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A B S T R AC T

Hyperspectral Remote Sensing (RS) data have been exploited in the last decades

to successfully retrieve information about plant properties at different scales. This

thesis focuses on the use of state of the art hyperspectral RS data to retrieve vegeta-

tion status at canopy level, using both experimental and modeled data. In the last

years, RS of solar-induced chlorophyll a fluorescence (F) emerged as a novel and

promising scientific field for studying the dynamic behavior of photosynthesis. F

is a physical side product of chlorophyll a light absorption that is emitted as an

electromagnetic radiation in the red and far-red spectral regions (≈ 640 to 850nm),

and it is related to the energetic status of the photosystems. Nevertheless, apart

from physiology F is concurrently influenced by leaf and canopy structure, pig-

ment concentration and weather/illumination conditions, and its unambiguous

interpretation is still challenging. This drives the interest in exploring F-derived

metrics able to disentangle the physiological information from the remotely sensed

F signal.

The main aim of this Ph.D. was to exploit multi-source remote sensing data to

improve vegetation status analysis from above. In particular, I focused on using

F, and F-derived metrics, in the red and far-red spectral regions together with

hyperspectral reflectance in the Visible and Near InfraRed (VNIR) spectral region,

as a tool for monitoring variation in the photosynthetic efficiency of plants in

different conditions. The studies presented in this thesis are aimed at exploring the

capacity of F and complementary RS-derived variables to track changes in plant

physiology due to age-related hydraulic limitation in a pine forest (Chapter 2)

and track changes in photosynthetic efficiency due to the application of an abiotic

stressor on a lawn (Chapters 3, 4).

The results show that the two peaks of the chlorophyll fluorescence spectrum

were accurately estimated from high resolution spectral data collected on the

ground and using the high-performance imaging spectrometer HyPlant. Differ-

ent strategies to take into account the effects of varying illumination conditions

and biochemical/structural vegetation parameters on the F signal were applied

by means of empirical and physically based models. F-derived metrics in the

red region proved to be more sensible to variations in the functional state of the

photosynthetic machinery than those in the far-red. This was particularly true in

regards to changes in plant physiology in aging loblolly pines, where the decline

in red fluorescence yield was explained as a response of the increasing hydraulic
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limitation experienced by taller and older plants. Moreover, it was also observed

as a faster quenching of the initial rise of red fluorescence yield in the manip-

ulated stress experiment. Nevertheless, in this experiment both red and far-red

fluorescence were highly sensible to quick changes in photosynthetic efficiency. In

general, additional biophysical and physiological parameters were necessary to

interpret the spatial and temporal changes in fluorescence. By combining the in-

formation provided by the solar-induced fluorescence, the canopy reflectance, and

in one case the canopy temperature, it was possible to derive conceptual models

that explained the most relevant events that occurred in the photosynthetic ap-

paratus. When available, these findings were derived independently from both

ground-based and aerial (even if with larger uncertainties) RS measurements us-

ing high-performance spectrometry. These studies are among the few where red

and far-red F, and not only far-red F, were successfully estimated and exploited at

canopy level from airborne measurements. The achieved results enforce the impor-

tance of retrieveing this signal for vegetation monitoring. Moreover, through the

inversion of a coupled physically based radiative transfer model, for the first time

the full spectrum of canopy F, the fluorescence quantum yield (ΦF), as well as the

main vegetation parameters that control light absorption and reabsorption, were

retrieved concurrently using very-high resolution measured apparent reflectance

data. F values were compared to those retrieved with state-of-the-art spectral fit-

ting methods showing very strong correlation, while ΦF values agreed well with

an independent biophysical model for fluorescence and photosynthesis. The ef-

fects of pigment content, leaf/canopy structural parameters and physiology were

effectively discriminated, and their combined observation over time led to the

recognition of dynamic patterns of stress adaptation and stress recovery in the

plants.

Overall, the results achieved in this thesis foster the use of hyperspectral RS to

obtain information about plant status. In particular, they indicate that F yields

coupled with observations of complementary RS parameters, can be effective in-

dicators of the dynamic behavior of the photosynthetic machinery of the plants.

Putting this into the perspective of a repeated (or continuous) observation through

RS platforms, it will be possible to characterize stress-specific patterns and to effec-

tively distinguish between acute stress events and prolonged stress phases, moni-

toring their implications on the long-term functioning of the vegetation.
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Hyperspectral Remote Sensing (RS) data have been exploited in the last decades

to successfully retrieve information about plant properties at different scales

(Thenkabail, Lyon, and Huete, 2012). The inherent strength of RS techniques for

monitoring terrestrial ecosystems resides in their ability to cope with processes

that are highly dynamic, both spatially and temporally at a relevant scale for de-

scribing them. This thesis focuses on the use of state-of-the-art hyperspectral data

to retrieve vegetation status at canopy level, using both experimental and mod-

eled data. Terrestrial vegetation plays a critical role in the global biogeochemical

cycles (Franklin et al., 2016), and as any other element in the Earth-surface sys-

tem, its energy budget is strongly driven by solar radiation through a complex

system of processes (e.g., Monson and Baldocchi 2013; Ramanathan 1987). From a

physiological point of view, the key process that originates from this interaction is

photosynthesis. Photosynthesis is the main mechanism used by plants to fix atmo-

spheric carbon dioxide (CO2) as organic compounds, storing light energy that can

be used to sustain the growth of the organism. With an estimated uptake of more

than 120 PgCyear−1 (Beer et al., 2010), it is the largest CO2 flux on Earth.

Photosynthesis is a highly dynamic process that can be divided in two steps: i)

the light reactions; and ii) the carbon reactions. In the light reactions (Figure 1,

upper part), the process starts with the interaction between the radiation and the

vegetation elements. Part of the Photosynthetically Active Radiation (PAR), de-

fined as the incoming light between 400 and 700nm, is absorbed by the vegetation

pigments (mainly by chlorophyll molecules), bound by proteins to form photosyn-

thetic antenna complexes (Liu et al., 2004). This amount is defined as Absorbed

Photosynthetically Active Radiation (APAR), and it is mathematically described

as the product of PAR and of the fraction of Absorbed Photosynthetically Active

Radiation (fAPAR). fAPAR, in turn, is a property that describes the capability of a

vegetation element (e.g., leaf, canopy) to absorb the incoming PAR. The amount of

incoming radiation that is not absorbed, can be reflected or transmitted by the veg-

etation elements. Most of the APAR is moved from the antenna complexes to the

reaction centers of photosystem I (PSI) and photosystem II (PSII) (P700 and P680,

respectively), specialized pigment-protein complexes able to convert the excitation

energy into chemical energy. These two photosystems are present in higher plants

and act in reverse order, moving electrons from PSII to PSI in a series of reac-
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Figure 1: Photosynthetic energy partitioning at the leaf level in the light reactions and
in the carbon reactions. Grey arrows represent the flow of energy. Optical sig-
nals available to remote sensing include properties of reflected and transmitted
light, and chlorophyll a fluorescence. LET, linear electron transport; CET, cyclic
electron transport (modified from Porcar-Castell et al., 2014).
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tions that form the Linear Electron Transport (LET) (Porcar-Castell et al., 2014). In

optimal conditions, most of the energy absorbed by PSII is used for photochem-

istry (Photochemical Quenching (PQ)), storing the chemical energy in high-energy

compounds like adenosine triphosphate (ATP) and NADPH. This energy, can be

potentially used for feeding the carbon reactions, where the actual synthesis of

carbohydrates takes place (Figure 1, lower part). Following the Light Use Effi-

ciency (LUE) model proposed by (Monteith 1972; Eq. 1), the complex mechanisms

that regulate the conversion of APAR into Gross Primary Production (GPP) (i.e.,

gross photosynthesis) can be expressed with an efficiency factor (LUEp, or ǫp).

GPP = PAR × fAPAR × LUEP (1)

The amount of absorbed energy not used for PQ has to be quickly released from

the photosystems in order to minimize the chances of formation of harmful reac-

tive species. Stress events, to be intended as unfavorable (sub-optimal) growing

conditions, can modulate LUEp inhibiting one or both phases of the photosyn-

thetic process, lowering the actual rates of photosynthesis and threatening the

energetic balance. Potentially, these stressed conditions can lead to losses in veg-

etation health and production with different grades of severity. The capability

of the plant to recover from these events is determined by the intensity and the

persistence of the stress, but also by the resistance and resilience of the plant to

it. Water and nutrient limitation, light intensity, temperature and exposure to

oxidant species are among the most common environmental limiting factors for

photosynthesis (e.g., Chapin III et al. 1987).

Plants, for their part, evolved many processes to maximize the energy balance

between the two phases of photosynthesis (e.g., Walters 2005). Among these, the

excess energy at the photosystem level is largely dissipated non-radiatively as

heat (Non-Photochemical Quenching (NPQ)) or is emitted at slightly longer wave-

length as chlorophyll a fluorescence (F) (e.g., Demmig-Adams and Adams 2006;

Flexas et al. 2002). F is a physical side product of light absorption that is emitted

as an electromagnetic radiation in the red and far-red spectral regions (≈ 640–

850nm), with two peaks around 690nm and 740nm (Figure 2). PSI absorbs at

slightly longer wavelengths than PSII, and its contribution to the total emitted flu-

orescence signal is relatively lower and more constant than the one of PSII (e.g.,

Genty, Wonders, and Baker 1990). From a spectral point of view, PSI contributes

more to fluorescence in the far-red region (i.e., ≈ 740–760nm) (FFR), while PSII has

a strong contribution on both fluorescence in the red region (i.e., ≈ 690nm) (FR)

and FFR (Franck, Juneau, and Popovic, 2002).

At leaf scale, the fast dynamics of F actively induced with artificial light sources

have been studied for decades to obtain information on plant photosynthetic ac-

tivity, and they helped elucidating many important features of the mechanism
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Figure 2: Incoming radiance (Lin; black line), reflectance (ρ; green line) and solar-induced
chlorophyll a fluorescence (F; red line). The two spectral windows of the O2-
B and the O2-A oxygen absorption features are highlighted by shadowed areas.

of photosynthesis (Papageorgiou and Govindjee, 2004; Porcar-Castell et al., 2014).

Nevertheless, this technique is impractical at larger scales due to technical con-

strains. As it is, no direct measure of photosynthesis is available at these scales,

and the modeled products show large residual uncertainties (Beer et al., 2010), and

lack a spatially distributed independent benchmark. In natural conditions, F gen-

erates from the absorption of light emitted by the Sun (solar-induced chlorophyll

fluorescence, herein F), and it is a relatively weak signal compared to the reflected

radiance (≈ 1-5%).

In the last years, RS of F emerged as a novel and promising scientific field for

studying the dynamic behavior of photosynthesis (for a review of this topic see

Meroni et al., 2009 and Porcar-Castell et al., 2014), since the possibility to retrieve

it without using artificial light sources (i.e. passively) opens new perspectives for

its use at ecosystem, regional or global scale. In fact, the feasibility of consistent

retrievals of F has been successfully investigated in the last years from ground

based platforms (Julitta et al., 2016; Rossini et al., 2016), Unmanned Aerial Vehi-

cless (UAVs) (Garzonio et al., 2017; Zarco-Tejada et al., 2013), airplanes (Rascher

et al., 2015; Rossini et al., 2015) and satellites (Cogliati et al., 2015; Guanter et

al., 2015, 2010; Joiner et al., 2016), with a strong impulse given by the activity

supporting the recently selected Earth-Explorer 8 FLuorescence EXplorer (FLEX)

satellite mission, of the European Space Agency (ESA), specifically intended for

global-scale F retrieval from space. FLEX will fly in tandem with the ESA Coper-
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nicus Sentinel-3 (S3) satellite (“FLEX-S3” tandem mission), providing F estimates

in both the red and far-red regions, as well as complementary products derived

from Visible and Near InfraRed (VNIR) reflectance, with an unprecedented spatial

resolution (pixel size 300m × 300m). In fact, starting from 2012, ESA organized a

series of campaigns to test technical and scientific hypothesis to support the FLEX

mission. In these campaigns, state-of-the-art ground spectroradiometers where

employed together with the innovative HyPlant airborne sensor (Rascher et al.,

2015), a precursor of the FLEX optical payload optimized for F retrieval in the red

and far-red spectral regions.

The major challenge in the passive F retrieval from RS data is the decoupling of

the small F signal from the much higher radiance reflected by the surface (i.e., the

vegetation). The F signal is relatively stronger, and can be more easily detected

passively, in narrow regions of the spectrum in which irradiance at ground level

is strongly reduced. These can be due to dark lines in the solar emission spectrum

(i.e., Fraunhofer lines) or to the absorption of radiation within the atmosphere

(i.e., telluric features). The main telluric features which have been exploited for

F estimation are the oxygen (O2) absorption bands in the Earth atmosphere, O2-

B (centered at 687.0nm) and O2-A (centered at 760.4nm) (Figure 2, grey bands).

F is usually retrieved from high spectral resolution radiance measurements using

algorithms based either on the Fraunhofer Line Depth (FLD) principle (Plascyk,

1975), the Spectral Fitting Methods (SFM) (Meroni and Colombo, 2006) or the

Singular Vector Decomposition (SVD) (Guanter et al., 2012). Recently, Cogliati et al.

(2015) and Liu et al. (2015) proposed innovative spectral fitting methods to retrieve

the full spectrum of emitted F, opening new perspectives for the development of

higher level F products (e.g., quantify the total F flux emitted at the top of the

canopy).

A growing body of scientific studies shows that remotely sensed F can be used

to track the physiological behavior of plants at several spatial and temporal scales

of interest (e.g. Damm et al. 2010; Guanter et al. 2014; Köhler et al. 2017; Meroni

et al. 2008; Rossini et al. 2015; Rossini et al. 2010; Sun et al. 2017; Walther et

al. 2016; Wieneke et al. 2016; Yang et al. 2015; Zhang et al. 2014). Nevertheless,

most of these studies did not properly consider that apart from physiology, F is

concurrently influenced by leaf and canopy structure, pigment concentration and

weather/illumination conditions (Porcar-Castell et al., 2014; Verrelst et al., 2015b).

The variability of these factors across space and time can mask, or erroneously

emphasize, the variation of F linked to the physiology of the plant, and its un-

ambiguous interpretation is still a largely unsolved challenge. This is especially

true in stressed conditions where the energy partitioning between PQ, NPQ and

F can be highly varied (Schulze and Caldwell, 1995). On the other hand, these

conditions are also among the most interesting cases of application for F, because
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traditional RS techniques often fail to identify the stress events before a visible

(and not easily reversible) damage occurs (e.g. Rossini et al. 2015). Moreover, the

vast majority of canopy level studies exploited only FFR, while there is evidence

that the combined observation of both FFR and FR observations can offer addi-

tional insights for stress/productivity detection (e.g., Ač et al. 2015; Daumard et al.

2010; Joiner et al. 2016; Middleton et al. 2015), and carry information from dif-

ferent layers of a leaf or a canopy (Gitelson, Buschmann, and Lichtenthaler, 1998;

Porcar-Castell et al., 2014). This limitation is mostly driven by the fact that most

sensors onboard airborne or satellite platforms that have been used for F retrieval

are not optimized for this task, and lack either the spectral range or the spectral

resolution to retrieve FR, or the full spectrum of F.

Following (e.g.) Lee et al. (2013), adapting the formulation of the LUE model

(Monteith, 1972) the F flux emitted at the top of the vegetation canopy (i.e. the

quantity directly retrievable from canopy level RS data) can be expressed as a

function of the PAR, of the fAPAR, of the LUEF and of the fluorescence escape

probability (fesc) (Eq. 2).

F(λ) = PAR × fAPAR × fesc(λ)× LUEF(λ) (2)

LUEF(λ) is the fraction of absorbed PAR emitted as fluorescence at wavelength λ,

while fesc(λ) is the probability that an emitted fluorescence photon escapes the

canopy in the observation direction. LUEF is not directly measurable at canopy

level, but hyperspectral RS data can be used to retrieve information about the

first three terms of Eq. 2, and calculate LUEF consequently from F. Neverthe-

less, fAPAR estimates from RS are still affected by large errors (Meroni et al.,

2013; Pickett-Heaps et al., 2014), and besides the conceptual definition of fesc, its

proper quantitative description and quantification from RS is still debated and

varies with wavelength (λ). Even neglecting second order complex mechanisms of

emission/reabsorption throughout the canopy, the proper computation of LUEF

would imply measuring the full spectrum of emitted F from every observation

direction. RS data are rarely able to provide this information, and several proxies

for LUEF have been proposed over time. Among these, the most widely used are

the fluorescence yield (Fy) (i.e., the ratio between F and APAR) and the apparent

fluorescence yield (Fy*) (i.e., the ratio between F and PAR). On the other hand, in

photosynthesic studies it is practical to use the concept of quantum yield to describe

the quantum efficiency of the process of fluorescence emission (fluorescence quan-

tum yield (ΦF)) at photosystem level, but ΦF can not be measured from above and

a modeling step is mandatory to retrieve it from RS data.

RS techniques have the potential to retrieve vegetation parameters that have a

direct impact on the Radiative Transfer (RT) of the radiation reflected, transmit-

ted and emitted by the target. These can be biochemical (e.g., pigments content,
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dry matter content) or structural parameters (e.g., leaf inclination, Leaf Area In-

dex (LAI), vegetation fractional cover (fc)), characterized at leaf or canopy level,

and their link with RT fluxes is described from a variety of empirical and physical

models (Verrelst et al., 2015a). Vegetation Indices (VIs) have been widely used

as simple numerical indicators of a single vegetation property, building empirical

relationships between measurements of a vegetation property and the associated

VI value. They are mathematical combinations of two or more bands, that have

been increasing in number along with the development of optical sensors. They

are generally easy to calculate from RS data, and, although quite effective, the re-

lationships with vegetation parameters are limited to their empirical domain. On

the other hand, physically-based Radiative Transfer Models (RTMs) of the vege-

tation have been used in the last decades to express mathematically the complex

interactions between vegetation elements (e.g., tissues, leaves, branches) and the

electromagnetic radiation. Some of these models also include interactions with the

soil and the atmosphere (Verhoef and Bach, 2003, 2007). In addition to that, Soil-

Vegetation-Atmosphere Transfer (SVAT) models (e.g., Sellers 1997; van der Tol et

al. 2009; Verhoef and Allen 2000) have been proposed to describe the pathways of

energy, carbon and water between soil, vegetation and atmosphere. Among these,

the 1-D (vertical) “Soil-Canopy Observation Photosynthesis and Energy fluxes”

(SCOPE) model (van der Tol et al., 2009) is an integrated radiative transfer and

energy balance model that enables the simulation of canopy leaving hyperspectral

reflectance and fluorescence, as well as the turbulent heat fluxes and photosynthe-

sis. It is based on the vastly used PROSPECT (Jacquemoud and Baret, 1990) and

the “Scattering by Arbitrary Inclined Leaves” (SAIL) models (Verhoef, 1984) (for

a review of application see Jacquemoud et al. 2009), and it is the most commonly

used RTM for RS fluorescence applications.

Several approaches have been proposed to retrieve vegetation parameters from

the inversion of these RTMs (Verrelst et al., 2015a). For example, van der Tol et

al. (2016) successfully exploited high resolution (Spectral Sampling Interval (SSI)

= 0.24nm and Full Width at Half Maximum (FWHM) = 1nm) top-of-canopy re-

flectance spectra in the VNIR spectral region, to partially invert SCOPE and re-

trieve biochemical and structural parameters of the vegetation (e.g. pigment con-

centration, canopy structure), and simulate emitted F760. On the other hand, in a

very recent study, Verhoef, Van Der Tol, and Middleton (2017) proposed a method

to invert coupled RT models of the soil-leaf-canopy and the surface-atmosphere

systems to retrieve the full spectrum of emitted F along with important canopy

level biophysical parameters that may help its interpretation from top of atmo-

sphere FLEX-S3 data. Nevertheless, such approach has never been tested on mea-

sured RS data.
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All together, the aspects introduced in the paragraphs above drive the interest

in i) retrieving both FR and FFR (and potentially the full spectrum) starting from

high resolution measured RS data, and ii) discriminating the physiological infor-

mation in the remotely sensed F signal from the contribution given by biophysical,

biochemical and environmental parameters. The first step implies the use of high

performing spectrometers covering at very high spectral resolution both the red

and the far-red spectral regions (cfr. Cogliati et al. 2015; Julitta et al. 2016) while

to fulfill the second, the use of a modeling strategy to account for PAR absorp-

tion and F reabsorption inside the canopy is mandatory. These aspects have been

explored in this thesis and are discussed in Chapters 2,3 and 4.

1.1 O B J E C T I V E S

The main aim of this research was to exploit multi-source remotely sensed data

to improve vegetation status analysis. In particular, I focused on using F, and F-

derived metrics, in the red and far-red spectral regions together with hyperspectral

reflectance in the VNIR spectral region, as a tool for monitoring variation in the

photosynthetic efficiency of plants in different conditions.

The specific research questions of this thesis are:

• to understand if F and F-derived metrics retrieved in the red and far-red spec-

tral regions from high spatial and spectral resolution data acquired with the

HyPlant airborne sensor (Rascher et al., 2015), can be used to track changes

in plant physiology associated with age-related hydraulic limitation (Chap-

ter 2);

• to explore the capacity of passive measurements of F, together with comple-

mentary remote sensing parameters, to detect short-term dynamics of photo-

synthetic efficiency in vegetation, induced by manipulated stress (Chapter 3);

• to test the direct inversion of a physically based RTM to retrieve ΦF, the

full spectrum of F and several biochemical and structural vegetation param-

eters, starting from very high resolution field spectroscopy measurements

(Chapter 4).

1.2 T H E S I S O U T L I N E

This Ph.D. thesis is structured as a collection of scientific papers, where each

chapter is an article with its own introduction, material and methods, results, dis-
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cussions and conclusions. The scientific activity of this Ph.D. project has been

mainly based on data collected during the measurements campaigns supporting

the future FLEX mission of the ESA. The analyses presented here refer in particu-

lar to data acquired in 2013 and 2014.

In Chapter 2, I present the activity conducted on data acquired in 2013 over a

managed loblolly pine (Pinus taeda L.) forest in North Carolina (USA), aimed at

investigating the relationship between stand age-related processes and remotely

sensed F. I used data collected with the HyPlant airborne sensor to retrieve FR,

FFR and hyperspectral reflectance over the forest with a high spatial resolution

(1m × 1m). I characterized the F emission of 18 evenly aged stands in a range

from 3 to 46 years old, and I computed the corresponding F yields, dividing F by

the APAR derived by the reflectance data. Following the concept of a space-for-

time substitution, I compared the age-related changes of F and F yields with the

correspondent variation in hydraulic limitation (Drake et al., 2010).

In Chapter 3, I present the outcomes of a campaign held in 2014 in Latisana

(Udine, Italy) where three 9m × 12m plots of a homogeneous lawn were treated

with different doses of Dicuran 700 FW (Syngenta AG), a commercial formulation

of Chlortoluron (3-(3-chloro-p-tolyl)-1,1-dimethylurea). This herbicide inhibits

photosynthesis by blocking the electron transport chain in the photosynthetic ap-

paratus. In particular, it displaces the plastoquinone (PQ) at the QB binding site on

the D1 protein and thereby blocks electron flow from QA to QB. I exploited data

collected on the ground with very high resolution spectroradiometers, airborne im-

ages collected with the HyPlant and the TASI-600 sensors, as well as canopy-level

gas exchange measurements collected with closed chambers, in order to detect

short-term dynamics of photosynthetic efficiency in vegetation, induced by stress.

In Chapter 4, starting from the ground level top-of-canopy hyperspectral mea-

surements from Chapter 3, I inverted numerically a simplified version of the

SCOPE model (van der Tol et al., 2009) to concurrently retrieve F, ΦF and several

biochemical and biophysical parameters of the vegetation from very high resolu-

tion apparent reflectance data. In a second step, I used these retrieved values to

recognize dynamic patterns of stress adaptation and stress recovery in the plants.

Chapter 5, concludes this thesis with conclusions, discussion of the main find-

ings and suggestions for future work.





2 VA R I A B I L I T Y O F S O L A R - I N D U C E D

C H L O R O P H Y L L F L U O R E S C E N C E

AC C O R D I N G TO S TA N D AG E - R E L AT E D

P R O C E S S E S I N A M A N AG E D

L O B L O L LY P I N E F O R E S T

A B S T R AC T

1 Leaf fluorescence can be used to track plant development and stress, and is

considered the most direct measurement of photosynthetic activity available from

remote sensing techniques. Red and far-red solar induced chlorophyll a fluores-

cence (F) maps were generated from high spatial resolution images collected with

the HyPlant airborne spectrometer over even aged loblolly pine plantations in-

North Carolina (USA). Canopy fluorescence yield (Fy; i.e., the fluorescence flux

normalized by the light absorbed) in the red and far-red peaks was computed.

