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Abstract

Antiepileptic Drugs to Treat Cytomegalovirus Infection during Early Brain Development.

Cytomegalovirus (CMV) is the most common infectious cause of brain defects and neurological
dysfunction in developing human babies. Due to the teratogenicity and toxicity of available CMV
antivirals, treatment options during early development are markedly limited. This work reports for the
first time that valpromide (VPD) and valnoctamide (VCD), structurally related drugs with anticonvulsant
and mood stabilizing properties and no known teratogenic or toxic activity, evoke a substantial and
specific inhibition of mouse and human CMV in vitro. Also, both compounds safely attenuate mouse
CMV in peripheral organs of infected neonatal mice with improved survival, body weight, and
developmental maturation. Since VCD shows a superior translational potential into the clinics and CMV-
mediated neurological damage represents the most severe complication of viral infection during early
development, we further investigated VCD using multiple models of CMV infection in the developing
mouse brain. Subcutaneous low-dose VCD effectively suppresses CMV in the brain by both decreasing
the level of virus available in the periphery for entry into the brain and by acting directly within the brain
to block virus replication and dispersal. VCD during the first 3 weeks of life restored timely acquisition
of neurological milestones in neonatal mice and rescued long-term abnormal motor and behavioral
outcomes in juvenile animals. CMV-mediated brain defects, including decreased brain size, cerebellar
hypoplasia, and neuronal loss, were substantially attenuated by VCD. No adverse side effects on body
growth or neurodevelopment of uninfected control mice receiving VCD were detected. Treatment of
CMV-infected human fibroblasts and fetal astrocytes with VCD reduced viral infectivity and replication
by blocking viral particle attachment to the cell, a mechanism that differs from available anti-CMV drugs.
These data suggest that VCD during early development can effectively suppress CMV replication in
peripheral organs and in the brain, and safely attenuate virally induced mortality, deficient somatic
growth, CNS damage, and adverse neurological outcomes. This work provides a novel potential direction
for CMV therapeutics through repurposing of agents already approved for use in neuropsychiatric

disorders.
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Chapter 1



Introduction

1.1 General notions on human CMV.

Human CMV (hCMV) is an ubiquitous virus with worldwide distribution and no seasonal
variation (Mocarski et al.,, 2013). Human CMV infects the majority of the population, spreading
efficiently throughout life and all over the world through direct contact with bodily secretions (Sattar N,
1996; Britt, 2011). Sero-epidemiologic studies have shown that the prevalence of antibodies to hCMV is
influenced by age, geography, and cultural and socio-economic status. In developing countries, nearly
100% of children are infected by three years of age, whereas in developed countries, as many as 60 to
80% of the population will be infected with hCMV by adulthood (Bate et al., 2010; Cannon et al., 2010;
Cannon et al., 2011). U.S. population-based estimates of hCMV prevalence, derived from the National
Health and Nutrition Examination Survey, report an overall age-adjusted prevalence of 59%, with about
one-half of the U.S. population aged 6 to 49 infected (Staras et al., 2006; Bate et al., 2010). A hCMV
prevalence ranging from 60% to 85%, in relation to Italian versus foreign origin, has been reported for
Italy (Natali et al., 1997; Barbi et al., 2006).

1.2 Virus structure, replication, and cellular tropism.

Human CMV, or Human Herpesvirus 5 (HHV-5), is the largest member of the herpesvirus family,
sub-family p Herpesviridae, which also contains HHV-6 and-7 (Kim et al., 1976; Sarov and Friedman,
1976; Stinski, 1976; Whittaker et al., 1996). These viruses share common characteristics, including
appearance in electron micrographs, a prolonged replication cycle in cell culture, species specificity, and
a tropism for differentiated hematopoietic and epithelial cell types (Mocarski et al., 2007). The virus has
a diameter of 200 nm and consists of a 110 nm icosahedral capsid, surrounded by an amorphous tegument
and by a lipid bilayer envelope derived from host cell membrane containing viral glycoproteins necessary
for viral attachment and entry into cells (Fig. 1.1) (Wright et al., 1964; Smith and de Harven, 1978).
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Fig. 1.1 Human CMV virion structure. Enveloped, spherical to pleomorphic, 200 nm in diameter T=16
icosahedral symmetry. Capsid consists of 162 capsomers and is surrounded by an amorphous tegument.
Glycoprotein complexes are embedded in the lipid envelope. Adapted from Viral Zone (Swiss Insititute of
Bioinformatics, 2017).

The genome is a linear double-stranded DNA molecule approximately 230 kilobase pairs in length
(Huang et al., 1973; Sarov and Friedman, 1976; Geelen et al., 1978; Lakeman and Osborn, 1979). The
hCMV genome has long and short unique sequences which are flanked by homologous repetitive
sequences. It consists of 180 to 200 predicted open reading frames (ORFs) which include unique
structural and non-structural proteins that are not found in the genome of other herpesvirus (Murphy et
al., 2003). From the predicted ORFs, at least 5 distinct capsid proteins, a number of tegument proteins,
and over 50 predicted glycoproteins have been identified (Kim et al., 1976; Sarov and Friedman, 1976;
Stinski, 1976).

Virus replication begins when hCMV makes contact with the cell surface. Specifically, this
interaction can be separated into two phases: (1) attachment of the viral particle to the cell surface heparan
sulphate proteoglycans (HSPGs), and (2) fusion of the viral envelope with cellular membranes and
penetration into the cytoplasmic space (Mocarski et al., 2007). The initial tethering of hCMV virions to

HSPGs, mediated by the viral glycoprotein B (gB), functions to stabilize the virus at the cell surface until
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engagement of secondary receptors occurs allowing fusion and penetration (Mocarski et al., 2007;
Isaacson and Compton, 2009). Upon attachment, virus can enter the cell directly by fusion with the
plasma membrane, as occurs in fibroblasts. Alternatively, the virus is enclosed within a cytoplasmic
vacuole followed by uncoating of virus envelope and the trafficking of the nucleocapsid to the nucleus
(endocytic route), as occurs in endothelial and epithelial cells (Whittaker et al., 1996). Viral attachment
and fusion with the host cell membrane results in a cascade of cellular responses mediated by signaling
pathways, with more than 1,400 cellular genes either induced or repressed (Britt, 2011). Included in these
early responses are activation of transcription factors such as nuclear factor kB (NF-kB), increases in
second messengers such as phosphoinositide-3 kinase activity, increased expression of type I interferons
and interferon-stimulated genes, and induction of mechanisms that inhibit cellular innate responses that
block virus infection (RNA-activated protein kinase) or lead to apoptosis of the infected cell (DeBiasi et
al., 2002; Hildreth et al., 2012; Zhang et al., 2013). Human CMV prepares the host cell for virus
replication and inhibits host cellular responses that could attenuate virus infection. Many of the hCMV
envelope glycoproteins that are not directly involved in entry or egress have immunomodulatory
potential. The earliest phase of the hCMV life cycle has been coined the ‘immediate early (IE)’ period,
characterized by the transcription of immediate-early genes in the absence of de novo protein synthesis
or replication of viral DNA (Demarchi, 1981; Gibson, 1981; Stinski et al., 1983). IE-1, a transcription
factor critical for virus replication is a primary example of an immediate-early gene. The next period of
the hCMYV life cycle is called the ‘early’ phase. Immediate-early genes are required for the expression of
early genes, which encode for various proteins, such as the viral DNA polymerase and other replicative
enzymes as well as some tegument proteins. Genes expressed during the ‘early’ phase of virus gene
transcription typically occurs within 24 hours of infection spanning into the late phase of transcription.
This ‘late’ phase of the hCMV life cycle occurs after viral DNA replication and occurs between 36 to 48
hours post-infection. Late phase proteins are typically structural proteins necessary for encapsidation of
the virus genome and for the release of infectious virus progeny. Encapsidation of virus genomes occurs
in the nucleus of infected cells (Gibson, 1981). Following release of immature virions from the nucleus,
final envelopment of the virus occurs in the cytoplasm. Lastly, mature virions are then released by cell
lysis in cells such as fibroblasts or through exocytosis in other cell types (Britt, 2011). Human CMV s
the first herpesvirus with evidence of a viral function that facilitates exocytosis of viral particles. Progeny

virus is efficiently released from cells, reaching steady state levels where half of the infectivity at very
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late times post-infection is found in the culture fluid and half remains cytoplasm-associated (Fig. 1.2)
(Mocarski et al., 2013).
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Fig. 1.2 Summary of the human CMV replication pathways. Major steps in productive replication are indicated

in large gray font with outline, black arrows indicate the progression of steps and viral functions. Individual gene
products listed under each step are identified by provisional abbreviated names as either herpesvirus core (red
text) or beta herpesvirus conserved (black text). Viral attachment and penetration occur either via direct fusion at
the cell surface (fibroblasts), dependent on gB, gH:gL and gH:gL:gO, or via endocytosis into other cell types
(endothelial and epithelial cells) where the pentameric complex, gH:gL:p128:p130:p131A, also facilitates entry.
In addition to the interferon (IFN)-like activation of cells by the process of attachment and penetration, input
virion tegument proteins (UL69/MRP, pp71l/VTA, pp65, UL35, UL26, and UL29-UL28) regulate cellular
pathways. Nucleocapsid (NC)-associated UL47, UL48, and smallest capsid protein (SCP) are predicted to
facilitate the final steps in entry and uncoating that deliver input NC via microtubules (MT) to nuclear pore (NP)
complexes where the viral genome is released into the nucleus. Transcriptional regulation of viral and host cell
gene expression is mediated by IE genes (IE1, IE2) or E genes (UL34, UL35, UL112-UL113, and UL69); cell
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death suppression is mediated by IE gene products vICA and vMIA, and other regulatory processes are facilitated
by UL34, UL38, and UL112-UL113 proteins. DNA replication depends on core proteins (POL:PPS, HP, SSB,
NUC, and UNG) as well as one beta herpesvirus-specific protein (UL84 gene product) that facilitates initiation
of DNA synthesis. Viral DNA is encapsidated by the TER complex (UL89, UL56, UL51). Following primary
envelopment at the inner nuclear membrane (INM), and de-envelopment at the outer nuclear membrane (ONM),
capsid stabilization is ensured by the function of NSP/pp150 (UL32) and UL96, with nuclear egress and transport
facilitated by VPK (UL97). Glycoproteins incorporated into the envelope are synthesized in the endoplasmic
reticulum (ER), glycosylated in the Golgi body (GB), and delivered by vesicle transport (dashed gray arrow) to
join NC at sites of secondary envelopment on ER Golgi intermediate compartment (ERGIC). Following the
acquisition of an envelope, virus particle (VP) as well as capsid-less dense body (DB) egress is facilitated by

VEP/UL103 for release into the extracellular space. Adapted from (Mocarski et al., 2013).

The glycoprotein gB is pivotal not only for virus attachment and fusion initiation but also for cell-to-cell
spread and cell-cell fusion leading to syncytia, both of which involve membrane fusion (Mocarski et al.,
2013). Another envelope glycoprotein complex, gH:gL, controls post-attachment enhancement of fusion,
whereas maturation and release of progeny virions seems to be modulated by the envelope glycoprotein
complex gM:gN.

Human CMV can be detected in a wide variety of cell types in vivo (Sinzger et al., 1993; Li and
Kamil, 2015). Studies using tissue from autopsies or biopsies have shown virus in almost every cell type,
including epithelial cells, endothelial cells, smooth muscle cells, neuronal cells and supporting cells in
the central nervous system (CNS), retinal epithelium, dermal fibroblasts, and cells of the
monocyte/macrophage lineage. There seems to be a very limited restriction of the host cellular tropism
in vivo. However, due to species specificity, completion of hCMV life cycle with viral DNA replication
and mature virion release can occur only if the virus infects cells from the same species, namely human
(Mocarski et al., 2007). Cells from non-homologous animal species, such as mouse, are non-permissive
and allow just the initial steps of viral cycle, including attachment, entry, uncoating, and IE gene

expression, to occur.
1.3 Pathogenesis of human CMV infection.

As mentioned above, CMVs are highly species specific and humans are considered the only

reservoir for h\CMV.
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Human CMV infection initiates when exposure for the first time to virus-infected body fluids overcomes
innate immune barriers and sustains replication and dissemination (primary infection). These events
occur most frequently at mucosal sites. A systemic phase infection takes place where virus can be
detected in peripheral blood leukocytes (leukocyte-associated viremia), mostly neutrophils, that are
responsible for dissemination to secretory organs, including salivary glands and kidneys. Here, the virus
infects ductal epithelial cells and is shed and transmitted to new hosts. Dendritic cells, together with
natural killer cells (NKs), produce cytokines that regulate development of adaptive immunity that is
crucial for life-long host control of the virus. However, even when active infection is resolved through
an effective adaptive cellular immune response, hCMV is never completely cleared and remains latent
for the life of the host. A latently infected myeloid cell population remains in the bone marrow precursors
of monocytes, macrophages, and dendritic cells (Sattar N, 1996; Bego and St Jeor, 2006; Mocarski et al.,
2007). The mechanisms that favor the establishment of latent infections are unknown, and the viral
genome in latently infected cells is thought to be maintained in a non-productive state as closed circular
viral DNA (episome) and not by integration into the host DNA (Britt, 2011). This source of latently
infected cells allows distribution of viral reservoir throughout the body in all tissues and contributes to
the risk of transfer of hCMV with organ transplantation (Mocarski et al., 2013).
Although primary infection is eventually controlled, viral shedding in saliva and urine may proceed for
months to years, with longer shedding in infected toddlers and children due to a less developed adaptive
T-cell response (Waller et al., 2008; Britt, 2011). Persistent shedding in urine contributes to transmission
among children as well as from children to adults. Saliva is also an important source in all age groups,
whereas cervical or seminal secretions may contribute to transmission patterns in adults (Mercorelli et
al., 2011). Cervical secretion and breast milk transmission from mothers to neonates can also occur
(Kurath et al., 2010). Coinfection with multiple viral strains, reinfection with additional strains, changes
in viral persistence, and reactivation of latent infection all likely contribute to transmission patterns. A
high incidence of infection in certain populations and accumulating evidence that hand washing among
caregivers prevents acquisition of hCMV from infants provide excellent evidence that this virus reaches
a large proportion of the population through a direct route of transmission.

Human CMV s a classic opportunist. Infection with hCMV in immune-competent individuals is
usually asymptomatic, with occasional febrile illness and mononucleosis-like symptoms. However, in
individuals with suppressed or compromised immune system, including transplant recipients and AIDS

patients, disease of diverse severity can be caused by hCMV and the infection can be life-threatening
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(Britt, 2011; Mercorelli et al., 2011; Mocarski et al., 2013). Pneumonitis, retinitis, encephalitis, and
myocarditis are potential serious complications following hCMV infection in the context of immune
deficit. In addition, hCMV is an important pathogen in fetuses and newborns with an immature immune
system. It is the leading viral cause of congenital brain defects and sensorineural hearing loss (Gandhi
and Khanna, 2004; Mocarski et al., 2007; Cheeran et al., 2009; Tsutsui, 2009); also, hCMV can cause
severe, possibly life-threatening disease in preterm infants with low birth weight (Amin et al., 1990;
Hamprecht et al., 2001; Takahashi et al., 2007; Fischer et al., 2010; Kurath et al., 2010; Bevot et al.,
2012; Okulu et al., 2012; Lanzieri et al., 2013; Brecht et al., 2015).

Adaptive T-cell immunity, in particular, maintains low hCMV levels, but this protection is not absolute,
and its modulation by viral functions enables the virus to escape control. Consistent with this view, any
compromise to cellular immunity contributes to the importance of this virus as a classic opportunist,
whether it is severe, life-threatening disease that follows immunodeficiency, immunotherapy, or
immunosuppression, or it is congenital or early neonatal disease where the virus encounters a not fully
developed immune system (Mocarski et al., 2013). Notably, increased level of hCMV-specific T cells

with successful antiretroviral therapy is the main factor in decreasing hCMV disease in AIDS patients.

1.4 Congenital, intrapartum, and postnatal human CMV infection.

Maternal transmission of hCMYV can occur during pregnancy, when infection is associated with
placental and fetal infection (congenital disease), as well as at birth via infected cervical secretions
(intrapartum infection), or following birth trough breastfeeding (postnatal infection). Intrapartum and
postnatal infections are also called perinatal infections (Britt, 2011).

Breastfeeding is the most frequent route of maternal transmission, whereas transplacental transmission
is the most medically important in term of possible adverse outcomes in in utero infected fetuses and
neonates. However, postnatal hCMV infection via breastfeeding can also pose a risk for severe, possibly
life-threatening hCMV-mediated disease and long-term mild neurocognitive sequelae if occurring in
preterm infants born at birth weight less than 1.5 Kg or gestational age less than 32 weeks (Amin et al.,
1990; Hamprecht et al., 2001; Takahashi et al., 2007; Fischer et al., 2010; Kurath et al., 2010; Bevot et
al., 2012; Okulu et al., 2012; Lanzieri et al., 2013; Brecht et al., 2015). Exposure to hCMV via breast
milk in premature neonates might cause severe infection with multiple organs involvement and

development of neutropenia, thrombocytopenia, hepatitis, cholestasis, colitis, pneumonitis, and sepsis-
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like symptoms, requiring endovenous administration of antiviral therapy (Amin et al., 1990; Fischer et
al., 2010; Okulu et al., 2012).

1.4.1 Congenital human CMV infection.

The level of immunity among women of childbearing age is an important factor in determining
the incidence and significance of congenital hCMYV infections. Immunity towards hCMV varies widely
among different populations. Past reports indicated that seropositivity rates in young women in the
United States and Western Europe range from less than 50% to 85%. In contrast, in sub-Saharan Africa,
Central and South America, India, and the Far East, the rate of seropositivity is greater than 90% by the
end of the second decade of life (Britt, 2011). Figure 1.3 shows data on prevalence of infection in women
of childbearing age from Europe, North and South America, Africa, and Asia based on selected studies
(Mocarski et al., 2013).

Study location, Prevalence
date Population N (%)
Ankara, Turkey Women 15-49 years 745 49
Cotonou, Benin  Pregnant women 21 97
Seoul, South Prenatal clinic 575 96
Korea
Sendai, Japan Prenatal clinic 10,218 35
Sao Paulo, Brazil  Pregnant women, 427 67
middle SES
Pregnant women, 179 84
lower SES
Northem Italy Women, pregnantor 12,568 77
hospital patients
Helsinki, Finland Women, prenatal 1,088 N
clinics
Birmingham, USA Prenatal, middle SES 12,140 54
Prenatal, lower SES 4078 77
Grenoble, France Women, prenatal 1,018 52
clinic

Fig. 1.3 Prevalence of human CMYV infection among women of childbearing age. Adapted from (Mocarski et
al., 2013).

The extended, multi-year pattern of shedding in children, resulting from slow development of a virus-

specific T-cell response, provides an ample source for transmission, with exposure to children being the

most dominant risk for acquisition of infection in women in childbearing age (Waller et al., 2008; Britt,
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2011). Figure 1.4 displays rates of hCMYV seroconversion observed in various groups, including childcare
providers, parents of young children, and patients attending a sexually transmitted disease (STD) clinic,

over 1 year period (Mocarski et al., 2013).

Group Rate
Blood donors 157
Hospital employees

Richmond, VA 2

Birmingham, Al 22
Pregnant women

Middle income 25

Low income 6.8
Women in 5TD clinic 37
Adolescent females 138
Parents of CMV shedding child

0~12 months old 47

<18 months old 32

19 months =6 years 13
Daycare workers 71.920

Fig. 1.4 Incidence of human CMV seroconversion in various groups. Rate is percent per year that seroconverted

from antibody negative to antibody positive. Adapted from (Mocarski et al., 2013).

Human CMV intrauterine transmission with placental and fetal infection can occur in both seronegative
and seropositive women (Britt, 2011). Congenital infection in women who have already been infected
before pregnancy is termed recurrent infection, to acknowledge a likely contribution of reinfection,
persistent infection, or reactivation of latent virus in this setting.

Seroconversion rate in immune negative pregnant women is approximately 1 to 7%, with increased risk
of acquiring primary hCMV infection if presence of risk factors, such as exposure to toddlers (e.g., child
care providers, mothers of children <36 months of age), as previously mentioned (Revello et al., 2015;
Britt, 2017). In contrast, the number of immune women susceptible to recurrent infection during
pregnancy is unknown, as is the number of reinfections (seroconversion to a new strain of
hCMV)/reactivations (Britt, 2017). However, immune pregnant women caring for young children or
living in countries with high hCMV seroprevalence are at increased risk for hCMV recurrent infection
and vertical transmission. Studies in populations with different seroprevalence have demonstrated a
direct correlation between maternal seroprevalence and incidence of congenital hCMV, ranging from
0.3% in populations with 30% seroprevalence to 2% in populations with 98% seroprevalence (Kenneson

and Cannon, 2007; Mussi-Pinhata et al., 2009). Whether congenital infection is the consequence of a
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reactivation of the latent strain or a reinfection with a new strain in the mother remains undefined.
However, studies have argued that maternal infection with a serologically distinct hCMV strain could
play a more substantial role in congenital infection than viral reactivation (Boppana et al., 2001;
Yamamoto et al., 2010).

Transplacental transmission and subsequent fetal infection is reported in 40% of primary maternal
infections. In turn, only 0.2 to 2% of recurrent infections are reported to be complicated by in utero
infection (Revello and Gerna, 2004; Kenneson and Cannon, 2007; Malm and Engman, 2007; Revello et
al., 2014). However, the notion that preexisting natural immunity could reduce the risk of transmission
has been recently questioned (Britt, 2017). Assuming several different rates of reinfection/reactivation
in immune pregnant women, according to different exposure to risk factors, Britt reports that intrauterine
transmission rates might range between 1 and 40%. According to the author, the assumption that all
hCMV-immune women have the same risk of recurrent infection and intrauterine transmission has likely
led to a substantial overestimate of the effect of preexisting hCMV adaptive immunity on the prevention
of intrauterine transmission.

Congenital infection can be differentiated in symptomatic, which occurs in 10-15% of in utero
infections and it is characterized by clinical and/or laboratory evidence of hCMV disease at birth, and
asymptomatic, in the remaining 85-90% (Malm and Engman, 2007; Demmler-Harrison, 2013).
Symptomatic neonates can display deficient growth and low birth weight, jaundice, hepatosplenomegaly,
hepatitis, intrahepatic cholestatic disease, ascites, thrombocytopenia with petechiae and purpura,
neutropenia, hemolytic anemia, pneumonia, osteitis, cutaneous vasculitis, sensorineural hearing loss
(SNHL), and severe CNS damage with microcephaly, intracerebral calcifications, and chorioretinitis.
Some newborns may have atypical brain and peripheral involvement, with ventriculomegaly,
periventricular leukomalacia, periventricular cystic malformations, polymicrogyria, cerebral thrombosis,
and optic atrophy. In 10% of symptomatic newborns, infection is so diffuse and severe, the so called
‘cytomegalic inclusion disease’, to cause multi-organ failure and neonatal death.

As many as 90% of congenitally infected neonates will look completely normal at birth and show no
symptoms or signs of hCMV infection. However, 8 to 15 percent of these infants will go on developing
unilateral or bilateral deafness or differences in higher-level auditory function, sometimes even years
after birth, thus requiring a long follow up to be detected (Bartlett et al., 2017; Boppana and Fowler,
2017; Lanzieri etal., 2017). Retinal lesions and subsequent vision deficits may occur as well. Inaddition,

some studies have suggested that asymptomatically infected children may show mild to moderate
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neurocognitive delays and impairment even though conflicting data are available (Connolly et al., 1992;
Williamson et al., 1992; Kashden et al., 1998; Coats et al., 2000; Noyola et al., 2000; Bartlett et al., 2017;
Boppana and Fowler, 2017; Koyano et al., 2017; Lopez et al., 2017) (Fig. 1.5).

Ry —>hCMV infection in pregnancy je— R.ecurr'ent
infection infection

[1-7%]

Transplacental
40% transm:ss:on

Congenltal infection

—-> Symptomati Asymptomatic< - —

- Death c o
- Liver, spleen, and lung damage l 8-15%

- Severe CNS injuries

| [1-7%] %) |
| I
| I
| I
| |
| I

Long-term (until childhood) sequelae:

deafness, blindness,
neurodevelopmental delays

Fig 1.5 Diagram of congenital human CMYV disease. Green dotted lines indicate that symptomatic congenital
infection is more common in cases of primary maternal infection whereas asymptomatic congenital infection is

more likely in recurrent maternal infections.

Timing of infection during pregnancy substantially influences the odds of severe fetal damage
and adverse sequelae (Picone et al., 2013). Even though the risk of in utero transmission increases with
gestational age, neurological outcomes are less severe when infection occurs during the third trimester
as compared to the first/early second trimester, moment of active neurogenesis (Manicklal et al., 2013).
Presence of maternal immunity is also considered pivotal in limiting severity of fetal infection (Revello
et al., 2006; Kenneson and Cannon, 2007). However, a number of studies have reported similar
percentages of symptomatic infants following either primary (9.8%-30%) or recurrent (11%-28%)
maternal infections (Boppana et al., 1999; Ahlfors et al., 2001; Ross et al., 2006; Townsend et al., 2013),
thus arguing against the protective role of maternal immunity on severity of congenital disease. Recently,
it has been estimated that non-primary maternal infections account for the majority of hCMV-related
hearing deficits (de Vries et al., 2013; Townsend et al., 2013).
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The birth prevalence of congenital h\CMV is 4 to 6/1,000 live births both in the United States and
in Italy (Barbi et al., 2006; Boppana et al., 2011; Pinninti et al., 2015). This means that approximately
30,000 children in the United States and 3,000 children in Italy receive a diagnosis of CMV infection
every year (Kenneson and Cannon, 2007; James and Kimberlin, 2016), resulting in about 400 deaths,
and 8,000 children with life-long neurological disabilities (Cannon, 2009; Boppana et al., 2013). This
makes CMV the most common severely disabling intrauterine infectious agent (Kenneson and Cannon,
2007; James and Kimberlin, 2016). More children have disabilities due to congenital CMV than other
well-known infections and syndromes, including pediatric HIV/AIDS, Down syndrome, fetal alcohol
syndrome, and spina bifida (Cannon and Davis, 2005; Mestas, 2016). Another virus that has recently
raised considerable concern, and that can evoke parallel dysfunction in the developing brain, is Zika
virus; importantly, in the United States neurological dysfunction due to congenital CMV infections is
100-fold more prevalent than that from Zika virus (Butler, 2016). The disease burden of congenital CMV
infection is very high and similar to that for congenital rubella before the introduction of rubella

vaccination (Arvin et al., 2004; Ludwig and Hengel, 2009).

1.4.1.1 Damage to the developing brain and neurological outcomes in congenitally infected children.
Among the clinical manifestations associated with congenital hCMV infection, the most
devastating are those involving the developing CNS. In fact, CNS damage is considered irreversible
whereas other end-organ injuries, including the reticuloendothelial system with cytopenia,
hepatosplenomegaly, and jaundice, are transient.
Infection of the developing brain by hCMV can cause a number of brain anomalies that are dependent
on the age of the fetus at the time of CNS infection and can be detected by imaging techniques either
prenatally or after birth (Perlman and Argyle, 1992; de Vries et al., 2004; Pass et al., 2006; Lipitz et al.,
2013; Kimberlin et al., 2015; Oosterom et al., 2015; James and Kimberlin, 2016). Brain abnormalities
commonly noted in imaging studies of living fetuses and infants with congenital hCMV infections
include periventricular calcifications, ventriculomegaly, loss of white-gray matter demarcation, white
matter gliosis, atrophy, loss of normal radial neuronal migration with cortical malformations (most
notably polymicrogyria), lissencephaly, porencephaly, schizencephaly, cerebellar hypoplasia, and
microcephaly (Bale et al., 1985; Barkovich and Lindan, 1994; Boppana et al., 1997; de Vries et al., 2004)

(Fig. 1.6). Although not frequently performed, autopsies have confirmed these imaging abnormalities
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and have shown the presence of inflammatory infiltrates throughout the parenchyma of the brain
(Gabrielli et al., 2012).

Fig. 1.6 Imaging findings in congenitally human CMV-infected neonates. Computed tomography (A) and
magnetic resonance (B and C) CNS imaging of three infants with severe symptomatic congenital hCMV infection
with CNS involvement. The classical pattern of injury is characterized by periventricular calcifications (A, arrow),
abnormalities of neuronal migration, such as polymicrogyria (B, arrows) and, in extremely severe cases, profound
structural defects such as porencephalic cysts with associated schizencephaly (C, arrow). Adapted from (de Vries
etal., 2004).

Presence of abnormal imaging findings at prenatal and/or early postnatal evaluation of infected
fetuses/neonates strictly correlates with development of neurological sequelae, which include cerebral
palsy, neurodevelopmental delays, seizures, motor impairment, intellectual disability, visual deficits, and
deafness (Boppana et al., 1997; Noyola et al., 2001; Ancora et al., 2007; Oosterom et al., 2015; Leruez-
Ville et al., 2016a). Some of these neurological problems may not be evident at birth (e.g., asymptomatic
infection) but develop later in life, even several years after birth, in up to 15% of the infected newborns
(Dollard et al., 2007; De Kegel et al., 2016).

Cerebral palsy following symptomatic congenital hCMV infection is mostly severe (Noyola et al., 2001),
with bilateral spasticity being the most frequent clinical presentation (Dakovic et al., 2014).
Approximately 70% of the children with hCMV-related cerebral palsy do not have any ability to walk,
as compared to 30% of the cases with non-virus induced cerebral palsy (Himmelmann et al., 2006). Also,
association with severe intellectual impairment, lack of speech development, profound hearing and visual
deficits, and epilepsy is more frequent, thus indicating a more extensive damage and deficient growth of
the brain (Dakovic et al., 2014; Smithers-Sheedy et al., 2014). A strong correlation between cerebral

palsy and onset of seizures has been identified, and presence of ventriculomegaly and cortical anomalies
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at early postnatal imaging significantly associate with risk of developing epilepsy within the first few
years of life (Suzuki et al., 2008). The most common seizure types reported in hCMV-infected children
are partial seizure and infantile spasms, often resistant to multiple lines of anticonvulsant treatment.
An increased risk for delayed acquisition of neurological milestones during the first months of life and
for late-onset gross motor developmental delay has also been described in cases of symptomatic
congenital infection with no evidence of cerebral palsy (Dollard et al., 2007; Kimberlin et al., 2015; De
Kegel etal., 2016). Additionally, asymptomatic congenitally infected children have raised odds for motor
delay, although mainly related to the development of SNHL and its associated vestibular dysfunctions
(Zagolski, 2008; Bernard et al., 2015). Vestibular deficits can have a substantial impact on balance and
gross motor performance (De Kegel et al., 2012).
Visual deficits may occur in 10-20% percent of children with symptomatic infection and 1-2% of
asymptomatic neonates. Vision abnormalities are related to both peripheral damage, including retinal
and eye muscle scars, and central injury at the level of the visual cortex (cortical blindness) (Dollard et
al., 2007).
Human CMV is currently the leading cause of non-hereditary SNHL in children, and approximately 25%
of all cases of SNHL in children in the United States can be attributed to congenital hCMV infection
(Morton and Nance, 2006; Fowler, 2013). The risk of SNHL is higher among children with symptomatic
hCMV infections (30 to 65%) than among those with asymptomatic infection (7 to 15%); however,
hearing loss represents the most common sequela identified in the latter group (Williamson et al., 1990;
Hicks et al., 1993; Bartlett et al., 2017). CMV-related SNHL can be manifested at birth or appear later
on, up to 6 years of age (Fowler et al., 1997); it can also be progressive in nature, with deterioration in
hearing potentially occurring over the first several years of life. Fifty percent of all children with hCMV-
related SNHL will experience progression or further deterioration of their hearing loss over time, in the
absence of progression of CNS structural damage, thus suggesting persistence of the virus and/or
inflammation in the inner ear and auditory pathways (Dahle et al., 2000; Sugiura et al., 2003; Fowler and
Boppana, 2006). This is why CNS involvement in infants with congenital hCMV infection is considered
an ongoing condition.

More recently, a link between congenital hCMV infection, both with and without signs of
infection at birth and of viral CNS involvement, and autism spectrum disorder (ASD)-like behavioral
disturbances in children and adolescents has been proposed (Stubbs et al., 1984; Yamashita et al., 2003;

Engman et al., 2015; Sakamoto et al., 2015; Garofoli et al., 2017). In some cases, ASD was reported as
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the only long-term neurobehavioral sequela of congenital hCMV infection (Sakamoto et al., 2015;
Garofoli et al., 2017; Gentile et al., 2017). These data stress the importance of careful monitoring for
early ASD signs, such as delayed speech and social interaction, in all congenitally infected children.
1.4.1.2 Pathogenesis of human CMV-mediated damage to the developing brain.

The precise pathogenesis of hCMV-related injury to the developing fetal CNS is still poorly
understood for several reasons, including the lack of a sufficiently large number of cases from autopsy
studies (Cheeran et al., 2009). In addition, no well-developed animal models of congenital CMV CNS
infection are available (Britt, 2011). Multiple mechanisms have been proposed to play a potential role in
hCMV-mediated neuropathogenesis (Cheeran et al., 2007; Cekinovic et al., 2008; Koontz et al., 2008;
Mutnal et al., 2011; Burd et al., 2012; Gabrielli et al., 2012). These include the following: 1) hCMV
acting as a “teratogen”, disrupting normal cellular differentiation and morphogenesis pathways of
neuronal progenitors, during critical developmental windows of susceptibility; 2) the potential
pathogenic impact of hCMV on the endovascular system, interrupting the blood supply to the developing
brain, thus leading to cystic lesion development; 3) the role of the immune responses (i.e.,
meningoencephalitis with release of inflammatory mediators) in potentiating CNS injury with promotion
of aberrant neuronal migration, altered neuronal physiology, and abnormal developmental cues in the
developing brain (Zou et al., 1998; Zhu et al., 2002; Koontz et al., 2008); and 4) the detrimental effects
of intrauterine hypoxia due to placental hCMV infection and subsequent placental insufficiency (Pereira
et al., 2005; Schleiss, 2006b; Adler et al., 2007; Gabrielli et al., 2012).

Most of what we know today about susceptibility of brain cells to hCMV infection has been afforded by
experiments performed on cultured human brain cells and from animal models of CMV infection of the
brain (Cheeran et al., 2009). In primary human cell culture systems or brain-derived cell lines it has been
shown that practically all cell types in the brain have some degree of susceptibility to hCMV infection.
Astrocytes, brain microvascular endothelial cells (EC), pericytes, neuronal stem cells (NSCs) and
neuronal stem progenitor cells (NSPCs), oligodendrocytes, and microglia/macrophages have a
propensity for hCMV infection (Lathey et al., 1990; Poland et al., 1990; Schut et al., 1994; Spiller et al.,
1997; Lokensgard et al., 1999; McCarthy et al., 2000; Wilkerson et al., 2015). However, these different
cell types vary in their ability to support a complete viral replication cycle. Astrocytes, the major cell
type of the brain, support hCMV replication, similarly to EC. Interestingly, hCMV infection of
microvascular EC, which form the blood-brain barrier (BBB) together with pericytes and astrocytes,

promotes BBB disruption and monocyte migration, which in turn may sustain viral dissemination into
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the brain (Bentz et al., 2006; Kawasaki et al., 2017). Infection of astrocytes may also disrupt their normal
supportive functions in the brain that are critical for neural circuitry guidance, synaptic integration, and
development of the functionally integrated mature neurons (Ma et al., 2005). Further, hCMV infection
in NSPCs, the building block of the developing brain, inhibits cell proliferation and alters differentiation
profiles, thus supporting a teratogenic role of hCMV during early brain ontogeny (Odeberg et al., 2006;
Odeberg et al., 2007; Chavanas, 2016; Rolland et al., 2016; Han et al., 2017; Kawasaki et al., 2017).

According to a recent review on hCMV-mediated developmental anomalies of the CNS using a mouse
model of congenital infection, hCMV diffuses throughout the developing brain by hematogenous and
cerebrospinal fluid (CSF) spread (Kawasaki et al., 2017). Vessels of the meninges and choroid plexus
consist of only endothelial cells; therefore, hCMV particles may easily extravagate outside the vessel
into the meninges and lateral ventricle CSF during the first viremic phase. This may explain the
meningitis and choroid plexitis frequently observed in human fetal brains with initial hCMYV infection.
Parenchymal blood vessels consist of EC, pericytes, and astrocyte feet, which collectively form the BBB.
Infection of this neurovascular unit with hCMV can lead to BBB disruption, facilitating the spread of
hCMV particles into brain parenchyma. Ultimately, meningitis, choroid plexitis, and vasculitis allow
diffusion of hCMV into the ventricular zone (VZ) and sub-VZ (SVZ), that contain a dense NSPC
population. Here, viral infection inhibits NSPC proliferation and differentiation, resulting in neuronal
cell loss. These cellular events may underlie the development of brain malformations observed in
severely hCMV-infected fetuses and neonates, such as microcephaly, cortical thinning, and

polymicrogyria (Fig. 1.7).

29



activated
microglia

choroid plexus

epitheilal cells
neural stem

™ cells

astrocyte VZ §SVZ radial glia

wie ncural pogenitor
pericyte ' LT
® neuroblast cells

ndothelial cells

Inhibition of Neurogenesis

3

Microcephaly

® ghal cells

Fig. 1.7 Pathogenesis of congenital human CMV-mediated anomalies of the developing CNS. a) CMV reaches
the developing brain by hematogenous spread or via the CSF. b) Vessels in the meninges and choroid plexus
consist of only endothelial cells. Viral particles (yellow circle) extravagate outside the vessel and into CSF. c)
Parenchymal blood vessels consist of endothelial cells, pericytes, and astrocyte feet. In severe cases, hCMV
infection can infect these cells, disrupting BBB integrity and facilitating viral dissemination into brain
parenchyma. d) Both meningitis (b) and vasculitis (c) allow CMV to reach the VZ and SVZ, where NSPCs reside.
Infection of these cells inhibits their proliferation and differentiation into neuronal and glial cells, resulting in

neuronal cell loss and brain malformations. Adapted from (Kawasaki et al., 2017).

It has been suggested that NSCs may represent a hCMV reservoir in the developing brain by
allowing viral latency, similarly to hematopoietic progenitor cells in the bone marrow (Tsutsui et al.,
2005). This could also play a pivotal role in hCMV-mediated abnormal neurontogeny and neuronal
functions. Viral reactivation and lytic infection could occur when NSCs are stimulated to differentiate
by specific stimuli, thus leading to brain malformations. In addition, persistent infection in glial cells and
neurons may influence their functions, resulting in neurological disorders even in the absence of
substantial anatomical abnormalities. This hypothesis not only supports the notion that hCMV infection
of the fetal CNS is an ongoing process but also helps explaining why SNHL or ASD may be diagnosed
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years after birth in congenitally infected children with no anatomical evidence of viral CNS involvement
(Fig. 1.8).
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Fig. 1.8 Latency of human CMV in neuronal stem cells and its potential role in virally mediated abnormal
neurontogeny. In the early embryonic stage, embryonic stem (ES) cells are not susceptible to mCMV, whereas
NSCs and NPSCs in the embryonic brains are highly susceptible. In acute infection, immature glial cells undergo
Iytic infection, resulting in brain malformations. Infection of embryonic brains with mCMV may become latent in
NSCs. After a long time-period, this latent infection may be reactivated and become lytic, thus further contributing
to brain damage. Also, latently infected neuronal or glial cells, derived from differentiation of infected NSCs, may

function abnormally, thus leading to development of neurological disorders. Adapted from (Tsutsui et al., 2005).

It is not completely clear why hCMV infection is particularly damaging to the developing brain
in contrast to the adult brain. Findings from experimental models suggest that the developing cells of the
CNS, i.e. NSPCs, are particularly susceptible to the lytic and/or apoptotic effects of CMVs (Cheeran et
al., 2005; Tsutsui et al., 2005; Luo et al., 2008). The numbers of these cells decrease as the brain develops
into adulthood and their spatial distribution becomes more localized to the VZ and cortical marginal areas

(Kawasaki et al., 2002). In addition, another key reason for hCMV-mediated detrimental effects in the
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developing brain is strictly related to the reduced efficacy of the immature innate and systemic immune
response to hCMV in the immature CNS (van den Pol et al., 2002a; Reuter et al., 2004; Barry et al.,
2006; van den Pol et al., 2007). In fact, hCMV can generate potentially life-threatening CNS infections
also in adults with a compromised immune system, including transplant recipients and AIDS patients
(Mercorelli et al., 2011; Mocarski et al., 2013).

1.4.1.3 Use of animal models for studying congenital human CMV pathogenesis and potential
therapeutics.

The strict species specificity of CMV precludes experimental infection of animals with hCMV.
Therefore, rodent CMVs (mouse, rat, and guinea pig) and rhesus macaque CMV (RhCMV) have been
used as model systems to understand hCMV disease pathogenesis and to test the activity of novel
vaccines and antiviral agents (Mocarski et al., 2007).

