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A Joshua

Lunga e difficile è la via della ricerca, ma alla base di tutto c’è l’amore.

— Vincenzo Tiberio (1869–1915)
Ricercatore e Ufficiale medico del Corpo Sanitario della Marina Militare.





Abstract

This thesis is concerned with an infinite horizon optimal control problem for a pure
jump Markov process with noise-free partial observation. We are given a pair of sto-
chastic processes, named unobserved or signal process and observed or data process.
The signal process is a continuous-time pure jump Markov process, taking values in
a complete and separable metric space, whose controlled rate transition measure is
known. The observed process takes values in another complete and separable metric
space and is of noise-free type. With this we mean that its values at each time t are
given as a function of the corresponding values at time t of the unobserved process. We
assume that this function is a deterministic and, without loss of generality, surjective
map between the state spaces of the signal and data processes. The aim is to control the
dynamics of the unobserved process, i.e. its controlled rate transition measure, through
a control process, taking values in the set of Borel probability measures on a compact
metric space, named set of control actions. We take as admissible controls for our pro-
blem all the processes of this kind that are also predictable with respect to the natural
filtration of the data process. The control process is chosen in this class to minimize a
discounted cost functional on infinite time horizon. The infimum of this cost functional
among all admissible controls is the value function.

In order to study the value function a preliminary step is required. We need to re-
cast our optimal control problem with partial observation into a problem with complete
observation. This is done studying the filtering process, a measure-valued stochastic
process providing at each time t the conditional law of the unobserved process given
the available observations up to time t (represented by the natural filtration of the data
process at time t). We show that the filtering process satisfies an explicit stochastic dif-
ferential equation and we characterize it as a Piecewise Deterministic Markov Process,
in the sense of Davis.

To treat the filtering process as a state variable, we study a separated optimal control
problem. We introduce it as a discrete-time one and we show that it is equivalent to the
original one, i.e. their respective value functions are linked by an explicit formula. We
also show that admissible controls of the original problem and admissible policies of
the separated one have a specific structure and there is a precise relationship between
them.

Next, we characterize the value function of the separated control problem (hence,
indirectly, the value function of the original control problem) as the unique fixed point
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of a contraction mapping, acting from the space of bounded continuous function on
the state space of the filtering process into itself. Therefore, we prove that the value
function is bounded and continuous.

The special case of a signal process given by a finite-state Markov chain is also
studied. In this setting, we show that the value function of the separated control problem
is uniformly continuous on the state space of the filtering process and that it is the
unique constrained viscosity solution (in the sense of Soner) of a Hamilton-Jacobi-
Bellman equation. We also prove that an optimal ordinary control exists, i.e. a control
process taking values in the set of control actions, and that this process is a piecewise
open-loop control in the sense of Vermes.

KEYWORDS: stochastic optimal control; nonlinear filtering.



Sommario

La presente tesi tratta un problema di controllo ottimo su orizzonte temporale infinito
per un processo di puro salto Markoviano e con osservazione parziale di tipo noise-
free. È definita una coppia di processi stocastici, detti processo non osservato o segnale
e processo osservato o dei dati. Il segnale è un processo di puro salto Markoviano a
tempo continuo, a valori in uno spazio metrico completo e separabile, di cui è no-
ta la misura controllata dei tassi di transizione. Il processo osservato prende valori in
un ulteriore spazio metrico completo e separabile ed è di tipo noise-free. Con questa
espressione si intende che i suoi valori a ogni tempo t sono funzione dei corrispondenti
valori al tempo t del processo non osservato. Si fa l’ipotesi che tale funzione sia un’ap-
plicazione deterministica e, senza perdita di generalità, suriettiva tra gli spazi di stato
dei processi non osservato e osservato. L’obiettivo è controllare la dinamica del pro-
cesso non osservato, ossia la sua misura controllata dei tassi di transizione, attraverso
un processo di controllo, il quale prende valori nell’insieme delle misure di probabi-
lità di Borel su uno spazio metrico compatto, detto spazio delle azioni di controllo. I
controlli ammissibili per il nostro problema sono i processi appena descritti che siano
anche prevedibili rispetto alla filtrazione naturale del processo osservato. Il processo di
controllo è scelto in questa classe al fine di minimizzare un funzionale costo con fattore
di sconto su orizzonte temporale infinito. L’estremo inferiore di tale funzionale costo
tra tutti i controlli ammissibili è la funzione valore.