This quantifies the fluorescence emission efficiencies that is more directly linked

to canopy function compared to F radiances. Fluorescence fluxes and yields were

investigated in relation to tree age to infer new insights on the potential of those

measurements in better describing ecosystem processes. The results showed that

red fluorescence yield varies with stand age. Young stands exhibited a nearly

2-fold higher red fluorescence yield than mature forest plantations, while the far-

red fluorescence yield remained constant. We interpreted this finding in a context

of photosynthetic stomatal limitation in aging loblolly pine stands. Current and

future satellite missions provide global datasets of F at coarse spatial resolution,

resulting in intra-pixel mixture effects, which could be a confounding factor for

fluorescence signal interpretation. In order to mitigate this effect, we propose a

surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index

1 The content of this chapter has been accepted for publication in Global Change Biology as Colombo,

R., Celesti, M., Bianchi, R., Campbell, P.K.E., Cogliati, S., Cook, B., Corp, L.A., Damm, A., Domec,

J.-C., Guanter, L., Julitta, T., Middleton, E.M., Noormets, A., Panigada, C., Pinto, F., Rascher, U.,

Rossini, M., Schickling, A. “Variability of solar-induced chlorophyll fluorescence according to stand

age-related processes in a managed loblolly pine forest”, and it is currently in press.
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(CCFI) that takes into account the spatial variability of canopy structure by ex-

ploiting the vegetation fractional cover. Airborne data were degraded at different

spatial resolutions and the fluorescence yields were re-computed and evaluated in

relation to tree age. It was found that spatial aggregation tended to mask the ef-

fective relationships, while the CCFI was still able to identify this link. This study

is a first attempt in interpreting the fluorescence variability in aging forest stands

and it may open new perspectives in understanding long-term forest dynamics in

response to future climatic conditions from remote sensing of F.

2.1 I N T R O D U C T I O N

Leaf structure and physiology change in many woody species when they be-

come sexually mature (e.g., Greenwood 1995). Compared with the knowledge

of senescence processes in annual and biennial plants, relatively little is known

about age-related changes in woody perennials (Bond, 2000). Old trees differ from

younger trees, both physiologically and morphologically. In general, older trees

have lower rates of photosynthesis, reduced growth rates (both height and diame-

ter) and a distinctive hydraulic architecture (Meinzer, Lachenbruch, and Dawson,

2011; Ryan and Yoder, 1997). Nutrition, carbon allocation (including respiration),

meristematic activity and the tree’s hydraulic properties all potentially change

with tree age and in most cases result in a slower growth in older trees Domec

and Gartner (2003). Moreover, it is generally known that photosynthetic rates of

seedlings are higher than in mature trees (Larcher, 1969). Leaf photosynthesis and

stand primary production have often been found to decline with increasing plant

age and size, as a result of hydraulic or biochemical limitations (Drake et al., 2011;

Hubbard, Bond, and Ryan, 1999; Ryan, Phillips, and Bond, 2006; Yoder et al., 1994).

Determining why growth is reduced in aging forest stands is a compelling need:

the growth patterns are pronounced and predictable but the underlying mecha-

nisms remain unclear (Gower, McMurtrie, and Murty, 1996; Ryan, Binkley, and

Fownes, 1997). Even though some work has been done at the leaf level (Beeck et

al., 2010; Linkosalo et al., 2014; Reinhardt, Johnson, and Smith, 2009; Shirke, 2001),

the response of chlorophyll a fluorescence (F) to these age-related processes has

not been investigated previously. F is closely related to actual photosynthetic rates

and basically to the functional process linked to the amount of energy (in form of

transported electrons) that is provided from photosynthetic light reactions Porcar-

Castell et al. (2014).

Remote sensing of F is a research field of growing interest with the potential

to provide an improved tool for monitoring plant status and photosynthetic func-

tion from above. In this framework, the new satellite mission of the European
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Space Agency (ESA), the FLuorescence EXplorer (FLEX) (Drusch et al., 2017), is

expected to map canopy fluorescence from space at global level, with 300m spatial

resolution, which will be used to derive the photosynthetic activity of natural and

managed ecosystems. Fluorescence is considered the most direct proxy of actual

photosynthetic activity available from remote sensing techniques and as such it

has been used extensively to track plant status at leaf and canopy level (Ač et al.,

2015; Cheng et al., 2013; Damm et al., 2010; Daumard et al., 2010; Goulas et al.,

2017; Joiner et al., 2014; Koffi et al., 2015; Meroni and Colombo, 2006; Meroni

et al., 2008; Middleton et al., 2012; Moya et al., 2004; Rascher et al., 2009; Rossini

et al., 2015; Rossini et al., 2010; Zarco-Tejada, González-Dugo, and Fereres, 2016;

Zarco-Tejada, González-Dugo, and Berni, 2012; Zhang et al., 2014). The intensity

of the fluorescence signal at canopy level depends on the photosynthetic rates,

biophysical, biochemical and structural characteristics of the canopy, incoming ra-

diation and background contributions (Cerovic et al., 1996; Damm et al., 2015a,b;

Daumard et al., 2010; Fournier et al., 2012; Hoge, Swift, and Yungel, 1983; Moya

et al., 2006; Olioso, Méthy, and Lacaze, 1992; Rossini et al., 2016; Van Wittenberghe

et al., 2013; Verrelst et al., 2015). These parameters are highly variable in space and

time and they should all be considered to correctly interpret the fluorescence sig-

nal. In fact, plants with different photosynthetic rates, chlorophyll content and/or

canopy structure and exposed to various irradiance regimes can potentially emit

the same amount of fluorescence. The effects of variable incoming illumination

can be corrected by computing the apparent fluorescence yield (Fy*) (i.e., the ratio

of the emitted fluorescence flux to the total incoming Photosynthetically Active

Radiation (PAR)), which is in fact the parameter most commonly exploited for

spatial and temporal comparison of fluorescence satellite derived products col-

lected in different light illumination conditions (i.e., different solar zenith angles,

e.g., Guanter et al. 2014). However, to move towards the use of F for net photo-

synthesis and plant functioning characterization in a heterogeneous landscape it

is also necessary to account for vegetation structural/biochemical variations. This

can be accomplished by exploiting the canopy fluorescence yield (Fy) (i.e., the

ratio of the emitted fluorescence flux to the Absorbed Photosynthetically Active

Radiation (APAR)), which is a physically-based index of efficiency that accurately

describes the effects of the absorbed radiation on the F signal. The usefulness of

F or Fy* to track the effects of environmental stressors on plant functioning has

been demonstrated in numerous investigations (e.g., Guanter et al. 2014; Meroni

et al. 2008) while the performances of Fy computed at airborne or satellite level

has been investigated in only two studies (Introna and Wood, 2004; Wieneke et al.,

2016). This is mainly due to the difficulty in accurately estimating APAR.

Current and future satellite missions will provide global datasets of F at a range

of coarse spatial resolutions (e.g., 300m to 0.5°), resulting in intra-pixel mixture
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effects, which will be an unavoidable confounding factor for fluorescence signal

interpretation. In this context, there is a need of having simplified F-derived in-

dices for small-scale applications over large regions, which can take into account

the spatial variability of canopy structure. Therefore, a new approach is needed to

compensate for structural effects on F measurements, including the use of radia-

tive transfer model inversion (Hernández-Clemente et al., 2017; van der Tol et al.,

2016; Zhao et al., 2016), spectrally invariant correction factors (e.g., the Directional

Area Scattering Factor (DASF), Knyazikhin et al. 2013), or empirical normalization

techniques (Colombo, Meroni, and Rossini, 2016).

In this paper, red (F690) and far-red F (F740) maps were generated from high

spatial resolution images (1m) collected with the HyPlant airborne sensor over

a range of even aged stands in loblolly pine forest plantations in North Carolina

(USA). The canopy fluorescence yields for both red (Fy690) and far-red F (Fy740)

were then computed and investigated with the main aim to understand if F varies

across stands of different ages, according to structural and physiological parame-

ters. In this context, we hypothesized that hydraulic limitation in older pines could

reflect in a lower fluorescence emission compared to the younger trees, due to the

reduced rates of photosynthesis. We were also interested in evaluating the effect

of pixel size, and the mixture effects, on the relationships between fluorescence

and stand age. This study can be considered a first attempt in interpreting the

fluorescence variability in aging forest stands and it may open new perspectives

in understanding long-term forest dynamics from remote sensing of F.

2.2 DATA A N D M E T H O D S

2.2.1 Study area

This study was performed at the Parker Tract forest in the lower coastal plain

near Plymouth, North Carolina, USA, in the context of the joint 2013 ESA/NASA

FLEX airborne campaign (Middleton et al., 2017). The forest is a 4400ha managed

plantation that contains various loblolly pine (Pinus taeda L.) stands of different

ages. Parker Tract is a pine forest where stand density is reduced under a pre-

scribed thinning regime as age increases to maximize timber production. Accord-

ing to the Parker Tract forest management plan, pine stand age within the study

area ranges from 3 to 46 years old, when the forest have reached high commer-

cial potential and is being harvested. Therefore, we are dealing with juvenile and

mature stages. The topography is flat and the climate is maritime temperate zone

with a mean annual precipitation of 1320mm and mean annual temperature is

of 15.5 ◦C. The Parker Tract forest belongs to the Long-Term Ecological Research
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Sites and further details on the site are reported in different studies (e.g., Domec

et al. 2012; Noormets et al. 2010). Figure 3 shows the location of the study area

and the investigated loblolly pine stands (with their plantation age) overlapped

to the HyPlant mosaic of airborne images collected over the investigated forest.

The tree age classes reported in Figure 3 correspond to years since planting at

the time of data acquisition. In particular, tree ages correspond to the time when

the sites were graded and planted with 2 years-old seedlings, and thus can be

considered a chronosequence. Since no direct dendrochonological and only few

physiological measurements were available for comparison between forest data

and fluorescence estimates, to better interpret our findings we also exploited data

and previous results obtained in a companion loblolly forest at the Duke Forest.

The Duke Forest loblolly study area, is located in the Blackwood Division of Duke

Forest (US-Dk3; lat/lon 35.9782° / −79.0942°, North Carolina, USA). It represents

a late stage post-agricultural succession characteristic of the south-eastern United

States. Duke Forest, in addition to mixed deciduous forest, also has even-aged

plantation of loblolly pine stands ranging from 14 to 114 years, established in 1983

following a clear cut and a burn (Domec et al., 2015; Novick et al., 2009; Oren et al.,

2006).

2.2.2 Field campaign and leaf level measurements

During the field survey in September and October 2013, forest stands character-

istics including number of species, average tree height, crown width, crown depth,

and tree diameter at breast height (1.3m) were measured within one-tenth of an

acre (0.4 ha) plots and averaging measurements from 2–3 plots per stand, at both

Parker Tract (18 stands) and Duke Forest (14 stands). Leaf Area Index (LAI) was

measured at all stands using a LAI-2000 Plant Canopy Analyzer (LAI-2000 PCA;

Li-Cor, Lincoln, NE, USA). LAI measurements at each location were taken using a

standard protocol in diffuse light conditions within one hour of dawn or dusk.

Average carbon (%C) and nitrogen concentration (%N) for pine foliar samples

were measured in 26 stands (18 at Duke Forest and 8 at Parker Tract), while leaf

chlorophyll content was estimated at 16 stands at Parker Tract. Leaf samples were

collected from the 2 most recent annual leaf flushes on 1–3 branches of the sunlit

portion of the upper canopy of three pine trees in a stand, using a cherry picker

or a rifle. The branch samples were placed in a bag with wet paper towel, on ice,

in a dark cooler and taken to a nearby field lab for analysis. Leaf fresh and dry

weights were measured on 10 needle fascicles from a sample, using three samples

per tree. For pigment determination, needle samples were ground and placed in

polystyrene cuvettes containing 4ml dimethyl sulfoxide (DMSO) and frozen for
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Figure 3: a) Location of the Parker Tract Forest in NC, USA; b) Location of the Loblolly
pine even aged stands (18 total) are shown in colored categories, overlapped on
a false color composite HyPlant mosaic.
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extraction before the measurements. A spectrophotometer was used to determine

chlorophyll a, chlorophyll b, total chlorophyll (Cab, mgcm−2), and carotenoids

based on established equations (Chappelle, Kim, and McMurtrey, 1992). Leaf re-

flectance and transmittance spectra were also measured on needles collected from

25 trees (1-2 trees per stand at Parker Tract), at the end of the growing season,

when the needles were fully developed. Hemispherical reflectance and transmit-

tance were measured using an ASD spectrometer (FieldSpec 3, Analytical Spectral

Devices, Inc., Bolder Co.) equipped with an external integrating sphere (LI-1800,

Li-Cor, Lincoln, NE, USA) and then used to determine fraction of Absorbed Pho-

tosynthetically Active Radiation (fAPAR) at leaf level. The needles were arranged

side by side following the methodology introduced by Daughtry, Biehl, and Ran-

son (1989) (“Case 3”) as described in Williams (1991). Leaf level stomatal conduc-

tance (gs) and net photosynthesis (Pnet) measurements at the Parker Tract forest

were performed on 17th May 2013, and 30th September 2013 for the mature pine

trees (23 years old trees) and on 2nd June 2013 and 1st October 2013 for the young

trees (7 years old trees). Meteorological conditions were stable during those weeks

and were characterized by clear and warm days. gs and Pnet were measured with

a LI-6400 gas exchange system (LI-COR, Lincoln, NE, USA). Measurements of gs

were performed on six randomly selected individuals within each age class every

two hours beginning at 6:00 h solar time and ending at approximately 15:00 h

solar time. Measurements of gs were conducted on current-year detached fasci-

cles taken from the same shoot simultaneously, and were performed on fully sun

exposed south-facing shoots. For the mature trees, shoots from the upper canopy

were shot down with a rifle. Needles were not detached for more than five min-

utes before the measurements were initiated. Previous studies on the same tree

species have shown that there were no differences between excised and attached

needle gas exchange when measurements were restricted to less than 15 minutes

after excision (Drake et al., 2010; Maier et al., 2002). For each needle, the cham-

ber was set to match prevailing environmental conditions assessed immediately

prior to the measurement: atmospheric CO2 concentration (384–405 ppm), relative

humidity (46–61 %), photosynthetically active radiation (600–1800µmolm−2 s−1),

and leaf temperature (27–35 ◦C). Stomatal conductance and photosynthesis data

reported here correspond to the maximum values, i.e., usually taken between 09:30

h and 11:30 h solar time. For normalizing gs on an all-sided leaf area basis, nee-

dle areas were obtained geometrically from dimensions measured using a digital

caliper (series 500 Mitutoyo, Aurora, IL, USA) (Rundel and Yoder, 1998)). Along

with the gas exchange measurements, leaf water potential (Ψleaf) were measured

at predawn and at midday (11:00 h - 12:00 h solar time) using a pressure chamber

(PMS Ins., Albany, OR, USA). For the midday measurements, Ψleaf, gs and Pnet

were conducted on detached fascicles taken from the same shoot.
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2.2.3 Airborne acquisition and pre-processing

On 26th October 2013, from 09:56 h to 11:08 h solar time, eight aerial im-

ages were acquired by the HyPlant airborne imaging spectrometer on board the

National Aeronautics and Space Administration (NASA) Langley Research Cen-

ter’s (LARC) UC12 Beechcraft King Air in combination with imagery acquired

by the Goddard LiDAR, Hyperspectral and Thermal (G-LiHT) airborne system.

Extensive descriptions of these systems are presented in Cook et al. (2013), Mid-

dleton et al. (2017), and Rascher et al. (2015). The HyPlant Instantaneous Field

Of View (IFOV) is equal to 0.0832°, while the Field Of View (FOV) is of 32.3°.

With such a configuration, the aircraft was flown at an average altitude of 610m,

resulting in a HyPlant swath of 384m, with a spatial pixel size of 1m. HyPlant

system consists of two modules: the broad band dual-channel module (DUAL)

to compute surface reflectance in the visible through near and short wave in-

frared spectral region (380–2500nm) and the fluorescence module (FLUO) which

operates at higher spectral resolution in the 670–780nm spectral range designed

for fluorescence retrievals. HyPlant at-sensor radiance images from the FLUO

and the DUAL modules were generated through a dedicated processing chain.

The Atmospheric & Topographic Correction model (ATCOR, ReSe Applications

Schläpfer) was run to perform the atmospheric correction and then all the images

were georectified using the CaliGeo toolbox (SPECIM, Finland). In addition to

reflectance and fluorescence, spectral vegetation indices were generated using the

Hyplant data. An example of radiance measurements from a loblolly pine ac-

quired with the FLUO module is shown in Figure 4. A canopy tree height map

was obtained from the Light Detection And Ranging (LiDAR) data. Classifica-

tion of G-LiHT LiDAR ground returns was performed with a progressive mor-

phological filter with Delaunay triangulation to generate a Triangulated Irregular

Figure 4: Example of the spectral radiance extracted from the HyPlant image (FLUO mod-
ule) for a loblolly pine around oxygen B (a) and A (b) absorption bands.
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Network (TIN) of ground hits, and the TIN was then used to linearly interpolate

the Digital Terrain Model (DTM) on a 1m raster grid. Additionally, the TIN was

used to interpolate the base elevation of every non-ground return, and vegetation

heights were computed by difference. The Canopy Height Model (CHM) was cre-

ated by selecting the greatest return height in every 1m grid cell. Tree height,

defined as the maximum height of each tree, was derived from the CHM by find-

ing the local maximum in a moving window of 3 × 3 pixels (3 × 3 m). Local

maxima lower than the 1st quartile of the CHM in the stand were not considered

representative of a tree, thus they were neglected. The average tree height for

each stand was computed as the average of all tree heights (i.e., the local maxima)

within each stand.

2.2.4 Retrieval of Sun-Induced Fluorescence

Among different approaches available for the retrieval of F (e.g., Cogliati et al.

2015), the Singular Vector Decomposition (SVD) (Guanter et al., 2012, 2013) was

selected for this study based on successful results with Hyplant data in other

studies (e.g., Rossini et al. 2015). This data-driven approach relies on two key

assumptions: i) a given radiance spectrum can be modeled as the linear combina-

tion of a reflected surface radiance plus a F emission propagated to at-sensor level,

and ii) the reflected surface radiance can be formulated as a linear combination

of orthogonal spectral vectors. The SVD is comparable to a principal component

analysis and reduces the dimensionality of a large set of correlated variables (e.g.,

training radiance spectra that are free of F emissions) by transforming it into a

small set of uncorrelated variables (singular vectors). The definition of a forward

model (L) to describe a measured radiance signal including F emissions at sen-

sor level comprises several spectral functions (singular vectors) representing the

signal intensity due to surface albedo, illumination angle, atmospheric absorption

and scattering effects, spectral slope as a function of surface reflectance, and sensor

effects (spectral shifts, band broadening). Further, F radiance (Wm−2 sr−1 nm−1)

is considered as an additive component to complement the forward model as:

L(ω, F) =

nv
∑

i=1

ωiυi + F (3)

where ωi corresponds to the weight of a particular singular vector υi. Typically, 4-

5 singular vectors are used to model the at-sensor radiance signal, considering an

empirical threshold of 0.05% as minimum information content of a singular vector.

Few adjustments were applied to improve the inversion results, such as removing

the strongest absorption features since the forward model does not include any
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physical formulation of atmospheric absorption or scattering effects, nor the nor-

malization of input radiances and radiances used to obtain the singular vectors

based on their spectral slope. The inversion of L was done by means of standard

least squares fitting using a retrieval error covariance Se that is given as:

Se = δ2m(JT J)−1 (4)

where δ2m is the measurement error approximated as standard deviation of a sub-

set of used reference radiance signals and J is the matrix containing the singular

vectors and JT is its transpose. The SVD algorithm was applied to the HyPlant

FLUO data to produce maps for the canopy red F radiances at 690nm and far-red

F at 740nm radiances at the full native HyPlant spatial resolution (1m).

2.2.5 Retrieval of Absorbed Photosynthetic Active Radiation

The APAR maps were computed as the product of fAPAR and the incoming PAR

values. fAPAR can be derived from remote sensing, exploiting either physically

based or empirical strategies using spectral vegetation indices (e.g., D’Odorico et

al. 2014; Donohue, Roderick, and McVicar 2008; Gobron et al. 2006; Myneni et al.

2002; Pickett-Heaps et al. 2014; Walter-Shea et al. 1997; Widlowski 2010. Follow-

ing a scheme analogous to Damm et al. (2010), but using the spectral reflectance

instead of the incident and reflected radiance, fAPAR was computed in this study

as (1-reflectance) in the PAR region (400–700nm). In addition, for comparison

purposes, we also estimated fAPAR as a linear model of the Normalized Differ-

ence Vegetation Index (NDVI) (Goward and Huemmrich, 1992; Hatfield, Asrar,

and Kanemasu, 1984; Liu, Guan, and Liu, 2017; Myneni and Williams, 1994). The

incident PAR was measured at the US-NC2 loblolly plantation flux tower at half-

hourly steps, and interpolated to actual overflight times with a piecewise poly-

nomial smoothing spline. During the overpasses (i.e., between 9:56 h and 11:08

h solar time), PAR varied between 1130µmolm−2 s−1 and 1430µmolm−2 s−1

(247 to 313Wm−2).

2.2.6 Computation of fluorescence yields of loblolly pine

The F flux can be modeled as the product of PAR, fAPAR and Fy (Eq. 5). The

last term is the amount of absorbed radiation emitted as fluorescence (e.g., Lee

et al. 2013).

F[λ,t] = PAR[400−700,t] × fAPAR[λ,t] × Fy
[λ,t] (5)

The fluorescence flux is dependent on wavelength (λ) and time (t) at which the

flux is emitted. Canopy-level fluorescence yield is related to leaf-level fluores-
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cence yield, neglecting a second-order term accounting for the reabsorption of the

red fluorescence within the canopy and the canopy anisotropy, at both red and

far-red wavelengths (Damm et al., 2015b; Guanter et al., 2014). In this study, the

computation of the fluorescence yields at full (1m) spatial resolution was con-

ducted selecting only the loblolly F radiance in each stand. A supervised clas-

sification scheme based on the HyPlant DUAL reflectance images was therefore

implemented to identify loblolly pine (mainly sunlit pixels). Two hundred training

pixels were randomly selected and visually assigned to one of the four spectrally

distinguishable classes (i.e., loblolly pine, shadow, bare soil, and other vegetation

components). The classified map was used as a mask to extract F and APAR of

the loblolly component within 18 different stands identified as Region Of Inter-

est (ROI) of 84 × 84 pixels each. The dimension of the ROI was set according

to the forest stand dimensions to get an average stand values of red and far-red

F and APAR for the loblolly component (hereafter F690
lob , F740

lob and APARlob), and

the corresponding fluorescence yields (hereafter Fy690
lob and Fy740

lob ). The subscript

“lob” indicates the loblolly pine class. The ROIs were selected as close to nadir as

possible in order to minimize possible effects dependent on airborne cross-track

viewing angles. The Fy maps of the loblolly component were then obtained using

Equations 6 and 7, based on values from the maps of loblolly F and APAR.

Fy690
lob =

F690
lob

APARlob
(6)

Fy740
lob =

F740
lob

APARlob
(7)

where APARlobis the product of PAR and fAPAR maps of the loblolly pine ob-

tained with the different overpasses. We also tested Fy*, usually employed in

remote sensing of fluorescence studies when information about APAR is not avail-

able.

2.2.7 Spatial aggregation and definition of the Canopy Cover Fluores-

cence Index

In the analysis at full resolution, the scheme used in this study was similar to

that suggested by Malenovský et al. (2013) and Zarco-Tejada et al. (2004), so that

the Fys were mainly extracted from sunlit pixels. The 1m pixel size allowed the de-

tection of pixels of homogenous vegetation within the stands. HyPlant data were

collected in October when the dominant green land cover type was the loblolly

pine. Other components, such as understory and deciduous trees, were mainly

displaying early autumn senescent foliage, while shadows and bare soils were the
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most common classes in older and younger stands, respectively. In these forests,

when data are aggregated to even 10m spatial resolution, these components be-

come mixed and it becomes difficult to find and isolate sunlit loblolly components.

To evaluate if the relationships between F and age-related processes are affected

by pixel size (surface heterogeneity), a simple spatial-aggregation analysis was car-

ried out by resampling the data at different spatial resolutions (i.e., pixel sizes of

10 × 10, 30 × 30, 60 × 60 and 84 × 84 pixels). The maximum aggregation was

fixed at 84 × 84 pixels in order to be consistent with the overall stand size, since

larger aggregations would result in including trees with different ages. The out-

put of this process generated maps at different pixel (p) sizes, using aggregated

red and far-red fluorescence radiances (F690
p , F740

p ), APARp, red-fluorescence and

far-red fluorescence yields (Fy690
p = F690

p / APARp; Fy740
p = F740

p / APARp).