Murine CMV (mCMV) is by far the best and most extensively model system studied (Cheeran et al.,
2009; Mussi-Pinhata et al., 2009). Murine CMV infection highly reproduces hCMV infection due to the
genomic similarities and matching biological characteristics of these viruses in their natural setting
(Rawlinson et al., 1996). Both mCMYV and hCMV have large genomes consisting of about 230 kilobase
pairs, containing 165-170 predicted ORFs, and with close similarities at the genetic and nucleotide level
(Rawlinson et al., 1996). Also, both viruses cause severe infections in the immunocompromised or
immunologically immature host, resulting in similar clinical syndromes with involvement of the same
target organs (Kern, 1991, 2006). Therefore, the mCMYV model represents an excellent tool for testing
novel anti-CMV drugs and predicting their efficacy in hCMV-mediated disease since therapies effective
against mCMV are highly likely to be similarly effective against hCMV. However, the use of this model
for studying congenital hCMV infection has one important limitation, which is the lack of mCMV
transplacental transmission due to both murine placenta architecture and immune response to mCMV
infection (Cheeran et al., 2009). This has been overcome in the past with direct intra-endometrial, intra-
placental, or intra-fetal mMCMYV inoculation, and peripheral infection of immunodeficient pregnant mice
(Baskar et al., 1983; Baskar et al., 1987; Tsutsui, 1995; Kosugi et al., 1998; Li and Tsutsui, 2000; Tsutsui
et al., 2005; Woolf et al., 2007; Tsutsui, 2009; Juanjuan et al., 2011; Sakao-Suzuki et al., 2014). In turn,
transplacental transmission and fetal infection occurs naturally in other animal models, including rhesus
macague monkeys, guinea pigs, pigs, and rats (Barry et al., 2006; Kern, 2006; Loh et al., 2006; Schleiss,
20064a; Cheeran et al., 2009). Notwithstanding this, the murine model still represents the first choice for
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pathogenesis studies and in vivo screening of anti-CMV compounds due to the short gestational period,
the small size, the high availability of a large number of reagents, including transgenic and knockout
animals, and the low cost (Kern, 2006).

Regardless of the mechanisms of transmission into the fetus, the ability of the virus to infect the
brain is the single most important contribution to prognosis of hCMV infection in the fetus/neonate
(Reuter et al., 2004; Tsutsui et al., 2005). Hence, it is a critically important experimental end-point to
keep in perspective in the study of animal models of CMV-associated diseases during early development.
When the murine placental and immune system barriers are circumvented by direct viral inoculation into
the fetal compartment or by infecting immunodeficient pregnant mice (Baskar et al., 1983; Baskar et al.,
1987; Tsutsui, 1995; Li and Tsutsui, 2000; Tsutsui et al., 2005; Woolf et al., 2007; Tsutsui, 2009;
Juanjuan et al., 2011; Sakao-Suzuki et al., 2014), the fetal brain becomes susceptible to mCMV infection.
The earliest infection can be demonstrated after embryonic day (E) 7.5, with mCMV-positive cells
identified predominantly in the VZ and SVZ, the pyramidal layer of the hippocampus, and the cortex.
Embryos that survive E12.5 placental infection show intrauterine growth retardation and
microencephaly.

Murine CMV infection of the developing CNS has also been studied in neonatal mice since the newborn
mouse brain and auditory organs are immature at birth, resembling those of an early second trimester
human fetus (Clancy et al., 2001; Branchi et al., 2003; Clancy et al., 2007a; Clancy et al., 2007b;
Workman et al., 2013). This a critical period of brain ontogeny where CMV can cause substantive
dysfunction (Manicklal et al., 2013). Both intracranial (i.c.) and intraperitoneal (i.p.) mMCMYV inoculation
have been used to establish CNS and cochlea infection in neonatal mice (Shinmura et al., 1997; Kosugi
et al., 2000; Kosugi et al., 2002; van den Pol et al., 2002a; Koontz et al., 2008; Kosmac et al., 2013;
Wang et al., 2013; Bradford et al., 2015; Ikuta et al., 2015; Li et al., 2015; Li et al., 2016; Almishaal et
al., 2017; Carraro et al., 2017). However, the i.p. infection model presents some advantages as compared
to the i.c. one, including neuroinvasion following viral hematogenous spread and peripheral control of
viral replication by immune response before CNS infection. Both these aspects closely recapitulate
events that occur during in utero hCMV fetal infection. In addition, the histopathology of the infected
neonatal mouse brain resembles that of human infection with widely scattered foci of virus-infected cells
associated with infiltrating mononuclear cells throughout the brain. Thus, by more accurately reflecting

key aspects of hCMV fetal CNS infection, the i.p. murine model represents a better tool for studying
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CMV-mediated neuropathogenesis and novel therapeutics for CMV infection of the developing CNS
(Bantug et al., 2008; Koontz et al., 2008; Slavuljica et al., 2014).

1.5 Available anti-hCMV drugs and their mechanisms of action.
Five compounds are currently licensed to treat established hCMV infection in
immunocompromised individuals: ganciclovir (GCV) and its oral prodrug valganciclovir (valGCV),

foscarnet, cidofovir, and fomivirsen (Fig. 1.9) (Mercorelli et al., 2011).
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Fig. 1.9 Chemical structure of available drugs for treatment of established hCMV disease. Adapted from
(Mercorelli et al., 2011).

GCV, an acyclic nucleoside analog of 2’-deoxyguanosine, was the first antiviral agent approved for
hCMV infections, and remains the first-line choice for treatment of hCMV-mediated disease (Markham
and Faulds, 1994; Razonable and Emery, 2004). In hCMV-infected cells, GCV is phosphorylated to
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GCV monophosphate by the viral kinase encoded by the hCMV gene UL97 during infection.
Subsequently, cellular kinases catalyze the formation of GCV diphosphate and GCV triphosphate, which
is present in 10-fold greater concentration in hCMV-infected cells than uninfected cells. GCV
triphosphate is a competitive inhibitor of deoxyguanosine triphosphate incorporation into DNA, thus
inhibiting viral DNA polymerase activity in a potent fashion. Additionally, GCV triphosphate can serve
as a poor substrate for the growing nucleic acid chain, thus terminating chain elongation and ultimately
disrupting viral DNA synthesis (Fig. 1.10) (Matthews and Boehme, 1988; Coen and Richman, 2013;
Chen et al., 2014).

Step 1 Step 2 Step 3

CMV DNA
Gey polymerase GCV GCV

triphosphate triphosphate triphosphate

dc
\ r'rtriphosphate‘

dG

Binding of GCV triphosphate to GCV triphosphateisincorporated When the next deoxynucleoside
viral DNA polymerase competes  into growing DNA chain, blocking triphosphate binds, viral DNA
for binding of dG triphosphate. further chain growth. polymeraseis “frozen”.

Fig. 1.10 Mechanisms of action of ganciclovir. Ganciclovir (GCV) triphosphate has a three-step mechanism of
inhibition of CMV DNA polymerase in vitro: (1) the drug triphosphate acts as a competitive inhibitor of
deoxyguanosine (dG) triphosphate binding; (2) the drug triphosphate can act as a substrate and be incorporated
into the growing DNA chain across from deoxycytosine (dC), terminating elongation; and (3) the viral DNA
polymerase becomes trapped on the GCV triphosphate-terminated DNA chain when the dC triphosphate binds.
Adapted from (Coen and Richman, 2013).

While GCV requires intravenous administration, valGCV is orally bioavailable. ValGCV is the oral
prodrug of GCV and after oral administration is rapidly converted to GCV by intestinal and hepatic

esterases, achieving levels similar to intravenous GCV (Genentech USA, 2016).
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Cidofovir is another anti-hCMV nucleoside analog which blocks viral DNA replication by inhibiting
viral DNA polymerase activity and nucleic acid chain elongation, similarly to GCV and valGCV (Littler
et al., 1992). Differently from GCV, cidofovir uses only cellular and not viral kinases for its
phosphorylation and subsequent activation. Also, it results in nucleic acid chain termination only if two
cidofovir residues are incorporated in a row in the growing DNA. Cidofovir requires intravenous
administration and can induce substantial renal toxicity (Coen and Richman, 2013).

Although GCV, valGCV, and cidofovir inhibit the viral DNA polymerase more potently than the cellular
DNA polymerases, a drug-mediated action on cellular polymerases occurs (Mar et al., 1985; Matthews
and Boehme, 1988). This off-target activity can be particularly dangerous in the context of a developing
human genome and cause substantial side-effects, which include bone marrow suppression, long-term
gonadal toxicity with impaired fertility, carcinogenicity, and embryo and fetal toxicity and teratogenicity
(Faulds and Heel, 1990; Markham and Faulds, 1994; Crumpacker, 1996; Lea and Bryson, 1996; Faqi et
al., 1997; Gandhi and Khanna, 2004; Mercorelli et al., 2011; Genentech USA, 2016; Rawlinson et al.,
2016).

Efforts have been made to discover less toxic anti-hCMV compounds that might inhibit viral polymerase
by different mechanisms. The first of these to be approved for clinical use was foscarnet. Foscarnet is an
analog of pyrophosphate, which is a product of polymerization of nucleic acids. Unlike GCV, valGCV,
and cidofovir, foscarnet does not require activation by either cell or viral enzymes but rather inhibits
hCMV DNA polymerase directly and selectively. Inhibition is not competitive with deoxynucleoside
triphosphates. Rather, it appears that foscarnet acts as a product analog, preventing normal pyrophosphate
release so the viral DNA polymerase cannot complete the catalytic cycle (Eriksson et al., 1982).
Nonetheless, foscarnet displays substantial nephrotoxicity, resulting in electrolyte imbalance and
potentially death (Biron, 2006). Therefore, it has been approved only for intravenous treatment of severe
hCMYV infections that are resistant to front-line anti-hCMV drugs (Coen and Richman, 2013).

Viral mutations in UL97 confers hCMV resistance to GCV and valGCV, but not to cidofovir and
foscarnet, whereas viral DNA polymerase mutants are usually resistant to GCV, valGCV, and cidofovir.
Also, although foscarnet inhibits DNA polymerase by a mechanism that differs substantially from the
nucleoside analogs, many DNA polymerase mutants that are resistant to nucleoside analogs are resistant
to foscarnet. Moreover, most foscarnet-resistant mutants are resistant to one or more nucleoside analogs
(Gilbert and Boivin, 2005; Coen and Richman, 2013). The appearance of single- and multi-drug-resistant

hCMV strains is a substantial issue in immunocompromised patients and a rising concern in neonates
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with symptomatic congenital infection requiring prolonged antiviral therapy (Drew, 2000; James and
Prichard, 2011; Campanini et al., 2012; Choi et al., 2013; Coen and Richman, 2013).

Fomivirsen is an antisense oligonucleotide that has been developed in the attempt to overcome the
therapeutic limitations due to resistant hCMV strain emergence. Fomivirsen can inhibit hCMV
replication by its complementarity to the messenger RNA for the major IE protein, an important
regulatory protein of hCMV. Thus, fomivirsen acts on a different, earlier step of viral replication cycle
as compared to the other available hCMV antivirals (Azad et al., 1993). However, this anti-hCMV drug
has been approved only for ophthalmic use in AIDS patients with hCMV-induced retinitis due to
evidence of substantial collateral effects associated with systemic drug administration (Mercorelli et al.,
2011).

1.5.1 Therapeutic approaches to treat congenital human CMV.

Development of a vaccine focused on protecting newborns from the sequelae of congenital
hCMV infection is a major public health priority, as identified by the National VVaccine Program Office
and the Institute of Medicine (Institute of Medicine Committee to Study Priorities for Vaccine, 2000;
Arvin et al., 2004). Although numerous candidate CMV vaccines are currently under development, an
effective vaccine is not available yet (Arvin et al., 2004; Sung and Schleiss, 2010; Griffiths et al., 2013;
Schleiss, 2013; James and Kimberlin, 2016; Rawlinson et al., 2016). Thus, anti-hCMV drugs would seem
to represent the main therapeutic strategy available for congenital hCMV. However, the use of antivirals
licensed for treating hCMYV infection in immunocompromised individuals, i.e., GCV, valGCV, cidofovir,
foscarnet, and fomivirsen, is substantially limited in hCMV-infected neonates due to acute and long-term
toxicity and carcinogenicity. Most important, these drugs cannot be administered to pregnant mothers to
prevent transplacental transmission and fetal infection or to treat their infected fetuses owing to drug-
related potential for fetal toxicity and teratogenicity (Faulds and Heel, 1990; Markham and Faulds, 1994;
Crumpacker, 1996; Lea and Bryson, 1996; Faqi et al., 1997; Gandhi and Khanna, 2004; Mercorelli et al.,
2011; Genentech USA, 2016; Rawlinson et al., 2016). The poor oral bioavailability and the limited CNS
penetration of the available antivirals, as well as the emergence of drug-resistant CMV strains, also pose
a challenge (Mercorelli et al., 2011; Campanini et al., 2012; Choi et al., 2013; Morillo-Gutierrez et al.,
2017).

GCV is used as off-label therapy for postnatally infected preterm neonates with life-threatening hCMV-
mediated disease (Amin et al., 1990; Fischer et al., 2010; Okulu et al., 2012). Also, GCV and valGCV
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are administered off-label in congenitally infected newborns with signs of infection at birth (Kimberlin
et al., 2015). However, preventive therapy of asymptomatic congenitally infected neonates to avoid
delayed onset of SNHL and/or neurological problems is not recommended due to the drug-related risk
of acute and long-term severe toxicity, including neutropenia, gonadal toxicity, and carcinogenicity, even
though potentially beneficial (Lackner et al., 2009). Considering that premature infants are at high risk
for severe consequences of hCMV-mediated disease and drug-induced toxicity, that up to 15% of not
treated asymptomatic congenitally infected neonates will go on to develop permanent neuro-sensorial
sequelae, and that postnatal therapy, even though partially effective, is unlikely to revert in utero acquired
brain damage, novel anti-CMV strategies with safer in vivo profiles, alternative mechanisms of action,
and improved CNS penetration are urgently needed. The economic burden on the healthcare system in
caring for neurodevelopmental disability in early childhood caused by congenital hCMV infection is
substantial and represents a compelling argument for developing novel anti-CMV drugs.

In this context, hCMV-specific hyperimmune globulins have been investigated in an Italian multicenter
randomized clinical trial (the ‘CHIP’ study) as potential safe therapeutic approach in pregnant mothers
with primary hCMV infection to reduce viral load and prevent transplacental transmission and
subsequent fetal infection (Revello et al., 2015). CMV hyperimmune globulins are obtained from donors
with high titers of hCMV antibodies, and exert their anti-CMV activity by interacting with viral
glycoproteins and therefore neutralizing hCMV infectivity. Unfortunately, the ‘CHIP’ study failed to
show any benefits of this immune-based therapy, partly due to a smaller effect size than the one
anticipated (Nigro et al., 2005). A similar trial is currently ongoing in the United States targeting to enroll
800 women, as compared to the 124 patients enrolled in the ‘CHIP’ trial, in order to possibly overcome
an effect size issue and, thus, provide a definite answer on the role of hyperimmune globulins in
prevention of congenital hCMV infection (ClinicalTrials.gov Identifier NCT01376778). Results are
expected for late 2018. In the meantime, hyperimmune globulin treatment to prevent hCMV
transplacental transmission in pregnant mothers with primary hCMV infection is not recommended
(James and Kimberlin, 2016; Rawlinson et al., 2016; Leruez-Ville and Ville, 2017), even though
sporadically used worldwide (Buxmann et al., 2012; Blazquez-Gamero et al., 2017).

Hyperimmune globulin administration has also been reported as treatment for fetuses with in utero signs
of hCMV infection, even though no recommendation for their use exists in this situation either (Negishi
et al., 1998; Nigro et al., 1999; Nigro et al., 2005; Nigro et al., 2008; Nigro et al., 2012a; Nigro et al.,
2012b; Simioni et al., 2013; Nigro et al., 2015; James and Kimberlin, 2016; Rawlinson et al., 2016;
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Blazquez-Gamero et al., 2017; De la Calle et al., 2017). Some studies suggest beneficial effects of
immune therapy with improvement or complete disappearance of signs of infection during fetal life,
including hyperechogenic bowel, intrauterine growth restriction, and ventriculomegaly. Therapy has also
been associated with ameliorated/normal outcome at birth and up to 8 years of life (Nigro et al., 2005;
Nigro et al., 2008; Nigro et al., 2012a; Nigro et al., 2012b; De la Calle et al., 2017). However, caution
should be used in interpreting these results due to significant limitations related to study design.

A recent review focused on administration of endovenous GCV or oral valGCV to pregnant mothers as
treatment for fetal hCMV infection (Seidel et al., 2017). A total of four cases are described, showing
short-term safety of therapy for both the mother and the fetus and effective control of viral replication.
Nonetheless, given that reliable evidence on drug safety and efficacy is still lacking, GCV or valGCV
use during pregnancy in the setting of fetal infection is currently not recommended (James and
Kimberlin, 2016; Rawlinson et al., 2016).

An antiviral compound, valaciclovir, has also been assessed in pregnant women with hCMV -infected
fetuses and signs of mild fetal involvement at the ultrasound imaging in a European multicenter open-
label study (Leruez-Ville et al., 2016b). Valaciclovir is a pro-drug of acyclovir and it is commonly used
to treat herpes simplex virus (HSV) infections and chicken-pox. Even though valaciclovir is less effective
than GCV and valGCV against hCMV in vitro, high dosages of this drug have proven efficacious to
prevent hCMV infection and disease in high-risk immunocompromised individuals (Tyms et al., 1981;
Lowance et al., 1999). This multicenter European study showed that administration of high-doses of
valaciclovir to pregnant women reduces hCMV load in fetal blood and increases the proportion of
asymptomatic newborns by 40% as compared to a historical cohort. However, the design of the study,
i.e., not randomized and one-armed, substantially limits the assessment of the true antiviral effect of

valaciclovir, thus preventing implementation of this therapy into clinical practice.

1.5.2. Homologs of valproate as novel potential treatments for congenital human CMV.

In the quest of novel, less toxic anti-CMV agents, we focused our attention on valpromide (VPD)
and valnoctamide (VCD), compounds chemically related to valproate (valproic acid, VPA).

VPA is a widely prescribed antiepileptic drug employed for the treatment of multiple psychiatric
and neurological diseases, including bipolar disorder, epilepsy, neuropathic pain, and migraine (Perucca,
2002). A free carboxylic group in the chemical structure (Fig. 1.11) and an inhibitory action on histone

deacetylase (HDAC) confer teratogenic properties to VPA, which can cause neural tube defects, skeletal
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abnormalities, and autism when administered during fetal development (Nau et al., 1991; Radatz et al.,
1998; Phiel et al., 2001; Okada et al., 2004; Tung and Winn, 2010; Kataoka et al., 2013; Paradis and
Hales, 2013, 2015).

VPD and its constitutional isomer VCD are amide derivatives of VPA (Fig. 1.11) and lack the

inhibitory action on HDAC (Haj-Yehia and Bialer, 1990; Shekh-Ahmad et al., 2015). No increased risk
of teratogenicity or toxicity has been reported for exposure to either compound in several studies using
different treatment schedules in multiple animal models of early development (Nau and Loscher, 1986;
Nau and Scott, 1987; Radatz et al., 1998; Okada et al., 2004; Shekh-Ahmad et al., 2014; Mawasi et al.,
2015; Wlodarczyk et al., 2015; Bialer et al., 2017). Pregnant mice injected with either VPD or VCD
during critical moments of organogenesis experienced rates of fetal loss, neural tube defects, and skeletal
and visceral abnormalities similar to vehicle-injected pregnant controls. In turn, injection of VPA or other
neuropsychiatric drugs, including risperidone and olanzapine, caused a substantial increase in rates of
these adverse events. Further investigation of VCD head-to-head with VVPA in rats and rabbits confirmed
results obtained in mice, showing absence of VCD-induced teratogenicity. Several previous studies
showed that slight changes in the chemical structure of VPA have a great impact on embryotoxic and
teratogenic effects without affecting anticonvulsant activity (Hauck and Nau, 1989; Elmazar et al., 1993;
Bojic et al., 1996). The amidation of the free carboxylic group of VPA in the molecule of VPD and VCD
(Fig. 1.11) has been suggested to underlie the lack of HDAC inhibition and the greatly decreased
teratogenicity and toxicity observed with these compounds as compared to VPA.
VPD and VCD have been marketed since the early 1960s as a mood stabilizer and an anxiolytic drug,
respectively (Stepansky, 1960; Goldberg, 1961; Harl, 1964; Bialer, 1991). VCD has also been recently
tested as a mood stabilizer in patients with acute mania (Bersudsky et al., 2010; Weiser et al., 2017),
based on its ability to act on pathogenic mechanisms of bipolar disorder, i.e. increased brain arachidonic
acid turnover and intracellular inositol concentrations (Shaltiel et al., 2007; Modi et al., 2014; Modi et
al., 2017). Further, both drugs showed better CNS penetration (Blotnik et al., 1996) and a more potent
anticonvulsant activity than VPA in multiple animal models of epilepsy (Lindekens et al., 2000;
Isoherranen et al., 2003; Mares et al., 2013; Pouliot et al., 2013; Shekh-Ahmad et al., 2014; Shekh-
Ahmad et al., 2015; Bialer et al., 2017).
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Fig. 1.11 Chemical structure of valproate, valpromide, and valnoctamide. Adapted from (Haj-Yehia and Bialer,
1990).

By inhibiting HDAC and thus causing chromatin hyperacetylation and increased cellular gene
expression, VPA enhances the infectivity and replication of a large variety of viruses, including HIV
(Moog et al., 1996), vesicular stomatitis virus (VSV) (Paglino and van den Pol, 2011), Kaposi's sarcoma-
associated herpes virus (Shaw et al., 2000), HSV (Otsuki et al., 2008; Nakashima et al., 2015), HHV-6
(Mardivirin et al., 2009), and, more importantly, hCMV (Kuntz-Simon and Obert, 1995; Michaelis et al.,
2004; Michaelis et al., 2005). In turn, both VPA and VPD attenuate reactivation of Epstein Barr virus
(EBV), a herpes virus, from latency into the lytic phase of its life cycle (Gorres et al., 2014; Gorres et al.,
2016). This antiviral activity is separated from HDAC inhibition, which VPD appears to lack. Treatment
of EBV latently infected-cell cultures with either VPA or VPD prevents the expression of viral genes
involved in EBV lytic reactivation. Also, VPD decreases the expression levels of cellular immediate-
early genes, kinetically upstream of the EBV lytic cycle, when exogenously upregulated. In addition,
both VPA and VPD block viral late protein synthesis after viral reactivation has occurred. The antiviral
mechanism of VPA and VPD on EBV reactivation has been hypothesized to relate to their chemical
structure and anticonvulsant activity (Gorres et al., 2016). VPD has a chemical structure similar not only
to VPA but also to VCD (Fig 1.11). Further, VCD, similarly to VPD, has anticonvulsant properties and
lacks activity on HDAC. Thus, a potential attenuating/blocking action of VPD and VCD on another
herpes virus, hCMV, could be plausible. This constituted our rationale for assessing the potential antiviral
activity of VPD and VCD against CMV.

1.6 Aims of the thesis.
The research presented in this thesis attempted to identify a novel and safe therapeutic approach

for treating CMV infection during early development.
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Congenital CMV infection is the leading viral cause of in utero acquired brain damage and neurological
deficits in children and a major public health crisis in the developed world (Gandhi and Khanna, 2004;
Cheeran et al., 2009; Tsutsui, 2009). However, few strategies are available to treat CMV infection during
critical moments of brain ontogeny. Drugs approved for CMV, including GCV and its prodrug valGCV,
cidofovir, foscarnet, and fomivirsen, show some efficacy but their use is not recommended during
pregnancy due to their potential for fetal toxicity and teratogenicity (Mercorelli et al., 2011; James and
Kimberlin, 2016). This causes a significant delay in treatment initiation and, since CMV-mediated CNS
damage is irreversible once established, substantially decreases the chances of improving neuropathology
and neurological outcomes in infected infants with postnatal therapy. GCV and valGCV are currently
administered as off-label treatment in congenitally infected neonates with viral involvement of the CNS
(Kimberlin et al., 2003; Kimberlin et al., 2015). However, acute toxicity, namely severe neutropenia, and
long-term toxicity, such as fertility impairment and carcinogenicity, limit the use of these drugs only to
those newborns with severe signs of infection at birth (Crumpacker, 1996; Gandhi and Khanna, 2004;
Mercorelli et al., 2011; Rawlinson et al., 2016). This leaves less severely affected neonates with no
treatment and, hence, at high risk for developing late-onset neurological complications (Lackner et al.,
2009). The emergence of drug-resistant CMV strains and the limited CNS penetration of available
antivirals also pose a challenge in the long-term treatment of congenital CMV (Mercorelli et al., 2011,
Campanini et al., 2012; Choi et al., 2013; Morillo-Gutierrez et al., 2017). Thus, it is evident that novel
anti-CMV strategies with alternative mechanisms of action, improved CNS targeting, and safer in vivo
profiles that could be used both during pregnancy and in all infected newborns, are urgently needed. The
substantial public health economic burden of congenital CMV-related neurological disability represents
a compelling argument for developing alternative anti-CMV drugs.

Previous research investigating VPA and VPD in the context of EBV infection identified a drug-
mediated block of viral reactivation from latency. The anti-EBV activity of VPA and VPD appeared to
be separated from HDAC inhibition, which VPD lacks, and based on attenuation of both viral and cellular
gene expression (Gorres et al., 2014; Gorres et al., 2016). The mechanism by which VPA and VPD
suppress EBV reactivation has been postulated to relate to their chemical structure and anticonvulsant
activity. Since VPD shares similar chemical structure and anti-seizure action with VCD (Haj-Yehia and
Bialer, 1990; Lindekens et al., 2000; Isoherranen et al., 2003; Mares et al., 2013; Pouliot et al., 2013;
Shekh-Ahmad et al., 2014; Shekh-Ahmad et al., 2015; Bialer et al., 2017), we hypothesized that both
compounds could also act against CMV, a herpes virus as EBV. Of note, differently from VPA, neither
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VPD nor VCD inhibits HDAC, thus lacking teratogenicity (Haj-Yehia and Bialer, 1990; Radatz et al.,
1998; Okada et al., 2004; Shekh-Ahmad et al., 2014; Mawasi et al., 2015; Shekh-Ahmad et al., 2015;
Wlodarczyk et al., 2015; Bialer et al., 2017). Also, both drugs have been clinically used for many years
to treat neuropsychiatric disorders and no toxicity-related concerns have been raised (Stepansky, 1960;
Goldberg, 1961; Harl, 1964; Bialer, 1991; Bersudsky et al., 2010; Weiser et al., 2017). Importantly, VPD
and VCD show better distribution into the brain after peripheral administration than VPA, a fact that may
improve targeting of CMV inside the brain (Blotnik et al., 1996).

Investigation of novel therapeutic properties of compounds already approved for treatment of
different disorders, i.e. drug repurposing, has been strongly promoted in the last few years (Collins, 2011;
Huang et al., 2011; Nosengo, 2016; Sharlow, 2016). This is especially true in those research areas,
including congenital CMV, with limited pharmaceutical company investments due to disease (relative)
rarity and high costs and failure rates (Scannell et al., 2012). Of note, drug repositioning has recently
proven of extremely high value in identifying additional therapeutic applications for already known drugs
(Singh et al., 2013; Singh et al., 2016; Xu et al., 2016). Given that VPD and VCD have been already
clinically used, they both appear to offer all the promise of drug repurposing, thus further supporting

their investigation in the context of congenital CMV infection.
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Chapter 2



Materials and Methods

2.1 Cells.

NIH/3T3 (CRL-1658) and Vero (CCL-81) cells were purchased from the American Type Culture

Collection (ATCC) (Manassas, VA), normal human dermal fibroblasts (HDF) were obtained from
Cambrex (Walkersville, MD), Neuro-2a (CCL-131) were kindly provided by A. Bordey (Yale
University, New Haven, CT), U-373 MG cells were a gift from R. Matthews (Syracuse, NY)), and primary
human fetal brain astrocytes were obtained from Science Cell Research Laboratories.
Vero cells were grown and maintained in Eagle's Minimum Essential Medium (MEM) supplemented
with 10% fetal bovine serum (FBS) and 1% penicillin streptomycin (Pen Strep; Invitrogen, Carlsbad,
CA). Human fetal astrocytes were grown in poly-L-lysine-coated culture vessels and maintained in
Astrocyte Medium (from ScienCell Research Laboratories) supplemented with 2% FBS and 1% Pen
Strep. All the other cell lines were maintained in Dulbecco's modified Eagle's essential medium (DMEM)
supplemented with 10% FBS and 1% Pen Strep. Primary cultures of mouse glia were established using
whole brain tissue harvested from P5 mice and maintained in DMEM (van Den Pol et al., 1999).

All cultures were kept in a humidified atmosphere containing 5% CO2 at 37°C.

2.2 Viruses.
A brief description of each virus used is given below.
2.2.1 mCMV-GFP.

Recombinant mCMV (MC.55) expressing enhanced green fluorescent protein (GFP) was derived from

the K181 strain. The expression cassette containing the GFP gene controlled by the human elongation
factor 1 alpha (EF1-alpha) promoter was inserted into the IE gene site (IE-2). NIH/3T3 cells were used
for viral propagation and titering by plaque assay (van Den Pol et al., 1999).

2.2.2 hCMV-GFP.

Recombinant hCMV expressing GFP under the control of the EF1-alpha promoter was derived from the

Toledo strain. The gene coding for GFP was inserted between US9 and US10 of the hCMV genome, a
site that appears to tolerate alterations without affecting viral replication. GFP expression and replication
capability were tested on normal human fibroblasts and U-373 human glioblastoma cells (Ma et al.,

2005). Human dermal fibroblasts were used for viral propagation and titering by plaque assay.
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Recombinant CMVs were generously provided by E. Mocarski (Emory University, Atlanta) and J. Vieira
(University of Washington, Seattle).

2.2.3 VSV-GFP.

A recombinant variant of the Indiana serotype of VSV expressing a GFP reporter gene from the first
genomic position (VSV-1'GFP) (Ramsburg et al., 2005) was kindly provided by J. K. Rose (Yale
University, New Haven, CT). Vero cells were used for viral propagation and titering by plague assay
(van den Pol et al., 2002b).

All the viruses used in the present study express GFP as a reporter and green fluorescence was employed
to visualize infected cells and viral plaques. Viral titers were determined by standard plaque assay using
25% carboxy-methyl-cellulose (CMC) overlay for mCMV-GFP and hCMV-GFP (Zurbach et al., 2014)
or 0.5% agar overlay for VSV-GFP. Viral stocks were stored in aliquots at -80°C. For each experiment,

a new aliquot of virus was thawed and used.

2.3 Chemicals.

VPD (catalog no. V3640), VCD (catalog no. V4765), VPA (catalog no. S0930000), ivermectin
(catalog no. 188998), GCV (catalog no. G2536), and heparan sulfate (HS) sodium salt (catalog no.
H7640) were purchased from Sigma-Aldrich (St. Louis, MO).

VPA and HS were dissolved in water to give a stock solution of 1 M and 1 mg/mL, respectively. VPD,
VCD, ivermectin, and GCV were dissolved in dimethylsulfoxide (DMSO) to yield a stock solution of 1
M (VPD, VCD) and 100 mM (ivermectin, GCV). Ivermectin was used at 1 uM, a concentration recently

shown effective against Chikungunya and other alphaviruses (Varghese et al., 2016).

2.4 Quantification of infection.

Effects of the tested compounds on CMV infection were assessed by viral infectivity assay, viral
yield reduction assay, and plague number and size reduction assay.
For the infectivity assay, cells (NIH/3T3, Neuro-2a, mouse glia, Vero, normal human dermal fibroblasts,
U-373, and human fetal astrocytes) were seeded at a density of 40,000 cells per well in 48-well plates
and incubated overnight before medium (0.2 mL/well) was replaced for pre-treatment with VPA, VPD,
VCD, ivermectin, or vehicle at the specified concentrations. After 1 hour or 24 hours of drug exposure,

cells were inoculated with virus at different multiplicity of infection (MOI) and incubated at 37°C for 2
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h to allow viral adsorption. Following incubation, cultures were washed twice with PBS and overlaid
with a viscous solution containing the test compounds/vehicle in cell line-specific medium and CMC or
agar. GFP-positive cells were counted at 48 or 72 hours post-infection (hpi).

In the virus yield reduction assay, after viral adsorption, cells were washed twice with PBS and
replenished with fresh medium containing the compounds to be tested. At 72 or 96 hpi, medium was
collected and titered by plaque assay using NIH/3T3 (mCMV) and HDF (hCMV) monolayers to assess
the drug-mediated inhibition of virus replication.

For the plague number reduction assay, cells pre-treated with drugs or vehicle for 24 h were infected
with mCMV-GFP or hCMV-GFP, incubated for 2 h at 37°C to allow viral adsorption, rinsed twice with
PBS, and overlaid with a viscous solution containing the tested agents at the specified concentrations in
DMEM (75%) and CMC (25%) for 50% effective concentrations (ECso) calculation (Zurbach et al.,
2014). Plates were then incubated at 37°C in 5% COz2 for 4 days (mCMV) and 7 days (hCMV), to allow
time for fluorescent plaque development. The mean plaque counts for each drug concentration were
expressed as a percentage of the mean plaque count of the control (vehicle). The ECso was then calculated
by nonlinear regression from the plots of log drug concentrations against percentage of reduction in
plague number at each antiviral compound concentration.

Plaque size reduction assay was used to assess the effect of the drugs on viral propagation. Briefly,
semiconfluent NIH/3T3 and HDF cells in 12-well plates were inoculated using mCMV-GFP and hCMV-
GFP (MOI 1), respectively. After 2 h-incubation at 37°C, inoculum was removed and cultures were
washed three times with PBS before the addition of CMC overlay containing VPD, VCD, or vehicle at
the specified concentrations. Five (mCMV) and 10 (hCMV) days later, the relative size of viral plaques
was measured (n=60 plagues/condition), as previously described (Wollmann et al., 2015).

Infected cells were identified as GFP-positive cells using an Olympus IX71 fluorescence
microscope (Olympus Optical, Tokyo, Japan) connected to a SPOT RT digital camera (Diagnostic
Instruments, Sterling Heights, MI) interfaced with an Apple Macintosh computer. The total number of
fluorescent cells per well in each condition was counted by two observers independently. Each condition
was tested at least in triplicate, and the whole experiment repeated twice. Camera settings (exposure time
and gain) were held constant between images. The contrast and color of collected images were optimized

using Adobe Photoshop.
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2.5 Assessment of antiviral actions of valpromide and valnoctamide on human CMV.

2.5.1 Time-of-drug addition and CMV promoter (IE1/IE2)-driven reporter plasmid transfection

experiments.
To investigate in detail which step of the viral replicative cycle was affected by VPD and VCD,

‘time-of-drug addition’ experiments were performed, in which human cell cultures were inoculated with
hCMYV and exposed to the drugs immediately, or 2 h, or 12 h after viral challenge. The effects of the
tested agents on hCMV infection were then assessed by a viral yield reduction assay. Briefly, HDF cells
were infected with hCMV-GFP (MOI 0.01) (t=0), exposed to the compounds (100 uM) as indicated
above, and incubated until the media was collected at 96 hpi. The extent of virus replication was
subsequently assessed through titering the media by plaque assay using HDF monolayers. In all
conditions, 2 hpi cultures were rinsed twice with PBS to synchronize infection.

To assess the effects of drug on the immediate early phase of viral replication, NIH/3T3 cells
exposed to VPD (1 mM) for 24 h, were transfected with a CMV promoter (IE1/IE2)-driven reporter

plasmid (pCMV-tdTomato) expressing the red fluorescent protein tdTomato.

2.5.2 Virucidal activity assay.

To test the potential virucidal effect of the compounds, VPD, VCD, or vehicle (100 uM) were
added to undiluted aliquots of hCMV-GFP and these virus/compound mixtures were incubated at either
4°C or 37°C for 2 h. After incubation, the samples were diluted with culture medium to reduce the drug
concentration to an ineffective dose (10 nM), and hCMV-GFP infectivity was determined by plaque
assay on HDF cells. Alternatively, virus and drug mixtures were run through a 0.1 um filter (Life
Sciences) to remove the compounds but not the hCMV (size ~180 nm). Filter membranes were then
thoroughly rinsed in culture medium for 2 h at room temperature with periodic shaking to harvest drug-

free hCMV before assessing infectivity by plaque assay on HDF monolayers.

2.5.3 Viral entry analysis and qguantitative real-time PCR assay.

To evaluate the effects of the drugs on hCMV entry into the cell, i.e. reversible attachment to the
cell membrane and subsequent irreversible binding with fusion and adsorption, inoculated cultures were
first incubated at 4°C (which allows only virus attachment) and then shifted to 37°C (which allows fusion

and subsequent steps of the viral replication cycle) (Mocarski et al., 2007; Chan and Yurochko, 2014).
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For assessing the ‘attachment’ step, pre-chilled HDF cells and human fetal astrocytes at 90% confluency
in a 6-well plate were treated with VPD, VCD, vehicle (100 uM), VPA (1 mM, negative control), or HS
(0.1 mg/mL, positive control) for 1 h at 4°C and inoculated with pre-cooled hCMV-GFP (MOI 0.1) in
the presence of compounds or vehicle for 2 h at 4°C. Cells were then rinsed three times with cold PBS
to remove unattached virions and compounds, and harvested by trypsinization for viral DNA
quantification using a quantitative real-time PCR (gqRT-PCR) assay (HDF cells and human fetal
astrocytes) (Chan and Yurochko, 2014), or overlaid with CMC and incubated for 3 days at 37°C for
infectivity assessment by GFP-positive cell counting (HDF cells).

To evaluate hCMV internalization into HDF cells and human fetal astrocytes, cultures plated in plain
media were inoculated with hCMV-GFP (MOI1 0.1) and incubated at 4°C for 2 h. Cells were then washed
three times to remove unbound viral particles, exposed to compounds or vehicle at the same
concentrations described above, and incubated at 37°C for 2 h (to allow virus internalization) before
being overlaid with CMC for infectivity evaluation at 72 hpi (HDF cells) or being harvested by
trypsinization for DNA quantification by qRT-PCR (human fetal astrocytes).

DNA was extracted from cells using the QlAamp DNA mini kit (Qiagen), and gRT-PCR was performed
using TagMan assays (Life Technologies) (Gault et al., 2001; Fukui et al., 2008) for hCMV UL132
(Pa03453400_s1) and human albumin (Hs99999922 s1) genes. Ten-fold dilutions of hCMV DNA and
cellular DNA from human fibroblasts or human fetal astrocytes were used as quantitative standards.
gPCR was carried out with 20-pL reaction mixtures employing the iTaq Universal SYBR Probes
Supermix (BioRad) and 100 ng of DNA. Samples from uninfected cells and without a template served
as negative controls. Samples from 2 biological replicates were run in duplicate using a Bio-Rad iCycler-
IQ instrument (Bio-Rad, Hercules, CA), and results were analyzed with iCycler software. The amount
of viral DNA in each sample relative to albumin was calculated using the comparative threshold (CT)
cycle method, and hCMV DNA was expressed as the percentage of virus bound (the “attachment” step)
or internalized (the “internalization” step) using DMSO-treated samples as 100%.

2.6 Immunocytochemistry.
A mouse monoclonal antibody (a gift of Dr. P. Cresswell, Yale University) against hCMV gB,
diluted 1:1000 in PBS with 0.3% Triton X-100, was used to label cells infected with hCMV, as an

alternative method to the GFP reporter used for quantification of infection.
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A mouse monoclonal antibody against hCMV immediate early (IE)1/2 antigen (1:1000,
MABB810, EMD Millipore) was employed to assess drug-mediated effects on IE protein expression.

The secondary antibody was a goat anti-mouse immunoglobulin conjugated with Alexa Fluor 594
(Thermo Fisher Scientific) diluted at 1:500. Cell nuclei were counterstained with DAPI (4'-6'-diamidino-
2-phenylindole). Controls included the omission of the primary antibody and the use of non-inoculated

cultures where no immunostaining was expected or found.

2.7 Cytotoxicity assay.

An ethidium homodimer assay (EthD-1, Molecular Probes, Eugene, OR) was used to label dead
cells. Briefly, NIH/3T3 cells (9 X 10* per well) were seeded in a 48-well plate and treated with VVPD or
vehicle for 24 h before mCMV-GFP inoculation (MOI 0.03). 72 h after viral challenge, cells were washed
twice and EthD-1 was added at a final concentration of 4 uM in DMEM. After 20 min of incubation at
37°C, the total number of dead cells per well was counted based on red fluorescence of nuclei. Each
condition was tested in quadruplicate, and each experiment was repeated twice. Similarly, the rate of cell
death was assessed in uninfected NIH/3T3 and HDF cells exposed to VPD, VCD, vehicle (10 and 1 mM),
or plain media for 24 and 72 h before EthD-1 addition.