Per studiare la funzione valore è necessario un passo preliminare. Il problema di
controllo ottimo a osservazione parziale deve essere espresso come problema a os-
servazione completa. Ciò è possibile grazie allo studio del processo di filtraggio, un
processo a valori in misure che fornisce a ogni istante t la legge condizionale del pro-
cesso non osservato data l’osservazione disponibile fino al tempo t (rappresentata dalla
filtrazione naturale del processo osservato al tempo t). Si dimostra che il processo di
filtraggio soddisfa un’equazione differenziale stocastica esplicita e si caratterizza tale
processo come Piecewise Deterministic Markov Process, nel senso di Davis.

Allo scopo di trattare il processo di filtraggio come variabile di stato, si studia un
problema di controllo separato. Questo è definito come problema a tempo discreto e si
mostra che è equivalente a quello originario, nel senso che le rispettive funzioni valore
sono legate da una formula esplicita. Si dimostra, inoltre, che i controlli ammissibili
per il problema originario e le strategie ammissibili di quello separato hanno una ben
precisa struttura ed esiste una specifica relazione tra di essi.
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Si caratterizza, quindi, la funzione valore del problema di controllo separato (dun-
que, indirettamente, la funzione valore del problema originario) come unico punto fisso
di un operatore di contrazione, il quale agisce dallo spazio delle funzioni continue e li-
mitate sullo spazio di stato del processo di filtraggio in sé. Di conseguenza, si dimostra
che la funzione valore è continua e limitata.

Si studia anche il caso di un processo non osservato dato da una catena di Markov a
stati finiti. In questo contesto, si mostra che la funzione valore del problema di controllo
separato è uniformemente continua sullo spazio di stato del processo di filtraggio e che
è l’unica soluzione viscosa vincolata (nel senso di Soner) di un’equazione di Hamilton-
Jacobi-Bellman. Si dimostra, inoltre, che esiste un controllo ottimo ordinario, ossia un
processo di controllo che prende valori nell’insieme delle azioni di controllo, e che tale
processo è un piecewise open-loop control nel senso di Vermes.

PAROLE CHIAVE: stochastic optimal control; nonlinear filtering.
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Notation and Abbreviations

Sets
• N := {1, 2, . . . } – the set of natural integers.

• N0 := N ∪ {0}.

• N̄ := N ∪ {∞}.

• N̄0 := N0 ∪ {∞}.

• Rd, d ∈ N – the d-dimensional Euclidean space.

• N – the collection of null sets in a specified probability space.

Spaces
In what follows, E denotes a metric space.

• B(E) – the Borel σ-algebra on E.

• Bb(E) – the space of real-valued bounded Borel-measurable functions on E.

• C(E) – the space of real-valued continuous functions on E.

• Cb(E) – the space of bounded and continuous real-valued functions on E.

• Ck(E), k ∈ N – the space of k-times continuously differentiable real-valued
functions on E.

• M(E) – the space of finite signed Borel measures on
(
E,B(E)

)
.

• M+(E) – the space of finite Borel measures on
(
E,B(E)

)
.

• P(E) – the space of Borel probability measures on
(
E,B(E)

)
.
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Functions, measures and integrals
• 1C – the indicator function of a set C.

• 1 – the constant function equal to 1.

• δa – the Dirac probability measure concentrated at a ∈ E.

• supp(µ) – the support of a measure µ ∈M(E).

• |µ| – the total variation measure corresponding to µ ∈M(E).

• µ � ν – indicates that the measure µ ∈ M(E) is absolutely continuous with
respect to the measure ν ∈M(E).

• µ ◦ f – the image measure of µ ∈M(E) by the measurable function f .

• fµ(C) :=
∫
C
f(x) dµ(x), C ∈ B(E) – fµ is the finite signed Borel measure on(

E,B(E)
)

with density f ∈ Bb(E) with respect to µ ∈M(E).

• µ(f) :=
∫
E
f(x) dµ(x) – the integral of a measurable function f : E → R with

respect to a measure µ ∈M(E).

• µ(f ; ·) :=
∫
E
f(x, ·)µ(dx) – the integral of a real-valued measurable function

f of two variables with respect to the first one and against a measure µ.

Operations on sets
• A ∨B – the smallest σ–algebra generated by the union A ∪B.

• int(C) – the interior of a set C.

• cl(C) – the closure of a set C.

• co(C) – the closed convex hull of a set C.

• |C| – the cardinality of a set C.

Norms and pairings
• ‖·‖∞ – the supremum norm.

• ‖·‖TV – the total variation norm.

• 〈· , ·〉 – the duality pairing between a Banach space and its topological dual.

Miscellanea
• s ∧ t := min{s, t}, with s, t ∈ R.

• s ∨ t := max{s, t}, with s, t ∈ R.