We can reasonably assume that the F value of a generic pixel p can be ex-

pressed with a linear mixing model driven by vegetation fractional cover (ESA,

2017; Hernández-Clemente et al., 2017; Zarco-Tejada, Suarez, and Gonzalez-Dugo,

2013). In this study, the vegetation fractional cover of the loblolly (fclob) was com-

puted as the ratio between the number of pixels of the loblolly class divided by

total number of pixels in the ROI. For the case having only two components within

a pixel, the F flux of the aggregated pixel can be derived from the target compo-

nent (i.e., in this case F690
lob , F740

lob ), the fluorescence of the other components (oc)

within the pixel (F690
oc , F740

oc ), and fclob. Therefore, the aggregated red F radiance

can be estimated as follows:

F
690
p = F

690

lob ∗ fclob + F
690
oc ∗ (1 − fclob) (8)

The F690
oc term in the study area is mainly a combination of senescent vegetation,

bare soil and shadows, and we can reasonably consider that such a F flux is almost

null or negligible. The F flux of the loblolly component can be therefore directly

derived by the aggregated F value and its fractional cover. Using this scheme, we

can introduce the Canopy Cover Fluorescence Index (CCFI) that makes use of the

loblolly fractional cover within the pixel rather than the typically used fAPAR as

the basis for normalizing the F fluxes:

CCFI690 =
F

690
p

fclob
(9)

This index is considered here to be independent from the spatial variability of land

cover proportions within each pixel. In other words, for a single vegetation class

discontinuously covering the soil surface, the CCFI approximates Fy690
lob , allowing

comparisons of F across spatial scales without bias due to the different amounts

of vegetation coverage in each pixel.
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2.2.8 Statistical analysis

The previously described F-derived metrics were investigated across stands of

different ages with data aggregated to different spatial resolutions, by using re-

gression models. Statistical analysis and coding was performed in Matlab R2016a

(MathWorks, USA) and IDL 8.2 (Exelis VIS, USA), while image visualization and

rendering was done in ENVI 5.2 (Exelis VIS, USA) and QGIS 2.14 (Quantum GIS

Development Team, 2016).

2.3 R E S U LT S

2.3.1 Spatial pattern of forest fluorescence

An example of F maps for three loblolly pine stands characterized by differ-

ent ages is shown in Figure 5, with the RGB reflectance map from the HyPlant

DUAL and the CHM derived from the G-LiHT LiDAR data. The different pro-

portions of shadow and sunlit canopy, as well as the spatial arrangement of the

sunlit and shadowed components, are clearly distinguishable in the three stands.

In particular, in the younger stands the row-structured pattern followed for plan-

tation is clear, while in the oldest stand canopy closure obscures the planting

arrangement. F maps show similar spatial patterns, with lower values in bare or

shadowed areas and higher values in the sunlit portion of the canopy. The inter-

crown gap pattern in the younger stands is clearly visible both in red and far-red F

maps. Fluorescence at 690nm and 740nm for loblolly pine class ranged between

0.2 and 0.8mWm−2 sr−1 nm−1 and between 0.3 and 1.2mWm−2 sr−1 nm−1, re-

spectively. Non-fluorescent targets (e.g., the roads between the stands) showed F

values close to zero, indicating the reliability of the F maps. Overall, the F emission

magnitude of loblolly pine is relatively low compared to dense deciduous forests,

as reported in previous studies (Rossini et al., 2016) and the values compare well

with F ground observations obtained over similar loblolly pine stands (ESA, 2015).

2.3.2 Reflectance measurements and fAPAR maps

Reflectance and transmittance measurements of loblolly pine needles allowed

the computation of the average leaf fAPAR, (Figure 6). The proportion of re-

flected PAR was approximately 8% and the transmitted PAR was ≈ 3%, while

the remaining fraction of the total incoming PAR was absorbed (fAPAR = 0.89 or

89%; standard deviation = 0.021). Since at individual leaf level, only about 3%
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Figure 5: Example of three loblolly pine stands characterized by different ages and
heights (left to right: 6, 24 and 46 years old). From top to bottom: RGB color
composite from the HyPlant DUAL, F at 690nm and 740nm from the HyPlant
FLUO, and canopy height map from the G-LiHT LiDAR. The red squares are
the 84 × 84 pixels ROI selected for each forest stand.
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of PAR is transmitted (but subsequently potentially absorbed by other leaves) we

are confident that the approach used in this study to generate fAPAR maps may

only slightly overestimate canopy fAPAR, and therefore potentially underestimate

fluorescence yield. The strong correlation between the two estimates of fAPAR

(R2= 0.67, Root Mean Squared Error (RMSE) = 0.05, p < 0.001) using the methods

previously presented, increases the confidence in our results.

2.3.3 Structural, biophysical, biochemical parameters and leaf gas ex-

changes

The relationship between tree age and canopy height derived from the G-LiHT

LiDAR data at Parker Tract was compared with that measured at the Duke Forest

by (Drake et al., 2010) for pines. A very similar relationship between tree height

and age was found (Figure 7), suggesting that stands at both forests may belong

to the same Site Index (SI) and could present similar aging patterns. At the Duke

Forest, canopy height ranged from 14 to 43m, while at the Parker Tract forest tree

height varied from 1 to 26m. Figure 7 shows the relationship between tree age

and height for the full dataset including stands from both Parker Tract and Duke

Forest modeled using the Gompertz equation (Brook, Traill, and Bradshaw, 2006).

Table 1 and Figure 8 show the relationships between stand age and height (in

brackets) with the biophysical and biochemical parameters measured in field and

laboratory. These results clearly show that there were no significant relationships

between these variables.

The leaf level stomatal conductance (mean and standard error of 6 trees) of

young trees was found 82.1 (6.4) / 58.2 (5.8) µmolm−2 s−1 in June / September,

respectively, while for mature trees it was 61.2 (5.7) / 49.5 (4.2) µmolm−2 s−1 in

June / September, respectively. p values for both dates between mature and young

trees were < 0.01. Similarly, Pnet of young and mature trees measured in June were

Table 1: Coefficient of determination (R2) and p-value of the linear relationships between
stand age (and height) versus vegetation variables: total chlorophyll content
(Cab), Leaf Area Index (LAI), carbon (C) and nitrogen (N) concentration.

Relationship R2 p-value

Age (height) vs chlorophyll a+b content (Cab) 0.01 (0.01) 0.68 (0.68)

Age (height) vs LAI 0.13 (0.13) 0.06 (0.04)

Age (height) vs %C 0.05 (0.06) 0.26 (0.22)

Age (height) vs %N 0.03 (0.03) 0.42 (0.39)
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Figure 6: Loblolly pine leaf optical properties (mean reflectance and transmittance).

Figure 7: Relationship between tree height and age at Parker Tract (closed symbols) and
Duke Forest (open symbols, Drake et al., 2010) (R2= 0.97).
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Figure 8: Scatter plot between loblolly tree age and total Cab (a), LAI (b), C (c) and N (d).
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7.0 (0.5) and 5.8 (0.6) µmolm−2 s−1, respectively, and in September were 5.7 (0.7)

and 3.8 (0.6) µmolm−2 s−1, respectively (p values for both dates for Pnet between

mature and young trees were < 0.01). Across stand age, the reduction in Pnet

was highly correlated with the decline in gs (Pnet = 0.089 × gs; R2 = 0.84; with gs

in mmolm−2 s−1 and Pnet in µmolm−2 s−1). Water stress had a larger effect on

Pnet in old trees than in young trees, even though old trees had similar (p = 0.42)

predawn water potentials in June and even higher (p < 0.001) ones (less negative)

in September than young trees (data not shown). The decline in Pnet between June

and September was indeed 18.6% in young trees and 34.5% in mature trees.

2.3.4 Relationship between loblolly fluorescence, APAR, fluorescence

yield and tree age

The relationship between loblolly fluorescence (Flob) and tree age obtained at

Parker Tract is shown in Figure 9. Flob was derived by HyPlant data at full spatial

resolution, while stand age was derived from the Parker Tract management plan

(n = 18 stands). Both, F690
lob and F740

lob show some variability among stands but only

F690
lob exhibits a statistically significant relationship with tree age. In the case of

red-fluorescence, a nonlinear decline shows that young forest stands emit slightly

more red fluorescence compared to older trees (Fig. 9a). Overall, we tested dif-

ferent models and we found that the exponential model described the data best,

producing the largest coefficient of determination. loblolly APAR shows instead

a subtle change with age (Figure 10), with younger stands that absorb less PAR

radiation than older canopies. Although there is a link between APAR and F,

the latter typically shows an additional response to plant physiology and quickly

varies with changing photosynthetic activity even before any variation in the pig-

ment pool occurs (e.g., Rossini et al. 2015). Hence, the relationship between F and

APAR is not univocal, and they provide complementary information on different

aspects of the photosynthetic process.

The relationships between the red F yield and tree age is shown in Figure 11.

The nonlinear decrease in Fy690
lob with age is more pronounced and clearer than

for F, while there is still no relationship for the far-red F yield (Fy740
lob ). Fy690

lob per-

formed better than Fy∗690
lob, which was less related to stand age, with results similar

to that found for F690
lob (R2= 0.41, data not shown). Overall, young stands exhibiting

Fy690
lob up to 90% higher than older trees (e.g., 3.8 vs. 2.2 sr−1 nm−1).
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Figure 9: Mean F radiance values (at 690nm and 740nm) for the loblolly component,
extracted as the average value of the loblolly class in each ROI, and plotted vs.
tree age. The far-red F radiance is relatively constant so that the F vs. tree age
relationship is not statistically significant.
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Figure 10: Loblolly APAR values vs. tree age for the 18 ROIs.

2.3.5 Impact of spatial aggregation on F-tree age relationships and per-

formances of the Canopy Cover Fluorescence Index

The relationships between spatially aggregated (84m × 84m) F690
lob and

Fy690
lob versus stand age are shown in Figure 12. In this case, aggregated pixels

are implicitly composed of mixtures of different components. Although it is still

possible to observe a slight linear decline of both F690
p and Fy690

p with age, at

this coarser spatial resolution this relationship cannot be easily revealed. Simi-

larly, diminishing success for results (in terms of coefficient of determination and

significance of the regression) were also found when aggregating at 10m × 10m,

30m × 30m, 60m × 60m spatial resolutions (R2= 0.30; R2= 0.27; R2= 0.25, respec-

tively). We underscore that aggregated pixels never resulted in mixed stands with

different ages. Such analysis is beyond the scope of this study. In addition, no

statistically significant relationships were found between either APARp and stand

age or F740
p at different aggregation levels (data not shown). Figure 13a shows

the relationship between the fractional cover of the loblolly pine stands and the

spatially aggregated red F (84m × 84m) and indicates that fluorescence is fairly

affected by this parameter. The F signal at this spatial resolution is in fact a mix-

ture of the fluorescence fluxes emitted by tree crowns, both sunlit and shadowed,

and understory, with different proportions of bare soils and canopy gaps, which

causes a variability in the emitted fluorescence flux over stands with different veg-

etation cover. Moreover, we also tested the relationship between loblolly fractional



CHAPTER 2 31

Figure 11: Red and far-red F yields for loblolly pine vs. tree age for observations acquired
at 1m.
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Figure 12: Mean of red F radiance (upper panel) and the red F yield (lower panel) com-
puted at coarse spatial resolution (84m × 84m) vs. tree age. Note that the axis
ranges are deliberatively set equal to those of Figs. 9a and 11a, respectively, in
order to facilitate visual comparison.
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cover and tree age and we did not find any statistically significant result, although

a relevant variability of fractional cover across the different stands (Figure 13b).

To properly interpret F in mixed pixel situations, typical of satellite remote sens-

ing, the spatial variability of vegetation vegetation fractional cover (fc) has to be

taken into account. The relationship between CCFI and tree age obtained with

aggregated pixel data (84m × 84m) is shown in Figure 14. Clearly, CCFI is not

the same physical quantity as Fy, since it is not normalized by the absorbed radi-

ation. However, it can provide a surrogate of Fy690
lob with potential to account for

sub-pixel heterogeneity in coarse spatial resolution data. The relationship shown

in Figure 14, closely resembles those for the loblolly red F (Fig. 9a) and its yield

(Fig. 11a), providing justification and support for the use of this index in interpret-

ing F retrieved from coarse resolution mixed pixels.

2.4 D I S C U S S I O N A N D C O N C L U S I O N S

2.4.1 Solar-induced canopy fluorescence and age-related processes

A growing body of evidence demonstrates the relationship between F yields

and photosynthetic rates, and it is well known that F can be used to monitor

plant stress at leaf and canopy levels (e.g., Ač et al. 2015; Meroni et al. 2009).

However, the characteristics of F emissions of forest stands of different age have

never been investigated. At tree-scale, with HyPlant data at full spatial resolution,

our results clearly indicate that in loblolly pine: i) F690
lob and Fy690

lob vary with stand

age; measured levels of F690
lob were larger in younger trees compared to older ones

(up to 60%) and the decline of Fy690
lob with stand age (Fig. 11a) is more pronounced

than that for F690
lob (Fig. 9a), or for Fy∗690

lob; ii) only F690
lob and Fy690

lob declined with

tree age, while F740
lob and Fy740

lob did not (Figs. 9b and 11b).

Overall, Fy690
lob seems more informative about tree-age related processes than

Fy∗690
lob (the R2 value for Fy690

lob is about 87% higher) and F690
lob radiance itself.

No statistically significant relationship was found between LAI, chlorophyll con-

tent, carbon and nitrogen concentration with tree height and age (Table 1 and Fig-

ure 8), so that we can reasonably hypothesize that the decline of Fy690
lob with age

is not primarily driven by biophysical or biochemical parameters. Consequently,

within canopy re-absorption of F690
lob should not have a main role in Fy690

lob decline

related to tree age. The decline of F690
lob may therefore most likely relate to the un-

derlying physiological processes, that downregulate the photosynthetic activity of

the plants during their life cycle. gs and Pnet measurements performed at Parker

Tract in September clearly show significant reduction with stand age (7 years old

trees = 58.2mmolm−2 s−1 for gs and 5.7µmolm−2 s−1 for Pnet; 23 years old trees
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Figure 13: Relationships between aggregated (84m × 84m) red fluorescence and loblolly
fractional cover (a), and between fractional cover and tree age (b).
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Figure 14: CCFI computed for red F vs. tree age.

= 49.5mmolm−2 s−1 and 3.8µmolm−2 s−1 for Pnet) and potentially explain the

drop of red fluorescence with age. In addition, combining results from predawn

water potentials and Pnet we could determine that mature trees had a reduction

in 5.5µmolm−2 s−1MPa−1, as opposed to only 2.9µmolm−2 s−1MPa−1 for the

young trees. Those values indicated that between June and September mature

trees were more sensitive to soil drying, and that the decline in soil water content

had a larger effect on Pnet in old trees than in young trees. Since these measure-

ments only refer to two stands of young and mature trees, to better interpret our

findings we also exploited the results observed in the loblolly pine forest at Duke

Forest, which exhibits similar Site Index (Figure 6) and has been used for rele-

vant investigations in this context (Domec et al., 2012; Drake et al., 2011, 2010;

Noormets et al., 2010). Drake et al. (2010) and Drake et al. (2011) showed that

light-saturated photosynthetic CO2 uptake, the concentration of CO2 within nee-

dle air-spaces and stomatal conductance to H2O declined with tree age due to an

increasing water limitation of the plants, while stomatal limitation to net photo-

synthesis increased, supporting the hydraulic limitation hypothesis as revised by

Ryan et al. (2004) and Ryan, Phillips, and Bond (2006). We exploited the stom-

atal limitation model developed by Drake et al. (2010) and compared it with the

observed decline in Fy690
lob , depicting two opposite trends (Figure 15). It is thus

plausible to hypotesize that the decline of red F yield is a primary consequence

of the reduced carbon and water availability induced by the water limitation pro-
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cesses in aging loblolly trees. In other words, the reduced water availability trig-

gers stomata to close, which reduces leaf-internal CO2 concentrations in the leaf

tissue and limits the ability of the carbon fixing enzyme RuBisCO to fix CO2. This

in turn may cause a tailback into the electron transport and finally this is seen in a

variation of F (Ač et al., 2015; Damm et al., 2010; Flexas et al., 2002; Rascher et al.,

2004; Zarco-Tejada, González-Dugo, and Fereres, 2016). Moreover, the observed

drop in red F yield occurs around age 10–15, which for loblolly corresponds to the

physiological age of demarcation between juvenile and mature wood (Tasissa and

Burkhart, 1998). Domec et al. (2012) showed that cambial activity is closely related

to stomatal conductance, thus further enforcing the link between the observed F

decline and the increasing water limitation during the physiological maturation

process of loblolly pine. However, the drop we observed in Fy690
lob is steeper than

the increase of stomatal limitation reported at Duke Forest. Our data show in fact

a sharp drop in Fy690
lob before age 10–15 and then a limited change, while at Duke

Forest the stomatal limitation clearly increases up to 40 years. Additional stud-

ies are therefore needed to fully characterize the link between these trends and

to further unravel the role of physiology in driving fluorescence variability. Even

though our analysis has been conducted using pure loblolly pixel only, hence min-

imizing the effect of canopy closure and mutual shading, the description of the

radiative transfer in partly or fully shaded pixels, such as the complex stands in

Parker Tract, is challenging and therefore we are aware that other functional and

structural factors may partially contribute and explain our findings. Changes in

leaf structure, needle length, shoot shape (clumping) and wax deposits on leaf

surfaces with aging may in fact alter absorption/scattering of red fluorescence, en-

hancing the observed decrease with age. Therefore, we cannot completely discard

a residual influence of canopy structure, a generic scattering effect with aging or

changes in specific leaf area before and after canopy closure, which is reached at

stand age of approximately 10 years. In addition, the complex canopy structure

of the older pine trees not only subtly increases the APAR but may also produce

stronger reabsorption of the red fluorescence within the canopy and therefore re-

duce the measured top-of-canopy fluorescence. In this study we have addressed

the change in F emission from juvenile to mature stands, however future research,

considering the natural lifespan of the loblolly trees of 100+ years old (Burns and

Honkala, 1990), is needed to confirm our findings. Moreover, accurate determi-

nation of Fy should require an estimation of PAR absorbed by green leaves (e.g.,

Gitelson and Gamon 2015; Zhang et al. 2016) and this could be another key point

that should be considered for future investigations.

Although a statistically significant decreasing trend is clearly recognizable in

Fy690
lob values as plants become older, no significant relationship with tree age was

found with F740
lob or Fy740

lob (Figs. 9b and 11b). The fact that red fluorescence, rather
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Figure 15: Modeled function of the stomatal limitation in the loblolly chronosequence at
Duke Forest using the function derived by Drake et al. (2010) and modeled
red F yield of the loblolly pine trees at Parker Tract obtained by the function
presented in Figure 11a.
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than far-red, seems more sensitive to describe these physiological processes can

be considered in line with the recent study of Verrelst et al. (2016), which found

the red fluorescence as the most sensitive to the canopy net-photosynthesis. Un-

fortunately, only a few recent studies (Cheng et al., 2013; Goulas et al., 2017; Joiner

et al., 2016; Louis et al., 2005; Middleton et al., 2015; Rossini et al., 2015; Wieneke

et al., 2016) exploiting both red F and far-red F have been conducted, and future

investigations are necessary to consolidate the results found here.

If fluorescence yield changes as trees age, new information will be needed to

account for variations in vegetation age classes across landscapes. However, we

do not currently know the behaviour of fluorescence when other species- and age-

related processes are involved (e.g., within the hypothesis of nutrient limitation)

nor do we know how fluorescence behaves across different ecosystems. Conse-

quently, the relationship between F and tree age reported here cannot be gener-

alized or used to track age classes. Further studies, especially dedicated experi-

ments and modeling activities, may help in understanding how the F dynamics

can contribute to a better description of the environment, age-related dynamics

and climate interactions. The use of Radiative Transfer Models (RTMs) incorporat-

ing F (e.g., Hernández-Clemente et al. 2017; van der Tol et al. 2009) coupled with

ecosystem process model for estimating storage and flux of carbon, nitrogen and

water (e.g. BIOME-BGC, Running and Gower 1991) in future research may help in

better describing and understanding the role of F in age-related processes.

2.4.2 The need to use normalized F metrics at coarse resolution scale

Although new progress has been made in the methodological and technical as-

pects of F signal retrieval from space, as shown in recently published global maps

(e.g., Joiner et al. 2016), there are definite limitations for F interpretation based on

large satellite pixels (e.g., GOME-2, 40 km × 80 km; GOSAT, 10 km × 10 km) which

are inevitably comprised of mixed components. Although several orbital missions

acquire far-red F at better spatial resolutions (e.g., OCO-2, ≈ 1 km × 2 km; and

the upcoming ESA TROPOMI/Sentinel-5P, 7 km × 7 km), the possibility to pro-

duce high spatial resolution F maps from space is not yet available. Some of

these disadvantages will be mitigated with the advent of the FLEX mission, which

will provide full fluorescence emission spectra globally, at an ecologically relevant

spatial scale of 0.3 km × 0.3 km, thus reducing the mixture problems currently

encountered. The intra-pixel mixture effect is a confounding factor for F signal

interpretation and it should be mitigated wherever possible and only after under-

standing the impact of spatial scale on the F signal, it will be possible to properly
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exploit the use of fluorescence for plant status or for biomass applications in het-

erogeneous landscapes.

For coarse spatial resolution remote sensing observations, the computation and

interpretation of Fy (as presented in Equations 6,7) is difficult due to the chal-

lenge in characterizing F and APAR for pure target vegetation components. Our

results indicate that the mixing of components at coarse spatial resolutions can be

considered a “contamination” that hinders the relationship between fluorescence

and tree age-related processes, so that thay are no longer clearly detectable in the

aggregated (coarse) pixels. Results from analysis with spatially aggregated data

at stand-scale revealed that the relationships between red F radiances and yields

(Figs. 12a and 12b) were substantially weakened by spatial averaging. In fact, the

statistical success in describing the relationship for red F yield was reduced by

almost 60% (R2: 0.65 → 0.27, Figs. 11a,12b ) and for red F radiances by ≈ 50% (R2:

0.45 → 0.24, Figs. 9a and 12a), and the aggregated trends appeared more linear,

solely due to spatial aggregation from 1 to 84m. To mitigate the impact of surface

heterogeneity, we propose the CCFI, which was able to produce acceptable results

across a range of spatial resolutions (Fig. 14). In the use of the CCFI, the fclob nor-

malization may be closely related to the fraction of Intercepted PAR (Pickett-Heaps

et al., 2014), while less related to the amount of canopy pigments and stand dark-

ness. Thus CCFI, by exploiting fractional cover, seems able to minimize the effects

of canopy structure, enhancing differences in the fluorescence yield of young and

old loblolly pine trees.

The vegetation fractional cover is a key vegetation parameter that has already

been successfully produced using different remote sensing techniques, by exploit-

ing optical or LiDAR imagery, from several current and past airborne or satellite

data operating at different spatial and temporal resolutions (e.g., Baret et al. 2007;

Busetto, Meroni, and Colombo 2008; Carlson and Ripley 1997; Chen and Cihlar

1996; Gutman and Ignatov 1998; Jiménez-Muñoz et al. 2005; Latifovic and Olthof

2004; North 2002; Olthof and Fraser 2007; Verhoef and Bach 2007). In the context

of the FLEX mission, vegetation fractional cover could be dynamically derived

at higher spatial resolution from Landsat or Sentinel-2 like missions and then in-

corporated into the FLEX processing chain to compute the CCFI. The vegetation

fractional cover can be more easily estimated than APAR from classification tech-

niques and land use/cover maps. The real benefit in using fractional cover rather

than APAR as a normalization tool is that it is more independent of illumination

conditions and more stable over time. Thus, it is not mandatory to measure or

compute it simultaneously with fluorescence, as it is for APAR, an instantaneous

quantity highly dependent on time of acquisition, as fluorescence is. For the satel-

lite perspective, the cosine of the zenith angle normalization can be added to CCFI

to take into account the effects of temporal variability of incoming PAR. The com-
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putation of CCFI is quite straightforward since it only requires, in addition to F

radiances, the knowledge of the fractional vegetation cover in each pixel. How-

ever, this normalization cannot be considered as a replacement of Fy, but rather a

complementary index that can be used under specific assumptions. CCFI is not ap-

plicable in a general framework at canopy level with airborne or satellite measure-

ments, but only in some conditions, where two components with high F contrast

contribute to the recorded signal. For savannah-like ecosystems, forests without

understory and crops in certain phenological phases, this normalization technique

may help to better detect plant status and processes. This index is not particularly

suited for fragmented agricultural landscapes with different crops within the same

pixel or for complex mixed forests, and therefore additional studies are needed to

define strategies for global scale applications. Moreover, further studies exploiting

new emerging 3-D radiative transfer models incorporating fluorescence, like Flu-

orWPS (Zhao et al., 2016), FluorFLIGHT (Hernández-Clemente et al., 2017) and

DART (Gastellu-Etchegorry et al., 2017) will help to test the performance of CCFI

and the effects caused by the canopy structure on the fluorescence signal recorded

from mixed pixels. In summary, the CCFI index can be applied, under certain

conditions, to coarse spatial resolution data to minimize confounding factors due

to the spatial variability of canopy structure, and it is expected to be suitable for

applications assessing vegetation function in future Earth Observations in the flu-

orescence era.