2.8 Animal infection paradigms, treatment administration, and in vivo testing.

All animal breeding and experiments were performed in accordance with the guidelines of the
Yale School of Medicine Institutional Animal Care and Use Committee (IACUC). Research was
approved by the IACUC.
Male and female Balb/c strain mice (6-8 weeks of age) from Taconic Biosciences Inc. (Hudson, NY)
were maintained on a 12:12 h light cycle under constant temperature (22+2°C) and humidity (55+5%),
with access to food and water ad libitum. One to two females were cohabited with a male of the same
strain for at least 1 week to ensure fertilization. When advanced pregnancy was seen, each pregnant
female was caged singularly and checked for delivery twice daily, at 8:30 A.M. and 6:30 P.M. Newborns
were inoculated i.p. with 750 plaque-forming units (pfu) of mMCMV-GFP in 50 pL of media on the day
of birth (DOB), within 14 h of delivery. The DOB was considered to be postnatal day 0 (P0). Control
animals received 50 pL of media intraperitoneally. Here we focus on inoculation of newborn mice as a
model where brain development in the newborn mouse parallels human brain development during the

early second trimester of pregnancy (Clancy et al., 2001; Branchi et al., 2003; Clancy et al., 2007a;
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Clancy et al., 2007b; Workman et al., 2013). This is a critical period for human brain development where
CMV can cause substantive dysfunction (Manicklal et al., 2013). To avoid any litter-size effect, large
litters were culled to a maximum of eight to nine pups (Tanaka, 1998). Infected and control pups were
randomly assigned to receive VPD, VCD, or vehicle (DMSO), via subcutaneous (s.c.) injections, once a
day, at a dose of 1.4 mg/mL in 20 pL of saline (28 pg/mouse), starting 24 hours after virus inoculation
and running from P1 to P21. In some initial experiments, control pups received a similar amount of drug-
free saline. Mice were monitored daily for signs of mCMV-induced disease and to determine survival;
weaning occurred on P21 and mice of either sex were housed separately until testing was completed,
then sacrificed.

In addition to the intraperitoneal route, intracranial injection was performed in a group of newborn mice.
Three days after birth, 2 X 10* pfu of mMCMV-GFP in 1 pL of media was injected into the left cerebral
hemisphere of neonatal mice under cryoanesthesia using a 10 pL Hamilton syringe with a 32-gauge
needle from a midpoint between the ear and eye. Infected pups were randomly assigned to receive daily
doses of VCD or vehicle (DMSO), starting 3 h after virus inoculation until P8. No deaths occurred, and
at P9 mice were killed and blood, liver, spleen, and brain were collected, snap frozen, and stored at -

80°C until viral titer analysis via gRT-PCR (n=8/experimental group) was performed.

2.8.1 Early somatic and neurobehavioral assessment.

Intraperitoneally infected pups and controls were assessed for early postnatal somatic and
neurobehavioral development, as previously described (Fox, 1965; St Omer et al., 1991; Calamandrei et
al., 1999; Scattoni et al., 2008). Evaluation was performed without knowledge of the treatment group on
every other day from PO to P22 for somatic parameters and from P2 to P14 for neurobehavioral
assessment.

Pups were weighed to the nearest 0.01g and their body and tail lengths were measured. Hair
growth, status of eyelid and pinnae detachment, and incisor eruption were also recorded. These somatic
variables were rated semi-quantitatively in the following way: 0=no occurrence of the condition,
1=slight/uncertain condition, 2=incomplete condition, and 3=a complete adult-like condition (Scattoni
et al., 2008).

Evaluation of neurobehavioral development was performed according to a slightly modified Fox
battery (Fox, 1965; St Omer et al., 1991; Calamandrei et al., 1999), in the light phase of the circadian
cycle between 9 A.M. and 3 P.M. Each subject was tested at approximately the same time of the day.
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Reflexes and responses were scored in the following order: 1) righting reflex, the time used by the pup
to turn upright with all four feet when placed on its back; 2) cliff aversion, when placed on the edge of a
cliff or table top with the forepaws and face over the edge, the mouse will turn and crawl away from the
edge; 3) forelimb grasping reflex, when the forefoot is stroked with a blunt instrument the foot will flex
to grasp the instrument; 4) forelimb placing reflex, contact of the dorsum of the foot against the edge of
an object will cause the foot to raise and place itself on the surface of the object when the animal is
suspended and no other foot is in contact with a solid surface; 5) negative geotaxis, the time used by the
pup to turn180° to either side when placed head down on a wire mesh screen (4 X 4 mm) held at a 45°
angle; 6) level screen test, pup holds onto a wire-mesh (10 X 10 cm) and is propelled across the mesh
horizontally by the tail; 7) screen climbing test, pup climbs up a vertical screen (10 X 10 cm, 90° angle)
using both forepaws and hindpaws; maximal response, scored when the subject reaches the top of the
vertical screen; and 8) vibrissa placing reflex, when the mouse is suspended by the tail and lowered so
that the vibrissae make contact with a solid object, the head is raised and the forelimbs are extended to
grasp the object.

Latencies were measured in seconds using a stopwatch for righting reflex and negative geotaxis. The
remaining behavioral variables were rated semi-quantitatively, similarly to early postnatal somatic
parameters: 0=no response or occurrence of the event (R/O); 1=slight/uncertain R/O; 2=incomplete R/O;
and 3=a complete adult-like R/O. All timed responses were limited to a maximum of 60 s; therefore, the
absence of a milestone was scored as 0/60 s (semi-quantitative rating/latencies) if the mouse did not
exhibit the behavior within 60 s.

This battery of tests provides a detailed assessment of functional and neurobehavioral development
throughout the neonatal period since the behaviors measured are each expressed at different stages of
development during the first weeks of life. Specific information about vestibular function, motor
development and activity, coordination, and muscle strength can be obtained by execution of these tests
(St Omer et al., 1991; Schneider and Przewlocki, 2005).

2.8.2 Evaluation of motor coordination and balance in adolescent mice.

Motor performance of infected and control mice, with or without VCD treatment, was assessed
at P28-30 by the hindlimb-clasping, vertical pole, and challenging beam traversal tests.
In the hindlimb-clasping test, the mouse is gently lifted by the tail, grasped near its base, and the hindlimb
position is observed for 10 s and scored as follows: if the hindlimbs are consistently splayed outward,
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away from the abdomen, it is assigned a score of O; if one hindlimb is retracted toward the abdomen for
50% of the time suspended, it receives a score of 1; if both hindlimbs are partially retracted toward the
abdomen for 50% of the time suspended, it receives a score of 2; and if its hindlimbs are entirely retracted
and touching the abdomen for 50% of the time suspended, it receives a score of 3 (Tanaka et al., 2004;
Guyenet et al., 2010).

The vertical pole test was conducted according to previously established protocols (Ogawa et al., 1985;
Soerensen et al., 2008). Briefly, mice were individually placed head downward at the top of a vertical
rough-surfaced pole (diameter, 8 mm; height, 55 cm) and allowed to descend in a round of habituation.
Then, mice were placed head upward at the top of the pole. The time required for the animal to descend
to the floor was recorded as the locomotor activity time (Tra), with a maximum duration of 120 s. If a
mouse fell, was unable to turn downward, or was unable to climb down, a default locomotor activity time
value was recorded as 120 s. Each mouse was given three trials with a 30-s recovery period between
trials.

The challenging beam traversal test was performed as previously described (Fleming et al., 2004;
Fleming et al., 2013). The beam consisted of four sections (25 cm each, 1 m total length), each section
having a different width. The beam started at a width of 3.5 cm and gradually narrowed to 0.5 cm in the
last section. Underhanging ledges (1 cm width) were placed 1 cm below the top surface of the beam to
increase the sensitivity of the test and allow detection of subtle motor deficits (Brooks and Dunnett,
2009). Animals were trained to traverse the length of the beam starting at the widest section and ending
at the narrow most difficult section. The narrow end of the beam led directly into the home cage of the
animal. A bright light illuminated the start of the beam to further encourage the mouse to walk across the
beam toward the home cage. Animals received 2 days of training before testing, with five trials for each
day. On the day of the test, a mesh grid (1 cm squares) of corresponding width was placed over the beam
surface leaving a 1 cm space between the grid and the beam surface. Animals were then videotaped while
traversing the grid-surfaced beam for a total of five trials. Videos were viewed and rated in slow motion
for hindlimb slips and time to traverse across five trials by an investigator blind to the mouse
experimental group. A slip was counted when the mouse was facing and moving forward and a hindlimb

slipped through or outside of the grid beyond 0.5 cm below the grid surface (halfway down).

2.8.3 Social behavior and exploratory activity analysis.
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Sociability and preference for social novelty were investigated at 5 weeks of age in a three-
compartment apparatus (Crawley, 2007; Yang et al., 2011).

Initially, test and control animals were allowed to explore the apparatus freely for a 10-m period
(habituation). For the social approach paradigm, an unfamiliar conspecific (same sex, similar age and
weight) animal was placed into one of the side compartments and restrained by a small wire object
(“social cage”). The compartment on the other side contained an empty wire object (“empty cage”). The
test subject was then released into the center compartment and allowed to explore the three-compartment
apparatus freely for 10 m. Behavior was videotaped and assessed for the times that the test subject spent
in the three compartments and in close proximity to the social and empty cages.

For the social novelty paradigm, another unfamiliar conspecific animal was placed in the previously
empty wire object (“novel cage”). The behavior of the test mouse was recorded for 10 m and assessed
for the time spent exploring the known and novel conspecifics.

The exploratory activity was assessed in adolescent mice at P30-40 in an adapted small open
field, as previously described (Shi et al., 2003; Schneider and Przewlocki, 2005). The apparatus consisted
of a plastic rectangular box measuring 20.5 X 17 X 13 cm? (length X width X height) with regularly
spaced holes in the short (n=2) and long (n=3) walls, and illuminated by ambient fluorescent ceiling
lights. The animal was placed in the center of the apparatus and its movements were video recorded over
a 3-m period. Exploratory behavior was scored for the number of rearing and nose-poking (nose of an

animal put inside the hole) episodes.

2.9 Assessment of murine CMV distribution in the brain and viral-mediated brain abnormalities.

At specific time points after infection, mice were killed by an overdose of anesthetic and
transcardially perfused with sterile, cold PBS followed by 4% paraformaldehyde, and brains were
harvested and weighed. Brains were then immersed overnight in 4% paraformaldehyde, and
cryoprotected in 15% and then 30% sucrose for 24 h before inclusion in Tissue Freezing Medium
(General Data). In a few mice, also livers and spleens were collected. Some intraperitoneally infected
mice became dehydrated and moribund and showed no sign of recovery; these mice were killed before
the predefined Killing time points and were recorded as having had a lethal response to the virus.
Fifteen-micrometer-thick sections cut with a Leica cryostat were used for GFP reporter expression
assessment and immunofluorescence analysis in the brain. Sections were dried for 4 h at room

temperature, rehydrated in 1X PBS, and then used for immunofluorescence assays. Briefly, tissue
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sections were incubated overnight at 4°C with monoclonal mouse anti-NeuN antibody (1:500; catalog
#MAB377, EMD Millipore; RRID: AB_2298772) for neuronal cells and polyclonal rabbit anti-calbindin
D-28K (1:500; catalog #AB1778, EMD Millipore; RRID: AB_2068336) for cerebellar Purkinje cells
(PCs). Tissues were washed three times in phosphate buffer plus 0.4% Triton X-100. Secondary
antibodies, including goat anti-mouse 1gG and donkey anti-rabbit 1gG conjugated to Alexa Fluor-594
(1:250; Invitrogen), were applied for 1 h at room temperature and then washed off. Some sections were
labeled with DAPI. Vectashield Fluorescent mounting medium (Vector Laboratories) was then used for
mounting.

Images were collected by using a fluorescence microscope (model IX 71, Olympus Optical).

Frozen sections were used for morphometric measurements, and cell numbers were quantified after

imaging using ImageJ software (https://imagej.nih.gov/ij/; RRID: SCR_003070). The molecular layer

(ML) and internal granular layer (IGL) were assessed using images of serial midsagittal cerebellar
sections stained with calbindin D-28K and DAPI. Three measurements were taken at each side of the
primary fissure in each section, and four sections per animal were evaluated. For the cerebellar area,
midsagittal brain sections (three sections/mouse) were stained with blue fluorescent Nissl stain
(NeuroTrace, catalog #N21479, Thermo Fisher Scientific), and images were collected using a 2X
objective. Cell counts were performed on sections (four sections/mouse) stained with calbindin D-28K,
and the number of Purkinje cells was evaluated along 500 um of the primary fissure (both sides). All

measurements and quantifications were performed on at least five animals from three different litters.

2.10 Kinetics of virus spread and replication in vivo.

For detection of infectious viral load in organs, plaque assay analysis and gRT-PCR were
performed.
In initial experiments, some of the control and experimental mice were sacrificed on P12, after receiving
saline/treatment from P1 to P10. Designated mice were transcardially perfused with PBS to wash out
free virus, and tissue samples were collected under sterile conditions from liver, spleen, and lungs, target
organs of congenital CMV infection. Tissues were mechanically homogenized in PBS using a
microcentrifuge tube tissue grinder. Part of the resulting tissue suspension was plated onto NIH/3T3
monolayers and viral titer was assessed by plaque assay (Brune et al., 2001; Zurbach et al., 2014).
Viral replication in blood, liver, spleen, and brain was also evaluated by means of qRT-PCT. Mice

receiving either VCD or vehicle intraperitoneally or intracranially were killed at multiple time points

55


https://imagej.nih.gov/ij/

post-inoculation, and samples were collected under sterile conditions, snap frozen, and stored at -80°C
until viral titer analysis via gRT-PCR (n 7-10/experimental group) was performed. Mice used for viral
load analysis in liver, spleen, and brain were perfused with sterile cold PBS to remove any virus contained
within the blood. Total DNA was isolated using the QlAamp DNA Mini Kit (Qiagen) as per manufacturer
instructions. Quantitative PCR was performed using TagMan assays (Life Technologies) by
amplification of a fragment of mCMYV IE1 gene exon 4 using the following primers: forward, 5’-GGC
TTC ATG ATC CAC CCT GTT A-3’; and reverse, 5’-GCC TTC ATC TGC TGC CAT ACT-3". The
probe (5°’-AGC CTT TCC TGG ATG CCA GGT CTC A-3’) was labeled with the reporter dye FAM
(Kosmac et al., 2013). gRT-PCR was performed using 20 ul reaction mixtures using the iTaq Universal
SYBR Probes Supermix (Bio-Rad) and 100 ng of DNA. Samples were run in duplicate using a two-step
amplification protocol. Tissue samples from uninfected mice and samples without a template served as
negative controls. Viral burden was expressed as the copy number per ml/gram of blood/tissue after

comparison with a standard curve generated using serial 10-fold dilutions of mMCMV DNA.

2.11 Experimental design and statistical analysis.

Statistical significance in in vitro experiments, unless otherwise specified, was determined using
one-way Analysis of Variance (ANOVA), followed by Bonferroni’s post hoc test. Data are presented as
percentage of infected or dead cells and viral titers, in drug versus vehicle, as mean£SEM of two
independent experiments; each independent experiment consisted of three or four cultures; p-values refer
to a comparison of drug to control (vehicle). ECso values were calculated using nonlinear regression
curve fit with a variable slope (log[inhibitor] vs response).

Statistical significance for in vivo experiments, including motor performance, exploratory
behavior, and brain morphometry, was determined by one-way ANOVA or Kruskal-Wallis test followed
by Bonferroni’s and Dunn’s post hoc test, respectively. Early somatic and neurobehavioral development,
social behavior, and viral load over time were assessed by a mixed-model ANOVA with repeated
measures followed by Newman-Keuls test if there was a significant F value. Since no gender-related
differences were detected in early neurodevelopment, data from male and female mice were combined.
Only male mice were used for examination of motor performance and exploratory and social behavior.
Somatic and neurobehavioral assessment was performed blindly with respect to the experimental group.

All analyses were conducted with GraphPad Prism version 6.0 (RRID: SCR_002798), with
significance set at p < 0.05.
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Chapter 3



Results

3.1 Initial in vitro and in vivo screening of valpromide and valnoctamide as potential anti-CMV
compounds.

Previous research reported an inhibitory role of VPD on reactivation of the herpes virus EBV
from latency, based on attenuation of both viral and cellular gene expression (Gorres et al., 2014; Gorres
et al., 2016). Thus, we decided to investigate VPD as a potential antiviral against CMV, another herpes
virus (Ornaghi et al., 2016) (see Appendix). Since the anti-EBV action of VPD has been suggested to
relate to its chemical structure and anticonvulsant activity (Gorres et al., 2014; Gorres et al., 2016), we
also tested VCD (Ornaghi et al., 2016), which shares similar chemical structure and anti-seizure action
with VPD (Haj-Yehia and Bialer, 1990; Lindekens et al., 2000; Isoherranen et al., 2003; Mares et al.,
2013; Pouliot et al., 2013; Shekh-Ahmad et al., 2014; Shekh-Ahmad et al., 2015; Bialer et al., 2017).
Both VPD and VCD appear to lack toxicity and teratogenicity (Stepansky, 1960; Goldberg, 1961; Harl,
1964; Haj-Yehia and Bialer, 1990; Bialer, 1991; Radatz et al., 1998; Okada et al., 2004; Bersudsky et
al., 2010; Shekh-Ahmad et al., 2014; Mawasi et al., 2015; Shekh-Ahmad et al., 2015; Wlodarczyk et al.,
2015; Bialer et al., 2017; Weiser et al., 2017).

3.1.1 Valpromide inhibits mouse and human CMV in vitro.
We first assessed and compared the effects of VPD and VPA on both mCMV and hCMV in in

vitro experiments, using several cell types exposed to either drugs or vehicle for 24 h before viral

challenge.

In line with previous reports, VPA treatment enhanced infection by and replication of mMCMV on
mouse fibroblast cells at concentrations of 1 and 10 mM (Fig. 3.1, A-C) (Kuntz-Simon and Obert, 1995;
Michaelis et al., 2004; Michaelis et al., 2005). In turn, VPD at the same concentrations showed a robust
inhibitory effect (Fig. 3.1, D-F), reducing the number of mCMV-infected fibroblasts as quantified by
counting cells expressing the viral GFP reporter gene (Fig. 3.1, D and E). VPD also attenuated mCMV
replication as assessed by viral yield assay (Fig. 3.1F). Of note, significant inhibition was identified not
only at 10 and 1 mM but also at lower doses of 100 uM, 1 uM, and 100 nM.
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Fig. 3.1 Valproate and valpromide exert opposing effects on low titer-murine CMV. A. Representative
microscopic fields show mCMV-GFP reporter fluorescence and phase contrast of NIH/3T3 cells pre-treated (24
h) with VPA (1 mM) or vehicle (control) prior to inoculation with mCMV using multiplicity of infection (MOI) of
0.03. Photos captured 48 hpi; scale bar 50 um. B, C. VPA dose-dependent increase in mCMV infection assessed
by counting infected GFP-positive cells at 48 hpi (B) and viral yield assay at 72 hpi (C); other conditions same as
A. D. VPD (1 mM) with other conditions same as A. E, F. VPD dose-dependent decrease in mCMV infection, as
per number of infected cells at 48 hpi (E) and viral titer at 72 hpi (F); other conditions same as A. Mean+SEM of
8 cultures (B, C, E, F); ns, not significant, **p<0.01, ***p<0.001, ****p<0.0001, as compared to control,
ANOVA with Bonferroni's post hoc test.

Attenuation of mMCMV was confirmed at high virus titer and in multiple cell types including NIH/3T3,
Neuro-2a, and primary astrocytes from mouse brain (Fig. 3.2, A-D).
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Fig. 3.2 Valpromide reduces infectivity of high titer-murine CMV in multiple cell types. A-D. VPD dose-
dependent decrease in high titer-mCMV (MOI 4) infectivity in NIH/3T3 (A, B), immortalized Neuro-2a (C), and
primary mouse glia (D) cells pre-treated with VPD for 24 h. Infectivity assessed by counting GFP-positive cells
24 hpi (A, C, D), and by viral yield assay 72 hpi (B). Mean+SEM of 6 cultures; ns, not significant, *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001, as compared to control, ANOVA with Bonferroni's post hoc test.

The anti-mCMV effect observed for VPD could be the result of a drug-mediated cytotoxicity and
subsequent reduction of viral survival and replication. Therefore, we tested uninfected NIH/3T3 cells
treated for 24 or 72 h with VPD at 1 and 10 mM for cell death. Using an EthD-1 assay to fluorescently
label dead cells, we saw no detectable cytotoxicity (Fig. 3.3A), thus suggesting a lack of toxicity of the
target cells even at high drug concentrations and with prolonged cell exposure. In turn, VPD-related
mCMYV inhibition increased cell survival by reducing viral-induced cytotoxicity (Fig. 3.3, B and C).
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Fig. 3.3 Valpromide is not toxic for uninfected cells and decreases murine CMV-induced cytotoxicity. A. The
potential cytotoxicity of VPD exposure for 24 and 72 h was assessed in uninfected mouse fibroblasts by the red
fluorescent EthD-1 assay. The effect of VPD at 1 and 10 mM on NIH/3T3 was compared with vehicle (VEH) at
the same concentrations and plain media. B, C. The EthD-1 assay was performed to evaluate VPD protective role
on viral-mediated cytotoxicity. Images show red fluorescent photomicrographs of NIH/3T3 cells pre-treated with
VPD or vehicle at 10 mM for 24 h prior to viral inoculation (MOI 0.03). 72 hpi, EthD-1 was added to cells. After
20 min, photos were captured (B) and red fluorescent-labeled cells were counted (C). Scale bar 50 um.
Mean+SEM of 8 cultures (A, C); ns, not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, as

compared to control, ANOVA with Bonferroni's post hoc test.

To determine if the inhibitory action of VPD would generalize from mCMV to hCMV, we tested
VPD against hCMV on human cells. Similar to mCMV, hCMV infection was substantially inhibited by
VPD at all the doses tested, independent of virus titer or cell type (Fig. 3.4, A-C). VPD significantly
reduced the number of hCMYV infected cells and also decreased hCMYV replication, even at the low drug
concentrations of 100 uM, 1 uM, and 100 nM. We found similar inhibitory actions with both human
dermal fibroblasts (Fig. 3.4, A and B) and human glioma cells (Fig. 3.4C).

To corroborate the view that the drug acted on CMV rather than by inhibiting expression of the
viral GFP reporter, we used immunocytochemistry to label the hCMV gB (Fig. 3.4D). VPD decreased
the number of cells showing hCMV gB immunoreactivity compared to infected cultures not treated with
VPD. This result further supports the antiviral effect of VPD on CMV and excludes a potential VPD-
mediated inhibitory effect on GFP expression.

The VPD-mediated inhibition of both mouse and human CMV raised the question of whether the
antiviral effect of the drug was universal for different types of virus and might act via enhancement of

an innate immune block of viral infection in general.
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To address this question, we tested VSV, an unrelated single-strand RNA virus sensitive to upregulation
of innate immunity. In contrast to mCMV and hCMV, VPD did not inhibit VSV (Fig. 3.4E), suggesting
that the observed anti-CMV actions of VPD were not based on a mechanism involving a potentiation of

the innate immune response.
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Fig. 3.4 Valpromide inhibits human CMV but has no effect on vesicular stomatitis virus infection. A, B. Normal
human dermal fibroblasts (HDF) were treated with VPD or vehicle at the indicated concentrations for 24 h prior
to hCMV-GFP inoculation (MOI 0.01). VPD dose-dependent decrease in hCMV infection assessed by counting
infected GFP-positive cells at 72 hpi (A) and viral yield assay at 96 hpi (B). C. Pre-treated human glioma cells
infected with hCMV-GFP at high titer (MOl 4). GFP-positive cells counted at 48 hpi. Data presented as
mean+SEM of 8 cultures (A, B) and 6 cultures (C); ns, not significant, *p<0.05, **p<0.01, ***p<0.001,
****n<(0.0001, as compared to control, one-way ANOVA (Bonferroni's post hoc test). D. Immunostaining for
hCMV gB was done to exclude a potential inhibitory effect of VPD on GFP expression. HDF were exposed to
VPD or vehicle (1 mM) for 24 h prior to viral challenge (MOI 1). Representative fields with hCMV gB

immunoreactivity in red and cell nuclei in blue (DAPI) show VPD-mediated decrease in the relative number of
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infected cells. Scale bar 50 um. E. Images of representative microscopic fields under GFP fluorescence (top) and
phase contrast (bottom) of Vero cells pre-treated with VPD or vehicle at 1 mM for 24 h and infected with VSV-
GFP (MOI 0.001). No drug-mediated inhibitory effect was identified (101%+5%, compared to control;
mean=SEM of 6 cultures). Photos captured at 24 hpi; scale bar 50 pum.

For control purposes, we also tested ivermectin, a compound with anti-epileptic properties and a strong
anti-parasitic activity, which was recently shown to attenuate alphavirus infection (Varghese et al., 2016).
Ivermectin had no effect on CMV (99%+9% compared to control), demonstrating that the anti-CMV
effect was specific for VPD.

Together these results demonstrate that VPD substantially and selectively inhibits both mouse

and human CMV infectivity in vitro, and that this antiviral activity is independent of virus titer and cell

type.

3.1.2 Valnoctamide, a safer analog of valpromide, blocks mouse and human CMV in cell culture.

Although VPD safety has been demonstrated in animal models of teratogenesis (Radatz et al.,
1998; Okada et al., 2004), these findings may not translate to humans where, differently from mice, VPD
can be quickly metabolized (>80%) to VPA (Bialer, 1991), which is teratogenic and enhances CMV
infection as shown earlier.
VCD is structurally similar to VPD and has shown potent anticonvulsant properties in multiple animal
models of epilepsy (Lindekens et al., 2000; Isoherranen et al., 2003; Mares et al., 2013; Pouliot et al.,
2013; Shekh-Ahmad et al., 2014; Shekh-Ahmad et al., 2015; Bialer et al., 2017), in part by a mechanism
that prolongs miniature inhibitory post-synaptic currents (Spampanato and Dudek, 2014). VCD also
lacks the free carboxylic group and HDAC inhibitory activity associated with the embryotoxic and
teratogenic effects of VPA (Bialer et al., 1990; Radatz et al., 1998; Shekh-Ahmad et al., 2014; Mawasi
et al., 2015; Wlodarczyk et al., 2015; Bialer et al., 2017), and, unlike VPD, shows negligible conversion
to its corresponding free acid (valnoctic acid) not only in mice but also in humans (Bialer et al., 1990;
Bialer, 1991; Barel et al., 1997; Radatz et al., 1998). Therefore, we tested VCD on mCMV and hCMV
in vitro.
VCD induced a potent inhibition of mMCMYV infection independent of virus titer or cell type (Fig. 3.5, A-
F), as measured by counting cells expressing the GFP virus reporter or assessing virus replication.
Significant anti-CMV activity was still identified in the nanomolar range. Similarly, VCD also blocked
infectivity and replication of hCMV at both low and high titer in human fibroblasts (Fig. 3.5, G-I).
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Fig. 3.5 Valnoctamide blocks both murine and human CMV. A. Microscopic fields show GFP fluorescence (top)
and phase contrast (bottom) of NIH/3T3 cells pre-treated (24 h) with VCD (1 mM) or vehicle (control) prior to
inoculation with mCMV (MOI 0.03). Photos captured 48 hpi; scale 50 um. B-F. VCD-mediated dose-dependent
decrease in mCMYV infection at low MOI (0.03) (B, C, E, F) and high MOI (4) (D) in NIH/3T3 (B-D), Neuro-2a

(E), and mouse glia (F) cells pre-treated for 24 h, as assessed by counting infected GFP-positive cells at 48 hpi
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(B, E, F) and viral yield assay at 72 hpi (C, D). G-1. VCD-mediated decrease in hCMV infection at low MOI
(0.01) (G, H) and high MOI (1) () in human dermal fibroblasts, evaluated by GFP-positive cell counting at 72
hpi (G) and viral yield assay at 96 hpi (H, 1). MeantSEM of 8 (B, C, E-H) and 6 (D, 1) cultures; *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001, as compared to control, one-way ANOVA (Bonferroni's post hoc test).

3.1.3 Dose-response analysis comparison among valpromide, valnoctamide, ganciclovir, and heparan

sulfate.

GCV and HS are well-known inhibitors of CMV infection. GCV targets viral DNA polymerase
and is approved as first-line CMV treatment in humans (Mercorelli et al., 2011). HS acts as a soluble
mimic of HSPGs, cell surface anionic polysaccharides used by CMV for attachment to the cell membrane
(Compton et al., 1993). HS is not approved as anti-CMV drug due to its strong anticoagulant activity in
vivo, an undesired side-effect.

Since our in vitro experiments demonstrated a substantial inhibition of CMV infectivity and
replication by both VPD and VCD, we compared the antiviral potency of VPD and VCD with that of
GCV and HS.

A dose-escalation analysis by means of plaque reduction assay was performed in HDF cells infected with
hCMV (MOI 0.01). Fibroblasts treated with VPD or VCD displayed a substantial dose-dependent
inhibition of hCMYV infectivity with an ECso concentration of 2.9+1.3 uM and 3.5+1.1 uM, respectively
(Fig. 3.6, A and B). No cytotoxic effects were identified in uninfected HDF cells exposed to VPD or
VCD at 10 mM for 72 hours as compared to vehicle and plain media (Fig. 3.6C), thus defining an
excellent selectivity index (Sl), i.e. the ratio of cytotoxic concentration (CC)so to ECso, for both
compounds against hCMV.

Similarly, hCMV infectivity was inhibited by both GCV and HS in a dose-dependent manner with ECso
of 1.1+0.3 uM for GCV (Fig. 3.6D) and 51.4+8.2 pg/mL (~80 uM) for HS (Fig. 3.6E).

65



A valpromide B ' valnoctamide C Cytotoxicity assay
5 100 3 1001 on uninfected HDF
s = 104
c c
S S 7] i} cl
s ™ ' 2% L
£ £ 5
A R 8 50f—————m e 2§
3 ECgp 2.9:1.3 uM 3 ECg,3.5+1.1 uM P
K. = @ 44
2 254 o 2s -
o
E E .
S5 s a
c LA LA Ld A L c LA L Ll Ll
0.0001 0.01 1 100 10000 0.0001  0.01 1 100 10000 0
Log,,dose (microM) Log,,dose (microM) Media VEH VPD VCD
D ganciclovir E heparan sulfate
1004 1007

-~
L

4

____________________________________

ECg 1.140.3 uM ECy, 51.4:8.2 ng/mL

~N
b o

254

Viral plaques (% of control)

Viral plaques (% of control)

0.0001 0.01 1 100 H 10 100 1000

Log, dose (microM) Log,,dose (ug/mL)
Fig. 3.6 Valpromide and valnoctamide safely suppress hCMV infectivity with potency similar to ganciclovir. A,
B. HDF cells pre-treated with VPD (A) or VCD (B) for 24 h and infected with hCMV-GFP (MOI 0.01) were
incubated for 7 days before viral fluorescent plagues counting. The mean plaque count for each drug concentration
was expressed as a percentage of the control (vehicle) and plotted as a function of the drug dose in logarithmic
scale. The concentration producing 50% reduction in plague formation (ECso) is shown. MeanzSEM of 2
independent experiments. C. The potential cytotoxicity of 10 mM-VPD and VCD exposure for 72 h was assessed
in uninfected HDF cells by the EthD-1 assay and compared with vehicle (VEH) at the same concentration and
plain media. Mean+SEM of 6 cultures; one-way ANOVA (Bonferroni's post hoc test). D, E. Dose-response analysis
by plaque reduction assay in HDF cells pre-treated with known anti-CMV agents, GCV (D) and HS (E); other
conditions same as A, B.

3.1.4 Valpromide and valnoctamide substantially attenuate CMV-related disease in vivo.

Human CMV infection during early development can cause serious and potentially fatal disease
in fetuses and neonates (Mocarski et al., 2013), in whom therapeutic options are severely limited by the
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teratogenicity and toxicity of available antivirals (Mercorelli et al., 2011; James and Kimberlin, 2016;
Rawlinson et al., 2016).

Both VPD and VCD showed substantial block of CMV infection in vitro. Also, no toxic effects have
been reported for either compound in multiple animal models of early development and treated human
subjects (Stepansky, 1960; Goldberg, 1961; Harl, 1964; Haj-Yehia and Bialer, 1990; Bialer, 1991;
Radatz et al., 1998; Okada et al., 2004; Bersudsky et al., 2010; Shekh-Ahmad et al., 2014; Mawasi et al.,
2015; Shekh-Ahmad et al., 2015; Wlodarczyk et al., 2015; Bialer et al., 2017; Weiser et al., 2017).
Therefore, we tested VPD and VCD anti-CMV efficacy in an in vivo model of severe perinatal mCMV
infection (Slavuljica et al., 2014).

First, we confirmed drug safety with daily administration of both agents in control, uninfected neonatal
mice. No adverse effects on postnatal body growth were detected (Fig. 3.7A). Inasmuch as the drugs
appeared safe in developing mice, we next assessed VPD and VCD administration in newborn animals
infected with mCMV intraperitoneally on the day of birth (Fig. 3.7B).

VPD and VCD treatment throughout the neonatal period induced substantial improvement in infected
newborns health, with a three-fold decrease in death rate in adult mice (Fig. 3.7C). Survival of mMCMV-
infected, untreated animals was 23%, compared to 72% for VPD- or VCD-treated mice.

Additional benefits of drug treatment were also identified. VPD and VCD administration ameliorated the
MCMV-induced detrimental effects on body growth as assessed by body weight, body length, and tail
length (Fig. 3.7, D-G); infected mice weighed nearly 50% less than control mice at P20 (p<0.001),
whereas VPD- or VCD-treated infected pups showed a body weight reduction of only 18% (Fig. 3.7E).
Thus, both VPD and VCD attenuated the deficient body growth induced by perinatal mMCMYV infection.
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Fig. 3.7 Valpromide and valnoctamide safely improve survival and postnatal body growth of infected newborns.
A. Uninfected pups received 20 L of saline (CTR), vehicle (VEH), VPD, or VCD (1.4 mg/mL), once a day,
subcutaneously, from P1 to P21, when the body weight was assessed. Mean+SEM, one-way ANOVA with
Bonferroni's post hoc test; N=8 mice/experimental group. B. Timeline of the experimental paradigm employed,
with mCMV infection of newborn mice and subsequent compound administration throughout the neonatal period.
C. Survival in 7 week-old mCMV-infected mice receiving VPD, VCD, or VEH assessed by Log-rank (Mantel-Cox)
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test; N=11-13 mice/group. D-G. Drug-induced improvement in postnatal body growth. Photo shows enhanced
body size of VPD- (middle) and VCD-treated (right) mice compared to vehicle (left) (D). Graphs show postnatal
body weight (E), body length (F), and tail length (G) increase from DOB to P20. CTR, control uninfected mice
receiving saline; VPD, VCD, and VEH, mCMV-infected newborns treated with the indicated compounds.
Mean+SEM; error bars shown only for VEH group for clarity; N=6-9 mice/group; mixed-model ANOVA
(Newman Keuls test) for VPD and VCD versus CTR (above CTR line, E) and for VPD and VCD versus VEH
(below VEH line, E-G); *p<0.05, **p<0.01, ***p<0.001.

Both drugs markedly improved other parameters of somatic development, including eyelid opening,
pinnae detachment, fur maturation, and incisor eruption (Fig. 3.8, A-F).

Of note, VPD and VVCD generated a significant (p<0.01) improvement in mCMV-infected neonate health
as early as 5 days after treatment initiation.
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Fig. 3.8 Daily valpromide and valnoctamide administration ameliorates postnatal somatic development. A-F.
Graphs show progressive improvement of multiple parameters of postnatal growth. Meant+SEM; error bars not
shown for clarity. N=6-9 mice/group; mixed-model ANOVA (Newman Keuls test) for VPD and VCD versus VEH,;
**p<0.01, ***p<0.001. Photos show the differential status of eye opening in P16 mice (A) and the delayed
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development of fur in an infected/untreated pup (left) compared to an infected newborn treated with VCD (right)

at day 12 after birth (D); marked difference in growth is also evident.

The amelioration of postnatal growth and long-term survival in infected mice receiving VPD or
VCD might be the result of a drug-mediated antiviral activity in target peripheral organs of infection,
including liver, spleen, and lungs. To investigate whether the observed beneficial effects were related to
the ability of VPD and VCD to decrease mCMV levels in vivo, we analyzed these organs from infected
mice at 12 dpi by viral plaque assay (Fig. 3.9, A-D). Viral titers were decreased by greater than 2 logs in
all tested tissues of drug-treated infected newborns, thus suggesting that the VPD- and VCD-mediated
inhibitory effects on CMV infection observed in vitro also occur in vivo and associate with a substantial

improvement in mCMV-infected animal outcome.
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Fig. 3.9 Valpromide and valnoctamide substantially decrease murine CMV load in target organs. A. A small
number of cells show mCMV infection in the liver of P12 mice infected on DOB and treated daily with VCD until
P10 (left); in contrast, a higher number was commonly found in the liver of pups receiving vehicle (right). GFP-
positive cells are localized both in the parenchyma (arrows) and in the sub-peritoneal area (arrowheads).
Asterisks indicate lobule central veins. Scale 100 um. B-D. Infected newborns treated with VPD, VCD, or VEH
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from P1-10 were euthanized at P12, and tissue samples from liver, spleen, and lungs were collected for
measurement of viral titer by plague assay. Bar graphs show titers as PFU/mg of tissue; meantSEM; N=6

mice/group; ***p<0.001, one-way ANOVA, Bonferroni's post hoc test.

3.1.5 Valpromide and valnoctamide suppress human CMV by inhibiting virus attachment to the cell.

Despite being used for decades to treat neurological dysfunctions, the mechanism(s) of action of
VPD and VCD in the brain remain unclear (Monti et al., 2009; Spampanato and Dudek, 2014; Bialer et
al., 2017). VPA-mediated inhibition of HDAC enhances infection by hCMV (Kuntz-Simon and Obert,
1995; Michaelis et al., 2004; Michaelis et al., 2005). Both VPD and VCD lack this epigenetic activity
(Okada et al., 2004; Fujiki et al., 2013).

To gain insight into the underlying mechanisms of VPD and VCD inhibition of CMV, we tested
the drugs by addition at different time-points during the course of hCMV infection (Fig. 3.10A). The
drug concentration employed for testing was 100 uM, which is below the therapeutic range for safely
treating mood disorders and epilepsy in humans (Pisani et al., 1986; Brodie and Dichter, 1996; Barel et
al., 1997; Witvrouw et al., 1997; Bersudsky et al., 2010; Matalon et al., 2011; Shekh-Ahmad et al., 2014;
Spampanato and Dudek, 2014; Bialer et al., 2017; Weiser et al., 2017). When the compounds were
present from the time of viral challenge through 96 hpi, viral yield decreased approximately 60%. A
similar inhibition of hCMYV replication was also observed with 2 h drug exposure at the time of viral
challenge, followed by drug wash out (44.8+2.5% for VPD and 42.9%+3.2% for VCD, compared to
vehicle-treated cultures). However, no reduction in viral yield was identified when the compounds were
added 2-12 h after virus inoculation (Fig. 3.10A). These results indicate that the block of hCMV mediated
by VPD and VCD is exerted early in the infection process, within the first 2 h of the replication cycle.
We therefore tested the possibility that these agents directly inactivate virions by pre-incubating the
compounds with an undiluted stock of hCMV prior to cell inoculation. When the inhibitors were
subsequently diluted below an effective concentration prior to culture inoculation, i.e. 10 nM, no direct
inactivation of free virions was observed, as determined by the absence of a drug-mediated inhibitory
effect (Fig. 3.10B). Similar results were obtained when the pre-incubation mix was run through a 100
nm-pore size filter to remove the compounds but not the virus, prior to analysis of virus infectivity at
physiological and cold temperatures (percentages show hCMYV viral titers in drug-treated samples as
compared to vehicle: 37°C, 98.5%+8% for VPD, 99.3%+5% for VCD; 4°C, 100.6%+5% for VPD,
98.3%+8% for VCD).
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The IE1/2 hCMV promoter is active in the first few hours of hCMV infection, inducing IE protein
expression which in turn promotes viral replication (Mocarski et al., 2013). We investigated whether the
drugs interfere with the activity of this promoter by testing a plasmid with hCMV IE1/2 driving tdTomato
expression. No decrease in the number of red cells was identified in the presence of VPD compared to
control (96%=4%) after plasmid transfection, suggesting VPD does not inhibit the activity of the hCMV
IE1/2 promoter. In addition, we assessed IE1/2 antigen expression in hCMV infected cells exposed to
the compounds either simultaneously or 2 h after viral challenge (Fig. 3.10C). Substantial 1E1/2 was
detected in fibroblasts that received drugs after 2 hpi, similarly to vehicle-treated cultures. In contrast,
cells treated with the compounds at the time of hCMV inoculation showed markedly decreased IE1/2
expression, thus suggesting that hCMV inhibition by VPD and VCD occurs prior to the IE stages of the
viral replication cycle.

We next examined hCMV entry into the cell, which precedes IE protein expression and can be separated
into two phases: (1) attachment of the viral particle to the cell surface and (2) fusion of the viral envelope
with cellular membranes and penetration into the cytoplasmic space (Compton et al., 1993; Mocarski et
al., 2013). Investigation of these phases was performed by a 2 h incubation at 4°C, a temperature that
allows attachment but not fusion, followed by a temperature shift to 37°C, which allows fusion and
internalization (Chan and Yurochko, 2014), and subsequent infectivity assessment by GFP-positive cell
counting. Analysis showed substantial VPD- and VCD-mediated interference with hCMV attachment to
the cell (Fig. 3.10D). These results were confirmed by gRT-PCR with quantification of the relative
amount of hCMV DNA in infected human fibroblasts exposed to the compounds at 4°C (Fig. 3.10E). In
these assays, heparan sulfate was employed as a positive control given its ability to block hCMV
attachment in vitro by mimicking HSPGs (Compton et al., 1993).

