecutive edges, then∇k
j
i

measures the difference between two discrete

curvatures. Similar to (3.2) and (3.3) we take the supremum of∇k
j
i

over the level j and

we study the behaviour of the sequence of these suprema,

∇k j = sup
i∈Z
∇k

j

i
, ∇k = {∇k j} j≥0.

Similarly to conditions (3.6) and (3.7), we suppose the sequence ∇k is summable in

order to generate G2 continuous limit curve. The main goal of my work is to prove this

conjecture.

Conjecture 4.1. Let S be an interpolatory subdivision scheme, such that

1. the sequence of edges e,

2. the sequences of external angles δ,

3. the sequence of curvature differences ∇k,

are summable, then the limit curve generated is G2 continuous.

The request of the summability of∇k means that the difference between the discrete

curvatures k
j

i+1
and k

j

i
decays to 0 for any i ∈ Z as j increases to infinity. In the limit,

the discrete curvature k
j

i
should converge pointwise to the curvature of the limit curve.

Combining together these two aspects, the summability of ∇k should imply that the

curvature change continuously along the limit curve.

The sufficient geometric conditions requested for each order of regularity can be

summarized as

Summability Regularity
p j

i

p j
i_1

p j
i+1

e j
ie j

i_1

Edge length e ⇒ Convergence

® j
i

¯ j
i

± j
i

p j
i

p j
i_1

p j
i+1

External angle δ ⇒ G1 continuity

p j
i

p j
i_1

p j
i+1

p j
i+2

k j

i+1

k j

i

Difference of curvatures ∇k ⇒ G2 continuity (4.2)

In order to prove the conjecture, at certain point, we need to consider a stricter

condition on the sequences δ and ∇k: we ask that δ and ∇k behave like geometric
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sequences. It means that the two sequences are bounded by two geometric sequences

with ratios µδ, µk < 1,

δ j = O(µ
j

δ
), and ∇k j = O(µ

j

k
).

These conditions allow to compare the decay of δ with the decay of ∇k. Conjecture 4.1

requires the summability of the sequences, because much of what we prove is true with

this hypothesis and we hope that we can generalise the few results that need a stricter

condition.

Before trying to prove Conjecture 4.1, we would like to check, with some numerical

tests, if the requirement on the summability of ∇k (4.2) is reasonable or not.

4.2 Numerical tests

To test our condition (4.2) we consider different interpolatory subdivision schemes, both

G1 and G2 continuous. All the subdivision schemes considered are convergent so we do

not need to check the summability of e. For each of them we plot the values of the

discrete curvature after 2, 5 and 8 iterations of the subdivision scheme. In this way we

visualise if the discrete curvatures at a point p
j
i

converge in the limit and if the curvature

varies continuously along the limit curve. From level to level we expect that the discrete

curvature plots are close and have no jumps.

To test the G1 (3.7) and G2 (4.2) conditions we compute the sequences δ and ∇k

and we display the ratios δ j+1/δ j and ∇k j+1/∇k j depending on j for the initial control

polygon considered. If the ratio is less than 1, then it means that the corresponding

sequence behaves like a geometric sequence and is summable.

In total we test 6 different schemes: the first 3 schemes are G1 continuous, so we

verify that δ is summable while ∇k is not. Instead, for the second 3 schemes which are

G2 continuous we verify that both δ and ∇k are summable.

4-point scheme

As shown in Section 1.4.1, the 4-point scheme is only C1 continuous with Hölder reg-

ularity C2−ε. In general the generating limit curve is not G1 continuous. If the scheme

does not generate artefacts such as cusps, then the limit curve is not only C1 but also G1

continuous. This is the case of the limit curves in Figure 4.1. Analysing the behaviour

of the discrete curvatures we expect that the limit curve is not G2 continuous. In fact,

the curvature of the discrete interpolating circles increase considerably in each step of

the subdivision process. For these examples we expect that the 4-point scheme satisfies

the G1 condition (3.7) and not the G2 condition. Figure 4.2 confirms this hypothesis,

because the ratio of decay of the δ sequence is strictly less than 1, while the ratio of ∇k

converges to 1. It is well know that we cannot say anything about the behaviour of a

geometric sequence with ratio 1. The 4-point scheme is almost C2 continuous, to verify

that a C1 scheme does not satisfy our Condition (4.2) we analyse a different scheme.



62 4 Geometric condition for curvature continuity

p
6

p
0

p
1

p
2

p
3

p
4

p
5

p
9 p

0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
0

p
1

p
2

p
3

p
4

p
5

0 1 2 3 4 5 6 7

-8

-6

-4

-2

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 4.1. Top: Limit curve after 8 iterations of the 4-point scheme for different control poly-

gons. Bottom: Discrete curvatures after 2, 5, 8 iterations (from dark blue to light blue).
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Figure 4.2. Ratio of decay of the sequences δ (a) and ∇k (b) for the three different control

polygons in the Figure 4.1, applying the 4-point scheme.
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Figure 4.3. Top: Limit curve after 8 iterations of the 4-point scheme with tension parameter

w = 1/32 for different control polygons. Bottom: Discrete curvatures after 2, 5, 8 iterations

(from dark blue to light blue).

1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

(a) δ j+1/δ j

1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) ∇k j+1/∇k j
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Figure 4.5. Top: Limit curve after 8 iterations of the circle-based 4-point scheme for different

control polygons. Bottom: Discrete curvatures after 2, 5, 8 iterations (from dark blue to light

blue).
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4-point scheme with tension parameter

We recall in Section 1.4.2 that the 4-point scheme with tension parameter w is C1 con-

tinuous if we choose w ∈
�
0,
p

5−1
8

�
. In the considered examples, we fix w = 1/32 that

corresponds to taking the mean of the masks of the 2-point and 4-point scheme. Com-

paring with the 4-point scheme, we expect that the limit curve generated by this scheme

is less regular. From Figure 4.3 we can observe that the discrete curvatures increase

rapidly in each iteration of the scheme. This means that the discrete curvatures k
j
i

do

not converge. The behaviour of the sequences δ and ∇k confirms this. In Figure 4.4

we see that the ratio of the δ sequence is less then 1, while the ratio of ∇k is definitely

larger than 1, so ∇k is not summable.

Circle-based 4-point scheme

The circle-based 4-point scheme is G1 continuous as we show in Section 3.2. It is not G2

continuous, in fact in Figure 4.5 the discrete curvatures increase notably as we iterate the

subdivision scheme. This behaviour states that the discrete curvature does not converge

at the limit. In Figure 4.6 we can observe that the ratio of δ is less than 1, while the ratio

of ∇k converges to 1. Hence, the circle-based 4-point scheme satisfies the G1 condition

(3.7) but not the G2 condition (4.2).

6-point scheme

The 6-point scheme generates limit curves that are C2 continuous as proved in Section

1.4.1. We show that C2 continuity does not imply G2 continuity in general, but if we

avoid some particular cases we can assume that a C2 curve is also G2. This is the case in

the examples considered.

The plots in Figure 4.7 (bottom) reveal that the discrete curvature is continuous:

the plot after 5 iterations is almost indistinguishable from the plot at 8 iterations. The

curvature does not grow indefinitely and converges to a continuous function. In this case

we expect that the G2 condition (4.2) is satisfied. Indeed, both the ratio of decay of δ

and ∇k are less then 1, so the sequences are summable.

Incenter scheme

As the authors Deng and Wang [2010] claim, the incenter scheme is G2 continuous.

The plots of the discrete curvatures converge in few iterations to a continuous function

(see Fig. 4.9). Moreover, we can observe that the conditions for G1 (3.7) and G2 (4.2)

continuity are both satisfied by these examples, in fact Figure 4.10 shows that the ratio

of δ and ∇k is less than 1, so both sequences are summable.
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Figure 4.7. Top: Limit curve after 8 iterations of the 6-point scheme for different control poly-

gons. Bottom: Discrete curvatures after 2, 5, 8 iterations (from dark blue to light blue).
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polygons in Figure 4.7, applying the 6-point scheme.
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Figure 4.9. Top: Limit curve after 8 iterations of the incenter scheme for different control poly-

gons. Bottom: Discrete curvatures after 2, 5, 8 iterations (from dark blue to light blue).
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Figure 4.11. Top: Limit curve after 8 iterations of the circle-based 6-point scheme for different

control polygons. Bottom: Discrete curvatures after 2, 5, 8 iterations (from dark blue to light

blue).
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Figure 4.12. Ratio of decay of the sequences δ (a) and ∇k (b) for the three different control

polygons in Figure 4.11, applying the circle-based 6-point scheme.
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Circle-based 6-point scheme

Finally, we test the scheme that we design in order to obtain G2 continuous limit curves:

the circle-based 6-point scheme. The difference between the discrete curvature plots

at 5 and 8 iterations of the subdivision schemes is hardly visible in Figure 4.11. The

discrete curvatures converge to a function with some spikes but without jumps and the

limit curvature is a continuous function. Looking at Figure 4.12 we see that the ratio of

δ and ∇k is strictly less then 1, so the two sequences are summable and they satisfy the

G1 (3.7) and G2 (4.2) conditions.

From these tests we have reason to think that the G2 condition presented in (4.2) is

correct. Clearly, numerical examples can give us only an intuition and we still have to

prove that the summability of ∇k gives a limit curve that is G2 continuous.

4.3 Evidence of Conjecture 4.1

Here we try to prove Conjecture 4.1: let consider an interpolatory scheme such that the

sequences e, δ and ∇k are summable then the subdivision scheme generates a limit

curve with continuous curvature. By Theorem 3.3 and 3.7 the summability of e and δ

gives respectively the convergence and the G1 continuity of the limit curve. So, we focus

on proving that the summability of the sequence ∇k induces a limit curve that is G2

continuous. For the concept of curvature continuity we refer to Definition 2.9.

By hypothesis the subdivision scheme S is interpolatory, from a level j0 ≥ 0 on, the

points p
j0
i

, ∀i ∈ Z, are kept by the scheme p
j

2 j− j0 i
= p

j0
i

. In the limit they belong to the

limit curve. For the sake of simplicity, all the results are proved for a point denoted by

p0
0 but hold for any other point generated by the scheme.

From Definition 2.9 of curvature continuity we should verify that the curvature of

the limit curve is well defined at p0
0

and it is ε-close to the curvatures of any point in a

neighbourhood of p0
0. The idea of the proof of Conjecture 4.1 is explained below.

Idea of the proof:

Step 1 The sequence of discrete interpolating circles {C j
0
} j≥0 converges

lim
j→+∞

C
j
0
= C̄0,

where C
j
0

is the discrete circle passing through p
j
−1

, p0, p
j
1
.

As shown in Section 2.1, a circle can be defined by its tangent line and curva-

ture. In this sense, to prove the existence of C̄0 is sufficient to show:

1.1 The tangents of the discrete interpolating circles at p0 converge to the di-

rected tangent of the limit curve at p0 (Proposition 4.2)
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p
0

p j

1

p j

-1

p j

1
+1

p j

-1
+1

t
j
0
+1

t
{

0

t
j
0

lim
j→∞

t
j
0
= t̄0.

1.2 The curvatures of the discrete interpolating circles converge (Proposition

4.4)
p

0

p j

1
+1

p j

1

p j

-1
+1

p j

-1 k
j
0

1_

k
{

0

1_

k
j
0
+1

1_

lim
j→∞

k
j
0
= k̄0.

Step 2 The circle C̄0 is the osculating circle at p0 of the limit curve generated by S.

To prove this we exploit Proposition 2.2 where we proved that the osculating

circle at p0 can be seen as the limit of the circles with direct tangent t̄0 and

passing through p0 and a neighbouring point. To achieve this we have to prove:

2.1 The curvatures of the circles with tangent t̄0 and passing through p0 and

p
j
1

converge to k̄0 (Proposition 4.9)

p
0

p j

1

p j

-1

p j

1
+1p j

-1
+1

t
{

0

k(p
0
,p j

1
,t{0)

k
{

0 lim
j→∞

k(p0, p
j
1
, t̄0) = k̄0.

(This result is true in the stricter condition that δ and ∇k behave like

geometric sequences).

2.2 In a neighbourhood of p0 the curvatures of the circles passing through p0

and two following points in the neighbourhood converge to k̄0 (Conjecture

4.13)
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p
0

p j

i

p j

i+1

k(p
0
,p j

i
,p j

i+1
)

k
{

0
∃ j0 ≥ 0

lim
j→∞

k(p0, p
j
i
, p

j
i+1
) = k̄0,

∀i, 0< i ≤ 2 j− j0 .

2.3 The curvatures of the circles with directed tangent t̄0 and passing through

p0 and a point in a neighbourhood of p0, converge to k̄0 (Conjecture 4.14)

p
0

p j

i

k
{

0

k(p
0
,p j

i
,t{0)

∃ j0 ≥ 0

lim
j→∞

k(p0, p
j
i
, t̄0) = k̄0,

∀i, 0< i ≤ 2 j− j0 .

The last two points are conjectures because they still need to be proved but we

have some numerical evidences that show they are likely to be true.

Step 3 The curvature along the limit curve varies continuously.

We need to show that every couple of neighbouring points have curvatures that

are ε-close.

3.1 For any ε there exists some level j0 such that the limit curvature for each

point p
j

i
, in the neighbourhood of p0, is ε-close to k̄0 (Proposition 4.15)

p
j

it
¡

0

t
¡j

i

p
0

k
¡

0

k
¡ j

i ∃ j0 ≥ 0
���k̄0 − k̄

j
i

���< ε,

∀i, 0< i < 2 j− j0 .

3.2 Fixed a point on the limit curve p, any point r on the limit curve that ap-

proaches p has curvature that converges to the curvature at p (Conjecture

4.16)
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p

r

k(p)

k(r)

lim
r→p

k(r) = k(p).

This last point is not proved yet. To prove it, we have to exploit the dense-

ness of the points generated by the subdivision scheme S on the limit curve

and Conjectures 4.13 and 4.14.

In the following sections we give the details for each steps.

4.3.1 Step 1

We start by proving that the sequence of discrete interpolating circles {C j
0
} j≥0 converges

to a circle C̄0. By Definition 2.7, the discrete interpolating circle C
j
0

is the circle passing

through p
j
−1

, p0 and p
j
1
. The point p0 is fixed at each step, while p

j
−1

and p
j
1

change. The

circle C
j
0

is characterize by the tangent t
j
0

at p
j
0

and the discrete curvature k
j
0
,

k
j
0
=

2 sinδ
j
0


p

j
1
− p

j
−1





.

The sequence of discrete interpolating circles converges if the sequences of tangents

{t j
0
} j≥0 and discrete curvatures {k j

0
} j≥0 converge.

Using Lemmas 3.9 and 3.10 proved in [Dyn and Hormann, 2012] we show that the

sequence of tangents t
j
0

converges to the direct tangent at p0.

Proposition 4.2. If S is convergent and δ is summable, then the tangents at p0 to the

discrete interpolating circles C
j
0

converge to the directed tangent of the limit curve

lim
j→∞

t
j
0
= t̄0.

Proof: For every level of subdivision j we define as

σ
j
0
= ∢(
−−→
p

j
0
p

j
1
, t

j
0
) (4.3)

the angle between the segment
−−→
p

j
0
p

j
1

and the tangent t
j
0

at p
j
0

to the circle C
j
0
. From

Figure 4.13 we observe that

���σ j
0

��� ≤
���δ j

0

��� for all j ≥ 0. By hypothesis the sequence δ
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p
j
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p
j

1
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t
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¯
j
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±
j
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j

0

s
j

0

µ
j

0

Figure 4.13. Circle passing through p
j

−1
, p

j

0
, p

j

1
with tangent t

j

0
at p

j

0
.

is summable, which means that the general term δ j = supi∈Z

���δ j

i

��� decays to zero. In

particular, for fixed ε, there exists an initial level, that we denote with 0, such that for

all j ≥ 0 ���δ j
0

���< ε. (4.4)

Since σ
j
0

is bounded by δ
j
0
, for all j ≥ 0 we have

���σ j
0

��� < ε. (4.5)

We call θ
j

0
the angle between the secant s

j
0

and the tangent t
j
0
,

θ
j

0
= ∢(
−−−−→
p

j
−1

p
j
+1

, t
j
0
) = π−

�
∢(
−−−→
p

j
−1

p
j
0
,
−−−−→
p

j
+1

p
j
−1
) +∢(−t

j
0
,
−−−→
p

j
0
p

j
−1
)

�

= π−
�
π−α j

0
−σ j

0
+α

j
0
+ β

j
0

�
= σ

j
0
− β j

0
. (4.6)

From (4.5) we have that for all j ≥ 0, σ
j
0

decays to zero. Moreover,

���β j
0

���< ε for all j ≥ 0

because δ
j
0
= α

j
0
+ β

j
0

and δ is a null sequence (4.4).

If the secant s
j
0

is parallel to the tangent t
j
0
, then θ

j
0
= 0 by definition. This means

that for all ε > 0 and for all j ≥ 0,

���θ j
0

���=
����∢(
−−−→
p

j
−1

p
j
1
, t

j
0
)

���� =
���∢(s j

0
, t

j
0
)

��� < ε.

Then,

lim
j→∞

s
j
0
= lim

j→∞
t

j
0
.

From Theorem 3.9 and 3.10, we know that the limit secant s̄0 is the directed tangent t̄0

at p0 to the limit curve. For the uniqueness of the limit, we have that

lim
j→∞

t
j
0
= t̄0.

The tangents to the discrete interpolating circles converge to the directed tangent to the

limit curve at each point.
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We have to prove that also the sequence of discrete curvatures k
j
0

converges. In

order to prove this we need a simple geometric result that follows from the well-known

theorem in Euclid’s Elements: any angle inscribed in the circle C is half of the central

angle that subtends the same arc.

Lemma 4.3. Consider a circle C, any external angle θ ′ measures less than any inscribed

angle θ that stands on the same chord. Instead any internal angle θ ′′ is bigger than any

inscribed angle θ that stands on the same chord (see Fig. 4.14),

θ ′ < θ < θ ′′.

°

µ
µ’

µ ‘’

Figure 4.14. Comparison between angles outside θ ′, inscribed θ and inside θ ′′ a circle.

Proof: In this Lemma all the angles are meant as unsigned angles.

From the well known result of Euler in its Elements, any angle inscribed in the circle

C is half of the central angle that subtends the same arc, so we can compare the external

angle θ ′ with any angle inscribed in the circle.

We consider θ as shown in Figure 4.15a for simplicity. Then,

θ ′ = π− (α′ + β ′) = π− (π− θ − γ)− (π−δ) = θ + γ−π+δ
= θ − (π− γ−δ) = θ −σ.

All the angles are positive, thus we have

θ ′ < θ .

Otherwise, if we consider a point inside the circle, then looking to Figure 4.15b we have

θ ′′ = θ + (β − β ′′),

the angle β − β ′′ is positive, so we conclude

θ ′′ > θ .
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µ
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¯

 ̄‘

(a)

µ

µ’’

®
¯

¯’’

(b)

Figure 4.15. Geometric relations between angles outside θ ′ (a), inside θ ′′ (b) the circle and an

inscribed angle θ .

Remark 4.1. Lemma 4.3 is true for positive angles, in case that θ , θ ′, θ ′′ < 0 we simply

reverse the order of the inequalities

θ ′′ < θ < θ ′.

This is helpful to give some general rules that link the point positions and the sign of

the discrete curvature.

Remark 4.2. Suppose we fix one or two points in a triangle and vary the others, we study

how the sign of the related discrete curvatures varies.

(a) We fix two points q and r and we move the central point p. As shown in Figure 4.16a,

if p is in the half-plane above the segment
−→qr , then all the angles of the triangle are

positive and also the discrete curvature is positive. Otherwise, if p is below the

segment
−→qr , the angles of the triangle are negative, then also the discrete curvature

is negative.

(b) Suppose we fix the central point p and the tangent t of the circle passing through

q, p, r. If the two points q, r are in the half-plane below the tangent, the triangle

generated has positive angles and also the curvature is positive, as shown in Fig-

ure 4.16b. Now if we move both points above the tangent, the angles of the triangle

become negative and also the curvature turns out to be negative.

Proposition 4.4. If S is convergent and δ, ∇k are summable, then the sequence of discrete

curvatures {k j
0
} j≥0 at point p0 converges

lim
j→∞

k
j
0
= k̄0.
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p

q

r

p'

(a)

p

q

r

q' r'

t

(b)

Figure 4.16. Different configurations where the curvature changes sign: (a) we fix two points

q, r and we move the central point p from one half-plane to other, (b) we fix the central point

p, the tangent t of the circle passing through q, p, r, and we move both points q, r above the

tangent.

Proof: To prove that a limit curvature k̄0 exists we have to show that for all ε > 0, there

exists an initial level (in this case denoted by 0), such that ∀ j > 0,

���k j
0
− k

j−1

0

��� < ε. We

need to compare discrete interpolating circles at different levels.

Suppose we fix p0
−1, p0, p0

1 and as a consequence k0
0. For every configuration of points

p1
−1 and p1

1 we want to prove that

��k1
0
− k0

0

�� <
��k1

0
− k1
−1

��+
��k1

0
− k1

1

�� . (4.7)

Then using the hypothesis that ∇k is summable, namely

���k j

i
− k

j

i−1

��� < ε for all i and j,

we obtain the claim.

To do that, we fix the circle C0
0 and we study the different relations between the

curvatures k0
0

and k1
−1

, k1
1
. Each of them corresponds to a different configuration of the

points p1
−1 and p1

1 . Thus, we fix the edges


p0

0 − p1
−1



,


p1

1 − p0
0



 and we rotate the points

p1
1
, p1
−1

such that they intersect the circle C0
0
. In such a way, we are able to compare the

curvature k1
0 with k0

0 and to check the validity of (4.7). In the following we denote with

a tilde the configuration where the rotated points are on the circle C0
0 .

For a fixed circle C0
0 , the curvature k0

0 can be positive, negative or zero. For each one

of these cases we consider all the possible relations between k0
0 and k1

−1, k1
1.

We first of all consider the case when k0
0 > 0 is positive.

(a) Let k1
−1, k1

1 > k0
0 > 0.

It means that

k1
−1
=

2 sinγ1
−1

p0

0
− p0
−1



 >
2 sin γ̃1

−1

p0
0
− p0
−1



 = k̃1
−1
= k0

0
,
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Figure 4.17. Different positions of the points p1
−1

, p1
1

with respect to the circle C0
0

with positive

curvature k0
0
. The configuration where the points p1

−1
and p1

1
are rotated on the circle C0

0
is

depicted in red and any related quantities is denoted with a tilde.
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where γ
j
i
= π− (α j

i
+β

j
i
)> 0 because k1

−1
is positive. By hypothesis, from a certain

level on
��δ1
−1

�� < π/2, so γ1
−1 is an obtuse angle such that γ1

−1 < γ̃
1
−1. From Lemma

4.3, this relation between angles means that the point p1
−1

is outside the circle C0
0
.

We have the same for k1
1 > k0

0, so the point p1
1 lies outside the circle C0

0 , as shown

by Figure 4.17a (left).

Now we have to compare k1
0 with k0

0. If the two points p1
−1 and p1

1 are above the

tangent of C0
0

the curvature has different sign respect to k0
0

and it results k1
0
< k0

0

(see Fig 4.17a, right). Instead, if all the points are in the same half-plane, we can

write

γ1
0 = γ̃

1
0 + β

1
−1 − β̃1

−1 +α
1
1 − α̃1

1 > γ̃
1
0, (4.8)

since the two points are outside the circle we have β1
−1 > β̃

1
−1, α1

1 > α̃
1
1. By the law

of cosines we have



p1
−1 − p1

1



2
=


p1
−1 − p0

0



2
+


p1

1 − p0
0



2 − 2


p1
−1 − p0

0





p1
1 − p0

0



 cosγ1
0,



p̃1
−1 − p̃1

1



2
=


p1
−1 − p0

0



2
+


p1

1 − p0
0



2 − 2


p1
−1 − p0

0





p1
1 − p0

0



 cos γ̃1
0.

The cosine for an angle in [π/2,π] is a decreasing function, so



p1
−1 − p1

1



2
>


p̃1
−1 − p̃1

1



2
. (4.9)

With (4.8) and (4.9) we find

k1
0 =

2 sinγ1
0

p1

−1
− p1

1



 <
2 sin γ̃1

0

p̃1
−1
− p̃1

1



 = k̃1
0 = k0

0.

We have all the relations between the curvatures k1
1, k1

0, k1
1 and k0

0, so we obtain

�� k1
0 − k1

−1

��+
�� k1

0 − k1
1

��−
�� k1

0 − k0
0

�� = k1
−1 − k1

0 + k1
1 − k1

0 −
�
k0

0 − k1
0

�

= k1
−1 − k1

0 + k1
1 − k0

0 > k0
0 − k0

0 + k0
0 − k0

0 = 0.

(b) Let k1
−1, k1

1 < k0
0.

The curvatures k1
−1

and k1
1

can be positive or negative, so we have to study three

different cases.

- If k1
−1, k1

1 ≥ 0, then all the angles are positive and the relation

k1
−1 =

2 sinγ1
−1

p1

−1
− p0

0



 <
2 sin γ̃1

−1

p1
−1
− p0

0



 = k̃1
−1 = k0

0,

means that γ1
−1 > γ̃

1
−1. By Lemma 4.3 we know that p1

−1 is inside the circle

C0
0 . The same holds for the point p1

1 that lies inside the circle C0
0 , as we see in

Figure 4.17b (left). Since both points are inside the circle we can observe that

β1
−1 < β̃

1
−1, α1

1 < α̃
1
1.
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- If k1
−1

, k1
1
< 0, then the points p1

−1
, p1

1
are below the segments

−−−→
p0
−1

p0 and
−−→
p0p0

1 (Fig. 4.17b right). The points are both inside the triangle defined by

p0
−1, p0, p0

1, while the projected points p̃1
−1, p̃1

1 are outside the triangle. Then,

the curvatures k1
−1

, k1
1

have opposite sign with respect to k̃1
−1

, k̃1
1

and

β1
−1 < 0< β̃1

−1, α1
1 < 0< α̃1

1.

- If k1
−1
> 0 and k1

1
< 0, then both the points are inside the circle C0

0
and p1

1

is also inside the triangle defined by p0
−1, p0, p0

1. From the previous cases we

have

β1
−1 < β̃

1
−1, α1

1 < 0< α̃1
1.