3 DY N A M I C S O F S O L A R - I N D U C E D

C H L O R O P H Y L L F L U O R E S C E N C E A N D

R E F L E C TA N C E TO D E T E C T I N D U C E D

VA R I AT I O N S I N P H OTO S Y N T H E T I C

E F F I C I E N C Y

A B S T R AC T

1 The passive measurement of solar-induced chlorophyll a fluorescence (F) rep-

resents the most promising tool to remotely quantify changes in photosynthetic

functioning at large scales. However, the limited knowledge on the complex re-

lationship between this signal and other processes related to photosynthesis re-

stricts its interpretation under stress conditions. A field campaign was planned to

address this issue by inducing variations of photosynthesis and combining daily

airborne and ground-based measurements of fluorescence, reflectance and surface

temperature. A lawn was sprayed with different doses of an herbicide (Dicuran),

differentially inhibiting photosynthesis as detected by chamber gas exchange mea-

surements. This inhibition resulted in a rapid increase of the solar-induced fluo-

rescence (measured at 687nm and 760nm) and of the Photochemical Reflectance

Index (PRI). The increase of PRI suggests that Dicuran has also an inhibitory

effect on the Non-Photochemical Quenching (NPQ). Canopy temperature also in-

creased after the application of Dicuran. A later decrease of fluorescence and PRI

was observed together with a reduction of chlorophyll a content and a drop of

pigment-related vegetation indices (i.e. NDVI and MTCI). The dosage of Dicuran

had an impact in the magnitude of the fluorescence change. The results permitted

to formulate a conceptual model that explains the changes observed in all these pa-

1 The content of this chapter has been submitted to Plant, Cell & Environment as Pinto, F., Celesti, M.

(co-first authorship), Alberti, G., Cogliati, S., Colombo, R., Juszczak, R., Miglietta, F., Palombo, A.,

Panigada, C., Pignatti, S., Rossini, M., Sakowska, C., Schickling, A., Schuettemeyer, D., Stróżecki,

M., Tudoroiu, M., Rascher, U. “Dynamics of solar-induced chlorophyll fluorescence and reflectance

to detect induced variations in photosynthetic efficiency”.
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rameters and that ultimately can be used to elucidate the mechanisms underlying

the changes of photosynthetic activity.

Keywords: solar-induced chlorophyll fluorescence, PRI, photosynthesis, Dicuran,

canopy temperature

3.1 I N T R O D U C T I O N

Photosynthesis is a highly regulated process that dynamically adapts in order to

optimize the use of light while avoiding damage in the photosynthetic apparatus.

The quantification of these dynamics is of outmost importance to understand the

responses of photosynthesis to changes in the environmental conditions. How-

ever, measuring these fluctuations is difficult. They occur at different spatial and

temporal scales and they do not necessarily involve changes in the biochemical

and biophysical properties of the vegetation. Recently, the passive detection of

solar-induced fluorescence has been proposed as an approach with a high po-

tential to detect dynamics of photosynthesis (Rascher et al., 2015; Rossini et al.,

2015a). Further, the possibility to retrieve fluorescence from remote sensing plat-

forms provides new opportunities to assess plant photosynthetic functions at dif-

ferent temporal and spatial scales. The fluorescence emission is directly linked to

photochemistry in plants and it is one of the pathways used by the photosynthetic

machinery to dissipate the excess of absorbed light and reduce photo-oxidative

stress (Porcar-Castell et al., 2014). Characterized by having two emission peaks

around 690nm and 740nm, the fluorescence signal is emitted by the chlorophyll

a molecules under the prevailing light conditions. At leaf scale, actively induced

fluorescence has been used for decades to obtain information on plant photosyn-

thetic activity, helping to elucidate many important features of this process (Pa-

pageorgiou and Govindjee, 2004). However, this method is impractical for mea-

surements at canopy or larger scales. Through high spectral resolution radiance

measurement of the vegetation, the Fraunhofer Line Depth (FLD) principle allows

the passive retrieval of the fluorescence that generates from the absorption of so-

lar radiation under natural conditions (i.e., solar-induced F). This approach opens

new perspectives for the measurement of fluorescence to a wide range of different

spatio-temporal scales (Meroni et al., 2009). In the last years, several studies have

demonstrated the feasibility of measuring fluorescence in the red region (i.e., ≈

690nm) (FR) and fluorescence in the far-red region (i.e., ≈ 740–760nm) (FFR) from

ground (Cogliati et al., 2015a; Daumard et al., 2010; Pinto et al., 2016; Rossini et al.,

2016, 2010), airborne (Damm et al., 2014; Rascher et al., 2015; Rossini et al., 2015a)

and satellite platforms (Frankenberg, Butz, and Toon, 2011; Frankenberg et al.,

2011; Guanter et al., 2012; Joiner et al., 2011; Joiner et al., 2016). Furthermore, the



CHAPTER 3 43

FLuorescence EXplorer (FLEX) mission of the European Space Agency (ESA) will

be the first satellite mission specifically intended for fluorescence retrieval from

space (Drusch et al., 2017). The primary interest of the scientific community for

the F signal has been its potential use for improving remote estimations of Gross

Primary Production (GPP) based on the Monteith’s Light Use Efficiency (LUE)

concept (Damm et al., 2010; Guanter et al., 2014; Lee et al., 2013; Perez-Priego et

al., 2015; Rossini et al., 2010; Schickling et al., 2016; Wieneke et al., 2016). Neverthe-

less, the possibility of using remotely sensed F for early stress detection is gaining

a significant attention (e.g., Meroni et al. 2008; Rossini et al. 2015a; Rossini et al.

2015b). Stress events are associated with a reduction in the actual photosynthetic

activity of plants, and thus changes in the F emission are expected before any no-

ticeable effect on leaf reflectance. However, the co-existence of F with the other two

de-excitation pathways, i.e. the NPQ and photochemistry (Photochemical Quench-

ing (PQ)), complicates the interpretation of this signal in response to stress. There

is not a unique relationship between PQ and F, meaning that F can either increase

or decrease depending on the stressor. Recently, Ač et al. (2015) performed a

meta-analysis of the response of FR and FFR to different stressors (i.e., temperature,

water and nitrogen availability) and observed consistent stressor-specific patterns

in F values. Notwithstanding these findings, the further development of a mecha-

nistic understanding of the link between F and photosynthetic activity under stress

depends upon additional information on the NPQ activity and other physiologi-

cal and physicochemical factors that can eventually affect this relationship, such

as stomatal conductance or pigment composition. Potentially, this information can

also be obtained using remote sensing. Numerous spectral vegetation indices have

been proposed for the quantification of leaf pigments. In particular, indices using

bands in the red and red-edge regions are sensible to variations of chlorophyll con-

tent in the leaves. Another technique providing relevant physiological information

is thermography. Measurements of canopy temperature have been widely used for

remote assessments of stomatal conductance (Berni et al., 2009; Fuentes et al., 2012;

Panigada et al., 2014; Zarco-Tejada, González-Dugo, and Berni, 2012). On the other

hand, the remote quantification of the NPQ is particularly challenging. Gamon,

Peñuelas, and Field (1992) formulated the PRI after observing that de-epoxidation

of violaxanthin - a process directly involved in the NPQ - causes changes in the leaf

reflectance at 531nm. Strong correlations have been found between PRI and NPQ

at leaf and canopy level (e.g., Filella et al. 2009; Filella et al. 1996; Garbulsky et al.

2011; Porcar-Castell et al. 2012). However, measurements of PRI at large vegetation

scales can be constrained by the confounding effect of the canopy architecture (e.g.,

Garbulsky et al. 2011). This study explored the capacity of passive measurements

of solar-induced chlorophyll a fluorescence (F) to detect stress-induced short-term

dynamics of photosynthetic efficiency in vegetation. Canopy temperature and PRI
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were also investigated to explain better the effect of the stress on the vegetation.

A dedicated experiment was designed, where plots of homogeneous lawn were

treated with different doses of an inhibitor of the photosynthetic electron trans-

port. A time series of very high spectral resolution radiance measurements was

acquired at top-of-canopy using field and airborne sensors. The consistency be-

tween ground-based and airborne measurements of top-of-canopy fluorescence

and reflectance products was assessed. Complementary measurements of surface

temperature were acquired using an airborne hyperspectral thermal camera. Par-

allel ground measurements of carbon dioxide (CO2) assimilation at canopy level

and destructive measurements of chlorophyll content were used for validation of

the remote sensing approach. We discuss the temporal evolution of F, PRI, surface

temperature and chlorophyll content in relation to the mechanism of action of the

stressor. Further, the collected data were used to formulate a conceptual model

that linked F with photosynthesis functioning under the current stress conditions.

3.2 M AT E R I A L A N D M E T H O D S

3.2.1 Study site and experiment design

The experiment took place from 7th June 2014 to 3rd July 2014 over a homoge-

neous lawn of Poa pratensis and Lolium perenne grown and managed commercially

in a lawn farm in Latisana, Italy (Lat: 45.7784°N, Lon: 13.0133°E). In order to

induce photosynthetic inhibition, the plants were treated with Dicuran 700 FW

(Syngenta AG) which is a commercial formulation of Chlortoluron (3-(3-chloro-

p-tolyl)-1,1-dimethylurea). This herbicide inhibits photosynthesis using the same

mechanism of action as the herbicide DCMU (Weed Science Society of America,

2016). The DCMU has been widely used in photosynthesis and chlorophyll flu-

orescence studies because it enhances the fluorescence emission by blocking the

electron transport chain in the photosynthetic apparatus (Carter et al., 1996; Lich-

tenthaler and Rinderle, 1988; Schreiber, 1986). In particular, the DCMU displaces

the plastoquinone at the QB binding site on the D1 protein and thereby blocks

electron flow from QA to QB. Three plots of 12m × 9m were sprayed using a

backpack sprayer with different concentrations of Dicuran: 24ml l−1 (plot D24),

6ml l−1 (plot D6) and 1.5ml l−1 (plot D1.5). Due to logistic constraints, the

plots were sprayed at two different dates. Plot D24 was treated in the morning

of 12th June 2014, whereas plots D6 and D1.5 were sprayed on 19th June 2014.

At each application date, a control plot was sprayed with water. This helped to

account for the differences in weather and vegetation conditions between the treat-

ments. While the Control 1 was compared with plot D24, the Control 2 was used
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with plots D1.5 and D6. In order to facilitate the comparison of temporal trends

between the treatments, all results were expressed in terms of Days After Treat-

ment (DAT). A representation of the field and the distribution of the experiments

are described in Figure 16. The spraying and measurements took place under clear

sky conditions. During the first part of the campaign (i.e., from 11th June 2014 until

15th June 2014) the weather was stable. In the subsequent days the sky presented

some clouds and there was some rainfall in 15th June 2014 and 25th June 2014.

However, all measurements were taken only in time windows of clear sky.

3.2.2 Aerial hyperspectral and thermography measurements

Aerial hyperspectral images were obtained using the HyPlant airborne sensor

(Specim, Finland) which was mounted in a Cessna 208 Caravan. This hyperspec-

tral imager consists of two push broom modules: the DUAL Channel Imager

which provides contiguous spectral information from 370 to 2500nm (Full Width

at Half Maximum (FWHM) = 3nm in the Visible and Near InfraRed (VNIR) and

10nm in the Short Wave InfraRed (SWIR) spectral regions) and the Fluorescence

Imager (FLUO), which produces data at very-high spectral resolution (FWHM =

0.25nm) between 670nm and 780nm. Both imagers were mounted in a single

platform with the mechanical capability to align their field of view (for details see

Rascher et al. 2015). The hyperspectral images were recorded from 680m above

ground level resulting in a 1m × 1m of pixel size for both imagers. The mea-

surements were performed around solar noon (± 1h) over the course of 13 days

(Table 2). The images from the DUAL module were used to compute spectral re-

flectance and vegetation indices, while the images from the FLUO module were

used for the estimation of F. The DUAL images were radiometrically calibrated

and georectified using the CaliGeo toolbox (SPECIM, Finland). Then the Atmo-

spheric & Topographic Correction model (ATCOR, ReSe Applications Schläpfer)

was used to estimate the surface spectral reflectance from these images. Three 9

m x 9 m calibration tarps (i.e., white, grey and black) were used to perform an in

flight radiometric calibration of the DUAL images. The tarps were located next to

each other in a parking lot 800m away from the experimental site and simultane-

ous ground and aerial measurements of the tarps spectral radiance were achieved

for each flight line. The spectral reflectance of the calibration tarps was measured

with a Fieldspec Full Resolution (FR) spectroradiometer (Analytical Spectral De-

vices Inc., ASD, USA). Twenty measurements were taken over each tarp in order

to characterize its spatial variability. A white reference panel (99% Spectralon®,

Labsphere Inc., NH, USA) mounted on a leveled tripod was measured every five

measurements on the tarps to calculate the sprectral reflectance. The results of
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Figure 16: Map of the experimental site in Latisana (UD), Northern Italy.

Table 2: Core dataset of flight lines over the experimental site. DOY is day of the year,
time is in UTC+2.

Date DOY (2014) Time of HyPlant Time of TASI

11-Jun 162 14:52 14:51

12-Jun 163 13:40 14:23

13-Jun 164 13:52 14:09

17-Jun 168 - 10:17

18-Jun 169 - 13:20

19-Jun 170 13:34 11:27

21-Jun 172 12:57 14:27

22-Jun 173 12:10 -

24-Jun 175 11:56 -
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the atmospheric correction were evaluated by computing the Root Mean Squared

Error (RMSE) between the atmospherically corrected data of the DUAL and spec-

tra acquired in-field over the tarps. The average RMSE for the three tarps for all

wavelengths considering all the dates was 0.011, indicating a reliable atmospheric

correction (Fig. 17). Three vegetation indices related to pigment concentration

and photosynthetic activity were calculated from the DUAL module data: the

Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1973), the Meris

Terrestrial Chlorophyll Index (MTCI) (Dash and Curran, 2007) and the PRI (Ga-

mon, Peñuelas, and Field, 1992). For validation, these indices were also estimated

at the ground level as close in time as possible to the airborne sensor overpasses

(see Section 3.2.4). For the calculation of broadband vegetation indices (i.e., NDVI

and MTCI), several bands were averaged within each spectral region to reduce

the noise. Table 3 describes the spectral bands used for the estimation of these

indices from both platforms. The images from the FLUO module were radiomet-

rically calibrated and corrected for the point spread function of the instrument

using a sensor characterization and an algorithm developed in house. The georec-

tification of the FLUO images was done using CaliGeo. The high-resolution data

coming from the FLUO module was finally used to retrieve fluorescence. TASI-600

(ITRES Research Limited, Calgary, Canada) multispectral thermal images were ac-

quired over the study area from 11th June 2014 afternoon until 21st June 2014.

The TASI-600 is a pushbroom sensor with 32 spectral bands in the Long Wave

InfraRed (LWIR) (8.0–11.5µm) spectral range. The sensor has a field-of-view of

40° and FWHM of 0.1095µm (for details see Pignatti et al. 2011). The TASI-600

data were acquired at an altitude of 900m above ground level corresponding to a

ground pixel resolution of 1m. The days and time of thermal data acquisition are

described in Table 2.

Table 3: Vegetation indices calculated from HyPlant DUAL data and ground-based spec-
troscopy. ρ is the spectral reflectance.

Index Formulation Reference

NDVI ρNIR−ρRED

ρNIR+ρRED
Rouse et al. (1973)

MTCI ρNIR−ρRED−EDGE

ρRED−EDGE−ρRED
Dash and Curran (2007)

PRI ρ530.5−ρ569.9
ρ530.5+ρ569.9

Gamon, Peñuelas, and Field (1992)
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Figure 17: Validation of the atmospheric correction for aerial imagery. The lines represent
the mean RMSE for each wavelength calculated by comparing airborne and
ground-based spectral reflectance measurements from all the dates over three
tarps with different level of reflectance: white (W; red dashed line), grey (G;
blue line) and black (B; black line). The colored areas represent the standard
deviation of the RSME calculated for each wavelength.
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3.2.3 Airborne retrieval of solar-induced chlorophyll fluorescence

The fluorescence emitted by the vegetation can be decoupled from the reflected

radiation using the FLD principle. In essence, FLD-based approaches exploit the

atmosphere absorption bands, where the background solar radiation is strongly

diminished and the contribution of F to the overall vegetation radiance increases

(Maier, Günther, and Stellmes, 2003; Meroni et al., 2009; Plascyk, 1975). In this

study, we used the improved Fraunhofer Line Depth (iFLD) proposed by Alonso

et al. (2008) to estimate fluorescence in the O2-A(i.e. at 760nm; F760) and O2-B(i.e.

at 687nm; F687) absorption bands. The iFLD method estimates the fluorescence

by building a system of equations where the at-sensor radiance is modeled at two

different wavelengths: inside (i) and outside (o) the absorption band. Following

Damm et al. (2015), the radiance measured by an airborne sensor a specific wave-

length over the vegetation can be described by:

LAtS
j =

Eo
j cosΘil

π



〈ρjso〉+

(

〈τjssτ
j
oo〉+ 〈τjsdτ

j
oo〉+ 〈τjssτ

j
do〉+ 〈τjsdτ

j
do〉

)

Rj

1− Rj〈ρ
j
dd〉



+

+
Fj

(

〈τjoo〉+ 〈τjdo〉
)

1− Rj〈ρ
j
dd〉

, j = i,o (10)

where Eo is the extraterrestrial solar irradiance, Θil is the illumination zenith an-

gle, ρso is the path reflectance of the atmosphere, and ρdd is the spherical albedo

of the atmosphere. The terms τss and τsd are the direct and diffuse transmittance

of the atmosphere for sunlight, whereas τoo and τdo represent the direct and

hemispherical-directional transmittance in the view direction, respectively. As-

suming that the irradiance and the fluorescence emission (F) are isotropic, and

that the surface reflectance of the vegetation (R) has a Lambertian behavior, the

atmospheric parameters described above (i.e., Eo, ρso, ρdd, τss, τsd, τoo and τdo)

can be estimated using MODTRAN according to Damm et al. (2015). Then, four

variables are unknown in the system of equations: the reflectance and the fluores-

cence inside and outside of the absorption band (Ri, Ro, Fi and Fo). Assuming

that both variables vary linearly between the outside and inside of the absorption

band, the iFLD method relates them with the coefficients A and B as following:

{

Ro = ARi

Fo(〈τ
o
oo〉+ τodo) = BFi(〈τ

o
oo〉+ τodo))

(11)
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with A and B estimated according to Alonso et al. (2008), the fluorescence inside

the O2-A and O2-B bands can be calculated using Eq. 10 and Eq. 11 as:

Fi =
AXI(Eo +Xo〈ρ

o
dd〉) −Xo(Ei +Xi〈ρ

i
dd〉)

[A(Eo +Xo〈ρodd〉) −B(Ei +Xi〈ρ
i
dd〉)][〈τ

i
oo〉+ 〈τido〉]

(12)

with

Xj =

(

LAtS
j −

〈Eo
j cosΘil〉

π
〈ρjso〉

)

, j = i,o (13)

and
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j cosΘil〉

π

(
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j
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j
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j
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j
do〉

)

, j = i,o (14)

The atmospheric parameters were simulated at highest spectral resolution assum-

ing middle latitude summer atmospheric conditions, martime aerosol model, and

the default visibility of ATCOR (i.e., 23 km). Then they were spectrally resam-

pled to meet our sensor configuration taking into account the across-track spectral

shift and FWHM. It is important to note that in those parts of Eqs. 10-13 that

are enclosed between angle brackets, the parameters were first multiplied at their

highest resolution and then their product was convolved to meet our sensor con-

figuration. This is necessary in order to compensate for the strong modulation of

these parameters by the absorption bands and their strong correlation over finite

spectral intervals, which results in a direct violation of the Beer’s law (Damm et al.,

2015).

The use of standard atmospheric conditions can lead to inaccurate estimations

of some atmospheric parameters that have a great impact on the final fluorescence

values. Two empirical corrections were implemented to improve the accuracy of

the fluorescence estimation. The first one aimed to obtain a better estimation of

the path reflectance of the atmosphere. For a non-fluorescence target, the Eq. 10

could be simplified as a two-variable linear equation:

LAtS
j =

Eo
j cosΘil

π
〈ρjso〉·

·





(Eo
j cosΘil)(ρ

j
so)

(

〈τjssτ
j
oo〉+ 〈τjsdτ

j
oo〉+ 〈τjssτ

j
do〉+ 〈τjsdτ

j
do〉

)

π
(

1− Rj〈ρ
j
dd〉

)



Rj, j = i,o

(15)

where LAtS
j and Rj represent the dependent and independent variables, respec-

tively. For two or more non-fluorescence surfaces lying under the same illumi-

nation conditions, the values of the different atmospheric parameters could be
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assumed to be the same. If the Rj and LAtS
j of each of these non-fluorescence

targets are known, and assuming a linear response of the sensor, a linear regres-

sion can be performed to estimate the constants of Eq. 15, and therefore to adjust

the value of ρ
j
so (Eo

j and cosΘil are known since they depend on the date and

the time of the day and not on the atmospheric conditions). The calibration tarps

were used for this purpose. The ρ
j
so estimated from the tarp measurements was

assumed constant in the entire scene. Further inaccuracies and uncertainties in

the atmospheric and sensor characterization were compensated using the Effective

Transmittance Correction (ETC) method (Damm et al., 2014; Guanter et al., 2007).

In this approach, values of τioo were adjusted across-track using a simple correc-

tion coefficient that is calculated from pixels that are known to be non-fluorescent

surfaces (e.g., bare soil; for details see Pinto et al. 2016). Since the primary driver

of fluorescence emission at canopy level is the incoming radiation, it was neces-

sary to normalize the values of fluorescence by Photosynthetically Active Radi-

ation (PAR) in order to separate the treatments effect from natural variations in

the illumination conditions along the experiment. Therefore, the apparent fluores-

cence yield (Fy*) was computed as Fy* = F/PAR for the fluorescence at 687nm

(Fy∗

687) and 760nm (Fy∗

760).

3.2.4 Ground based spectroscopy

Downwelling and upwelling radiances were measured over the experimental

plots with three portable spectrometers (OceanOptics, Dunedin, FL, USA) oper-

ating in the VNIR spectral regions (Table 4). The spectrometers were housed

in a Peltier thermally regulated box (model NT-16, Magapor, Zaragoza, Spain)

keeping the internal temperature at 25 ◦C in order to ensure the stability of both

the intensity and the spectral information of the measured signal (Meroni and

Colombo, 2009). The bare optical fiber of the spectrometers (field of view of 25°)

were placed at 130 cm above the top of the canopy looking in nadir direction re-

sulting in a measured circular surface of approximately 58 cm of diameter. A

modified tripod allowed to alternate measurements between a calibrated white

reference panel (99% Spectralon®, Labsphere Inc., North Sutton, NH, USA) and

the vegetation (for further details see Rossini et al. 2016). Readings over the white

panel were used to estimate the downwelling radiation. Ground-based spectral

data were acquired from around 10:00 until 16:00, depending on the weather con-

ditions. Measurements close to noon were selected in order to match the airborne

data. Each measurement consisted of three spectral readings recorded sequen-

tially: over the white panel, the vegetation and the white panel again. Each of

these spectra represented the average of 10 and 3 scans - for the full range and the
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Table 4: Summary of the technical characteristics of the Ocean Optics spectrometers
(Dunedin, USA) used for the field measurements. “Range” is the spectral range,
“SSI” is the Spectral Sampling Interval, “FWHM” is the “Full Width at Half Max-
imum” and “SNR” is the nominal Signal-to-Noise Ratio.

ID Model
Range SSI FWHM

SNR
[nm] [nm] [nm]

S-Full HR4000 400-1000 0.24 1.00 300:1

S-O2-B QE65000 657-743 0.10 0.25 1000:1

S-O2-A HR4000 717-805 0.02 0.10 300:1

other two spectrometers, respectively - in order to reduce instrumental noise. The

relative variation between the two measurements over the white panel was used

as a quality check for the illumination condition stability. Spectrometers’ dark cur-

rent measurements were recorded to account for white noise in the data. The data

were recorded using the dedicated software 3S (Meroni and Colombo, 2009) and

processed with a IDL (ITTVIS IDL 7.1.1) application developed in house (Meroni

et al., 2011). Five consecutive measurements were taken for each plot under stable

illumination conditions before moving to the next one.