Current approved anti-CMV compounds target viral DNA synthesis (GCV, cidofovir, foscarnet) or the
hCMV major IE gene locus (fomivirsen). Since our data indicate that VPD and VCD may block a
different, earlier step of hCMV infection, similar to HS, we postulated that a combined administration of
GCV with VCD or HS might induce a stronger viral inhibition than single drug therapy or VCD/HS
association (Fig. 3.10F). When cells were exposed to GCV+VCD or GCV+HS, the decrease in hCMV
plaques nearly doubled compared to single drug treatment, i.e. GCV alone, VCD alone, or HS alone. In
contrast, combination of VCD+HS only slightly increased the viral inhibition obtained with VCD alone
or HS alone, supporting the hypothesis that VPD, VCD, and HS may act on the same step of hCMV

infection.
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Prolonged cell exposure to VPD and VCD followed by drug wash out immediately before hCMV
inoculation resulted in no attenuation of infection (Fig. 3.10G), consistent with the view that the drugs
did not exert persistent effects on antiviral cellular targets, such as enhancement of innate immunity.
These data also suggest that the anti-CMV actions of VPD and VCD are not the result of an irreversible

association of the compounds with cell surface proteins.
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Fig. 3.10 Valpromide and valnoctamide inhibit human CMV attachment to cell. A. HDF cells infected with
hCMV-GFP (MOI 0.01) (t=0) were exposed to VPD, VCD, or vehicle (100 uM) simultaneously, or 2 or 12 h after
virus inoculation until media collection at 96 hpi. Viral replication assessed by titer determination using a plaque
assay on HDF monolayers. B. 4 drug (100 uM)/undiluted hCMV mixture was incubated for 2 h at 37°C or 4°C.
Before cell inoculation, the solution was diluted to 10 nM (ineffective drug concentration). C. Human fibroblasts
infected with hCMV (MOI 0.01) and treated with the compounds (100 uM) starting from viral challenge (t=0) or
2 hpi, were fixed and permeabilized at 8 hpi for immunofluorescence with anti-IE1/2 monoclonal antibody and
DAPI nuclear staining. Scale bar 100 um. D, E. Attachment and fusion assays were performed as described in
Materials and Methods. GFP-positive cells were counted at 72 hpi (D). Results presented as the fold change (2
44¢Ty of h\CMV DNA in each experimental condition relative to vehicle (mean+SEM of 2 biological replicates) (E).
F. Plaque reduction assay on HDF cells exposed to vehicle, GCV (100 nM), VCD (100 uM), HS (25 ug/mL -
approximately 40 uM), or a combination of these compounds as indicated for 24 h before hCMV inoculation (MOI
0.01). Fluorescent plaques counted at 7 dpi. The mean plaque counts for each drug were expressed as a percentage
of the control (vehicle) mean plaque count, defined as 100% (vehicle bar shown on the left for clarity); p<0.001
for VEH vs GCV, VCD, and HS. Rx, drug. G. After 24 h- or 72 h-VPD, VCD, or vehicle pre-treatment (100 uM),
cultures were rinsed three times and given drug-free media prior to hCMV inoculation (MOI 0.01). Plaques
counted at 7 dpi. Bars: meantSEM of 5 (F, G), 8 (A, B), and 12 cultures (D); ns, not significant, *p<0.05,
**n<0.01, ***p<0.001, one-way ANOVA with Bonferroni's post hoc test.

3.1.6 Valpromide and valnoctamide decrease spread of murine and human CMV infection.

Inhibition of CMV attachment to the target cell may play a role not only in the initiation of
infection but also on subsequent virus spread.
Murine and human fibroblast cells were exposed to the drugs after mCMV and hCMYV inoculation and
adsorption, respectively, and assessed for viral plaque size at 5 (mCMV) and 10 (hCMV) dpi. Both VPD
and VCD effectively decreased spread of the CMV infection as shown by the reduced plaque size in
CMV-infected, drug-treated monolayers compared with the plaque size from vehicle-treated cultures
(Fig. 3.11, A-C).
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Fig. 3.11 Valpromide and valnoctamide effectively decrease spread of CMV infection. A-C. Plaque size assay
of NIH/3T3 cells (A, B) and human fibroblasts (C) infected with mCMV-GFP and hCMV-GFP (MOI 1) and treated
with VPD, VCD, or vehicle. Viral plaque size measured 5 (mCMV) and 10 (hCMV) dpi. Representative plaques
in 100 uM VCD (left) or vehicle (right),; scale 300 um (A). Mean diameter of 60 random plaques; SEM, bar on
upper right side (B, C); p<0.05 in 0.1 uM, p<0.01 in 1 uM, p<0.001 in 100 uM and 1 mM, versus vehicle.

3.2 Investigation of valnoctamide activity against CMV in the developing brain and of drug-mediated
benefits on neurodevelopment and behavior.

We demonstrated that VPD and VCD exert a substantial and specific inhibition of mouse and
human CMV invitro. Also, by means of a mouse model of severe perinatal mMCMYV infection, we showed
potent antiviral activity of both drugs on mCMV replication in peripheral target organs of infection,
including the liver, the spleen, and the lungs, with improved health outcomes of infected mice. Both VPD
and VCD lack teratogenic effects (Haj-Yehia and Bialer, 1990; Radatz et al., 1998; Okada et al., 2004;
Shekh-Ahmad et al., 2014; Mawasi et al., 2015; Shekh-Ahmad et al., 2015; Wlodarczyk et al., 2015;
Bialer et al., 2017), have been used in clinics for many years with no evidence of safety concerns
(Stepansky, 1960; Goldberg, 1961; Harl, 1964; Bialer, 1991; Bersudsky et al., 2010; Weiser et al., 2017),
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and show optimal CNS distribution after peripheral administration (Blotnik et al., 1996). However, VCD
has better translational potential than VPD. VCD has been shown to act as a drug on its own, with only
negligible conversion to its corresponding free acid (valnoctic acid), in mice, rats, dogs, and humans
(Haj-Yehia and Bialer, 1988; Bialer et al., 1990; Bialer, 1991; Blotnik et al., 1996; Barel et al., 1997;
Radatz et al., 1998). In turn, VPD, while displaying only minimal conversion to VPA in mice (Radatz et
al., 1998), is largely metabolized (>80%) to VPA in humans (Bialer et al., 1990; Bialer, 1991; Barel et
al., 1997). VPA is teratogenic and enhances hCMYV infection (Nau et al., 1991; Kuntz-Simon and Obert,
1995; Radatz et al., 1998; Phiel et al., 2001; Michaelis et al., 2004; Okada et al., 2004; Michaelis et al.,
2005; Tung and Winn, 2010; Kataoka et al., 2013; Paradis and Hales, 2013, 2015). Therefore, we decided
to proceed with further investigation of VCD only.

Human CMV infection of the developing brain can cause brain damage and life-long neurological
problems with substantial impact on everyday life, including cerebral palsy, motor impairment, and
intellectual disability (Gandhi and Khanna, 2004; Cheeran et al., 2009; Tsutsui, 2009; Mocarski et al.,
2013). Considering this and that VCD can cross the BBB and act inside the brain, we asked whether low-
dose VCD given subcutaneously to mCMV-infected neonatal mice could safely suppress mCMYV inside
the developing brain and exert beneficial effects on neurodevelopment and behavior (Ornaghi et al.,
2017) (see Appendix). Of note, brain development in the newborn mouse parallels human brain
development during the early second trimester of pregnancy (Clancy et al., 2001; Branchi et al., 2003;
Clancy et al., 2007a; Clancy et al., 2007b; Workman et al., 2013), a critical period of neurontogeny where

CMV can cause substantive dysfunction (Manicklal et al., 2013).

3.2.1 Peripheral inoculation of murine CMV causes widespread infection of the developing mouse brain.

First, we characterized the kinetics of mMCMV replication and dissemination after intraperitoneal
inoculation of the virus in newborn mice on the DOB (P0). Forty-eight hours after intraperitoneal
injection, mMCMV was found in the blood and at lower levels in the spleen and liver of infected mice,
with only a small amount detected in the brain (Fig. 3.12A). Analysis of viral kinetics in these four organs
over the course of 50 days revealed that mCMV, after entering the bloodstream, quickly gained access
to peripheral target organs (i.e., the liver and spleen) and began replicating to yield high viral titers by 4
dpi (Fig. 3.12, B-D). In turn, similar viral titers were measured in the brain only after 8 dpi (Fig. 3.12E).

After entering the brain, the virus could effectively replicate in situ, as suggested by the measurement of
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mCMV loads similar to those found in the liver and spleen at the viral peak between P8 and P12 (Fig.
3.12, C-E).
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Fig. 3.12 Kinetics of murine CMV replication after intraperitoneal inoculation on day of birth. Newborn mice
were infected on the DOB (day 0) with 750 pfu of mCMV. Viral load in whole blood, liver, spleen, and brain was
evaluated by gRT-PCR at the indicated time points and expressed as logio genome copies per mL/gram of
harvested blood/tissue. In A, each symbol represents an individual mouse, and horizontal bars show mean values
of the groups; in B-E, data are presented as the mean#SEM with 7-10 mice/time point. Viral titers below the limit
of detection (LoD, dotted line) were plotted as 2 logio genome copies. In A, **p<0.01, ***p<0.001,
****p<0.0001; one-way ANOVA with Bonferroni’s post hoc test.

Upon histological examination, after peripheral inoculation, mCMV-GFP infection of the
developing mouse brain appeared widespread and scattered in nature. Isolated infected cells and
infectious foci containing up to 20-25 cells could be found in multiple distant areas within the same brain.
The pattern of infection also appeared heterogeneous, with different brains displaying infection in
different regions. These observations are consistent with a hematogenous spread of mCMV from the
periphery into the developing brain of neonatal mice. Infected cells were identified in the olfactory bulb
and nuclei, the cortex, corpus callosum, hippocampus, basal nuclei, choroid plexus, midbrain, superior
and inferior colliculi, sylvian aqueduct, pons, medulla, cerebellum, and meninges (Fig. 3.13, A-1). No
mCMYV was detected in the spinal cord. Infection of the choroid plexus in the lateral ventricles was
frequently associated with evidence of infected cells in the brain parenchyma in close proximity to the
ventricle (Fig. 3.13, E and F), a site of NPSC localization (Semple et al., 2013).
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-— fMedulla

Fig. 3.13 Scattered widespread distribution of murine CMV-GFP in brains after infection of newborn mice. A-
I. Detection of virus-infected cells by means of mCMV-GFP reporter expression in representative coronal sections
of P8 and P12 mouse brains (n=5). Single infected cells or small foci of infection (yellow arrows) can be identified
in the retrosplenial cortex (RS ctx), primary and secondary somatosensory cortex (S1/S2), ectorhinal cortex (Ect),

perirhinal cortex (Prh), piriform cortex (Pir), hippocampus (hippo) and dentate gyrus (DG), lateral ventricle (LV),
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external and internal capsule of the corpus callosum (ec and ic, respectively), lateral hypothalamic area (LH),
and thalamic nuclei (Th Nu) of a P12 mouse brain (A). D3V, dorsal third ventricle. Magnifications of the boxed
areas in A (B-D). Infection of the lateral ventricle and diffusion to the adjacent brain parenchyma in a P8 brain
(E). Magnification of the boxed area in E (F). cc, corpus callosum. Photomicrograph of a P12 brain showing
infection in the motor (M1) and piriform cortex, and in the striatum [caudate—putamen (CPu)] (G). Large foci of
mCMV-infected cells in the pons and the medulla of a P8 animal (H, I). Scale bars: 50 um (H); 100 um (A, D, E,
G, 1); 200 um (C, F); 400 um (B).

Infection of certain brain areas, such as the thalamus and the hypothalamus, was observed less frequently
compared with other regions, including the cerebellum, hippocampus, and cortex. The cerebellum was
the only site consistently displaying viral infection in all the brains examined (n=20), with robust GFP
labeling in both Purkinje cells and granule neurons (Fig. 3.14, A and B). Viral GFP was also identified
in neurons of the hippocampus and in the cerebral cortex (Fig. 3.14, C-G). In cortical pyramidal cells,
GFP was seen in both the apical dendrite extending toward the cortical surface and in basal dendrites
ramifying closer to the cell body. Some infected neurons in the cortex displayed signs of degeneration,

characterized by abnormal swelling along the dendrites (Fig. 3.14F).
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Fig. 3.14 Murine CMYV infection of neuronal cells in the cerebellum, hippocampus, and cortex of the developing
mouse brain. A, B. Photomicrographs show GFP labeling of different cerebellar cell types, including neurons in
the internal granular layer (A) and Purkinje cells (B), as assessed by NeuN and calbindin D-28K staining at 8 dpi
(n=2 brains). C-E. Photographs display infection of different areas of the hippocampus (C), a magnification of
the viral involvement of pyramidal cells in CA1 field (boxed area; D), and infected neurons in the dentate gyrus
(DG) (E) (n=2 brains). F. Robust GFP expression in a pyramidal neuron of the motor cortex (n=1 brain); note
the beaded aspect of the basilar dendrites, sign of neuronal pathology. G. Photomicrograph of neuronal infection
in the visual cortex (n=1 brain). Scale bars: 100 um (A-E, G); 50 um (F).
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Together, these results indicate that intraperitoneally administered mCMV, after replicating in
peripheral target organs, enters the developing brain of neonatal mice via the bloodstream or immune
cells in the blood, producing a scattered and widespread infection with a highly heterogeneous pattern of
propagation. Nonetheless, mCMV appears to display a particular preference for the cerebellum as an

infectious site.

3.2.2 Subcutaneous valnoctamide blocks murine CMV replication within the brain.

Mice were infected intraperitoneally on the day of birth, and we compared the brains of infected

mice treated subcutaneously with VCD with non-treated mCMV-infected mice. Viral load in the brain
was quantified at multiple time points after mCMV inoculation. Cerebrum (cortex, hippocampus,
thalamus, hypothalamus, and striatum) and cerebellum were assessed separately to determine whether
the viral preference for the cerebellar region, as observed in the brain section analysis, was also
accompanied by higher levels of virus replication. VCD decreased the amount of virus detected in both
the cerebrum and cerebellum substantially, with an ~100- to 1000-fold decrease at all time points tested
(Fig. 3.15, A and B). The anti-CMV effect displayed a rapid onset, suppressing the viral load after only
1 and 3 days of treatment in the cerebellum and the cerebrum, respectively. In untreated mCMV-infected
mice, higher viral titers were identified in cerebellar samples compared with cerebrum at the beginning
of infection (P4: t=3.704, p=0.004, paired Student’s t test), suggesting that the cerebellum may represent
a preferential site for initial mMCMYV targeting in the brain. These data indicate that VCD can attenuate
mCMYV infection detected in the brain.
The observed antiviral effect of VCD in the CNS could be the consequence of a drug-mediated decrease
in viral replication in the periphery. Along this line, we corroborated that VCD also attenuated mCMV
in the blood, liver, and spleen, starting quickly after therapy initiation and continuing to the end of the
experiment (Fig. 3.15, C-E). This reduction of mMCMV outside the brain would benefit the brain by
reducing the amount of virus that ultimately can enter the CNS.
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Fig. 3.15 Valnoctamide suppresses murine CMV load in the brain of mice infected intraperitoneally on the day
of birth. Newborn mice were infected at PO with 750 pfu of mCMV intraperitoneally and were randomized to
receive either vehicle (NCMV+VEH) or VCD (mCMV+VCD) subcutaneously from P1 until P21. A-E. Viral load
was quantified in the cerebrum (A), cerebellum (B), whole blood (C), liver (D), and spleen (E) by gRT-PCR at the

specified time points and were expressed as logio genome copies per gram/mL harvested tissue/blood. Data are
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presented as the mean£SEM; n=7-10 mice/time point. Viral titers below the limit of detection (LoD, dotted line)
were plotted as 2 logio genome copies. ns, not significant. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; two-

way ANOVA with postnatal day as repeated measures.

To investigate whether VCD can act directly in the brain to decrease mCMV, we infected pups
on P3 by direct intracranial virus inoculation. Analysis of mMCMYV load in the blood, liver, and spleen of
untreated infected mice at P9 showed no viral spread outside the CNS (Fig. 3.16A). Viral titers in the
brain were substantially lower by 100-fold in mCMV-infected animals receiving VCD treatment
compared with untreated mCMV-infected mice (Fig. 3.16B). These results indicate that subcutaneously
administered low-dose VCD can enter the brain at sufficient concentrations to effectively suppress

mCMV replication in situ.
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Fig. 3.16 Subcutaneously injected valnoctamide enters the brain and suppresses murine CMV replication
within the brain. A, B. Quantification of mCMV load in the blood, liver, spleen (A), and brain (B) of mice
intracranially infected with 2 X10* pfu of mMCMV on day 3 after birth. The amount of virus in tested samples was
calculated by gRT-PCR in P9 mice receiving either vehicle (mCMV+VEH) or VCD (mCMV+VCD)
subcutaneously from P3 through P8 and expressed as genome copies per mL/gram of harvested blood/tissue. Each
symbol represents an individual mouse, and horizontal bars show mean values of the groups. Viral titers below
the limit of detection (LoD, dotted line) were plotted as 2 logio genome copies. ****p<0.0001, Mann-Whitney U
test (B).
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3.2.3 Reversal of early neurological dysfunction in murine CMV-infected neonatal mice.

Human infants with CMV infection during early development can display substantial delays in
the acquisition of neurological milestones during the first months of life (Dollard et al., 2007; Kimberlin
et al., 2015). Since VCD showed a robust antiviral activity in the CNS of infected mice with a rapid
attenuation of viral replication, we investigated whether this would translate into a positive therapeutic
effect on the early neurological outcomes of neonatal mice.

Neurobehavioral assessments were performed using a battery of tests to examine body righting
and tactile reflexes, motor coordination, and muscular strength. These tests provide a detailed
examination of neurontogeny throughout the neonatal period since the behaviors measured are each
expressed at different periods during the first 3 weeks of postnatal life (Fox, 1965; Scattoni et al., 2008).

Here and in a number of experiments below, we compared neurological function in the following
four groups of mice: non-infected controls; VCD-treated non-infected controls; mCMV-infected mice;
and mCMV-infected mice treated with VCD. VCD was administered in a single daily subcutaneous dose.

Murine CMV infection on the day of birth induced abnormal acquisition of all the neurological
milestones assessed, with infected mice showing a delay of 6-10 days in the demonstration of responses
similar to the uninfected controls (Fig. 3.17, A-H). In turn, infected VCD-treated neonatal pups displayed
a timely acquisition of neurological milestones in all the behaviors measured. No differences were
identified in the early neurontogeny of uninfected mice receiving VCD or vehicle. Together, these data
indicate that VCD treatment during early development can safely improve the short-term

neurodevelopmental outcomes observed in infected neonatal mice.
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Fig. 3.17 Delayed acquisition of neurological milestones induced by murine CMV infection is completely
rescued by valnoctamide therapy. A-H. Graphs show neurodevelopmental delays in mCMV-infected not treated
pups (solid gray triangles) as assessed by the righting reflex (A), the cliff aversion (B), the forelimb grasping and
placing reflex (C, D), the negative geotaxis (E), the level screen test (F), the screen climbing test (G), and the
vibrissa placing reflex (H) (for a detailed description, see Materials and Methods). VCD-treated mCMV-infected
animals (solid green triangles) showed neurological responses similar to uninfected controls receiving either
vehicle (VEH; empty gray circles) or VCD (empty green circles). Values are reported as the meantSEM, n=20-
24 mice (9-12 males)/experimental group. ns, not significant. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001;
two-way ANOVA with postnatal day as repeated measures. Significance is shown next to the infected, untreated
mice (MCMV+VEH) line for comparison with uninfected controls (CTR+VEH and CTR+VCD) and next to control
lines for comparison with infected, VCD-treated pups (nCMV+VCD).

3.2.4 Amelioration of long-term neurobehavioral outcomes in infected juvenile mice.

CMV-infected infants with evidence of neurological delays during the neonatal period are at
increased risk of developing long-term permanent neurological and behavioral sequelae, which manifest
with a delayed onset after the first years of life (James and Kimberlin, 2016). Abnormal motor function
is a commonly observed long-term neurological complication (Turner et al., 2014). More recently, a link
between ASD-like behavioral disturbances in children and adolescents and hCMV infection during early
development has been proposed (Sakamoto et al., 2015; Garofoli et al., 2017). Given the substantial
improvement induced by VCD in the early neurontogeny of mCMV-infected neonatal mice, we
examined whether these beneficial effects could also ameliorate late-onset neurobehavioral

abnormalities, including motor performance and social and exploratory behavior.

3.2.4.1 Motor performance.

As indicated above, the cerebellum appears to be a preferential site for mCMV targeting in the
mouse brain. We investigated cerebellar-mediated motor functions in infected and control juvenile mice
using a hindlimb-clasping test, a vertical pole test, and a challenging beam traversal test (Brooks and
Dunnett, 2009; Guyenet et al., 2010; Fleming et al., 2013).

The hindlimb clasping test is a marker of cerebellar pathology commonly used for severity
scoring in mouse models of cerebellar degeneration (Guyenet et al., 2010). The majority of the mCMV-
infected mice (9 of 13 mice) displayed an abnormal response to the clasping test, with both hindlimbs

partially or entirely retracted to the abdomen when the mice were suspended by their tail for 10 seconds
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(Fig. 3.18, A and B). VCD administration completely reversed this altered behavior, restoring a response
similar to the uninfected counterparts.

By placing a mouse head upward on a vertical wooden pole, the vertical pole test allows for the
examination of the ability of the animal to turn through 180° and successfully climb down the pole
(Brooks and Dunnett, 2009). Infected, untreated juvenile mice required a longer period to complete the
task compared with both uninfected controls and mCMV-infected VCD-treated animals (Fig. 3.18C).
Three of 20 infected mice (15%) without treatment failed the test (e.g., showed an inability to turn the
head downward or falling) in all of the three trials given, whereas no VCD-treated infected mice or
uninfected controls failed in performing the task (p=0.03, y? test).

In addition, we evaluated fine motor coordination and balance by the challenging beam traversal
test, which assesses the ability of a mouse to maintain balance while traversing a narrow, 1 m-long beam
to reach a safe platform (Carter et al., 2001; Brooks and Dunnett, 2009; Luong et al., 2011; Fleming et
al., 2013). Murine CMV infection during early development increased the time needed by the mice to
cross the beam and also the frequency of slipping (Fig. 3.18, D and E). VCD treatment significantly
improved the coordination and balance of mMCMV-infected mice, reducing both the beam traversal time

and the number of slips recorded.
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Fig. 3.18 Impaired cerebellar-mediated motor functions in murine CMV-infected mice are ameliorated by
valnoctamide treatment. A. Photographs display stereotypical clasping response with hindlimbs retracted to the
abdomen in an infected mouse (MCMV, middle), and a normal response with splayed out hindlimbs in an
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uninfected control (left) and in an infected, VCD-treated animal (mCMV+VCD, right). B. Scoring of clasping
response according to hindlimb position. C. Increased T_a in mCMV-infected, untreated mice in the vertical pole
test, compared with VCD-treated infected animals and uninfected controls. D, E. Investigation of fine motor
coordination and balance by challenging beam traversal test. Infected mice need more time to traverse the beam
(D) and slip more (E) than the control mice. Both aspects are improved by VCD administration. Values are
reported as the meanzSEM; n=10-13 mice/group. ns, not significant, *p<0.05, **p<0.01, ***p<0.001,
****n<0.0001; Kruskal-Wallis test with Dunn’s post hoc test in B-D, and two-way ANOVA with repeated

measures and Bonferroni’s post hoc comparison in E.

3.2.4.2 Social and exploratory behavior.

ASD is characterized by pervasive impairments in social interactions coupled with restricted and
repetitive behaviors and decreased exploratory activity (American Psychiatric Association, 2013). To
investigate whether adolescent mice with perinatal mCMV infection would display social and
exploratory behavioral disturbances, we assessed social interaction and novel environment exploration
by means of the three-chamber test and an adapted small open field test.

Infected untreated mice showed normal sociability when exposed to a first stranger mouse,
preferring the conspecific over the empty cage (novel object) (Fig. 3.19A). However, a lack of preference
for social novelty was found when a second stranger mouse was introduced in the apparatus, with infected
untreated mice spending an equal amount of time in investigating the known and the novel animal (Fig.
3.19B). VCD therapy restored social novelty responses similar to levels shown in uninfected controls,
with increased time devoted to examining the second stranger mouse. Of note, locomotor activity within
the three-chambered social interaction apparatus was comparable among the four experimental groups,
as defined by the number of entries in side chambers during habituation, social approach, and social
novelty paradigms (p>0.05, two-way ANOVA, Bonferroni’s post hoc analysis).

Exploratory activity was assessed by quantifying the number of rearings and nose pokings of
mice exposed to a novel environment over a 3 min-test session (Fig. 3.19, C and D). A substantial
reduction in both rearing and hole-poking events was identified in mCMV-infected untreated mice
compared with control animals. Normal levels of exploratory activity were restored in infected mice

receiving VCD treatment.
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Fig. 3.19 Murine CMV infection during early development causes disturbances in social behavior and
exploratory activity in adolescent mice. A, B. Sociability (A) and preference for social novelty (B) assessment in
infected and control mice, with or without VCD treatment, by means of the three-chamber test. Infected mice
display regular sociability compared with control mice but lack preference for a novel mouse over a known mouse.
This lack of preference for social novelty is restored by VCD administration. C, D. Exploratory activity was
assessed by quantification of rearing (C) and nose-poking (D) events in a novel environment. The altered
exploratory behavior with decreased number of events identified in mCMV-infected animals is rescued by VCD.
Values are reported as the mean+SEM; n=10-13 mice/group for social behavior, n=18-22 mice/group for
exploratory activity. ns, not significant. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; two-way ANOVA with
repeated measures and Bonferroni’s post hoc comparison in A, B; Kruskal-Wallis with Dunn’s post hoc test in C,

D.

3.2.5 Valnoctamide attenuates murine CMV-induced brain defects in early development.

Early-onset neurodevelopmental delays and long-term permanent neurobehavioral disabilities are
commonly observed in hCMV-infected babies with evidence of virally induced brain abnormalities,
including decreased brain size and cerebellar hypoplasia (de Vries et al., 2004; Gandhi and Khanna,
2004; Cheeran et al., 2009; Oosterom et al., 2015; James and Kimberlin, 2016). Since VCD showed a
potent and fast-acting anti-CMYV activity in the brains of infected mice and appeared beneficial to both
short- and long-term neurobehavioral outcomes, we investigated whether drug treatment during early
development could also exert therapeutic actions on mCMV-induced brain defects.

Brain size was analyzed in 1 month-old-mice by assessing the brain-to-body weight ratio (Fig.
3.20, A and B). This measurement allows a more objective evaluation of the postnatal brain growth,
compared with absolute brain weight, when somatic growth restriction is present. Subcutaneous VCD
rescued the deficient brain growth induced by mCMV, restoring brain-to-body weight ratio values similar

to those in uninfected control mice.
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Fig. 3.20 Valnoctamide reverses deficient brain growth induced by murine CMV infection. A. Photograph shows
decreased brain size in an infected, untreated mouse (i.e., nCMV; middle) compared with an uninfected control
(left). VCD treatment restores normal brain growth (nCMV+VCD, right). B. Quantification of VCD-mediated
benefits on postnatal brain growth by calculation of brain-to-body weight ratio. Values are reported as the
mean+SEM; n=10 mice/group (3 litters). ns, not significant. **p<0.01, ***p<0.001; one-way ANOVA with
Bonferroni’s post hoc test (B).

Hypoplasia of the cerebellum is a common radiological finding in CMV-infected human babies
(de Vries et al., 2004; Oosterom et al., 2015). A temporary delay in early postnatal cerebellar
development was reported in newborn mice injected intraperitoneally with low titers of mMCMV (Koontz
etal., 2008). In our infected mice, we identified the cerebellum as a preferential site for viral localization
in the brain. We examined cerebellar anatomy and histology in control and infected mice with or without
VCD therapy. Murine CMV infection of the developing brain resulted in the disruption of cerebellar
development, with a 60% decrease in the total area of this region compared with uninfected controls
(F=8.56, p<0.001 ANOVA,; Fig. 3.21, A and B). Infected mice displayed a substantial loss of PCs and a
thinner ML, which contains PC dendritic trees, parallel fibers of the granule cells, Bergmann glia radial
processes, and basket and stellate cells (Fig. 3.21, C-E). Reduced thickness of the cerebellar IGL was
also found (Fig. 3.21F). PCs were not only decreased in number but also misplaced (Fig. 3.21G). In
addition, the external granular layer (EGL), normally undetectable after P21 in rodent brains (Ferguson,
1996), could still be identified in mMCMV-infected untreated mice at P30, whereas no EGL was visible in
controls (Fig. 3.21H). Alignment of PCs and maturation of their dendritic trees, as well as granule cell
precursor proliferation and inward migration from the EGL to the IGL, occur during the first 3 postnatal
weeks of life in rodents (Inouye and Murakami, 1980; Ferguson, 1996). VCD treatment rescued the

altered cerebellar development of infected animals, restoring normal cortical layer thickness and
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representation and markedly increasing PC number (Fig. 3.21, C-H). These drug-mediated positive
effects ultimately resulted in normalization of cerebellar size (Fig. 3.21, A and B).
No adverse side effects on either brain growth or morphometric parameters were detected in

uninfected controls receiving VCD compared with their vehicle-treated counterparts.
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Fig. 3.21 Valnoctamide substantially ameliorates cerebellar development in murine CMV-infected mice. A.
Photomicrograph of representative fluorescent Nissl-stained cerebellar areas in control (left) and infected mice
with (right, mCMV+VCD) or without (middle, mCMV) VCD. Note the delayed foliation in infected, untreated
cerebellum, rescued by VCD. Scale bar, 200 um. B. Graph depicts cerebellar area, expressed as a percentage of
total brain area (three sagittal sections/animal, five animals/group). C. Photomicrograph showing cerebellar PCs
and ML by means of calbindin D-28K staining. Infected, untreated cerebellum (middle) displays loss of PCs and
thinner ML compared with uninfected control (left); VCD improves both parameters (right). Scale bar, 200 um.
D-F. Quantification of PC number (D), and ML (E) and IGL thickness (F) along 500 um of the primary fissure
(both sides; three sagittal sections/mouse, five mice/group). G. Fluorescent micrograph of heterotopic PCs
(arrowheads) identified in an infected untreated cerebellum. Scale bar, 100 um. H. Photomicrograph displays
pathological persistence of EGL in mCMV-infected, untreated cerebellum at P30 (middle); no EGL could be
identified at the same time point in uninfected control (left) and infected, VCD-treated cerebellum (right). Scale
bar, 200 um. Values are reported as the mean+SEM. ns, not significant. *p<0.05, **p<0.01, ***p<0.001; one-

way ANOVA with Bonferroni’s post hoc test.

3.2.6 Block of human CMV infection in human fetal brain cells.

Mouse and human forms of CMV share a close similarity in their viral genomes, but each retains
species specificity (Rawlinson et al., 1996; Mocarski et al., 2013). In the experiments above, we used
mCMV in mice. Here, to corroborate that the results we found above in our in vivo model with mCMV
generalize to hCMV, we examined the actions of VCD on hCMV-infected human fetal astrocytes, a
common cellular target that can play an important role in virus dispersal in the brain (Lokensgard et al.,
1999; van Den Pol et al., 1999). VCD substantially decreased hCMYV infectivity of human fetal astrocytes
as assessed by quantification of cells expressing the hCMV-GFP-reporter (Fig. 3.22A). Viral replication
was also diminished in the presence of the drug, with a reduction in viral titer by 100-fold (4.92 X 10° +
5.84 X 10 pfu/ml in vehicle-treated cultures vs 6.31 X 103+ 3.06 X 103 pfu/ml in VCD-treated cultures;
p<0.0001, Mann-Whitney U test; Fig. 3.22B).

In our initial in vitro experiments, we observed that VPD and VCD appear to act at an early stage
of hCMV infection in human dermal fibroblasts. To determine whether VCD could exert a similar early
block of hCMV replication cycle also in human fetal astrocytes, we used a series of experiments assessing
virus attachment to the cellular surface and penetration into the cytoplasmic space as described above.
Briefly, this was accomplished by shifting the incubation temperature from 4°C, which allows virus

attachment but not fusion and internalization, to 37°C, which allows virus fusion and internalization
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(Chan and Yurochko, 2014). Viral genome quantification by qRT-PCR showed that VCD appeared to
block hCMV attachment to fetal astrocytes (Fig. 3.22C). In the presence of VCD, the amount of virus
bound to the cell surface was decreased by 60% compared with control cultures not treated with VCD
(p=0.0007, unpaired Student’s t test). VCD did not appear to block hCMV fusion/internalization in the
astrocytes. This also corroborates that the mechanism of VCD block of hCMV occurs at an early stage

of infection and appears unrelated to the genomic mechanisms of other approved anti-CMV compounds.
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Fig. 3.22 Valnoctamide suppresses human CMYV infectivity and replication in human fetal astrocytes by
blocking virus attachment to the cell. A, B. Human fetal astrocyte cells were pretreated (for 1 h) with VCD (100
pM) or vehicle (VEH) before inoculation with hCMV using an MOI of 0.1. VCD treatment decreased hCMV
infectivity and replication as assessed by GFP-positive cell counting (A) and viral yield assay (B) at 48 hpi. C.
Virus-inoculated human fetal astrocytes were exposed to VCD or vehicle (100 uM) for 1 h at either 4°C or 37°C
to assess hCMV attachment to (“bound virus ) and internalization into (“internalized virus”) the cell. Viral DNA
was quantified by gqRT-PCR and results expressed as the percentage of control (vehicle-treated cultures

considered as 100%). Graphs represent the average of three separate experiments each performed in triplicate;
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error bars correspond to SE. ns, not significant. ***p<0.001, ****p<0.0001, unpaired Student’s t test in A, C;
Mann-Whitney U test in B; in C, significance refers to the comparison between VCD and vehicle-treated cultures

in each assay.
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Chapter 4



Discussion and Conclusions.

4.1 Discussion.

Our work shows that VPD and VCD, two orally available drugs used for many years in clinics to
treat neuropsychiatric disorders, evoke a substantial and specific inhibition of both mouse and human
CMV. The anti-CMV activity of these compounds has never been described.

The VPD- and VCD-mediated antiviral effect is substantiated by multiple converging lines of in vitro
evidence, including: 1) reduction in infected cell number, as determined with GFP reporter expression,
immunocytochemistry against \CMV gB, and qPCR; 2) reduction in virally induced cell death quantified
with ethidium homodimer; 3) reduction in virus plaque number and size; and 4) reduction in viral
replication and virion release. Neither VPD nor VCD displayed detectable cytotoxicity even at highest
concentrations tested.

Importantly, both compounds also block CMV infection in vivo, leading to increased survival, improved
body weight, ameliorated postnatal somatic development, and decreased viral load in peripheral target
organs of infected neonatal mice receiving treatment subcutaneously. Also, low-dose VCD administered
outside the brain during early development effectively suppresses CMV inside the brain of infected
animals via two different sites of action. One is that VCD reduces peripheral levels of CMV, thereby
decreasing the amount of virus available for entry into the brain. A second is that VCD acts directly
within the brain to block existing brain CMV infection. Of note, the antiviral action of VCD begins
shortly after drug administration and effectively attenuates CMV levels throughout the brain during the
critical period of postnatal brain development. This decrease in viral load is accompanied by a
concomitant restoration of normal early neurological outcomes in infected neonatal mice treated with
VCD. Late-onset neurobehavioral dysfunction, including motor impairment and social and exploratory
behavior disturbances, as well as virally induced deficient brain growth and disrupted cerebellar
development, are substantially attenuated in CMV-infected adolescent mice which received VCD during
the neonatal period, suggesting long-lasting beneficial effects of drug administration.

An important underlying rationale of our study is that the newborn mouse brain is substantially
less developed than the newborn human brain. Based on the timing of the brain growth spurt, initial
neurogenesis, cerebellar foliation and maturation, establishment and refinement of connections,
myelination, and gliogenesis, the mouse CNS at birth is proposed to parallel the early second-trimester
human fetal CNS (Clancy et al., 2001; Branchi et al., 2003; Clancy et al., 2007a; Clancy et al., 2007b;
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Workman et al., 2013). This is a critical period for human brain development and for CMV infection
(Manicklal et al., 2013). By infecting mouse pups on the day of birth, this animal model provides an
informative means to study the effects of CMV on the developing brain. Infected newborn mice display
similar brain pathology and neurological symptoms to that reported in congenitally infected human
infants, including microcephaly, cerebellar hypoplasia, neuronal loss, neurodevelopmental delays, motor
impairments, and behavioral disturbances (Perlman and Argyle, 1992; de Vries et al., 2004; Pass et al.,
2006; Lipitz et al., 2013; Kimberlin et al., 2015; De Kegel et al., 2016; James and Kimberlin, 2016).
These data support the validity of this in vivo model for investigating CMV infection and novel anti-
CMV treatments during early brain development. Further confirmation of viability of this experimental
model for assessing virally induced neurological complications during early neurontogeny also derives
from our recent study on the effects of Zika virus in the developing brain (van den Pol et al., 2017) (see
Appendix).

Despite being partially effective, currently available CMV antiviral agents, including GCV and
its prodrug valGCV, cidofovir, foscarnet, and fomivirsen, display both toxic and teratogenic actions
(Mercorelli et al., 2011; James and Kimberlin, 2016). For this reason, they are not approved or
recommended for the treatment of pregnant women and their infected fetuses, thus depriving those who
may need it the most or at best delaying treatment and hindering potential prevention or amelioration of
CMV-induced brain defects during in utero development (Kimberlin et al., 2015). GCV and valGCV are
currently administered as off-label treatment in postnatally infected premature infants with life-
threatening CMV-mediated disease (Amin et al., 1990; Fischer et al., 2010; Okulu et al., 2012) and in
congenitally infected neonates with viral involvement of the CNS (Kimberlin et al., 2003; Kimberlin et
al., 2015). However, acute and long-term toxicity, namely neutropenia, gonadal toxicity, and
carcinogenicity, limit the use of these drugs only to those newborns with severe signs of infection
(Crumpacker, 1996; Gandhi and Khanna, 2004; Mercorelli et al., 2011; Rawlinson et al., 2016), leaving
less severely affected neonates with no treatment and, hence, at risk for developing late-onset
neurological complications (Lackner et al., 2009). The toxicity associated with anti-CMV drug
administration also represents a substantial issue in immunocompromised patients, who are at high risk
for developing severe, possibly life-threatening CMV-mediated disease (Britt, 2011; Mercorelli et al.,
2011; Mocarski et al., 2013). Therefore, it is evident that development of anti-CMV compounds with
safer in vivo profiles that can be used not only during pregnancy but also in all infected neonates and in

cases of compromised systemic immunity would be of substantive benefit. The high burden of CMV-
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related morbidity during early development and in conditions of reduced immunity strongly supports
research efforts towards identification of novel anti-CMV therapies (Cannon and Davis, 2005; Kenneson
and Cannon, 2007; Cannon, 2009; Boppana et al., 2013; James and Kimberlin, 2016; Mcintosh et al.,
2016; Mestas, 2016).
VPD and VCD have been marketed since the early 1960s and no safety concerns have been raised
(Stepansky, 1960; Goldberg, 1961; Harl, 1964; Bialer, 1991; Bersudsky et al., 2010; Weiser et al., 2017).
Further confirmation of safety profile has derived from preclinical investigations of drug-related anti-
convulsant activity in several experimental models of epilepsy (Porter et al., 1984; Lindekens et al., 2000;
Isoherranen et al., 2003; Mares et al., 2013; Shekh-Ahmad et al., 2013; Shekh-Ahmad et al., 2014; Shekh-
Ahmad et al., 2015; Bialer et al., 2017). In addition, neither compound showed increased teratogenic or
toxic potential compared to vehicle in multiple studies using different animal models of early
development (Nau and Loscher, 1986; Nau and Scott, 1987; Radatz et al., 1998; Okada et al., 2004;
Shekh-Ahmad et al., 2014; Mawasi et al., 2015; Wlodarczyk et al., 2015; Bialer et al., 2017). Importantly,
we detected no adverse collateral effects on postnatal body growth and neurodevelopmental and
behavioral outcomes of uninfected control mice receiving VPD or VCD throughout the neonatal period.
However, VCD has better translational potential than VPD. VCD acts as a drug on its own in mice, rats,
dogs, and humans (Haj-Yehia and Bialer, 1988; Bialer et al., 1990; Bialer, 1991; Blotnik et al., 1996;
Barel et al., 1997; Radatz et al., 1998). In turn, VPD, while showing negligible conversion to VPA in
mice (Radatz et al., 1998), is largely metabolized (>80%) to VPA in humans (Bialer et al., 1990; Bialer,
1991; Barel et al.,, 1997). As mentioned above, VPA is toxic, teratogenic, and can enhance virus
infections (Nau et al., 1991; Kuntz-Simon and Obert, 1995; Moog et al., 1996; Radatz et al., 1998; Shaw
et al., 2000; Phiel et al., 2001; Michaelis et al., 2004; Okada et al., 2004; Michaelis et al., 2005; Otsuki
et al., 2008; Mardivirin et al., 2009; Tung and Winn, 2010; Paglino and van den Pol, 2011; Kataoka et
al., 2013; Paradis and Hales, 2013; Nakashima et al., 2015; Paradis and Hales, 2015). Therefore, VCD
represents the best candidate for further investigation in both pre-clinical and clinical settings of CMV-
mediated disease during early development and in conditions of compromised systemic immunity.
Alongside with toxicity and teratogenicity, currently approved anti-CMV drugs display
additional drawbacks, including a shared mechanism of action based on block of viral DNA replication
and limited CNS penetration (Mercorelli et al., 2011; Campanini et al., 2012; Choi et al., 2013; Morillo-

Gutierrez et al., 2017). Given the increasing emergence of drug-resistant CMV strains and the substantial
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burden of congenital CMV-induced brain damage and neurological disability, these therapeutic
limitations pose further challenges in the treatment of CMV infection.