The angle γ̃1
0

is greater than γ1
0
,

γ̃1
0 = γ

1
0 + β̃

1
−1 − β1

−1 + α̃
1
1 −α1

1 > γ
1
0.

for all the three cases considered. Moreover, we observe that γ1
0 and k1

0 have to be

positive because the points p1
−1 and p1

1 lie in the same half-plane of the points p0
−1

and p0
1

with respect to the tangent t0
0
. So, the curvature k1

0
has the same sign of k0

0
,

now we study which curvature is the greatest between the two.

Thanks to the relation γ̃1
0
> γ1

0
and the law of cosines,



p1
−1
− p1

1



2
=


p1
−1
− p0

0



2
+


p1

1
− p0

0



2 − 2


p1
−1
− p0

0





p1
1
− p0

0



 cosγ1
0
,



p̃1
−1 − p̃1

1



2
=


p1
−1 − p0

0



2
+


p1

1 − p0
0



2 − 2


p1
−1 − p0

0





p1
1 − p0

0



 cos γ̃1
0,

we have 

p1
−1
− p1

1



2
<


p̃1
−1
− p̃1

1



2
,

because γ1
0 is obtuse and the cosine is a decreasing function in [π/2,π]. So, we can

compare the curvature of C1
0

with the curvature of C0
0

k1
0 =

2 sinγ1
0

p1

−1
− p1

1



 >
2 sin γ̃1

0

p̃1
−1
− p̃1

1



 = k̃1
0 = k0

0.

At this point we have all the relations between k1
−1, k1

1, k1
0 and k0

0 where all the

points lie on the circle C0
0 ,

�� k1
0 − k1

−1

��+
�� k1

0 − k1
1

��−
�� k0

0 − k1
0

�� = k1
0 − k1

−1 + k1
0 − k1

1 −
�
k1

0 − k0
0

�

= k1
0
− k1
−1
− k1

1
+ k0

0
> k0

0
− k0

0
− k0

0
+ k0

0
= 0.

(c) Let k1
1 < k0

0 < k1
−1, or the case where we interchange k1

1 and k1
−1.

Similarly to the previous cases, from this relation we know that the point p1
−1

is

outside the circle C0
0 , instead p1

1 lies inside C0
0 as shown in Figure 4.17c.

In this case we do not know the relation between k1
0

and k0
0

but it is not necessary,

because
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Figure 4.18. Different positions of the points p1
−1

and p1
1

when the points p0
−1

, p0
0
, p0

1
are collinear

(k0
0
= 0).

- if k1
0
< k0

0
, then k1

−1
− k1

0
+
�� k1

0
− k1

1

��> k1
−1
− k1

0
> k0

0
− k1

0
,

- if k1
0
> k0

0
, then

�� k1
−1
− k1

0

��+ k1
0
− k1

1
> k1

0
− k1

1
> k1

0
− k0

0
.

For each configuration of points we proved that (4.7) is true under the hypothesis

that k0
0
> 0.

When k0
0 < 0, we have to consider three configurations that are symmetric to Figures

4.17a, 4.17b, 4.17c. The proof is similar to the previous case with k0
0
> 0, the only

difference is that we can only relate
��k1

0

�� with
��k0

0

��. For all the possibilities, it turns out

that the relation between
��k1

0

�� and
��k0

0

�� is sufficient to prove (4.7) in the case that k0
0
< 0.

It remains to study the configurations when k0
0 = 0. Again we have three different

configurations.

(a) Let k1
−1, k1

1 ≥ k0
0 = 0,

this means that both p1
−1

and p1
1

are in the same half-plane above the segment
−−−→
p0
−1

p0
1
.

As shown by Figure 4.18a, the curvature k1
0 is negative k1

0 < k0
0 = 0. Then,

��k1
0 − k1

−1

��+
��k1

0 − k1
1

��−
��k1

0 − k0
0

��= k1
−1 − k1

0 + k1
1 − k1

0 + k1
0 = k1

−1 − k1
0 + k1

1 > 0

and (4.7) is satisfied.

(b) Let k1
−1, k1

1 < k0
0 = 0.

It is the symmetric configuration with respect to the previous one, which means that

p1
−1 and p1

1 lie below the segment
−−−→
p0
−1p0

1. Then the curvature is positive k1
0 > k0

0, see

Figure 4.18b. This allows to check the inequality (4.7),

��k1
0 − k1

−1

��+
��k1

0 − k1
1

��−
��k1

0 − k0
0

��= k1
0 − k1

−1 + k1
0 − k1

1 − k1
0 = k1

0 − k1
−1 − k1

1 > 0.

(c) Let k1
−1
> k0

0
and k1

1
< k0

0
,

this means that the point p1
−1 is above

−−−→
p0
−1p0

1 while p1
1 is below, as in Figure 4.18c.

In this case the curvature k1
0

can be either positive and negative, but in any case the

inequality (4.7) is true.
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- If k1
0 < 0, then

��k1
0
− k1
−1

��+
��k1

0
− k1

1

��−
��k1

0
− k0

0

�� = k1
−1
−k1

0
+
��k1

0
− k1

1

��+k1
0
= k1
−1
+
��k1

0
− k1

1

��> 0.

- If k1
0 > 0, then

��k1
0
− k1
−1

��+
��k1

0
− k1

1

��−
��k1

0
− k0

0

�� =
��k1

0
− k1
−1

��+k1
0
−k1

1
−k1

0
=
��k1

0
− k1
−1

��−k1
1
> 0.

For all the cases we proved that if relation (4.7) is satisfied, then there exists an initial

level j0, depending on the position i, such that for any j ≥ j0 we can rewrite (4.7) in

general ���k j+1

2i
− k

j

i

���<
���k j+1

2i−1
− k

j+1

2i

���+
���k j+1

2i
− k

j+1

2i+1

��� . (4.10)

To show that the sequence of discrete curvatures {k j
0
} j≥ j0

converges we exploit (4.10)

to prove that is a Cauchy sequence.

If we take two different levels m > n> j0, then

��km
0 − kn

0

�� ≤
m−n−1∑

ℓ=0

��kn+ℓ+1
0 − kn+ℓ

0

��≤
m−n−1∑

ℓ=0

��kn+ℓ+1
0 − kn+ℓ+1

1

��+
��kn+ℓ+1

0 − kn+ℓ+1
−1

��

≤ 2

m−n−1∑

ℓ=0

max
i∈Z

��kn+ℓ+1
i − kn+ℓ+1

i+1

�� = 2

m−n−1∑

ℓ=0

∇kn+ℓ+1 = 2

m∑

ℓ=n+1

∇kℓ.

By hypothesis, the sequence ∇k is summable, hence the sequence of the partial sum is

a Cauchy sequence. Then, for any ε > 0 there exists some j1 ≥ j0 such that for any

m> n> j1
m∑

ℓ=n

∇kℓ <
ε

2
⇒

��km
0 − kn

0

��< ε

and {k j
0
} j≥ j0

is a Cauchy sequence.

This allows to conclude that the sequence {k j
0
} j≥0 is convergent and

lim
j→∞

k
j
0
= k̄0.

We already observe that the previous Proposition 4.4 applies to any point p
j
i
, i ∈ Z

and j ≥ j0, of the subdivision scheme S.

Lemma 4.5. The discrete curvatures k
j
i

converge uniformly for any i ∈ Z.

Proof: We call k̄
j

i
the limit of the discrete curvatures centred at p

j

i
. Using the proof of

Proposition 4.4,

���k̄ j

i
− k

j

i

��� ≤
∞∑

ℓ=0

���k j+ℓ+1

2ℓ+1 i
− k

j+ℓ

2ℓ i

��� ≤ 2

∞∑

ℓ=0

max
n∈Z

���k j+ℓ+1

n+1
− k j+ℓ+1

n

���= 2

∞∑

ℓ= j+1

∇kℓ.
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Thanks to the summability of ∇k for any ε > 0 there exists j0 such that

∞∑

ℓ= j0+1

∇kℓ <
ε

2
⇒

���k̄ j
i
− k

j
i

��� < ε, ∀i ∈ Z.

We have the same bound also for the points generated in the following levels, because

for any j > j0 ∞∑

ℓ= j

∇kℓ ≤
∞∑

ℓ= j0

∇kℓ <
ε

2
.

Strictly related to the previous proposition and lemma, we can define a new sequence

∆k j = sup
i∈Z

n���k j
2i
− k

j−1

i

���
o

, ∆k = {∆k j} j>0, (4.11)

that represents the difference of discrete curvatures at the same point on two following

levels.

Lemma 4.6. If ∇k is summable, then the sequence ∆k is summable.

Proof: In Proposition 4.4 we show that from a level j0 on, that for simplicity we call 0,
���k j+1

2i
− k

j

i

���≤
���k j+1

2i
− k

j+1

2i+1

���+
���k j+1

2i
− k

j+1

2i−1

��� ,

for each point p
j

i
of the subdivision scheme. Then, we bound the series of∆k j with twice

the series of ∇k j

∞∑

j=0

∆k j =

∞∑

j=0

sup
i∈Z

���k j+1

2i
− k

j
i

��� ≤
∞∑

j=0

sup
i∈Z

���k j+1

2i
− k

j+1

2i+1

���+sup
i∈Z

���k j+1

2i
− k

j+1

2i−1

���≤ 2

∞∑

j=1

∇k j <∞.

If ∇k is summable, then the sequence ∆k = {∆k j} j>0 is summable.

At this point it is easy to prove that the discrete interpolating circles {C j
0
} j≥0 at a

point p0
0

converge to a limit circle.

Theorem 4.7. If S is convergent, δ and ∇k are summable then the sequence of discrete

interpolating circles C
j
0

passing through p
j
−1

, p0, p
j
1

converges to a limit circle C̄0

lim
j→∞

C
j
0
= C̄0.

Proof: An equivalent way to define the discrete interpolating circle C
j
0

passing through

p
j
−1

, p0, p
j
1

is using the tangent t
j
0

at p0 and the discrete curvature k
j
0
. By Proposition

4.2 and 4.4 we have

lim
j→∞

t
j
0
= t̄0,

lim
j→∞

k
j
0
= k̄0.
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So, there exists a circle C̄0 with tangent t̄0 at p0 and curvature k̄0 such that

lim
j→∞

C
j
0
= C̄0.

4.3.2 Step 2

In this step we want to show that the limit circle C̄0 is the osculating circle at p0
0. The key

idea is to use Proposition 2.2. In that proposition we consider two sequences of circles,

both with the direct tangent of C at p as tangent, but one sequence of circles passing

through p and a sequence of points on the left of p, while the other circles passing

through p and a sequence of points on the right. If both sequences converge to the same

circle, then this is the osculating circle of C at p.

In our setting the right and left neighbourhoods of p0 at level j are composed by

points p
j

i
and p

j

−ℓ with 0 < i,ℓ ≤ 2 j. Increasing j, the neighbourhood shrinks around

p0 and we can choose a level j0 such that




p0 − p
j

i




 < ε for any 0 < i ≤ 2 j and j ≥ j0,

thanks to the summability of e. We denote with k(p0, p
j

i
, t̄0) the curvature of the circle

with tangent t̄0 at p0 and passing through p0 and p
j

i
. To apply Proposition 2.2 we need

to prove that

lim
j→∞

k(p0, p
j

i
, t̄0) = lim

j→∞
k(p

j

−ℓ, p0, t̄0) = k̄0,

where p
j
i

and p
j

−ℓ are two generic points in the left and right neighbourhood of p0,

0< i,ℓ ≤ 2 j.

Without loss of generality, we fix on points p
j
i

in the right neighbourhood of p0 and

analogously we can generalize to points p
j

−ℓ in the left neighbourhood.

The first result that we prove is that the sequence of curvatures k(p0, p
j
1
, t̄0) converges

to k̄0 (Proposition 4.9). To show this we need a general result on the edge length.

Lemma 4.8. Let S a convergent scheme and δ summable, then from a certain level on, for

any i ≥ 0, 


p
j+i
0
− p

j+i
1




 ≤



p

j
0
− p

j
1




 . (4.12)

Proof: If it is true between
−−→
p

j
0
p

j
1

and
−−−−−→
p

j+1

0
p

j+1

1
, then it is also true in general for any

positive i by induction.

By contradiction, suppose that




p
j+1

0
− p

j+1

1




>



p

j
0
− p

j
1




 .

It means that the point p
j+1

1
lies outside the two circles with centres p

j
0

and p
j
1

and radius


p
j
0
− p

j
1




 (see Fig. 4.19). Moreover, p
j+1

1
should not be too far away from the edge

−−→
p

j
0
p

j
1
,
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p j
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p j
1
+1

®
j
1
+1 ¯

j
1
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Figure 4.19. Configuration where


p
j+1

0
− p

j+1

1




>



p

j

0
− p

j

1




.

p j

0

p j

1

p j
_
1

p j

1

+1
p j

_
+

1

1
t j

0
+1

t
{

0

¾
j
+

¿ j
0

t j
0

Figure 4.20. The circle k(p0, p
j

1
, t̄0) and the angles σ

j
+ =

∢(p0p
j

1
, t̄0), τ

j

0
=∢(t

j

0
, t

j+1

0
).

because by Theorem 3.1 d is a null sequence. This means that α
j+1

1
or β

j+1

1
should be

close to π
2 but it cannot happen because δ is summable. So, from some level on, all

the angles are strictly less than π
2 and decrease to zero. In the end, we have that from

a certain level on the new edges are necessarily shorter than the previous ones, which

agrees with the hypothesis that e is summable.

Furthermore, to prove Proposition 4.9 we have to restrict the hypothesis on δ and

∇k: the two sequences should behave like convergent geometric sequences, which

means that there exist two constants µδ and µk < 1 such that

δ j = O(µ
j

δ
), ∇k j = O(µ

j

k
). (4.13)

The sequences δ and ∇k are then bounded by two convergent geometric sequences,

δ j ≤ cµ
j

δ
, ∇k j ≤ c′µ j

k
, (4.14)

where c, c′ > 0 are two positive constants. These hypotheses are not so restrictive, be-

cause in all the numerical examples that satisfy the G1 and G2 conditions, the sequences

δ and ∇k are bounded by convergent geometric sequences, see Section 4.2.

Lemma 4.6 shows that the sequence ∆k behaves like ∇k, so

∆k j ≤ 2c′µ j

k
= c′′µ j

k
⇒ ∆k j = O(µ

j

k
).

Fixing a point p
j
i
, the neighbouring discrete curvature k

j
i+1

or the curvature at the next

level k
j+1

2i
can both be bounded by k

j
i
,

k
j

i+1
≤ k

j

i
+ c′µ j

k
, and k

j+1

2i
≤ k

j

i
+ c′′µ j+1

k
. (4.15)
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p j
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p j
1
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®
j
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j
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Figure 4.21. Graphic definition of lambda in (4.17).

Proposition 4.9. If δ and ∇k behave like geometric sequences (4.14), then the sequence

of curvatures {k(p0, p
j
1
, t̄0)} j≥ j0

of the circles with tangent t̄0 and passing through p
j
0

and

p
j
1
, converges to k̄0.

Proof: We define by τ
j+1

0
= ∢(t

j
0
, t

j+1

0
) the angle between the tangents at p0 of the

discrete interpolating circles C
j
0

and C
j+1

0
. We can split this angle into

τ
j+1

0
= ∢(t

j
0
, t

j+1

0
) = ∢(t

j
0
,
−−→
p0p

j
1
) +∢(

−−→
p0p

j
1
,
−−−−→
p0p

j+1

1
) +∢(

−−−−→
p0p

j+1

1
, t

j+1

0
)

= −σ j
0
+α

j+1

1
+σ

j+1

0
= −α j

0
+α

j+1

1
+α

j+1

0
, (4.16)

where σ
j
0

is defined in (4.3) and is equal to α
j
0

as stated by Lemma 2.1.

We now study the behaviour of τ
j+1

0
with respect to the behaviour of edges, angles

and curvatures. To do this we use the definition of discrete curvature and the fact that

sin(θ) ∼ θ for small θ . By Lemma 3.6 in [Dyn and Hormann, 2012], each angle of the

scheme α
j

i
, β

j

i
is bounded by the geometric sequence µ

j

δ
because δ j itself is bounded.

Let us study separately the behaviour of the angles in (4.16).

• α
j
0
∼ sin(α

j
0
) =

k
j
0

2




p0 − p
j
1




.

• α
j+1

1
∼ sin(α

j+1

1
) =

k
j+1

1

2




p
j
1
− p

j+1

1




≤ 1
2(k

j+1

0
+ c′µ j+1

k
)
(1−λ)




p0−p
j
1






cos(β
j+1

1
)

,

with λ < 1 that represents the ratio between the projection of
−−−−→
p0p

j+1

1
on
−−→
p0p

j
1

and
−−→
p0p

j
1

itself,

λ=




p0 − p
j+1

1




 cos(α
j+1

1
)




p0 − p
j
1





(4.17)

(see Fig. 4.21).

Using the Taylor expansion of the cosine we have

1− θ
2

2
≤ cos(θ) ≤ 1 ⇒ 1≤ 1

cos(θ)
≤ 1

1− θ 2

2

≤ 1+ θ2, (4.18)
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where the last inequality is true for θ < 1
2 . From a certain level on we know that

it is true for α and β , because they are null sequences.

Thus, we have

α
j+1

1
®

1

2
(k

j+1

0
+ c′µ j+1

k
)(1−λ)




p
j
0
− p

j
1





�
1+ (β

j+1

1
)2
�

≤ 1

2
(k

j
0
+ (c′ + c′′)µ j+1

k
)(1−λ)




p
j
0
− p

j
1





�
1+ (β

j+1

1
)2
�

,

where we apply twice (4.15). With the symbol ® we mean that we bound with

an asymptotic quantity. The first step is always to substitute the angle with the

sine, since they are asymptotically equivalent, and then to use the decays of the

curvatures and the angles.

• α
j+1

0
∼ sin(α

j+1

0
) =

k
j+1

0

2




p
j
0
− p

j+1

1




≤ λ
2 (k

j
0
+ c′′µ j+1

k
)




p
j
0−p

j
1






cos(α
j+1

1
)

≤ λ
2 (k

j
0
+ c′′µ j+1

k
)




p
j
0
− p

j
1




 (1+ (α j+1

1
)2),

where again we use (4.15) and (4.18).

Combining these bounds we find the following upper bound for τ
j+1

0
,

τ
j+1

0
® −

k
j
0

2




p
j
0
− p

j
1




+ 1−λ
2

�
k

j
0
+ (c′ + c′′)µ j+1

k

�


p
j
0
− p

j
1





�
1+ (δ

j+1

1
)2
�

+
λ

2

�
k

j
0
+ c′′µ j+1

k

�


p
j
0
− p

j
1





�
1+ (δ

j+1

1
)2
�

= −
k

j
0

2




p
j
0
− p

j
1




+ 1

2

�
k

j
0
+ c′′µ j+1

k

�


p
j
0
− p

j
1





�
1+ (δ

j+1

1
)2
�

+
1

2
c′(1−λ)µ j+1

k




p
j
0
− p

j
1





�
1+ (δ

j+1

1
)2
�

=
k

j
0

2




p
j
0
− p

j
1




 (δ j+1

1
)2 +

c′′

2
µ

j+1

k




p
j
0
− p

j
1





�
1+ (δ

j+1

1
)2
�

+
1

2
c′(1−λ)µ j+1

k




p
j
0
− p

j
1





�
1+ (δ

j+1

1
)2
�

≤ c′1




p
j
0
− p

j
1




 (µ j+1

δ
)2 + c′2µ

j+1

k




p
j
0
− p

j
1




+ c′3µ
j+1

k




p
j
0
− p

j
1




 (µ j+1

δ
)2

≤ c′′1




p
j
0
− p

j
1




 (µ j+1

δ
)2 + c′′2µ

j+1

k




p
j
0
− p

j
1




 ,

where c′
1
, c′

2
, c′

3
, c′′

1
, c′′

2
are some constants.

We call k(p0, p
j
1
, t̄0) the curvature of the circle with tangent t̄0 and passing through

p0 and p
j
1
. In analogy with σ

j
0

we define σ
j
+ := ∢(

−−→
p

j
0
p

j
1
, t̄0) and

σ
j
+ = ∢(

−−→
p

j
0
p

j
1
, t̄0) = ∢(

−−→
p

j
0
p

j
1
, t

j
0
) +∢(t

j
0
, t̄0) = σ

j
0
+

∞∑

i=0

∢(t
j+i
0

, t
j+i+1

0
) = σ

j
0
+

∞∑

i=0

τ
j+i+1

0
.
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Then we are able to estimate the difference between the curvature k(p0, p
j
1
, t̄0) and k

j
0
,

���k(p0, p
j
1
, t̄0)− k

j
0

��� =

������
2 sin(σ

j
+)


p

j
0
− p

j
1





−

2 sin(σ
j
0
)




p
j
0
− p

j
1






������
∼

2

���σ j
+ −σ

j
0

���



p

j
0
− p

j
1





= 2

���
∑∞

i=0τ
j+i+1

0

���



p

j
0
− p

j
1






® 2

∑∞
i=0 c′′1




p
j+i
0
− p

j+i
1




 (µ j+i+1

δ
)2 + c′′2µ

j+i+1

k




p
j+i
0
− p

j+i
1








p

j
0
− p

j
1






≤ 2




p
j
0
− p

j
1





�
c′′1 (µ

j+1

δ
)2
∑∞

i=0(µ
2
δ
)i + c′′2µ

j+1

k

∑∞
i=0µ

i
k

�




p
j
0
− p

j
1






= 2c′′1 (µ
j+1

δ
)2

1

1−µ2
δ

+ 2c′′2µ
j+1

k

1

1−µk

= c1(µ
j+1

δ
)2 + c2µ

j+1

k
,

where in the second inequality we use (4.12). This relation allows to prove that ∀ε >
0 there exists some j0 such that for any j ≥ j0,

���k(p0, p
j
1
, t̄0)− k

j
0

��� < ε/2. Using the

convergence of k
j
0
, we have

���k(p0, p
j
1
, t̄0)− k̄0

���≤
���k(p0, p

j
1
, t̄0)− k

j
0

���+
���k j

0
− k̄0

��� < ε.

Note that this result can be achieved for every point in the subdivision scheme.

The same proposition can be proved for the sequence of curvatures k(p
j
−1

, p0, t̄0) of

circles with tangent t̄0 and passing through p
j
−1

and p0. This is not enough to show

that C̄0 is the osculating circle, because we need to show that considering circles with

tangent t̄0 and passing through p0 and any points in the neighbourhood of p0, like p
j

i

with 0< i ≤ 2 j, they converge to C̄0.

From a certain level on we show that the maximum of edge lengths decreases, now

we observe that there is a sort of order between points in a neighbourhood of p0.

Lemma 4.10. Let S be a convergent subdivision scheme. Fix a point p0 and consider its

right neighbourhood, given by the points p
j

i
with 0 < i ≤ 2 j− j0 and j ≥ j0. The points p

j

i

are ordered in the sense that



p0 − p

j

i




≤



p0 − p

j

i+1




 ,

for all 0< i ≤ 2 j− j0 and j ≥ j0.

Numerical evidence: In Figure 4.22 we display

max
j≥ j0

max
0<i<2 j− j0




p0 − p
j

i








p0 − p

j
i+1
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(b) Circle-based 4-point scheme
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(c) Circle-based 6-point scheme

Figure 4.22. Plots of max j≥ j0
max0<i<2 j− j0 ‖p0−p

j

i
‖/‖p0−p

j

i+1
‖ depending on j0 with 0≤ j0 ≤ 14.

The points are generated by the 4-point scheme with tension parameter w= 3/16 (a), the circle-

based 4-point scheme (b) and the circle-based 6-point scheme (c) starting with the three control

polygons considered in Section 4.2. The dashed line marks the value 1.

depending on j0, for the three control polygons used in the numerical tests (Section 4.2).

Figure 4.22 shows that there exists an initial level j0 such that the ratio is less than 1

(dashed line) for all j ≥ j0, for all the control polygons and the subdivision schemes

considered. For all the examples, Lemma 4.10 is true.

Proposition 4.11. If S is convergent and∇k is summable, for any ε > 0, there exists some

j0 ∈ N such that

���k j
0
− k

j

i

���< ε for any 0< i ≤ 2 j− j0 and j ≥ j0.

Proof: By definition (4.1) ∇k j = supi∈Z |k
j
i
− k

j
i+1
|, then for any points i ∈ Z and any

level j ≥ 0 ���k j

i+1
− k

j

i

��� ≤∇k j, (4.19)

and we proved in Proposition 4.4 that

���k j+1

2i
− k

j

i

���< 2∇k j+1, (4.20)

for any i ∈ Z. By Proposition 4.4 and the fact that {k j
0
} j≥0 is a Cauchy sequence, there

exists an initial level j0 ∈ N such that

���k j
0
− k

j0
0

��� < ε
2

, ∀ j ≥ j0. (4.21)

We consider the right neighbourhood of p0 composed by p
j

i
, with 0 < i ≤ 2 j− j0 and

j ≥ j0, and we can split the absolute value,

���k j
0
− k

j
i

���≤
���k j

0
− k

j0
0

���+
���k j0

0
− k

j
i

��� .

The first term is less than ε/2 by (4.21), so we focus on the difference

���k j0
0
− k

j
i

���.
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We denote with i2 the binary expression of i such that

i =

j− j0∑

ℓ=0

(i2)ℓ2
ℓ. (4.22)

To reach k
j0
0

from k
j
i
, 0 < i ≤ 2 j− j0 and j ≥ j0, we move along the branches of the tree,

displayed in Figure 4.23, following the strategy:

• if the ℓ-th digit of the binary number is 1, (i2)ℓ = 1, then we move on the left to the

previous curvature using (4.19) and then we go down to the previous level using

(4.20),

• if the ℓ-th digit of the binary number is 0, (i2)ℓ = 0, then we move directly to the

previous level using (4.20).

We repeat the procedure until we reach k
j0
0

. In this way we split the absolute value using

repeatedly (4.19) and (4.20),

���k j0
0
− k

j

i

��� ≤
j− j0∑

ℓ=0

(i2)ℓ

���k j−ℓ
I+1
− k

j−ℓ
I

���+
j− j0−1∑

ℓ=0

���k j−ℓ
I − k

j−ℓ−1

I/2

���

≤
j− j0∑

ℓ=0

(i2)ℓ∇k j−ℓ + 2

j− j0−1∑

ℓ=0

∇k j−ℓ =
j− j0∑

ℓ=0

(i2) j− j0−ℓ∇k j0+ℓ + 2

j− j0−1∑

ℓ=0

∇k j0+1+ℓ

≤ 3∇k j0

j− j0∑

ℓ=0

∇kℓ

where

I = i −
ℓ∑

n=0

(i2)n2n

is the left even index, with respect to i, where we move in order to be able to use (4.20).