• D – the gradient symbol.
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Abbreviations
• a.e., a.s. – almost everywhere, almost surely.

• BSDE – Backward Stochastic Differential Equation.

• càdlàg – right-continuous with left-limits.

• HJB – Hamilton-Jacobi-Bellman.

• MPP – Marked Point Process.

• ODE – Ordinary Differential Equation.

• PDMP (or PDP) – Piecewise Deterministic (Markov) Process.

• RCM – Random Counting Measure.

• SDE – Stochastic Differential Equation.





Introduction

This thesis deals with an infinite horizon optimal control problem for a continuous-time
homogeneous pure jump Markov process with partial and noise-free observation.

Optimal control problems have been widely studied in the literature and their ana-
lysis continues nowadays with various ramifications. Starting from the celebrated bra-
chistochrone problem, solved by J. Bernoulli in 1696, optimal control problems have
been formulated in various forms (e. g. Lagrange, Bolza and Mayer problems) and with
different purposes in mind. Initially, they were studied in a deterministic setting in the
context of calculus of variations and in connection with problems coming from mecha-
nics, optics and geometry. After World War II, new problems coming for instance from
aerospace sciences, industrial control, financial and economic models, gave a renewed
impulse to the study of optimal control problems, also in the stochastic case. The fun-
damental result provided by Bellman in his Dynamic Programming Principle, gave the
optimal control branch its own raison d’être and its own tools, putting these problem
in a different perspective from the one of the calculus of variations.

As we said in the opening statement, this thesis studies a stochastic optimal control
problem. However, the reader should never lose contact with the deterministic counter-
part of these problems (on this subject see e. g. [37] and [23]). Our problem, as we will
later see, shares some similarities with deterministic ones. In some cases, for instance
in Section 3.4, we will use typical results of this kind of problems.

Stochastic optimal control problems have been widely studied in recent years, both
from a methodological and a modeling point of view. There are mainly two philoso-
phies to tackle these problems: the first one is represented by Bellman’s Dynamic Pro-
gramming Principle, leading to the study of Hamilton-Jacobi-Bellman equations (or
HJB for short). These are nonlinear partial differential equations, or integro-differential
equations as it will be in our case, satisfied by the value function associated to an op-
timal control problem. Since, in general, one cannot expect the value function to be
smooth enough (i. e. continuously differentiable as many times as needed) in order to
be a classical solution to the HJB equation, existence and uniqueness results for solu-
tions to these equations are formulated in the viscosity sense. We recall that viscosity
solutions were introduced by M.G. Crandall and P.-L. Lions (see e. g. [28, 8] and [38]
for connections with optimal control problems). The second philosophy is the appro-
ach provided by Pontryagin’s maximum principle and Backward Stochastic Differential
Equations (or BSDEs for short). These equations, introduced in the general framework
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by E. Pardoux and S. Peng in their seminal paper [52] and studied earlier in the linear
case by J.-M. Bismut and A. Bensoussan (see [14, 9]), provide a different approach
to characterize the value function of the optimal control problem, also in cases where
HJB techniques fail. In this thesis we will adopt the first philosophy. For detailed ex-
positions on stochastic optimal control problems, the reader is referred to [13, 41] for
the discrete-time case (the first book treats also the deterministic setting), [65, 53, 24]
for the continuous-time case (the second book provides also a great deal of financial
applications), [10] for optimal control problems with partial observation and, finally,
[48, 35] for the infinite dimensional case.

We analyze a model described by a triple (X,Y,u) = (Xt, Yt, ut)t­0 of stochastic
processes, defined in some suitable probability space. This triple is composed by the
unobserved or signal process X , the observed process Y and the control process u.
The main feature of the model analyzed in this thesis is the noise-free observation.
With this terminology we mean that no external source of randomness is acting on
the observed process. We can say, in other words, that the noise on the observation is
degenerate. This situation has been studied in very specific settings, also under various
assumptions on the processes X and Y . For instance, in the context of an unobserved
diffusion process, research papers as [18, 29, 46, 60] partially deal with this feature and
analyze the filtering problem, i. e. the probabilistic estimation of the unobserved state
of X at a time t ­ 0 given the observations available up to time t through the process
Y (we will later discuss in full detail this problem, being it a fundamental point of
this thesis). The case of an unobserved diffusion process is treated also in [44], that
is devoted entirely to non-linear filtering with noise-free observation (therein called
perfect observation). We also mention the chapter discussing singular filtering in the
book by Xiong [64, Ch. 11]. The case of an unobserved process given by a pure-jump
Rd–valued Markov process is studied in [19, 20, 21, 22], where the authors consider
counting observations. These models, that cannot be analyzed with well established
results, have received a sporadic treatment in the literature, despite their potential and
useful connection with applications, such as queuing systems (see e. g. [3, 17]) and
inventory models (see e. g. [11]). We point out that our problem is connected to Hidden
Markov Models (see [34] for a comprehensive exposition on this subject).