VCD, as well as VPD, appears to act on an early stage of CMV infection by interfering with viral
attachment to cell surface HSPGs, as we demonstrated both in human fibroblasts and human fetal
astrocytes. This is a different mechanism of action as compared to the available CMV antivirals. Also, it
differs from the antiviral mechanism suggested to underlie VPD-mediated inhibition of herpes virus EBV
reactivation, based on VPD-induced suppression of viral and cellular gene expression (Gorres et al.,
2014; Gorres et al., 2016). The drug-mediated block of CMV attachment may be due to a reversible
interaction with either HSPGs or free virions or may require the simultaneous presence of both the virus
and the cell. The alternative mechanism of action of VCD against CMV suggests the potential of this
compound to act as a valid therapeutic option in case of resistant viral isolates, a substantial concern in
immunocompromised patients and an increasing issue in congenitally infected infants undergoing
prolonged antiviral therapy (Mercorelli et al., 2011; Campanini et al., 2012; Choi et al., 2013; Morillo-
Gutierrez et al., 2017). Also, the different mechanism of anti-CMV activity of VCD supports the use of
this drug in combination treatment with already approved anti-CMV compounds to decrease the
emergence of resistant viral mutants and enhance efficacy of antiviral therapy (Drew, 2000; James and
Prichard, 2011; Campanini et al., 2012; Choi et al., 2013; Coen and Richman, 2013). Here we show that
VCD used together with GCV generates an additive effect in blocking CMV. Targeting of CMV
attachment by VCD may also associate with additional therapeutic benefits, including the lack of need
to enter the cell to exert its antiviral actions and the inhibition of the synthesis of viral proteins, which
can both be cytotoxic (Mercorelli et al., 2011). We did not identify any VCD-induced cytotoxicity even
at highest drug concentrations tested. Moreover, block of virus attachment might better prevent CMV
transmission via bodily fluids, such as urine, saliva, breast milk, and genital secretions, containing cell-
free virus at high titers (Britt, 2008). This is of particular importance for both pregnant or breast-feeding
mothers and immunocompromised individuals.

Preclinical investigation of pharmacokinetic properties of VCD head-to-head with VPA showed
improved CNS distribution of VCD after peripheral administration (Blotnik et al., 1996). By using
intracranial inoculation of CMV in mouse pups, we demonstrated that low-dose VCD administered
subcutaneously can cross the BBB, enter the brain, and effectively block viral replication and dispersal
within the brain, with improved short- and long-term neurological outcomes of infected mice. This

enhanced CNS targeting of VCD, as compared to the available CMV antivirals, is of utmost value since
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CMV-mediated brain dysfunctions are the most severe complications following infection during early
development.

Dose-response relationship analyses revealed that GCV, currently the first-line therapy for CMV,
is a more potent compound than VCD in vitro. Thus, a less effective anti-CMV activity of VCD compared
to GCV might be expected in vivo. Nonetheless, we found substantial CMV inhibition in both peripheral
organs and brain of infected mice with subcutaneous drug delivery. The dose of VCD we use here, with
a 6 g-developing mouse body weight, is 5 mg/kg, corresponding to 1/199.8 fraction of the VCD-LDso
value (Wlodarczyk et al., 2015). This amount is similar to or less than the dose of existing compounds
used to treat CMV in clinical settings. For instance, assuming a 60 kg-body weight, GCV can be used
from 5 up to 20 mg/kg/day, corresponding to 1/400 to 1/100 fraction of the GCV-LDso value (Wishart et
al., 2006), in patients with serious infections (Kotton et al., 2013; Choopong et al., 2016; Genentech
USA, 2016). Furthermore, the 5 mg/kg dose of VCD for treating CMV infection is lower than the dose
used to safely attenuate seizures and neuropathic pain in neonatal and adult rodent experiments (Winkler
et al., 2005; Kaufmann et al., 2010; Mares et al., 2013; Shekh-Ahmad et al., 2014), and is less than the
20 mg/kg dose that has been used in humans to treat psychiatric dysfunction with no evidence of safety
concerns (Stepansky, 1960; Goldberg, 1961; Harl, 1964; Bersudsky et al., 2010; Weiser et al., 2017).
Together, these findings suggest that VCD may be able to attenuate CMV in the human brain at doses
that should be both effective and tolerable. The reduction of CMV infection of human fetal astrocytes by
VCD further supports the hypothesis that VCD should be effective against CMV in the human brain.

Epilepsy is among the most severe neurological complications that can develop in neonates with
symptomatic congenital CMV infection (Suzuki et al., 2008; Smithers-Sheedy et al., 2017). VPA is the
first-line therapy for pediatric epilepsy (Guerrini, 2006); however, VPA at therapeutic doses for
anticonvulsant purposes can be toxic to the liver (Guerrini, 2006; Monti et al., 2009) and enhance CMV
infectivity and replication (Pisani et al., 1986; Kuntz-Simon and Obert, 1995; Michaelis et al., 2004;
Michaelis et al., 2005). VCD has proven to be as a less toxic and more potent anti-seizure agent than
VPA in multiple animal models of epilepsy (Barel et al., 1997; Radatz et al., 1998; Kaufmann et al.,
2010; White et al., 2012; Mares et al., 2013; Shekh-Ahmad et al., 2013; Shekh-Ahmad et al., 2014;
Wlodarczyk et al., 2015), partly by acting on gamma-aminobutyric acid A (GABAA) receptors with
prolongation of miniature inhibitory post-synaptic currents (Spampanato and Dudek, 2014). Here we
demonstrate that VCD administered subcutaneously enters the brain and effectively blocks CMV

infection in situ. This CNS-targeted antiviral activity of VCD occurs at doses lower than the doses found
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to be effective in suppressing seizures in epileptic adult and, more importantly, neonatal rodents
(Kaufmann et al., 2010; Mares et al., 2013; Shekh-Ahmad et al., 2014). These results indicate that VCD
might be able to safely and effectively act as both an anti-CMV drug and an antiepileptic agent in
congenitally CMV-infected neonates experiencing seizures.

Congenital CMV infection, both with and without brain abnormalities and sensorial deficits, has
been suggested as a potential etiological factor of ASD (Stubbs et al., 1984; Yamashita et al., 2003;
Engman et al., 2015; Sakamoto et al., 2015; Garofoli et al., 2017). A five percent prevalence of CMV
DNA has been reported in cord blood-derived dried spots from ASD children as compared to a 0.2%
prevalence identified in the general population (Gentile et al., 2017). Notably, this five percent
prevalence of congenital CMV among ASD individuals is similar to the prevalence of other disorders
already known to be associated with ASD, such as Fragile X syndrome and tuberous sclerosis (Eriksson
et al., 2013). Virally induced immune activation and subsequent brain inflammation during critical
moments of neurontogeny, as well as brain deficits, including cerebellar hypoplasia and PC dysfunction
and loss, might play a role in congenital CMV-associated ASD development (Shi et al., 2003; Shi et al.,
2009; Fatemi et al., 2012; Tsai et al., 2012; Basson and Wingate, 2013; Hampson and Blatt, 2015;
Mazarati et al., 2017). Abnormal GABA signaling in selective neuronal circuits with delayed excitatory-
to-inhibitory switch, as a possible consequence of viral challenge mediated-immune activation (Corradini
et al., 2017), may lead to excitatory/inhibitory imbalance in the developing brain and ASD-like
behavioral disturbances (Sgado et al., 2011; Cellot and Cherubini, 2014; Jung et al., 2017). Additionally,
PCs are the sole output of the cerebellar cortex and missing/dysfunctional PCs could translate to
decreased GABA inhibition to excitatory cells in the deep cerebellar nuclei and subsequent increased
excitatory input to the thalamus and cerebral cortex, likely contributing to ASD phenotype (Hampson
and Blatt, 2015). Widespread foci of virus infected cells surrounded by mononuclear cells, increased
expression of proinflammatory cytokines and interferon-stimulated genes, and substantial microgliosis
have been described in the brain of neonatal mice infected i.p. with low titer-CMV (Koontz et al., 2008;
Kosmac et al., 2013; Seleme et al., 2017). In addition, CMV i.p. infection during early mouse
development and virally induced mouse brain inflammation associated with abnormal expression of
developmentally regulated genes in the cerebellum, including GABAA receptor, and delayed cerebellar
foliation and maturation. Here we show that CMV inoculated i.p. in newborn mice on the day of birth
consistently targets the cerebellum as preferential site for initial viral localization in the brain, with

evidence of robust viral GFP labeling in both PCs and granule neurons. Infected adolescent animals
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display disrupted cerebellar ontogeny with decreased cerebellar area, PC loss and misplacement, and
reduced ML and IGL thickness, alongside with ASD-like behavioral abnormalities, including lack of
preference for social novelty and impaired novel environment exploration. VCD treatment throughout
the neonatal period effectively control CMV replication in the developing brain, rescues cerebellar
deficits, and restores behavioral responses similar to the uninfected controls. These results corroborate
the utility of our in vivo model for investigating CMV-mediated neurobehavioral anomalies and novel
anti-CMV therapeutics, and may provide initial evidence for a potential role of CMV infection during
early development in ASD. Importantly, VCD action on GABAA receptors (Spampanato and Dudek,
2014) may play an additional beneficial role on CMV-related ASD-like behavioral phenotype by
balancing excitatory/inhibitory signaling within the developing brain (Cellot and Cherubini, 2014;
Hampson and Blatt, 2015). If the pathogenic role of congenital CMV in ASD should be confirmed in
future studies, this would represent a potential treatable cause of ASD. Also, this would support the
inclusion of dried blood spot-CMV DNA detection in the diagnostic work-up for ASD cases, as recently

proposed (Engman et al., 2015).

4.2 Concluding remarks and future perspectives.

We examined two drugs, VPD and VCD, which display unexpected anti-CMV properties. Both
compounds are amide derivatives of VPA but lack the inhibitory action on HDAC which underlies VPA-
mediated detrimental effects on early fetal development. In humans, VPD can be metabolized to the
toxic, teratogenic, and CMV-enhancing VPA. Therefore, VPD would not be an ideal anti-CMV drug
candidate in the clinic, particularly in the treatment of pregnant mothers and their fetuses. In contrast,
VCD has minimal conversion to its corresponding free acid and no conversion to VPA in humans, thus
representing the compound of choice for further investigation in both pre-clinical and clinical settings of
CMV-mediated disease. However, the evidence of a potent anti-CMV activity for both VPD and VCD,
which are related compounds, suggests that other structurally related molecules may also possess
antiviral potential. Also, because VPD and VCD have similar antiepileptic actions and sedative properties
in psychiatric patients, this raises the possibility that the neurotropic and antiviral mechanisms of action
may not be unrelated.

Our study shows that subcutaneous low-dose VCD effectively and safely attenuates CMV
replication in the developing mouse, with increased survival and improved postnatal growth and somatic

development. Also, VCD treatment rescues infected animals from virally induced brain defects and
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adverse short- and long-term neurological outcomes. Here we focused on newborn mice; further studies
focusing on VCD anti-CMV efficacy in in utero fetal development and on the inhibition of transplacental
transmission leading to fetal infection will be beneficial.

Our results also show that VCD suppresses CMV replication in human fetal brain cells and human
fibroblasts by blocking viral attachment to the cell surface, a different mechanism of action compared to
the available CMV antivirals. This suggests the potential of VCD as a therapeutic option in congenitally
infected neonates requiring prolonged antiviral therapy and in immunocompromised adults, for whom
the emergence of drug-resistant CMV strains has become a challenge. Combination therapies, which can
include two or more antiviral compounds, may help in controlling this problem, but are limited by drug-
related toxicity and CMV cross-resistance to currently approved antiviral agents. By displaying a good
safety profile and a novel mechanism of anti-CMV activity, VCD may represent a valid therapeutic
choice for effective and safe combination treatments potentially meriting clinical testing in infected
infants and immunocompromised individuals.

Human CMV has been detected in a substantial number of brain tumors and has been postulated
to play a role in the initiation or progression of malignant gliomas (Cobbs et al., 2007; Odeberg et al.,
2007; Knight et al., 2013), although the possibility remains that CMV has a greater affinity for existing
glial-type cancer cells than for normal brain cells (van Den Pol et al., 1999) rather than a causative role
in oncogenesis. Although further substantiation is merited (Lau et al., 2005), if CMV does play a role in
the enhancement of human brain tumor growth, the use of VCD to attenuate CNS CMV may prove
beneficial in attenuating tumor progression.

In conclusion, considering that VCD has already been used clinically for many years with no
safety concerns, has proven to be safe in multiple models of early development, has optimal CNS
targeting, and displays a novel mechanism of anti-CMV action, it may merit further clinical testing for
possible therapeutic utility in the treatment of CMV infection during early human development and in
conditions of reduced systemic immunity. The fact that VCD is already approved for the treatment of
neuropsychiatric disorders in adult individuals should greatly reduce the typically long period required
to bring a new antiviral drug into use. Results from clinical testing in immunocompromised adults with
CMV-mediated disease could help in paving the way for clinical studies during in utero and early

postnatal human development.
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Cytomegalovirus (CMV) infection can generate debilitating disease in immunocompromised individuals
and neonates. It is also the most common infectious cause of congenital birth defects in infected fetuses.
Available anti-CMV drugs are partially effective but are limited by some toxicity, potential viral re-
sistance, and are not recommended for fetal exposure. Valproate, valpromide, and valnoctamide have
been used for many years to treat epilepsy and mood disorders. We report for the first time that, in
contrast to the virus-enhancing actions of valproate, structurally related valpromide and valnoctamide
evoke a substantial and specific inhibition of mouse and human CMV in vitro. In vivo, both drugs safely
attenuate mouse CMV, improving survival, body weight, and developmental maturation of infected
newborns. The compounds appear to act by a novel mechanism that interferes with CMV attachment to
the cell. Our work provides a novel potential direction for CMV therapeutics through repositioning of
agents already approved for use in psychiatric disorders.
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1. Introduction

Human cytomegalovirus (hCMV) is a common and potentially
life-threatening infectious complication in susceptible individuals
with immature or compromised immune systems, including neo-
nates, AIDS patients, and transplant recipients. CMV is also the
leading viral cause of congenital brain defects, including micro-
cephaly (Cheeran et al., 2009; Gandhi and Khanna, 2004; Mocarski
et al., 2007; Tsutsui, 2009). No vaccine is available to prevent CMV
infection. Acute and long-term toxicity, carcinogenicity, poor oral
bioavailability, and drug resistance significantly limit the use of the
current antivirals ganciclovir (GCV), valganciclovir, foscarnet, ci-
dofovir, and fomivirsen (Mercorelli et al., 2011); there are no re-
commended treatments for pregnant mothers and infected fetuses
due to the potential teratogenic actions of these compounds
(Gandhi and Khanna, 2004). Thus, development of less toxic
agents with activity against resistant CMV isolates is needed.

Valproate (VPA) is a widely prescribed anti-epileptic drug em-
ployed for the treatment of multiple psychiatric and neurological
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diseases including bipolar disorder, epilepsy, neuropathic pain,
and migraine (Perucca, 2002). VPA is the first-line therapy for
pediatric epilepsy (Guerrini, 2006). Significant side effects of VPA
administration include liver toxicity and teratogenesis (Guerrini,
2006; Monti et al., 2009). A free carboxylic group in the chemical
structure and an inhibitory action on histone deacetylase (HDAC)
underlie the detrimental effects exerted by VPA on fetal develop-
ment and can lead to neural tube defects, skeletal abnormalities,
and autism (Nau et al., 1991; Radatz et al., 1998; Okada et al., 2004;
Phiel et al., 2001; Tung and Winn, 2010; Paradis and Hales, 2013;
Kataoka et al., 2013).

Valpromide (VPD), a more effective and less toxic anti-epileptic
homolog of VPA, has been used as mood stabilizer in bipolar dis-
order for over 25 years (Bialer, 1991). In contrast to VPA, VPD lacks
the free carboxylic group and the HDAC inhibitory activity and
therefore the related teratogenic risk, as demonstrated in a num-
ber of animal models (Radatz et al., 1998; Okada et al., 2004).

Although both VPA and VPD attenuate reactivation from la-
tency of Epstein Barr virus (Gorres et al., 2016), VPA enhances the
infectivity and replication of a large variety of other viruses in-
cluding HIV (Moog et al., 1996), vesicular stomatitis virus (VSV)
(Paglino and van den Pol, 2011), Kaposi's sarcoma-associated
herpes virus (Shaw et al.,, 2000), herpes simplex viruses (Naka-
shima et al., 2015; Otsuki et al., 2008), human herpes virus 6
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(Mardivirin et al., 2009), and hCMV (Kuntz-Simon and Obert, 1995;
Michaelis et al., 2004, 2005) through a mechanism involving HDAC
inhibition. These virus-enhancing effects are exerted at doses
therapeutic for anti-epileptic and mood stabilizing purposes
(Brodie and Dichter, 1996; Pisani et al., 1986; Matalon et al., 2011),
thus raising concerns over the use of VPA in congenitally CMV-
infected neonates experiencing seizures and in AIDS patients with
CMV- and HIV-mediated neurological disorders (Jennings and
Romanelli, 2000). Given the absence of HDAC inhibition, we hy-
pothesized that VPD might show a reduced enhancement of CMV
infection compared with VPA.

2. Materials and methods
2.1. Cells

NIH/3T3 (CRL-1658) and Vero (CCL-81) cells were purchased
from the American Type Culture Collection (ATCC) (Manassas, VA),
normal human dermal fibroblasts (HDF) were obtained from
Cambrex (Walkersville, MD), Neuro-2a (CCL-131) were kindly
provided by A. Bordey (Yale University, New Haven, CT), and U-373
MG cells were a gift from R. Matthews (Syracuse, NY). Vero cells
were grown and maintained in Eagle's Minimum Essential Med-
ium (MEM) supplemented with 10% fetal bovine serum (FBS) and
1% pen/strep (Invitrogen, Carlsbad, CA). All the other cell lines
were maintained in Dulbecco's modified Eagle's essential medium
(DMEM) supplemented with 10% FBS and 1% pen/strep. Primary
cultures of mouse glia were established using whole brain tissue
harvested from P5 mice and maintained in DMEM (van den Pol
et al,, 1999). All cultures were kept in a humified atmosphere
containing 5% CO, at 37 °C.

2.2. Viruses
A brief description of each virus used is given below.

2.2.1. mCMV-GFP

Recombinant murine CMV (mCMV, MC.55) expressing en-
hanced green fluorescent protein (EGFP) was derived from the
K181 strain. The expression cassette containing the EGFP gene
controlled by the human elongation factor 1 alpha (EF1-alpha)
promoter was inserted into the immediate early gene (IE-2) site.
NIH/3T3 cells were used for viral propagation and titering by
plaque assay (van den Pol et al., 1999).

2.2.2. hCMV-GFP

Recombinant hCMV expressing EGFP under the control of the
EF1-alpha promoter was derived from the Toledo strain. The gene
coding for EGFP was inserted between US9 and US10 of the hCMV
genome, a site that appears to tolerate alterations without affect-
ing viral replication. EGFP expression and replication capability
were tested on normal human fibroblasts and U-373 human
glioblastoma cells (Vieira et al., 1998; Jarvis et al., 1999). Human
dermal fibroblasts were used for viral propagation and titering by
plaque assay.

Recombinant CMVs were generously provided by E. Mocarski
(Emory University, Atlanta) and ]J. Vieira (University of Wa-
shington, Seattle).

2.2.3. VSV-GFP

A recombinant variant of the Indiana serotype of VSV expres-
sing a GFP reporter gene from the first genomic position (VSV-
1'GFP) (Ramsburg et al., 2005) was kindly provided by J. K. Rose
(Yale University, New Haven, CT). Vero cells were used for viral

propagation and titering by plaque assay (van den Pol et al., 2002).

All the viruses used in the present study express EGFP as a
reporter and green fluorescence was employed to visualize in-
fected cells and viral plaques. Viral titers were determined by
standard plaque assay using 25% carboxy-methyl-cellulose (CMC)
overlay for mCMV-GFP and hCMV-GFP (Zurbach et al., 2014) or
0.5% agar overlay for VSV-GFP. Viral stocks were stored in aliquots
at —80 °C. For each experiment, a new aliquot of virus was thawed
and used.

2.3. Chemicals

Valpromide (catalog no. V3640), valnoctamide (catalog no.
V4765), valproate (catalog no. S0930000), ivermectin (catalog no.
188998), ganciclovir (catalog no. G2536), and heparan sulfate so-
dium salt (catalog no. H7640) were purchased from Sigma-Aldrich
(St. Louis, MO). Valproate and heparan sulfate were dissolved in
water to give a stock solution of 1 M and 1 mg/mL, respectively.
Valpromide, valnoctamide, ivermectin, and ganciclovir were dis-
solved in dimethylsulfoxide (DMSO) to yield a stock solution of
1M (valpromide, valnoctamide) and 100 mM (ivermectin, ganci-
clovir). Ivermectin was used at 1puM, a concentration recently
shown effective against Chikungunya and other alphaviruses
(Varghese et al., 2016).

2.4. Quantification of infection

Effects of the tested compounds on CMV infection were as-
sessed by counting the number of infected GFP-positive cells and
viral plaques, and measuring plaque size.

Cells (NIH/3T3, Neuro-2a, mouse glia, Vero, normal human
dermal fibroblasts, and U-373) were seeded at a density of 40,000
cells per well in 48-well plates and incubated overnight before
medium (0.2 mL per well) was replaced for pre-treatment with
VPA, VPD, VCD, ivermectin, or vehicle at the specified concentra-
tions. After 24 h of drug exposure, cells were inoculated with virus
and incubated at 37 °C for 2 h. Following incubation, cultures were
washed twice with PBS and replenished with fresh media con-
taining the test compounds. GFP-positive cells were counted at 48
(mCMV) and 72 (hCMV) hours post-infection (hpi). In addition,
media was collected at 72 (mCMV) or 96 (hCMV) hpi and titered
by plaque assay using NIH/3T3 (mCMV) and HDF (hCMV) mono-
layers to assess the drug-mediated inhibition of virus replication
(virus yield reduction assay).

For the plaque reduction assay, cells pre-treated with drugs or
vehicle for 24 h were infected with mCMV-GFP or hCMV-GFP, in-
cubated for 2 h at 37 °C to allow viral adsorption, rinsed twice with
PBS, and overlaid with a viscous solution containing the tested
agents at the specified concentrations in DMEM (75%) and CMC
(25%) for 50% effective concentrations (ECsg) calculation (Zurbach
et al.,, 2014). Plates were then incubated at 37 °C in 5% CO, for
4 days (mCMV) and 7 days (hCMV), to allow time for fluorescent
plaque development. The mean plaque counts for each drug con-
centration were expressed as a percentage of the mean plaque
count of the control (vehicle). The ECso was then calculated by
nonlinear regression from the plots of log drug concentrations
against percentage of reduction in plaque number at each antiviral
compound concentration.

To assess which step of the viral replicative cycle was affected
by VPD and VCD, ‘time-of-drug addition’ experiments were per-
formed, in which cultures were inoculated with virus (t=0) and
exposed to the drugs simultaneously, or 2 h or 12 h after viral
challenge. The effects of the tested agents on CMV infection were
then assessed by a viral yield reduction assay. Briefly, HDF cells
were infected with hCMV-GFP (multiplicity of infection, MOI 0.01)
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(t=0), exposed to the compounds (100 pM) as indicated above,
and incubated until the media was collected at 96 hpi. The extent
of virus replication was subsequently assessed through titering the
media by plaque assay using HDF monolayers. In all conditions,
2 hpi cultures were rinsed twice with PBS to synchronize infection.

Infected cells were identified as GFP-positive cells using an
Olympus IX71 fluorescence microscope (Olympus Optical, Tokyo,
Japan) connected to a SPOT RT digital camera (Diagnostic Instru-
ments, Sterling Heights, MI) interfaced with an Apple Macintosh
computer. The total number of fluorescent cells per well in each
condition was counted by two observers independently.

Each condition was tested at least in triplicate, and the whole
experiment repeated twice. Camera settings (exposure time and
gain) were kept consistent between images. The contrast and color
of collected images were optimized using Adobe Photoshop.

To investigate the effects on the immediate early phase of viral
replication, NIH/3T3 cells exposed to VPD (1 mM) for 24 h, were
transfected with a CMV promoter (IE1/IE2)-driven reporter plas-
mid (pCMV-tdTomato) expressing the red fluorescent protein
tdTomato.

2.5. Virucidal activity assay

To assess the potential virucidal effect of the compounds, VPD,
VCD, or vehicle (100 um) were added to undiluted aliquots of
hCMV-GFP and these virus/compound mixtures were incubated at
either 4 °C or 37 °C for 2 h. After incubation, the samples were
diluted with culture medium to reduce the drug concentration to
an ineffective dose (10 nM in the antiviral assay), and hCMV-GFP
infectivity was determined by plaque assay on HDF cells. Alter-
natively, virus and drug mixtures were run through a 0.1 um filter
(Life Sciences) to remove the compounds but not the hCMV (size
~180 nm). Filter membranes were subsequently thoroughly
rinsed in culture medium for 2 h at room temperature with peri-
odic shaking to harvest drug-free hCMV before assessing in-
fectivity by plaque assay on HDF monolayers.

2.6. Viral entry analysis

To evaluate the effects of the drugs on viral entry into the cell,
i.e. reversible attachment of hCMV to the cell membrane and
subsequent irreversible binding with fusion and adsorption, in-
oculated cultures were first incubated at 4 °C (which allows only
virus attachment) and then shifted to 37 °C (which allows fusion
and subsequent steps of the viral replication cycle) (Mocarski et al.,
2007; Chan and Yurochko, 2014). For assessing the ‘attachment’
step, pre-chilled HDF cells at 90% confluency in a 6-well plate were
treated with VPD, VCD, vehicle (100 uM), VPA (1 mM, negative
control), or heparan sulfate (0.1 mg/mL, positive control) for
30 min at 4 °C and inoculated with pre-cooled hCMV-GFP (MOI
0.1) in the presence of compounds or vehicle for 2 h at 4 °C. Fi-
broblasts were then rinsed three times with cold PBS to remove
unattached virions and compounds, and harvested by trypsiniza-
tion for DNA extraction in the quantitative PCR assay (Chan and
Yurochko, 2014) or overlaid with CMC and incubated for 3 days at
37 °C for infectivity assessment by GFP-positive cell counting. To
evaluate the ‘fusion’ step of the hCMV entry, cultures plated in
plain media were inoculated with hCMV-GFP (MOI 0.1) and in-
cubated at 4 °C for 2 h. Cells were then washed three times, ex-
posed to compounds or vehicle at the same concentrations de-
scribed above, and incubated at 37 °C for 2 h before being overlaid
with CMC for infectivity evaluation at 72 hpi.

2.7. Quantitative real-time PCR assay

DNA samples were prepared from the hCMV-infected cells in

the viral entry experiment using a commercial kit (QJAamp DNA
mini kit; Qiagen). Quantitative real time PCR (qPCR) assays for
hCMV  UL132 (Pa03453400_s1) and human albumin
(Hs99999922_s1) genes were performed using TagMan gene ex-
pression assays (Life Technologies) (Gault et al., 2001; Fukui et al.,
2008). Ten-fold dilutions of hCMV DNA and cellular DNA from
human fibroblasts were used as quantitative standards. qPCR was
carried out with 20-pL reaction mixtures employing the iTaq
Universal SYBR Probes Supermix (BioRad) and 100 ng of DNA.
Samples from uninfected cells and without template served as
negative controls. Samples from 2 biological replicates were run in
duplicate using a Bio-Rad iCycler-IQ instrument (Bio-Rad, Her-
cules, CA), and results were analyzed with iCycler software. For the
relative quantification of hCMV DNA expression, the comparative
threshold cycle (C;) method was employed and results presented
as mean + SEM of the fold change (Z’AAG) relative to the control
(vehicle).

2.8. Immunocytochemistry

A mouse monoclonal antibody (a gift of Dr. P. Cresswell, Yale
University) against hCMV glycoprotein B (gB), diluted 1:1000 in
PBS with 0.3% Triton X-100, was used to label cells infected with
hCMV, as an alternative method to the GFP reporter used for
quantification of infection. A mouse monoclonal antibody against
hCMV immediate early (IE)1/2 antigen (1:1000, MAB810, EMD
Millipore) was employed to assess drug-mediated effects on IE
protein expression. The secondary antibody was a goat anti-mouse
immunoglobulin conjugated with Alexa Fluor 594 (Thermo Fisher
Scientific) diluted at 1:500. Cell nuclei were counterstained with
DAPI (4'-6'-diamidino-2-phenylindole). Controls included the
omission of the primary antibody and the use of non-inoculated
cultures where no immunostaining was expected or found.

2.9. Cytotoxicity assay

An ethidium homodimer assay (EthD-1, Molecular Probes, Eu-
gene, OR) was used to label dead cells. Briefly, NIH/3T3 cells
(9 x 10* per well) were seeded in a 48-well plate and treated with
VPD, VCD, or vehicle for 24 h before mCMV-GFP inoculation (MOI
0.03). 72 h after viral challenge, cells were washed twice and
EthD-1 was added at a final concentration of 4 uM in DMEM. After
20 min of incubation at 37 °C, the total number of dead cells per
well was counted based on red fluorescence of nuclei. Each con-
dition was tested in quadruplicate, and each experiment was re-
peated twice. Similarly, the rate of cell death was assessed in un-
infected NIH/3T3 and HDF cells exposed to VPD, VCD, vehicle (10
and 1 mM) or plain media for 24 and 72 h before EthD-1 addition.

2.10. Plaque size assay

Plaque size was used to assess the effect of the drugs on viral
propagation. Briefly, semiconfluent NIH/3T3 and HDF cells in 12-
well plates were inoculated using mCMV-GFP and hCMV-GFP
(MOI 1), respectively. After 2 h-incubation at 37 °C to allow viral
adsorption, inoculum was removed and cultures were washed
three times with PBS before the addition of CMC overlay con-
taining VPD, VCD, or vehicle at the specified concentrations. Five
(mCMV) and 10 (hCMV) days later, the relative size of viral plaques
was measured (n=60 plaques/condition), as previously described
(Wollmann et al., 2015). Each condition was tested at least in tri-
plicate, and the experiment repeated twice. All measurements
were performed at the same time using similar camera settings
(exposure time and gain).
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2.11. Animal procedures

Male and female Balb/c strain mice (6-8 weeks of age) from
Taconic Biosciences Inc. (Hudson, NY) were maintained on a 12:12
h light cycle under constant temperature (22 + 2 °C) and humidity
(55 + 5%), with access to food and water ad libitum. One to two
females were cohabited with a male of the same strain for at least
1 week to ensure fertilization. When advanced pregnancy was
seen, each pregnant female was caged singularly and checked for
delivery twice daily, at 8:30 a.m. and 6:30 p.m. Newborns were
inoculated intraperitoneally (i.p.) with 750 plaque-forming units
(PFU) of mCMV-GFP in 50 pL of media on the day of birth (DOB),
within 14 h of delivery. The DOB was considered postnatal day
(PND) 0. Control animals received 50 uL of media i.p.. Infected
pups were randomly assigned to receive VPD, VCD, or vehicle
(DMSO), via subcutaneous (s.c.) injections, once a day, at a dose of
1.4 mg/mL in 20 uL of saline (~30 pg), starting after virus in-
oculation from PND 1 to PND 21. Control pups received a similar
amount of drug-free saline. Mice were monitored daily for survival
until PND 49. Additionally, on each day from PND 0-22, without
knowledge of the treatment group, pups were weighed to the
nearest 0.01g and their body and tail lengths were measured. Hair
growth, status of eyelid and pinnae detachment, and incisor
eruption, as compared to adult mice, were also recorded, as pre-
viously described (Scattoni et al., 2008). Briefly, these somatic
variables were rated semi-quantitatively in the following way:
0=no occurrence of the condition, 1=slight/uncertain condition,
2=incomplete condition, and 3=a complete adult-like condition.
For detection of infectious viral load in organs, some of the control
and experimental mice were sacrificed on PND 12, after receiving
saline/treatment from PND 1 to PND 10. Designated mice were
transcardially perfused with PBS to wash out free virus, and tissue
samples were collected under sterile conditions from liver, spleen,
and lungs, three organs markedly involved in severe perinatal
infection in humans. Tissues were mechanically homogenized in
PBS using a microcentrifuge tube tissue grinder. Part of the re-
sulting tissue suspension was plated onto NIH/3T3 monolayers
and viral titer was assessed by plaque assay (Zurbach et al., 2014;
Brune et al., 2001). All animal breeding and experiments were
performed in accordance with the guidelines of the Yale School of
Medicine Institutional Animal Care and Use Committee (IACUC).
Research was approved by the IACUC.

2.12. Statistical analysis

Statistical significance in in vitro experiments was determined
using one-way Analysis of Variance (ANOVA), followed by post-
hoc analysis (Bonferroni's test). Data are presented as percentage
of infected or dead cells and viral titers, in drug versus vehicle, as
mean + SEM of two independent experiments; each independent
experiment consisted of three or four cultures; p-values refer to a
comparison of drug to control (vehicle). Fifty percent effective
concentration (ECsp) values were calculated using nonlinear re-
gression curve fit with a variable slope (log[inhibitor] vs response).
For markers of somatic development, a mixed-model ANOVA with
PND as the Repeated Measures factor was used, followed by
Newman Keuls test only if a significant F-value was determined.
Analysis was performed with GraphPad Prism 6.0 and SPSS Sta-
tistics 21, with significance set at p <0.05. Survival studies and
assessment of somatic development parameters were performed
blindly with respect to the experimental group.

3. Results
3.1. Valpromide inhibits mouse and human CMV in vitro

We performed experiments with several cell types treated with
VPA, VPD, or vehicle for 24 h before viral challenge. VPA (Fig. 1A)
increased infection by and replication of mCMV on mouse cells at
concentrations of 1 and 10 mM, as previously reported (Fig. 1B-D)
(Kuntz-Simon and Obert, 1995; Michaelis et al., 2004, 2005). Re-
markably, VPD (Fig. 1E) at the same concentrations showed a robust
inhibitory effect (Fig. 1F-H), reducing the number of mCMV-infected
cells, as quantified by counting cells expressing the viral GFP re-
porter gene (Fig. 1F and G). VCD also attenuated mCMV replication,
assessed by a viral yield assay (Fig. 1H). Significant inhibition was
also identified at lower doses of 100 pM, 1 pM, and 100 nM. At-
tenuation of mCMV was confirmed at high virus titer and in mul-
tiple cell types including NIH/3T3, Neuro-2a and primary astrocytes
from mouse brain (Fig. 1I-L). Using an EthD-1 assay to fluorescently
label dead cells, VPD at 1 and 10 mM showed no detectable cyto-
toxicity in uninfected NIH/3T3 cells treated for 24 or 72 h (Fig. 1M),
thus suggesting a lack of toxicity of the target cells even at high drug
concentrations and with prolonged cell exposure. In turn, VPD-re-
lated CMV inhibition increased cell survival by reducing viral-
mediated cytotoxicity (Fig. IN and O).

To determine if the inhibitory action of VPD would generalize
from mCMV to hCMV, we tested VPD against hCMV on human cells.
Similar to mCMV, hCMV infection was enhanced by VPA and sub-
stantially inhibited by VPD at 1 and 10 mM, independent of virus
titer or cell type (Fig. 2A-D). VPD significantly reduced the number
of hCMV infected cells and also reduced hCMV replication even at
the lower drug concentrations of 100 pM, 1 pM, and 100 nM. We
found similar inhibitory actions with both human dermal fibroblasts
(Fig. 2B and C) and human glioma cells (Fig. 2D). To corroborate the
view that the drug acted on CMV rather than by inhibiting ex-
pression of the viral GFP reporter, we used immunocytochemistry to
label the hCMV glycoprotein B (gB) (Fig. 2E). VPD decreased the
number of cells showing hCMV gB immunoreactivity compared to
infected cultures not treated with VPD, further corroborating the
antiviral effect of VPD on CMV and excluding a potential VPD-
mediated inhibitory effect on GFP expression.

Fibroblasts treated with VPD displayed a substantial dose-de-
pendent inhibition of mCMV and hCMV infectivity in the plaque
reduction assay with ECso concentrations of 6.8 +2.8 uM and
2.9 4+ 1.3 pM (Fig. 2F), respectively. The absence of cytotoxic effects
at the high dose of 10 mM gives VPD an excellent selectivity index
(SI), i.e. the ratio of cytotoxic concentration (CC)sq to ECsg, for both
viruses. An effective antiviral activity was still evident in the na-
nomolar range, i.e. 100 nM (mCMV: 79% + 3% infected cells in
VPD-treated cultures as compared to vehicle-treated controls,
p=0.01; hCMV: 77% + 2% infected cells in VPD-treated cultures as
compared to controls, p=0.004).

The VPD-mediated inhibition of both mouse and human CMV
raised the question of whether the antiviral effect of the drug was
universal for different types of virus and might act via enhance-
ment of an innate immune block of viral infection in general. To
address this question, we tested VSV, an unrelated single-strand
RNA virus sensitive to upregulation of innate immunity. In contrast
to mCMV and hCMV, VPD did not inhibit VSV (Fig. 2G), suggesting
that VPD antiviral actions were not based on a mechanism invol-
ving an enhancement of the innate immune response.

We also tested ivermectin, a compound with anti-epileptic
properties and a strong anti-parasitic activity which was recently
shown to attenuate alphavirus infection (Varghese et al., 2016).
Ivermectin had no effect on CMV (99% + 9% compared to control),
demonstrating that the anti-CMV effect was specific for VPD.

Together these results demonstrate that VPD substantially and
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Fig. 1. Valproate and valpromide exert opposing effects on mouse CMV. (A) Chemical structure of valproate. (B) Representative microscopic fields show mCMV-GFP reporter
fluorescence (top) and phase contrast (bottom) of NIH/3T3 cells pre-treated (24 h) with VPA (1 mM) or vehicle (control) prior to inoculation with mCMV using multiplicity of
infection (MOI) of 0.03. Photos captured 48 hpi; scale bar 50 um. (C and D) VPA dose-dependent increase in mCMV infection assessed by counting infected GFP-positive cells
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dependent decrease in mCMV-infectivity in NIH/3T3 (I and J), immortalized Neuro-2a (K) and primary mouse glia (L) cells (MOI 4) pre-treated with VPD for 24 h. Infectivity
assessed by counting GFP-positive cells 24 hpi (I, K, and L) and by viral yield assay 72 hpi (J). (M) The potential cytotoxicity of VPD exposure for 24 and 72 h was assessed in
uninfected mouse fibroblasts by the red fluorescent EthD-1 assay. The effect of VPD at 1 and 10 mM on NIH/3T3 was compared with vehicle (VEH) at the same concentrations
and plain media. (N and O) The EthD-1 assay was performed to evaluate VPD protective role on viral-mediated cytotoxicity. Images show red fluorescent photomicrographs
of NIH/3T3 cells pre-treated with VPD or vehicle at 10 mM for 24 h prior to viral inoculation (MOI of 0.03). 72 hpi, EthD-1 was added to cells. After 20 min, photos were
captured (N) and red fluorescent-labeled cells were counted (O). Scale bar 50 um. Mean + SEM of 8 (C, D, G, H, M, and 0) and 6 (I-L) cultures; ns, not significant, *p < 0.05,
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Fig. 3. Valnoctamide blocks mouse and human CMV. (A) Chemical structure of valnoctamide. (B) Microscopic fields show GFP fluorescence (top) and phase contrast (bottom) of NIH/
3T3 cells pre-treated (24 h) with VCD (1 mM) or vehicle (control) prior to inoculation with mCMV (MOI 0.03). Photos captured 48 hpi; scale 50 um. (C-F) VCD-mediated dose-
dependent decrease in mCMV infection at low MOI (0.03, C-E) and high MOI (4, F) in NIH/3T3 cells (C, D, and F) and Neuro-2a (E) pre-treated for 24 h, as assessed by counting infected
GFP-positive cells at 48 hpi (C-E) and viral yield assay at 72 hpi (F). (G) Dose-response analysis in NIH/3T3 cells pre-treated with VCD for 24 h, infected with mCMV-GFP (MOI 0.03),
and incubated for 4 days before viral fluorescent plaque counting. The ECsg is shown. Mean + SEM of 2 independent experiments. (H) The potential cytotoxic effect of VCD at 1 and
10 mM on uninfected NIH/3T3 after 24 and 72 h of exposure was assessed by the red fluorescent EthD-1 assay and results compared with vehicle (VEH) at the same concentrations
and plain media. (I-L) VCD-mediated decrease in hCMV infection at low MOI (0.01, I and J) and high MOI (1, K and L) in human dermal fibroblasts, evaluated by GFP-positive cell
counting at 48 hpi (K) or 72 hpi (I) and viral yield assay at 96 hpi (J and L). Mean + SEM of 8 (C-E, and H-J) and 6 (F, K, and L) cultures; ns, not significant, *p < 0.05, **p < 0.01,
**p < 0.001, ***p < 0.0001, one-way ANOVA (Bonferroni's post-hoc test). (M-O) Dose-response analysis by plaque reduction assay in HDF cells pre-treated with VCD (M), GCV (N), or
HS (O) for 24 h and infected with hCMV-GFP (MOI 0.01). Viral fluorescent plaques counted at 7 dpi. Mean + SEM of 2 independent experiments.
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b < 0.001.

selectively inhibits mouse and human CMV infectivity in vitro, and
that this antiviral activity is independent of virus titer and cell

type.