Since ∇k is summable, for any ε > 0, we choose j0 ∈ N such that

3∇k j0

j− j0∑

ℓ=0

∇kℓ <
ε

2
⇒

���k j0
0
− k

j

i

��� < ε
2

. (4.23)

Taking the maximum j0 such that both (4.21) and (4.23) are bounded by ε/2, then

���k j
0
− k

j

i

��� < ǫ

for any 0< i ≤ 2 j− j0 and j ≥ j0.

Corollary 4.12. If S is convergent and ∇k is summable, for any ε > 0, then there exists

some j0 ∈ N such that

���k̄0 − k
j
i

��� < ε for any 0< i ≤ 2 j− j0 and j ≥ j0.
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Figure 4.23. Discrete curvatures for the points p
j

i
, with 0< i ≤ 2 j− j0 and j ≥ j0. We use dashed

lines to mark when we do not have a direct relation between the curvatures.

Proof: Combining the results of Proposition 4.4 and Proposition 4.11 we obtain that for

any ε there exists some j0 such that

���k̄0 − k
j
0

��� < ε
2

,

���k j
0
− k

j
i

��� < ε
2

.

Then, ���k̄0 − k
j

i

��� ≤
���k̄0 − k

j
0

���+
���k j

0
− k

j

i

��� < ε

for any 0< i ≤ 2 j− j0 and j ≥ j0.

Proposition 4.12 shows that the discrete curvatures at different points in a neigh-

bourhood of p0 are ε-close to k̄0. We want to prove the same if instead we consider the

curvature k(p0, p
j

i
, p

j

i+1
) of a circle passing through p0 and two following points p

j

i
, p

j

i+1

in the right neighbourhood of p0.

Conjecture 4.13. If S is convergent, δ and ∇k are summable, for any ε > 0, then there

exists some j0 ∈ N such that

���k̄0 − k(p0, p
j
i
, p

j
i+1
)

��� < ε, for any 0< i < 2 j− j0 and j > j0.

Any time we have to prove the convergence to k̄0 we can use Proposition 4.4 and we

choose j0 such that ���k j
0
− k̄0

��� < ε
2

,

in this way we can focus only on the relation with k
j
0
.

Numerical evidence: The idea for the proof of Conjecture 4.13 it is to use the inductive

strategy, but unfortunately we did not manage to prove it. However, we show a numerical

evidence of the conjecture. In Figure 4.24 we display

max
j≥ j0

max
0<i<2 j− j0

���k j
0
− k(p0, p

j
i
, p

j
i+1
)

��� ,
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(a) 4-point scheme with w= 1/32
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(c) 6-point scheme
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(d) Circle-based 6-point scheme

Figure 4.24. Behaviour of max j≥ j0
max0<i<2 j− j0 |k j

0
− k(p0, p

j

i , p
j

i+1
)| for increasing initial level j0,

with 0 ≤ j0 ≤ 14, and applying some subdivision schemes with different order of continuity:

(a) the 4-point scheme with w = 1/32 (C1), (b) the circle-based 4-point scheme (G1), (c) the 6-

point scheme (C2), (d) the circle-based 6-point scheme (G2). The colors refer to different control

polygons, the same used in Section 4.2.

depending on the initial level j0. We consider three different control polygons and we

apply some subdivision schemes with different order of continuity. For C1 or G1 contin-

uous schemes we can observe that shrinking the neighbourhood (for increasing j0) the

difference of curvature decreases but it does not decay to zero. While for schemes that

are C2 and G2 continuous the difference between k
j
0

and k(p0, p
j
i
, p

j
i+1
) decreases to zero

as j0 increases. This behaviour suggests that the circles k(p0, p
j
i
, p

j
i+1
) converge to k

j
0

in

the hypothesis of continuous curvature.

Conjecture 4.13 should help to prove the generalization of Proposition 4.9 to any

point p
j
i

in a right neighbourhood of p0.

Conjecture 4.14. Let S be a convergent scheme, δ and ∇k are summable, for any ε > 0
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there exists some j0 ∈ N such that

���k̄0 − k(p0, p
j
i
, t̄0)

��� < ε

for any 0 < i ≤ 2 j− j0 and j ≥ j0, where k(p0, p
j
i
, t̄0) is the curvature of the circle with

tangent t̄0 and passing through p0 and p
j
i
.

Numerical evidence: Also in this case we do not have a complete proof yet, so we can

only test it numerically. Figure 4.25 shows for different initial levels j0 the maximum of

the difference between curvatures

max
j≥ j0

max
0<i<2 j− j0

���k j
0
− k(p0, p

j
i
, t̄0)

��� .

We test the conjecture using the control polygons considered in Section 4.2 and applying

four subdivision schemes with different orders of regularity. The results are similar to the

previous conjecture: we have that k(p0, p
j
i
, t̄0) converge to k

j
0

if the scheme generates

curve with continuous curvature, otherwise the difference does not decay to zero or it

remains constant as for the 4-point scheme with tension parameter w= 1/32.

The difficulties in Conjectures 4.13 and 4.14 arise by the non-linear nature of the

curvature. In this sense it is difficult to find relations between neighbouring circles with

some common elements.

The Proposition 4.12 and Conjectures 4.13, 4.14 take into account the right neigh-

bourhood of p0, but similar results are true also considering the points p
j
−i

in a left

neighbourhood of p0, 0< i < 2 j− j0 . Once we have proved these results for both sides of

p0 we can conclude that k̄0 is the curvature of the limit curve at p0. In fact Proposition

2.2 states: if both the curvatures k(p−ℓ, p0, t̄0) and k(p0, p
j

i
, t̄0), with 0 < i,ℓ ≤ 2 j− j0

and j ≥ j0, converge to the same value k̄0, then k̄0 is the curvature of the limit curve at

p0. The same proof can be repeated for any point generated by the subdivision process,

since the discrete curvatures k
j
i

converge pointwise at a generic point p
j
i
.

4.3.3 Step 3

The final step consists of showing that the curvature changes continuously along the

limit curve, namely that two neighbouring points on the limit curve have curvatures that

are ε-close. We start by fixing p0 and we show that the limit curvatures of all the points

p
j

i
in a neighbourhood of p0 (0 < i ≤ 2 j) differ by ε from k̄0 (see Fig. 4.26).

Proposition 4.15. If S is a convergent scheme, δ and ∇k are summable, then for any

ε > 0, there exists some j0 ∈ N such that for any 0< i ≤ 2 j− j0 and j ≥ j0,

���k̄0 − k̄
j

i

��� < ε,

where k̄
j

i
is the curvature of the limit curve at p

j

i
.
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(a) 4-point scheme with w= 1/32
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Figure 4.25. Behaviour of max j≥ j0
max0<i<2 j− j0 |k j

0
− k(p0, p

j

i
, t̄0)| for increasing initial level 0 ≤

j0 ≤ 14 and applying some subdivision schemes with different order of continuity: (a) the 4-

point scheme with w = 1/32 (C1), (b) the circle-based 4-point scheme (G1), (c) the 6-point

scheme (C2), (d) the circle-based 6-point scheme (G2). The colors distinguish between different

control polygons, the same used in Section 4.2.
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of the osculating circles at p0 and p
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Figure 4.27. Comparison of the curvature

of the osculating circles in two neighbour-

ing points p and r of the limit curve.

Proof: In Lemma 4.5 we show that the discrete curvatures converge pointwise and uni-

formly, so for any ε > 0 there exists j1 > 0 such that

���k̄0 − k
j
0

��� < ε
3

and

���k̄ j
i
− k

j
i

��� < ε
3

,

for any i ∈ Z and j > j1. Moreover, we prove in Proposition 4.11 that the discrete

curvatures in a right neighbourhood of p0 are ε-close: for any ε > 0 there exists j2 > 0

such that for 0< i < 2 j− j2 and j ≥ j2,

���k j
0
− k

j

i

���< ε
3

.

Defining j0 =max{ j1, j2} we obtain for any j ≥ j0,

���k̄0 − k̄
j

i

��� ≤
���k̄0 − k

j
0

���+
���k j

0
− k

j

i

���+
���k j

i
− k̄

j

i

��� < ε.

Proposition 4.15 proves that the curvatures change continuously on the set of points

P =
¦

p
j

i
: j ≥ 0, i ∈ Z

©
that it is dense on the limit curve. However, we still have to

prove that the curvature is continuous for all the points on the limit curve. Considering

two points p and r on the limit curve, not generated by the subdivision process, we

have to prove that there exists the curvatures k(p) and k(r) and the difference of the

curvatures decays to zero as r approaches p (see Fig. 4.27).

Conjecture 4.16. If S is convergent, δ and ∇k are summable, then the limit curve C is

G2 continuous.
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Idea of the proof: Let us consider a point on the limit curve not generated by the

subdivision process p ∈ C \P. We attach to this point the tangent t and the curvature k,

t = lim
n→∞

tn, k = lim
n→∞

kn, (4.24)

where {pn}n≥0 is any sequence of points in P that converges to p from the right and tn

and kn are the direct tangent and curvature at pn. The idea of the proof is similar to the

proof of Theorem 3.7, where Dyn and Hormann [2012] prove that t is the direct tangent

of C at p. Here, to prove that the limit curve has continuous curvature we have to show

that k is the osculating circle of C at p. The continuity of the curvature k along the limit

curve C comes directly from Proposition 4.15.

Let us consider also a sequence of points {qn}n≥0 that converges to p from the left.

The idea is to exploit Proposition 2.2, proving that

lim
n→∞

k(p, pn, t) = lim
n→∞

k(qn, p, t) = k.

Without loss of generality, we focus on the sequence {pn}n≥0 and the proof for the left

side comes straightforward.

Suppose that there exist some j ≥ 0 and i ∈ Z such that p and pn are inside the piece

of limit curve defined by p
j
i

and p
j
i+1

. The difference |k− k(p, pn, t)| can be bounded

from above using the triangle inequality and exploiting the convergence of kn, tn and

pn,

|k− k(p, pn, t)| ≤ |k − kn|+
���kn − k(p

j

i
, pn, p

j

i+1
)

���+
���k(p j

i
, pn, p

j

i+1
)− k(p

j

i
, pn, tn)

���

+

���k(p j

i
, pn, tn)− k(p, pn, tn)

���+ |k(p, pn, tn)− k(p, pn, t)| .

The first two terms can be bounded by ε by the definition of k (4.24) and Definition 2.8

of curvature of an osculating circle. In order to bound by ε the third and fourth terms

we have to exploit the proofs of Proposition 4.9 and Conjectures 4.13, 4.14. The last

term is bounded by ε thanks to the convergence of the tangents tn. Unfortunately, we

cannot go more into detail, because we miss the proofs of Conjectures 4.13 and 4.14 so

we cannot show how to properly bound each term.

If we were able to cover the missing points (Conjecture 4.13, 4.14), then this last

result would concludes the proof of Conjecture 4.1. For the missing parts we provide

numerical evidence, we probably can find the missing relation between curvatures if we

consider all the possible configurations, as done in Proposition 4.4.

In the end, we show, at least numerically, that the summability of the sequence∇k is

a sufficient condition to have a G2 continuous scheme, namely a scheme that generates

limit curve with continuous curvature. As we already show in Section 4.2 there are some

geometric schemes as the incenter scheme and circle-based 6-point scheme that satisfy

this condition and they generate a G2 limit curve C .
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Outline

The study of efficient representations of multidimensional functions is an important topic

in signal processing, where such representations are useful in image compression and

feature extraction. Applications related to phenomena that can be described as functions

f ∈ L2(Rd) (e.g. acustic signals, images, etc.) have received a strong impulse from the

definition of wavelet transforms.

The success of wavelets is due to the ability to provide optimally sparse approxima-

tions of signals representing singularities much more efficiently than traditional Fourier

methods and due to the existence of fast algorithms which digitalize the domain trans-

form. Moreover, the concept of multiresolution analysis allows a unified treatment of

the continuous and discrete wavelet transform (see [Chui, 1992a; Meyer, 1995; Mallat,

2008]). A multiresolution analysis is naturally related to a subdivision scheme and a

filterbank that endorse the implementation of fast algorithms for the decomposition and

reconstruction of a signal (cf. [Hamming, 1989; Strang and Nguyen, 1996; Vetterli and

Kovačević, 2007]). All these concepts are recalled in Chapter 5.

Despite their success, wavelets are not always efficient when dealing with multi-

variate data. Wavelets work well to approximate data with pointwise singularities, but

they may not handle efficiently singularities along curves. The reason is that wavelets

are intrinsically isotropic, because they are generated by isotropically dilating a set of

generators. Instead, in multivariate signals the singularities are concentrated on lower

dimensional embedded manifolds, for example edges in natural images and shock fronts

in the solutions of transport equations. Thus, there is the necessity of introducing a rep-

resentation system that provides optimally sparse approximations of anisotropic features

and a unified treatment of continuous and discrete transforms.

The first attempt are curvelets by Candès and Donoho [2004]. Curvelets form a pyra-

mid of analysing functions defined not only at various scales and locations but also at var-

ious orientations, with the number of orientations increasing at finer scales. Since their

supports become increasingly elongated at finer scales, curvelets are a good adaptive

representation system to approximate images with edges. Curvelets have some draw-

backs: they are defined only on bidimensional space, they do not preserve the integer

lattice because they use rotations, and the lack of a multiresolution analysis that does

not allow for fast decomposition algorithms. The preservation of the integer lattice is

necessary to have a simple connection between the continuous and the digital setting.
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The contourlets were introduced by Do and Vetterli [2005]. Contourlets are the fil-

terbank version of curvelets. The advantage is the possibility to define efficient numerical

algorithms, but the disadvantage is the absence of a continuous transform.

In the same year shearlets were introduced by Guo, Kutyniok and Labate [2006] and

Labate et al. [2005]. Differently from curvelets, shearlets use shear to control directions

instead of rotations. This is fundamentally different, because it allows the shearlet sys-

tems to be derived from a finite set of generators and gives a unified treatment of the

continuous and digital signals, due to the fact that the shear matrix preserves the inte-

ger lattice. Thanks to their mathematical structure, shearlets are connected to a more

general framework than the canonical MRA, that is the so-called multiple multiresolu-

tion analysis (MMRA). Any MMRA is related to a multiple subdivision scheme that is a

scheme where in each iteration an expanding matrix and a subdivision scheme are cho-

sen from a finite dictionary, see [Sauer, 2010]. In this way, the corresponding filterbanks

allow the definition of efficient algorithms to decompose and reconstruct a signal. All

these concepts are recalled and examined in detail in Chapter 6.

Multiresolution analysis, filterbanks and subdivision schemes are based on various

types of scaling matrices that turns out to be the key ingredient of these tools, because

they fix the way to refine the given data, to manipulate them. In other words they control

the upsampling and downsampling of the data. The absolute value of the scaling matrix

determinant gives the number of disjoint cosets which is strictly connected to the number

of filters needed to analyse a signal and then to the computational complexity. In the

wavelet setting the most popular dilation matrices are the dyadic ones with determinant

2d and, in dimension d = 2, the quincunx matrix with determinant two (see [Mallat,

2008]). Each of them gives an isotropic refinement of the lattices Zd and Z2 respectively.

In the shearlet context, to gain directional flexibility, the dilation matrices are the product

of a parabolic matrix

D2 =

�
4Ip 0

0 2Id−p

�
,

and a shear matrix. The drawback of the shearlet is the huge value of the determi-

nant which is 2d+p with respect to the determinant 2d of the dyadic matrix used by the

wavelets.

The aim of this second part of my work, presented in Chapter 7, is to develop a

discrete directional transform that involves a family of dilation matrices with smaller

determinant than shearlets. The idea is to keep the good properties of shearlets, such as

the ability of catching signal features along different directions, and at the same time to

improve the computational efficiency of the transform. In this sense, we study the crucial

properties that the dilation matrices must have: to be expansive, jointly expansive and

to satisfy the slope resolution property. To design a directional transform that uses these

type of matrices we follow a different approach with respect to Labate et al. [2005] and

Kutyniok et al. [2012], because we avoid to define explicitly the scaling function for the

multiresolution analysis. We use the discrete approach of Sauer [2012], that defines the
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multiple multiresolution analysis starting from a multiple subdivision scheme. This con-

struction is convenient, because we need only to define a set of scaling matrices and the

masks of the subdivision schemes associated with them. In this way, the multiresolution

and the scaling functions are defined straightforwardly. Moreover, it allows to exploit

the computational efficiency of the subdivision schemes in the transform computation.

In Section 7.2, we study a new family of anisotropic scaling matrices having the

advantage of a smaller determinant with respect to shearlets especially when the dimen-

sion increases. Their structure is shearlet-like in the sense that they are the product of an

anisotropic diagonal matrix in Zd×d with minimum determinant and a shear matrix. We

prove that this family satisfies all the crucial properties stated above, and in particular

we prove the slope resolution property (which is in general a non trivial task) in any

dimension d . We provide also a family of filterbanks that allows to perform an MMRA.

In Section 7.4 we present a part of the extensive experimentation done in the two di-

mensional case with the aim to illustrate how the directional transform defined by these

matrices analyse an image. The numerical results confirm the effectiveness of these ma-

trices to capture the details in different directions. Finally, in Section 7.3 we focus on

anisotropic matrices for d = 3 non shearlet-like, that means they are product of a full

matrix and a shear. By substituting the anisotropic diagonal matrices with a full matrix

we can reduce even more the determinant. We present a choice of such matrices for

which we have only a numerical evidence that they satisfy the slope resolution property.
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Chapter 5

Wavelets

5.1 Wavelet system

The aim of signal processing is to give an efficient representation of signals, described as

multivariate functions f ∈ L2(Rd). Given a collection of analysing functions {φi}i∈I ⊆
L2(Rd), with I a countable index set, we want to express any signal as

f =
∑

i∈I

c f (i)φi .

This formula provides a decomposition of the function f ∈ L2(Rd) into a countable

collection of coefficients c f ⊆ ℓ2(I) (analysis process). Moreover, it also illustrates the

synthesis process where the function f is reconstructed from the coefficients c f .

Given a class of signals, the aim is to design an analysing system {φi}i∈I such that

for each function of the class, the corresponding coefficient sequence c f is sparse. If a

function is sparsely approximated, important features are described by coefficients with

large absolute values. High approximation rates can then be achieved by storing only

few coefficients.

Usually, the wavelet system in L2(Rd) is composed by the dilation and translation of

a single function ψ,

{ψM ,t = |det M |d/2ψ(M · −t) : |det M | ≥ 2, t ∈ Rd}.

In general, we consider as matrix M the isotropic matrix M = αId . In this case the

continuous wavelet transform is the mapping

L2(Rd) ∋ f 7→Wψ f (α, t) = αd/2

∫

Rd

f (x)ψ(αx − t)dx , α > 0, t ∈ Rd .

The only request on M is to be an expanding matrix.

Definition 5.1. A matrix M is an acceptable dilation or an expanding matrix for Zd , if

MZd ⊂ Zd , and all its eigenvalues are greater than one in absolute value.
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Definition 5.2. In a wavelet system, the analysing elements are obtained through the action

of dilatation and translation operators on a generating functionψ ∈ L2(Rd), called wavelet

as

{ψM ,t = |det(M)|1/2ψ(M(· − t)) : M ∈ GLd(R), t ∈ Rd}.
The continuous wavelet transform is defined to be the mapping

L2(Rd) ∋ f 7→Wψ f (M , t) = ( f ,ψM ,t ), M ∈ GLd(R), t ∈ Rd .

The matrix M belongs to the general linear group GLd(R) of d×d invertible matrices

with entries in R. Classic examples of matrices M are the dyadic matrix 2Id and the

quincunx matrix (d = 2),

M =

�
1 −1

1 1

�
,

(see [Mallat, 2008]).

The property of the dilation matrix to leave the Zd lattice invariant allows to dis-

cretize in a simpler way the continuous transform. Associated with the matrix M there

is the coset MZd ⊂ Zd and it is possible to decompose Zd into the the disjoint cosets

ξ+MZd ,

Zd =
⋃

ξ∈EM

�
ξ+MZd

�
, (5.1)

where ξ ∈ EM is a representative of Zd/MZd and EM = M[0,1)d ∩ Zd . The vector

ξ = 0 corresponds to the subgrid MZd . The set EM has |det M | elements and with E0
M

we refer to EM \ {0}. To define the discrete transform, it is sufficient to substitute the

translation parameter t ∈ Rd with the discrete translation ξ + k, ξ ∈ EM and k ∈ Zd .

The whole space Rd is recovered in the limit, in fact M− jZd → Rd because the matrix

has eigenvalues greater than one in absolute value and


M− j



→ 0 for j→∞.

For example in two dimensions, choosing the dyadic matrix
�

2 0
0 2

�
, the disjoint cosets

are shown in Figure 5.1 and the representatives are

ξ0 =

�
0

0

�
, ξ1 =

�
1

0

�
, ξ2 =

�
0

1

�
, ξ3 =

�
1

1

�
. (5.2)

The corresponding discrete wavelet system is

{ψ j,ξ,k = 2 jd/2ψ(2 j · −ξ− k) : j ∈ Z,ξ ∈ E2I2
, k ∈ Zd}, (5.3)

while the discrete wavelet transform is given by

Wψ f ( j,ξ, k) = ( f ,ψ j,ξ,k)L2(Rd).

The choice of using isotropic matrices is the drawback of the wavelets because they

are suitable to catch point singularities while we need a lot of coefficients to approximate

discontinuities along curves. Let us consider a function f that is regular everywhere
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Figure 5.1. Disjoint cosets ξ + MZd , where we consider the dyadic matrix M = 2I2 and the

representative ξ in (5.2): ξ0+MZ2 (red), ξ1+MZ2 (blue), ξ2+MZ2 (green), ξ4+MZ2 (orange).

except for a point singularity at x0. The continuous wavelet transform Wψ f ( j, t) with

the dyadic matrix has rapid asymptotic decay as j → ∞, for all values of t, unless

t = x0. Continuous wavelet transforms can be used to characterize the singular support

of a function, however it is unable to provide additional information about the geometry

of the set of singularities. Let f ∈ L2(R2) be an image that contains a singularity along

a smooth curve and {ψ j,ξ,k} the discrete wavelet basis in (5.3). For large j the only

significant wavelet coefficients ( f ,ψ j,ξ,k)L2(Rd) are those associated with the singularities.

At scale 2− j each wavelet is supported or essentially supported inside a box 2− j × 2− j,

hence there exist several elements of the wavelet basis overlapping the singularity curve

and the signal representation is not sparse. We will see that shearlets overcome the

problem with analysing elements ranging over several scales, orientations and locations

and with the property to become very elongated.

The advantage of the wavelet is the possibility to define a multiresolution analysis

that gives a unified mathematical background to the continuous and discrete transform.

Moreover, a multiresolution analysis is always associate with a subdivision scheme that

allows a fast implementation of the wavelet transform.

5.2 Multiresolution analysis

A multiresolution analysis allows to approximate signals at various resolutions with pro-

jections on different spaces. It is basically a way to subdivide the space L2(Rd) in sub-

spaces and to decompose a function f ∈ L2(Rd) by projecting on these spaces.

In [Mallat, 1989; Meyer, 1995] the concept of a multiresolution analysis related to

dyadic matrices 2Id is presented respectively in the univariate and the multivariate set-

ting. We recall the definition of a multiresolution analysis of L2(Rd) for a generic ex-

panding matrix M ∈ Rd×d (see e.g. [Madych, 1993]).
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Definition 5.3. A sequence of nested closed subspaces Vj ⊂ Vj+1 ⊂ V , j ∈ Z, in a space V

is called a multiresolution analysis (MRA) if

(i) (Traslation invariance) f ∈ Vj if and only if f (· −M− jk) ∈ Vj for all α ∈ Zd .

(ii) (Scaling property) f ∈ Vj if and only if f (M ·) ∈ Vj+1.

(iii) (Limits) The spaces are exhaustive and non redundant:

lim
j→∞

Vj = V, lim
j→−∞

Vj = {0}. (5.4)

(iv) (Basis) There exists a scaling function φ ∈ V such that {φ(· − k) : k ∈ Zd} is a stable

basis of V0.

In the case of signal analysis we consider as space V = L2(Rd).

If φ is a stable basis of V0, its scaled and shifted version {|det M | jd/2φ(M j · −k), k ∈
Zd} is a stable basis for Vj . Then, the projection on Vj gives information about the resolu-

tion M j of the signal. The approximation of a function in Vj+1 has additional information

available with respect to the approximation in Vj . We define U j as the orthogonal com-

plement of Vj in Vj+1

Vj+1 = Vj ⊕ U j , (5.5)

for any j ∈ Z. There exists a set of functions ψξ(x) such that

{|det M | jd/2ψξ(M j · −k), ξ ∈ E0
M , k ∈ Zd}

is an orthonormal basis of U j . Moreover, relation (5.4) allows to decompose the space

L2(Rd) =

∞⊕

j=−∞
U j

into the direct sum of the subspaces U j . Then, the family of functions

�
|det M | jd/2ψξ(M j · −k), j ∈ Z,ξ ∈ E0

M , k ∈ Zd
	

is a wavelet orthonormal basis of L2(Rd).

The scaling property (ii) and the nestedness of the spaces (V0 ⊂ V1) provide a scaling

function φ that is refinable, namely there exist coefficients a ∈ ℓ(Zd) such that

φ(·) =
∑

k∈Zd

a(k)φ(M · −k). (5.6)

These coefficients a can be seen as the mask of a subdivision scheme. As shown in Section

1.3, the basic limit function of a subdivision scheme is a refinable function.
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The wavelet basis functions ψξ, ξ ∈ E0
M , can be defined using the scaling function

φ. By definition of the spaces U j (5.5), we have that U0 ⊂ V1 and then

ψξ(·) =
∑

k∈Zd

bξ(k)φ(M · −k). (5.7)

Using V1 = V0 ⊕ U0, we can write the basis of V1 with respect to the basis of V0 and U0,

φ(M · −k) =
∑

ℓ∈Zd



p(k −Mℓ)φ(· − ℓ) +
∑

ξ∈E0
M

qξ(k −Mℓ)ψξ(· − ℓ)



 , (5.8)

where p,qξ ∈ ℓ1(Zd). For simplicity, from here on we do not consider the normalization

factor |det M | jd/2.