We now discuss some aspects of our control problem and anticipate some results.
We warn the reader that all the results stated in the Introduction are given without proof
and not provided with all the precise definitions needed. This is done on purpose, in
order to convey a global idea of the original results contained in this thesis, that will be
discussed and proved in full detail in the following Chapters.

We study an optimal control problem for the triple (X,Y,u) introduced above in
the following setting. The unobserved process X is a continuous-time homogeneous
pure jump Markov process, taking values in a complete and separable metric space I .
We are given its rate transition measure. This kernel, denoted by λ, along with the
initial distribution determines the law of the process X . In other words, its sojourn
times and its post jump locations are random variables whose law can be expressed in
terms of λ. The case of I being a finite set is also studied in this thesis (see Chapter
3). The process X reduces to a continuous-time homogeneous Markov chain, whose
rate transition matrix Λ is given. This matrix is sometimes called Q-matrix (see e. g.
[51]). Such a setting may be more familiar to the reader and we invite she/he to keep in
mind this situation also when considering the general case of a pure jump unobserved
process.

The observed process Y takes its values in another complete and separable metric
space O and will be of noise-free type in the following sense. We are given a measura-
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ble function h : I → O and the observed process satisfies the equality

Yt(ω) = h
(
Xt(ω)

)
, t ­ 0

for each ω in the sample space on which our processes are defined. Of course, we ex-
clude from our analysis two cases where the problem is not of true partial observation
nature, i. e. when h is one-to-one or constant. In the first case we would obtain a pro-
blem with complete observation, while in the second one the observation would give
no information about the unobserved process X . We point out that these assumptions
on the function h do not affect the results presented in this thesis. All of them remain
valid even if we take h to be one-to-one or constant. Without loss of generality, we
may take h to be surjective. The function h generates a partition of the set I through
its level sets h−1(y) as y varies in the set O. This means that if at a time t ­ 0 the
controller observes the state Yt = y, for some y ∈ O, then she/he immediately knows
that Xt ∈ h−1(y), almost surely. In other words, she/he knows (almost surely) to
which level set of the function h the random variable Xt belongs, but she/he does not
know which is the actual state occupied by the unobserved process at time t. Another
point of view, equivalent to this one, is to see the observation as the set-valued process(
h−1(Yt)

)
t­0.

The control process u takes values in the space of Borel probability measures on
the set of control actions U . We assume that U is a compact metric space. Thus, the
process u represents the action of a relaxed control. The reason for this formulation is
just a technical one and related to the so called Young topology, that is used to gain an
important compactness property (see e. g. [32]), as we shall later explain in full detail.
We will also see that we are able to recover ordinary controls, i. e. control processes
taking values in the set U , thanks to some approximation argument. This is important
since relaxed controls are not easily implementable in practice and have little meaning
in applications.

Control processes are required to be in the class Uad of predictable processes with
respect to the natural filtration generated by the observed process. Such a choice, that
is quite standard in the literature, is motivated by two aspects: first of all, it is obvious
that a controller has the opportunity to choose her/his actions based on quantities that
are actually observable, hence on the observed process Y in our case; second, it is not
to be a priori excluded a dependency of a control action taken at some time t ­ 0 on
the past trajectory of the observed process up to time t.

The aim of our control problem is to drive the dynamics of the unobserved process
X by manipulating its controlled rate transition measure. Such a control will be exerted
by the control process u in order to minimize, for each possible initial law µ of X , the
cost functional

J(µ,u) = Eu
µ

[∫ ∞
0

e−βt
∫
U

f(Xt, u)ut(du) dt
]
.

Here f is the cost function, that we take to be bounded and uniformly continuous, and
β is a positive discount factor. The expectation is taken under a specific probability
measure Pu

µ, depending on the initial law µ of the unobserved process X and on the
chosen control process u. Our control problem is, thus, formulated in a weak sense.
The infimum among all possible controls in the class Uad earlier introduced is the
value function V (µ). The study of various properties of the value function is a central
topic of this thesis.
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Solving control problems with partial observation requires a two step procedure.
The first step consists in providing a probabilistic estimate of the state of the unobser-
ved process. This is done in Chapter 2 and, to simplify matters, we study this subject in
the uncontrolled case. We are given the pair of unobserved/observed processes (X,Y ),
with Y of noise-free type as explained above, defined in a complete probability space
(Ω,F ,P). The estimate that we are looking for is provided by the filtering process
π = (πt)t­0. This is a measure-valued process representing the conditional law at
each time t ­ 0 of the random variable Xt given the σ-algebra Yt. Here (Yt)t­0 de-
notes the natural completed filtration of the process Y . Otherwise said, the filtering
process satisfies