3.2. Valnoctamide, a safer analog of VPD, blocks mouse and human
CMV in cell culture

Although VPD safety has been demonstrated in animal models
of teratogenesis (Radatz et al., 1998; Okada et al., 2004), these

findings may not translate to humans where VPD can be quickly
metabolized ( > 80%) to VPA (Bialer, 1991), which is both terato-
genic and enhances CMV infection as shown earlier. Valnoctamide
(VCD) is structurally similar to VPD (Fig. 3A), and lacks the free
carboxylic group and HDAC inhibitory activity associated with the
embryotoxic and teratogenic effects of VPA (Bialer et al., 1990,
2015; Shekh-Ahmad et al., 2014). However, unlike VPD, VCD shows
negligible conversion to its corresponding free acid (valnoctic acid)
in humans. VCD was originally marketed as an anxiolytic drug
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(Nirvanil®) in several European countries in the 1960s and re-
cently investigated as therapeutic agent for seizure disorders and
acute mania in humans (Bialer et al., 1990, 2015; Stepansky, 1960;
Barel et al., 1997; Bersudsky et al., 2010). In contrast to VPA, a
number of animal studies have shown no embryotoxicity or ter-
atogenic activity of VCD (Radatz et al., 1998; Shekh-Ahmad et al.,
2014; Mawasi et al.,, 2015; Wlodarczyk et al., 2015). Further con-
firmation of VCD's safety profile is demonstrated from both pre-
clinical and clinical studies examining its anti-convulsant and
mood stabilizing actions (Bialer et al., 1990, 2015; Winkler et al.,
2005; Shekh-Ahmad et al., 2015; Barel et al., 1997; Bersudsky et al.,
2010). Therefore, we tested VCD on mCMV and hCMV in vitro.

VCD induced a substantial inhibition of mCMV infection in-
dependent of cell type or virus titer (Fig. 3B-F), as measured by
counting cells expressing the GFP virus reporter or assessing virus
replication. Significant anti-CMV activity was still identified in the
nanomolar range. The plaque reduction assay showed a robust
dose-dependent inhibition of mCMV infectivity, with an ECsq
concentration of 9.3 +3.5 pM (Fig. 3G). Similar to VPD, VCD at
1 and 10 mM displayed no cytotoxic effect in uninfected NIH/3T3
cells (Fig. 3H), thus defining a SI > 1000 for mCMV.

VCD also blocked infectivity and replication of hCMV at low and
high titer in human fibroblasts (Fig. 3I-L), and dose-response
analysis revealed an ECso of 3.5 + 1.1 pM (Fig. 3M). Again, no cy-
totoxicity was evident in uninfected human fibroblasts exposed to
1 and 10 mM VCD, thus conferring the drug a SI > 2800 for hCMV.

3.3. Dose-response analysis of known antiviral compounds by pla-
que reduction assay

The antiviral properties of well-known inhibitors of CMV in-
fection, GCV and heparan sulfate (HS), were assessed for com-
parative purposes in a dose-escalation analysis by plaque reduc-
tion assay in HDF cells infected with hCMV (MOI 0.01), as per-
formed for VPD and VCD.

GCV targets viral DNA polymerase and is approved for CMV
treatment in humans (Mercorelli et al., 2011). HS acts as a soluble
mimic of heparan sulfate proteoglycans (HSPGs), cell surface an-
ionic polysaccharides used by CMV for attachment to the cell
(Compton et al., 1993). HS is not an approved anti-CMV drug due
to its strong anticoagulant activity in vivo, an undesired side-
effect.

Human CMV infectivity was inhibited by both GCV and HS in a
dose-dependent manner with ECso of 1.1+03 pM for GCV
(Fig. 3N) and 51.4 + 8.2 pg/mL (~80 pM) for HS (Fig. 30).

3.4. Valpromide and valnoctamide substantially attenuate CMV-re-
lated disease in vivo

Perinatal hCMV infection can cause serious and potentially fatal
disease in neonates (Mocarski et al., 2007), in whom therapeutic
options are severely limited by the toxicity and carcinogenicity of
available antiviral drugs (Mercorelli et al., 2011).

Prior to testing anti-CMV efficacy, we evaluated drug safety

with daily administration of both compounds in control, unin-
fected developing mice. No adverse effects on survival (data not
shown) or postnatal body growth (Fig. 4A) were detected.

Inasmuch as the drugs appeared safe in developing mice, we
next assessed VPD and VCD in a mouse model of severe perinatal
mCMYV infection (Fig. 4B) (Slavuljica et al., 2015). VPD and VCD
treatment induced substantial improvement in infected newborns
health, with a three-fold decrease in death rate (Fig. 4C). Survival
of mCMV-infected, untreated pups was 23%, compared to 72% for
VPD- or VCD-treated mice. Additional benefits of drug treatment
were also identified. VPD and VCD administration ameliorated the
mCMV-induced detrimental effects on body growth as assessed by
body weight, body length, and tail length (Fig. 4D-G); infected
mice weighed nearly 50% less than control mice at postnatal day
20 (p <0.001), whereas VPD- or VCD-treated infected pups
showed a body weight reduction of only 18% (Fig. 4E). Thus, both
VPD and VCD attenuated the deficient body growth induced by
perinatal mCMV infection. Both drugs markedly improved other
parameters of somatic development, including eyelid opening,
pinnae detachment, fur maturation, and incisor eruption (Fig. 5A-
F). Of note, VPD and VCD generated a significant (p <0.01) im-
provement in CMV-infected neonate health as early as 5 days after
initiation of treatment.

After intraperitoneal inoculation, CMV infection spreads to
several organs, including liver, spleen, and lungs. To investigate
whether the beneficial effects observed in the infected pups were
related to the ability of VPD and VCD to decrease CMV levels, we
analyzed these organs from infected mice at 12 dpi by viral plaque
assay (Fig. 6A-D). CMV titers were decreased by greater than 2 logs
in all tested tissues of drug-treated infected newborns, thus sug-
gesting that the VPD- and VCD-mediated inhibitory effects on
CMV infection observed in vitro also occur in vivo and lead to a
substantial improvement in CMV-infected animal outcome.

3.5. Valpromide and valnoctamide suppress CMV by inhibiting virus
attachment to the cell

Despite being used for decades to treat neurological dysfunc-
tions, the mechanism(s) of action of VPD and VCD in the brain
remain unclear (Monti et al., 2009; Bialer et al., 2015; Spampanato
and Dudek, 2014). VPA-mediated inhibition of HDAC enhances
infection by hCMV (Kuntz-Simon and Obert, 1995; Michaelis et al.,
2004, 2005). Both VPD and VCD lack this epigenetic activity
(Okada et al., 2004; Fujiki et al., 2013).

To gain insight into the underlying mechanisms of VPD and
VCD inhibition of CMV, we tested the drugs by addition at differ-
ent time-points during the course of hCMV infection (Fig. 7A). The
drug concentration employed for testing was 100 uM, which is
below the therapeutic range for safely treating mood disorders
and epilepsy in humans (Brodie and Dichter, 1996; Pisani et al.,
1986, 1981; Matalon et al., 2011; Bialer et al., 2015; Shekh-Ahmad
et al., 2014; Barel et al., 1997; Bersudsky et al., 2010; Spampanato
and Dudek, 2014; Witvrouw et al., 1997). When the compounds
were present from the time of viral challenge through 96 hpi, viral

Fig. 7. Valpromide and valnoctamide inhibit hCMV attachment to cell. (A). HDF cells infected with hCMV-GFP (MOI 0.01) (t=0) were exposed to VPD, VCD, or vehicle
(100 uM) simultaneously, or 2 or 12 h after virus inoculation until media collection at 96 hpi. Viral replication assessed by titer determination using a plaque assay on HDF
monolayers. (B) A drug (100 pM)/undiluted hCMV mixture was incubated for 2 h at 37 °C or 4 °C. Before cell inoculation, the solution was diluted to 10 nM (ineffective drug
concentration). (C) Human fibroblasts infected with hCMV (MOI 0.01) and treated with the compounds (100 uM) starting from viral challenge (t=0) or 2 hpi, were fixed and
permeabilized at 8 hpi for immunofluorescence with anti-IE1/2 monoclonal antibody and DAPI staining. Scale bar 100 pm. (D and E) Attachment and fusion assays were
performed as described in Materials and Methods. GFP-positive cells were counted at 72 hpi (D). Results presented as the fold change (2°22¢T) of hCMV DNA in each
experimental condition relative to vehicle (mean + SEM of 2 biological replicates) (E). (F) Plaque reduction assay on HDF cells exposed to vehicle, GCV (100 nM), VCD (1 pM),
HS (25 pg/mL to 40 uM), or a combination of these compounds as indicated for 24 h before hCMV inoculation (MOI 0.01). Fluorescent plaques counted at 7 dpi. The mean
plaque counts for each drug were expressed as a percentage of the control (vehicle) mean plaque count, defined as 100%; p < 0.001 for VEH vs GCV, VCD, and HS. Rx, drug.
(G) After 24 h- or 72 h-VPD, VCD, or vehicle pre-treatment (100 pM), cultures were rinsed three times and given drug-free media prior to hCMV inoculation (MOI 0.01).
Plaques counted at 7 dpi. Bars: mean 4+ SEM of 5 (F and G), 8 (A and B), and 12 cultures (D); ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, one-way ANOVA with

Bonferroni's post-hoc test.
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yield decreased 60%. A similar inhibition of hCMV replication was
also observed with 2 h drug exposure at the time of viral chal-
lenge, followed by drug wash out (data not shown). However, no
reduction in viral yield was identified when the compounds were
added 2-12 h after virus inoculation (Fig. 7A).

These results indicate that the block of hCMV mediated by VPD
and VCD is exerted early in the infection process, within the first
2 h of the replication cycle. We therefore tested the possibility that
these agents directly inactivate virions by pre-incubating the
compounds with an undiluted stock of hCMV prior to cell in-
oculation. When the inhibitors were subsequently diluted below
an effective concentration prior to culture inoculation, no direct
inactivation of free virions was observed, as determined by the
absence of a drug-mediated inhibitory effect (Fig. 7B). Similar re-
sults were obtained when the pre-incubation mix was run through
a 100 nm pore size filter to remove the compounds but not the
virus, prior to analysis of virus infectivity at physiological and cold
temperatures (percentages show hCMV viral titers in drug-treated
samples as compared to vehicle: 37 °C, 98.5 + 8% for VPD, 99.3%
+ 5% for VCD; 4 °C, 100.6% + 5% for VPD, 98.3% + 8% for VCD).

The IE1/2 CMV promoter is active in the first few hours of CMV
infection, inducing IE protein expression which in turn promotes
viral replication (Mocarski et al., 2007); we investigated whether
the drugs interfere with the activity of this promoter by testing a
plasmid with CMV IE1/2 driving tdTomato expression. No decrease
in the number of red cells was identified in the presence of VPD
compared to control (96% + 4%) after plasmid transfection, sug-
gesting VPD does not inhibit the activity of the CMV IE1/2 pro-
moter. In addition, we assessed IE1/2 antigen expression in hCMV
infected cells exposed to the compounds either simultaneously or
2 h after viral challenge (Fig. 7C). Substantial IE1/2 was detected in
fibroblasts that received vehicle or drugs after 2 hpi. In contrast,
cells treated with the compounds at the time of CMV inoculation
showed markedly decreased IE1/2 expression, thus suggesting
that CMV inhibition by VPD and VCD occurs prior to the IE stages
of the viral replication cycle.

We next examined CMV entry into the cell, which precedes IE
protein expression and can be separated into two phases: (1) at-
tachment of the viral particle to the cell surface and (2) fusion of
the viral envelope with cellular membranes and penetration into
the cytoplasmic space (Mocarski et al.,, 2007). Investigation of
these phases by a 2 h incubation at 4 °C (a temperature that allows
attachment but not fusion) followed by a temperature shift to
37 °C (which allows fusion) (Chan and Yurochko, 2014) and sub-
sequent infectivity assessment by GFP-positive cell counting,
showed VPD- and VCD-mediated interference with hCMV attach-
ment to the cell (Fig. 7D). These results were confirmed by qPCR
with quantification of the relative amount of hCMV DNA in in-
fected human fibroblasts exposed to the compounds at 4 °C
(Fig. 7E). In these assays, heparan sulfate was employed as a po-
sitive control given its ability to block CMV attachment in vitro by
mimicking HSPGs (Compton et al., 1993).

Current approved anti-CMV compounds target viral DNA
synthesis (GCV, foscarnet, cidofovir) or the hCMV major IE gene
locus (fomivirsen). Since our data indicate that VPD and VCD may
block a different, earlier step of CMV infection, similar to HS, we
postulated that a combined administration of GCV with VCD or HS
might induce a stronger viral inhibition than single drug therapy
or VCD/HS association (Fig. 7F). When cells were exposed to both
GCV+VCD or GCV+HS, the decrease in hCMV plaques nearly
doubled compared to single drug treatment. In contrast, combi-
nation of VCD+HS only slightly increased the viral inhibition ob-
tained with one compound, supporting the hypothesis that VPD,
VCD, and HS may act on the same step of CMV infection.

Finally, prolonged cell exposure to VPD and VCD followed by
drug wash out immediately before CMV inoculation resulted in no
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Fig. 8. Valpromide and valnoctamide effectively decrease spread of CMV infection.
(A-C) Plaque size assay of NIH/3T3 cells (A and B) and human fibroblasts
(C) infected with mCMV-GFP and hCMV-GFP (MOI 1) and treated with VPD, VCD, or
vehicle. Viral plaque size measured 5 (mCMV) and 10 (hCMV) dpi. Representative
plaques in 100 pM VCD (left) or vehicle (right); scale 300 pm (A). Mean diameter of
60 random plaques; SEM, bar on upper right side (B and C); p<0.05 in 0.1 uM,
p<0.01in 1uM, p<0.001 in 100 uM and 1 mM, versus vehicle.

attenuation of infection (Fig. 7G), consistent with the view that the
drugs did not exert persistent effects on antiviral cellular targets,
such as enhancement of innate immunity. These data also suggest
that the anti-CMV actions of VPD and VCD are not the result of an
irreversible association of the compounds with cell surface
proteins.

3.6. Valpromide and valnoctamide decrease spread of CMV infection

Inhibition of CMV attachment to the target cell may play a role
not only in the initiation of infection but also on virus spread.
Murine and human fibroblast cells were exposed to the drugs after
CMV inoculation and adsorption, and assessed for viral plaque size
at 5 (mCMV) and 10 (hCMV) dpi. Both VPD and VCD effectively
decreased spread of the CMV infection as shown by the reduced
plaque size in CMV-infected drug-treated monolayers compared
with the plaque size from vehicle-treated cultures (Fig. 8A-C).

4. Discussion

Human CMV is an important pathogen responsible for poten-
tially life-threatening disease and severe complications, including
pneumonitis, retinitis, encephalitis, and myocarditis in im-
munocompromised patients and neonatal children. Congenital
CMV is the major infectious cause of birth defects and neuro-de-
velopmental disabilities, including microcephaly, hearing loss,
blindness, and mental retardation (Cheeran et al., 2009; Mocarski
et al., 2007; Tsutsui, 2009; Mercorelli et al., 2011).

Current anti-CMV compounds are partially effective, but are
limited by poor oral bioavailability, short- and long-term toxicity,
carcinogenicity, and teratogenicity (Mercorelli et al., 2011). The
emergence of CMV strains resistant to the available drugs also
poses significant challenges. Thus, there is a need for novel anti-
CMV molecules with a safe in vivo profile utilizing alternative
mechanisms of action. This is particularly relevant to CMV infec-
tions during early development.
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Our work shows that VPD and VCD, two orally available drugs
used for many years to treat neurological disorders, evoke an
unexpected, substantial, and specific inhibition of both mouse and
human CMV in vitro and in a mouse model of perinatal infection.
The anti-CMV activity of these compounds has never been
described.

The VPD- and VCD-mediated antiviral effect is substantiated by
multiple converging lines of evidence including reduction in in-
fected cell number, as determined with GFP reporter expression,
immunocytochemistry against hCMV gB, and qPCR, reduction in
cell death quantified with ethidium homodimer, reduction in virus
plaque number and size, and reduction in viral replication and
virion release. Importantly, both compounds showed efficacy in
blocking CMV infection in vivo, leading to increased survival, im-
proved body weight, reduced CMV-related disease, and decreased
viral load in target organs of infected neonates. Furthermore, drug
administration to uninfected newborn mice evoked no adverse
response.

We detected relatively little cell death even at the highest
concentrations of VPD and VCD as tested with the ethidium
homodimer assay; we did not study the effects of the drugs on cell
metabolism. VPD and VCD inhibited CMV at drug concentrations
already safely employed in the clinic for anti-convulsant and mood
stabilizing purposes (roughly 0.2-0.7 mM), and, more importantly,
at lower drug concentrations ( < 100 uM) which lack neurological
and psychiatric effects (Brodie and Dichter, 1996; Pisani et al.,
1986, 1981; Matalon et al., 2011; Bialer et al., 2015; Shekh-Ahmad
et al., 2014; Barel et al., 1997; Bersudsky et al., 2010; Spampanato
and Dudek, 2014; Witvrouw et al., 1997). Thus, a safe and effective
anti-CMV activity of these compounds in humans seems plausible.

Currently approved anti-CMV drugs target hCMV IE gene ex-
pression or DNA replication (Mercorelli et al., 2011). In contrast,
VPD and VCD appear to act on an earlier stage of CMV infection by
interfering with viral attachment to cell surface HSPGs. The initial
tethering of CMV virions to HSPGs, mediated by the viral glyco-
proteins gB and gM/gN, functions to stabilize the virus at the cell
surface until engagement of secondary receptors occurs allowing
fusion and penetration (Mocarski et al, 2007; Isaacson and
Compton, 2009). The VPD and VCD drug-mediated inhibition of
hCMV attachment may be due to a reversible interaction with
either HSPGs or free virions or may require the simultaneous
presence of both the virus and the cell.

Dose-response relationship analyses revealed that GCV, cur-
rently a first-line therapy for hCMV, is a more potent compound
than VPD and VCD in vitro. Thus, a less effective anti-CMV activity
of VPD and VCD compared to GCV might be expected in vivo.
However, given the increasing emergence of drug-resistant strains
of hCMV and the potential toxicity related to long-term therapy
with GCV, compounds with an alternative mechanism of action
merit consideration for anti-CMV clinical trials. We show that VCD
used together with GCV generates an additive effect in blocking
CMV; the combination of the two drug types acting by different
mechanisms of inhibition may also constitute a fertile ground for
clinical consideration.

5. Conclusions

We examined two drugs, VPD and VCD, which show un-
expected anti-CMV properties. In humans, VPD can be metabo-
lized to the teratogenic and CMV-enhancing VPA (Bialer, 1991),
and therefore would not be an ideal drug candidate in the clinic,
particularly in the treatment of pregnant mothers and their fe-
tuses. VCD lacks embryotoxic and teratogenic actions (Bialer et al.,
1990, 2015; Shekh-Ahmad et al., 2014), and in contrast to VPD
shows minimal conversion to its corresponding free acid in

humans (Bialer et al., 1990). Therefore, VCD may merit con-
sideration as a potential mode of treatment to reduce the severity
of problems caused by CMV infection in conditions of reduced
systemic immunity. Furthermore, there is a need for anti-CMV
drugs that are safe and effective in the treatment of CMV in fetuses
and neonates, and VCD merits further consideration in this regard.
The fact that VCD is already approved for the treatment of neu-
rological and psychiatric disorders in humans should greatly re-
duce the typically long period required to bring a new antiviral
drug into use.
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Cytomegalovirus (CMV) is the most common infectious cause of brain defects and neurological dysfunction in developing human babies.
Due to the teratogenicity and toxicity of available CMV antiviral agents, treatment options during early development are markedly
limited. Valnoctamide (VCD), a neuroactive mood stabilizer with no known teratogenic activity, was recently demonstrated to have
anti-CMV potential. However, it is not known whether this can be translated into an efficacious therapeutic effect to improve CMV-
induced adverse neurological outcomes. Using multiple models of CMV infection in the developing mouse brain, we show that subcuta-
neous low-dose VCD suppresses CMV by reducing the level of virus available for entry into the brain and by acting directly within the
brain to block virus replication and dispersal. VCD during the first 3 weeks of life restored timely acquisition of neurological milestones
in neonatal male and female mice and rescued long-term motor and behavioral outcomes in juvenile male mice. CMV-mediated brain
defects, including decreased brain size, cerebellar hypoplasia, and neuronal loss, were substantially attenuated by VCD. No adverse side
effects on neurodevelopment of uninfected control mice receiving VCD were detected. Treatment of CMV-infected human fetal astrocytes
with VCD reduced both viral infectivity and replication by blocking viral particle attachment to the cell, a mechanism that differs from
available anti-CMV drugs. These data suggest that VCD during critical periods of neurodevelopment can effectively suppress CMV
replication in the brain and safely improve both immediate and long-term neurological outcomes.

Key words: brain; cytomegalovirus; development; dysfunction; infection

(s )

Cytomegalovirus (CMV) can irreversibly damage the developing brain. No anti-CMV drugs are available for use during fetal develop-
ment, and treatment during the neonatal period has substantial limitations. We studied the anti-CMV actions of valnoctamide (VCD), a
psychiatric sedative that appears to lack teratogenicity and toxicity, in the newborn mouse brain, a developmental period that parallels
that of an early second-trimester human fetus. In infected mice, subcutaneous VCD reaches the brain and suppresses viral replication
within the CNS, rescuing the animals from CMV-induced brain defects and neurological problems. Treatment of uninfected control
animals exerts no detectable adverse effects. VCD also blocks CMV replication in human fetal brain cells. j

ignificance Statement

thinning, and cerebellar hypoplasia (Gandhi and Khanna, 2004;
Mocarski et al., 2007; Cheeran et al., 2009; Tsutsui, 2009). In the
United States, ~30,000 children receive diagnoses of CMV infec-
tion every year, and lifelong neurological problems, including
cerebral palsy, seizures, motor impairment, intellectual disabil-

Introduction
Cytomegalovirus (CMV) infection of the developing brain can
cause a number of brain defects, including microcephaly, cortical

Received April 11, 2017; revised May 25, 2017; accepted May 31, 2017.
Author contributions: $.0.and A.N.v.d.P. designed research; S.0. and L.S.H. performed research; A.B., P.V., M.J.P., and

AN.v.d.P. contributed unpublished reagents/analytic tools; S.0. analyzed data; S.0. and A.N.v.d.P. wrote the paper.

This work was supported by funds from rEVO Biologics (M.J.P.) and National Institutes of Health Grants RO1-
CA188359, (A-175577, CA-161048, and DK-103176 (A.N.v.d.P.). We thank John N. Davis for technical help and
insightful discussions on motor and behavioral assays in adolescent mice, and Yang Yang for technical help in
fluorescent staining.

The authors declare no competing financial interests.
Correspondence should be addressed to Anthony N. van den Pol, Department of Neurosurgery, Yale University
School of Medicine, 333 Cedar Street, New Haven, CT 06520. E-mail: anthony.vandenpol@yale.edu.
DOI:10.1523/JNEUR0SCI.0970-17.2017
Copyright © 2017 the authors  0270-6474/17/376877-17515.00/0



6878 - J. Neurosci., July 19,2017 - 37(29):6877—-6893

ity, visual deficits, and deafness, will develop in one-fifth of these
children. This makes CMV the most common severely disabling
perinatal infectious agent (Kenneson and Cannon, 2007; James
and Kimberlin, 2016). A link between perinatal CMV infection
and autism spectrum disorder (ASD) in children and adolescents
has also been proposed (Stubbs et al., 1984; Yamashita et al.,
2003; Sakamoto et al., 2015; Garofoli et al., 2017). Another virus
that has recently raised considerable concern, and that can evoke
parallel dysfunction in the developing brain, is Zika virus; impor-
tantly, in the United States neurological dysfunction due to CMV
infections is >100-fold more prevalent than that from Zika virus
(Butler, 2016). CMV evokes more brain dysfunction than more
widely known diseases, including spina bifida, fetal alcohol syn-
drome, or Down’s syndrome (Cannon and Davis, 2005).

CMYV can also generate problems in the CNS of adults with a
compromised immune system, including transplant recipients
and AIDS patients, who are at high risk for the development of
potentially life-threatening CNS complications (Mocarski et al.,
2007; Mercorelli et al., 2011). A key reason that CMV is particu-
larly damaging to the developing brain relates to the reduced
efficacy of the immature innate and systemic immune response
to CMV in the immature CNS (van den Pol et al., 2002, 2007;
Reuter et al., 2004).

Although drugs approved to treat CMV show some efficacy,
their use is not recommended during pregnancy or in the neona-
tal period due to potential teratogenicity, short-term and long-
term toxicity, and carcinogenicity. These serious side effects
relate to the mechanism of anti-CMV action, the inhibition of
DNA polymerase (Gandhi and Khanna, 2004; Mercorelli et al.,
2011; Rawlinson et al., 2016). The emergence of drug-resistant
CMV strains also poses a challenge (Mercorelli et al., 2011). No
effective CMV vaccine is currently available (James and Kimber-
lin, 2016; Rawlinson et al., 2016). Therefore, novel anti-CMV
strategies with alternative mechanisms of action and safer in vivo
profiles are urgently needed. Valnoctamide (VCD) has been mar-
keted since the early 1960s as an anxiolytic drug (Stepansky, 1960;
Goldberg, 1961) and subsequently was tested as a mood stabilizer
in patients with acute mania (Bersudsky et al., 2010). In animal
models, VCD shows efficacy in both attenuating epilepsy (Linde-
kens et al., 2000; Isoherranen et al., 2003; Mare$ et al., 2013;
Pouliot et al., 2013; Shekh-Ahmad et al., 2014) and reducing
neuropathic pain (Winkler et al., 2005; Kaufmann et al., 2010), in
part by a mechanism that prolongs miniature IPSCs (Spampanato
and Dudek, 2014). VCD shows no teratogenic effects in developing
rodents (Radatz et al., 1998; Bersudsky et al., 2010; Shekh-Ahmad et
al., 2014; Mawasi et al., 2015; Wlodarczyk et al., 2015; Bialer et al.,
2017). Surprisingly, we recently found that VCD also inhibits CMV
outside the CNS (Ornaghi et al., 2016).

Here we asked whether low-dose VCD given subcutaneously
to CMV-infected neonatal mice can safely suppress CMV inside
the developing brain and exert beneficial effects on neurodevel-
opment and behavior. We infected newborn mice on the day of
birth (DOB) as a model where brain development in the newborn
mouse parallels human brain development during the early sec-
ond trimester of pregnancy (Clancy et al., 2001, 2007a,b; Branchi
et al., 2003; Workman et al., 2013). This is a critical period of
brain development where CMV can cause substantive dysfunc-
tion (Manicklal et al., 2013).

We show for the first time that VCD can protect the develop-
ing brain from CMV by both reducing the amount of virus en-
tering the brain and by blocking viral replication and dispersal
within the brain. VCD completely rescued the delayed acquisi-
tion of neurological milestones observed in infected neonatal
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mice. VCD treatment exerted long-lasting beneficial effects, re-
storing normal motor and behavioral outcomes in adolescent
animals, and attenuating CMV-induced brain damage. VCD ad-
ministration during critical periods of mouse brain development
appeared safe and did not generate detectable adverse side effects
on the neurodevelopment of uninfected control mice.

Materials and Methods

Cell lines, viruses, and chemicals

Normal human dermal fibroblasts (HDFs) were obtained from Cambrex,
and primary human fetal brain astrocytes were obtained from ScienCell
Research Laboratories. HDF cells were cultured in DMEM supplemented
with 10% FBS and 1% penicillin streptomycin (Pen Strep; Invitrogen). Hu-
man fetal astrocytes were grown in poly-L-lysine-coated culture vessels and
maintained in Astrocyte Medium (from ScienCell Research Laboratories)
supplemented with 2% FBS and 1% Pen Strep. All cultures were kept in a
humidified atmosphere containing 5% CO, at 37°C.

For in vitro experiments, a recombinant human CMV (hCMV, Toledo
strain) expressing enhanced green fluorescent protein (EGFP) under the
control of the EF1-a promoter (EGFP-hCMV) was used (Jarvis et al.,
1999). Normal human fibroblasts were used to test viral EGFP expres-
sion, replication capability, and propagation, and to determine viral ti-
ters by plaque assay (Vieira et al., 1998; Jarvis et al., 1999).

CMV replication is species specific, and to study CMV in vivo we used
arecombinant mouse CMV (mCMV; MC.55, K181 strain) that expresses
EGFP (van den Pol et al., 1999), as previously reported (Ornaghi et al.,
2016). NIH/3T3 cells (murine fibroblasts) were used for viral propaga-
tion and titering by plaque assay (van den Pol et al., 1999).

Recombinant CMVs were provided by Dr. E. Mocarski (Emory Univer-
sity, Atlanta, GA) and Dr. J. Vieira (University of Washington, Seattle, WA).

Green fluorescence was used to visualize infected cells and viral plaques.
Viral titers were determined by standard plaque assay using 25% carboxy-
methyl-cellulose (CMC) overlay (Zurbach et al., 2014). Viral stocks were
stored in aliquots at —80°C. For each experiment, a new aliquot of virus was
thawed and used.

Valnoctamide (catalog #V4765) was purchased from Sigma-Aldrich as
powder and was dissolved in dimethylsulfoxide (DMSO) to yield a 1 m
stock solution.

Quantification of infection

Effects of VCD on hCMYV infection were assessed by viral infectivity assay
and viral yield reduction assay. For the infectivity assay, human fetal
astrocytes were seeded at a density of 40,000 cells/well in 48-well plates
and were incubated overnight before medium (0.2 ml/well) was replaced
for pretreatment with VCD or vehicle at 100 um. After 1 h of drug
exposure, cells were inoculated with hCMV [multiplicity of infection
(MOI), 0.1] and incubated at 37°C for 2 h to allow viral adsorption.
Following incubation, cultures were washed twice with PBS and overlaid
with a viscous solution containing VCD/vehicle at 100 uMm in supple-
mented astrocyte medium (75%) and CMC (25%). GFP-positive cells
were counted at 48 h postinfection (hpi).

In the virus yield reduction assay, after viral adsorption, cells were
washed twice with PBS and replenished with fresh medium containing
the compounds to be tested. At 72 hpi, medium was collected and titered
by plaque assay using HDF monolayers to assess the drug-mediated in-
hibition of virus replication in human fetal brain astrocytes.

The total number of fluorescent cells/plaques per well in each condi-
tion were counted using an Olympus IX71 fluorescence microscope
(Olympus Optical) connected to a SPOT RT digital camera (Diagnostic
Instruments) interfaced with an Apple Macintosh computer. Each con-
dition was tested in triplicate, and the whole experiment was repeated
twice. Camera settings (exposure time and gain) were held constant be-
tween images. The contrast and color of collected images were optimized
using Adobe Photoshop.

Viral entry analysis and quantitative real-time PCR assay

To evaluate the effects of VCD on hCMV attachment to human fetal
astrocytes, prechilled cultures at 90% confluency in a six-well plate were
treated with VCD or vehicle (100 um) for 1 h at 4°C, followed by infection
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with precooled hCMV-GFP (MO], 0.1). After 2 h of incubation at 4°C,
fetal astrocytes were rinsed three times with cold PBS to remove unat-
tached virions then were harvested by trypsinization for viral DNA quan-
tification using a quantitative real-time PCR (qRT-PCR) assay (Chan
and Yurochko, 2014). To assess hCMV internalization into fetal astro-
cytes, cultures plated in plain media were inoculated with hCMV-GFP
(MOI, 0.1) and incubated at 4°C for 2 h. Cells were then washed three
times to remove unbound viral particles and were exposed to VCD or
vehicle at 100 um for 2 h at 37°C (to allow virus internalization) before
being harvested by trypsinization for DNA quantification by qRT-PCR.

DNA was extracted from cells using the QIAamp DNA mini kit
(Qiagen), and qRT-PCR was performed using TagMan assays (Life Tech-
nologies; Gault et al., 2001; Fukui et al, 2008) for hCMV UL132
(Pa03453400_s1) and human albumin (Hs99999922_s1) genes, as previ-
ously described (Ornaghi et al., 2016). Samples from uninfected cells and
without a template served as negative controls. Samples were run in dupli-
cate using a Bio-Rad iCycler-IQ instrument, and results were analyzed with
iCycler software. The amount of viral DNA in each sample relative to albu-
min was calculated using the comparative threshold cycle (C) method, and
hCMV DNA was expressed as the percentage of virus bound (the “attach-
ment” step) or internalized (the “internalization” step) using DMSO-treated
samples as 100%.

Animal procedures

All animal breeding and experiments were performed in accordance with
the guidelines of the Yale School of Medicine Institutional Animal Care
and Use Committee (IACUC). Research was approved by the IACUC.
Male and female BALB/c strain mice (6—8 weeks of age) from Taconic
Biosciences were maintained on a 12 h light/dark cycle under constant
temperature (22 * 2°C) and humidity (55 * 5%), with access to food
and water ad libitum. One to two females were cohabited with a male of
the same strain for at least 1 week to ensure fertilization. When advanced
pregnancy was seen, each pregnant female was caged singularly and
checked for delivery twice daily, at 8:30 A.M. and 6:30 P.M. Here we focus
on inoculation of the newborn mouse, similar to the strategy we recently
described for studying the actions of Zika virus in the developing mouse
brain (van den Pol et al., 2017).

Paradigms of mCMYV infection. Newborns were inoculated intraperito-
neally with 750 pfu of mCMV-GFP in 50 wl of media on the DOB within
14 h of delivery. The DOB was considered to be postnatal day 0 (P0).
Control animals received 50 ul of media intraperitoneally. To avoid any
litter-size effect, large litters were culled to a maximum of eight to nine
pups (Tanaka, 1998). Infected and control pups were randomly assigned
to receive VCD or vehicle (DMSO) via subcutaneous injections, once a
day, ata dose of 1.4 mg/ml in 20 ul of saline (28 wg/mouse), starting after
virus inoculation and running from P1 to P21. Mice were monitored
daily for signs of mCMV-induced disease and to determine survival;
weaning occurred on P21 and mice of either sex were housed separately
until testing was completed, then killed.

In addition to the intraperitoneal route, intracranial injection was
performed in a group of newborn mice. Three days after birth, 2 X 10*
pfu of mMCMV-GFP in 1 ul of media was injected into the left cerebral
hemisphere of neonatal mice under cryoanesthesia using a 10 wl Hamil-
ton syringe with a 32-gauge needle from a midpoint between the ear and
eye. Infected pups were randomly assigned to receive daily doses of VCD or
vehicle (DMSO), starting 3 h after virus inoculation until P8. No deaths
occurred, and at P9 mice were killed and blood, liver, spleen, and brain were
collected, snap frozen, and stored at —80°C until viral titer analysis via gRT-
PCR (n = 8/experimental group) was performed.

Early neurobehavioral assessment. Intraperitoneally infected pups and
controls were assessed for neurobehavioral development according to a
slightly modified Fox battery, as previously described (Fox, 1965; St
Omer et al., 1991; Calamandrei et al., 1999). Evaluation was performed
without knowledge of the experimental group on every other day from
P2 to P14, in the light phase of the circadian cycle between 9:00 A.M. and
3:00 P.M. Each subject was tested at approximately the same time of the
day. Reflexes and responses were scored in the following order: righting
reflex, the time used by the pup to turn upright with all four feet when
placed on its back; cliff aversion, when placed on the edge of a cliff or table
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top with the forepaws and face over the edge, the mouse will turn and
crawl away from the edge; Forelimb grasping reflex, when the forefoot is
stroked with a blunt instrument the foot will flex to grasp the instrument;
forelimb placing reflex, contact of the dorsum of the foot against the edge
of an object will cause the foot to raise and place itself on the surface of the
object when the animal is suspended and no other foot is in contact with
a solid surface; negative geotaxis, the time used by the pup to turn ~180°
to either side when placed head down on a wire mesh screen (4 X 4 mm)
held ata45° angle; level screen test, pup holds onto a wire-mesh (10 X 10 cm)
and is propelled across the mesh horizontally by the tail; screen climbing test,
pup climbs up a vertical screen (10 X 10 cm, 90° angle) using both forepaws
and hindpaws; maximal response, scored when the subject reaches the top of
the vertical screen; and vibrissa placing reflex, when the mouse is suspended
by the tail and lowered so that the vibrissae make contact with a solid object,
the head is raised and the forelimbs are extended to grasp the object.

Latencies were measured in seconds using a stopwatch for righting
reflex and negative geotaxis. The remaining behavioral variables were
rated semiquantitatively in the following way: 0 = no response or occur-
rence of the event (R/O); 1 = slight/uncertain R/O; 2 = incomplete R/O;
and 3 = a complete adult-like R/O. All timed responses were limited to a
maximum of 60 s; therefore, the absence of a milestone was scored as
0/60 s (semiquantitative rating/latencies) if the mouse did not exhibit
the behavior within 60 s.

This battery of tests provides a detailed assessment of functional and
neurobehavioral development throughout the neonatal period since the
behaviors measured are each expressed at different stages of development
during the first weeks of life. Specific information about vestibular func-
tion, motor development and activity, coordination, and muscle strength
can be obtained by execution of these tests (St Omer et al., 1991; Sch-
neider and Przewlocki, 2005).

Evaluation of motor coordination and balance in adolescent mice. Motor
performance of infected and control mice, with or without VCD treat-
ment, was assessed at P28—P30 by the hindlimb-clasping, vertical pole,
and challenging beam traversal tests.

In the hindlimb-clasping test, the mouse is gently lifted by the tail,
grasped near its base, and the hindlimb position is observed for 10 s and
scored as follows: if the hindlimbs are consistently splayed outward, away
from the abdomen, it is assigned a score of 0; if one hindlimb is retracted
toward the abdomen for >50% of the time suspended, it receives a score
of 1; if both hindlimbs are partially retracted toward the abdomen for
>50% of the time suspended, it receives a score of 2; and if its hindlimbs
are entirely retracted and touching the abdomen for >50% of the time
suspended, it receives a score of 3 (Tanaka et al., 2004; Guyenet et al.,
2010).

The vertical pole test was conducted according to previously estab-
lished protocols (Ogawa et al., 1985; Soerensen et al., 2008). Briefly, mice
were individually placed head downward at the top of a vertical rough-
surfaced pole (diameter, 8 mm; height, 55 cm) and allowed to descend in
around of habituation. Then, mice were placed head upward at the top of
the pole. The time required for the animal to descend to the floor was
recorded as the locomotor activity time (T} , ), with a maximum duration
of 120 s. If a mouse fell, was unable to turn downward, or was unable to
climb down, a default locomotor activity time value was recorded as
120 s. Each mouse was given three trials with a 30 s recovery period
between trials.

The challenging beam traversal test was performed as previously de-
scribed (Fleming et al., 2004, 2013). The beam consisted of four sections
(25 cm each, 1 m total length), each section having a different width. The
beam started at a width of 3.5 cm and gradually narrowed to 0.5 cm in the
last section. Underhanging ledges (1 cm width) were placed 1.0 cm below
the top surface of the beam to increase the sensitivity of the test and allow
detection of subtle motor deficits (Brooks and Dunnett, 2009). Animals
were trained to traverse the length of the beam starting at the widest
section and ending at the narrow most difficult section. The narrow end
of the beam led directly into the home cage of the animal. A bright light
illuminated the start of the beam to further encourage the mouse to walk
across the beam toward the home cage. Animals received 2 d of training
before testing, with five trials for each day. On the day of the test, a mesh
grid (1 cm squares) of corresponding width was placed over the beam
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surface leaving a 1 cm space between the grid
and the beam surface. Animals were then vid-
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beam for a total of five trials. Videos were
viewed and rated in slow motion for hindlimb
slips and time to traverse across five trials by an
investigator blind to the mouse experimental
group. A slip was counted when the mouse was
facing and moving forward and a hindlimb
slipped through or outside of the grid beyond
0.5 cm below the grid surface (halfway down).

Exploratory activity and social behavior anal-
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small open field, as previously described (Shi et
al., 2003; Schneider and Przewlocki, 2005). The
apparatus consisted of a plastic rectangular box
measuring 20.5 X 17 X 13 cm? (1 X width X
height) with regularly spaced holes in the short
(2) and long (3) walls, and illuminated by am-
bient fluorescent ceiling lights. The animal was
placed in the center of the apparatus and its
movements were video recorded over a 3 min
period. Exploratory behavior was scored for
the number of rearing and nose-poking (nose
of an animal put inside the hole) episodes.
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Sociability and preference for social novelty
were investigated at 5 weeks of age in a three-
compartment apparatus (Crawley, 2007; Yang
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et al., 2011). Initially, test and control animals 8
were allowed to explore the apparatus freely for
a 10 min period (habituation). For the social
approach paradigm, an unfamiliar conspecific
(same sex, similar age and weight) animal was
placed into one of the side compartments and
restrained by a small wire object (“social
cage”). The compartment on the other side
contained an empty wire object (“empty
cage”). The test subject was then released into
the center compartment and allowed to ex-
plore the three-compartment apparatus freely
for 10 min. Behavior was videotaped and as-
sessed for the times that the test subject spent in
the three compartments and in close proximity
to the social and empty cages. For the social-
novelty paradigm, another unfamiliar conspe-
cific animal was placed in the previously empty
wire object (“novel cage”). The behavior of the
test mouse was recorded for 10 min and as-
sessed for the time spent exploring the known
and novel conspecifics.