Any signal seen as a function s ∈ L2(Rd) can be approximated as closely as desired

by s j ∈ Vj and j ∈ Z, due to (5.4). By the nestedness of the spaces Vj and the definition

of U j , we can write any space Vj as

Vj = U j−1 + Vj−1,

thus the function s j has a decomposition

s j = u j−1 + s j−1

where s j−1 ∈ Vj−1 and u j−1 ∈ U j−1. Since φ and ψξ are bases respectively of Vj and U j ,

for any j ∈ Z, we can express

s j(x) =
∑

k∈Zd

c j(k)φ(M j x − k) ∈ Vj , (5.9)

u j(x) =
∑

k∈Zd

∑

ξ∈E0
M

d
j

ξ
(k)ψξ(M

j x − k) ∈ U j . (5.10)

Inserting (5.8) in the expression of s j we obtain

s j(x) =
∑

k∈Zd

∑

ℓ∈Zd

p(k −Mℓ)c j(k)φ(M j−1 x − ℓ)
︸ ︷︷ ︸

s j−1

+
∑

k∈Zd

∑

ξ∈E0
M

∑

ℓ∈Zd

qξ(k −Mℓ)c j(k)ψξ(M
j−1 x − ℓ)

︸ ︷︷ ︸
u j−1

,

so the coefficients in the expression of s j and u j can be computed iteratively

c j−1 =
∑

k∈Zd

p(k −M ·)c j(k),

d
j−1

ξ
=
∑

k∈Zd

qξ(k −M ·)c j(k), (5.11)



108 5 Wavelets

with ξ ∈ E0
M . These formulas express the decomposition algorithm where we compute

the coefficients of the expression of s j−1 and u j−1. Vice versa using (5.6) and (5.7) in

the sum s j−1 + u j−1 we obtain

s j(x) = s j−1(x) + u j−1(x)

=
∑

k∈Zd

∑

ℓ∈Zd



a(k −Mℓ)c j−1(ℓ) +
∑

ξ∈E0
M

bξ(k−Mℓ)d
j−1

ξ
(ℓ)



φ(M j x − k).

It means that starting from the coefficients c j−1 and {d j−1

ξ
}ξ∈E0

M
we can reconstruct the

signal by computing

c j =
∑

ℓ∈Zd

a(· −Mℓ)c j−1(ℓ) +
∑

ξ∈E0
M

bξ(· −Mℓ)d
j−1

ξ
(ℓ). (5.12)

This expresses the reconstruction algorithm.

Reintroducing the normalization factor |det M | jd/2, the relations (5.11) and (5.12)

for the decomposition and reconstruction of a signal become

c j−1 =
p

det M
∑

k∈Zd

p(k −M ·)c j(k),

d
j−1

ξ
=
p

det M
∑

k∈Zd

qξ(k−M ·)c j(k), (5.13)

c j =
1p

det M

∑

ℓ∈Zd

a(· −Mℓ)c j−1(ℓ) +
∑

ξ∈E0
M

bξ(· −Mℓ)d
j−1

ξ
(ℓ).

In the next section we deduce these relations from a different point of view.

5.3 Filterbank

A multiresolution analysis and a subdivision scheme lead to an efficient implementation

for the analysis and synthesis of a signal by means of a filterbank. Filterbanks allow an

analytic decomposition of signals using discrete operations on discrete signals. Good

filterbanks reconstruct the original signal if there are no changes in the decomposition

coefficients. An extensive presentation of filters can be found in [Hamming, 1989; Strang

and Nguyen, 1996; Vetterli and Kovačević, 2007].

Definition 5.4. An operator F : ℓ(Zd) → ℓ(Zd) is called an LTI filter (Linear and Time

Invariant) if it is a linear operator that commutes with translation,

τk(Fc) = (Fc)(·+ k) = F(c(· + k)) = Fτkc

for c ∈ ℓ(Zd), k ∈ Zd and τkc = c(·+ k) is the translation operator.
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Let us consider the sequence δ = {δ0,k, k ∈ Zd}, the impulse response f ∈ ℓ(Zd) of

the filter F is f = Fδ. A FIR (Finite Impulse Response) filter is such that f ∈ ℓ00(Z
d).

The application of a filter to a signal c can be written as a convolution with the impulse

response

Fc = f ∗ c =
∑

k∈Zd

f (· − k)c(k).

Once we consider an expanding matrix M , any element of Zd is given by the sum of

a representative of cosets ξ ∈ EM plus an element of MZd , as seen in (5.1). Thus, the

application of the filter can be written as

( f ∗ c)(α) = ( f ∗ c)(ξ+Mβ) = ( fξ ∗ c)(Mβ).

In this way, we introduce m = |det M | impulse responses fξ, with ξ ∈ EM , that define

a filterbank. A filterbank is simply a set of filters and, in this case, it is called critically

sampled because the decimation rate |det M | coincides with the number m of considered

filters. In the following, we always consider critically sampled filterbanks.

The downsampling operator ↓M , with respect to an expanding matrix M , is defined

as

↓M c = c(M ·), (5.14)

where c ∈ ℓ(Zd).

Using the definition of downsampling (5.14), the analysis filters are operators that

decompose a given signal c ∈ ℓ(Zd) into the vector

c 7→
¦

c1
ξ =↓M ( fξ ∗ c), ξ ∈ EM

©
. (5.15)

The output vector has the same amount of information of the initial signal c, in fact the

increase of information given by the m filters is compensated by the subsampling ↓M .

It is natural to try to invert the process: starting with the vector {c1
ξ
}ξ∈EM

, to recon-

struct the signal c. So we introduce the upsampling operator ↑M

↑M c(α) =

�
c(M−1α) α ∈ MZd ,

0 α /∈ MZd ,
(5.16)

for c ∈ ℓ(Zd). It is worthwhile to remark that ↓M↑M is an identity, while ↑M↓M is a lossy

operator due to the decimation involved in the upsampling,

↑M↓M c(α) =

�
c(α) α ∈ MZd ,

0 α /∈ MZd .
(5.17)

Figure 5.2 shows the effect of these two operations (downsampling and upsampling) on

an image.

We reconstruct the signal by convolving it with a set of filters gξ, ξ ∈ EM , called

synthesis filters

c̃ =
∑

ξ∈EM

gξ∗ ↑M c1
ξ
. (5.18)
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↓M→ ↑M→





188 189 191 191 194

187 188 189 190 192

185 187 188 189 189

185 187 188 190 189

182 183 185 186 186




↓M→




188 191 194

185 188 189

182 185 186



 ↑M→





188 0 191 0 194

0 0 0 0 0

185 0 188 0 189

0 0 0 0 0

182 0 185 0 186





Figure 5.2. Downsampling and upsampling process with respect to the dyadic matrix M = 2I2.

From left to right: the original image, the downsampling and the upsampling. Below we display

the same operations on a part of the data.

The whole process is sketched in Figure 5.3 and can be repeated by applying the analysis

filters to the vector c1
0 .

Comparing the decomposition and reconstruction process in filter analysis (5.15),

(5.18) with the relation between wavelet coefficients (5.11), (5.12), we recognise a strict

relation between filterbanks and the multiresolution setting. In the analysis process,

c j−1 =
∑

k∈Zd p(k −M ·)c j(k) ↔ c1
0 =

∑
α∈Zd f0(M · −α)c(α),

d
j−1

ξ
=
∑

k∈Zd qξ(k −M ·)c j(k) ↔ c1
ξ
=
∑
α∈Zd fξ(M · −α)c(α).

The two descriptions coincide if we set f0(ℓ) = p(−ℓ) and fξ(ℓ) = qξ(−ℓ) for any ℓ ∈ Zd .

In the two different settings, the synthesis process is described by

c j =
∑

ℓ∈Zd

a(· −Mℓ)c j−1(ℓ) +
∑

ξ∈E0
M

bξ(· −Mℓ)d
j−1

ξ
(ℓ),

c̃ =
∑

α∈Zd

g0(· −Mα)c1
0
(α) +

∑

ξ∈E0
M

gξ(· −Mα)c1
ξ
(α),

and they coincide if we impose g0 = a and gξ = bξ, ξ ∈ E0
M .

We observe that f0 and g0 have a formulation that is different from the other filters

fξ and gξ with ξ ∈ E0
M . The difference comes from the wavelet setting where the wavelet

basis is composed by dilating and shifting the scaling function φ and the wavelet func-

tions ψξ, ξ ∈ E0
M . Thus, {φ(M j · −k)} is the basis of Vj that contains the smooth part of

the signal, while {ψξ(M j · −k)} is the basis of the space U j that contains the details of

the signal. For this reason the filters f0 and g0 are called low-pass filters and fξ, gξ with

ξ ∈ E0
M are called high-pass filters.
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Figure 5.3. (a) Scheme of one level of decomposition and reconstruction of a signal c by con-

volving with the analysis filters { fξ}ξ∈EM
and the synthesis filters {gξ}ξ∈EM

. (b) The process can

be iterated by decomposing c1
0
. The reconstruction process is depicted in red.

A perfect reconstruction filterbank is when the analysis filters are the inverse of the

synthesis filters and the reconstructed signal is exactly the initial signal c,

c =
∑

ξ∈EM

gξ∗ ↑M↓M fξ ∗ c. (5.19)

A simple example of perfect reconstruction filterbank is given by the translational oper-

ator τξ, ∑

ξ∈EM

τξ ↑M↓M τ−ξ = I . (5.20)

If we expand the synthesis process (5.18) with a generic filter g, then

g∗ ↑M c =
∑

α∈MZd

g(· −α)c(M−1α) =
∑

α∈Zd

g(· −Mα)c(α) = Sg c, (5.21)

and we recognize the refinement equation of a subdivision scheme with mask g. There

is a strict connection between synthesis filters and subdivision schemes. In particular it

is possible to define a filterbank starting from an interpolatory subdivision scheme. This

construction is called prediction-correction method and it is described in [Conti et al.,

2010; Sauer, 2012]. A subdivision scheme with mask a takes coarse data and predicts

how to refine them, thus it can be used as a synthesis filters g0 = a. In this case, the

best way to define the low-pass analysis filter is to set f0 = δ, so the analysis process

samples the initial data c, ↓M f0c(·) = c(M ·). With these filters and choosing an inter-

polatory scheme, namely a(M ·) = δ, we reproduce data from the coarse grid MZd as

reconstructed values, in fact

(g0∗ ↑M↓M f0 ∗ c)(M ·) = (Sa ↓M c)(M ·) =
∑

α∈Zd

a(M · −Mα)c(Mα) = c(M ·).
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The prediction from decimated values is correct only on the coarse grid (MZd). We

have to compensate the error on the other cosets. In this sense, we define the high-pass

analysis filters as

fξ = τ−ξ(δ− ↑M↓M a), ξ ∈ E0
M ,

where

τ−ξ ↑M↓M a =

�
a(i − ξ) i ∈ MZd

0 i /∈ MZd

is the upsampling of the submask with respect to ξ ∈ EM . The correction takes care also

of the cosets ξ+MZd . Finally, the high-pass reconstruction filters have the role to shift

the correction values at the correct place

gξ = τξδ, ξ ∈ E0
M .

Summarizing, the impulses responses generated by an interpolatory subdivision scheme

Sa are

Low-pass High-pass

Analysis f0 = δ fξ = τ−ξ(δ− ↑M↓M a)

Synthesis g0 = a gξ = τξδ

(5.22)

for ξ ∈ E0
M and the corresponding filters are

F0 = I , Fξ = τ−ξ(I− ↑M↓M A),

G0 = A, Gξ = τξ,

where A is the operator related to the impulse response a, Ac = a ∗ c. The filter A is

different from the subdivision scheme Sa that has the upsampling inside, see (5.21).

The filters F0 and Gξ, ξ ∈ E0
M , are linear and time invariant filters. We have to show the

same for the others filters. It is easy to verify that τβG0 = G0τβ , in fact

τβAc = τβ

�∑

k∈Zd

a(i − k)c(k)

�
=
∑

k∈Zd

a(i − k + β)c(k) =
∑

ℓ∈Zd

a(i − ℓ)c(ℓ+ β) = Aτβ c.

In a similar way we can verify that τβ(τ−ξ ↑M↓M A) = τ−ξ ↑M↓M Aτβ and also Fξ,

ξ ∈ E0
M , are linear and time invariant filters.

In symbol calculus, these filters (5.22) can be described as

f ∗
0
(z) = 1, f ∗

ξ
(z) = zξ

�
1−

∑
i∈Zd a(Mi − ξ)zMi−ξ� ,

g∗0(z) = a∗(z), g∗
ξ
(z) = z−ξ,

(5.23)

with ξ ∈ E0
M .
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It remains to prove that the filters defined in (5.22) generate a perfect reconstruction

filterbank,
∑

ξ∈EM

�
gξ∗ ↑M↓M fξ ∗ c

�
(i) = (a∗ ↑M↓M c)(i) +

∑

ξ∈E0
M

(gξ∗ ↑M↓M fξ ∗ c)(i)

=
∑

k∈Zd

(i∈MZd )

a(i − k)c(k) +
∑

ξ∈E0
M

�
τξ ↑M↓M τ−ξc

�
(i)−

∑

ξ∈E0
M

�
τξ∗ ↑M↓M (τ−ξ ↑M↓M a) ∗ c

�
(i)

=
∑

k∈Zd

a(M j − k)c(k) + (I− ↑M↓M )c −
∑

ξ∈E0
M

�
τξ∗ ↑M↓M (τ−ξ ↑M↓M a) ∗ c

�
(i)

=
∑

k∈Zd

a(M j − k)c(k) + c(i)− c(M j)−
∑

ξ∈E0
M

�
τξ∗ ↑M↓M (τ−ξ ↑M↓M a) ∗ c

�
(i).

We distinguish between high-pass and low-pass filters and we exploit the fact that the

traslational operator is a perfect reconstruction filterbank (5.20). If the index i has to

be on the subgrid MZd , then we substitute i with M j, j ∈ Zd . We analyse the last term

separately in order to simplify it. First of all we can rewrite,

(τ−ξ ↑M↓M a) ∗ c(i) =
∑

k∈Zd

(i−k∈MZd)

a(i − k− ξ)c(k) =
∑

ℓ∈Zd

a(Mℓ− ξ)c(i −Mℓ).

Inserting this in the last term, we get

∑

ξ∈E0
M

�
τξ∗ ↑M↓M (τ−ξ ↑M↓M a) ∗ c

�
(i) =

∑

ξ∈E0
M

τξ∗ ↑M↓M
�∑

ℓ∈Zd

a(Mℓ− ξ)c(i −Mℓ)

�

=
∑

ξ∈E0
M

τξ

∑

ℓ∈Zd

(i∈MZd )

a(Mℓ− ξ)c(i −Mℓ) =
∑

ξ∈E0
M

∑

ℓ∈Zd

a(Mℓ− ξ)c(M j + ξ−Mℓ)

=
∑

ξ∈E0
M

∑

k∈MZd+ξ

a(M j − k)c(k).

We know that any element in Zd can be written as MZd+ξ for some ξ ∈ EM . Considering

all the terms together we have
∑

ξ∈EM

�
gξ∗ ↑M↓M fξ ∗ c

�
(i)

=
∑

k∈Zd

a(M j − k)c(k) + c(i)− c(M j)−
∑

ξ∈E0
M

�
τξ∗ ↑M↓M (τ−ξ ↑M↓M a) ∗ c

�
(i)

=
∑

ξ∈EM

∑

k∈MZd+ξ

a(M j − k)c(k) + c(i)− c(M j)−
∑

ξ∈E0
M

∑

k∈MZd+ξ

a(M j − k)c(k)

=
∑

k∈MZd

a(M j − k)c(k)− c(M j) + c(i) = c(M j)− c(M j) + c(i) = c(i),
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where we exploit that Sa is an interpolatory scheme (a(M ·) = δ). In this way we prove

that the choice of filters in (5.22) design a perfect reconstruction filterbank.

In general, an interpolatory (convergent) subdivision always allows to define a per-

fect reconstruction filterbank. Moreover, Derado [1999] prove that for any expanding

matrix M , it is possible to define a convergent interpolatory scheme. In conclusion, we

only need to have a suitable expanding matrix. This is why the thesis focuses on the prob-

lem of finding good matrices that allow to construct an alternative to shearlet providing

a directional approach.



Chapter 6

Shearlets

6.1 Shearlet system

After the discussion on the limitations of wavelet systems in higher dimensions, we in-

troduce the shearlet system as a general framework to overcome these drawbacks.

In order to achieve optimally sparse approximations of signals exhibiting anisotropic

singularities, the analysing elements must consist of waveforms ranging over several

scales, orientations and locations with the ability to become very elongated. These char-

acteristics require a combination of an appropriate scaling operator to generate elements

at different scales, an orthogonal operator to change their orientations, and a translation

operator to displace these elements.

As scaling operator, shearlets consider the parabolic scaling matrices

Dα =

�
α2Ip 0

0 αId−p

�
, (6.1)

with α ≥ 2, p ≤ d . This matrix is called parabolic because one eigenvalue is the square

of the other, moreover it is responsible for the anisotropy of shearlets.

The parameter p in (6.1) allows to catch singularities in p-dimensional manifolds.

For example, in three dimension there are different types of anisotropic features like

singularities in one dimensional and two dimensional manifold. For d dimensional data,

the singularities are embedded in manifolds at most (d − 1) dimensional. Our work

mainly focuses on detecting directions of edges, so we fix p = d − 1.

To change the orientation of waveforms, it is not possible to consider the rotation

operator, because it destroys the structure of the integer lattice Zd when the angle of

rotation is different from kπ2 , k ∈ Z. This is one drawback of curvelets. It is impor-

tant to preserve the integer lattice in order to define the discrete transform simply as a

discretization of the continuous transform. An alternative orthogonal transformation is

given by the shear matrix

SW =

�
Ip W

0 Id−p

�
(6.2)

115
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where W ∈ Rp×(d−p). If W is integer, then SW leaves the integer lattice invariant. Looking

at the 2× 2 matrix

Sw =

�
1 w

0 1

�
, (6.3)

we observe that the shear matrices parametrize the orientations using the slope w, rather

than the angle as done by the rotations. The shear matrices are unimodular matrices,

detSW = ±1, whose inverse is again a shear matrix

S−1
W = S−W , (6.4)

and they satisfy

S
j
W = S jW and SW SW ′ = SW+W ′ . (6.5)

Due to these properties, the parabolic scaling matrix and the shear matrix “pseudo-

commute”, i.e.

DαSW = SαW Dα. (6.6)

In general, two matrices A and B are pseudo-commuting matrices if there exists some

n, m ∈ N such that BAm = AnB. In the shearlet case we have

DαSW =

�
α2Ip 0

0 α Id−p

��
Ip W

0 Id−p

�
=

�
α2Ip α2W

0 αId−p

�

=

�
Ip αW

0 Id−p

��
α2Ip 0

0 αId−p

�
= SαW Dα = SαW Dα.

Finally as translation operator, we consider the usual translation with respect to a

real parameter. Given this setting we can define the continuous shearlet system and the

continuous shearlet transform.

Definition 6.1. For ψ ∈ L2(Rd), the continuous shearlet system is defined by

{ψα,W,t = det Dα
1/2ψ(DαSW · −t), α≥ 2, W ∈ Rp×(d−p), t ∈ Rd}. (6.7)

Then the continuous shearlet transform of f ∈ L2(Rd) is the map

L2(Rd) ∈ f 7→ SHψ f (α,W, t) = ( f ,ψα,W,t)L2(Rd),

from f to the coefficients SHψ f (α,W, t) associated with the scale α, the orientation W and

the localization t ∈ Rd .

Since we focus on the two dimensional setting, we consider shear Sw of the form

(6.3). Moreover, if the function is mostly concentrated on the vertical axis in the fre-

quency domain, then the higher values of the continuous shearlet transform SHψ f (α, w, t)

are given for w→∞. This is a limit for the applications. To overcome this limitation,

the cone-adapted shearlet transform is introduced by Guo, Kutyniok and Labate [2006].
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C1

C2

C3

C4

R

Figure 6.1. Division of the plane in four cones Ci , i = 1, . . . , 4, and a square R centred in the

origin.

The idea is to divide the frequency plane in four cones Ci, i = 1, . . . , 4, while separating

the low frequency region by cutting out a square R centred around the origin (see Fig.

6.1).

In this way the orientation parameter w varies on a finite range and we have a better

distribution of the orientations that can be reached. To have a complete representation

system in addition to ψ that works on the cones C1 ∪ C3, we introduce another function

ψ̃ that works on the vertical cones C2∪C4 and φ associated to the low frequency region

R.

Definition 6.2. For φ, ψ, ψ̃ ∈ L2(R2), the cone adapted continuous shearlet system is

defined as

{φt , t ∈ R2} ∪ {ψα,w,t ,α > 1, |w| ≤ 1+α, t ∈ R2} ∪ {ψ̃α,w,t ,α > 1, |w| ≤ 1+α, t ∈ R2},

where

φt = φ(· − t),

ψα,w,t = det Dα
1/2ψ(DαSw · −t),

ψ̃α,w,t = det Dα
1/2ψ̃(DαSw · −t).

The cone adapted continuous shearlet transform of f ∈ L2(Rd) is the map

f 7→ SHφ,ψ,ψ̃ f (t′, (α, w, t), (α̃, w̃, t̃)) = (( f ,φt ′)L2(R2), ( f ,ψα,w,t)L2(R2), ( f , ψ̃α̃,w̃, t̃)L2(R2)).

A simple choice for ψ̃ is reversing the roles of x1 and x2, ψ̃(x1, x2) =ψ(x2, x1). A similar

division of the frequency plane is operated also by contourlets [Do and Vetterli, 2005].

Shearlets give a sparse representation of the analysed signal where it is smooth, while

the shearlet transform decays slowly in a neighbourhood of the discontinuity. Differently

from wavelets, the shearlet system provides information about the geometry of the dis-

continuity, thanks to the scale α, orientation W and location t. In this way, shearlets

can handle edges, corner points and junctions. The order of decay of the continuous
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shearlet transform in a smooth area or in a neighbourhood of a discontinuity is studied

in [Kutyniok and Labate, 2009; Guo and Labate, 2009, 2017].

In the discrete setting, we choose the orientation and localization varying on integers,

while we fix an integer value for α and we consider different powers of the scaling matrix

Dα. The minimum value that α can assume is 2,

D2 =

�
4Ip 0

0 2Id−p

�
. (6.8)

Definition 6.3. A discrete shearlet system associated to ψ ∈ L2(Rd) is composed by

{ψ j,W,k = 2
3
4 jψ(D2 j SW · −k), j ∈ Z, W ∈ Zp×(d−p), k ∈ Zd}. (6.9)

The discrete shearlet transform of f ∈ L2(Rd) is the map

f 7→ SHψ f ( j,W, k) = ( f ,ψ j,W,k)L2(Rd),

where j ∈ Z represents the scaling index, W ∈ Zp×(d−p) the orientation matrix and k ∈ Zd

the position index.

Analogously to the continuous shearlet transform, it is possible to define a cone

adapted discrete shearlet transform [Guo, Kutyniok and Labate, 2006]. For simplicity

we fix d = 2.

Definition 6.4. For φ, ψ, ψ̃ ∈ L2(R2) the cone adapted discrete shearlet system is de-

fined by

{φk, k ∈ Z2} ∪ {ψ j,w,k, j ≥ 0, |w| ≤ 2 j, k ∈ Z2} ∪ {ψ̃ j,w,k, j ≥ 0, |w| ≤ 2 j, k ∈ Z2}

where

φk = φ(· − k)

ψ j,w,k = 2
3
4 jψ(D2 j Sw · −k)

ψ̃ j,w,k = 2
3
4 jψ̃(D2 j Sw · −k)

The cone adapted continuous shearlet transform of f ∈ L2(Rd) is the map

f 7→ SHφ,ψ,ψ̃ f (k′, ( j, w, k), ( j̃ , w̃, k̃)) = (( f ,φk′)L2(R2), ( f ,ψ j,w,k)L2(R2), ( f , ψ̃ j̃,w̃,k̃)L2(R2)).

The cone-adapted discrete shearlet transform provides a particular decomposition of

the frequency space into frequency regions associated with different scales j and orien-

tations w.

If we define the orientation W of the shear matrix to vary on the integers, then we can

even restrict more by considering a finite set of shear matrices {Si}, i ∈ {0, . . . , s−1}= Zs

and defining the shearlet system

{ψ j,i,k = 2
3
4 jψ(M

j

i
· −k), Mi = D2Si, i ∈ Zs, k ∈ Zd}.
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Differently to the continuous transform, we have to guarantee that this shearlet system

is capable of detecting all directions in space, namely the set of matrices {Mi}i∈Zs
have

to satisfy the slope resolution property.

Definition 6.5. A family {Mi = D2Si}, i ∈ Zs provides the slope resolution property if

there exists a reference line ℓ0 through the origin such that for any line ℓ, there exists a

sequence ε ∈ Zn
s , n ∈ N, such that Mεℓ0→ ℓ.

This property ensures that the shearlet system {ψ j,i,k} is capable of deducing the

direction of a singularity from the index ε. Of course the slope resolution property in

more dimensions considers hyperplanes instead of lines.

In two dimensions, Kutyniok and Sauer [2009] consider the two matrices

M0 =

�
4 0

0 2

�
, M1 = M0

�
1 1

0 1

�
=

�
4 4

0 2

�
, (6.10)

the product of the parabolic matrix D2 and the shear matrices S0 = I2 and S1, defined as

in (6.3).

Let ℓ be a line through the origin with slope s(ℓ) and let s(ℓ,ε) denote the slope of

the line M−1
ε ℓ, with ε ∈ Zn

2, n ∈ N.

Theorem 6.1 [Kutyniok and Sauer, 2009]. Let ℓ be a line through the origin with slope

s(ℓ) ∈ (0,∞]. Then for each s ∈
�

1
2 ,∞

�
and δ > 0, there exist some n ∈ N and ε ∈ Zn

2

such that

|s(ℓ,ε)− s| < δ.