Ground reflectance measurements acquired in the VNIR regions were used to

compute the vegetation indices indicated in Table 3. The fluorescence was esti-

mated in the red and far-red region (F687 and F760, respectively) using the Spectral

Fitting Methods (SFM) originally presented in Meroni and Colombo (2006) and

recently optimized in Cogliati et al. (2015b) at the O2-B and O2-A oxygen ab-

sorption bands. The spectral interval used for F760 estimation was set from

759.00 to 767.76nm (i.e., 439 spectral channels), while the spectral range between

684.00 and 696.00nm (i.e., 200 spectral channels) was used for estimating the F687.

3.2.5 Canopy Gas exchange chamber measurements

The non-steady-state flow-through chamber system was used in order to esti-

mate CO2 and H2O fluxes from the plots. The Net Ecosystem Exchange (NEE)

and the ecosystem respiration (Reco) were derived directly from measurements

using a transparent and an opaque chamber, respectively (chamber’s dimension:

0.78m × 0.78m × 0.50m). Chambers were equipped with fans, temperature sen-

sor (T-107, Campbell Scientific, USA) and a vent to equilibrate pressure changes

in accordance to Juszczak and Augustin (2013) as well as with SKP215 PAR quan-

tum sensor (Skye Instruments, UK) installed on top of the transparent chamber.
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No cooling devices were used (as described in Chojnicki et al. 2010) in order to

not reduce H2O fluxes. Gas concertation changes in the chambers were measured

with the LI-840 infrared gas analyzer (Li-COR, Lincoln, NE, USA) installed in a

portable control box (for details see Acosta et al. 2017; Chojnicki et al. 2010). Dur-

ing measurements, chambers were fixed to the preinstalled soil frames (one per

experimental plot) inserted in the soil to 5 cm depth on 5th June 2014. Soil frames

were leveled on the day of installation. The closure time of the transparent cham-

ber was no longer than one minute to avoid overheating of the chamber headspace

and two minutes for the opaque chamber. The flux measurements started at 10:00

AM and were continued till 16:00 (CEST), but only measurements taken around

solar noon (± 1h) were used to calculate average midday fluxes analyzed in this

study. At noon, NEE measurements were taken just after reflectance and fluores-

cence measurements on the same plots. Reco measurements followed the NEE

estimations. The measured CO2 concentrations were corrected for water dilution

in accordance to Perez-Priego et al. (2015). CO2 and H2O fluxes were calculated

based on gas concentration changes over the closure time using the linear regres-

sion type as described in Juszczak and Augustin (2013). Fluxes were calculated

from the first 30–40 seconds of measurements for data with the highest regression

slopes in order to avoid underestimation of the fluxes due to e.g. gas saturation, in

accordance with Hoffmann et al. (2015). The amount of CO2 assimilated by GPP

was calculated as the difference between Reco and NEE taken consecutively with

both chambers. The LUE was calculated as the ratio between GPP and PAR.

3.2.6 Airborne retrieval of surface temperature

Thermal images were geometrically and radiometrically corrected with the

GEOCORR and the RADCORR software (ITRES Research Limited, Calgary,

Canada). An additional code developed by the Italian National Research Council

(CNR IMAA; http://www.imaa.cnr.it/) was used to remove the blinking pixels

that still affect the imagery (Santini et al., 2014). The atmospheric correction of

spectral radiances was executed by applying the in-scene atmospheric compensa-

tion (ISAC) algorithm (Young, 1998). This procedure was chosen as it is commonly

used for in-scene atmospheric thermal data correction, and because it requires only

the at-sensor radiance data as input to estimate the upwelling radiance and trans-

missivity of the atmosphere. The temperature retrieval was then performed by

using the temperature emissivity separation methods (TES), applying the normal-

ization emissivity method and selecting an emissivity of 0.98 for the pixel with

the maximum brightness temperature (Li et al., 2013). In order to validate the

TASI-600 retrieved temperature we used the ground-measured temperature of a
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swimming pool located in the Latisana test site and acquired using a thermocou-

ple contemporary with the TASI overpass. The difference between the measured

and average TASI temperature retrieved on the pool was 0.2K. To reduce the white

noise introduced by the TES algorithm in the temperature images, we retrieved for

each flight-line the brightness temperature using a linear regression between the

TES temperature images and the integrated radiance images. To account for the

changes in the meteorological conditions along the experiment, the difference in

temperature between each treated plot and the closest control plot (∆T) was used

to study the effect of the Dicuran in the canopy temperature.

3.2.7 Pigment concentration

Leaf samples were collected for laboratory measurements of the chlorophyll

(Chl) and carotenoids (Car) content. Seven samples were collected for each plot

10h after the treatments. Each of the samples consisted in 3–5 leaves. Fresh

samples were weighted (fresh weight; FW) for later estimation of Chl content in

µgg−1
FW . The leaf material was harvested, placed in plastic tubes (Safe Lock, Ep-

pendorf, Germany), stored immediately in liquid-nitrogen and later transferred

into a −80 ◦C freezer for long-term storage. The extraction of Chl a, Chl b and Car

was carried out using a mixture of 1000ml of 100% acetone buffered with 20 g

of magnesium hydroxide carbonate and stored at 4 ◦C. Hereafter this solution is

referred as acetone. The samples were grinded using 200µl of acetone and 2 steel

balls of 5mm diameter in a mixer mill (MM200, Retsch, Germany) for two min-

utes. The extract was pipetted into a new 2ml Eppendorf tube. The grinding jar

and the steel balls were washed with acetone and this solution was used to fill

the sample up to 500µl. The samples were then centrifuged at 13 000 rpm for 5

minutes at 4 ◦C. The excess solution was then measured in the spectroradiometer

(Uvikon XL, BIO-TEK Instruments, Winooski, VT, U.S.) using a 1 cm glass cuvette.

The estimation of the concentration of Chl and Car was carried out using a mod-

ified version of the method suggested by Lichtenthaler and Buschmann (2001),

where the absorbance readings at 470nm, 645nm, 662nm and 710nm were used

according to the following formulas:















Chl a = [11.24(A662 −A710) − 2.04(A645 −A710)]
α
β

Chl b = [20.13(A645 −A710) − 4.19(A662 −A710)]
α
β

Car = [(1000(A740 −A710) − 1.9Chl a− 63.14Chl b)/214]αβ

(16)

where Chl and Car are expressed in µg cm−2 or mgg−1
FW . A470, A662, A645 and

A710 represent the absorption reading at 470nm, 645nm, 662nm and 710nm,
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respectively. The coefficients α and β represent the volume of the extract (i.e.,

5ml) and the fresh weight of the sample in g, respectively.

3.3 R E S U LT S

3.3.1 CO2 assimilation

Table 5 shows the results of the gas exchange measurements taken in all the

treatments around noon the same day of the application of Dicuran, and in the

subsequent three days in case of plot D24. All treated plots showed a drop of

LUE and CO2 assimilation (expressed as GPP) after the application compared to

the control plot. The level of inhibition of photosynthesis was closely related with

the dose of Dicuran. While the lowest concentration of Dicuran (i.e., 1.5ml l−1)

only induced a drop in GPP of about 17% in the first day, the dose of 6ml l−1

reduced photosynthesis by nearly 35%. A significant decrease of GPP of nearly

90% was observed in plants treated with the highest dose (i.e., plot D24). Similarly,

the magnitude of the drop in LUE was determined by the dosage of Dicuran, with

the lowest LUE observed in plot D24 three days after the treatment. In plot D24,

the NEE tended to decrease in the next three days following the application. A

similar trend was observed for GPP, with an exception on day 2 after the treat-

ment, when an increase of GPP and LUE was detected. This behavior could not

be confirmed for lower doses of Dicuran as the chamber measurements were not

continued in the following day. The application of Dicuran also induced changes

in respiration rate. An increase was observed in plots D24 and D1.5 immediately

after the treatment. Respiration in plot D6 was smaller than in the control plot,

but this effect might be attributed to drier conditions at this plot, which is con-

firmed by the smaller H2O fluxes. The treatment with the herbicide did not have

a significant effect in the evapotranspiration (i.e. H2O fluxes) during the same day

of the application. However, plot D24 showed a decrease compared to the control

in the subsequent two days.

3.3.2 TASI surface temperature

A raise in the canopy temperature in all treated plots was detected by the aerial

thermal images. Figure 18 shows how the difference in temperature between D24

and the control plot (∆T) increased gradually during the five days following the

application. A rise in ∆T of 0.8K could be observed one day after the treatment.

The peak of temperature for D24 was observed on DAT 5, where ∆T was 1.7K.
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In the following four days the ∆T decreased and the plot D24 had a similar tem-

perature than the control by the end of the experiment. Plots treated with lower

doses also showed an increase of temperature. D6 showed a ∆T of 0.6K two days

after the application while for D1.5 the ∆T was 1.1K in the same time period. No

further measurements were taken in the plots treated with lower doses. Therefore,

it was not possible to see whether the temperature decreased in a similar way as

in plot D24.

3.3.3 Changes in spectral vegetation indices as result of the Dicuran

action

Airborne images revealed changes in the spectral reflectance of canopies treated

with Dicuran. In treated plots, vegetation indices related to green biomass and leaf

pigment concentration, such as NDVI and MTCI, showed a sustained decrease in

time in comparison to the control (Figs. 20A and 20D). This was also observed in

ground-based top-of-canopy measurements (Fig 20B and 20E), existing a good cor-

relation between the values calculated from both platforms throughout the whole

experiment (Fig 20C and 20F). Before the treatments, the plots showed values

of NDVI around 0.84 and 0.9 for airborne and ground-based data, respectively

(Figs. 20A and 20B). Two days after the Dicuran application, the NDVI decreased

at a different degree in the treated plots while it remained constant for the control

plots. In plot D24, the NDVI dropped continuously towards the end of the experi-

ment, reaching a value nearly 10% lower compared to the control plots measured

at the same time. In plots treated with lower doses this decrease was smaller.

Moreover, two days after the treatment the value of NDVI tended to stabilize in

these plots. The MTCI also dropped after the application of Dicuran (Figs. 19, 20D

and 20E). However, these changes were larger than in NDVI, especially in the case

of plots treated with lower doses. In both airborne and ground-based data, the

MTCI in plots D1.5 and D6 showed a drop at a similar rate than in D24. Nev-

ertheless, the latter showed a continuous decrease towards the last measurement

while in the formers the MTCI stabilized three days after the application. Control

plots did not vary significantly in their MTCI during the course of the experiment,

showing always higher values than the treated plots. The dynamics of MTCI dur-

ing the experiment were closely related to the changes observed in the content of

Chl a in the leaves (R2= 0.749; p < 0.01; Fig. 21). This confirms that MTCI was

a good proxy to detect changes in chlorophyll content induced by Dicuran. Sub-

stantial changes in PRI were also detected in the data collected by both platforms

(Fig. 19, 20G and 20H). Treated plots showed a markedly increase of PRI immedi-

ately after the application of Dicuran. D24 showed the highest peak while D6 the
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Figure 18: Dynamic changes of canopy temperature in plots treated with different doses
of Dicuran. Values represent the difference in temperature (in K) between each
plot and an adjacent control plot.

lowest. In all the treatments, the peak was followed by an abrupt decrease. After

seven days, the PRI of all treatments reached values below those measured in the

control plots and remained low until the end of the experiment showing no signs

of recovery. Considering that the calculation of PRI includes wavelengths in the

visible part of the spectrum, the relationship between PRI and leaf pigments was

tested. A significant correlation (R2= 0.33; p < 0.05) was found only between PRI

and the ratio carotenoids/chlorophyll (Car/Chl; Fig. 21). Therefore, the decline

of Chlorophyll concentration would explain 30% of the drop of PRI from day one

after the treatment.

3.3.4 Dynamics of solar-induce chlorophyll fluorescence

Figure 22 shows the maps of F687 and F760 retrieved from the HyPlant sensor.

F values were extracted from the maps and normalized by the incoming PAR to

compute the Fy* in Figure 23. Dynamic changes of Fy∗

687 and Fy∗

760 in response to

the treatment with Dicuran were detected by both airborne and ground-based plat-

forms (Fig. 23). Before the application of the herbicide the aerial images depicted

similar fluorescence yields (i.e., Fy∗

687 ≈ 1.5× 10−5 and Fy∗

760 ≈ 4.3× 10−5) for all

the plots. A substantial and fast increment in Fy* was observed in all the treated



CHAPTER 3 59

Figure 19: Representation of airborne images showing the dynamics of vegetation indices
NDVI, MTCI and PRI for each plot. Time is expressed in days after treatment
(DAT), where DAT 0 represents the day of the application.
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Figure 20: Dynamic changes of vegetation indices during the experiment for all the plots
estimated from airborne data (A, D and G) and ground based measurements
(B, E and H). Temporal trends of NDVI (A and B), MTCI (D and E) and PRI
(G and H). Correlation between airborne and ground observations for NDVI
(C), MTCI (F) and PRI (I). Data obtained before DAT −2 were not included for
clarity of the results.
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Figure 21: Relationship between the concentration of Chl a and the MTCI (A) and be-
tween the ratio Carontenoids/Chlorophyll (Car/Chl) and the PRI (B). The
MTCI and PRI were estimated from the spectral reflectance measured with
the airborne DUAL module. Data points represent the measurements of all
plots for all the dates where airborne data coincided with leaf sampling.

plots after the application. In plot D24, Fy∗690
lob and Fy∗

760 increased nearly 50% and

90%, respectively, only few hours after the herbicide was sprayed (Figs. 21 and 23).

Consistently, ground-based measurements detected for the same plot an increase

of 146% and 121%, respectively. In the following day, the fluorescence in plot D24

dropped at a fast rate and by DAT 7 the magnitude of Fy* was similar to the initial

pre-treatment values. Although the fluorescence dynamics in plots D6 and D1.5

followed a similar trend as in D24, some relevant differences were detected. First,

both plots showed lower peaks for Fy∗

687 and Fy∗

760 than in plot D24. Secondly, the

rate of Fy∗

687 recovery was lower in the ground-based data than in the aerial data.

However, it is important to consider that both systems measured over different

areas and that the retrieval of fluorescence at 687nm is prone to noise due to the

shallower O2-B band. All this can result in inconsistencies between the data from

the two platforms. Despite of these limitations, the correlation between ground

and aerial data was high (Figs. 23C and 23F), with coefficients of determination of

0.43 and 0.75 (p < 0.05) for F687 and F760, respectively. A peculiar difference could

be observed between the kinetics of Fy∗

687 and Fy∗

760 measured in D1.5 and D6.

While in both treatments the Fy∗

687 reached a peak the same day of the application,

the maximum Fy∗

760 occurred only 2 to 3 days after the treatment (Figs. 23A, 23B,

23D and 23E). This difference becomes more evident when comparing changes in

fluorescence and PRI (Fig. 24). The peak of PRI coincided with the peak of Fy∗

687,

but in the following days Fy∗

760 continued increasing (at a lower rate) despite the

drop of PRI.
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Figure 22: Representation of airborne images showing the dynamics of fluorescence at
687nm (A: F687) and at 760nm (B: F760) for each plot. Time is expressed in
days after treatment (DAT), where DAT 0 represents the day of the application.
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Figure 23: Dynamic changes of fluorescence during the experiment for all the plots esti-
mated from airborne data (A and D) and ground based measurements (B and
E). Fy∗

687 (A and B) and Fy∗

760 (D and E). Correlation between airborne and
ground observations for Fy∗

687 (C) and Fy∗

760 (F). Data obtained before DAT
−2 were not included for clarity of the results.

Figure 24: Relationship in time between PRI and the solar-induced fluorescence apparent
yield at 687nm (Fy∗

687) and 760nm (Fy∗

760). The arrows indicate the time
series and trends of the measurements in each plot.
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3.4 D I S C U S S I O N

In this study, we aimed to contribute to the understanding of the relationship

between solar-induced chlorophyll fluorescence and photosynthesis under stress

conditions. Short-term induced alterations of photosynthesis functioning in grass

resulted in quick changes of Fy* that were detected by the ground-based and air-

borne platforms. These changes resulted from alterations in various physiological

and biophysical processes produced by the herbicide and that were detected by the

ancillary remote sensing parameters. Thus, the information on the changes in the

pigment composition, the activity of non-photochemical energy dissipation mech-

anisms (NPQ) and the canopy temperature, represented excellent complements to

improve the understanding of the functional interplay of photosynthetic regula-

tion and facilitate the interpretation of the dynamics observed in the fluorescence

signal.

The use of Dicuran as stressor permitted to have a quick and well-characterized

effect in the photosynthetic apparatus. Dicuran is an herbicide that blocks the

binding site of Plastoquinone A in the photosystem II (PSII) and therefore inhibits

the photosynthetic electron transport towards the photosystem I (PSI) (Rossini et

al., 2015a; Schreiber, 1986; Van Rensen, 1989). The conditions created after its

application are suitable for the analysis of the fluorescence behavior in relation

to biochemical and biophysical changes in the photosynthetic apparatus. Other

stress factors that may occur under natural environmental conditions generally

induce a different response of fluorescence emission. Natural stress factors induce

a reduction of photosynthetic efficiency but typically increase the NPQ resulting

in a decline in fluorescence emission. An exception is the stress induced by cold

temperatures, where NPQ activity can drastically be reduced, thus inducing a

raise in fluorescence. Despite of the differences that might exist between the action

of Dicuran and natural stressors, some of the alterations in the processes involved

in photosynthesis are comparable.

The photochemistry was effectively blocked by the Dicuran as demonstrated by

the rapid reduction of CO2 assimilation rates and LUE. Moreover, the increase of

canopy temperature suggests that treated plants closed their stomata the days fol-

lowing the application. Hence, the fast increase of Fy* observed after the applica-

tion of Dicuran can be attributed to the sudden inhibition of the electron transport

chain. The variations in solar-induced fluorescence after the peak and differences

between the treatments may be attributed to the subsequent re-distribution of en-

ergy in the available dissipation pathways. The differences in GPP, LUE, ∆T and

Fy* observed between the treatments immediately after the application of Dicuran

denoted a higher degree of photosynthesis inhibition with increasing concentra-

tions of the herbicide. The gradual decrease of Fy* observed after the peak and
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toward the end of the experiment can be partly explained by a degradation of

chlorophyll molecules as suggested by the drop in MTCI during this time. This

reduction in the chlorophyll content may be a direct consequence of a photodam-

age and part of the photoprotective mechanisms to reduce the absorbed radiation

(Osmond, 1994). It is worth highlighting the higher sensitivity that MTCI showed

to changes in chlorophyll content in contrast to the NDVI. Given the dense canopy

of the grass were the experiments were performed, it is likely that the NDVI was

close to saturation and therefore rather insensitive to small changes in pigment

composition.

The PRI has been reported to be a good estimator of NPQ (Gamon, Peñuelas,

and Field, 1992; Panigada et al., 2014; Schickling et al., 2016). However, it is also

sensible to changes in the content of pigments in leaves, in particular to the ratio

Car/Chl (Garbulsky et al., 2011; Panigada et al., 2009). We attribute the initial peak

of PRI to changes in NPQ activity. Under optimal conditions, the PRI decreases

towards midday because of the activation of the xanthophyll cycle, a major com-

ponent of the NPQ (Muller, 2001). A similar tendency was observed in a diurnal

sequence of airborne data acquired during this field campaign (data not shown).

Therefore, the high PRI observed in treated plots at midday suggests a partial or

full inhibition of the NPQ. This is in agreement with Gamon et al. (1990), who

observed that DCMU (with a similar mechanism of action as Dicuran) had an in-

hibitory effect over the violaxanthin de-epoxidation through the avoidance of the

protonation of the thylakoid lumen, and consequently reflectance at 531nm did

not vary. This partial inhibition of the NPQ would contribute to the raise of flu-

orescence immediately after the treatment. Furthermore, the lower peaks of PRI

observed in lower doses treatments suggest only a partial inhibition of the NPQ.

This would partly explain the lower peaks observed for Fy∗

687 and Fy∗

760 in these

plots. The later decay of PRI in all treatments might be related to an activation of

the NPQ, which in turn would be responsible to quench the fluorescence emission

as observed in the following days after the peaks. This could also explain the par-

tial recover of GPP observed at this time, suggesting an eventual reversible effect

of the Dicuran. However, it is worth mentioning that other factors could affect

the GPP estimation at this point. We observed an increase of canopy respiration

that may be related to an upregulated use of plants’ carbohydrate reserves, which

is likely to occur under stressful conditions. This increase of respiration do not

necessarily mean an increase of photosynthesis. The continuous decrease of NEE

and the transpiration rate within days support this interpretation. However, the

correct quantitative interpretation of respiration rates for the precise calculation of

GPP is error prone and we thus do not want to overinterpret these findings. Under

this scenario, the decrease of fluorescence yield and PRI after their peaks could be

better explained by the pigment degradation inferred from NDVI and MTCI mea-
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surements and confirmed by the laboratory measurements. In our measurement,

nearly 40% of the variation of PRI was explained by changes in the Car/Chl rela-

tionship confirming the findings of Panigada et al. (2009). A decrease of this ratio

driven by the degradation of chlorophyll would result in a lower PRI. Likewise,

the emission of fluorescence would be reduced in all wavelengths due to a lower

absorption of PAR.

The differences between the kinetics of Fy∗

687 and Fy∗

760 can provide valuable

information to elucidate at which level the stress is affecting photosynthesis. In

this experiment we observed that in the lower doses treatments the initial rise of

Fy∗

687 was quenched faster than Fy∗

760. This quick decrease of Fy∗

687 coincides with

the drop of PRI and thus can be attributed to the combined action of NPQ and

the degradation of chlorophyll. In the case of Fy∗

760, the peak was observed after

the PRI started to decrease. One reason for this can be that the Dicuran action

affects directly the short-term regulatory mechanisms of light harvesting in the

PSII, where the F687 originates. Hence, any evolution of the stress would modulate

this signal almost instantaneously. On the other hand, F760 is emitted by both

photosystems. Therefore, the fraction of F760 emitted from the less regulated PSI

would respond slower to adaptation mechanisms. Further analyzes in this respect

escape from the scope of this study. However, we acknowledge the importance

of studying further the different response of F687 and F760 to the action of various

stresses.

The set of parameters measured during this study demonstrated to provide

relevant information that can be used to describe changes in a series of related

processes that ultimately impact the functioning of photosynthesis and that ulti-

mately govern photosynthetic CO2 uptake. The following conceptual model can

be derived from our results. The sudden increase of solar-induced fluorescence

yield reflects the immediate inhibition of the photosynthetic electron transport in

light reactions. Additionally, non-photochemical mechanisms for energy dissipa-

tion were inhibited as suggested by the quick changes in PRI. This makes the

photosynthetic apparatus susceptible to photodamage. A degradation of chloro-

phyll took place almost immediately because of the excess of energy as well as part

of the strategy to reduce the absorbed radiation. At the same time, the blockage

of the photosynthetic light reactions ceased the reduction of NADP+ to NADPH

and the formation of ATP, which results in an almost complete downregulation

of CO2 fixation by Rubisco, which is clearly reflected in a drop of carbon assim-

ilation detected by our gas exchange measurements. Consequently, the stomata

closed to avoid water loss inducing an increase of the canopy temperature (as

suggested by the decrease of the transpiration rates). In the following days, the

gradual decline of chlorophyll content (inferred from the changes in MTCI) and a

partial re-activation of the NPQ quenched the fluorescence signal. Although the
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GPP data showed some signs of recovery in some of the treated plots, the drastic

drop of fluorescence yield and PRI towards the end of the experiment were better

explained by a long-term breakdown of chlorophyll and possibly to an irreversible

damage in the photosynthetic apparatus. Indeed, by the end of the experiment the

plants treated with the highest dose were killed by the action of the herbicide.

3.5 C O N C L U S I O N S

In this experimental study, we explored the use of solar-induced chlorophyll

fluorescence as a proxy to detect stress-induced limitations in photosynthetic ac-

tivity at canopy level. The use of the herbicide Dicuran permitted to simulate a

stress event that triggered changes in different components of the photosynthetic

apparatus. We showed that no measurement parameter alone was sufficient to

reflect the dynamic changes of CO2 uptake rate. Both fluorescence measured at

687nm and 760nm could clearly track functional impairments of photosynthetic

electron transport rate and thus is the superior remote sensing indicator for track-

ing acute limitation of actual photosynthesis. However, longer term adaptation

of the photosynthetic apparatus involve a complex interplay of optimizing photo-

synthetic efficiency at PSII, the different pathways of non-photochemical energy

dissipation, a balanced stomatal regulation and the breakdown and repair of pig-

ments. The measurement of all these components is therefore necessary in the

design of a forward model to unravel the mechanism of action of a stressor, and

to estimate photosynthetic CO2 uptake rates and GPP. The FLEX satellite mis-

sion is designed to provide all necessary input parameters for the development

of such a model. Based on the results of this and other studies, we propose that

the following parameters are relevant to constrain a forward estimation of pho-

tosynthetic carbon uptake: (i) the efficiency of photosynthetic electron transport

(approximated by fluorescence emission), (ii) the degree of non-photochemical en-

ergy dissipation (estimated by reflectance changes in the green spectral range), (iii)

the amount and composition of photosynthetic pigments (measured by canopy re-

flectance and improved by fluorescence measures), and finally (iv) an estimate of

stomatal opening (as assessed by canopy temperature).