Assessment of mCMYV distribution in the brain
and viral-mediated brain abnormalities. At spe-
cific time points after infection, mice were
killed by an overdose of anesthetic and tran-
scardially perfused with sterile, cold PBS fol-
lowed by 4% paraformaldehyde, and brains were harvested and weighed.
Brains were then immersed overnight in 4% paraformaldehyde, and
cryoprotected in 15% and then 30% sucrose for 24 h before inclusion in
Tissue Freezing Medium (General Data). Some intraperitoneally in-
fected mice became dehydrated and moribund and showed no sign of
recovery; these mice were killed before the predefined killing time points
and were recorded as having had a lethal response to the virus.

Fifteen-micrometer-thick sections cut with a Leica cryostat were used
for GFP reporter expression assessment and immunofluorescence anal-
ysis in the brain. Sections were dried for 4 h at room temperature, rehy-
drated in 1 X PBS, and then used for immunofluorescence assays. Briefly,
tissue sections were incubated overnight at 4°C with monoclonal mouse
anti-NeuN antibody (1:500; catalog #MAB377, EMD Millipore; RRID:

Figure 1.

12

Postnatal day

12 16 21 30 50
Postnatal day

16 21 30 50 4 8

Brain

m

»
1

il

"

T LoD

w

1

Copy number (log,,)/gr

N

8 12 16 21 30 50

Postnatal day

N

Kinetics of mCMV replication after intraperitoneal inoculation on day of birth. Newborn mice were infected on the
DOB (day 0) with 750 pfu of mCMV. Viral load in whole blood, liver, spleen, and brain was evaluated by qRT-P(R at the indicated
time points and expressed as log,, genome copies per gram/ml of harvested tissue/blood. In A, each symbol represents an
individual mouse, and horizontal bars show mean values of the groups; in B—E, data are presented as the mean = SEM with 7-10
mice/time point. Viral titers below the limit of detection (LoD, dotted line) were plotted as 2 log,, genome copies. In
A, **p < 0.01, ***p < 0.001, ****p < 0.0001; one-way ANOVA with Bonferroni's post hoc test.

AB_2298772) for neuronal cells and polyclonal rabbit anti-calbindin
D-28K (1:500; catalog #AB1778, EMD Millipore; RRID: AB_2068336)
for cerebellar Purkinje cells (PCs). Tissues were washed three times in
phosphate buffer plus 0.4% Triton X-100. Secondary antibodies, includ-
ing goat anti-mouse IgG and donkey anti-rabbit IgG conjugated to Alexa
Fluor-594 (1:250; Invitrogen), were applied for 1 h at room temperature
and then washed off. Some sections were labeled with DAPI. Vectashield
Fluorescent mounting medium (Vector Laboratories) was then used for
mounting.

Images were collected by using a fluorescence microscope (model IX
71, Olympus Optical).

Frozen sections were used for morphometric measurements, and cell
numbers were quantified after imaging using ImageJ software (https://
imagej.nih.gov/ij/; RRID: SCR_003070). The molecular layer (ML) and
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Scattered widespread distribution of mCMV-GFP in brains after infection of newborn mice. Detection of virus-infected cells by means of mCMV GFP reporter expression in representative

coronal sections of P8 and P12 mouse brains (n = 5). 4, Single infected cells or small foci of infection (yellow arrows) can be identified in the retrosplenial cortex (RS ctx), primary and secondary
somatosensory cortex (51/52), ectorhinal cortex (Ect), perirhinal cortex (Prh), piriform cortex (Pir), hippocampus (hippo) and dentate gyrus (DG), lateral ventricle (LV), external and internal capsule
of the corpus callosum (ec and i, respectively), lateral hypothalamic area (LH), and thalamic nuclei (Th Nu) of a P12 mouse brain. D3V, dorsal third ventricle. B—D are magpnifications of the boxed
areasin A. E, Infection of the lateral ventricle and diffusion to the adjacent brain parenchyma in a P8 brain. F, Magnification of the boxed area in E. c¢, corpus callosum. G, Photomicrograph of a P12
brain showing infection in the motor (M1) and piriform cortex, and in the striatum [caudate—putamen (CPu)]. H, I, Large foci of mCMV-infected cells in the pons and the medulla of a P8 animal.

Scale bars: H, 50 wm; 4, D, E, G, 1,100 wm; C, F, 200 wm; B, 400 wm.

internal granular layer (IGL) were assessed using images of serial mid-
sagittal cerebellar sections stained with calbindin D-28K and DAPI. Three
measurements were taken at each side of the primary fissure in each section,
and four sections per animal were evaluated. For the cerebellar area, mid-
sagittal brain sections (three sections/mouse) were stained with blue fluores-
cent Nissl stain (NeuroTrace, catalog #N21479, Thermo Fisher Scientific),
and images were collected using a 2X objective. Cell counts were performed
on sections (four sections/mouse) stained with calbindin D-28K, and the
number of Purkinje cells was evaluated along 500 wm of the primary fissure
(both sides). All measurements and quantifications were performed on at
least five animals from three different litters.

Kinetics of virus spread and replication in vivo. For measurement of
mCMYV replication in blood, liver, spleen, and brain, mCMV-infected

mice receiving either VCD or vehicle intraperitoneally or intracranially
were killed at multiple time points postinoculation, and samples were
collected under sterile conditions, snap frozen, and stored at —80°C until
viral titer analysis via quantitative real-time PCR (n = 7-10/experimen-
tal group) was performed. Mice used for viral load analysis in liver,
spleen, and brain were perfused with sterile cold PBS to remove any virus
contained within the blood. Total DNA was isolated using the QIAamp
DNA Mini Kit (Qiagen) as per manufacturer instructions. Quantitative
PCR was performed using TaqgMan assays (Life Technologies) by ampli-
fication of a fragment of mCMV IE1 gene exon 4 using the following
primers: forward, 5'-GGC TTC ATG ATC CAC CCT GTT A-3'; and
reverse, 5'-GCC TTC ATC TGC TGC CAT ACT-3". The probe (5'-AGC
CTT TCCTGG ATG CCA GGT CTC A-3") was labeled with the reporter
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CMV infection of neuronal cells in the cerebellum, hippocampus, and cortex of the developing brain. 4, B, Photomicrographs show GFP labeling of different cerebellar cell types,

including neurons in the internal granular layer (A) and Purkinje cells (B), as assessed by NeuN and calbindin D-28K staining at 8 dpi (n = 2 brains). (~E, Photographs display infection of different
areas of the hippocampus (€), a magnification of the viral involvement of pyramidal cells in CA1 field (boxed area; D), and infected neurons in the dentate gyrus (DG; n = 2 brains; E). F, Robust GFP
expression in a pyramidal neuron of the motor cortex (n = 1brain); note the beaded aspect of the basilar dendrites, sign of neuronal pathology. Photomicrograph of neuronal infection in the visual

cortex (n = 1brain; G). Scale bars: A=E, G, 100 wm; F, 50 um.

dye FAM (Kosmac et al., 2013). qRT-PCR was performed using 20 ul
reaction mixtures using the iTaq Universal SYBR Probes Supermix (Bio-
Rad) and 100 ng of DNA. Samples were run in duplicate using a two-step
amplification protocol. Tissue samples from uninfected mice and sam-
ples without a template served as negative controls. Viral burden was
expressed as the copy number per ml per gram blood/tissue after com-
parison with a standard curve generated using serial 10-fold dilutions of
mCMYV DNA.

Experimental design and statistical analysis

Statistical significance, unless otherwise specified, was determined by
one-way ANOVA or Kruskal-Wallis test followed by Bonferroni’s and
Dunn’s post hoc test, respectively, for evaluation of motor performance,
exploratory behavior, and brain morphometry. Early neurobehavioral
development, social behavior, and viral load over time were assessed by a
mixed-model ANOVA with repeated measures followed by Newman—
Keuls test if there was a significant F value. Since no gender-related
differences were detected in early neurodevelopment, data from male
and female mice were combined. Only male mice were used for exami-

nation of motor performance and exploratory and social behavior. All
analyses were conducted with GraphPad Prism version 6.0 (RRID:
SCR_002798), with significance set at p < 0.05. Neurobehavioral assess-
ment was performed blindly with respect to the experimental group.

Results

Peripheral inoculation of CMV causes widespread infection
of the developing brain

First, we characterized the kinetics of CMV replication and dis-
semination after intraperitoneal inoculation of the virus in
newborn mice on the DOB (P0). Forty-eight hours after intra-
peritoneal injection, CMV was found in the blood and at lower
levels in the spleen and liver of infected mice, with only a small
amount detected in the brain (Fig. 1A). Analysis of viral kinetics
in these four organs over the course of 50 d revealed that CMV,
after entering the bloodstream, quickly gained access to periph-
eral target organs (i.e., the liver and spleen) and began replicating
to yield high viral titers by 4 d post-injection (dpi; Fig. 1B-D). In
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Figure 4.

Valnoctamide suppresses mCMV load in the brain of mice infected intraperitoneally on the day of birth. Newborn mice were infected at PO with 750 pfu of mCMV intraperitoneally and

were randomized to receive either vehicle (mCMV+VEH) or VCD (mCMV + V(D) subcutaneously from P1 until P21. A-E, Viral load was quantified in the cerebrum (A), cerebellum (B), whole blood
(€), liver (D), and spleen (E) by qRT-PCR at the specified time points and were expressed as log,, genome copies per gram/ml harvested tissue/blood. Data are presented as the mean = SEM; n =
7-10 mice/time point. Viral titers below the limit of detection (LoD, dotted line) were plotted as 2 log,, genome copies. ns, Not significant. *p << 0.05, **p << 0.01, ***p < 0.001,

*¥¥%¥p <0.0001; two-way ANOVA with postnatal day as repeated measures.

turn, similar viral titers were measured in the brain only after 8
dpi (Fig. 1E). After entering the brain, the virus could effectively
replicate in situ, as suggested by the measurement of CMV loads
similar to those found in the liver and spleen at the viral peak
between P8 and P12 (Fig. 1C-E).

Upon histological examination, CMV-GFP infection of the
developing mouse brain appeared widespread and scattered in
nature. Isolated infected cells and infectious foci containing up to
20-25 cells could be found in multiple distant areas within the
same brain. The pattern of infection also appeared heteroge-
neous, with different brains displaying infection in different re-
gions. These observations are consistent with a hematogenous
spread of CMV from the periphery into the developing brain of
neonatal mice. Infected cells were identified in the olfactory bulb
and nuclei, the cortex, corpus callosum, hippocampus, basal nu-

clei, choroid plexus, midbrain, superior and inferior colliculi,
sylvian aqueduct, pons, medulla, cerebellum, and meninges (Fig.
2A-I). No CMV was detected in the spinal cord. Infection of the
choroid plexus in the lateral ventricles was frequently associated
with evidence of infected cells in the brain parenchyma in close
proximity to the ventricle (Fig. 2 E, F), a site of neural progenitor
stem cell localization (Semple et al., 2013). Infection of certain
brain areas, such as the thalamus and the hypothalamus, was
observed less frequently compared with other regions, including
the cerebellum, hippocampus, and cortex. The cerebellum was
the only site consistently displaying viral infection in all the brains
examined (n = 20), with robust GFP labeling in both Purkinje
cells and granule neurons (Fig. 3 A, B). Viral GFP was also iden-
tified in neurons of the hippocampus and in the cerebral cortex
(Fig. 3C=G). In cortical pyramidal cells, GFP was seen in both the
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apical dendrite extending toward the cortical surface and in basal
dendrites ramifying closer to the cell body. Some infected neu-
rons in the cortex displayed signs of degeneration, characterized
by abnormal swelling along the dendrites (Fig. 3F).

Together, these results indicate that intraperitoneally admin-
istered CMYV, after replicating in peripheral target organs, enters
the developing brain of neonatal mice via the bloodstream or
immune cells in the blood, producing a scattered and widespread
infection with a highly heterogeneous pattern of propagation.
Nonetheless, CMV appears to display a particular preference for
the cerebellum as an infectious site.

Subcutaneous valnoctamide blocks CMYV replication within
the brain

Mice were infected intraperitoneally on the day of birth, and we
compared the brains of infected mice treated subcutaneously
with VCD with nontreated CMV-infected mice. CMV load in the
brain was quantified at multiple time points after virus inocula-
tion. Cerebrum (cortex, hippocampus, thalamus, hypothalamus,
and striatum) and cerebellum were assessed separately to deter-
mine whether the viral preference for the cerebellar region, as
observed in the brain section analysis, was also accompanied by
higher levels of virus replication. VCD decreased the amount of
virus detected in both the cerebrum and cerebellum by a very
substantial amount, with an ~100- to 1000-fold decrease at all
time points tested (Fig. 4A,B). The anti-CMV effect displayed a
rapid onset, suppressing the viral load after only 1 and 3 d of
treatment in the cerebellum and the cerebrum, respectively. In
untreated infected mice, higher viral titers were identified in cer-
ebellar samples compared with cerebrum at the beginning of
infection (P4: t = 3.704, p = 0.004, paired Student’s ¢ test), sug-
gesting that the cerebellum may represent a preferential site for
initial CMV targeting in the brain. These data indicate that VCD
can attenuate CMV infection detected in the brain. The observed
antiviral effect of VCD in the CNS could be the consequence of a
drug-mediated decrease in viral replication in the periphery.
Along this line, we corroborated (Ornaghi et al., 2016) that VCD
also attenuated CMV in the blood, liver, and spleen, starting
quickly after therapy initiation and continuing to the end of the
experiment (Fig. 4C—E). This reduction of CMV outside the brain
would benefit the brain by reducing the amount of virus that
ultimately can enter the CNS.

To investigate whether VCD can act directly in the brain to
decrease CMV, we infected pups on P3 by direct intracranial
virus inoculation. Analysis of CMV load in the blood, liver, and
spleen of untreated infected mice at P9 showed no viral spread
outside the CNS (data not shown). Viral titers in the cerebrum
and the cerebellum were substantially lower by >100-fold in
CMV-infected animals receiving VCD treatment compared with
untreated CMV-infected mice (2.99 X 10> % 9.06 X 10* vs
2.47 X 10% = 1.22 X 10® copy number/g tissue, p = 0.004 in
cerebrum; 2.88 X 10° + 1.83 X 10 vs 3.41 X 10® * 1.52 X 10°
copy number/g tissue, p = 0.0003 in cerebellum; Mann—Whitney
U test; Fig. 5). These results indicate that subcutaneously admin-
istered low-dose VCD can enter the brain at sufficient concentra-
tions to effectively suppress CMV replication in situ.

Reversal of early neurological dysfunction in CMV-infected
neonatal mice

Human infants with CMV infection during early development
can display substantial delays in the acquisition of neurological
milestones during the first months of life (Dollard et al., 2007;
Kimberlin et al., 2015). Since VCD showed a robust antiviral
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activity in the CNS of infected mice with a rapid attenuation of
viral replication, we investigated whether this would translate
into a positive therapeutic effect on the early neurological out-
comes of neonatal mice.

Neurobehavioral assessments were performed using a battery
of tests to examine body righting and tactile reflexes, motor co-
ordination, and muscular strength. These tests provide a detailed
examination of neurontogeny throughout the neonatal period
since the behaviors measured are each expressed at different pe-
riods during the first 3 weeks of postnatal life (Fox, 1965; Scattoni
et al., 2008).

Here and in a number of experiments below, we compared
neurological function in the following four groups of mice: non-
infected controls; VCD-treated non-infected controls; CMV-
infected mice; and CMV-infected mice treated with VCD. VCD
was administered in a single daily subcutaneous dose (for addi-
tional details, see Materials and Methods).

CMYV infection on the day of birth induced abnormal acqui-
sition of all the neurological milestones assessed, with infected
mice showing a delay of 6—10 d in the demonstration of re-
sponses similar to the uninfected controls (Fig. 6A-H). In
turn, infected VCD-treated neonatal pups displayed a timely
acquisition of neurological milestones in all the behaviors
measured. No differences were identified in the early neuron-
togeny of uninfected mice receiving VCD or vehicle. Together,
these data indicate that VCD treatment during early develop-
ment can safely improve the short-term neurodevelopmental
outcomes observed in infected neonatal mice.

Amelioration of long-term neurobehavioral outcomes in
infected juvenile mice

CMYV infected infants with evidence of neurological delays during
the neonatal period are at increased risk of the development of
long-term permanent neurological and behavioral sequelae,
which manifest with a delayed onset after the first years of life
(James and Kimberlin, 2016). Abnormal motor function is a
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commonly observed long-term neurolog-
ical complication (Turner et al., 2014).
More recently, a link between ASD-like
behavioral disturbances in children and
adolescents and CMV infection during
early development has been proposed
(Sakamoto et al., 2015; Garofoli et al.,
2017). Given the substantial improve-
ment induced by VCD in the early neu-
rontogeny of CMV-infected neonatal
mice, we examined whether these beneficial
effects could also ameliorate late-onset neu-
robehavioral abnormalities, including mo-
tor performance and social and exploratory
behavior.

Motor performance

As indicated above, the cerebellum ap-
pears to be a preferential site for CMV
targeting in the mouse brain. We investi-
gated cerebellar-mediated motor func-
tions in infected and control juvenile mice
using a hindlimb-clasping test, a vertical
pole test, and a challenging beam traversal
test (Brooks and Dunnett, 2009; Guyenet
etal., 2010; Fleming et al., 2013).

The hindlimb clasping test is a marker
of cerebellar pathology commonly used
for severity scoring in mouse models of
cerebellar degeneration (Guyenet et al.,
2010). The majority of the CMV-infected
mice (9 of 13 mice) displayed an abnor-
mal response to the clasping test, with
both hindlimbs partially or entirely re-
tracted to the abdomen when the mice
were suspended by their tail for 10 s (Fig.
7A,B). VCD administration completely
reversed this altered behavior, restoring
a response similar to the uninfected
counterparts.

By placing a mouse head upward on a
vertical wooden pole, the vertical pole test
allows for the examination of the ability of
the animal to turn through 180° and suc-
cessfully climb down the pole (Brooks and
Dunnett, 2009). CMV-infected, untreated
juvenile mice required a longer period to
complete the task compared with both
uninfected controls and CMV-infected
VCD-treated animals (Fig. 7C). Three of
20 infected mice (15%) without treatment
failed the test (e.g., showed an inability to
turn the head downward or falling) in all
of the three trials given, whereas no VCD-
treated infected mice or uninfected con-
trols failed in performing the task (p =
0.03, x? test).

In addition, we evaluated fine motor
coordination and balance by the challeng-
ing beam traversal test, which assesses the
ability of a mouse to maintain balance
while traversing a narrow, 1-m-long beam
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to reach a safe platform (Carter et al.,
2001; Brooks and Dunnett, 2009; Luong et
al., 2011; Fleming et al., 2013). CMV in-
fection during early development in-
creased the time needed by the mice to
cross the beam and also the frequency of
slipping (Fig. 7D, E). VCD treatment sig-
nificantly improved the coordination and
balance of CMV-infected mice, reducing
both the beam traversal time and the
number of slips recorded.

Social and exploratory behavior

ASD is characterized by pervasive impair-
ments in social interactions coupled with
restricted and repetitive behaviors and de-
creased exploratory activity (American
Psychiatric Association, 2013). To investi-
gate whether adolescent mice with perina-
tal CMV infection would display social
and exploratory behavioral disturbances,
we assessed social interaction and novel
environment exploration by means of the
three-chamber test and an adapted small
open field test.

Infected untreated mice showed nor-
mal sociability when exposed to a first
stranger mouse, preferring the conspecific
over the empty cage (novel object; Fig.
8A). However, a lack of preference for so-
cial novelty was found when a second
stranger mouse was introduced, with in-
fected untreated mice spending an equal
amount of time in investigating the
known and the novel animal (Fig. 8B).
VCD therapy restored social novelty re-
sponses similar to levels shown in unin-
fected controls, with increased time
devoted to examining the second stranger
mouse.

Exploratory activity was assessed by
quantifying the number of rearings and
nose pokings of mice exposed to a novel
environment over a 3 min test session
(Fig. 8C,D). A substantial reduction in
both rearing and hole-poking events was
identified in CMV-infected untreated
mice compared with control animals.
Normal levels of exploratory activity were
restored in infected mice receiving VCD
treatment.

Valnoctamide attenuates CMV-induced
brain defects in early development
Early-onset neurodevelopmental delays

and long-term permanent neurobehavioral disabilities are com-
monly observed in CMV-infected babies with evidence of virally
induced brain abnormalities, including decreased brain size and
cerebellar hypoplasia (Gandhi and Khanna, 2004; de Vries et al.,
2004; Cheeran et al., 2009; Oosterom et al., 2015; James and
Kimberlin, 2016). Since VCD showed a potent and fast-acting
anti-CMYV activity in the brains of infected mice and appeared
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beneficial to both short- and long-term neurobehavioral out-
comes, we investigated whether drug treatment during early de-
velopment could also exert therapeutic actions on CMV-induced
brain defects.

Brain size was analyzed in 1-month-old-mice by assessing the
brain-to-body weight ratio (Fig. 9A, B). This measurement al-
lows a more objective evaluation of the postnatal brain growth,



Ornaghi et al. @ Valnoctamide Blocks CMV in Developing Brain

Sociability
A
A400- ol *kkk [ | Empty
8 l *%
Z) ** l T [ Center
E 2007 L O Stranger
S
@©
5 200
£
=
1004
(2]
(0]
£
= 0
VEH VCD VEH VCD
Control mCMV
B Social novelty =
400- Stranger 1
’g % CCenter
(2)
%/300_ T * ns T OStranger 2
o T
c T
©
5 200
£
c
L1001
w
(0]
£
F 0
VEH VCD VEH VCD
Control mCMV
Exploratory behavior
ns
Co —=— Do ——= = [@ven
— *
£ & T T |dOvep
2 2"
£ acc)
g 44 Q ol
i -
Z ol
Control mCMV Control mCMV

Figure8.

(MV infection during early development causes disturhances in social behavior and exploratory activity in adolescent

mice. A, B, Sociability (4) and preference for social novelty (B) assessment in infected and control mice, with or without V(D
treatment, by means of the three-chamber test. C(MV-infected mice display regular sociability compared with control mice but lack
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compared with absolute brain weight, when somatic growth re-
striction is present. Subcutaneous VCD rescued the deficient
brain growth induced by CMV, restoring brain-to-body weight

ratio values similar to those in uninfected control mice.
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Hypoplasia of the cerebellum is a
common radiological finding in CMV-
infected human babies (de Vries et al.,
2004; Oosterom et al., 2015). A temporary
delay in early postnatal cerebellar devel-
opment was reported in newborn mice in-
jected intraperitoneally with low titers of
CMV (Koontz et al., 2008). In our in-
fected mice, we identified the cerebellum
as a preferential site for viral localization
in the brain. We examined cerebellar
anatomy and histology in control and in-
fected mice with or without VCD therapy.
CMV infection of the developing brain re-
sulted in the disruption of cerebellar de-
velopment, with a 60% decrease in the
total area of this region compared with
uninfected controls (F = 8.56, p < 0.001
ANOVA; Fig. 10A,B). CMV-infected
mice displayed a substantial loss of PCs
and a thinner ML, which contains PC
dendritic trees, parallel fibers of the gran-
ule cells, Bergmann glia radial processes,
and basket and stellate cells (Fig. 10C-E).
Reduced thickness of the cerebellar IGL
was also found (Fig. 10F). PCs were not
only decreased in number but also
misplaced (Fig. 10G). In addition, the ex-
ternal granular layer (EGL), normally un-
detectable after P21 in rodent brains
(Ferguson, 1996), could still be identified
in CMV-infected untreated mice at P30,
whereas no EGL was visible in controls
(Fig. 10H). Alignment of PCs and matu-
ration of their dendritic trees, as well as
granule cell precursor proliferation and
inward migration from the EGL to the
IGL, occur during the first 3 postnatal
weeks of life in rodents (Inouye and Mu-
rakami, 1980; Ferguson, 1996). VCD
treatment rescued the altered cerebellar
development of infected animals, restor-
ing normal cortical layer thickness and
representation and markedly increasing
PC number (Fig. 10C-H). These drug-
mediated positive effects ultimately re-
sulted in normalization of cerebellar size
(Fig. 10A,B). No adverse side effects on
either brain growth or morphometric pa-
rameters were detected in uninfected con-
trols receiving VCD compared with their
vehicle-treated counterparts.

Block of CMV infection in human fetal
brain cells

Mouse and human forms of CMV share a
close similarity in their viral genomes, but
each retains species specificity (Rawlinson
et al., 1996; Mocarski et al., 2007). In the

experiments above, we used mCMYV in mice. Here, to corrobo-
rate that the results we found above in our in vivo model with
mCMYV generalize to hCMV, we examined the actions of VCD

on hCMV-infected human fetal astrocytes, a common cellular
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target that can play an important role in virus dispersal in the
brain (Lokensgard et al., 1999; van den Pol et al., 1999). VCD
substantially decreased hCMV infectivity of human fetal astro-
cytes as assessed by quantification of cells expressing the CMV-
GFP-reporter (Fig. 11A). Viral replication was also diminished in
the presence of the drug, with a reduction in viral titer by ~100-
fold (4.92 X 10° = 5.84 X 10* pfu/ml in vehicle-treated cultures
vs 6.31 X 10° = 3.06 X 10° pfu/ml in VCD-treated cultures; p <
0.0001, Mann—Whitney U test; Fig. 11B).

VCD appears to act at an early stage of hCMV infection in
fibroblasts and has no antiviral effect on the unrelated vesicular
stomatitis virus (Ornaghi et al., 2016). To determine which step
of the hCMV replication cycle was inhibited by VCD in human
fetal astrocytes, we used a series of experiments to assess virus
attachment to the cellular surface and penetration into the cyto-
plasmic space. This was accomplished by shifting the incubation
temperature from 4°C (which allows virus attachment but not
fusion and internalization) to 37°C (which allows virus fusion
and internalization; Mocarski et al., 2007; Chan and Yurochko,
2014). Viral genome quantification by qRT-PCR showed that
VCD appeared to block hCMV attachment to fetal astrocytes
(Fig. 11C). In the presence of VCD, the amount of virus bound to
the cell surface was decreased by 60% compared with control
cultures not treated with VCD (p = 0.0007, unpaired Student’s
t test). VCD did not appear to block hCMV fusion/internaliza-
tion in the astrocytes. This also corroborates that the mechanism
of VCD block of CMV occurs at an early stage of infection and
appears unrelated to the genomic mechanisms of other approved
anti-CMV compounds.

Discussion

Our data show that low-dose VCD administered outside the
brain during early development effectively suppresses CMV in-
side the brain of infected mice via two different sites of action.
One is that VCD reduces peripheral levels of CMV, thereby de-
creasing the amount of virus available for entry into the brain. A
second is that VCD acts directly within the brain to block existing
brain CMV infection. These results are consistent with anti-CMV
activity of VCD outside the brain (Ornaghi et al., 2016). Impor-
tantly, the antiviral action of VCD begins shortly after adminis-
tration and effectively attenuates CMV levels throughout the
brain during the critical period of postnatal brain development.

This decrease in viral load is accompanied by a concomitant res-
toration of normal early neurological outcomes in infected
neonatal mice treated with VCD. Late-onset neurobehavioral
dysfunction, including motor impairment and social and explor-
atory behavior disturbances, as well as virally induced deficient
brain growth and disrupted cerebellar development, are substan-
tially attenuated in CMV-infected adolescent mice, which re-
ceived VCD during the neonatal period, suggesting long-lasting
beneficial effects. We detected no adverse collateral effects on the
neurodevelopment of uninfected control mice treated with VCD.

An important underlying rationale of our study is that the
newborn mouse brain is substantially less developed than the
newborn human brain. Based on the timing of the brain growth
spurt, initial neurogenesis, establishment and refinement of con-
nections, myelination, and gliogenesis, the mouse CNS at birth is
proposed to parallel the early second-trimester human fetal CNS
(Clancyetal., 2001, 2007a,b; Branchi et al., 2003; Workman et al.,
2013). This is a critical period for human brain development and
for hCMYV infection (Manicklal et al., 2013). By infecting mouse
pups on the day of birth, this animal model provides an informa-
tive means to study the effects of CMV on the developing brain.
Infected newborn mice display similar brain pathology and neu-
rological symptoms to that reported in congenitally infected hu-
man infants, including microcephaly, cerebellar hypoplasia,
neuronal loss, neurodevelopmental delays, motor impairments,
and behavioral disturbances (Perlman and Argyle, 1992; de Vries
et al., 2004; Pass et al., 2006; Lipitz et al., 2013; Kimberlin et al.,
2015; De Kegel et al., 2016; James and Kimberlin, 2016). These
data support the validity of this in vivo model for investigating
CMV infection and novel anti-CMV treatments during early
brain development.

Despite being partially effective, currently available CMV an-
tiviral agents, including ganciclovir and its prodrug valganciclo-
vir, foscarnet, cidofovir, and fomivirsen, display both toxic and
teratogenic actions (Mercorelli et al., 2011; James and Kimberlin,
2016). For this reason, they are not approved or recommended
for the treatment of pregnant women or infected fetuses or neo-
nates, thus depriving those who may need it the most, or at best
delaying treatment and hindering potential prevention or ame-
lioration of CMV-induced brain defects during early develop-
ment (Kimberlin et al., 2015). Because less severely infected
human infants are also at risk for late-onset neurological compli-
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Valnoctamide substantially ameliorates cerebellar development in mCMV-infected mice. A, Photomicrograph of representative fluorescent Nissl-stained cerebellar areas in control

(left) and infected mice with (right, mCMV + V(D) or without (middle, mCMV) VCD. Note the delayed foliation in infected, untreated cerebellum, rescued by VCD. Scale bar, 200 p.m. B, Graph depicts
cerebellar area, expressed as a percentage of total brain area (three sagittal sections/animal, five animals/group). C, Photomicrograph showing cerebellar PCs and ML by means of calbindin D-28K
staining. Infected, untreated cerebellum (middle) displays loss of PCs and thinner ML compared with uninfected control (left); VCD improves both parameters (right). Scale bar, 200 m.
D-F, Quantification of PC number (D), and ML (E) and IGL thickness (F) along 500 um of the primary fissure (prf; both sides; three sagittal sections/mouse, five mice/group). G, Fluorescent
micrograph of heterotopic PCs (arrowheads) identified in an infected untreated cerebellum. Scale bar, 100 wm. H, Photomicrograph displays pathological persistence of EGL in mCMV-infected,
untreated cerebellum at P30 (middle); no EGL could be identified at the same time point in uninfected control (left) and infected, V(D-treated cerebellum (right). Scale bar, 200 pm. Values are
reported as the mean == SEM. ns, Not significant. *p << 0.05, **p << 0.01, ***p << 0.001; one-way ANOVA with Bonferroni’s post hoc test.

cations including cognitive and motor disabilities, behavioral
disturbances, visual deficits, and hearing impairment (James and
Kimberlin, 2016), the development of anti-CMV compounds
with safer in vivo profiles that can be used in all infected neonates
would be of substantive benefit.

VCD has shown no teratogenic or toxic activity in several
studies using different animal models of early development (Ra-
datz et al., 1998; Shekh-Ahmad et al., 2014; Mawasi et al., 2015;
Wilodarczyk et al., 2015) and has been safely used for many years
to treat neuropsychiatric disorders in adults (Stepansky, 1960;

Goldberg, 1961; Harl, 1964). Further confirmation of its safety
profile has derived from preclinical and clinical investigations of
drug-mediated anti-convulsant and mood-stabilizing actions
(Barel et al., 1997; Lindekens et al., 2000; Isoherranen et al., 2003;
Winkler et al., 2005; Bersudsky et al., 2010; Kaufmann et al., 2010;
Mares et al., 2013; Shekh-Ahmad et al., 2015; Bialer et al., 2017;
Modi et al., 2017). VCD is effective at a low-micromolar dose
level, a slightly reduced level of efficacy compared with ganci-
clovir (Ornaghi et al., 2016); nonetheless, we found substan-
tial CMV inhibition in vivo with subcutaneous delivery. We
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Figure 11.  Valnoctamide suppresses hCMV infectivity and replication in human fetal astro-
cytes by blocking virus attachment to the cell. A, B, Human fetal astrocyte cells were pretreated
(for 1h) with VCD (100 um) or vehicle (VEH) before inoculation with hCMV using an MOl of 0.1.
V(D treatment decreased hCMV infectivity and replication as assessed by GFP-positive cell
counting (4) and viral yield assay (B) at 48 hpi. , Virus-inoculated human fetal astrocytes
were exposed to VCD or vehicle (100 wm) for 1 h at either 4°C or 37°C to assess hCMV
attachment to (“bound virus”) and internalization into (“internalized virus”) the cell. Viral
DNA was quantified by qRT-PCR and results expressed as the percentage of control
(vehicle-treated cultures considered as 100%). Graphs represent the average of three
separate experiments each performed in triplicate; error bars correspond to SE. ns, Not
significant. ***p << 0.001, ****p << 0.0001, unpaired Student’s t test in A and
C, Mann—Whitney U test in B; in (, significance refers to the comparison between VCD-
and vehicle-treated cultures in each assay.

focused on newborn mice and identified potent anti-CMV
actions of VCD; further studies focusing on VCD anti-CMV
efficacy in fetal development and on the inhibition of trans-
placental transmission leading to brain infection will be
beneficial.

The species specificity of CMV replication prevents testing the
activity of novel antiviral agents on hCMV in animal models
(Mocarski et al., 2007). Murine and human CMYV share similar
genomes, and anti-CMV drugs effective against mCMYV are likely
to also be active against hCMV (Rawlinson et al., 1996). The
attenuation of hCMYV infection of human fetal astrocytes by VCD
corroborates the utility of our in vivo mouse model and suggests
that VCD should also be effective against hCMV in the develop-
ing and adult human brain. In addition, VCD appears to act by
blocking hCMV attachment to the cell membrane as described
here in fetal astrocytes and previously in non-brain cells (Ornaghi
etal., 2016), a mechanism of action that is different from that of
currently available hCMV antiviral agents (Mercorelli et al.,
2011). This also suggests the potential of VCD as a therapeutic
option in immunocompromised adults, for whom the emergence
of drug-resistant CMV strains has become a substantial chal-
lenge. Combination therapies, which can include two or more
antiviral compounds, may help in controlling this problem, but
are limited by drug-related toxicity and CMV cross-resistance to
currently approved antiviral agents (Drew, 2000; James and
Prichard, 2011). By displaying a good safety profile and a novel
mechanism of anti-CMV activity, VCD may represent a valid
therapeutic choice for effective and safe combination treatments
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potentially meriting testing in immunocompromised individu-
als. Other closely related molecules, for instance, valpromide,
may also attenuate CMV (Ornaghi et al., 2016), but because val-
promide can be metabolized to valproate, which can enhance
virus infections, VCD is a better alternative due to the absence of
conversion to valproate (Bialer et al., 1990; Bialer, 1991). That
both related compounds show anti-CMV properties suggests
that other structurally related compounds may also possess
antiviral potential. These compounds have not previously
been recognized as possessing anti-CMV actions; because
both valpromide and VCD not only have similar antiepileptic
actions and sedative properties in psychiatric patients, but also
block CMV infections, this raises the possibility that the
neurotropic and antiviral mechanisms of action may not be
unrelated.

The dose of VCD we use here, with a 6 g developing mouse
body weight, is 5 mg/kg. This amount is similar to or less than the
dose of existing compounds used to treat CMV in clinical set-
tings; for instance, assuming a 60 kg body weight, ganciclovir can
be used from 5 up to 20 mg/kg/d in patients with serious infec-
tions (Kotton et al., 2013; Choopong et al., 2016; Genentech USA,
2016). Furthermore, the 5 mg/kg dose of VCD for treating CMV
infection is lower than the dose used to attenuate seizures and
neuropathic pain in neonatal and adult rodent experiments
(Winkler et al., 2005; Kaufmann et al., 2010; Mares$ et al., 2013;
Shekh-Ahmad et al., 2014) and is less than the 20 mg/kg dose that
can be used in humans to treat psychiatric dysfunction (Stepan-
sky, 1960; Goldberg, 1961; Harl, 1964; Bersudsky et al., 2010).
Together, these findings suggest that VCD may be able to atten-
uate CMV in the human brain at doses that should be both effec-
tive and tolerable.

CMYV has been detected in a substantial number of brain tu-
mors and has been postulated to play a role in the initiation or
progression of malignant gliomas (Cobbs et al., 2007; Odeberg et
al., 2007; Mitchell et al., 2008; Knight et al., 2013), although the
possibility remains that CMV has a greater affinity for existing
glial-type cells than for normal brain cells (van den Pol et al,,
1999) rather than a causative role in oncogenesis. Although fur-
ther substantiation is merited (Lau et al., 2005), if CMV does play
arole in the enhancement of brain tumor growth, the use of VCD
to attenuate CNS CMV may prove beneficial in attenuating tu-
mor progression.

In conclusion, our study shows that subcutaneous low-dose
VCD effectively and safely attenuates mCMYV replication in the
developing mouse brain and rescues these animals from virally
induced brain defects and adverse neurological outcomes. We
also show that VCD suppresses hCMYV replication in human fetal
brain cells by blocking viral attachment to the cell surface. Con-
sidering that VCD is already clinically available, has proven to be
safe in multiple models of early development, and displays a
novel mechanism of anti-CMV action, it merits further clinical
testing for possible therapeutic utility in the treatment of CMV in
the mature and developing human brain.
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Zika Virus Targeting in the Developing Brain
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Zika virus (ZIKV), a positive-sense RNA flavivirus, has attracted considerable attention recently for its potential to cause serious neuro-
logical problems, including microcephaly, cortical thinning, and blindness during early development. Recent findings suggest that ZIKV
infection of the brain can occur not only during very early stages of development, but also in later fetal/early neonatal stages of matura-
tion. Surprisingly, after peripheral inoculation of immunocompetent mice on the day of birth, the first cells targeted throughout the brain
were isolated astrocytes. At later stages, more neurons showed ZIKV immunoreactivity, in part potentially due to ZIKV release from
infected astrocytes. In all developing mice studied, we detected infection of retinal neurons; in many mice, this was also associated with
infection of the lateral geniculate, suprachiasmatic nuclei, and superior colliculus, suggesting a commonality for the virus to infect cells
of the visual system. Interestingly, in mature mice lacking a Type 1 interferon response (IFNR ~/~), after inoculation of the eye, the initial
majority of infected cells in the visual system were glial cells along the optic tract. ZIKV microinjection into the somatosensory cortex on
one side of the normal mouse brain resulted in mirror infection restricted to the contralateral somatosensory cortex without any infection
of midline brain regions, indicating the virus can move by axonal transport to synaptically coupled brain loci. These data support the view
that ZIKV shows considerable complexity in targeting the CNS and may target different cells at different stages of brain development.

Key words: astrocyte; behavior dysfunction; development; infection; neurotropic; virus

fSigniﬁcance Statement

Zika virus (ZIKV) can cause substantial damage to the developing human brain. Here we examine a developmental mouse model
of ZIKV infection in the newborn mouse in which the brain is developmentally similar to a second-trimester human fetus. After
peripheral inoculation, the virus entered the CNS in all mice tested and initially targeted astrocytes throughout the brain. Infec-
tions of the retina were detected in all mice, and infection of CNS visual system nuclei in the brain was common. We find that ZIKV
can be transported axonally, thereby enhancing virus spread within the brain. These data suggest that ZIKV infects multiple cell
types within the brain and that astrocyte infection may play a more important role in initial infection than previously appreciated.

~

Introduction

Within the last 2 years, a virus of African origin, Zika virus
(ZIKV), has become established in the Americas. The emergence
of this virus has generated considerable alarm, particularly re-
lated to the potential for ZIKV to cause neurological complica-
tions in fetal humans, as first noted in Brazil (Kleber de Oliveira et
al., 2016; Lessler et al., 2016). More recently ZIKV infection has
expanded to a number of other countries within the Americas. In
the United States, ZIKV has become a substantial concern as a
growing number of infections are beginning to be reported in late
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summer 2016 (McCarthy, 2016) (http://www.cdc.gov/zika/geo/
united-states.html). The most profound problem associated with
ZIKV is the generation of permanent neurological dysfunction in
infected fetuses. ZIKV-related brain dysfunction is found not
only in obvious cases of microcephaly, which may be most com-
monly associated with ZIKV infection during the first trimester
of human pregnancy (Brasil et al., 2016; Kleber de Oliveira et al.,
2016), but also in neonates with a normal head size born from
mothers infected during later stages of pregnancy (Franga et al.,
2016; Hazin et al., 2016). The probability of fetal microcephaly in
ZIKV-infected pregnant women ranges from 1% to 13%; there is
a concern that other nervous system complications, although not
as obvious as microcephaly, may be more prevalent (Cauchemez
etal., 2016; Johansson etal., 2016; Trevathan, 2016). For instance,
in addition to microcephaly, cortical thinning, abnormal limb
postures, blindness and visual impairment, and auditory dys-
function have also been reported in neonates born from ZIKV-
infected mothers (Calvet et al., 2016; de Carvalho Leal et al., 2016;
de Fatima Vasco Aragoa et al., 2016; Driggers et al., 2016; Franca
et al., 2016; Martines et al., 2016; van der Linden et al., 2016).
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ZIKV enters brain after intraperitoneal inoculation. 4, B, Confocal scanning microscope images of ZIKV-infected astrocytes. Scale bar, 8 wm. €, ZIKV-infected glial cell (red) contains GFAP

immunoreactivity (green). The ZIKV immunoreactivity is found out to the tips of the glial processes, whereas the GFAP is confined more to the shaft of primary and secondary processes. Scale bar,
10 um. D, No colocalization of ZIKV and Iba1 (a microglia marker) was detected. Scale bar, 12 wm. E, ZIKV-infected neuron with punctate immunoreactivity at 7 dpi after PO inoculation. Scale bar,
15 wm. F, G, At 4 dpi after intraperitoneal inoculation, most infected cells are glia (blue dots); only rare neurons (red dots) are infected. G, More caudal midbrain region of the same mouse as in F.
H, More cells, particularly astrocytes, are infected at 5 dpi. /, At 7 dpi after intraperitoneal inoculation, ZIKV has spread throughout the brain. At this stage of development, ZIKV infects glia (blue) and
neurons (red) with little preference for brain regions, with the exception in this case of strong hippocampal neuron infection, including the dentate gyrus, CA3, and CA1.