With the matrices M0 and M1 we can cover all the directions with slope in
�

1
2 ,∞

�
,

namely we cover a cone. Now if we consider also the matrices M−1 = D2S−1 and

eMi = D2
eSi, eSi =

�
1 0

i 1

�
, i = −1,0,1, (6.11)

we can cover all the possible slopes in the plane, see Figure 6.2. Hence, the matrices

{Mi , eMi , i = −1,0,1} satisfy the slope resolution property. Each pair of matrices can

reach directions inside a cone, which is analogous to the cone adapted discrete shearlet

system.

The generalization in higher dimension d is quite different. One important applica-

tion of shearlets is the detection of tangent planes at a certain point. In order to capture

directional singularities across arbitrary hyperplanes we consider shearlet scaling matri-

ces of the form

Mi = D2Si, D2 =

�
4Id−1 0

0 2

�
, Si =

�
Id−1 ei

0 1

�
, (6.12)

where ei ∈ Zd−1 are the unit vectors whose i-th component is equal to 1, (ei)ℓ = δi,ℓ,

ℓ= 1, . . . , d − 1.
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Figure 6.2. Directions covered by the application of the matrices M j , j = −1,0,1 (dark grey) or

by the application of the matrices eM j , j = −1,0,1 (light gray).

Given a hyperplane H = {x ∈ Rd : vT x = 0} ⊂ Rd whose normal has the property

vd 6= 0, we normalize v such that vd = 1. Writing v = (s, 1)T , we call s ∈ Rd−1 the

slope of the hyperplane H. In [Sauer, 2012] it is proved that any hyperplane can be

obtained from a single reference hyperplane by applying a proper matrix Mε. This is the

multivariate version of the slope resolution property. We denote with

∆d−1 :=

¨
t ∈ Rd−1 : tk ≥ 0,

d−1∑

k=1

tk ≤ 1

«
, (6.13)

the unit simplex in Rd−1.

Theorem 6.2 [Sauer, 2012]. Let H be a hyperplane with normal v = (s′, 1)T , s′ ∈ Rd−1,

for each vector of the form (s, 1)T , s ∈ 2∆d−1 and δ > 0, then there exist some n ∈ N and

ε ∈ Zn
d

such that




2nM−1

ε

�
s′

1

�
−
�

s

1

�



< δ.

Theorem 6.2 exploits hyperplanes with slope in 2∆d−1. In order to get all the possible

slopes inRd−1 we have to consider all the combinations of the unit vectors e j with positive

and negative entries and change the “fixed” coordinate. Fixing the last entry in (6.12) is

completely arbitrary. To handle a complete discrete shearlet analysis we have to consider

d2d−1 sets of matrices like (6.12).

The discrete shearlet system in (6.9) is defined by a suitable functionψ ∈ L2(Rd). As

in the wavelet case (see Section 5.2), we would like to have a multiresolution analysis

and avoid to give explicitly the scaling and wavelet functions. Thus, there is the neces-

sity to generalise the concept of multiresolution analysis to a directional multiresolution

analysis, see [Kutyniok and Sauer, 2009; Sauer, 2012].
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6.2 Multiple multiresolution analysis and multiple subdivision

scheme

The idea of Kutyniok and Sauer [2009] is to connect a multiresolution analysis to shear-

lets and to provide a feasible fast shearlet decomposition. Thus, they consider a new

class of non-stationary bivariate subdivision schemes which incorporate directionality in

a particular way. The constructed subdivision scheme provides the opportunity to adap-

tively change the orientation of the data during the subdivision process, since in each

iteration it applies one different subdivision scheme associated with a scaling matrix cho-

sen from a finite family. The limit function depends on the choice of subdivision scheme

and scaling matrix in each step. This type of scheme is called multiple subdivision scheme

and is presented in [Sauer, 2010, 2012]. Even thought it is developed as theoretical

background of shearlets, the multiple multiresolution analysis is a general concept that

can be defined by a suitable family of expanding matrices different from (6.12).

From now on we use the notation Zs = Z/sZ = {0, . . . , s − 1} to enumerate the s

different schemes of the family and Z∞s for the infinite sequences with values in Zs,

Z∞s =
⋃

n∈N
Zn

s .

Definition 6.6. A multiple subdivision scheme Sε consists of a finite family {Si}i∈Zs
of s

subdivision schemes with respect to the dilatation matrices {Mi}i∈Zs
, i.e.,

Sic =
∑

α∈Zd

ai(· −Miα) c(α),

where c ∈ ℓ(Zd) and, as usual, the masks ai are assumed to be of finite support, ai ∈
ℓ00(Z

d). In each iteration of the subdivision process we apply a subdivision scheme chosen

from the family. The n-th iteration of the subdivision operator, related to the sequence

ε ∈ Zn
s , ε= (ε1, . . . ,εn), takes the form

Sεc = Sεn
· · ·Sε1

c =
∑

α∈Zd

aε(· −Mεα) c(α),

where aε, c ∈ ℓ(Zd) and the scaling matrix is Mε = Mεn
· · ·Mε1

.

We can visualize the multiple subdivision process as a tree (Fig. 6.3), in which the

direction of the refined data depends on the branch that we choose.

The multiple subdivision scheme is a “generalization” of the concept of non stationary

subdivision scheme where in each step of the subdivision we change the refinement rules

ai and the scaling matrix Mi, i ∈ Zs. A non stationary subdivision scheme is generally

defined as a subdivision process where the mask a( j) is different in each iteration j, while

the scaling matrix M does not change.

The operator Sε related to a multiple subdivision scheme defines a refinement process

for any ε ∈ Zn
s , if the associated scaling matrix Mε is expanding and



M−1
ε



 → 0, for
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c
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Figure 6.3. The tree shows all the possible choices of subdivision schemes after two refinement

steps.

n→∞, independently of ε ∈ Zn
s . This is equivalent to requiring that the joint spectral

radius of the family {Mi}i∈Zs
is less than 1,

ρ({Mi}i∈Zs
) = lim sup

n→∞
max
ε∈Zn

s



M−1
ε



1/n
< 1, (6.14)

for any matrix norm, because all the norms are equivalent on finite dimensional spaces.

A family of matrices that satisfies this condition is called jointly expanding.

As for classical subdivision schemes we can give the definition of a convergent mul-

tiple subdivision scheme.

Definition 6.7. A multiple scheme is called uniformly convergent if for any sequence ε ∈
Zn

s , n ∈ N, and any c ∈ ℓ(Zd), there exists a uniformly continuous function fε,c : Rd → R
such that

lim
n→∞

sup
α∈Zd

���Sεn
· · ·Sε1

c − fε,c

�
M−1
ε1
· · ·M−1

εn
α
���� = 0, (6.15)

and that fε,c 6= 0 for at least one choice of c.

Remark 6.1. Choosing ε = (i, i, . . .), we have that the convergence of the subdivision

scheme Si, i ∈ Zs is a necessary condition for the convergence of the multiple subdivision

scheme.

A result similar to Propositions 1.11, 1.17 can be proved for a multiple subdivision

scheme. In dimension higher than 1 the forward difference operator∇ : ℓ(Zd)→ ℓd(Zd)

is defined by

∇c :=




c(· − e1)− c(·)

...

c(· − ed)− c(·)



 ,

where ek ∈ Zd are unit vectors whose k-th component is equal to 1, (ek)i = δi,k. The

convergence of a multiple subdivision scheme depends on the existence of the difference
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schemes SBi
such that

∇Sai
= SBi
∇, (6.16)

for any i ∈ Zs, and SBi
are joint contractive. The normalized p-joint spectral radius of

these operators is

ρp(Bi , Mi) = lim sup
n→∞

sup
ε∈Zn

s

 
(det Mε)

−1/p sup
c∈∇ℓp(Z

d )\{0}



SBǫ
c




p

‖c‖p

!1/n

, (6.17)

where the determinant of the matrix Mε, det(Mε) is a factor of normalization, (cf. [Cha-

rina et al., 2005a]).

Theorem 6.3 [Sauer, 2010]. The multiple subdivision scheme based on (ai, Mi), with

i ∈ Zs, converges if and only if there exists the difference schemes (Bi , Mi) such that the

normalized p-joint spectral radius ρp(Bi , Mi)< 1.

This theorem is the analogous of Proposition 1.17 in the “multiple” setting.

A different option to study the convergence and regularity of a scheme is considering

the Laurent formalism.

Lemma 6.4 [Sauer, 2010]. If a multiple subdivision scheme {(ai , Mi)}i∈Zs
converges, then

a∗i (z) ∈ 〈zMi − 1〉 : 〈z − 1〉

for any i ∈ Zs.

The Laurent polynomial related to the subdivision scheme Si = Sai
is an element of

the quotient of the ideals

〈zM − 1〉 =
(

d∑

j=1

f j(z)(z
v j − 1), f j ∈ R[z1, . . . , zd]

)
,

〈z − 1〉 =
(

d∑

j=1

f j(z)(z j − 1), f j ∈ R[z1, . . . , zd]

)
,

where v j are the column vectors of the matrix M (see [Möller and Sauer, 2004]). We

recall that an ideal I ⊆ R in the ring R satisfies

gI = {g f | f ∈ I} ⊆ I , ∀g ∈ R,

and for I , J ⊆ R the quotient ideal is defined as

I : J = { f ∈ R | f J ⊆ I}.

In one dimension and choosing the isotropic matrix M = kI , the quotient 〈zk−1〉 : 〈z−1〉
is generated by the element (1+ z+ . . .+ zk−1), so the symbol of the scheme has a factor
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of this form. If the multiple subdivision scheme converges, then we factorize the Laurent

polynomials as

[1− z]a∗i (z) = B∗i (z)[z
M
i − 1] ∀i ∈ Zs.

This relation between ai and Bi is equivalent to (6.16), because the symbol of the back-

ward difference operator is

∇∗ =




z1 − 1

...

zd − 1



 ,

and

[zM − 1] =




zv1 − 1

...

zvd − 1



 , with M = [v1, . . . , vd] ∈ Zd×d .

Lemma 6.4 gives a necessary condition for the convergence of a scheme, which is similar

to Corollary 1.9 in the univariate case. Sauer [2010] presents a sufficient condition that

is the generalization of Proposition 1.11, 1.14, 1.16 to multiple subdivision schemes. In

this sense we need a canonical representation of the quotient ideal 〈zM − 1〉 : 〈z − 1〉.

Proposition 6.5 [Sauer, 2010]. Given a Smith factorization M = ΘΣΘ′ of the matrix M,

the quotient ideal is

〈zM − 1〉 : 〈z − 1〉= 〈zM − 1,ψM (z)〉,

where

ψM (z) =

d∏

k=1

σk−1∑

ℓ=0

zℓθk =

d∏

k=1

zσkθk − 1

zθk − 1
, (6.18)

and θk are the column vectors of Θ and σk are the diagonal elements of Σ.

The polynomial ψM (z) is called the canonical factor of the matrix M . In the multivariate

case the canonical factor is equivalent to the factor (z + 1) of the univariate binary case

(1.18). Sauer [2010] gives two sufficient conditions for the convergence of a multiple

subdivision scheme using the canonical factor.

Theorem 6.6 [Sauer, 2010]. The multiple subdivision scheme defined by the dictionary of

masks and scaling matrices (ai, Mi), i ∈ Zs with a∗i =ψMi
converges in L1.

Corollary 6.7 [Sauer, 2010]. The multiple subdivision scheme defined by the dictionary

(ai, Mi), i ∈ Zs of masks and scaling matrices with a∗i =
1

det Mi
ψ2

Mi
converges to a continuous

limit function.

Corollary 6.7 arises directly from Theorem 6.6, because the autoconvolution of com-

pactly supported L1 functions is continuous. An analogous result for an interpolatory

vector scheme is stated in [Conti et al., 2008].
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Derado [1999] and Han [2003] establish the existence of convergent interpolatory

subdivision schemes and refinable functions for arbitrary scaling matrices. Sauer [2010]

generalizes this result to multiple subdivision schemes. To generate a multiple subdivi-

sion scheme it is sufficient to give a set of expanding matrices {Mi}i∈Zs
that are jointly

expanding matrices. We will see in the next section how to define it.

The limit basis function of any convergent scheme is a refinable function. The same

happens in the case of multiple subdivision schemes in the sense of a joint refinement,

because there is not a unique function which is scaled and shifted but all the functions

φε, ε ∈ Z∞s are related to each others. Given ε= (ε1,ε∞) ∈ Z∞s , the formula

φε =↑Mε1 (φε∞ ∗ aε1
) =

∑

α∈Zd

aε1
(α)φε∞(Mε1

· −α), (6.19)

is a multiple refinement equation that can be read as: ε1 selects which scaling matrix

is used in the refinement equation, while ε∞ chooses which function is used in the

refinement. This works for any decomposition of ε, i.e ε= (ε(n),ε∞) ∈ Z∞s , into a finite

part ε(n) and an infinite part ε∞

φε =
∑

α∈Zd

aε(n)(α)φε∞(Mε(n) · −α), (6.20)

where the mask aε(n) = Sε(n)δ. In general, the initial terms of ε select the mask and

the scaling matrix, while the remaining infinite terms select the function used in the

refinement equation. If the multiple subdivision scheme is convergent, then the limit

function φε is multiple refinable as in (6.20).

The multiple refinement equation (6.19) enables to define an appropriate general-

ization of the multiresolution analysis. In line with the definition of multiple subdivision

schemes and multiple refinement equations, such a generalization is called a multiple

multiresolution analysis (MMRA). The first attempt of this multiple multiresolution anal-

ysis is presented in [Kutyniok and Sauer, 2009] and is revisited in [Sauer, 2012].

Suppose that the limit functions φε are stable, hence we can define the sets

V0 = span{φε(· −α) : ε ∈ Z∞s , α ∈ Zd},
Vj = span{φε(Mε( j) · −α) : ε ∈ Z∞s , ε( j) ∈ Z j

s , α ∈ Zd}. (6.21)

Thanks to (6.19), the spaces satisfy the scaling property (ii) in Definition 5.3 of a mul-

tiresolution analysis. However, V0 is generated by a set of functions φε that is not count-

able. In order to find a countable set of generators for the subspaces Vj , Sauer [2012]

introduces

Z∗s =
�
ε = (ε(n), 0, . . .) : ε(n) ∈ Zn

s , n ∈ N
	
⊂ Z∞s ,

the set of sequences with finitely many non zeros entries. We can substitute the functions

φε with ε ∈ Z∗s in (6.21). The functions φε, ε ∈ Z∗s , are limit functions of a subdivision
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scheme where S0 is repeated infinitely many times. With this choice of functions we can

define the subspaces

V ∗j = span{φε(Mε( j) · −α) : ε ∈ Z∗s , ε( j) ∈ Z j
s , α ∈ Zd}. (6.22)

By definition the spaces V ∗j are translation invariant. They satisfy the scaling property (ii)

and they are nested thanks to (6.19): for any ε = (ε1,ε∞) ∈ Z∗s , the function φε ∈ V ∗0 is

φε =
∑

α∈Zd

aε1
(α)φε∞(Mε1

· −α),

a linear combination of functions in V ∗1 , because ε∞ ∈ Z∗s .

Guo, Labate, Lim, Weiss and Wilson [2006a,b] present a different generalization of

the multiresolution analysis that they call AB-multiresolution analysis (AB-MRA). They

consider two groups of matrices A and B, where A contains the expanding matrices,

while B contains the matrices that are responsible of the directionality. The shearlets fit

in this theory if A is defined by the powers of the scaling matrix, A= {D j
2
, j ∈ Z}, while

B contains the shear matrices, B = {SW ,W ∈ Zd−1}. Let us denote by Da ∈ A and Db ∈ B

the elements of the two groups A and B. Then, the nested spaces of the AB-MRA are

defined by

V0 = span{Dbφ(· − k), k ∈ Zd , Db ∈ B},
Vj = span{D j

aDbφ(· − k), k ∈ Zd , Db ∈ B, j ∈ Z}.

The descriptions of L2(Rd) given by MMRA and AB-MRA are different. In the AB-MRA

setting the spaces Vj are generated by a scaled, rotated, shifted version of a unique

scaling function φ while in MMRA we have to consider a countable number of scaling

functions φε, with ε ∈ Z∗s . Vice versa in MMRA we consider a finite set of shear matrices

{Si, i ∈ Zs} while the group B contains all the possible shear matrices in the space,

B = {SW ,W ∈ Zd−1}. Moreover, the spaces in AB-MRA are the span with respect to

translation and shear while in the MMRA setting we take the span only with respect

to translation. This is the reason why in an MMRA we need a countable set of scaling

functions to compensate for the finite number of shear matrices considered. We decide

in our work to consider the MMRA setting because it is more flexible to consider the

scaling and shear matrices together: when we move from one level to the next we do

not have to consider all the possible shears. The AB-MRA decomposes the space as if

in each step we consider all the branches of the tree together. Moreover, the MMRA

setting is related to a multiple subdivision scheme that allows us to concentrate only on

the choice of the jointly expanding matrices. In fact, we show in the following how we

can define a convergent multiple subdivision scheme by giving a set of jointly expanding

matrices.
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6.2.1 Construction of a multiple subdivision scheme

Following [Sauer, 2012; Cotronei et al., 2015] we present a construction of a multiple

subdivision scheme given a generic set of jointly expanding matrices {Mi}i∈Zs
. Choosing

a scaling matrix Mi , i ∈ Zs, from the family, we consider the Smith factorization

Mi = ΘiΣiΘ
′
i , (6.23)

where Θi,Θ
′
i ∈ Zd are unimodular matrices, i.e. |detΘi| = |detΘi| = 1, and Σi is a di-

agonal matrix with eigenvalues σℓ, ℓ= 1, . . . , d . Such a factorization always exists even

if it is not unique in general. It can be computed by a combination of Gauss elimination

and Euclidean division and, if we order the diagonal values with respect to divisibility,

then we call it the Smith normal form; see [Marcus and Minc, 1992] for details.

To define a convergent subdivision scheme associated with Mi , we first construct a

subdivision scheme for the diagonal matrix Σi. Considering a diagonal matrix, we can

associate a scheme that is the tensor product of univariate interpolatory schemes bℓ with

arity equal to the diagonal values σℓ of the matrix, ℓ = 1, . . . , d . The tensor product of

convergent interpolatory schemes is a convergent interpolatory scheme. Thus, we have

for free that the designed subdivision scheme is convergent. The mask bΣi
is given by

bΣi
:=

d⊗

ℓ=1

bℓ, bΣi
(α) =

d∏

ℓ=1

bℓ(αℓ), α ∈ Zd ,

and the corresponding symbol is

b∗
Σi
(z) =

∑

α∈Zd

bΣi
(α) zα =

d∏

ℓ=1

b∗ℓ(zℓ), z ∈ (C \ {0})d . (6.24)

The mask ai of the scheme associated with Mi is computed using the mask of Σi as

ai = bΣi
(Θ−1

i ·),

and its symbol is

a∗i (z) =
∑

α∈Zd

bΣi
(Θ−1

i α)z
α =

∑

α∈Zd

bΣi
(α)zΘiα = b∗

Σi
(zΘi ). (6.25)

The unimodular matrix Θi takes the role of a resampling operator. In general, for any

unimodular matrix Θ ∈ Zd×d , the resampled sequence c(Θ−1·) has the symbol

�
c(Θ−1·)

�∗
(z) = c∗(zΘ), zΘ :=

�
zθ1 , . . . , zθd

�
, Θ = [θ1, . . . ,θd].

Once we have constructed in this way a subdivision scheme Sai
for each matrix Mi ,

i ∈ Zs, the convergence of the multiple subdivision scheme (ai, Mi) has to be studied.

Theorem 6.3 or Theorem 6.6 and Corollary 6.7 are the tools to prove the convergence.
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Let us show an example of such a construction. We select a collection of univariate

interpolatory subdivision schemes with arity σℓ, ℓ= 1, . . . , d . For each matrix Mi, i ∈ Zs,

we define the scheme as the tensor product of the interpolatory schemes and we prove

that the multiple subdivision scheme generated converges to a continuous limit function.

Example 6.1. We consider the 2-point scheme with arity σℓ which has the mask

bℓ =
1

σℓ
{0,1,2, . . . ,σℓ − 1,σℓ,σℓ − 1, . . . , 2,1,0},

and symbol

b∗ℓ(z) =
z−(σℓ−1)

σℓ
(1+ z + z2 + . . .+ zσℓ−1)2, ℓ = 1, . . . , d .

According to (6.24), the symbol of Σi takes the form

b∗
Σi
(z) =

d∏

ℓ=1

z
−(σℓ−1)

ℓ

σℓ

�σℓ−1∑

k=0

zk
ℓ

�2

,

and according to (6.25) the symbol of the scheme associated with Mi is

a∗i (z) = b∗
Σi
(zΘi ) =

d∏

ℓ=1

z−(σℓ−1)θℓ

σℓ

�σℓ−1∑

k=0

zkθℓ

�2

. (6.26)

With this construction we obtain a convergent multiple subdivision scheme.

Lemma 6.8. The multiple subdivision scheme generated by (ai , Mi), as defined in (6.26)

for all i ∈ Zs , is convergent and converges to a continuous function.

Proof: For each matrix Mi, i ∈ Zs, the corresponding canonical factor is

ψMi
(z) =

d∏

ℓ=1

zσℓθℓ − 1

zσℓ − 1
=

d∏

ℓ=1

(1+ zθℓ + . . .+ z(σℓ−1)θℓ) =

d∏

ℓ=1

�σℓ−1∑

k=0

zkθℓ

�
.

We observe that

1

det Mi

ψ2
Mi
(z) =

d∏

ℓ=1

1

σℓ

�σℓ−1∑

k=0

zkθℓ

�2

is equal to a∗i in (6.26) without the shift factors z−(σℓ−1)θℓ . Corollary 6.7 yields that the

multiple subdivision scheme generated by (ai , Mi), i ∈ Zs, converges to a continuous

limit function.

This example proves that for any family of jointly expanding matrices {Mi}i∈Zs
, there

exists at least a multiple subdivision scheme that converges to a continuous function. Ob-

viously, it is possible to choose in different ways the univariate interpolatory subdivision

schemes bℓ with arity σℓ, but in this case we have to prove the convergence using The-

orem 6.3. This simple construction justifies our choice to focus on matrices that can

substitute shearlet scaling matrices. In fact, we show that whenever we have a family of

jointly expanding matrices {Mi}i∈Zs
we can construct a convergent multiple subdivision

scheme and a multiple mutiresolution analysis.



129 6 Shearlets

c

M
0 Mi

Ms

M
0

M
0

M
0 Mi

Mi
Mi Ms

MsMs

... ...

c1
0 c1

i c1
s fd1

s,kgfd1

i,kgfd1

0,kg

... ...............

c2
00

c2
0sc2

0i
fd2

0s,kgfd2

0i,kgfd2

00,kg c2
is

c2
iic2

i0
c2

ssc2
sic2

s0fd2

is,kgfd2

ii,kgfd2

i0,kg fd2
ss,kgfd2

si,kgfd2

s0,kg

Figure 6.4. Scheme of the possible decompositions of the signal c for the different choices of

filterbanks after two levels.

6.3 Filterbanks

Similar to the MRA (cf. Section 5.3) also in the multiple multiresolution setting we can

define a filterbank that allows to decompose and to reconstruct a signal. The difference to

the theory developed for MRA is that here we consider a set of scaling matrices {Mi}i∈Zs

and we have to define a filterbank for each matrix Mi ,

Analysis filters: Fi,k, Synthesis filters: Gi,k,

where k ∈ Zmi
, |det Mi |= mi .

Considering a signal c ∈ ℓ(Zd) and choosing a matrix from the family {Mi}i∈Zs
, the

convolution with the corresponding analysis filters {Fi,k}k∈Zmi
decomposes the signal

into

c1
i =↓Mi

Fi,0c and d1
i,k =↓Mi

Fi,kc, k ∈ Zmi
\ {0},

an approximation component and mi − 1 details. Repeating the decomposition process

n times and choosing different matrices for each iteration, we decompose the signal c

into

cn
ε , and dn

ε,k, k ∈ Zmεn
. (6.27)

with ε ∈ Zn
s . The whole decomposition process can be visualized as a tree, see Figure 6.4.

Even if the filters are critically sampled after n decomposition steps we have sn differ-

ent branches and coefficients to be stored. In fact, in each step the coefficients cn′
ε′ with

ε′ ∈ Zn′
s and n′ < n, can be decomposed by choosing one of the s matrices Mi, i ∈ Zs.

Further, if the number of matrices of the set {Mi}i∈Zs
is less than mini∈Zs

|det Mi | and

we do not save the approximation coefficients cn′
ε′ until the last level n, then the total
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storage is a constant multiple of the storage for the original signal c. The set {Mi}i∈Zs
of

s matrices is said to be sufficiently expansive if

s <min
i∈Zs

|det Mi | . (6.28)

The following result is a slight modification of Lemma 2 in [Sauer, 2012].

Lemma 6.9. If the set of matrices {Mi}i∈Zs
is sufficiently expansive (6.28), then the storage

requirement for an MMRA’s tree of depth n is O(|c|), where |c| = {α ∈ Zd : c(α) 6= 0}.

Proof: We define C ∈ N such that

C =max
i∈Zs

max
k∈Zmi

�� fi,k

�� .

Convolving a signal c with one of the filters fi,k requires a storage less than |c| + C .

Downsampling by Mi reduces the storage by a factor of |det Mi|. After one level of de-

composition the storage requirement σ is

σ(1) =
∑

ε1∈Zs

 
|c|+ C��det Mε1

�� +
mε1∑

k=1

|c|+ C��det Mε1

��

!
=
∑

ε1∈Zs

�
|c|+ C��det Mε1

�� + (mε1
− 1)

|c|+ C��det Mε1

��

�

=
∑

ε1∈Zs

|c|+ C = s(|c|+ C),

where mε1
=
��det Mε1

��, ε1 ∈ Zs. The first term of the equation is the storage for c1
ε1

while

the second term represents the storage of d1
ε1,k

with k ∈ Zmε1
\ {0}. At the second step

we decompose c1
ε1

for any ε1 ∈ Zs, and the storage requirement becomes

σ(2) =
∑

ε∈Z2
s

� |c|+ 2C

|det Mε|
+ (mε2

− 1)
|c|+ 2C

|det Mε|

�
+
∑

ε1∈Zs

(mε1
− 1)

|c|+ C��det Mε1

�� .