4 E X P L O R I N G T H E P H Y S I O L O G I C A L

I N F O R M AT I O N O F S O L A R - I N D U C E D

C H L O R O P H Y L L F L U O R E S C E N C E

T H R O U G H R A D I AT I V E T R A N S F E R

M O D E L I N V E R S I O N

A B S T R AC T

1 The combined retrieval of vegetation biochemical and biophysical parame-

ters and chlorophyll a fluorescence (F) was investigated exploiting high resolution

spectral measurements in the visible and near-infrared spectral regions. A numer-

ical inversion of the radiative transfer modules for fluorescence and reflectance of

the “Soil-Canopy Observation Photosynthesis and Energy fluxes” (SCOPE) model

was performed. First, the retrieval scheme was validated on a synthetic dataset

generated with the SCOPE model, varying the main parameters over a wide range

of possible values. Then, it was applied to very high resolution (sub-nanometer)

canopy level spectral measurements collected over a lawn treated with different

doses of a herbicide (Dicuran) known to instantaneously inhibit both Photochem-

ical and Non-Photochemical Quenching (PQ and NPQ, respectively). As a ref-

erence, F values obtained with the model inversion were compared to those re-

trieved with state of the art Spectral Fitting Methods (SFM) and SpecFit retrieval

algorithms. For the first time the full spectrum of canopy F, the fluorescence

emission efficiency (ΦF), as well as the main vegetation parameters that control

light absorption and reabsorption, were retrieved concurrently using canopy-level

high resolution apparent reflectance (ρ∗) spectra. The effects of pigment content,

leaf/canopy structural properties and physiology were effectively discriminated.

Their combined observation over time led to the recognition of dynamic patterns

of stress adaptation and stress recovery. ΦF retrieved from ρ∗ was eventually com-

1 The content of this chapter has been submitted to Remote Sensing of Environment as Celesti, M.,

van der Tol, C., Cogliati, S., Panigadaa, C., Yang, P., Pinto, F., Rascher, U., Miglietta, F., Colombo,

R., Rossini, M. “Exploring the physiological information of solar-induced chlorophyll fluorescence

through radiative transfer model inversion”, and it is currently under review.
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pared with an independent biophysical model of photosynthesis and fluorescence.

These results foster the use of repeated hyperspectral remote sensing observations

together with radiative transfer and biochemical models for plant status monitor-

ing.

Keywords: solar-induced chlorophyll fluorescence, fluorescence quantum effi-

ciency, SCOPE, numerical optimization, plant status

4.1 I N T R O D U C T I O N

In the last years, Remote Sensing (RS) of chlorophyll a fluorescence (F) emerged

as a novel and promising scientific field for studying the dynamic behavior of pho-

tosynthesis (for a review of this topic see Meroni et al., 2009 and Porcar-Castell et

al., 2014). F is a physical side product of light absorption that is emitted as an

electromagnetic radiation in the red and far-red spectral regions (≈ 640–850nm),

and it is related to the energetic status of the photosystems. The FLuorescence

EXplorer (FLEX) mission, selected as the 8th Earth Explorer of the European Space

Agency (ESA) and planned for launch in 2022, is the first satellite mission specifi-

cally designed and optimized for fluorescence observation from space. One of the

main goals of the FLEX mission will be to retrieve F using the spectral features in

the oxygen A (O2-A; centered at 760.4nm) and B (O2-B; centered at 687.0nm) ab-

sorption bands, as well as the full spectrum of emitted fluorescence. The feasibility

of consistent retrieval of F from ground based, airborne and satellite platforms has

been investigated in the last years (Cogliati et al., 2015; Guanter et al., 2015, 2010;

Meroni et al., 2008; Migliavacca et al., 2017; Rascher et al., 2015; Rossini et al., 2015;

Rossini et al., 2016; Yang et al., 2015). Nevertheless, due to the concurrent influ-

ence of physiology, leaf and canopy structure, pigment concentration and weather

conditions on F (Porcar-Castell et al., 2014; Verrelst et al., 2015b), it’s unambigu-

ous interpretation in terms of the quantification of vegetation photosynthesis and

stress detection is a largely unsolved challenge. Several authors (e.g., Damm et al.,

2010; Guanter et al., 2014; Lee et al., 2013) exploited the conceptual scheme of

the Light Use Efficiency (LUE) model, proposed by Monteith (1972) for the Gross

Primary Production (GPP), to express F as:

F(λ) = PAR× fAPAR× Fy(λ)× fesc(λ) (17)

where PAR is the Photosynthetically Active Radiation, fAPAR is the fraction of

PAR that is absorbed by vegetation (i.e., the fraction of PAR that is transformed

into Absorbed Photosynthetically Active Radiation (APAR)), Fy is the fluorescence

yield (i.e., the fraction of absorbed radiation emitted as fluorescence), and fesc(λ)
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the “escape probability” (the probability that an emitted fluorescence photon es-

capes the canopy in the direction of the sensor). These three processes together (i.e.,

the absorption of light, the emission as fluorescence, and the escape of F from the

canopy) determine the directional F flux emitted at the top of the canopy. Given

these definitions, the fluorescence emitted by all leaves at a wavelength λ (FTOT (λ))

can be defined as the ratio of F(λ) and fesc(λ), and integrated over all wavelengths

of the spectrum of emitted fluorescence to obtain the total emitted fluorescence by

all photosystems (FTOT
int ; Eq. 18).

FTOT
int =

∫850

640

F(λ)

fesc(λ)
dλ (18)

After substitution of APAR = fAPAR × PAR in Eq. 17, and after converting

APAR and FTOT
int from energy units to quanta using the Planck’s constant, the

fluorescence quantum yield (ΦF) at photosystem level can be defined as:

ΦF =
FTOT
int

APAR
(19)

ΦF is modulated by changes in the physiological status of plants, and represents

the fraction of absorbed quanta that is not used for Photochemical Quenching (PQ)

and Non-Photochemical Quenching (NPQ). In photosynthesic studies it is practi-

cal to use quantum yields for describing the quantum efficiency of the involved

processes, and another common way to represent these dissipation pathways is by

using rate coefficients K (Butler, 1978; Eq. 20).

ΦF =
KF

KF +KD +KN +KP
(20)

where KF, KD, KN and KP are the relative rate constants for fluorescence, constitu-

tive thermal dissipation, NPQ and PQ, respectively (cfr. Porcar-Castell 2011). It is

also valid that the sum of the quantum yields (Φ) is equal to 1 (Eq. 21).

ΦF +ΦD +ΦN +ΦP = 1 (21)

Given this energy balance formulation, it is clear that any variation in ΦF reflects

variations in one or more of the other Φ, and consequently in one or more of

the other processes. Although the potential of ΦF to monitor photosynthesis has

been demonstrated, it is not trivial to quantify it from canopy level measurements,

with increasing complexity when moving from field to airborne and satellite ob-

servations. In particular: i) the calculation of FTOT
int (Eq. 18) requires the retrieval

of the full spectrum of emitted F, but only few attempts have been made so far

to retrieve it at canopy level from ground measurements (Liu et al., 2015; Zhao
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et al., 2014), airborne (Cogliati et al., 2016) or simulated satellite data (Cogliati

et al., 2015; Sabater et al., 2015); ii) it is not possible to directly measure fesc; iii)

the proper quantification of the components of APAR from RS is still challenging

(cfr. Garbulsky et al., 2010; Gitelson and Gamon, 2015). Apart from ground or

near ground measurements, any retrieval of PAR or fAPAR from RS platforms is

mediated by a model, and the disagreement between currently available fAPAR

products is high (Meroni et al., 2013; Pickett-Heaps et al., 2014).

Physically-based Radiative Transfer Models (RTMs) of the vegetation have been

used in the last decades to express mathematically the complex interactions be-

tween plant elements (e.g., tissues, leaves, branches) and the electromagnetic ra-

diation. Verrelst et al. (2015a) pointed out that the quantification of surface bio-

geophysical variables is inherently model-dependent, because models bridge the

gap between RS observations and the physical processes and surface properties

that drive them. Some of these models also include interactions with the soil

and the atmosphere (Verhoef and Bach, 2003, 2007). In addition to that, Soil-

Vegetation-Atmosphere Transfer (SVAT) models (e.g., Sellers, 1997; van der Tol et

al., 2009; Verhoef and Allen, 2000) have been proposed to describe the pathways of

energy, carbon and water between soil, vegetation and atmosphere. Among these,

the 1-D (vertical) “Soil-Canopy Observation Photosynthesis and Energy fluxes”

(SCOPE) model (van der Tol et al., 2009) is an integrated radiative transfer and

energy balance model that enables the simulation of canopy leaving hyperspectral

reflectance and fluorescence, as well as the turbulent heat fluxes and photosynthe-

sis. van der Tol et al. (2016) successfully exploited high resolution (Spectral Sam-

pling Interval (SSI) = 0.24nm and Full Width at Half Maximum (FWHM) = 1nm)

top-of-canopy reflectance spectra in the Visible and Near InfraRed (VNIR) spectral

region, to partially invert SCOPE and retrieve biochemical and structural parame-

ters of the vegetation (e.g., pigment concentration, canopy structure), and simulate

emitted F760. Recently, Hernández-Clemente et al. (2017), Liu et al. (2017), and

Zhao et al. (2016) extended 3-D radiative transfer models to simulate F in complex

canopies. In particular, Hernández-Clemente et al. (2017) used FluorFLIGHT to

account for the effects of sunlit/shadow pixels, vegetation structure and fractional

cover on F in an oak forest, highlighting the importance of a proper modeling ap-

proach to relate F to forest health. Nevertheless, these models are generally slower

and require a larger number of input parameters than simpler 1-D RTMs, and this

can be a limiting factor for their large-scale application.

In this work we propose a novel approach to characterize the physiological con-

ditions of plants from hyperspectral RS data. In particular, the specific objectives

of this work are: i) to propose and validate a method to invert a “light” version

of the SCOPE model, retrieving concurrently F, ΦF and the main biochemical and

biophysical parameters of the vegetation that control APAR; ii) to compare the
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retrieved F values with state of the art SFM and SpecFit algorithms; iii) to analyze

the temporal evolution of the retrieved parameters in a controlled stress experi-

ment; iv) to compare the retrieved ΦF values with an independent biochemical

model of photosynthesis and fluorescence (van der Tol et al., 2014).

4.2 M AT E R I A L S A N D M E T H O D S

4.2.1 Experimental setup

The field campaign was conducted in a farm in Latisana (Udine, Italy; 13.013E,

45.779N) from 7th June 2014 to 3rd July 2014, during the ESA founded FLEX-EU

campaign (cfr. Section 3.2). Three parcels (9m × 12m) of a commercially pro-

duced lawn were treated with increasing doses of Dicuran 700 FW (Syngenta AG),

a commercial formulation of Chlorotoluron (3-(3-chloro-p-tolyl)-1,1-dimethylurea).

Dicuran is an herbicide that interferes with the light reactions of photosynthesis,

inhibiting the electron transport chain from photosystem II (PSII) to photosystem

I (PSI). This translates in a strong decrease of PQ, and in an accumulation of ab-

sorbed energy inside the reaction centers that has to be rapidly dissipated to avoid

oxidative stress. Dicuran is also known to inhibit NPQ, hence we expect a strong

increase of ΦF, driven by an increase in F emission, after the treatment. On the

other hand, the vegetation biophysical and biochemical parameters should only

be influenced at a later stage. Three additional non-treated plots were sprayed

with water and used as control. A similar treatment was exploited in Rossini et al.

(2015), with noticeable effects on both F687 and F760. The lawn was frequently ir-

rigated during the campaign and was expected to never experience water limited

conditions. A preliminary assessment of the full dataset (cfr. Chapter 3) showed i)

no differences in the dynamics of the control plots, and ii) that the effect on F and

reflectance of the two lower doses of Dicuran was comparable. Hence, for the sake

of simplicity, data shown in this paper refer only to three plots, representative of

the more (maximum dose, 24ml l−1) and less stressed (minimum dose, 1.5ml l−1)

among the treated plots, as well as a control plot. Due to logistic constraints, the

herbicide was applied on the two plots seven days apart (12th June 2014 and 19th

June 2014, respectively) hence in this paper the Days After Treatment (DAT), in-

stead of the Day Of the Year (DOY) will be used.
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4.2.2 Top-of-canopy hyperspectral measurements

High resolution spectral measurements were performed in the field with three

Ocean Optics (Dunedin, USA) portable spectrometers operating in the Visible and

Near InfraRed (VNIR) spectral region with different spectral configurations (Ta-

ble 6). The spectrometers were housed in a Peltier thermally regulated box (model

NT-16, Magapor, Zaragoza, Spain) keeping the internal temperature at 25 ◦C in or-

der to ensure the stability of both the intensity and the spectral information of the

measured signal. The targets were measured from nadir with bare optical fibers

(field of view of 25°) at a distance of 1.30m, yielding to an observed circular sur-

face of approximately 0.58m of diameter. The fibers were mounted downlooking

on a specially modified tripod that allowed the alternate measurement of the veg-

etated target and of the white reference calibrated panel (Labsphere Inc., North

Sutton, NH, USA). A picture of the overall spectroscopic measurements setup is

reported in Figure 25a. This system has been widely used in the last decade

to provide consistent values of reflectance and fluorescence in different field cam-

paigns, over a wide range of crops and natural vegetation (Rossini et al., 2016). The

spectral data were acquired with a dedicated software (3S; Meroni and Colombo,

2009) and processed with a specifically developed IDL (ITTVIS IDL 7.1.1) applica-

tion described in Meroni et al., 2011. Each acquisition consisted of three spectra

recorded sequentially: Lin
meas measured over the calibrated white reference panel,

Lout
meas over the target and Lin

meas again. The actual Lin
meas at the time of the

target measurement was estimated by linear interpolation. The relative variation

of the two Lin
meas measurements was used as a quality check for illumination con-

dition stability (i.e., total variation below 5%). Each of these spectra is the average

of 10 and 3 scans (for the full range and the other two spectrometers, respectively)

in order to reduce instrumental noise.

Table 6: Summary of the technical characteristics of the Ocean Optics spectrometers
(Dunedin, USA) used in the measurement campaign. “Range” is the spectral
range, “SSI” is the Spectral Sampling Interval, “FWHM” is the “Full Width at
Half Maximum” and “SNR” is the nominal Signal-to-Noise Ratio.

ID Model
Range SSI FWHM

SNR
[nm] [nm] [nm]

S-Full HR4000 400-1000 0.24 1.00 300:1

S-O2-B QE65000 657-743 0.10 0.25 1000:1

S-O2-A HR4000 717-805 0.02 0.10 300:1
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Figure 25b shows a nadiral picture of one of the measured lawn parcel. A

white frame was used as a reference to ensure spatially consistent measurements

of the vegetated surface (depicted approximately with the yellow circle) over time.

To ensure that the white frame had no effect on the measurements (i.e., signal

contamination due to adjacency effects), two consecutive measurements with and

without the frame were compared, showing no significant differences in terms

of reflectance and fluorescence (data not shown). Ground measurements were

performed over the whole time window of the campaign. Measurements started

around 10:00 until 16:00 (CEST), depending on the weather conditions. The plots

were measured moving the instruments from the first to the last plot cyclically dur-

ing the day. Five consecutive acquisitions were taken for each plot under stable

illumination conditions before moving to the next one. The final spectral dataset

consisted of ≈ 600 measurements. The spectra collected with the three spectrom-

eters were converted from digital numbers to radiance and then merged together

in order to cover the VNIR spectrum (400-900 nm) with the maximum possible

spectral resolution (i.e., minimum SSI and FWHM). In this work, in fact, in order

to retrieve concurrently the biophysical parameters by model inversion technique,

the F687 and F760 at the oxygen absorption bands, as well as the full spectrum F, the

spectra collected with the highest spectral resolution spectrometers (S-O2-B and S-

O2-A) were accurately inter-calibrated based on the lower resolution spectrometer

(S-Full), and merged together to obtain a single spectrum with the highest possi-

ble resolution (Figure 26). Top-of-canopy solar-induced fluorescence was retrieved

in the O2-A and O2-B oxygen absorption bands using state of the art Spectral Fit-

ting Methods (SFM) (Cogliati et al., 2015), originally proposed by Meroni and

Colombo (2006) and Meroni et al. (2010). This method models the fluorescence

emission and the true reflectance (ρSFM; i.e., the ratio of the reflected radiance and

the incoming radiance) as a function of wavelengths inside the O2-A and O2-B oxy-

gen absorption bands. FSFM and ρSFM were modeled using Voigt functions and

piecewise cubic splines, respectively. Moreover, the SpecFit algorithm as described

in Cogliati et al. (2015) was applied to retrieve the full spectrum of the F emission

(FSpecFit) in the spectral range from 670–780nm. The integral of each F spectrum

(FSpecFitint ) was computed by means of trapezoidal numerical integration.

Starting from the measured radiance fluxes, the measured apparent reflectance

(ρ∗,meas) was computed. ρ∗,meas is a quantity defined as the ratio between

the radiance leaving the vegetation surface (Lout
meas) and the incoming radiance

(Lin
meas). It differs from the true reflectance (ρ) for including not only the reflected,

but also the emitted radiance (i.e., the fluorescence).
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(a) (b)

Figure 25: a) Picture of the spectroscopic setup in the field; b) Parcel of the measured lawn:
the yellow circle is approximately the area measured with the spectroscopic
system.

Figure 26: Example of the spectra collected with the three spectrometers merged together
to obtain the highest resolution spectral configuration. The shaded area repre-
sents the regions where the data from the high resolution spectrometers (S-O2-
B and S-O2-A) were used instead of the full-range one (S-Full).
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4.2.3 Modeling setup

M O D E L D E S C R I P T I O N The Radiative Transfer (RT) routines used to simulate

reflectance and fluorescence were taken from the SCOPE model (version 1.702).

Four routines were selected for this purpose. At leaf level, reflectance and fluores-

cence spectra were simulated with a modified version of the Fluspect-B model (Ver-

hoef, 2011; Vilfan et al., 2016), while for propagation through the canopy the rou-

tines RTMo for incident light and RTMf for fluorescence were used. Fluspect-B is

based on the PROSPECT model (Jacquemoud and Baret, 1990), with the addition

of backward and forward fluorescence spectra. Here, the absorption coefficients

of leaf biochemical components from the recently published PROSPECT-D (Féret

et al., 2017) were used. RTMo is based on the SAIL model (Verhoef, 1984), and

it simulates the four-stream radiative transfer of the incident light, resulting in

the reflectance. Finally, RTMf propagates the fluorescence fluxes simulated by

Fluspect-B inside the canopy based on the distribution of APAR and the scatter-

ing coefficients modeled with RTMo. The soil reflectance was modeled using the

“Global Soil Vector” (GSV) model (Jiang and Hongliang, 2012; Verhoef, Tol, and

Middleton, 2014). The coupled model resulting from the combination of Fluspect-

B, RTMo, RTMf and GSV is a “light” version of SCOPE, and it is referred to as

“RTMc” in this study.

M O D E L I N V E R S I O N The model inversion routine for the retrieval of biophysi-

cal and biochemical parameters of the vegetation was based on a Numerical Op-

timization (NO) algorithm that minimizes the differences between the measured

and the modeled apparent reflectance in the spectral region from 400–900nm. The

modeled apparent reflectance (ρ∗,RTM) is defined by the ratio of the modeled ra-

diance leaving the vegetation surface (LRTMout ) and the incoming radiance:

ρ∗,RTM =
LRTMrefl + FRTMout

Lmeas
in

=
LRTMout

Lmeas
in

(22)

where FRTMout is the modeled fluorescence in the observation direction, and the

modeled reflected radiance (LRTMrefl ) is computed as:

LRTMrefl =
rso(πL

meas
sun ) + rdo(πL

meas
sky )

π
(23)

where rso and rdo are the canopy reflectance factors of the direct (solar) and

diffuse (sky) components of the incoming irradiance (πLmeas
sun and πLmeas

sky , re-

spectively). Lmeas
sun and Lmeas

sky were not directly measured in the field, but were

2 https://github.com/Christiaanvandertol/SCOPE.git
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obtained by decomposing Lmeas
in according to a simulation produced with the

MODerate resolution atmospheric TRANsmission (MODTRAN) RT model (Berk

et al., 2014), so that the sum of the two components was equal to the measured

total Lin
meas (Eq. 24).

Lmeas
in = Lmeas

sun + Lmeas
sky (24)

An example of the spectra obtained from this decomposition is shown in Fig-

ure 27. Given a set of arbitrary starting model parameters (Table 7, column SV),

the true solar zenith and azimuth angles, and the Lmeas
sun and Lmeas

sky components,

the NO algorithm iteratively executes the RTMc model, varying all the free param-

eters within their range of variation (Table 7), until a cost function is minimized.

A number of parameters were left free to vary during the inversion routine. In

Table 7: Lower boundaries (LB), upper boundaries (UB), a priori values (p0), assumed
standard deviations (σp0

) and starting values (SV) of each retrieved parameter.
Free parameters include six Fluspect-B parameters for Chlorophyll (Cab) and
carotenoids (Ccar), leaf dry matter (Cdm), water content (Cw) and senescent
material (Cs), and fluorescence quantum efficiency (fqe), the Leaf Area Index
(LAI) from the SAIL model, and the volumetric soil moisture percentage in the
root zone (SMp) from the GSV model.

Parameter Unit LB UB p0 σp0
SV

Cab µg cm−2 0 100 40 30 40

Ccar µg cm−2 0 30 10 109 10

Cdm g cm−2 0 0.04 0.01 109 0.005

Cw cm 0 0.05 0.01 109 0.02

Cs - 0 0.4 0.15 109 0.1

fqe - 0 1 0.01 109 0.01

LAI m2m−2 0 6 2 1 3

SMp % 5 55 30 109 30

particular, six Fluspect-B parameters for chlorophyll (Cab) and carotenoid content

(Ccar), leaf dry matter (Cdm), water content (Cw), senescent material (Cs), the flu-

orescence quantum efficiency (fqe), and the Leaf Area Index (LAI) from the SAIL

model. SMp is a parameter in the GSV model for the volumetric soil moisture

percentage in the root zone, and it was left free to account for potential variations

in the soil brightness due to soil moisture content. The Fluspect-B parameter “fqe”

corresponds to the fluorescence emission efficiency (ΦF) in Eqs. 17, 21. In order to

test the retrieval scheme in a generally applicable configuration, the lower (Table 7,

column LB) and upper boundaries (column UB) of the free parameters were left
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Figure 27: Example of the measured total incoming radiance (Lmeas
in ) and the decom-

posed direct (Lmeas
sun ) and diffuse (Lmeas

sky ) fluxes.

very wide. A spherical leaf angle distribution (LIDFa = −0.35; LIDFb = −0.15),

was chosen to model the lawn canopy. It was left fixed because no variation in the

canopy architecture was observed during the campaign.

Following van der Tol et al. (2016), we used the lsqnonlin function of the op-

timization toolbox in MATLAB® R2016b, selecting a Trust-Region-Reflective least

squares algorithm for updating parameters after each iteration step. The cost func-

tion “f” was defined as:

f = ER1TER1 +w ∗ ER2TER2 (25)

ER1 =















ρ∗,RTM(λ) − ρ∗,meas(λ) , λ ∈ λnoabs

(ρ∗,RTM(λ) − ρ∗,RTM
BL (λ))+

, λ ∈ λabs

−(ρ∗,meas(λ) − ρ∗,meas
BL (λ))

ER2 =
p− p0

σp0

with λabs being the spectral ranges within the fluorescence emission region where

major atmospheric absorption features occur, in particular:

• O2-A from 754–775nm

• O2-B from 685–688nm

• H2O from 715–734nm
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and λnoabs all other wavelengths in the 400–900nm spectral range. The first term

of the cost function (ER1) calculates the residuals between the modeled (ρ∗,RTM)

and the measured apparent reflectance (ρ∗,meas). Outside the oxygen absorption

bands, simply the difference between ρ∗,RTM and ρ∗,meas is used. However, in-

side the absorption bands, the apparent reflectance is normalized (subtracted) by

a “baseline reflectance” (ρ∗BL, the “baseline” of ρ∗). This ensures that the heights

of the spikes in the apparent reflectance relative to the shoulders outside the ab-

sorption bands are reproduced rather than the absolute heights. This appears

necessary as the ρ∗,RTM may have some residual bias in the red-edge and the

Near InfraRed (NIR) plateau, which could strongly affect the retrieved fluores-

cence. ρ∗BL is calculated by fitting a linear spline function to the ρ∗ curve once

the peaks due to F contribution are removed, an approach conceptually similar

to the one used in the iFLD fluorescence retrieval (Alonso et al., 2008). ER1 in

the absorption bands is then calculated as the difference of the modeled and mea-

sured residuals between ρ∗ and ρ∗BL. Figure 28a shows an example of the min-

uend (ρ∗,meas − ρ∗,meas
BL ) and the subtrahend (ρ∗,RTM − ρ∗,RTM

BL ) of ER1 (Eq. 25),

in the spectral region around the O2-A band, while in Figure 28b ER1 computed

for the whole dataset is compared to the difference between ρ∗,RTM and ρ∗,meas.