ZIKV infections are also associated with an increase in Guillain-
Barré syndrome (Dos Santos et al., 2016; Paixdo et al., 2016;
Niemeyer et al., 2017), an immune system-mediated motor dys-
function that can lead to paralysis that often dissipates over time
(Hughes and Rees, 1997).

Models for studying ZIKV have been developed focusing in part
on mice immunodeficient for Type 1 IFN responses (Lazear et al.,

2016; Rossi etal., 2016) or on organoid brain-like cultures (Cugola et
al.,, 2016; Dang et al., 2016; Garcez et al., 2016; Li et al., 2016) or E15
embryonic brain slices (Brault et al., 2016). However, within the
developing brain, the types of cells infected and the progression of
infection has not yet received much attention despite the importance
of understanding ZIKV targeting in the brain. A number of papers
have examined in utero infections of the mouse fetus (Aliota et al.,
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Figure 2.

were more prevalent in all areas studied.

Figure 3.  Cortical neurons infected with ZIKV 7 dpi after intraperitoneal inoculation at PO.
Substantive infection is seen in the primary dendrites extending toward the right to the cortical
surface. The beaded dendrites are typical of the neuronal deterioration in late stages of ZIKV
infection. Scale bar, 30 m.

2016; Miner et al., 2016a, b; Yockey et al., 2016); in normal mice,
ZIKV generally does not infect the fetus; in immunodeficient mice
lacking a Type 1 IEN response, the pregnant mother usually shows a
lethal response to the virus, but the fetal mice do get infected. Our

Relative number of infected astrocytes and neurons/section during development. The number of immunoreactive
astrocytes (blue) and neurons (red) was counted at 4, 5,7, and 10 dpi (n = 3/time point). Bar indicates SD. Initially at 4 and 5 dpi,
most of the cells had the morphology of astrocytesin all 4 areas studied. By 7 dpi, astrocytes were still more numerous than neurons
in thalamus and hypothalamus, whereas neurons were more numerous in cortex and hippocampus. By 10 dpi, infected neurons

2012), similar to the ZIKV that has entered the
Americas was used. ZIKV was a gift from Dr.
Brett Lindenbach (Yale University). ZIKV was
harvested from infected cultures of Vero-E6
cells at 4 dpi, filtered, divided into aliquots and
stored at —80°C. Harvested viral stocks were
titered by plaque assay on Vero cells and typi-
cally had a concentration of 2 X 107 plaque
forming units (pfu)/ml. We also used pseudorabies virus (PRV) express-
ing a GFP reporter (gift from Dr.Lynn Enquist, Princeton University) for
one set of experiments using coinjection of both PRV +ZIKV into the left
cortex: 150 nl of PRV (1.5 X 10% pfu) + 150 nl ZIKV (3 X 102 pfu),
mixed together and injected simultaneously in the same volume.

Immunocytochemistry. Antiserum against ZIKV was generated in adult
male rats. Seven weeks after an initial subcutaneous and intraperitoneal
inoculation with ZIKV, rats were inoculated a second time. Eight days
later, serum was harvested. A goat anti-rat secondary antiserum was used
for immunostaining (Invitrogen A11007).

Immunostaining was done on both cell cultures and histological sec-
tions from control and inoculated mice. Frozen or vibratome sections
were cut from fixed mouse brain and after incubation in normal goat
serum containing 0.3% Triton X-100, were incubated in primary rat
anti-ZIKV serum. After multiple washes of the primary antiserum, goat-
anti-rat conjugated to Alexa-594 was used at dilutions of 1:300 to 1:1000
for 1-2 h, and was then washed off. After immunostaining, some sections
were labeled with DAPI or counterlabeled with immunostaining against
GFAP (ThermoFisher, PA5-16291) or IBA1/microglia (Biocare Medical,
CP290A) (Ito et al., 1998) using a different fluorophore.

The ZIKV antiserum only labeled cells that had been inoculated with
ZIKV and not uninfected control cells. Absence of the primary antibody
resulted in no staining. The primary anti-ZIKV serum was used for
immunofluorescent labeling at a dilution between 1:1000 and 1:20,000.
The antiserum labeled ZIKV-infected cells well; it worked poorly in im-
munolabeling a different flavivirus, Yellow Fever virus-17D.

In vitro neutralization of ZIKV infection. To determine whether the
antiserum would block ZIKV infection, a plaque reduction neutraliza-
tion assay was performed, similar to that used for Dengue virus (Russell
etal., 1967; Roehrig et al., 2008). Antiserum was heat-inactivated at 56°C
for 30 min, then serial twofold dilutions were mixed with ZIKV and
incubated for 1 h at room temperature. The dilutions were then plaque
assayed in quadruplicate on Vero cells. A 50% reduction of ZIKV plaques
was found at an antiserum dilution of 1:640.
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Mice. Several primary strains of mice were used: immunocompetent
C57BL/6 and Swiss Webster mice and immunocompromised mice that
lacked the Type 1 IENR (IFNR ~/") and therefore showed no Type 1 IFN
response. Immunocompetent neonatal mice (n = 51) were inoculated
intraperitoneally on the day of birth (P0) with 3 ul (6 X 10* pfu) or 7 ul
(4 X 10° pfu) ZIKV for survival and histological analyses, or with 10> or
2 X 10° pfu intraperitoneally for one survival study. Sample size was
based on previous publications. Other virus concentrations are desc-
ribed in some of the figures. Some mice expressed GFP in the pro-
opiomelanocortin (POMC) cells (gift from Dr. M.Low), and were used
to identify amacrine cells in the infected retina. Mice intended for CNS
immunocytochemistry were killed by anesthetic overdose at daily inter-
vals after inoculation and perfused transcardially with saline followed by
4% paraformaldehyde.

Anesthetized mice lacking the Type 1 IFNR (IFNR ~/7) 4 weeks old
were given an intraocular injection of ZIKV (1 ul containing 2 X 10* pfu
ZIKV). Work with ZIKV in mice and rats was approved by the university
committee on animal use. With the exception of the use of pregnant
female mice to investigate the possibility of ZIKV transfer to the fetus, all
other experiments used both male and female mice randomly. In survival
experiments, if a mouse showed substantial deterioration with difficulty
in movement and trouble feeding, it was killed, as per recommendation
of the university committee on animal use.

Cell culture. A number of cell types were used in vitro including
Vero-E6 African green monkey kidney epithelial cells obtained from C.
Cepko (Harvard University), human brain primary astrocytes were de-
scribed previously (Ozduman etal., 2008), and primary mouse brain cells
harvested from C57BL/6 mice shortly after birth. Vero cells were grown
in MEM supplemented with 10% FBS. Primary mouse and human brain
cells were grown in DMEM with 10% FBS. All cultures were maintained
in a Napco incubator with humidified atmosphere at 37°C with 5% CO,.

Virus release and plaque assay. A virus release assay for ZIKV progeny
was performed using human brain astrocytes. Briefly, cells were plated in
35 mm dishes and inoculated the following day with ZIKV (multiplicity
of infection = 20) and allowed to adsorb for 1 h at 37°C. After adsorp-
tion, the cells were washed with PBS and 3 ml of fresh media was added to
the well. At the indicated time points, 60 ul samples of media were
withdrawn and replaced with the same volume of fresh media. Samples
were stored at —80°C for later viral titer determination by plaque assay.
The plaque assay consisted of inoculation of Vero cells grown in 12 well
plates using serial dilutions of ZIKV samples for 1 h at 37°C. Cells were
then washed with PBS and an overlay of 1% carboxymethyl cellulose in
MEM with FBS was applied. ZIKV-infected cultures were incubated 4 d
to allow time for plaque development. Plaques were visualized with crys-
tal violet after removal of the carboxymethyl cellulose overlay.

IEN experiments in human and mouse brain cells. Nearly confluent
primary cultures of human and mouse brain cells were grown in 24 well
plates and pretreated for 12 h with IFN-aA/D (Sigma 14401) at the indi-
cated concentrations. After [FN pretreatment, cultures were inoculated
with ZIKV (6 X 10° pfu/well) or media (control) and incubated for 2 d.
Cells were then fixed and ZIKV immunocytochemical labeling was
done. ZIKV-infected cells were counted from triplicate wells for each
condition.

Results

ZIKYV invasion of developing brain

To study the natural progression of ZIKV infection in the developing
brain, normal immune competent C57BL/6 mice were inoculated
intraperitoneally on the day of birth with the Asian lineage of ZIKV
(ZIKV FSS13025); this is the lineage of ZIKV that has spread to the
Americas and has raised serious concerns about ZIKV-induced
brain dysfunctions. Intraperitoneal inoculations in part model the
potential movement of the virus transplacentally along the umbilical
cord into the fetus better than subcutaneous application. Mice (n =
27) were killed by anesthetic overdose and fixative perfusion at daily
intervals from 1 d post inoculation (1 dpi) to 10 dpi and at longer
intervals after 10 dpi. We used a high-titer anti-ZIKV antiserum we
raised in rats; the antiserum blocked ZIKV infection in vitro and was
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Figure4.  ZIKV heterogeneity of infection in cerebellum. At 7 dpi after intraperitoneal inoc-
ulation at PO, the cerebellum from the same mouse shows different stages and cell types of
infection in different lobes of the cerebellar cortex in A-C. A, Arrows indicate Purkinje cells in
Purkinje cell layer and punctate labeling suggestive of late-stage infection in the granule layer.
B, Thin processes in the molecular layer are seen, and a large number of cells in the granule
layer. C, Unlike in B, few processes or infected cells are detected in the molecular layer. Scale bar,
30 um. iGL, Internal granule cell layer; PL, Purkinje cell layer containing cell bodies of Purkinje
cells and Bergmann glia; ML, molecular layer.

selective with immunocytochemistry for ZIKV-infected cells and
did not label noninfected cells (see Fig. 4). We found no detectable
ZIKV immunoreactivity in the brain at 1 and 2 dpi. At 3 dpi, we
began to find ZIKV infection in muscles of the head, in the neural
retina, and in a small number of cells within the brain. At 4 dpi (n =
6 0f6), infection in the brain was common, and consistently found in
all mice (n = 18) after 4 dpi indicating a strong propensity for CNS
infections after inoculation of the virus outside the brain (Fig. 1F-I).

Although most previous studies, in particular those based on
brain organoids, have focused on potential infections of neuronal
progenitor cells, surprisingly, initial infections targeted glial cells
of the normal developing brain, particularly cells with an astro-
cyte morphology and a large number of short processes; both cell
body and glial processes to their terminal endfeet showed robust
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ZIKV immunoreactivity as detected with fluorescence and con-
focal laser microscopy (Fig. 1 A, B). ZIKV-infected glial cells with
an astrocyte morphology expressed the astrocyte antigen GFAP
immunoreactivity in many of the glial processes (Fig. 1C) but did
not express microglia antigen Ibal (Fig. 1D). One possible expla-
nation for the initial astrocyte targeting may be the glial endfeet
that wrap around the vasculature and present one of the first
cellular targets for a virus leaving a blood vessel.

Neurons were infected soon after the glia, either from ZIKV
released by infected glia or as primary infections via the vascular
system. In initial stages of infection at 4 and 5 dpi, isolated in-
fected glia far outnumbered neurons, as shown by the high num-
ber of cells with astrocyte morphology (Fig. 1F,G, blue)
compared with those with a neuronal morphology (Fig. 1F-H,
red). Over the next 2-3 d (6—8 dpi), the number of infected
neurons increased (Fig. 1I) to the point that neurons began to
outnumber infected glia in some brain areas. High densities of
infected neurons were detected in different brain regions, some-
times initially on one side of the brain, suggestive of local release
and infection. In some mice at 7 dpi, robust neuronal infection
was seen in CA1 and CA3 regions of the hippocampus (Fig. 11),
raising concerns about long-term memory problems in ZIKV-
infected human fetuses. We quantified the number of astrocytes and
neurons in 4 brain regions from 4 to 10 dpi. All regions showed a
predominant initial infection of astrocytes at 4 and 5 dpi. The hip-
pocampus showed the greatest neuronal density at 7 dpi; and all

N

ZIKVin spinal cord. A, In the lumbar spinal cord gray matter, animmunoreactive degenerating neuron is seen (arrow)
along with some immunoreactive glia, 4 dpi. Scale bar, 20 .um. B, Twoimmunoreactive astrocytes are shown (arrows), 4 dpi. Scale
bar, 20 wm. €, By 10 dpi, the ventral horn of the spinal cord is filled with ZIKV-immunoreactive cells and processes. Scale bar,
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regions studied, including cortex, hip-
pocampus, thalamus, and hypothalamus,
showed greater infection of neurons than of
astrocytes by 10 dpi (Fig. 2).

We found no propensity for infections
to develop around the ventricular system
in developing mice (Fig. 1F-I), arguing
against a hypothesis that ZIKV initially
enters the brain via the CSF at this stage of
development. ZIKV infection was charac-
terized by granular immunoreactivity,
typical of the ZIKV “factories” that have
been described (Bell et al., 1971). ZIKV
was found not only in the cell body, but
immunoreactive granules could be found
far out in distal dendrites (Fig. 1E). In cor-
tical pyramidal cells, ZIKV granular im-
munoreactivity was seen in both the
primary large apical dendrite extending
toward the cortical surface (Fig. 3) and
also in smaller secondary basal den-
drites ramifying closer to the cell body.
In cortical interneurons, ZIKV granules
were found in the cell body and multiple
dendrites. Thin immunoreactive axons
were detected at later stages of neuronal
infection.

One striking finding was the initial
widespread but sparse infection through-
out multiple brain regions seen in all 4 dpi
mice (n = 6) after intraperitoneal inocu-
lation (Fig. 1 F,G). In many cases, only a
few cells were infected in any given region.
Although not a common initial target of
the virus, the cerebellum showed very
strong infection by 7-10 dpi. The cerebel-
lum is of particular interest during this
period because it is one of the few areas of the brain in which
(granule) neurons are still being generated from neural precursor
cells during the postnatal day 610 period of development. Con-
siderable heterogeneity of infection was noted, particularly in the
early phase of infection. Even in a single cerebellum, different
cells, including granule cells, Purkinje cells, and Bergmann glia, at
different stages of infection appeared in different lobes of the
developing cerebellar cortex (Fig. 4). ZIKV immunoreactivity
was seen in cells and processes in different layers, including the
molecular, Purkinje, and inner granule cell layer with different
levels of infection and cell deterioration in different regions of the
same cerebellum (Fig. 4).

To examine the spinal cord of developing mice, PO mice
(n = 6) received intraperitoneal inoculations of ZIKV. As we
found motor dysfunction involving the hind limbs (see below),
we focused on the lumbar spinal cord, a region of the cord that
innervates the hind legs. Similar to the brain, small numbers of
infected cells were seen at 4 dpi in the gray matter of the spinal
cord. Astrocytes were often infected (Fig. 5B), and neurons were
also found (Fig. 5A). By 10 dpi, the entire gray matter was heavily
infected with cells in all spinal cord lamina. An image of the high
infection rate in the ventral horn of lumbar cord is shown in Fig.
5C. All 6 mice examined from 4 to 10 dpi showed ZIKV infection
in the lumbar spinal cord after intraperitoneal inoculation.

To determine the time course of ZIKV infection and detection
in brain cells, we inoculated human brain cultures consisting
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Time course of ZIKV infection of brain cells. Primary human brain cells, mostly astrocytes, were inoculated at time 0, then fixed and immunostained at the indicated intervals.

Immunoreactivity was not seen in uninfected control cultures (A) or at 2 h (B) post inoculation (hpi). €, D, At 12 hpi, faintimmunoreactivity was detected in granules (D, enlarged region shown by
arrow). Scale bar, 2.5 um. Immunoreactivity became stronger up to 2 d (E, F) postinoculation (dpi). G, By 4 dpi, many of the immunoreactive cells were dead or dying. Scale bars: A-C, E-G, 25 .m.
H, Viral release was measured using additional cultures infected after ZIKV (multiplicity of infection 20) inoculation for 1 h, then washed and supplied with fresh media. Media samples were
harvested at the indicated time points, and viral concentration was measured by plaque assay. /, ZIKV antiserum harvested from inoculated rats and used for immunolabeling was tested for the
ability to neutralize ZIKV infection in vitro. Top, Counterstained cultures show the decline in viral plaque number after exposure to increasing concentrations of antiserum, corroborating antibody
selectivity. Bottom, Bar graph indicates that a 50% reduction in ZIKV plaque number was obtained at 1:640 antiserum dilution. Error bars indicate SEM (n = 4).

mostly of astrocytes, and examined these at multiple intervals
after inoculation (Fig. 6A-G). ZIKV immunoreactivity was first
detected at 12 hpi, and stronger staining at 1-3 dpi; by 4 dpi,
infected cells showed substantial degeneration and cell death
as determined with phase contrast microscopy and dead-cell
ethidium homodimer labeling. Based on an in vitro progeny virus
release assay, glia showed a productive infection and began to
release new progeny ZIKV by 24 h after inoculation as deter-
mined by plaque assay of the culture medium (Fig. 6H ). These
data suggest that ZIKV may begin infecting cells in the brain 24 h
earlier than we detect infection, and that astrocyte release of new
ZIKV progeny may account for at least part of the increase in
subsequent neuronal infection. Flaviviruses in general are often
cytolytic but in some cells can establish a chronic infection (Lin-

denbach and Rice, 2001). In the current study, we found multiple
indications that ZIKV infection led to cell death, including a
reduced cell number in vitro as infection continued, labeling of
infected cultured cells with the dead cell stain ethidium ho-
modimer, the appearance of cells in the brain at late stages of
infection with beaded processes and degenerating cell body, and
the loss of neurons from some brain regions, such as the hip-
pocampus in later stages of infection.

Previous reports based in part on in vitro brain organoid cul-
tures have shown that ZIKV infects neural precursors (Cugola et
al., 2016; Dang et al., 2016; Li et al., 2016) consistent with our
detection of strong cerebellar infection during the period of gran-
ule cell generation during P7-P10 cerebellar development (Fig.
4). In neonatal mice, neither the subventricular zone nor the
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Zika virus in newbomn mice induces neurological disease and death. 4, Survival for PO mice inoculated with 1.4 X 10° (black line, n = 13) or 6 X 10* pfu intraperitoneally (green line,

n = 46).Total,n = 59.(57BLand Swiss Webster mice were used; because we found no statistical difference between the two strains, data were combined. B, Survival for slightly older P1 mice with
103 pfu intraperitoneally (1 = 17) or 2 X 10° subcutaneously (n = 8). Noninfected controls, n = 10; total, n = 35. ***p << 0.001, survival at P28 (Log-rank, (Figure legend continues.)
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rostral migratory stream between the sub-
ventricular zone and the olfactory bulb,
both sites containing neural progenitor
cells, showed any preferential early infec- c
tion (Fig. 1F-I). In older P18 brains of g :
mice surviving PO ZIKV inoculation, ar- B ;
eas were identified containing sporadic
infected cells in addition to groups of dead
cells thatlacked detectable active ZIKV in-
fection, suggesting local elimination of the
virus in the maturing brain.

Neurological/behavioral dysfunction

Neonatal infection, either by intraperitoneal
or subcutaneous inoculation (1 = 84 for i.p.
and s.c.), was often lethal within 2-3 weeks
(Fig. 7B) for higher doses (6 X 10*to 1.4 X

10° pfu). With lower doses (1-2 X 10° pfu), B
approximately one-fourth of the animals 5 100
survived past 3 weeks (Fig. 7B). Subsequent "E

to ZIKV inoculation, behavioral and devel- 8 80
opmental disturbances were noted indicat- <©

ing neurological deterioration, including < 60
reduced body weight gain (Fig. 7C) and re- %
duced growth with reduced bodylength and o 40
attenuated tail length (Fig. 7D, E). We also B
studied neurological dysfunction from the 5 20
time of infection. Infected mice showed a '*g 0

progressive increase in motor dysfunction
particularly involving the hind legs (Fig.
7F, G). ZIKV-mediated neurological distur-
bances were first seen at 3 and 4 dpi with
intraperitoneal inoculation (Fig. 7G), and
slightly later with subcutaneous inoculation
(Fig. 7F), consistent with the first detection
of ZIKV in the brain. The ongoing behav-
ioral and neurological deterioration of in-
fected mice suggests that the ZIKV lethality
may in large part be due to the spread of ZIKV within the brain over
time.

Figure8.

with Bonferroni post-test).

ZIKV in normal and IFNR deficient adult mice

In contrast to developing mice, normal adult mice receiving
ZIKV intraperitoneally (n = 10) showed no lethal response to the
virus and no long-term symptoms, as previously noted (Dang et
al., 20165 Rossi etal., 2016). We examined the brains of adult mice
inoculated intraperitoneally with ZIKV and found no infection
within the CNS at 7-10 dpi (n = 7), suggesting that the normal
immune system is sufficient to keep the virus out of the brain

<«

(Figure legend continued.) ~ Mantel-Cox) test. The 25% survival in ZIKV subcutaneously, 22.2%
survival in ZIKV intraperitoneal controls (CTR). (~E, Somatic parameters of postnatal develop-
ment. Data are mean = SEM. Two-way ANOVA with postnatal day as repeated measures,
Holm-Sidak’s multiple-comparison test: *p << 0.05; **p << 0.01; ***p < 0.001; ****p <
0.0001. ZIKV subcutaneously versus CTR shown above CTR line; ZIKV intraperitoneally versus
(TR shown below ZIKV intraperitoneal line. F, Neurological symptoms were assessed for 20 d for
P1 mice inoculated subcutaneously with 2 X 10> pfu ZIKV similar to the observations of Lazear
etal. (2016)in older mice. Chart shows that neurological symptoms occur in greater numbers of
mice over time. G, P1 mice were infected intraperitoneally with 10° pfu with ZIKV and signs of
neurological dysfunction assessed for 20 d. The percentage of each group of mice displaying the
indicated motor dysfunction is shown. These are from the same mice evaluated for lethality and
somatic development.
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Type TIFN blocks ZIKV infection of human and mouse brain cells. A, Human (top) and mouse (bottom) brain cells were
inoculated with ZIKV in the absence (0 U) or presence of 1, 10, and 100 U/ml IFN (Sigma [4401). Left, Phase shows typical cell
density. Cells were fixed and immunostained at 2 dpi. Scale bar, 100 .m. B, Bar graph represents percentage infected cells, with
controls set to 100%. IFN reduces infection in a dose-dependent manner. Error bars indicate SEM (n = 3). ***p << 0.01 (ANOVA

after early development. However, direct intracranial microin-
jection of ZIKV (0.5 ul/10* pfu) was lethal in 3 of 6 normal mice.
Similar to adult mice, adult rats (n = 3) inoculated with ZIKV
peripherally showed no obvious adverse symptoms over a period
of 2 months.

Because one critical factor in the developing brain is a reduced
IFN response (Lazear et al., 2016; Rossi et al., 2016), we tested
adult TFNR ~/~ mice lacking the Type I TENR. ZIKV was lethal in
6 of 6 adult TFNR /™ mice after intracerebral injection (0.5 ul/
10* pfu). Immunocytochemical analysis of adult TFNR ~/~ mice
at 6 d after intraperitoneal inoculation revealed widespread ZIKV
infection throughout the brain with both astrocytes and neurons
showing strong virus immunoreactivity, indicating that IFN
plays an important role in attenuating ZIKV infection in the
CNS. During development, Type 1 IFN responses increase with
age to provide a first line of defense against viral infections of the
brain, and in the adult can upregulate antiviral gene expression
even at some distance from the initial site of virus infection (van
den Pol, 2006; van den Pol et al., 2007, 2014). However, during
early development, IFN responses to virus presence may be
weaker than in the adult (van den Pol et al., 2007), potentially
allowing virus spread in the immature brain.

In vitro experiments showed that both mouse and human brain
cells are protected against ZIKV by Type 1 IEN (Fig. 8), similar to the
ability of IFN to attenuate ZIKV infection in skin cells (Hamel et al.,
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ZIKV@PO ip 4dpi

Infection of visual system and other brain loci after intraperitoneal inoculation. A-C, Retina at 4 dpi after PO inoculation; intraperitoneal ZIKV infects the ganglion cell layer (GCL) and

the inner nuclear layer (INL). Immunoreactive processes are found in the internal plexiform layer (IPL). Red represents ZIKV immunoreactivity. Blue represents DAPI counterstain. Scale bar, 8 pm.
D, ZIKV in superior colliculus. E, ZIKV in optic chiasm (0C). F, Directly caudal to the optic chiasm is the median eminence (ME), which also showed infection. Scale bar, 15 m. G, Transgenic mouse
expressing GFP in retinal POMC cells was inoculated at PO. By 7 dpi, both GFP-expressing amacrine cells (double arrowhead) and GFP-negative cells showed ZIKV infection. Green represents POMC

amacrine cells. Orange represents ZIKV. Scale bar, 15 um.

2015). Maturation of the IFN responses within the brain may be
one important factor that reduces the likelihood of problem-
atic ZIKV infection in later development and in adults.

Similar to previous reports (Cugola et al., 2016), intraperito-
neal inoculation of pregnant normal mice (n = 7) with ZIKV
from gestational day 6—14 showed no evidence of transplacental
virus transfer to the fetus (n = 14 from 7 pregnancies), as deter-
mined with immunocytochemistry. Newborn mice (# = 22 mice
from 5 litters) of ZIKV-infected mothers tended to be slightly
smaller than controls (n = 10 mice from 2 litters) (p < 0.05
ANOVA) for the first 2-3 weeks of development, but over time
returned to normal size, further arguing against ZIKV infection
in these neonates. We attribute the slower initial neonatal growth
to transient ZIKV-mediated debilitation in the mothers, all of
whom recovered with no long-term symptoms.

ZIKV infection of the visual system

A substantial number of human cases of microcephaly associated
with ZIKV infections also show ocular dysfunction and patholog-
ical disturbances to the retina as well as optic nerve abnormalities.
In addition, some cases of retinal dysfunction have been associ-
ated with ZIKV infection in the absence of microcephaly (Mi-
randa et al., 2016; Ventura et al., 2016a, b; de Paula Freitas et al.,
2016). With intraperitoneal inoculations at PO, all 14 mice stud-
ied showed some retinal infection by 4 dpi and later; similarly, 2
of 2 mice inoculated at PO subcutaneously showed retinal infec-
tion. Cells in both the retinal ganglion cell layer and in the inner
nuclear layer were commonly infected (Fig. 9A—C). Optic nerves
leaving the retina contained ZIKV-immunoreactive axons. The
brains of mice studied with retinal infection also showed infec-
tion (5 of 5) of at least some part of the CNS visual system,
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including retina, optic chiasm (Fig. 9E),
suprachiasmatic nucleus, lateral genicu-
late nucleus, and/or superior colliculus
(Fig. 9D). Infection of glia in the median
eminence and hypothalamic arcuate nu-
cleus, a region of the brain with a weak
blood—brain barrier outside and just cau-
dal to the optic chiasm, commonly
showed infection (Fig. 9F). In transgenic
mice expressing GFP in retinal GABAer-
gic amacrine cells under control of the
POMC promoter (Gallagher et al., 2010),
ZIKV-infected a number of these ama-
crine cells, indicated by coexpression of
GFP and ZIKV immunoreactivity; ZIKV
also infected many cells that were negative
for POMC-GEP by 7 dpi (Fig. 9G).

To examine infection of the visual sys-
tem further, ZIKV was applied by intraoc-
ular inoculation to mice (n = 4, 4-6
weeks old) lacking a Type 1 IFN respo-
nse due to the absence of the IFNR
(IFNR ~/7); the lack of Type 1 IFN re-
sponse in these mice parallels the weak
IFN response found during early develop-
ment (van den Pol et al., 2002, 2007). At 3
and 4 dpi, infection was found in the optic
nerve and visual system loci within the
brain, including the lateral geniculate, su-
perior colliculus, and suprachiasmatic
nuclei (Fig. 10A-E). Surprisingly, the in-
fections seen in the optic nerve often in-
cluded glial cells within the optic chiasm
and optic tract (Fig. 10C). Groups of in-
fected optic nerve glia were found along
the optic tract from the optic chiasm to
the lateral geniculate nucleus, an unusual mechanism of virus
spread. In addition, both astrocytes and neurons were infected in
the visual system nuclei. A number of infected cells within the
optic tract and optic chiasm expressed the astrocyte antigen
GFAP (Fig. 11). Associated with the glial labeling was infection
of the meninges at the surface of the brain, particularly adja-
cent to the infected cells. To corroborate the finding of glial
cells along infected nerves within the brain, we also examined
the sciatic nerve after intramuscular injection in the hind leg
of IFNR ~/~ mice (4—6 weeks old). Again, we found infected
glial cells associated with the sciatic nerve (Fig. 10F). It is
notable that both the normal neonates and near-adult and
adult IFNR '~ mice showed strong initial infection of
astrocytes.

Axonal transport of ZIKV

In the course of examining brains of mice inoculated intraperi-
toneally on the day of birth, in later stages of infection, in some
mice we found infection in mirror image on opposite sides of the
brain. One possible explanation for this is axonal transport from
a common area of innervation, or axonal projections between
corresponding regions on opposite sides of the brain. To deter-
mine whether ZIKV is transported intra-axonally to distant brain
regions, we made microinjections of ZIKV into the left cortex of
normal mice (4 weeks old, n = 4), and killed mice at 3 and 4 dpi.
Here we used 300 or 500 nl, a volume 100 times smaller than that
used in classical work showing that ZIKV does infect the brain

contra.OT
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Figure10.  ZIKVinfects the visual systemin [FNR /= mouse. A-E, After intraocular inoculation of 4-week-old IFNR ~/~ mice,
ZIKV was identified at 4 dpi in visual system regions (A), including the optic tract (0T), lateral geniculate nucleus (LGN), superior
colliculus (SC), and the suprachiasmatic nucleus (SCN). Contralateral to C, the other optic tract also showed ZIKV infection. F, In
another IFNR ~/~ mouse, intramuscular injection into the hind leg led to ZIKV infection of cells in and around the peripheral (per.)
nerve innervating the leg. Scale bars: 4, 200 m; B, 60 pum; €, 40 wm; D, 60 m; E, 40 wm; F, 30 m.

(Bell et al., 1971); further, unlike the early work, we did not use
virus harvested from developing brain inoculations. At 3 dpi, we
found infected neurons not only in different cortical layers at
the injection site, but also in the contralateral cortex. By 4 dpi, we
detected robust infection at the injection site (Fig. 12A,F), and a
growing number of infected neurons in the contralateral cortex
(Fig. 12B,F) and ipsilateral and contralateral striatum (Fig.
12 D, E); both regions receive axonal innervation from the cortex
(Molyneaux et al., 2007). Importantly, in the middle region of the
brain between the two sets of infected cortical neurons, there
were no detectable infected cells of any sort, arguing against virus
diffusion from one side of the brain to the distant contralateral
side (Fig. 12C,F).

To corroborate the results above, we used coinjections of
ZIKV with the Bartha strain of PRV that serves as a viral axonal
tracer (Card et al., 1993, 1995). Both the PRV GFP reporter and
red ZIKV immunofluorescence was found in the same region of
the injected side of the cortex, and in the contralateral cortex
showing a mirror image of the injected side (Fig. 13). In the cortex
contralateral to the injected side, some neurons expressed the
PRV reporter only (Fig. 13B), others expressed ZIKV immuno-
reactivity only (Fig. 13A), and a third group expressed both PRV
GFP reporter together with ZIKV immunoreactivity. The coin-
jections corroborated our initial interpretation because cells on
the side of the brain contralateral to the injection showed both
green GFP reporter (from PRV) and red immunofluorescence
indicating ZIKV. Together, these data suggest that at least some
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axonal pathways within the brain can transport ZIKV to infect
neurons in a distant brain site.

Discussion

A number of recent papers have examined ZIKV infections in
different mouse models, particularly in immunodeficient mice
(Lazear etal.,2016; Rossietal., 2016). In addition, 3D organoid in
vitro brain cultures have been elegantly used to describe a pro-
pensity of ZIKV to infect neuronal progenitor cells in early brain
development (Cugola et al., 2016; Dang et al., 2016; Garcez et al.,
20165 Lietal., 2016); a potential limitation of organoid cultures is
the lack of a vascular system and the absence of the normal types
of immune cells.

Our animal model of early ZIKV infection emulates the early
second trimester of human brain development; during the sec-
ond trimester of human brain development and PO mouse CNS
development, there are a number of parallels, including cortical
layer II/III and IV neurogenesis, onset of retinal waves of action
potential propagation, peak of optic nerve axon number, and
peak of subventricular zone expansion in the developing cor-
tex (Clancy et al., 2007a, b; Workman et al,, 2013). A key

ZIKV-infected cells (red) in optic chiasm colabeled with GFAP. A, Merged image from red ZIKV infections () and
greenimmunostaining for GFAP (B) after intraocular inoculationin IFNR ~/~ mouse, 4 dpi. A-C, Same microscope field. Scale bar,
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difference between our neonatal model
and an in utero model is the absence of pla-
cental virus inhibition in the neonate. Both
the structure and the immune components
of the placenta constitute a biological barrier
that blocks microorganisms in the pregnant
mother from easily accessing the fetus (Mor
and Cardenas, 2010; Robbins and Bakard-
jiev, 2012).

Another virus that can generate many of
the same neurological symptoms as ZIKV if
infections occur in the fetal period is the un-
related cytomegalovirus, which uses a dou-
ble-stranded DNA genome; CMV is often
considered the most common infectious
agent causing permanent neurological dys-
function in the developing human, and
these problems can include sensory, motor,
memory, and other complications. Impor-
tantly, CMV can continue to induce neuro-
logical dysfunction even during early
neonatal development (Bray et al., 1981;
Perez-Jimenez et al., 1998; Gaytant et al.,
2002; Dollard et al., 2007; Mocarski et al.,
2007; Tsutsui, 2009), raising the question of
whether ZIKV can similarly evoke neuro-
logical problems during the same neonatal
developmental period in humans; these
later neurological problems would be more
subtle and difficult to diagnose than micro-
cephaly, a current focus of ZIKV concern.

Here we studied developing newborn
normal mice. Our data show, for the first
time, that after peripheral inoculation,
there is a substantial initial infection of
glial cells within the brain, particularly
cells with a morphology and GFAP anti-
gen expression consistent with astrocytes.
Infected isolated astrocytes were found
throughout the brain, indicating that this
was a widespread occurrence and suggest-
ing a large number of ZIKV penetrations
into the developing brain. Over the next
few days of development, the number of infected neurons
showed a substantial increase such that the relative number of
infected neurons exceeded the number of infected astrocytes by
P10. Consistent with our in vitro demonstration of ZIKV progeny
release from infected glia, astrocytes may not only show the first
signs of infection but may also serve to further amplify and dis-
tribute infectious virus to nearby neurons and glia. Similar to
ZIKV, CMV also tends to target astrocytes (van den Pol et al.,
2007). That glia are not necessarily a common cell target of other
viruses in the developing brain is shown by vesicular stomatitis
virus, which targets neurons rather than glia (van den Pol et al.,
2002, 2014).

Interestingly, in the early stages of brain infection, microglia
showed little ZIKV immunoreactivity, whereas astrocytes in
the same brain were commonly infected. Our finding of the initial
selective infection of astrocytes does not argue against a perspective
that in earlier stages of brain development, macrophages that can be
infected by ZIKV (Quicke et al., 2016) may migrate into the brain
carrying the virus in a Trojan-horse mechanism of spreading infec-
tion. Although infected astrocytes were previously found after large-
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volume brain-derived ZIKV injections
directly into the brain (Bell et al., 1971), we
show, for the first time, that the native virus
initially selects and targets astrocytes after
peripheral inoculation during the period of
mouse development immediately after
birth.

We found behavioral problems in
ZIKV-inoculated neonatal mice, often in-
volving hind limbs. Motor deficits may
relate to the common infection of the cer-
ebellum, motor cortex, or spinal cord.

Another striking finding here was the
consistent infection of the retina in all
mice inoculated intraperitoneally or sub-
cutaneously at birth. This differs from
previous work in both younger and older
periods of development. Eye infections
were very rare in fetal infections, occur-
ring in only 5% of those infected (Miner et
al., 2016b). ZIKV subcutaneous inocula-
tions at older postnatal day 8 showed only
asubset (50%) of mice with eye infections;
P8 is approximately equivalent to the
third trimester near-term fetus in hu-
mans, whereas our PO inoculation paral-
lels the second trimester (Clancy et al.,
2001, 2007a, b; Workman et al., 2013).
The retinal infections from PO inoculation
were not restricted to a single-cell type but
rather were found in a number of different
cells in the ganglion cell layer and inner
nuclear layer. In addition to retinal infec-
tion, in many mice the CNS visual system
showed signs of infection. Consistent with
our finding of early astrocyte infection
throughout the brain, astrocytes were
commonly infected in visual system
pathways.

An increase in caspase-3 immunoreac-
tivity was reported in the brain after P8
inoculations (Miner et al., 2016b), sug-
gesting a response to virus or to degener-
ation of the optic nerve following ZIKV
retinal infection. Our data show that the
virus itself displays an early preference for
infecting regions of the brain subserving vision in the developing
mouse brain at a developmental stage equivalent to mid-
gestation in human CNS development. ZIKV infection of the
regions of the brain involved in sight suggests that visual prob-
lems arising from ZIKV fetal infection in humans (Ventura et al.,
2016b; de Paula Freitas et al., 2016) may not only arise from
retinal infections, which were very prevalent in our studies in
developing mice, but also from infection of the optic nerve or
regions of the brain involved in vision.

After ZIKV microinjections into one side of the brain, 3—4 d later,
the opposite mirror image region of the cortex showed infection,
whereas the middle of the brain between the two cortices showed no
infection of any cells. These data suggest axonal transport of the virus
from one side of the brain to the synaptically connected contralateral
cortex. We also used a coinjection of ZIKV with the retrogradely
transported herpes Type 1 porcine PRV expressing a GFP reporter.
In the cortex, contralateral to the site of coinjection, we found both

Figure 12.
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Axonal transport of ZIKV from one brain region to another. After intracortical microinjection (300 nl) into the left
cortex (A, F), 4 d later strong infection was found in the contralateral right cortex (B, F) and in the contralateral (contra) (D) and
ipsilateral (ipsi) (E) striatum. A few cells were also detected in the amygdala. All these regions are synaptically connected with the
cortex. No detectable infection was found in the middle region of the brain (). F, Composite image with all infected cells drawn
from two sections of the same brain. Scale bar, 30 pm.

ZIKV immunoreactivity and PRV reporter gene expression, consis-
tent with the view that both viruses were axonally transported. Our
data on ZIKV transport in the cortex are consistent with previous
reports showing that axonally transported tracers label parallel
groups of cells on opposite sides of the cortex after unilateral injec-
tion (Wise and Jones, 1976), and support the hypothesis that ZIKV
can be transported within axons to infect distant sites within the
brain. Contralateral axonal transport of ZIKV in the cortex is also
consistent with our data from ocular injections of the virus that
resulted in infection of the CNS visual system. Axonal transport of
another flavivirus, West Nile Virus, has previously been described
(Samuel et al., 2007).

In conclusion, the robust and consistent early infection of
astrocytes before neurons was unexpected and suggests the
infection of astrocytes merits more attention in brain infec-
tions in humans, particularly given the important roles of
astrocytes in maintenance of the blood—brain barrier, en-
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Figure 13.  Axonal transport of PRV and ZIKV to contralateral cortex. After comicroinjection
(300 nl) of PRV and ZIKV to the left cortex, both viruses are carried by axonal transport to the
contralateral right cortex by 3 dpi. A, ZIKV immunoreactivity. Scale bar, 18 wm. B, PRV GFP
green reporter expression. , Merged image showing that some cells are infected only with ZIKV
(orange arrows), only with PRV (green arrows), or with both PRV and ZIKV (white arrows).

hancement of myelination, CNS repair and inflammation, de-
velopment and migration of neurons, guidance of growing
axons, and neurotransmitter modulation (Khakh and So-
froniew, 2015). Attenuating ZIKV infection of astrocytes may
reduce subsequent infection of nearby neurons. The common
infection of retina and central visual nuclei in our studies
suggests that visual problems found in newborns from ZIKV-
infected mothers could arise from both peripheral (retina)
and CNS complications. That ZIKV can be transported ax-
onally appears to constitute one mechanism underlying the
spread of the virus within the brain.
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