After n iterations of the decomposition process, the storage amounts to

σ(n) =
∑

ε∈Zn
s

� |c|+ nC

|det Mε|
+ (mεn

− 1)
|c|+ nC

|det Mε|

�
+

n−1∑

j=1

∑

ε∈Z j
s

(mε j
− 1)
|c|+ jC

|det Mε|

=
∑

ε∈Zn
s

|c|+ nC

|det Mε|
+

n∑

j=1

∑

ε∈Z j
s

(mε j
− 1)
|c|+ jC

|det Mε|
.

For any ε ∈ Zn
s ,

|det Mε| =
n∏

j=1

���det Mε j

��� >
n∏

j=1

min
i∈Zs

|det Mi | =
�

min
i∈Zs

|det Mi |
�n

.
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Then,
∑

ε∈Zn
s

1

|det Mε|
<
∑

ε∈Zn
s

1

(mini∈Zs
|det Mi |)n

=

�
s

mini∈Zs
|det Mi |

�n

.

We call this ratio q and by hypothesis we have

q =
s

mini∈Zs
|det Mi |

< 1.

Including this bound into the storage computation we have

σ(n) < (|c|+ nC)qn +

n∑

j=1

(|c|+ jC)
∑

ε∈Z j
s

maxi∈Zs
|det Mi| − 1

(mini∈Zs
|det Mi|) j

= (|c|+ nC)qn +

�
max
i∈Zs

|det Mi| − 1

� n∑

j=1

(|c|+ jC)q j

= (|c|+ nC)qn + |c|
�

max
i∈Zs

|det Mi | − 1

�
1− qn+1

1− q
+

�
max
i∈Zs

|det Mi | − 1

�
C

n∑

j=1

jq j.

For any n ∈ N we can understand the last term as a Riemann sum that can be bounded

by the integral on all positive numbers,

n∑

j=1

jq j ≤
∫ n

1

xqx dx <

∫ ∞

0

xqx dx =
1

ln q2
.

Finally, σ(n) is bounded,

σ(n) < |c| qn + |c|
�

max
i∈Zs

|det Mi | − 1

�
1− qn+1

1− q
+

�
max
i∈Zs

|det Mi | − 1

�
C

ln q2

<
|c| qn + |c|

�
maxi∈Zs

|det Mi | − 1
�
− |c|maxi∈Zs

|det Mi|qn+1

1− q
+

C

ln q2
max
i∈Zs

|det Mi |

= |c| qn
1− q maxi∈Zs

|det Mi |
1− q

+ |c|
maxi∈Zs

|det Mi | − 1

1− q
+

C

ln q2
max
i∈Zs

|det Mi |

< |c|
1− q maxi∈Zs

|det Mi |
1− q

+ |c|
maxi∈Zs

|det Mi| − 1

1− q
+

C

lnq2
max
i∈Zs

|det Mi |

= |c|max
i∈Zs

|det Mi |
1− q

1− q
+

C

ln q2
max
i∈Zs

|det Mi |

< |c|max
i∈Zs

|det Mi |+ |c|
C

lnq2
max
i∈Zs

|det Mi| < |c|max
i∈Zs

|det Mi |
�

C

ln q2
+ 1

�
= O(|c|).

In the last terms we use that q < 1 and
�

C
lnq2 + 1

�
< 1. This proves the statement.
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Figure 6.5. Scheme of the reconstruction process after two levels of decomposition: (a) the

signal is reconstructed following one branch of the tree, (b) the signal is reconstructed at each

level by taking the mean of all the reconstructed coefficients at the same knot. In this way all

the branches of the tree are taken into account.

Now in order to reconstruct the original signal, we have to read the tree backward.

Considering a branch denoted by ε= (ε′,εn) ∈ Zn
s , we reconstruct the coefficient cn−1

ε′ by

upsampling and convolving {cn
ε ; dn

ε,k
, k ∈ Zmεn

} with the synthesis filters Gεn,k, k ∈ Zmεn
,

cn−1
ε′ = Gεn ,0 ↑Mεn

cn
ε +

mεn
−1∑

k=1

Gεn,k ↑Mεn
dn
ε,k. (6.29)

In this way, we reconstruct the signal following a branch of the tree. An example of such

a reconstruction is shown in Figure 6.5a.

Exploiting all the branches independently we have sn different ways to reconstruct

c. Each branch has different features, because it works along different directions. In the

reconstruction process, particularly after compression, it can be useful to exploit all the

tree to keep advantages from the different reconstructions. In this case we reconstruct

the signal c using all the branches of the tree. The one level reconstruction formula

(6.29) is the same; the difference is that at each node of the tree we take the mean

of the s different reconstructions. Suppose as before to have a tree with n levels of

decomposition, from a node at level n− 1 we have s children. Each of these branches is

denoted by εi = (ε′, i), with ε′ ∈ Zn−1
s and i ∈ Zs. If we apply one level of reconstruction

using (6.29) to each branch εi , then we obtain s different reconstructions which can be

denoted by cn−1
εi . Choosing one of these reconstructed coefficients cn−1

εi and following the

branch indicated with ε′, we reconstruct the initial signal c by following only the branch

εi, as explained above. If instead we want to exploit all the different reconstructions
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cn−1
εi for all i ∈ Zs, then we take the mean (or a weighted average)

cn−1
ε′ =

s−1∑

i=0

cn−1
εi

s
=

1

s

s−1∑

i=0

 
Gi,0 ↑Mi

cn
εi +

mi−1∑

k=1

Gi,k ↑Mi
dn
εi ,k

!
,

and we repeat the process. The whole reconstruction process after two levels of decom-

position is shown in Figure 6.5b.

In Section 5.3, we recall that any expanding matrix defines a subdivision scheme and

such scheme allows to construct a filterbank with the prediction-correction method. The

multiple subdivision scheme proposed in Section 6.2.1 is composed by a set of expanding

matrices {Mi}i∈Zs
and their corresponding interpolatory subdivision schemes Si = Sai

.

Using the prediction-correction method we can provide a filterbank for each subdivision

scheme Sai
and any expanding matrix Mi , i ∈ Zs. By (5.22), the filterbank related to Mi

is defined as
Fi,0 = I , Fi,k = τ−ξk

(I− ↑Mi
↓Mi

Ai),

Gi,0 = Ai, Gi,k = τξk
,

(6.30)

where Ai is the operator related to the mask ai and the impulse responses are

fi,0 = δ, fi,k = τ−ξk
(δ− ↑Mi

↓Mi
ai)

gi,0 = ai, gi,k = τξk
δ

where k ∈ Zmi
\ {0} and ξk ∈ E0

Mi
. The symbols of the impulse response becomes

f ∗i,0(z) = 1, f ∗
i,k
(z) = zξk −

∑
ℓ∈Zd ai(Miℓ− ξk)z

Miℓ,

g∗i,0(z) = a∗i (z), g∗
i,k
(z) = z−ξk ,

(6.31)

where k ∈ Zmi
\ {0} and ξk ∈ E0

Mi
. Note that in the shearlet case we have to consider s

filterbanks, one for each expanding matrix Mi and subdivision schemes Sai
, i ∈ Zs.

This framework is defined for shearlet scaling matrices, but it works for any type of

expanding matrices Mi , i ∈ Zs. Now we study which properties the matrices Mi , i ∈ Zs,

need to satisfy in order to generate a directional transform similar to shearlets and a

multiple multiresolution analysis with lower complexity.
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Chapter 7

Anisotropic Scaling Matrices

As we already saw, the concepts of multiple multiresolution analysis and multiple sub-

division schemes are general and are characterized by a set of expanding matrices. In

Section 7.1 we summarize which properties are sufficient for a set of matrices to gener-

ate a directional transform and a multiple multiresolution analysis. Indeed, the aim of

our work is to substitute shearlets by keeping all the good properties they have and by

improving the computational cost of the analysis process. The determinant of the scaling

matrices gives the number of filters needed to decompose and reconstruct a signal, so

it is connected to the computational efficiency of the signal processing. The determi-

nant of the parabolic scaling matrix is quite high (2d+p), which is the drawback of the

shearlet transform. To improve this drawback we propose some matrices that satisfy all

the required properties and have smaller determinant. We focus on matrices that are

the product of an expanding matrix and a shear matrix and we distinguish the case of

shear-like matrices where we take a diagonal expanding matrix (Section 7.2) from gen-

eral expanding matrices (Section 7.3). For this family of matrices we prove that they

satisfy the required properties and we show some illustrations of the behaviour of these

matrices for image analysis by comparing them to shearlets (see Section 7.4).

The results given here are presented in [Bozzini et al., submitted; Rossini and Volontè,

2017] with the joint effort of Mira Bozzini, Milvia Rossini and Tomas Sauer.

7.1 Fundamental properties of scaling matrices

In order to find a family of matrices {Mi}i∈Zs
that can substitute shearlet scaling matrices,

we study which properties are sufficient to define a directional transform. The conditions

are already presented in Chapters 5 and 6 and we recall them here for clarity.

1. Anisotropic expanding matrices

� |λi
j| > 1

|λi
j
| 6= |λi

k
| ∀ j 6= k ∈ Zd ,

135
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where λi
j

are the eigenvalues of the matrix Mi , for all i ∈ Zs.

In order to detect anisotropic features like edges along curves and wavefronts in

an image we need to consider elongated elements, thus we ask for matrices Mi

that are anisotropic. Instead, the request to consider expanding matrices, allows

to define a convergent subdivision scheme. Interpolatory schemes with scaling

matrices Mi, i ∈ Zs, are defined by (6.25).

Note that anisotropic expanding matrices must have determinant greater or equal

to 3, because determinant equal to 2 does not give anisotropic effects.

2. Jointly expanding matrices

A set of matrices {Mi}i∈Zs
is jointly expanding if for any ε ∈ Zn

s , n ∈ N, the composed

matrix Mε is expanding or the joint spectral radius is bounded by 1

ρ({Mi}i∈Zs
) = lim

n→∞
max
ε∈Zn

d



M−1
ε



 1
n < 1.

This request is necessary for the convergence of a multiple subdivision scheme.

In Section 6.2.1 we show that this property is sufficient to define a convergent

interpolatory multiple subdivision scheme by following a particular construction.

3. Slope resolution property

Let H be a hyperplane with normal v = (s′, 1)T , s′ ∈ Rd−1, then for each vector of the

form (s, 1)T , with s ∈ Rd−1 and δ > 0, there exist some n ∈ N and ε ∈ Zn
d

such that






�
s′

1

�
−Mε

�
s

1

�



 < δ.

This property ensures that the directional transform defined by the matrices {Mi}i∈Zs

is able to detect all directions in space. In general we prove this property under

the strict hypothesis s ∈ I ⊂ Rd−1. This is sufficient if we show that we recover all

the space by considering different sets of matrices {Mi}i∈Zs
and different intervals

I . It is the equivalent of the cone-adapted shearlets system.

4. Pseudo commuting property (not necessary)

Suppose that the matrices Mi are the product of a diagonal matrix D with a set of

matrices Si, Mi = DSi, then

∃m, n ∈ N, such that DSm
i = Sn

i D.

The pseudo commuting property is not necessary for defining a directional trans-

form but it turns out to be useful because it allows to write simple explicit for-

mulas for the iterated matrices. For example in the shearlet case with matrices

{Mi = D2SWi
}i∈Zs

, we have

Mε =

n∏

j=1

D2SWj
= SW ′D

n
2 , where W ′ =

n∑

j=1

2 jWj .
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By recalling that the shear matrices are unimodular, the identity

M−1
ε Z

d = D−n
2 S−W ′Z

d = D−n
2 Z

d ,

allows us to conclude that M−1
ε Z

d is a refinement of Zd for any n ∈ N and ε ∈ Zn
s .

The existence and the form of unimodular matrices that pseudo commute with

an anisotropic diagonal matrix is given in [Bozzini et al., 2015] depending on the

dimension d .

Proposition 7.1 [Bozzini et al., 2015]. Let D be an anisotropic diagonal expanding

matrix in Z2×2 and A be a non-diagonal unimodular matrix in Z2×2. The identity

DAm = AnD

is satisfied if and only if one of the following three cases holds:

(a) Aq = I , and m, n are such that m= ℓ1q, n= ℓ2q, for some ℓ1, ℓ2 ∈ Z;

(b) D =

�
rk 0

0 k

�
, with m, n such that r = n

m and A= ±
�

1 w

0 1

�
;

(c) D =

�
rk 0

0 k

�
, with m, n such that r = m

n and A= ±
�

1 0

w 1

�T

.

In particular, any 2× 2 matrix that pseudo commutes with an anisotropic scaling

matrix has to be of shear type. For d = 3, the situation is already different.

Proposition 7.2 [Bozzini et al., 2015]. Let

D =




krs 0 0

0 kr 0

0 0 k



 , r, s ∈Q+, r, s 6= 1,

and

A=

�
B v

0 λ

�
,

where B is a unimodular 2× 2 matrix and v is a column vector of dimension 2. The

pseudo-commuting property DA = AnD holds whenever A has one of the following

forms:

(a) v = 0, λ = ±1, B is a shear matrix and s = n, or B is n-periodic and s = 1 if

λ= −1, n is odd;

(b) for some v 6= 0,

i. λ= 1 and

A. B = ±
�

1 w

0 1

�
, s = n, and r = 1 or r = n;
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B. B = ±
�

1 w

0 1

�T

, s = 1
n , and r = 1 or r = 1

n ;

ii. λ= −1 and

A. B = ±
�

1 w

0 1

�
, s = n (odd), and r = 1 or r = 1

n ;

B. B = ±
�

1 w

0 1

�T

, s = 1
n (n odd), and r = 1 or r = n;

iii. λ= 1, B is a n-periodic matrix such that Bv = v, with s = 1 and r = n.

A matrix B is an n-periodic matrix if Bn = B, n ∈ N. This proposition shows that in

contrast to d = 2 there exist matrices that pseudo commute with dilations without

being shear matrices. The same extends to higher dimensions.

Proposition 7.3 [Bozzini et al., 2015]. For d > 3 consider

D :=

�
kr Ip 0

0 kId−p

�
,

and let

A :=

�
B W

0 Id−p

�
,

where B ∈ Zp×p is a unimodular n-periodic matrix, W ∈ Zp×d−p, and BW = W.

Then the relation DA= AnD holds if r = n.

In the following we look for sets of matrices {Mi}i∈Zs
that satisfy all the prescribed

properties and with determinant smaller than shearlet scaling matrices. In particular,

we focus on matrices Mi = DSi that are the product of an anisotropic expanding matrix

D and a shear matrix Si. If D is a diagonal matrix we call the matrices Mi shear-like

because they mimic the shearlet matrices (Sec. 7.2). Furthermore, we study also the

case where D is a full matrix (Sec. 7.3).

7.2 Shear-like anisotropic expanding matrices

In the first part of the work we focus on a set of shear-like matrices Mi that are the

product of an integer diagonal matrix of the form

D =

�
αIp 0

0 β Id−p

�
, p < d , α 6= β > 1, (7.1)

and a set of unimodular matrices Si that give the directionality. By definition (7.1) of

the matrix D we have that the matrices Mi = DSi satisfy the first property, in fact Mi

are anisotropic expanding matrices. For α = 4 and β = 2 we get back to the parabolic

scaling matrix D2 of the shearlet in (6.8).
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d det D2 det D

2 8 6

3 32 18

4 128 54

5 512 162

6 2048 486

Table 7.1. Comparison between det D2 and det D for increasing dimension d ≥ 2.

To overcome the disadvantage of the shearlet scaling matrices, we look for matrices

with determinant smaller than 2d+p. In the set of matrices of the form (7.1) we have the

minimal determinant if α = 3 and β = 2,

D =

�
3Ip 0

0 2Id−p

�
. (7.2)

One important application of a directional transform is the detection of tangential

hyperplanes at a point, because it allows to catch discontinuities of a signal. For this

reason, in the following, we fix p = d − 1 and the dilation matrix becomes

D =

�
3Id−1 0

0 2

�
. (7.3)

In two dimensions the difference between the parabolic matrix D2 (6.8) and D (7.3)

is still small, det D2 = 8 and det D = 6, but increasing the dimension, the difference

increases rapidly,

det D2 = 22d−1, det D = 2d

�
1+

1

2

�d−1

,

see Table 7.1.

We choose unimodular matrices Si that pseudo commute with D in (7.3). The pseudo

commuting property helps to find an explicit formula for the iterated matrices Mε, ε ∈ Zn
s ,

n ∈ N. We use Theorems 7.1, 7.2 and 7.3 to see which form the matrices Si should have.

In order to prove the remaining properties, to be jointly expanding matrices and

the slope resolution property, we consider separately the bidimensional case and the

multivariate case, because we have slightly different proofs.

7.2.1 Matrices in dimension d = 2

In two dimensions we consider the diagonal matrix

D =

�
3 0

0 2

�
, (7.4)
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and using Theorem 7.1 we state that only (up to a sign) the shear matrices can pseudo-

commute with this matrix. If we choose Sw as in (6.3),

Sw =

�
1 w

0 1

�
, (7.5)

then D and Sw satisfy

DS2
w = S3

wD. (7.6)

The same relation is true for any power n.

Lemma 7.4. For each n ∈ N,

DnS2n

w = S3n

w Dn. (7.7)

Proof: The proof is by induction over n. If n= 1, then (7.7) reduces to DS2
w = S3

wD. We

observe that for any ℓ ∈ N, Sℓw = Sℓw is again a shear matrix and

D(Sℓw)
2 = (Sℓw)

3D. (7.8)

We assume that the claim is true for some n ∈ N, and consider the case for n+ 1. Using

(7.8) and the induction assumption, we have

Dn+1S2n+1

w = DnD
�
S2n

w

�2
= Dn

�
S2n

w

�3
D = Dn

�
S3

w

�2n

D

=
�
S3

w

�3n

DnD = S3n+1

w Dn+1.

We fix w = −1 and for simplicity we call S−1 = S. We consider two scaling matrices

Mi, i ∈ Z2,

M0 = D =

�
3 0

0 2

�
, M1 = DS2 =

�
3 −6

0 2

�
, (7.9)

whose inverses are

M−1
0 = D−1 =

�
1
3 0

0 1
2

�
, M−1

1 = S−2D−1 =

�
1
3 1

0 1
2

�
. (7.10)

Let us consider the iterated matrix Mε = Mεn
. . . Mε1

, ε = (ε1, . . . ,εn) ∈ Zn
2 and its

inverse M−1
ε .

Lemma 7.5. If n ∈ N and ε ∈ Zn
2, then

M−1
ε =

�
3−n 21−npε

�
2
3

�

0 2−n

�
, (7.11)

with the polynomial

pε (x) =

n∑

j=1

ε j x
j−1, x ∈ [0,1].
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Proof: The proof is by induction. For n= 1, the claim holds. In fact if ε1 = 0 or ε1 = 1,

M−1
0
=

�
3−1 0

0 2−1

�
, or M−1

1
=

�
3−1 1

0 2−1

�
.

We suppose the claim is true for some n ∈ N and we consider ε= (ε′,εn+1) ∈ Zn+1
2

. The

inverse of the matrix Mε is

M−1
ε = M−1

ε′ M−1
εn+1

,

with

pε

�
2

3

�
=

n+1∑

j=1

ε j

�
2

3

� j−1

= pε′

�
2

3

�
+ εn+1

�
2

3

�n

.

If εn+1 = 0, then

M−1
ε =

�
3−n 21−npε′

�
2
3

�

0 2−n

��
3−1 0

0 2−1

�
=

�
3−(n+1) 2−npε′

�
2
3

�

0 2−(n+1)

�

=

�
3−(n+1) 2−npε

�
2
3

�

0 2−(n+1)

�
.

If εn+1 = 1, then we have pε
�

2
3

�
= pε′

�
2
3

�
+
�

2
3

�n
, and

M−1
ε =

�
3−n 21−npε′

�
2
3

�

0 2−n

��
3−1 1

0 2−1

�
=

�
3−(n+1) 3−n + 2−npε′

�
2
3

�

0 2−(n+1)

�

=

�
3−(n+1) 2−npε

�
2
3

�

0 2−(n+1)

�
.

This concludes the induction.

By computing directly the inverse of (7.11), we can write Mε, ε ∈ Zn
2, as

Mε =

�
3n 3n+1qε

�
2
3

�

0 2n

�
, (7.12)

where we introduce the polynomial

qε(x) =

n∑

j=1

−ε j x
j.

In the previous section we show that it is important to prove that the matrices M0,

and M1 are jointly expanding, which allows the grids M−n
ε Z

d to tend toRd as n increases.

Proposition 7.6. Mε are expanding matrices for any ε ∈ Zn
2 for n sufficiently large.
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Proof: We have to prove that the joint spectral radius of the set {Mi}i∈Z2
is less than 1,

ρ({M−1
i }i∈Z2

) = lim sup
n→∞

sup
ε∈Zn

2



M−1
ε



1/n
= lim sup

n→∞
sup
ε∈Zn

2








n∏

j=1

M−1
ε j








1/n

< 1.

By the equivalence of norms on finite dimensional spaces, we can choose the underlying

matrix norm arbitrarily, for example ‖·‖1. Using the general expression of M−1
ε in (7.11)

we have

sup
ε∈Zn

2



M−1
ε



1/n

1
= sup

ε∈Zn
2







�
3−n 21−npε

�
2
3

�

0 2−n

�




1/n

1

= sup
ε∈Zn

2

�
21−npε

�
2

3

�
+ 2−n

�1/n

=

 
21−n

n−1∑

j=0

�
2

3

� j

+ 2−n

!1/n

=

�
21−n3

�
1−

�
2

3

�n�
+ 2−n

�1/n

=
1

2

�
7− 6

�
2

3

�n�1/n

< 1

for n≥ 3 and

ρ({Mi}i∈Z2
) = lim sup

n→∞
sup
ε∈Zn

2








n∏

j=1

M−1
ε j








1/n

1

=
1

2
.

Thus, the matrices M0 and M1 are suitable for defining a multiple refinement process

because they are jointly expanding. Given ε= (ε1, . . . ,εn) ∈ Zn
2

with n ∈ N we also have

an explicit way to compute the points on the coarse and the refined lattice. For instance,

we can rewrite (7.12) as

Mε =

�
1 3n+12−nqε

�
2
3

�

0 1

�
Dn =

�
1 −3

∑n
j=1 ε j

�
3
2

�n− j

0 1

�
Dn. (7.13)

Using the shear matrix properties and (7.7) we get

Mε =

�
1 3 2−nqn

�
2
3

�

0 1

�3n

Dn = Dn

�
1 3 2−nqn

�
2
3

�

0 1

�2n

= Dn

�
1 3qn

�
2
3

�

0 1

�
. (7.14)

Instead, inverting (7.13) we obtain

M−1
ε = D−n

�
1 3

∑n
j=1 ε j

�
3
2

�n− j

0 1

�
. (7.15)

We can use (7.14), (7.15) to compute easily the coarse grid MεZ
2 and the refined grid

M−1
ε Z

2.

At this point, we can follow [Kutyniok and Sauer, 2009] to show that the matrices

M0 and M1 enjoy the slope resolution property. Note that for d > 2 we need a more
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general approach for the proof (see Theorem 7.11) so that it applies also in this case.

Let ℓ be a line through the origin with slope s(ℓ) and we denote with s(ℓ,ε) the slope of

M−1
ε ℓ with ε ∈ Zn

2
and n ∈ N.

Lemma 7.7. Let ℓ be a line passing through the origin with slope s(ℓ) ∈ [0,∞] and ε ∈ Zn
2

with n ∈ N.

(i) If s(ℓ) ∈ (0,∞), then

s(ℓ,ε) =
1�

2
3

�n 1
s(ℓ) + 2pε

�
2
3

� . (7.16)

(ii) If ℓ= {0} ×R, i.e s(ℓ) =∞, then

s(ℓ,ε) =
1

2pε
�

2
3

� . (7.17)

(iii) If ℓ= R× {0}, i.e. s(ℓ) = 0, then

s(ℓ,ε) = 0. (7.18)

Proof:

(i) If s(ℓ) ∈ (0,∞), then we can consider the point (1, s(ℓ)) ∈ ℓ that becomes

M−1
ε

�
1

s(ℓ)

�
=

�
3−n 21−npε

�
2
3

�

0 2−n

��
1

s(ℓ)

�
=

�
3−n+ 21−npε

�
2
3

�
s(ℓ)

2−ns(ℓ)

�
.

Thus, the slope of the line M−1
ε ℓ is

s(ℓ,ε) =
2−ns(ℓ)

3−n + 21−npε
�

2
3

�
s(ℓ)

=
1�

2
3

�n 1
s(ℓ)
+ 2pε

�
2
3

� .

(ii) If s(ℓ) =∞, then the point (0,1) ∈ ℓ is transformed into

M−1
ε

�
0

1

�
=

�
3−n 21−npε

�
2
3

�

0 2−n

��
0

1

�
=

�
21−npε

�
2
3

�

2−n

�

and

s(ℓ,ε) =
2−n

21−npε
�

2
3

� = 1

2pε
�

2
3

� .

(iii) If s(ℓ) = 0, then the point (1,0) ∈ ℓ is transformed into

M−1
ε

�
1

0

�
=

�
3−n 21−npε

�
2
3

�

0 2−n

��
1

0

�
=

�
3−n

0

�

and s(ℓ,ε) = 0.
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Lemma 7.7 helps us to prove a result similar to Theorem 6.1 for shearlets (cf. [Ku-

tyniok and Sauer, 2009]).

Theorem 7.8. Let ℓ be a line through the origin with slope s(ℓ) ∈ (0,∞]. Then for each

s ∈ [1/6,∞] and δ > 0 there exist some n ∈ N and ε ∈ Zn
2

such that

|s(ℓ,ε)− s| < δ.

Proof: Let s ∈
�

1
6 ,∞

�
and δ > 0. Due to the denseness of rational numbers there exist

n ∈ N and ε ∈ Zn
2 such that

����2pε

�
2

3

�
− 1

s

����=
�����2

n∑

j=1

ε j

�
2

3

� j−1

− 1

s

�����<
δ

s(s +δ)
= δ̃. (7.19)

From this inequality we have

2

n∑

j=1

ε j

�
2

3

� j−1

>
1

s
− δ̃.