The second term (ER2) includes the posterior (p) and a priori (p0) values of the

model parameters, as well as their expected standard deviation (σp), weighted

for a factor w = 3× 10−2 (van der Tol et al., 2016). The output of this process is

an optimized set of the input parameters, as well as the corresponding modeled

reflectance and fluorescence spectra (Figure 29). The integral of each F spectrum

(FRTMint ) was computed by means of trapezoidal numerical integration. In order

to be consistent with the calculation of (FSpecFitint ), the spectral range was limited

between 670 and 780nm.

M O D E L VA L I DAT I O N In order to test the retrieval algorithms described in the

previous section (i.e., RTMc inversion, SFM and SpecFit), we created a large syn-

thetic (> 800 000) look-up table of apparent reflectance spectra with RTMc, with

the same spectral characteristics of the measured data. RTMc input parameters

were varied over a wide range of possible values (i.e., between LB and UB in Table

7), with a fixed-pass sampling ensuring at least 5 steps for each parameter. In

addition, the short-wave incoming radiation (Rin) was varied between 400 and

1000Wm−2 with a 200Wm−2 step. A subset of randomly selected 1000 simula-

tions was used to perform the inversion and to test the retrieval algorithms.
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(a)

(b)

Figure 28: a) Example of the minuend (ρ∗,meas−ρ∗,meas
BL ) and the subtrahend (ρ∗,RTM−

ρ∗,RTM
BL ) of the term ER1 in the cost function (Eq. 25), as well as the modeled

(ρ∗,RTM) and measured (ρ∗,meas) apparent reflectance in the spectral region
around the O2-A band. b) Mean (µ) and standard deviation (σ) of the dif-
ference between ρ∗,RTM and ρ∗,meas (Dev) and of the ER1 term of the cost
function, in the spectral region around the O2-A band. Data in (b) refer to the
whole dataset.
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Figure 29: Example of the true (ρRTM) and apparent (ρ∗,RTM) reflectance and fluores-
cence (FRTM) spectra simulated with the RTMc model.

4.2.4 Regression models and error estimation

All data in the plots are reported as mean ± standard deviation, unless differ-

ently indicated. Similarly, the linear regression models shown in this paper are

obtained with Ordinary Least Squares (OLS) fitting. For the robust regression

models, the bisquare weighting scheme for downweighting outliers included in

MATLAB® R2016b fitlm function was used.

The Root Mean Squared Error (RMSE) and the Relative Root Mean Squared Er-

ror (RRMSE) were computed according to Eq. 26 and Eq. 27, respectively. Together

with the slope (m), the intercept (q) and the coefficient of determination (R2), they

were used to compare the retrieved (ŷ) and the reference (y) values.

RMSE =

√

∑n
i=1(ŷi − yi)2

n
(26)

RRMSE =

√

∑n
i=1(

ŷi−yi

yi
)2

n
∗ 100 (27)

where n is the number of observations.
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4.3 R E S U LT S A N D D I S C U S S I O N

4.3.1 Evaluation of the modeled reflectance and fluorescence

Table 8 shows the results of the inversion of the RTMc model on the simulated

spectral dataset. The comparison between fluorescence values at 687nm (FRTM687 )

and at 760nm (FRTM760 ) retrieved inverting RTMc and the reference values are re-

ported as well. In general, the agreement between true and retrieved biochemical

and biophysical vegetation parameters is quite good: the R2 values are generally

larger than 0.9 for most of the parameters, and the RMSEs are reasonably low. The

slope of the OLS linear model for FRTM687 and FRTM760 are close to one, while there is

a certain overestimation in retrieved FRTM760 (q = 0.59mWm−2 sr−1 nm−1). FRTM

values integrated over the whole emission spectrum (FRTMint ) show similar R2 value,

with RMSE = 41.26mWm−2 sr−1 and q = 55.08mWm−2 sr−1. The RRMSE is

generally lower or very close to 10%. When applying robust bisquare linear regres-

sion, the variance explained by the model is often close to 100%, and the RMSE

is very low. Nevertheless, fqe is still overestimated (m = 1.33), and a positive

bias in FRTM760 and FRTMint values is still present (q = 0.39mWm−2 sr−1 nm−1 and

q = 37.92mWm−2 sr−1, respectively). The general slight overestimation of the F

values retrieved with RTMc is linked to the overestimation of the retrieved fqe pa-

rameter since at photosystem level there is a multiplicative factor between the two.

This, in turn, can be partially due to the extremely wide range of simulated fqe

values, an unrealistic case far from real world applications where the F emission

is much more constrained by fqe. Nevertheless, in order to test the most general

and worst possible scenario (in terms of retrieval uncertainty), the full range of

variation of fqe (0–1) was used for both the simulation and the retrieval.

In order to evaluate the performances of the SFM and the SpecFit retrieval al-

gorithms, FSFM687 and FSFM760 were retrieved starting from the simulated spectra, and

the integral of the emitted fluorescence spectrum in the 670–780nm spectral range

was computed. If no additional noise is added to the simulated data, the agree-

ment between the modeled (i.e., the reference values in this case) and the retrieved

FSFM values is almost perfect (FSFM687 : R2= 1.00, RMSE = 0.08 mWm−2 sr−1 nm−1;

FSFM760 : R2= 1.00, RMSE = 0.03 mWm−2 sr−1 nm−1; FSpecFitint : R2= 1.00, RMSE =

0.03 mWm−2 sr−1), even though FSFM687 values are slightly overestimated (m =

1.05mWm−2 sr−1 nm−1). In all cases the RRMSE is lower than 10%, with a very

low value of 0.67% for FSFM760 , and these values further improve if robust bisquare

linear regression models are used. These results confirm what was observed in

Cogliati et al. (2015), and indicate that SFM and SpecFit are very good performing

fluorescence retrieval algorithms when a proper estimation of the incoming solar
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irradiance is provided (a perfect atmospheric correction is in fact assumed in this

case).

In this paragraph the results of the measured spectral dataset are reported. Fig-

ure 30 shows an example of the measured (ρ∗,meas) and retrieved (ρ∗,RTM) appar-

ent reflectance (left panel). The regions around the O2-B and O2-A oxygen absorp-

tion bands are highlighted. FSFM687 and FSFM760 values retrieved with SFM, the full

F spectrum retrieved with SpecFit, as well as the F spectrum retrieved with RTMc

(FRTM) are reported. The deviation (difference) and the RRMSE between mea-

sured and retrieved apparent reflectance, computed for the whole dataset across

the whole spectral range used for the model inversion, are shown in Figure 31.

In general the fitting is good, but the model systematically overestimates ρ∗ in

the blue region and it is not perfectly able to reproduce the slope of the red-edge

and the NIR plateau. In particular, ρ∗ is overestimated before 450nm, from 700–

745nm, and from 770–835nm, and it is underestimated afterwards. In the green

region, from 500–550nm, the model reproduced almost correctly the shape of

the measured apparent reflectance, while small second order differences are still

present. The overestimation of ρ∗ in the blue could be triggered by a small un-

derestimation of Lmeas
sky (imperfect characterization of the atmospheric scattering).

The remaining discrepancies in ρ∗ can be partially attributed to the pigment ab-

sorption coefficients (cfr. van der Tol et al., 2016), especially in the green and red

spectral regions. The discrepancy in the red-edge region, and in particular from

700–770nm is likely due to the effect of an inaccurate retrieval of the senescent

material in the leaves (Cs), a parameter that preferentially affects the slope of the

reflectance in this spectral region. Figure 32 shows the variation induced in the

reflectance spectra when selectively varying Cs from 0 to 0.25. Uncertainties in

the characterization of the direct and the diffuse components of the incoming ra-

diation should have a very limited effect on the shape of the modeled reflectance

outside the atmospheric absorption bands. The measurements, in fact, were al-

ways performed in cloud-free conditions, with Sun Zenith Angles (SZAs) lower

than 60°, and the real SZA was used to simulate the reflectance components in the

model inversion routine. The fraction of direct/diffuse irradiance can nevertheless

partly explain the residual difference in the modeling of apparent reflectance in

the O2-A band (750–770nm). The depth of the absorption band depends on the

path-length followed by photons from the Sun via the target to the sensor (Cogliati

et al., 2015), being therefore influenced by the direct/diffuse ratio. This is true for

the O2-B band as well, but its depth and width are lower compared to the O2-

A band, therefore this effect is less pronounced. The OLS linear regression model

between FSFM687 and FRTM687 computed for the whole dataset of field measurements

shows a good correlation between the two fluorescence retrievals (R2 = 0.84) with

a RMSE of 0.15mWm−2 sr−1 nm−1 (Figure 33a). Two point clouds are clearly dis-
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Figure 30: Example of the measured and retrieved apparent reflectance (left) and fluores-
cence values (right). The regions around the O2-B and O2-A oxygen absorption
bands are highlighted.

Figure 31: Mean (µ) and standard deviation (σ) of the difference (Dev) and the Rela-
tive Root Mean Square Error (RRMSE) between measured and retrieved appar-
ent reflectance (ρ∗), computed for the whole dataset across the whole spectral
range used for the model inversion.
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Figure 32: Reflectance simulated with SCOPE 1.70 varying the content of senescent mate-
rial in the leaves (Cs) from 0 to 0.25.

tinguishable, one composed by F687 values between 0.5mWm−2 sr−1 nm−1 and

1mWm−2 sr−1 nm−1, and the other composed by higher values. F760 (Figure 33b)

shows an even higher R2 (0.97) and a slope much closer to 1 (m = 1.03), while the

average RMSE is 0.22mWm−2 sr−1 nm−1. FRTMint values (Figure 33c) closely re-

semble F
SpecFit
int ones (m = 1.02; q = 39.17mWm−2 sr−1; R2 = 0.96; RMSE =

22.91mWm−2 sr−1). When applying a robust bisquare linear regression model

to the data (green dashed line), the fittings improve. In particular, the RMSE of

F687 and F760 decreases to 0.14mWm−2 sr−1 nm−1 and 0.19mWm−2 sr−1 nm−1,

respectively, while the R2 slightly increases to 0.85 and 0.98. Nevertheless, the

slope of the linear model for F687 is still far from one (m = 0.81) and the intercept

(q) is 0.22mWm−2 sr−1 nm−1, while F760 from RTMc inversion is overestimated

of about 0.51mWm−2 sr−1 nm−1. It is worth noting that the two fluorescence re-

trievals are completely independent and use different parametrization of the func-

tions describing both fluorescence and reflectance. In this perspective, and lacking

an independent reference for F values, RMSE and RRMSE are to be interpreted

as “deviations” more than “errors”. Moreover, due to the herbicide application,

the range of variation of F760 and F687 found in this study is extreme when com-

pared to what has been observed with the same measurement setup over a wide

range of crops and natural vegetation (Rossini et al., 2016). This indicates that

both SFM/SpecFit and the SCOPE-based RTMc model are flexible enough to cope

with different (up to extreme) variations in emitted F triggered by stress events.
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(a) (b)

(c)

Figure 33: OLS (red solid line) and robust bisquare linear regression model (green dashed
line) between F values retrieved with SFM and obtained with RTMc inversion.
a) linear regression models for F687; b) linear regression models for F760; c)
linear regression models for Fint.
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4.3.2 Monitoring the retrieved parameters during the induced stress ex-

periment

In this section the temporal evolution of a selection of parameters retrieved for

the stress-detection field experiment, and the retrieved F radiances, are shown and

discussed. In the following plots only data collected around solar noon, i.e., ± one

hour, are used to compute mean and standard deviation for each DAT. Data refer

to a control (“Control”) and two treated plots, one with the lowest (“Low Dose”)

and the other with the highest dose in the experimental setup (“High Dose”).

Modeled fluorescence values at the O2-B (Figure 34a) and O2-A band (Fig-

ure 34c) follow the dynamics observed in fluorescence retrieved with SFM quite

well (Figs. 34b and 34d). Just after the treatment, there is an abrupt increase of

both F760 and F687 and a subsequent decrease in the following days. The con-

trol plot shows no significant variation in F values over time. Absolute F values

are correctly reproduced as well, coherently with what already discussed in sec-

tion 4.3.1. Although there is a systematic overestimation of FRTMint values of about

40mWm−2 sr−1 compared to F
SpecFit
int , the relative agreement between the ob-

served values is still high, and the temporal dynamics are preserved. This bias in

FRTMint can be attributed to the different shape of the fluorescence emission spec-

trum modeled by the two algorithms. In particular, RTMc based F spectra tend

to systematically overestimate F in the far-red region (cfr. Figure 33b), and this

triggers the overestimation in Fint as well.

Figure 35 shows the temporal variation of a selection of leaf and canopy re-

trieved parameters. A few hours after the treament was applied, the relative vari-

ation of leaf chlorophyll content (Cab; Figure 35a) compared to the pre-treatment

values was negligible. Starting from DAT 1, Cab values of the treated plots started

to decrease slowly. LAI values (Figure 35b) in contrast were stable over time (as

foreseen considering that the treatment did not induce any structural variation).

During the campaign the grassland was not cut, thus a certain increase in plant

biomass in the control plot could be easily justified. The content of senescent

material (Cs; Figure 35c) stays stable over time in both the control and the “Low

Dose” plot, even though the average values differed almost by a factor of 2. In

the “High Dose” plot, Cs increased over time following pigment degradation and

plant browning. Retrieved ΦF values (Figure 35d) clearly show a quick and strong

response of the photosynthetic apparatus to the applied treatment, even on DAT

0, few hours after the application. ΦF values are in agreement with both FRTM

and FSFM (in particular with F760 values). This is largely driven by the fact that

in this experiment the strongest driver of F variation is the inhibition of PQ and

NPQ by the chemical application, so that in this specific case the informative con-

tent of F and ΦF is similar (in particular when looking only at midday measure-
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(a) (b)

(c) (d)

(e) (f)

Figure 34: Time series of fluorescence values retrieved with RTMc inversion (“a”, “c” and
“e”) and with the SFM algorithm (“b”, “d” and “f”). The x axis shows the
number of Days After the Treatment (DAT).
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(a) (b)

(c) (d)

Figure 35: Time series of parameters retrieved from RTMc inversion. The x axis shows
the Day After Treatment (DAT).
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ments). Nevertheless these results are consistent with what was observed in a

recent study by Hernández-Clemente et al. (2017) using a dataset simulated with

the 3-D FluorFLIGHT model (in particular cfr. Figure 11d).

4.3.3 Combined observation of ΦF and Cab for stress detection

Figure 36 shows the combined variation of Cab and ΦF during the experiment

for the three plots. The combined analysis of the variation of these two parameters

helps to identify the different phases of the stress induced to the plants, and the re-

sulting effects. In the control plot (Fig. 36a), ΦF did not vary during the campaign,

while there was a small fluctuation of Cab values. This can be due to a compen-

sation effect with other model parameters (e.g., LAI) during the model inversion

process, that showed a similar but opposite variation towards the end of the cam-

paign (cfr. Figure 35b). Figure 36b shows a circular pattern of ΦF versus Cab,

after application of a low dose of Dicuran (“Low Dose”). Immediately after the

treatment, the abrupt rise of ΦF with no variation of Cab indicates that the plants

were experiencing a strong physiological stress, without detectable physical dam-

age to the photosynthetic apparatus. In the following three days, ΦF values stayed

high, while Cab started decreasing due to the prolonged stress condition. From

DAT 3 to 5, ΦF and Cab values decreased together, while from DAT 5 to 7 only

ΦF showed a further decrease, probably because the effect of Dicuran diminished

and the grass recovered 14 days after the chemical was applied. Values of both ΦF

and Cab were close to the pre-treatment ones. When the treatment was applied

with a much higher dose (“High Dose”; Figure 36c), after a quick increase of ΦF

with almost no variation in Cab values, both parameters started decreasing rapidly.

Several days after the treatment, the plants were brownish, so that the measure-

ments were stopped. At that point, almost 50% of the original Cab content was

lost, and the plants did not show any sign of recovery for the rest of the campaign.

In this case the decrease in ΦF can be attributed to a progressive deterioration of

the photosynthetic machinery and not to a recovery after the stress event, but this

becomes clear only when looking at the concurrent variation of pigment content

(i.e., Cab) and efficiency (i.e., ΦF) parameters. Putting this into the perspective of

a repeated (or continuous) observation through RS platforms, it will be possible

to characterize stress-specific patterns and to effectively distinguish between acute

stress events and prolonged stress phases, monitoring their implications on the

long-term functioning of the vegetation.



CHAPTER 4 93

(a) Control (b) Low dose

(c) High dose

Figure 36: scatter plots between chlorophyll a+b content (Cab) and fluorescence quantum
yield (ΦF), for three different plots: a control (panel “a”), a plot treated with a
low dose (“b”) and one with a high dose of herbicide (“c”). The color palette
refers to the number of Days After the Treatment (DAT), the arrows follow the
temporal dynamic as well.
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4.3.4 Using ΦF to invert a biochemical model for photosynthesis and

fluorescence

We have already discussed that ΦF is linked to the activity of the photosynthetic

machinery, so that a variation in the photochemical (ΦP) or non photochemical

yield (ΦN) reflects in a variation of ΦF. ΦF can be expressed as a ratio of rate

coefficients (K) (Eq. 20), with KF = 0.05 and KD = 0.95. ΦF is maximum when both

KP and KN are 0 (i.e., both PQ and NPQ are blocked), so that Φmax
F = 0.05/1 = 0.05,

and minimum when KP is high (e.g., KP = 4 and KN = 0; van der Tol et al. 2014),

so that Φmin
F = 0.05/4 = 0.0125, or when KN is very high (e.g., KN = 10 and KP =

1; Porcar-Castell 2011), so that Φmin
F = 0.05/11 ≈ 0.005 . With unstressed (control)

values around 0.015 and maximum stressed (treated) values around 0.035–0.040,

the ΦF values retrieved from the apparent reflectance through RTMc inversion are

close to the maximum, which is as expected considering that the Dicuran is known

to strongly inhibit both PQ and NPQ. As a test, if we substitute KP = 0.15 and KN

= 0.15 in equation 20, the resulting ΦF value of 0.039 indicates that even a small

amount of residual (i.e., non inhibited) PQ and NPQ would be enough to justify

the retrieved maximum values of ΦF.

4.4 C O N C L U S I O N S

For the first time we concurrently retrieved the full spectrum of solar-induced

chlorophyll a fluorescence (F), fluorescence quantum yield (ΦF) and biochemical

properties of grass inverting the optical radiative transfer routines of the SCOPE

model. The promising results obtained in this study open interesting perspectives

for exploiting the increasing number of high resolution data from multi-scale Re-

mote Sensing (RS) platforms. Computational times could be shortened by means

of emulators of the radiative transfer models (Rivera et al., 2015). Moreover, a

multi-step inversion routine where computationally efficient retrieval algorithms

would be used to retrieve key parameters like chlorophyll content (Cab) and Leaf

Area Index (LAI), then used as priors for a better regularization of the numerical

optimization inversion scheme is already in development. In addition, in an op-

erational perspective independently retrieved F values (e.g., with SFM or SpecFit),

could be used as a constrain inside the cost function as well, while in this study

we used them as a benchmark for the modeled values. The future ESA FLEX mis-

sion is an ideal candidate for applying these combined retrieval approach, since

it will provide hyperspectral data in the Visible and Near InfraRed (VNIR) spec-

tral region, as well as very high resolution data around the oxygen absorption

bands (i.e., a spectral configuration similar to the one used in this study). The
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HyPlant sensor (Rascher et al., 2015), developed by the Forschungszentrum Jülich

(Germany) in collaboration with Specim Spectral Imaging Ltd (Finland), is the air-

borne demonstrator for the FLEX mission. Further developments are ongoing to

apply a similar scheme to HyPlant imageries for producing maps of vegetation pa-

rameters, F and ΦF, and developing and refining algorithms that will be applied

to future satellite data.

Using ΦF (or F) to derive information about plant photosynthesis is still chal-

lenging. In this study we sketched the feasibility of using ΦF as a quantitative

indicator of Photochemical Quenching (PQ). More efforts are needed in this re-

gard, especially in enlarging the domain of the biochemical models to account for

a wider range of physiological conditions, and in finding a proper regularization

strategy for Non-Photochemical Quenching (NPQ). Nevertheless, first results in-

dicate that it is possible to use ΦF retrieved from hyperspectral RS observations to

obtain information on PQ. This opens new perspective for using RS observation

of F and ΦF in dynamic vegetation models for a better quantification of photosyn-

thesis from space.





5 S U M M A RY A N D C O N C L U S I O N S

The main aim of this research was to exploit multi-source remotely sensed data

to improve vegetation status analysis. In particular, I focused on canopy level

chlorophyll a fluorescence (F) and reflectance (ρ) retrieved from very high resolu-

tion data acquired with ground and airborne spectroradiometers. This thesis has

been divided in five chapters. Chapter 1 gives an introduction about the frame-

work within which this thesis was developed. Chapters 2, 3 and 4 address different

approaches that pursue the combined use of F and reflectance for studying vege-

tation dynamics. Each of these chapters focuses on one of the specific objectives

declared in Section 1.1. The main results of each of these chapters are summarized

and discussed below, together with some concluding remarks and perspectives.

5.1 M A I N R E S U LT S

Red F metrics estimated from the high-performance HyPlant airborne

sensor track changes in plant physiology associated with age-related hy-

draulic limitation

The results of this study (Chapter 2) aimed at the investigation of the relation-

ship between stand age-related processes and remotely sensed F in a managed

loblolly pine (Pinus taeda L.) forest in North Carolina (USA), show that: i) red

fluorescence (F690
lob ) and red fluorescence yield (Fy690

lob ) change with stand age;

younger loblolly pines dissipate more F690
lob than older one, and the decline of

Fy690
lob with stand age is more pronounced than that for F690

lob , or for the appar-

ent red-fluorescence yield; ii) only F690
lob and Fy690

lob declined with tree age, while

F740
lob and Fy740

lob did not. Leaf stomatal conductance measurements clearly show
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significant reduction with stand age and potentially explain the drop of red fluo-

rescence with age. Results observed in a similar loblolly pine forest site showed

that leaf-level photosynthetic parameters declined with tree age due to an increas-

ing water limitation of the plants, supporting the hydraulic limitation hypothesis.

The stomatal limitation model shows an opposite trend compared to the observed

decline in Fy690
lob . In this framework, the decline of Fy690

lob can be interpreted as

a primary consequence of the increasing photosynthetic stomatal limitations in

aging loblolly trees. Fy690
lob is thus influenced by the reduced carbon and water

availability induced by the water limitation processes, which occurs in older and

larger trees.

Results from analysis with spatially aggregated data at stand-scale revealed that

the relationships between red F radiances and yields with tree age were substan-

tially weakened by spatial averaging. To mitigate the effect of heterogeneous

canopy cover on F, the Canopy Cover Fluorescence Index was proposed to par-

tially correct for the proportion of loblolly pine inside each aggregated pixel.

Ground and airborne measurements of red and far-red F, together with

complementary remote sensing parameters, detect short-term dynamics

of photosynthetic efficiency in vegetation

This study (Chapter 3), aimed at detecting short-term induced alterations of

photosynthesis functioning in grass using ground and airborne measurements,

shows that apparent fluorescence yield (Fy*) quickly responded to the application

of Dicuran. Changes in other RS parameters revealed that alterations produced

by the herbicide involved various physiological and biophysical processes. The

use of Dicuran as stressor permitted to have a quick and well-characterized ef-

fect in the photosynthetic apparatus. Despite of the differences that might exist

between the action of Dicuran and natural stressors, the photochemistry was effec-

tively blocked by the Dicuran as demonstrated by the rapid reduction of carbon

dioxide (CO2) assimilation rates and LUE. Moreover, the increase of canopy tem-

perature suggests that treated plants closed their stomata the days following the

application. Hence, the fast increase and later fluctuations of Fy* observed after

the application of Dicuran can be attributed to the sudden inhibition of the electron

transport chain and the subsequent redistribution of energy in the available dissi-

pation pathways. The differences in GPP, LUE, ∆T and Fy* observed between the

treatments immediately after the application of Dicuran denoted a higher degree

of photosynthesis inhibition with increasing concentrations of the herbicide. The

drop observed in chlorophyll content after the treatment - and in the related index

Meris Terrestrial Chlorophyll Index (MTCI) - may respond to photodamage and
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photoprotective mechanisms to reduce the absorbed radiation. This can contribute

to the gradual drop of Fy* observed toward the end of the experiment. The differ-

ences between the kinetics of Fy∗

687 and Fy∗

760 can provide valuable information

to elucidate at which level the stress is affecting photosynthesis. In this experi-

ment we observed that in the lower doses treatments the initial rise of Fy∗

687 was

quenched faster than Fy∗

760. This quick decrease of Fy∗

687 coincides with the drop

of Photochemical Reflectance Index (PRI) and thus can be attributed to the com-

bined action of NPQ and the degradation of chlorophyll. In the case of Fy∗

760, the

peak was observed after the PRI started to decrease. One reason for this can be

that the Dicuran action affects directly the short-term regulatory mechanisms of

light harvesting in the PSII, where the F687 originates. Hence, any evolution of

the stress would modulate this signal almost instantaneously. On the other hand,

F760 is emitted by both photosystems, therefore, the fraction of F760 emitted from

the less regulated PSI would respond more slowly to adaptation mechanisms.