Since we can always enlarge n, without loss of generality, we may assume

0<

�
2

3

�n 1

s(ℓ)
< δ̃. (7.20)

Using these inequalities and (7.16), we have

|s(ℓ,ε)− s| =

������
1

�
2
3

�n 1
s(ℓ)
+ 2

∑n
j=1 ε j

�
2
3

� j−1
− s

������
=

������

1− s
��

2
3

�n 1
s(ℓ) + 2

∑n
j=1 ε j

�
2
3

� j−1
�

�
2
3

�n 1
s(ℓ)
+ 2

∑n
j=1 ε j

�
2
3

� j−1

������

= s

������

1
s −

�
2
3

�n 1
s(ℓ)
− 2

∑n
j=1
ε j

�
2
3

� j−1

�
2
3

�n 1
s(ℓ) + 2

∑n
j=1 ε j

�
2
3

� j−1

������
≤ s

������

1
s −

�
2
3

�n 1
s(ℓ)
− 2

∑n
j=1
ε j

�
2
3

� j−1

2
∑n

j=1 ε j

�
2
3

� j−1

������

≤ s

������

1
s −

�
2
3

�n 1
s(ℓ) − 2

∑n
j=1 ε j

�
2
3

� j−1

1
s − δ̃

������
≤ s2

������

1
s − 2

∑n
j=1 ε j

�
2
3

� j−1

1− sδ̃

������

≤
����

s2δ̃

1− sδ̃

���� = δ.

Let ε ∈ Z∞
2

such that ε j = 0 for any j ≥ j0. For K > 0, using (7.20), there exists n0 ∈ N
such that �

2

3

�n 1

s(ℓ)
+ 2

n∑

j=1

ε j

�
2

3

� j−1

<
1

K
∀n≥ n0,
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Figure 7.1. Fixing a line ℓ through the origin (black), the grey lines are the directions reached

after the application of M−1
ε where we consider all possible ε ∈ Z10

2
.

which implies

s(ℓ,ε) =
1

�
2
3

�n 1
s(ℓ)
+ 2

∑n
j=1
ε j

�
2
3

� j−1
> K ,

hence limn→∞ s(ℓ,ε) =∞.

Let ε ∈ Z∞2 such that ε j = 1 for any j > j0. With this hypothesis we can rewrite s(ℓ,ε)

as

s(ℓ,ε) =
1

�
2
3

�n 1
s(ℓ)
+ 2

∑n
j=1
ε j

�
2
3

� j−1
=

1
�

2
3

�n 1
s(ℓ)
+ 2

�
3− 3

�
2
3

�n −
∑ j0

j=1
(1− ε j)

�
2
3

� j−1
�

=
1

�
2
3

�n 1
s(ℓ) + 6− 6

�
2
3

�n − 2
∑ j0

j=1
(1− ε j)

�
2
3

� j−1
,

hence,

lim
n→∞

s(ℓ,ε) = lim
n→∞

1
�

2
3

�n 1
s(ℓ)
+ 6− 6

�
2
3

�n − 2
∑ j0

j=1
(1− ε j)

�
2
3

� j−1
=

1

6− 2
∑ j0

j=1
(1− ε j)

�
2
3

� j−1
.

If ε1 = . . . = ε j0
= 0, then

lim
n→∞

s(ℓ,ε) =
1

6
�

2
3

� j0
.

Otherwise, if ε1 = . . . = ε j0
= 1, then

lim
n→∞

s(ℓ,ε) =
1

6
.

This concludes the proof.

Using only M0 and M1 we can move any line ℓ, with slope s(ℓ) ∈ (0,∞], close to

any other line with slope in
�

1
6 ,∞

�
, as can be seen in Figure 7.1.

Focusing on the matrices M0 and M1 of the form (7.9) does not allow to reach certain

directions as shown in Theorem 7.8. This situation is similar to what Kutyniok and Sauer
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[2009] prove in Theorem 6.1. As for the shearlet case, in order to obtain a system that

resolves all possible directions we have to consider all the matrices

�
3 −6

0 2

�
,

�
3 0

0 2

�
,

�
3 6

0 2

�
,

�
2 0

−6 3

�
,

�
2 0

0 3

�
,

�
2 0

6 3

�
,

where we also change the order of 3 and 2 in the diagonal matrix and the shear acts on

the second variable. For each pair of matrices we can prove similar results to Theorems

7.6 and 7.8.

7.2.2 Matrices in dimension d ≥ 3

In dimension d we concentrate on the dilation matrix

D =

�
3Id−1 0

0 2

�
. (7.21)

Theorems 7.2 and 7.3 tell us which type of matrices pseudo-commute with D. We choose

to work with shear matrices of the form

Si =

�
Id−1 −ei

0 1

�
, i ∈ Zd , (7.22)

that satisfy

DS2
i = S3

i D. (7.23)

The vectors ei, i ∈ Zd , are such that e0 = 0 and (ei)k = δik, for k = 1, . . . , d − 1.

As for shearlets in [Kutyniok and Sauer, 2009] and the bivariate case, this choice

of matrices is arbitrary and it creates an asymmetry between the variables. The last

variable is treated differently with respect to the first d − 1 variables where the shear

acts. This choice does not allow to reach certain directions. To obtain a system that

resolves all possible directions, d multiresolution systems should be considered where

the role of the non shear variable is taken by all variables. We should take matrices that

are a permutation of the rows of (7.21) and (7.22). The results are always the same only

with respect to another variable.

We define the scaling matrices Mi, i ∈ Zd , as

Mi = DS2
i =

�
3Id−1 −6ei

0 2

�
= S3

i D, (7.24)

whose inverses can be easily computed,

M−1
i = S−2

i D−1 =

�
1
3 Id−1 ei

0 1
2

�
. (7.25)
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The multiple subdivision scheme is governed by the matrices

Mε := Mεn
. . . Mε1

, ε= (ε1, . . . ,εn) ∈ Zn
d , n ∈ N,

for which we have an explicit expression similar to (7.11) in the bivariate case.

Lemma 7.9. For n ∈ N and ε ∈ Zn
d

we have

M−1
ε =

�
3−nId−1 21−npε

�
2
3

�

0 2−n

�
, (7.26)

with the d − 1 vector valued polynomial

pε (x) =

n∑

j=1

x j−1eε j
, x ∈ [0,1].

Proof: By induction over n, we first note that for n = 1 we have exactly the matrices

M−1
ε , ε ∈ Zd in (7.25).

Let us suppose that the claim is true for n ≥ 1 and we verify it for n + 1 and ε =

(ε′,εn+1) ∈ Zn+1
d

. The matrix M−1
ε has the form

M−1
ε = M−1

ε′ M−1
εn+1
=

�
3−nId−1 21−npε′(2/3)

0 2−n

��
3−1 eεn+1

0 2−1

�

=

�
3−(n+1)Id−1 2−npε′(2/3) + 3−neεn+1

0 2−(n+1)

�
,

and taking into account that

2−npε′

�
2

3

�
+ 3−neεn+1

= 2−n

�
pε′

�
2

3

�
+

�
2

3

�n

eεn+1

�
= 2−n pε

�
2

3

�
,

we obtain the general expression (7.26).

Inverting M−1
ε in (7.26), we get a formula for Mε, namely

Mε =

�
3nId−1 3n+1 qε(2/3)

0 2n

�
, (7.27)

with

qε (x) = −
n∑

j=1

x jeε j
, ε ∈ Zn

d , n ∈ N.

These matrices are able to define a directional multiresolution analysis if they satisfy

all the properties listed in Section 7.1: they are jointly expanding, i.e., the grid M−1
ε Z

d

tends to Rd and they satisfy the slope resolution property.

Proposition 7.10. The set of matrices {Mi}i∈Zd
is jointly expanding.
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Proof: We have to show that the joint spectral radius of the scaling matrices

ρ
�
{M−1

i }i∈Zd

�
= lim sup

n→∞
sup
ε∈Zn

d



M−1
ε



1/n

is strictly less than one. Using ‖·‖1, we obtain for n ∈ N

sup
ε∈Zn

d



M−1
ε



1/n

1
= sup
ε∈Zn

d







�
3−n 21−npε (2/3)

0 2−n

�




1/n

1

= sup
ε∈Zn

d

�
21−n





pε

�
2

3

�




1

+ 2−n

�1/n

≤ 1

2

 
2

n−1∑

j=0

�
2

3

� j

+ 1

!1/n

≤ 1

2

 
2

∞∑

j=0

�
2

3

� j

+ 1

!1/n

=
71/n

2

and therefore supε∈Zn
d



M−1
ε



1/n

1
< 1 for n≥ 3 independently of ε.

In dimension d , the slope resolution property allows to obtain any hyperplane by apply-

ing a suitable matrix Mε to a single reference hyperplane. A hyperplane H = {x ∈ Rd :

vT x = 0} ⊂ Rd whose normal has the property vd 6= 0, can be described by v = (s, 1)T

where s ∈ Rd−1 is the slope of the hyperplane H. The slope of the reference hyperplane

can be chosen arbitrarily in a scaled version of the standard simplex ∆d−1 defined in

(6.13).

We now generalize Theorem 7.8 to dimension d . In this case the proof is different

from the bivariate case and involves contractive maps and the fix point theorem.

Theorem 7.11. For any reference hyperplane H with slope s ∈ 6∆d−1, the family of matri-

ces {Mi}i∈Zd
has the slope resolution property: for any hyperplane H ′ with slope s′ ∈ Rd−1

and any δ > 0 there exists ε ∈ Zn
d
, n ∈ N, such that







�
s′

1

�
− 2−nMε

�
s

1

�



< δ.

Proof: Let H be any hyperplane with slope t ∈ Rd−1. Multiplying with M−1
i , i ∈ Zd , we

obtain a hyperplane with slope

M−1
i

�
t

1

�
=

�
1
3 Id−1 ei

0 1
2

��
t

1

�
=

1

2

�
2
3 t + 2ei

1

�
, t ∈ Rd−1.

We define the affine contractions hi : Rd−1→ Rd−1 by

hi(t) =
2

3
t + 2ei, i ∈ Zd , (7.28)

which satisfy

hi(6∆d−1) =
2

3
6∆d−1+ 2ei = 4∆d−1+ 2ei ⊂ 6∆d−1 (7.29)
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(0,0) (6,0)

(0,6)

(0,0) (6,0)

(0,6)

6¢

6¢
h0

(0,4)

(4,0)h1 (2,0)

h2

(0,2)

Figure 7.2. In two dimensions (d − 1 = 2), we have three contractive maps hi , i ∈ {0,1,2} and

the union of h0(6∆) (red), h1(6∆) (green), h2(6∆) (orange) gives again 6∆.

and ⋃

i∈Zd

hi(6∆d−1) = 6∆d−1, (7.30)

as visualized in Figure 7.2 for d = 3. Thus, the compact set 6∆d−1 is an invariant space

with respect to the contractions hi , i ∈ Zd . Hutchinson [1981] shows that any compact

subset X ⊂ Rd−1 satisfy a generating property,

6∆d−1 = lim
n→∞

⋃

ε∈Zn
d

hε(X ) (7.31)

with respect to an invariant space in the Hausdorff metric. For general ε ∈ Zn
d

we have

M−1
ε

�
t

1

�
=

�
3−nId−1 21−npε

�
2
3

�

0 2−n

��
t

1

�
= 2−n

��
2
3

�n
t + 2pε

�
2
3

�

1

�
,

so hε is the composition of affine contractions

hε(t) = hεn

�
h(ε1,...,εn−1)

(t)
�
=

�
2

3

�n

t + 2pε

�
2

3

�
, ε ∈ Zn

d , n ∈ N.

This iterative definition and (7.29) yield that

hε(6∆d−1) ⊂ 6∆d−1, ∀ε ∈ Zn
d , n ∈ N. (7.32)

Hence, the scaled simplex 6∆d−1 is an invariant space for any combination of the con-

traction hi, i ∈ Zd .

Given a hyperplane H ′ with slope s′ ∈ Rd−1, and 0< δ′ < δ, we consider the compact

set

Rδ′(s
′) = {t ∈ Rd−1 :



s′ − t




1
≤ δ′}.

The generating property (7.31) implies that there exist some n1 ∈ N and ε1 ∈ Zn1

d
such

that

I = hε1

�
Rδ′(s

′)
�
∩ 6∆d−1 6= ;.
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(0,0) (6,0)

(0,6)

6¢

R

R

ś
h²1

s

h²2

h²

Figure 7.3. Definition of the contractive map hε such that s ∈ hε (Rδ′(s
′)).

Applying (7.32) to the closure of I , there exist some n2 ∈ N and ε2 ∈ Zn2

d
such that

s ∈ hε2(I) ⊂ hε2

�
hε1

�
Rδ′(s

′)
��
= hε

�
Rδ′(s

′)
�

, with ε= (ε2,ε1) ∈ Zn
d , (7.33)

see Figure 7.3. Hence, h−1
ε (s) ∈ Rδ′(s

′) or equivalently,







�
s′

1

�
− 2−nMε

�
s

1

�




1

≤ δ′ < δ

as claimed.

Finally for each ε ∈ Zn
d
, we can rewrite (7.27) as

Mε =

�
3nId−1 3n+1qε(2/3)

0 2n

�
= Dn

�
Id−1 3qε(2/3)

0 1

�
= DnSε (7.34)

and we can rewrite (7.26) as

M−1
ε =

�
3−nId−1 21−npε(2/3)

0 2−n

�
= D−n

�
Id−1 3

∑n
j=1

�
3
2

�n− j
eε j

0 1

�
= D−nbSε. (7.35)

Taking the inverses of (7.34) and (7.35) yields

Mε = bS−1
ε Dn, M−1

ε = S−1
ε D−n. (7.36)

These formulations of Mε and M−1
ε allow us to compute efficiently the grids MεZ

d and

M−1
ε Z

d as transformations of the Dn or D−n refined grid. These transformations are still

shears, however, in contrast to the shearlet case, the translation is not integer any more

because it depends on qε(2/3) and pε(2/3).

7.3 General anisotropic expanding matrices

We show that considering the expanding matrices Mi , as product of an anisotropic di-

agonal matrix D and a shear Si, the minimum determinant is achieved by 2d
�
1+ 1

2

�d−1

given by (7.3). This determinant is less than the determinant of the shearlet case (6.12)
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which is 22d−1. Indeed, it is not the minimal determinant possible for an expanding ma-

trix. In fact in two dimensions, from a theoretical point of view, an expanding matrix

should have determinant greater than 2 and we have to restrict to a determinant greater

or equal to 3 if we want anisotropic matrices. Cotronei et al. [2015] present a set of two

anisotropic expanding matrices

M0 =

�
1 1

1 −2

�
, M1 =

�
1 1

0 1

�
M0 =

�
2 −1

1 −2

�
,

with determinant 3 that are jointly expanding and they satisfy the slope resolution prop-

erty. Cotronei et al. [2015] show that it is possible to have a determinant smaller than

the diagonal matrix D in (7.4) if full matrices are considered. One could ask if focusing

on full matrices we can find anisotropic expanding matrices that satisfy all the proper-

ties requested (jointly expanding matrices, slope resolution property) with determinant

less than the shear-like matrices (7.3) in dimension d > 2. Thanks to some numerical

experiments we conjecture that the answer is yes. We set up an algorithm that searches

integer matrices in Z3×3 that satisfy some of the requested properties. The idea is to

consider matrices with integer entries in a sub interval of Z centred in 0 (we are looking

for matrices with minimum determinant). Once the interval is fixed, we generate all the

matrices with entries in this interval and we perform a sequence of tests that in each step

allow to eliminate the undesired matrices:

1. We first check for matrices with determinant less than 2d
�
1+ 1

2

�d−1
, the determi-

nant of the shear-like case in (7.3).

2. We compute the eigenvalues λk, k = 1, . . . , d and we keep only the matrices with

all eigenvalues |λk| > 1 and with at least two different eigenvalues
��λ j

�� 6= |λk|,
j 6= k. In this way we select the anisotropic expanding matrices.

3. For the remaining matrices M , we define the set

Mi = MSi, Si =

�
1 −ei

0 1

�
, (7.37)

with the vectors (ei)k = δik, k = 1, . . . , d − 1 and e0 = 0. We save the matrices for

which there exists some n0 ∈ N such that


M−1

ε



 < 1 for any ε ∈ Zn0

d
. We choose

n0 quite small. This allows to conclude that the matrices Mi are jointly expanding

matrices as shown in the following proposition.

Proposition 7.12. If there exists some n0 ∈ N such that


M−1

ε



 < 1 for any ε ∈ Zn0

d
, then

the set of matrices {Mi}i∈Zd
are jointly expanding matrices.

Proof: The proof follows straightforwardly from the definition of the joint spectral ra-

dius, in fact for any type of norm



M−1
ε



=







n∏

j=1

M−1
ε j






 ≤
n∏

j=1




M−1
ε j




 .
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By hypothesis there exists some n0 ∈ N such that


M−1

ε



 < 1 for all ε ∈ Zn0

d
, and we

define µ=maxε∈Zn0
d



M−1
ε



 < 1, thus

n∏

j=1




M−1
ε j




 ≤
⌊n/n0⌋∏

k=1




M−1
ε′

k




≤
⌊n/n0⌋∏

k=1

µ = µ⌊n/n0⌋,

where ε′
k

are sub sequences of ε such that
��ε′

k

�� ≤ n0. So the joint spectral radius of this

set of matrices is

ρ({Mi}i∈Zd
) = lim sup

n→∞
sup
ε∈Zn

d



M−1
ε



1/n ≤ lim sup
n→∞

(µ⌊n/n0⌋)1/n = n0
p
µ < 1.

In this way we obtain some sets of anisotropic expanding matrices that are also jointly

expanding. An example of such matrices is

M =




−1 1 0

1 1 1

1 1 −2



 (7.38)

and the product with shear matrices give the set

M0 = M =




−1 1 0

1 1 1

1 1 −2



 ,

M1 = MS1 = M




1 0 −1

0 1 0

0 0 1



 =




−1 1 1

1 1 0

1 1 −3



 , (7.39)

M2 = MS2 = M




1 0 0

0 1 −1

0 0 1



 =




−1 1 −1

1 1 0

1 1 −3



 .

These matrices have det Mi = 6 for i ∈ Z3 and the eigenvalues are ±
p

3 and −2. So,

as expected, they are anisotropic expanding matrices with determinant smaller than the

shear-like matrix (det D = 18) but also smaller than the dyadic matrix 2I3 (det 2I3 = 8)

considered in the wavelet case. Moreover, computing the inverse of the matrices in
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(7.39) we have

M−1
0
= M−1 =




−1

2
1
3

1
6

1
2

1
3

1
6

0 1
3 −1

3



 ,

M−1
1 = S−1

1 M−1 =




1 0 1

0 1 0

0 0 1



M−1 =




−1

2
2
3 −1

6
1
2

1
3

1
6

0 1
3 −

1
3



 , (7.40)

M−1
2 = S−1

2 M−1 =




1 0 0

0 1 1

0 0 1



M−1 =




−1

2
1
3

1
6

1
2

2
3 −

1
6

0 1
3 −

1
3



 ,

and


M−1

i




2
< 1 for any i ∈ Z3.

For the matrices in (7.39) it remains to prove the slope resolution property, which is

not a trivial task in the general case. In fact, differently to shear-like matrices, we have

no explicit expression for the matrices Mε with ε ∈ Zn
d

and n ∈ N, because this set of

matrices does not satisfy the pseudo commuting property. In this case, it is difficult to

find contracting maps and an invariant space as done in Theorem 7.11 for any d . For the

moment we only have numerical evidence of the slope resolution property. As numerical

test we fix n ∈ N and a hyperplane H ′ with normal (s′, 1)T , s′ ∈ R2, and we apply the

matrices M−1
ε , with all possible ε ∈ Zn

d
of length n, to the normal (s′, 1). This proce-

dure displays an output similar to Figure 7.1 in the bivariate case. To provide numerical

evidence of the slope resolution property we have to repeat the test considering all the

possible shear matrices and all the permutations of matrix rows. If in the end the result-

ing normals span approximately all the directions, then the slope resolution property is

satisfied from a numerical point of view.

This is still work in progress. An idea to prove the slope resolution property is to

consider as contractions not the maps generated by M−1
i

, i ∈ Z3, but some finite combi-

nations of these matrices, as done in [Cotronei et al., 2015] for d = 2. Another possibility

is to look for general anisotropic matrices that satisfy the pseudo commuting property

even if this means to consider a set of matrices with higher determinant than 6.

7.4 Numerical examples for d = 2

Finally, in this section we show some illustrations of how the MMRA based on the ma-

trices presented in Section 7.2 performs when analysing a signal.

We focus on the family of matrices

M0 =

�
3 0

0 2

�
, M1 =

�
3 −6

0 2

�
, (7.41)

with det(Mi) = 6, for i ∈ Z2. This means that we have to consider 6 analysis filters and

6 synthesis filters for each Mi, i ∈ Z2.
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Following the construction proposed in Sections 6.2.1 and 6.3, we define for the

family of matrices {Mi}i∈Z2
a convergent multiple subdivision scheme and the relative

filterbanks. The Smith factorization form of the matrices is trivial,

M0 = IDI , M1 =

�
3 −6

0 2

�
=

�
1 −3

0 1

��
3 0

0 2

��
1 0

0 1

�
= S3DI . (7.42)

Thus, we need two univariate interpolatory subdivision schemes with arity σ1 = 3 and

σ2 = 2, respectively. For example, we consider the ternary and dyadic 2-point schemes

with masks

b1 =

�
. . . , 0,

1

3
,
2

3
,1,

2

3
,
1

3
,0, . . .

�
, b2 =

�
. . . , 0,

1

2
,1,

1

2
,0, . . .

�
,

and symbols

b∗1(z) =
z−2

3
(1+ z + z2)2, b∗2(z) =

z−1

2
(1+ z)2.

By (6.24), the symbol of the diagonal matrix D is the tensor product of b1 and b2,

b∗D(z) =
z−2

1
z−1

2

6
(1+ z1 + z2

1)
2(1+ z2)

2,

and using (6.25) the symbols related to the matrices M0 and M1 are

b∗M0
(z) = b∗D(z) =

z−2
1

z−1
2

6
(1+ z1 + z2

1)
2(1+ z2)

2, (7.43)

b∗M1
(z) = b∗D(z

S3

) =
z1z−1

2

6
(1+ z1 + z2

1)
2(1+ z−3

1 z2)
2. (7.44)

The multiple subdivision scheme generated by the two symbols bM0
, bM1

and the two

matrices M0, M1 converges to a continuous function, as stated by Lemma 6.8. Once

we define the multiple subdivision scheme, we compute the filters using the prediction-

correction method and the formulas (6.30), (6.31). The analysis filters for the diagonal

matrix M0 are

f0,0 =





0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0




, f0,1 =





0 0 0 0 0

0 0 0 0 0

0 −
2

3 1 0 −1
3

0 0 0 0 0

0 0 0 0 0




, f0,2 =





0 0 0 0 0

0 0 0 0 0

0 −
1

3 0 1 −2
3

0 0 0 0 0

0 0 0 0 0




,

f0,3 =





0 0 −1
2 0 0

0 0 1 0 0

0 0 −
1

2 0 0

0 0 0 0 0

0 0 0 0 0




, f0,4 =





0 −1
3 0 0 −1

6

0 0 1 0 0

0 −
1

3 0 0 −1
6

0 0 0 0 0

0 0 0 0 0




, f0,5 =





0 −1
6 0 0 −1

3

0 0 0 1 0

0 −
1

6
0 0 −1

3

0 0 0 0 0

0 0 0 0 0




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and the synthesis filters are

g0,0 =




1
6

1
3

1
2

1
3

1
6

1
3

2
3 1 2

3
1
3

1
6

1
3

1
2

1
3

1
6



 , g0,1 =




0 0 0 0 0

0 1 0 0 0

0 0 0 0 0



 , g0,2 =




0 0 0 0 0

1 0 0 0 0

0 0 0 0 0



 ,

g0,3 =




0 0 0 0 0

0 0 0 0 0

0 0 1 0 0



 , g0,4 =




0 0 0 0 0

0 0 0 0 0

0 1 0 0 0



 , g0,5 =




0 0 0 0 0

0 0 0 0 0

1 0 0 0 0



 ,

where we highlight the (0,0) element in bold. In the same way the analysis and synthesis

filters for the matrix M1 are

f1,0 =




0 0 0 0 0

0 0 1 0 0

0 0 0 0 0



 , f1,1 =




0 0 0 0 0 0

0 −
2

3 1 0 −1
3 0

0 0 0 0 0 0



 ,

f1,2 =




0 0 0 0 0

0 −
1

3 0 1 −2
3

0 0 0 0 0



 , f1,3 =




−1

2 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 −
1

2



 ,

f1,4 =




−1

3 0 0 −1
6 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 −
1

3 0 0 −1
6



 , f1,5 =




−1

6 0 0 −1
3 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 −
1

6
0 0 −1

3





g1,0 =




1
6

1
3

1
2

1
3

1
6 0 0 0 0 0 0

0 0 0 1
3

2
3 1 2

3
1
3 0 0 0

0 0 0 0 0 0 1
6

1
3

1
2

1
3

1
6



 , g1,1 =




0 0 0 0 0

0 1 0 0 0

0 0 0 0 0



 ,

g1,2 =




0 0 0 0 0

1 0 0 0 0

0 0 0 0 0



 , g1,3 =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 1



 ,

g1,4 =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 1



 , g1,5 =




0 0 0 0 0

0 0 0 0 0

0 0 0 1 0



 .
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(a) Pencils (b) Expo

(c) Boots (d) Leaf

(e) Lighthouse (f) Kandinsky

Figure 7.4. Test images of sizes 729× 512 pixels except (e) Lighthouse of size 512× 512 pixels.
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Level 1

Level 2

Figure 7.5. Two level decomposition of the image in Figure 7.4a using Daubechies wavelets of

order 2. In each row, from left to right, the 4 images are the approximation coefficients and the

details coefficients along the horizontal, vertical and diagonal direction.

To show the potential of the directional transform defined by the matrices Mi , i ∈ Z2

in (7.41), we use these filters to analyse and synthesize some test images represented in

Figure 7.4.