The numerical inversion of a physically based RTM on very high reso-

lution field spectroscopy measurements successfully retrieves the full

spectrum of F, ΦF, and several biochemical and structural vegetation pa-

rameters

This study (Chapter 4) was aimed at inverting numerically a simplified version

of the SCOPE model to retrieve concurrently the full spectrum of canopy F, the

fluorescence quantum yield (ΦF), as well as the main vegetation parameters that

control light absorption and reabsorption from very high resolution field spec-

troscopy measurements. The results show that the model inversion was able to

reproduce accurately the F values retrieved from the top-of-canopy radiance mea-

surements with state-of-the-art spectral fitting methods, even if the two fluores-

cence retrievals are completely independent and use different parametrization of

the functions describing both fluorescence and reflectance. Moreover, due to the

herbicide application, the range of variation of F760 and F687 found in this study

is extreme when compared to what has been observed with the same measure-

ment setup over a wide range of crops and natural vegetation. This indicates that

both spectral fitting methods and the SCOPE-based retrieval model are flexible

enough to cope with different (up to extreme) variations in emitted F triggered by

stress events. The model was also able to correctly reproduce the top-of-canopy

reflectance spectra in the VNIR. Retrieved ΦF values clearly show a quick and

strong response of the photosynthetic apparatus to the applied treatment, even

on the first Days After Treatment (DAT), few hours after the application. The

dynamics of ΦF values are in agreement with those of the F values (in particular
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F760 values). This is largely driven by the fact that in this experiment the strongest

driver of F variation is the inhibition of PQ and NPQ by the chemical application,

so that in this specific case the informative content of F and ΦF is similar (in par-

ticular when looking only at midday measurements). Finally, as a test, I compared

the retrieved ΦF values with an independent biophysical model of photosynthesis

and fluorescence, finding good agreement in absolute maximum and minimum

values.

5.2 C O N C L U D I N G R E M A R K S

Fluorescence in the red region (i.e., F690 in Chapter 2 and F687 in Chapter 2, re-

spectively), and the derived yields (i.e., Fy690 in Chapter 2 and Fy∗

687 in Chapter 2,

respectively) proved to be more sensible to variations in the functional state of the

photosynthetic machinery than their counterparts in the far-red region. This was

particularly true in regards to changes in hydraulic conductance in aging loblolly

pines, but it was also observed as a faster quenching of the initial rise of Fy∗

687 in

the manipulated stress experiment. Nevertheless, both F687 and F760 demonstrated

to be highly sensible to quick changes in photosynthesis function in the second

case-study. However, additional biophysical and physiological parameters were

necessary to interpret the temporal changes in fluorescence and finally unravel

the mechanism of action of the stressor. By combining the information provided

by the solar-induced fluorescence, the canopy temperature, and the vegetation

indices it was possible to derive a conceptual model that explained the most rele-

vant events that occurred in the photosynthetic apparatus after the application of

the herbicide. These findings could be derived independently from both ground-

based and aerial (even if with larger uncertainties) RS measurements using high-

performance spectrometry. This indicates that remotely sensed solar-induced F is

a meaningful signal that can be used to expand the possibilities of assessing the

physiological status of vegetation at different spatial and temporal scales. Using

measured hyperspectral data to invert a physically based model, the effects of pig-

ment content, leaf/canopy structural properties and physiology were effectively

discriminated, and their combined observation over time led to the recognition of

dynamic patterns of stress adaptation and stress recovery in the plants. Putting

this into the perspective of a repeated (or continuous) observation through RS plat-

forms, it will be possible to characterize stress-specific patterns and to effectively

distinguish between acute stress events and prolonged stress phases, monitoring

their implications on the long-term functioning of the vegetation.

Overall, the results achieved in this thesis foster the use of hyperspectral RS to

obtain information about plant status. In particular, they indicate that F yields
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coupled with complementary RS parameters, can be effective indicators of the dy-

namic behavior of the photosynthetic machinery of the plants. Ground-based RS

platforms continue to provide a solid basis for studying vegetation status, and

are still fundamental tools to calibrate and validate airborne or satellite products.

Nevertheless, they usually lack the spatial distribution given by the other two.

On the other hand, automatic ground-based instruments can provide measure-

ments with a high temporal resolution to fill the gap between two consecutive

satellite or airborne overpasses. This stresses the need for a RS multi-scale ap-

proach to effectively understand and monitor vegetation dynamics at a relevant

scale. The amount of multi-source hyperspectral data available is quickly increas-

ing, also driven by the hyperspectral satellite missions to be launched in the next

years. Prolonged combined measurements of solar-induced chlorophyll a fluores-

cence (F) and photosynthesis proxies (e.g., GPP) at various scales are expected

to enforce the experimental evidence of a functional link between F and photo-

synthesis, but flexible modeling frameworks will be compelling tools to ingest,

combine and exploit this massive and diverse amount of data. Within this context,

additional effort in building process based biophysical models able to cope with

a wide variety of stressors and environmental conditions, will be mandatory to

unravel the full potential of higher level RS products such as ΦF for plant status

monitoring.
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Rossini, M., L. Nedbal, L. Guanter, A. Ač, L. Alonso, A. Burkart, S. Cogliati, R.

Colombo, A. Damm, M. Drusch, J. Hanus, R. Janoutova, T. Julitta, P. Kokkalis,

J. Moreno, J. Novotny, C. Panigada, F. Pinto, A. Schickling, D. Schüttemeyer,

F. Zemek, and U. Rascher (2015a). “Red and far red Sun-induced chlorophyll

fluorescence as a measure of plant photosynthesis”. In: 42.6, pages 1632–1639.

doi: 10.1002/2014GL062943.Received (cited on pages 4–6, 13, 19, 28, 38, 42, 43,

64, 70, 73).

Rossini, M., M. Meroni, M. Celesti, S. Cogliati, T. Julitta, C. Panigada, U. Rascher,

C. van der Tol, and R. Colombo (2016). “Analysis of red and far-red sun-induced

chlorophyll fluorescence and their ratio in different canopies based on observed

and modeled data”. In: Remote Sensing 8.5, page 412. doi: 10.3390/rs8050412

(cited on pages 4, 13, 23, 42, 51, 70, 74, 87).

Rossini, M., M. Meroni, M. Migliavacca, G. Manca, S. Cogliati, L. Busetto, V. Pic-

chi, A. Cescatti, G. Seufert, and R. Colombo (2010). “High resolution field spec-

troscopy measurements for estimating gross ecosystem production in a rice

field”. In: Agricultural and Forest Meteorology 150.9, pages 1283–1296. doi: 10.

1016/j.agrformet.2010.05.011 (cited on pages 5, 13, 42, 43).



B I B L I O G R A P H Y 121

Rossini, M., C. Panigada, C. Cilia, M. Meroni, L. Busetto, S. Cogliati, S. Amaducci,

and R. Colombo (2015b). “Discriminating Irrigated and Rainfed Maize with Di-

urnal Fluorescence and Canopy Temperature Airborne Maps”. In: ISPRS Inter-

national Journal of Geo-Information 4.2, pages 626–646. doi: 10.3390/ijgi4020626

(cited on page 43).

Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering (1973). “Monitoring

Vegetation Systems in the Great Okains with ERTS”. In: Third Earth Resources

Technology Satellite-1 Symposium 1, pages 325–333 (cited on page 47).

Rundel, P. and B. Yoder (1998). “Ecophysiology of pinus”. In: Ecology and Biogeog-

raphy of Pinus (ed. D.M. Richardson), pages 296–323 (cited on page 17).

Running, S. W. and S. T. Gower (1991). “FOREST-BGC, A general model of forest

ecosystem processes for regional applications. II. Dynamic carbon allocation and

nitrogen budgets.” In: Tree physiology 9.1_2, pages 147–160 (cited on page 38).

Ryan, M. G., D. Binkley, and J. H. Fownes (1997). “Age-Related Decline in For-

est Productivity: Pattern and Process”. In: Advances in Ecological Research 27.C,

pages 213–262. doi: 10.1016/S0065-2504(08)60009-4 (cited on page 12).

Ryan, M. G. and B. J. Yoder (1997). “Hydraulic limits to tree height and tree growth:

what keeps trees from growing beyond a certain height?” In: BioScience 47.4,

pages 235–242. doi: 10.2307/1313077 (cited on page 12).

Ryan, M. G., D. Binkley, J. H. Fownes, C. P. Giardina, and R. S. Senock (2004).

“An experimental test of the causes of forest growth decline with stand age”.

In: Ecological Monographs 74.3, pages 393–414. doi: 10.1890/03-4037 (cited on

page 35).

Ryan, M. G., N. Phillips, and B. J. Bond (2006). The hydraulic limitation hypothesis

revisited. doi: 10.1111/j.1365-3040.2005.01478.x (cited on pages 12, 35).

Sabater, N., L. Alonso, S. Cogliati, J. Vicent, C. Tenjo, J. Verrelst, and J. Moreno

(2015). “A sun-induced vegetation fluorescence retrieval method from top of

atmosphere radiance for the FLEX/Sentinel-3 TanDEM mission”. In: 2015 IEEE

International Geoscience and Remote Sensing Symposium (IGARSS). 1, pages 2669–

2672. doi: 10.1109/IGARSS.2015.7326362 (cited on page 72).

Santini, F., A. Palombo, R. J. Dekker, S. Pignatti, S. Pascucci, and P. B. Schwer-

ing (2014). “Advanced anomalous pixel correction algorithms for hyperspectral

thermal infrared data: The TASI-600 case study”. In: IEEE Journal of Selected Top-

ics in Applied Earth Observations and Remote Sensing 7.6, pages 2393–2404. doi:

10.1109/JSTARS.2014.2324654 (cited on page 53).

Schickling, A., M. Matveeva, A. Damm, J. H. Schween, A. Wahner, A. Graf, S.

Crewell, and U. Rascher (2016). “Combining sun-induced chlorophyll fluores-

cence and photochemical reflectance index improves diurnal modeling of gross

primary productivity”. In: Remote Sensing 8.7, page 574. doi: 10.3390/rs8070574

(cited on pages 43, 65).



122 B I B L I O G R A P H Y

Schreiber, U. (1986). “Detection of rapid induction kinetics with a new type of

high-frequency modulated chlorophyll fluorometer”. In: Photosynthesis Research

9, pages 261–272 (cited on pages 44, 64).

Schulze, E.-D. and M. M. Caldwell (1995). Ecophysiology of photosynthesis. Springer

Science & Business Media (cited on page 5).

Sellers, P. J. (1997). “Modeling the Exchanges of Energy, Water, and Carbon Be-

tween Continents and the Atmosphere”. In: Science 275.5299, pages 502–509. doi:

10.1126/science.275.5299.502 (cited on pages 7, 72).

Shirke, P. A. (2001). “Leaf photosynthesis, dark respiration and fluorescence as

influenced by leaf age in an evergreen tree, Prosopis juliflora”. In: Photosynthetica

39.2, pages 305–311. doi: 10.1023/A:1013761410734 (cited on page 12).

Sun, Y., C. Frankenberg, J. D. Wood, D. S. Schimel, M. Jung, L. Guanter, D. T.

Drewry, M. Verma, A. Porcar-Castell, T. J. Griffis, L. Gu, T. S. Magney, P. Köh-

ler, B. Evans, and K. Yuen (2017). “OCO-2 advances photosynthesis observa-

tion from space via solar-induced chlorophyll fluorescence”. In: Science 358.6360,

eaam5747. doi: 10.1126/science.aam5747 (cited on page 5).

Tasissa, G. and H. E. Burkhart (1998). “Juvenile-mature wood demarcation in

loblolly pine trees”. In: Wood and Fiber Science 30.2, pages 119–127 (cited on

page 36).

Thenkabail, P. S., J. G. Lyon, and A. Huete (2012). Hyperspectral remote sensing of

vegetation. CRC Press (cited on page 1).

van der Tol, C., J. A. Berry, P. K. Campbell, and U. Rascher (2014). “Models of flu-

orescence and photosynthesis for interpreting measurements of solar-induced

chlorophyll fluorescence”. In: Journal of Geophysical Research: Biogeosciences 119.12,

pages 2312–2327. doi: 10.1002/2014JG002713 (cited on pages 73, 94).

van der Tol, C., W. Verhoef, J. Timmermans, A. Verhoef, and Z. Su (2009). “An

integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence,

temperature and energy balance”. English. In: Biogeosciences 6.12, pages 3109–

3129. doi: 10.5194/bg-6-3109-2009 (cited on pages 7, 9, 38, 72).

van der Tol, C., M. Rossini, S. Cogliati, W. Verhoef, R. Colombo, U. Rascher, and G.

Mohammed (2016). “A model and measurement comparison of diurnal cycles

of sun-induced chlorophyll fluorescence of crops”. In: Remote Sensing of Environ-

ment 186.iii, pages 663–677. doi: 10.1016/j.rse.2016.09.021 (cited on pages 7,

14, 72, 79, 80, 85).

Van Rensen, J. (1989). “Herbicides interacting with photosystem II”. In: Herbicides

and Plant Metabolism, pages 21–36 (cited on page 64).

Van Wittenberghe, S., L. Alonso, J. Verrelst, I. Hermans, J. Delegido, F. Veroustraete,

R. Valcke, J. Moreno, and R. Samson (2013). “Upward and downward solar-

induced chlorophyll fluorescence yield indices of four tree species as indicators



B I B L I O G R A P H Y 123

of traffic pollution in Valencia”. In: Environmental Pollution 173, pages 29–37. doi:

10.1016/j.envpol.2012.10.003 (cited on page 13).

Verhoef, A. and S. J. Allen (2000). “A SVAT scheme describing energy and CO2

fluxes for multi-component vegetation: Calibration and test for a Sahelian sa-

vannah”. In: Ecological Modelling 127.2-3, pages 245–267. doi: 10.1016/S0304-

3800(99)00213-6 (cited on pages 7, 72).

Verhoef, W. (1984). “Light scattering by leaf layers with application to canopy re-

flectance modeling: The SAIL model”. In: Remote Sensing of Environment 16.2,

pages 125–141. doi: 10.1016/0034-4257(84)90057-9 (cited on pages 7, 77).

Verhoef, W. (2011). “Modelling vegetation fluorescence observations : abstract.” In:

7th EARSEL workshop of the Special Interest Group in imaging spectroscopy : final

programme, 11-13 April 2011, Edinburgh, UK. Pages 41–42 (cited on page 77).

Verhoef, W., C. V. D. Tol, and E. M. Middleton (2014). “Vegetation Canopy Fluores-

cence and Reflectance Retrieval By Model Inversion Using Optimization”. In: 5th

International Workshop on Remote Sensing of Vegetation Fluorescence 1, pages 759–

770 (cited on page 77).

Verhoef, W. and H. Bach (2003). “Simulation of hyperspectral and directional radi-

ance images using coupled biophysical and atmospheric radiative transfer mod-

els”. In: Remote Sensing of Environment 87.1, pages 23–41. doi: 10.1016/S0034-

4257(03)00143-3 (cited on pages 7, 72).

Verhoef, W. and H. Bach (2007). “Coupled soil-leaf-canopy and atmosphere ra-

diative transfer modeling to simulate hyperspectral multi-angular surface re-

flectance and TOA radiance data”. In: Remote Sensing of Environment 109.2,

pages 166–182. doi: 10.1016/j.rse.2006.12.013 (cited on pages 7, 39, 72).

Verhoef, W., C. Van Der Tol, and E. M. Middleton (2017). “Hyperspectral radiative

transfer modeling to explore the combined retrieval of biophysical parameters

and canopy fluorescence from FLEX – Sentinel-3 tandem mission multi-sensor

data”. In: doi: 10.1016/j.rse.2017.08.006 (cited on page 7).

Verrelst, J., G. Camps-Valls, J. Muñoz-Marí, J. P. Rivera, F. Veroustraete, J. G.

Clevers, and J. Moreno (2015a). “Optical remote sensing and the retrieval of

terrestrial vegetation bio-geophysical properties - A review”. In: ISPRS Jour-

nal of Photogrammetry and Remote Sensing 108, pages 273–290. doi: 10.1016/j.

isprsjprs.2015.05.005 (cited on pages 7, 72).

Verrelst, J., J. P. Rivera, C. van der Tol, F. Magnani, G. Mohammed, and J. Moreno

(2015b). “Global sensitivity analysis of the SCOPE model: What drives simulated

canopy-leaving sun-induced fluorescence?” In: Remote Sensing of Environment

166, pages 8–21. doi: 10.1016/j.rse.2015.06.002 (cited on pages 5, 13, 70).

Verrelst, J., C. van der Tol, F. Magnani, N. Sabater, J. P. Rivera, G. Mohammed, and

J. Moreno (2016). “Evaluating the predictive power of sun-induced chlorophyll

fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE



124 B I B L I O G R A P H Y

modeling study”. In: Remote Sensing of Environment 176, pages 139–151. doi: 10.

1016/j.rse.2016.01.018 (cited on page 38).

Vilfan, N., C. van der Tol, O. Muller, U. Rascher, and W. Verhoef (2016). “Fluspect-

B: A model for leaf fluorescence, reflectance and transmittance spectra”. In: Re-

mote Sensing of Environment 186, pages 596–615. doi: 10.1016/j.rse.2016.09.

017 (cited on page 77).

Walters, R. G. (2005). “Towards an understanding of photosynthetic acclimation”.

In: Journal of Experimental Botany 56.411, pages 435–447. doi: 10 . 1093 / jxb /

eri060 (cited on page 3).

Walter-Shea, E. A., J. Privette, D. Cornell, M. A. Mesarch, and C. J. Hays (1997).

“Relations between directional spectral vegetation indices and leaf area and ab-

sorbed radiation in alfalfa”. In: Remote Sensing of Environment 61.1, pages 162–

177. doi: 10.1016/S0034-4257(96)00250-7 (cited on page 20).

Walther, S., M. Voigt, T. Thum, A. Gonsamo, Y. Zhang, P. Köhler, M. Jung, A.

Varlagin, and L. Guanter (2016). “Satellite chlorophyll fluorescence measure-

ments reveal large-scale decoupling of photosynthesis and greenness dynamics

in boreal evergreen forests”. In: Global Change Biology 22.9, pages 2979–2996. doi:

10.1111/gcb.13200 (cited on page 5).

Weed Science Society of America (2016). Herbicide Mechanism of Action (MOA) Clas-

sification List (cited on page 44).

Widlowski, J. L. (2010). “On the bias of instantaneous FAPAR estimates in open-

canopy forests”. In: Agricultural and Forest Meteorology 150.12, pages 1501–1522.

doi: 10.1016/j.agrformet.2010.07.011 (cited on page 20).

Wieneke, S., H. Ahrends, A. Damm, F. Pinto, A. Stadler, M. Rossini, and U. Rascher

(2016). “Airborne based spectroscopy of red and far-red sun-induced chloro-

phyll fluorescence: Implications for improved estimates of gross primary pro-

ductivity”. In: Remote Sensing of Environment 184, pages 654–667. doi: 10.1016/

j.rse.2016.07.025 (cited on pages 5, 13, 38, 43).

Williams, D. L. (1991). “A comparison of spectral reflectance properties at the

needle, branch, and canopy level for selected Conifer species”. In: Remote Sensing

of Environment 35.2-3, pages 79–93. doi: 10.1016/0034-4257(91)90002-N (cited

on page 17).

Yang, X., J. Tang, J. F. Mustard, J.-e. Lee, M. Rossini, J. Joiner, J. W. Munger, A. Korn-

feld, and A. D. Richardson (2015). “Solar-induced chlorophyll fluorescence corre-

lates with canopy photosynthesis on diurnal and seasonal scales in a temperate

deciduous forest”. In: Geophysical Research Letters RESEARCH 42, pages 2977–

2987. doi: 10.1002/2015GL063201.Received (cited on pages 5, 70).

Yoder, B. J., M. G. Ryan, R. H. Waring, A. W. Schoettle, and M. R. Kaufmann (1994).

“Evidence of reduced photosynthetic rates in old trees”. In: Forest Science 40.3,

pages 513–527 (cited on page 12).



B I B L I O G R A P H Y 125

Young, S. J. (1998). “In scene atmospheric compensation: Application to SEBASS

data collected at the ARM Site. Part II”. In: Aerospace Report ATR-99 (8407), Part

II (cited on page 53).

Zarco-Tejada, P. J., M. V. González-Dugo, and E. Fereres (2016). “Seasonal stability

of chlorophyll fluorescence quantified from airborne hyperspectral imagery as

an indicator of net photosynthesis in the context of precision agriculture”. In:

Remote Sensing of Environment 179, pages 89–103. doi: 10.1016/j.rse.2016.03.

024 (cited on pages 13, 36).

Zarco-Tejada, P. J., V. González-Dugo, and J. A. Berni (2012). “Fluorescence, tem-

perature and narrow-band indices acquired from a UAV platform for water

stress detection using a micro-hyperspectral imager and a thermal camera”. In:

Remote Sensing of Environment 117, pages 322–337. doi: 10.1016/j.rse.2011.10.

007 (cited on pages 13, 43).

Zarco-Tejada, P. J., J. R. Miller, A. Morales, A. Berjón, and J. Agüera (2004). “Hy-

perspectral indices and model simulation for chlorophyll estimation in open-

canopy tree crops”. In: Remote Sensing of Environment 90.4, pages 463–476. doi:

10.1016/j.rse.2004.01.017 (cited on page 21).

Zarco-Tejada, P. J., A. Morales, L. Testi, and F. J. Villalobos (2013). “Spatio-temporal

patterns of chlorophyll fluorescence and physiological and structural indices

acquired from hyperspectral imagery as compared with carbon fluxes measured

with eddy covariance”. In: Remote Sensing of Environment 133, pages 102–115. doi:

10.1016/j.rse.2013.02.003 (cited on page 4).

Zarco-Tejada, P. J., L. Suarez, and V. Gonzalez-Dugo (2013). “Spatial resolution

effects on chlorophyll fluorescence retrieval in a heterogeneous canopy using

hyperspectral imagery and radiative transfer simulation”. In: IEEE Geoscience

and Remote Sensing Letters 10.4, pages 937–941. doi: 10.1109/LGRS.2013.2252877

(cited on page 22).

Zhang, Y., L. Guanter, J. A. Berry, J. Joiner, C. van der Tol, A. Huete, A. Gitel-

son, M. Voigt, and P. Köhler (2014). “Estimation of vegetation photosynthetic

capacity from space-based measurements of chlorophyll fluorescence for terres-

trial biosphere models”. In: Global Change Biology 20.12, pages 3727–3742. doi:

10.1111/gcb.12664 (cited on pages 5, 13).

Zhang, Y., L. Guanter, J. A. Berry, C. van der Tol, X. Yang, J. Tang, and F. Zhang

(2016). “Model-based analysis of the relationship between sun-induced chloro-

phyll fluorescence and gross primary production for remote sensing applica-

tions”. In: Remote Sensing of Environment 187, pages 145–155. doi: 10.1016/j.

rse.2016.10.016 (cited on page 36).

Zhao, F., X. Dai, W. Verhoef, Y. Guo, C. van der Tol, Y. Li, and Y. Huang (2016).

“FluorWPS: A Monte Carlo ray-tracing model to compute sun-induced chloro-

phyll fluorescence of three-dimensional canopy”. In: Remote Sensing of Environ-



126 B I B L I O G R A P H Y

ment 187, pages 385–399. doi: 10.1016/j.rse.2016.10.036 (cited on pages 14,

40, 72).

Zhao, F., Y. Guo, W. Verhoef, X. Gu, L. Liu, and G. Yang (2014). “A method to

reconstruct the solar-induced canopy fluorescence spectrum from hyperspec-

tral measurements”. In: Remote Sensing 6.10, pages 10171–10192. doi: 10.3390/

rs61010171 (cited on page 71).