For comparison, with the same construction we compute the filterbanks of the shear-

let scaling matrices

M
[S]
0
=

�
4 0

0 2

�
, M

[S]
1
=

�
4 −4

0 2

�
. (7.45)

With the computed filters we implement a full decomposition process for all the branches

of the tree and a reconstruction process following a single branch or averaging all the

branches of the tree, as explained in Section 6.3. The implementation is not trivial be-

cause the shear matrices have some intrinsic problems. Applying a shear transformation

on an image we obtain a pseudo rotated image that cannot be stored in a rectangular

matrix. We decide to embed the pseudo rotated image in a larger matrix with zero en-

tries even if this increases the storage space. As first implementation of a directional

transform using the MMRA setting, we focus on the comparison of the analysed signal

with the new matrices in (7.41) and the well-known transforms. In the following we

consider some examples of the decomposition and compression process. Moreover, we

study the reconstructed details in order to see if the new matrices can be used for an

edge detection tool.

7.4.1 Decomposition

The first stage of any application with images is the decomposition process where we

convolve the image with the analysis filters fξ, ξ ∈ EM , and we downsample it. The low-

pass filter f0 gives the approximation coefficients c1 while the high-pass filters fξ, ξ ∈ E0
M ,

generate the so-called detail coefficients d1
ξ
. The process can be repeated starting from

the approximation coefficients c1. The decomposition process with wavelets is shown in

Figure 7.5.

In the MMRA setting, at each step of the decomposition process we choose a matrix

Mi from the set, with i ∈ Z2. After two decomposition steps we have 4 different ways to
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c
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10 c2

11d2
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1d1

0 d1
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M0

M0
M0 M1 M1

M1

Figure 7.6. Multiple decomposition tree up to level 2.

ε Level 1
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1

Level 2

00

01

10

11

Figure 7.7. Two level decomposition of the image in Figure 7.4a with shearlets. The eight images

in each row are the approximation coefficients c2
ε

and detail coefficients d2
ε,k

with ε ∈ Z2 and

k = 1, . . . , 7. Each row represents a branch of the tree in Figure 7.6.
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ε Level 1

0

1

Level 2

00

01

10

11

Figure 7.8. Two level decomposition of the image in Figure 7.4a with respect to the family of

matrices in (7.41). The six images in each row are the approximation coefficients c2
ε

and detail

coefficients d2
ε,k

with ε ∈ Z2 and k = 1, . . . , 5. Each row represents a branch of the tree in

Figure 7.6.



160 7 Anisotropic Scaling Matrices

decompose an image, as depicted by the tree in Figure 7.6. Applying this decomposition

process to Figure 7.4a with the shearlet matrices (7.45) and the new matrices (7.41),

we obtain the approximation and detail coefficients displayed respectively in Figures 7.7

and 7.8. The decomposition with the matrices that contain the shear, M
[S]
1

and M1,

produces a pseudo rotated image. The more often we apply M
[S]
1

or M1, the more the

resulting image is pseudo rotated and stretched, as shown in the last row of Figures 7.7

and 7.8. The decomposition with the new matrices Mi is similar to the decomposition

by the shearlet matrices M
[s]
i

, but the main difference is the number of detail coefficients

(5 vs 7). In this sense the new matrices produce less computational effort and they

require less storage space. In addition, the smaller determinant of the matrices {Mi}i∈Z2

in (7.41) gives detail and approximation coefficients that are less stretched with respect

to shearlets.

We observe that the decomposition process in the wavelet and shear-like setting are

completely different. For wavelets, each detail coefficient detects features only along

the horizontal, vertical and diagonal directions, see Figure 7.5. Instead, for the new

matrices, the detail directions ξk combine with the pseudo rotation of the image and

allow to detect different directions for each branch of the tree. The new matrices can be

exploited in the edge detection problem thanks to this capability of considering different

directions. In Figures 7.7 and 7.8 it is not easy to see which directions are covered

because the details are quite stretched. In the following sections we reconstruct the

details and we study which directions are detected by the different branches.

7.4.2 Compression

The perfect reconstruction filterbanks guarantee that if no changes occur in the approxi-

mation and detail coefficients, then the initial signal is perfectly reconstructed. However,

since the representation produced by the transform is sparse, we can save space by keep-

ing only the largest coefficients. This is the idea of the compression process: produce a

good quality approximation of the signal by storing few coefficients.

In order to evaluate the difference between the reconstructed signal from the initial

signal we consider some metrics: the peak signal-to-noise ratio (PSNR) and the structural

similarity index (SSIM). The peak signal-to-noise ratio measures the ratio between the

maximum value of the signal and the mean square error between the reconstructed and

initial signal. Let I be our test image and denote with Ĩ the reconstructed image, then

the mean square error between these two images is

MSE(I , Ĩ ) =
1

mn

m∑

i=1

n∑

l=1

(I(i, l) − Ĩ(i, l))2, (7.46)

and the peak signal-to-noise ratio is defined as

PSNR(I , Ĩ) = 10 log10

�
2552

MSE(I , Ĩ )

�
, (7.47)
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where m, n are the dimensions of the signal I and the maximum value of an image is 255

(cf. [Mallat, 2008; Vetterli and Kovačević, 2007]). If the image is perfectly reconstructed

(Ĩ = I), then the mean square error is 0 and PSNR is∞. Hence, the higher the value

of PSNR, the better the reconstructed image. With values of PSNR greater than 30 it

is difficult for the human eye to distinguish the differences between the reconstructed

and the initial image. The peak signal-to-noise ratio is not always a good indicator for

the perceived quality of the reconstructed image. There are other indicators that take

care of the characteristics of the human visual system. One of these indicators is the

structural similarity index (SSIM) introduced by Wang et al. [2004]. The SSIM measures

the changes in structural information, luminance and contrast between neighbouring

pixels. Let x , y be two parts of the images I and Ĩ of size n × n, then the structural

similarity index SSIM is defined as

SSIM(x , y) = ℓ(x , y) c(x , y) s(x , y) =
(2µxµy + k1)(2σx y + k2)

(µ2
x +µ

2
y + k1)(σ2

x +σ
2
y + k2)

, (7.48)

where k1, k2 are constants needed to stabilize the division, µ is the average of x and y,

σ2 is the variance and σx y is the covariance defined by

µx =
1

n2

n∑

i, j=1

x(i, j) , σx =

 
1

n2 − 1

n∑

i, j=1

(x(i, j)−µx)

! 1
2

,

σx y =
1

n2 − 1

n∑

i, j=1

(x(i, j)−µx)(y(i, j)−µy).

The functions ℓ(x , y), c(x , y), s(x , y) measure respectively the luminance, the contrast

and the structure,

ℓ(x , y) =
2µxµy + k1

µ2
x +µ

2
y + k1

, c(x , y) =
2σxσy + k2

σ2
x +σ

2
y + k2

, s(x , y) =
2σx y + k2

2σxσy + k2

.

The values of SSIM vary in [−1,1] and if the images I and Ĩ are the same we get SSIM =

1.

The idea behind an (M)MRA is to express a signal in a sparse way. The key features

of the signal and the singularities correspond to the largest coefficients in the decom-

position process. So the compression process saves only the biggest coefficients in the

approximation and detail coefficients. The choice of which coefficients to save and which

ones to set to zero can be made in two different ways: fixing a hard threshold or a com-

pression rate. In both cases the approximation coefficients are kept and we apply the

compression only to the detail coefficients. The hard threshold saves all the detail co-

efficients greater than thr ≥ 0 and sets the other coefficients to zero. Instead, fixing a

compression rate of CR : 1 means that we save one coefficient out of CR detail coeffi-

cients. That is, we store a fixed percentage of the initial coefficients. Let n be the total
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amount of coefficients and nd , na be respectively the number of detail and approxima-

tion coefficients such that n = nd + na. With a compression rate CR : 1, the number of

coefficients saved is n′ = n/CR. In particular we save the n′
d
= n/CR− na largest detail

coefficients.

Considering more levels of decomposition, the coefficients become smaller in abso-

lute value. When we compress the details we have to be careful. Otherwise we throw

away all the details of the highest levels. To avoid this, we reintroduce the scaling factor

|det M |( j/2) that is present in the definition of the shearlet system, see e.g. (6.7). With this

scaling factor the coefficients are well distributed and we can decide which coefficients

to keep and which to throw away.

A summary of the whole process is given by:

1. Decomposition,

2. Compression with a hard threshold thr or a compression rate CR : 1, we keep the

largest detail coefficients after we multiply them by the scaling factor |det M | j/2,

3. Reconstruction by following a single branch of the tree or averaging all branches.

Fixing a threshold value of 150, in Figure 7.9 we show the reconstructed images us-

ing the new matrices in (7.41) and the shearlet matrices in (7.45). We observe that the

behaviour of the new matrices is similar to shearlets. In fact in both cases, the recon-

structed images along the branch ε = (1,1,1,1) present some artefacts near the edges

of the figure. These artefacts are less visible in the reconstructed images that take care

of all the branches, because the artefacts are generated by several applications of the

matrix M1. In Figures 7.7 and 7.8 we see that repeated application of M1 stretches the

image. So, if we introduce some computational error or we eliminate a detail coefficient,

then the reconstruction amplifies this error and produces these flaws. To compare the

reconstruction with the new matrices and shearlets we compare the values of PSNR and

SSIM, see Fig. 7.10. Both the PSNR and SSIM values confirm that the reconstruction

averaging all the branches of the tree is better than following a single branch. Moreover,

the values of PSNR and SSIM show that the reconstruction with shearlets is better than

the reconstruction with the new matrices in this case. In fact, in Figure 7.9 the recon-

structed images with shearlets are more delineated with respect to the reconstructed

images with the new matrices.

We repeat the comparison between the new matrices in (7.41) and shearlets where

we fix a compression rate of 8 : 1. Figure 7.11 shows the reconstructed images using

both families of matrices and following a branch of the tree, ε = (1,1,1,1), or taking

the average of all the branches. As before, the compression generates some flaws and

the reconstruction averaging all the branches performs better than considering a single

branch. Differently from the previous example, in this case the reconstructed images

using the new matrices give higher values of PSNR and SSIM than shearlets, see Fig-

ure 7.12. From Figure 7.11 we see that the reconstructed images with the new matrices

are more delineated with respect to the reconstructed images with shearlets.



163 7 Anisotropic Scaling Matrices

(a) (b)

(c) (d)

Figure 7.9. Compression with a hard threshold thr = 150 of Figure 7.4b. The images are re-

constructed following the branch ε = (1,1,1,1) (top) or all branches together (bottom). In the

whole process we use the new matrices (7.41) (left) and the shearlet matrices (7.45) (right).
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Figure 7.10. Values of PSNR (left) and SSIM (right) for the reconstructed images after a compres-

sion with threshold thr = 150 using the new matrices (7.41) (dot) or shearlets (cross).
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(a) (b)

(c) (d)

Figure 7.11. Compression of Figure 7.4b with compression rate 8 : 1. The images are recon-

structed following the branch ε = (1,1,1,1) (top) or all branches together (bottom). In the

whole process we use the new matrices (7.41) (left) and the shearlet matrices (7.45) (right).
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Figure 7.12. Values of PSNR (left) and SSIM (right) for the reconstructed images after compression

with rate 8 : 1 using the new matrices (7.41) (dot) or shearlets (cross).
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An interesting test is to study the quality of the reconstructed images for increasing

values of thresholds and compression rates. Figure 7.13 shows the reconstructed images

using all the branches of the tree and the new matrices, after we compress with increasing

values of threshold. For thr = 0 the resulting image is equal to Figure 7.4a, in fact the

PSNR is high and SSIM is equal to 1 (see Fig. 7.14). Increasing the value of the threshold

we loose from small to essential details of the image: for thr = 50 the lines on the white

sheet are not well reproduced; for thr = 100 the contours of the pencils are not smooth

and for thr = 200 all the edges are not well defined. For increasing values of threshold

the quality of the image decreases and with it also the PSNR and the SSIM values. We see

in Figure 7.14 that for values of thr > 0 the PSNR decreases slowly. In this sense the SSIM

index can represent better the quality of the reconstructed image. Figure 7.15a shows

the distribution of the details coefficients with respect to their values. With red stars we

depict the increasing values of threshold. Most of the detail coefficients are around 0,

so introducing a threshold thr >> 0 we save only few coefficients. Figure 7.14a shows

the percentage of non zero coefficients saved by each value of threshold.

We expect the same behaviour if we consider increasing values of compression rate,

see Figure 7.16. Eliminating half of the coefficients seems not to affect the quality of the

image, indeed the value of PSNR and SSIM are quite high (see Fig. 7.17). As for increas-

ing values of threshold also by increasing the compression rate the reconstructed images

get worse, loosing an increasing number of details. In Figure 7.16 with compression rate

4 : 1 the quality of the image is good but we loose some wood grain. At compression rate

8 : 1, small details are cancelled but the main edges are still visible in Figure 7.4c while

a lot of edges are not defined at compression rate 12 : 1. This decline in the quality of

the reconstructed images is measured by PSNR and SSIM in Figure 7.17. Figure 7.15b

shows that the distribution of the detail coefficients depends on the image considered,

thus the compression rate and the threshold to obtain a good reconstructed image de-

pend on the initial image considered. As expected, with the new matrices we can have a

good approximation of the initial image storing few coefficients because the features of

the signal are given by largest detail coefficients. This is effective to save storage space.

7.4.3 Detail reconstruction

Shearlets are suitable for dealing with anisotropic signals and give some geometric in-

formation, like position and orientation, about the discontinuities. In this sense we say

that they are able to catch edges and singularities along curves. As for wavelet also for

shearlets, near a discontinuity the transform coefficients decay slowly. The velocity of

this decay is given in [Guo and Labate, 2009, 2017] in the case of a continuous shearlet

system (6.7). So the idea is to use the maxima of the shearlet transform to detect dis-

continuities and to exploit the scale, orientation and location parameters to give more

information about this discontinuity (cf. [Yi et al., 2009]).

For the proposed matrices we do not have the exact decay rate of the coefficients

around a discontinuity but we can visualise if the largest coefficients detect the edges of
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(a) thr = 0 (b) thr = 50

(c) thr = 100 (d) thr = 200

Figure 7.13. Compressed images applying increasing values of threshold thr = 0,50,100,200.

In order to reconstruct the images we exploit all the coefficients of the 3 levels tree and we use

the matrices in (7.41).
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Figure 7.14. Metrics on compressed images (Fig. 7.13) with new matrices in (7.41) for increasing

values of threshold: (a) percentage of non zero coefficients kept after the compression, (b) PSNR

(7.47), (c) SSIM (7.48).



167 7 Anisotropic Scaling Matrices

-3000 -2000 -1000 0 1000 2000 3000
0

1

2

3

4

5

6

105

(a)

-2000 -1000 0 1000 2000 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

105

(b)

Figure 7.15. Histograms of the numbers of detail coefficients with a certain value. The decom-

position is done with the matrices in (7.41). (a) Histogram of Figure 7.4a with increasing values

of threshold thr = 50,100,200. (b) Histogram of Figure 7.4c with increasing compression rate

CR 2, 4, 8, 12.
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(a) CR 2 : 1 (b) CR 4 : 1

(c) CR 8 : 1 (d) CR 12 : 1

Figure 7.16. Compressed images of Figure 7.4c applying increasing compression rates CR =

2, 4, 8, 12. In order to reconstruct the images we exploit all the coefficients of the 3 levels tree

and we use the new matrices in (7.41).
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Figure 7.17. Metrics on compressed images (Fig. 7.16) with new matrices in (7.41) for increasing

compression rates: (a) percentage of non zero coefficients kept after the compression, (b) PSNR

(7.47), (c) SSIM (7.48).
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(a) (b)

Figure 7.18. Reconstructed details after two levels of decomposition with wavelets (left) and

with the new matrices in (7.41) (right). In our case we reconstruct by exploiting all branches of

the tree.

the image. So we look at the maxima in the detail coefficients at different scaling levels

and different branches. The index ε of the branch gives information about the direction

of the discontinuity. Since the detail coefficients can be stretched and elongated, it is

difficult to visualize the maxima of the details from Figures 7.7 and 7.8. Therefore, the

idea is to reconstruct the detail after putting to zero the approximation coefficients. In

this way we visualize the contribution of the details in the reconstruction process and

we check if the largest detail coefficients correspond to the discontinuities of the initial

image. The process can be summed up in three steps:

1. Decomposition,

2. Setting to zero the approximation coefficients,

3. Reconstruction by following a single branch of the tree or averaging all branches.

The resulting images give us the perception if the directional transform is able to detect

all the discontinuities and to distinguish between small changes in gray scale and big

jumps between two areas with flat color. This gives us the insight if the new matrices in

(7.41) are able to detect edges or not.

Figure 7.18 compares the reconstructed details for Figure 7.4d considering the wavelet

transform and the new matrices in (7.41). In the reconstruction process with the new

matrices we average all the branches of the tree in order to consider all the elements de-

tected by the different branches. The new matrices highlight better the discontinuities,

the wood grains and the veins in the leaf, with respect to the wavelet case where the

direction of some edges is not clearly visible. This confirms our expectation: anisotropic

matrices identify discontinuities along some directions better than isotropic matrices.

Moreover, the new matrices seem to distinguish between big jumps (big veins in the
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leaf) represented by light color and small jumps (wood grains) represented by darker

gray.

We repeat the test to compare the behaviour of the new matrices in (7.41) with re-

spect to shearlets. Figure 7.19 shows the reconstructed details with the new matrices

and shearlets considering each branch separately. We observe that the different branches

detect different features and they work along different directions. The reconstruction of

a single coefficient influences also neighbouring pixels with an interval of influence that

depends on the support size of the filters. This creates the flaws that are visible in Fig-

ure 7.19 and also in the previous Figures 7.9 and 7.11. The flaws show clearly along

which directions we are working. Even if we consider the same branch of the tree, the

new matrices (7.41) and the shearlet matrices (7.45) work along different directions,

because we consider a different set of matrices. The details reconstructed by averag-

ing all branches are similar to the new matrices and shearlets, see Figure 7.20. The

difference is that the flaws generated by shearlets are more elongated, because the de-

terminants of the matrices are higher then the determinants of the new matrices. So,

the details reconstructed with the new matrices (7.41) perturb a smaller region than

the details reconstructed with shearlets. For this reason the new matrices localize bet-

ter the discontinuity with respect to shearlets. Moreover, the reconstructed details with

shearlets exhibit some black holes along the edges. This means that a part of the edge

is not detected. The new matrices produce less holes, meaning that the edge is detected

almost completely. In this example the new matrices offer a better edge detection than

shearlets.

An effective edge detection is given by Canny’s algorithm, presented in [Canny,

1986]. This procedure convolves the signal with a Gaussian, computes the gradient, and

the maxima of the gradient correspond to edges. In order to not detect small changes

and to attach together different edges, the maxima are selected with a threshold and

also relative maxima are kept if they are close to global maxima. At the end, we obtain

a logical image where we have 1 in correspondence to an edge and 0 elsewhere. Mallat

and Zhong [1992] state that looking at the maxima of the gradient is equivalent to look-

ing at the maxima in the wavelet transform. This observation endorses Yi et al. [2009]

to look at maxima of the shearlet transform to detect edges. We do the same with the

new matrices in (7.41).

In Figures 7.21 and 7.22 we analyse Figures 7.4e and 7.4f with Canny’s edge de-

tection and we reconstruct the detail coefficients with the new matrices in (7.41). The

resulting images are completely different, because for Canny’s algorithm we obtain a log-

ical image, while in our case we have a grayscale image. In this case we cannot compare

the quality of the images but we study if the new matrices detect all the edges recog-

nized by Canny’s algorithm. In particular, Figures 7.21 and 7.22 show two drawbacks

of Canny’s edge detection: closed edges and noise. In Figure 7.21 Canny’s algorithm

is not able to recognize a part of the fence because it is too dense while it recognizes

edges in the grass. For the same image, the reconstructed details with the new matrices
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(a) (b)ε= (0, 0)

(c) (d)ε= (0, 1)

(e) (f)ε= (1, 0)

(g) (h)ε= (1, 1)

Figure 7.19. Comparison between reconstructed details with the new matrices (7.41) (left) and

shearlets (7.45) (right) after two levels of decomposition of Figure 7.4b. Each row gives the

reconstruction along a single branch of the tree (Fig. 7.6).
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(a) (b)

Figure 7.20. Comparison between reconstructed details with the new matrices (7.41) (left) and

shearlets (7.45) (right) after two levels of decomposition of Figure 7.4b. We reconstruct by

averaging all branches of the tree (Fig. 7.6).

(a) (b)

Figure 7.21. Comparison between the reconstructed details with the new matrices (7.41) (left)

and Canny’s edge detection of Figure 7.4e.
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(a) (b)

Figure 7.22. Comparison between the reconstructed details with the new matrices (7.41) (left)

and Canny’s edge detection of Figure 7.4f.

detect the fence even when the boards are very close and in the grass they detect only

small discontinuities. Another drawback of Canny’s algorithm is shown in Figure 7.22.

Figure 7.4f is not of high quality and presents some blur near the edges of the image.

Canny’s edge detection recognizes these blurs as edges. This problem does not effect the

reconstructed details with the new matrices even if some flaws are present in the image.

Thus, the reconstructed edges with the new matrices are not effected by noise and can

also detect closed edges.

We observe that the transform generated by the new matrices in (7.41) detects dis-

continuities and distinguishes between big and small jumps into the colormap of the

initial image. So it could be interesting in the future to implement a true edge detection

with these matrices. The algorithm should find the location of the maximal detail coef-

ficients inside the image and take care of the orientation information given by the tree

in order to connect the edges in the right way. Moreover, we should mark with different

colors the edges in correspondence to big and small jumps.

With these examples we test the directional MMRA generated by the matrices in

(7.41) in comparison with wavelets and shearlets. The new transform behaves simi-

lar to shearlets but with a smaller number of details for each branch of the tree which

corresponds to less storage space to save all the decomposition tree. Moreover, the re-

construction with the new matrices generates smaller flaws in comparison to shearlets.

The proposed transform is also promising for the edge detection problem. For the future

it will be interesting to also test different types of filters, for example orthogonal filters

that could give a better approximation of the initial image.
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Conclusions

Subdivision schemes are effective in several areas of data approximation, and are well

exploited for their computational efficiency. In this work we analyse two different appli-

cations of subdivision schemes, specifically to curve design and image analysis.

In the first part we consider geometric subdivision schemes that can be useful to re-

quire some geometric features of the limit curve. We study the regularity of the limit

curve, in particular the curvature. Dyn and Hormann [2012] present sufficient con-

ditions for the convergence and G1 continuity that depend respectively on edges and

angles. Precisely, they require that the sequences of maxima of edges and angles are

summable. A curve is G2 continuous if at each point there exists the osculating circle,

and if the curvatures of these circles change continuously along the curve. In the sub-

division setting we consider the discrete interpolating circles that pass through three

neighbouring points and the difference between neighbouring discrete curvatures. We

conjecture that the sequence of maxima of these differences has to be summable in order

to generate a G2 continuous limit curve. To verify the correctness of our hypothesis, we

use subdivision schemes with different orders of regularity and several control polygons.

The proposed condition seems to be correct, because it is satisfied only in those exam-

ples where the limit curve is known to be G2 continuous. Moreover, we introduce a new

geometric scheme that is tailored to satisfy the given condition.

We put a lot of effort into proving that the summability of the differences of curva-

tures is sufficient to obtain a G2 continuous curve. Most of the proof is done, but it is not

complete because we miss one point. The problem is to prove some relations between

the curvatures of discrete interpolating circles with common elements: a common edge

or the same tangent at a point. This difficulty arises from the non linear nature of the

curvature: in fact, the curvature of a discrete interpolating circle is the ratio between an

angle and the opposite edge of the inscribed triangle. For these quantities it is rather

easy to find relations between neighbouring edges on angles. Considering two triangles

with a common edge, we can use the triangle inequality and the sum of interior angles

to relate edges and angles of the two triangles. However, what complicates the study is

the ratio between these quantities, because to have the convergence of the curvature it is

not sufficient to know that the maximum of edges and angles are summable, but we also

need that these sequences decay in the same way. We give numerical evidence that the

prescribed relations between neighbouring discrete curvatures are satisfied by schemes
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that generate G2 limit curves. To prove these relations we probably have to consider all

the possible configurations of points, as done in the other parts of the proof.

In the second part of the thesis we exploit a generalization of the subdivision schemes:

the multiple subdivision scheme, which allows to choose an expanding matrix and a sub-

division scheme from a finite dictionary in each step of the refinement. In image analysis,

subdivision schemes define a filterbank in a simple way. In this sense, a multiple subdivi-

sion scheme defines filterbanks that can be used in the setting of a directional transform.

The key ingredient to define a directional transform is a family of anisotropic expanding

matrices that are jointly expanding, and satisfy the slope resolution property. For any

dimension d , we present a set of shear-like matrices which are product of an anisotropic

diagonal matrix and a shear, and we prove that these matrices satisfy all the required

properties. The advantage of these matrices is that they have a smaller determinant than

shearlets. This is important, because the determinant of the matrices gives the number

of filters, so it is strictly related to the computational efficiency of the process. Further-

more, it is interesting to study which is the minimal determinant of a family of matrices

that satisfies all the prescribed properties, when we give up to consider anisotropic di-

agonal matrices. For d = 3 we implement a routine to find a general set of anisotropic

matrices with small determinant that are jointly expanding. We find an example of ma-

trices with determinant (det = 6) less than the dyadic case (det 2I3 = 8) but, for the

moment, we do not have the proof of the slope resolution property. In general, to prove

the slope resolution property for a family of matrices we have to find a set of contractive

maps and their invariant space. Moreover, as for the cone adapted shearlet system or

the presented shear-like matrices, we have to be sure that the union of the invariant

spaces covers every possible direction. It is complicated to check all these requests with

an automatic routine.

For the shear-like matrices in (7.9) we show some applications on images to test their

efficiency in decomposition, compression and edge detection settings. The obtained re-

sults are promising, and the proposed matrices enjoy all the features of the directional

transform. With respect to wavelets, they are able to analyse different directions. More-

over, the smaller determinant with respect to shearlets generates less artefacts in the re-

construction process. For the future it will be interesting to study how the results change

by considering different filterbanks. For example we want to construct orthogonal filters.

By reconstructing the detail coefficients we observe that the proposed matrices can

be used to detect edges. In fact, they give good results compared both to shearlets

and Canny’s algorithm. They are able to detect different directions of edges with low

fragmentation, they are robust to noise, and they distinguish between big and small

jumps. These promising results suggest that it will be worthwhile to study a true edge

detection with these matrices. The algorithm will take maxima in the detail coefficients

and will find their location in the image. We also have to exploit the scale and direction

information given by the branch of the tree in order to attach in the right way the edges

and to classify if they represent strong edges or small changes.
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