πt(ϕ) :=
∫
I

ϕ(x)πt(dx) = E[ϕ(Xt) | Yt], t ­ 0, P–a.s.

for all bounded and measurable functions ϕ : I → R. The filtering process is a key tool
to solve our control problem since it allows us to transform it from a partial information
one to a complete information one, called the separated problem, as we will explain
later. Given its central role in this thesis, it is fundamental to characterize it and study
its properties.

The first result that we obtain is an explicit stochastic evolution equation satisfied,
for each ϕ : I → R bounded and measurable, by the real-valued process π(ϕ).

Theorem. Let ϕ : I → R be a bounded and measurable function and define, for each
fixed y ∈ O, the linear operator Ay as

Ayϕ(x) :=
∫
I

[
ϕ(z)− ϕ(x)

]
λ(x, dz)−

∫
I

1h−1(y)c(z)ϕ(z)λ(x, dz).

Let us denote by 1 : I → R the function identically equal to 1.
The process π(ϕ) satisfies for all t ­ 0 and P–a.s. the following equation

πt(ϕ) = HY0 [µ](ϕ)

+
∫ t

0

∫
I

AYs− ϕ(x)πs−(dx) ds−
∫ t

0
πs−(ϕ)

∫
I

AYs− 1(x)πs−(dx) ds

+
∑

0<τn¬t

{
HYτn

[Λ(πτ−n )](ϕ)− πτn−(ϕ)
}

where µ is the initial law of X , (τn)n∈N are the jump times of the process Y and
Hy, y ∈ O, Λ, are suitably defined operators acting on finite measures on I , introdu-
ced in Section 2.1 and Section 2.2 respectively.

From the equation for the process π(ϕ) we can derive the equation satisfied by the
measure-valued filtering process π.

Theorem. For each fixed y ∈ O let By the operator defined for all finite signed Borel
measures ν on I as

Byν(dz) := 1h−1(y)(z)
∫
I

λ(x, dz) ν(dx)− λ(z)ν(dz)

where λ(z) := λ(z, I). The filtering process π = (πt)t­0 satisfies for all t ­ 0 and
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P–a.s. the following SDE
d
dtπt = BYtπt − πt BYtπt(I), t ∈ [τn, τn+1), n ∈ N0

π0 = HY0 [µ]
πτn = HYτn

[Λ(πτ−n )], n ∈ N

where µ is the initial law of X , (τn)n∈N are the jump times of the process Y and
Λ, Hy, y ∈ O, are suitably defined operators acting on finite measures on I .

A peculiarity of the filtering process is that it takes values on a proper subset of the
set of Borel probability measures on I . This subset, denoted by ∆e, is called effective
simplex and is the disjoint union of all the families ∆y of probability measures con-
centrated on the level sets h−1(y), as y varies in the set O. This feature is due to the
fact, noticed earlier, that if at some time t ­ 0 we observe the value Yt = y for some
y ∈ O, then we know that, P–a.s., Xt ∈ h−1(y). This implies that the filtering process
at time t must be a random probability measure on I that is P–a.s. concentrated on the
level set h−1(y). Expressing this fact with our notation, in this situation we have that,
P–a.s., πt ∈ ∆y ⊂ ∆e.

At least heuristically, the equation satisfied by the filtering process indicates that
π is a Piecewise Deterministic Markov Process, or PDMP for short. This class of pro-
cesses, introduced by M.H.A. Davis (see e. g. the monograph [32]), has been widely
studied in the literature, also in connection with optimal control problems, and has im-
portant applications. The reason is that such class of processes mostly covers models
that are not of diffusive type. In fact, their behavior (as the name suggests) is determi-
nistic between some random jump times. In this time window they follow a determinis-
tic flow, associated to a vector field, satisfying an ordinary differential equation (ODE).
The occurrence of a random jump time, governed by a rate function, makes the process
restart after this random time in a new position, determined by a transition probability.
The distribution of a PDMP is, thus, completely characterized by the characteristic
triple, formed by the flow (or, equivalently, the vector field), the rate function and the
transition probability.

Our intuition is confirmed by the following theorem, that characterizes the filtering
process as a PDP and provides its characteristic triple.

Theorem. For each fixed y ∈ O let By the operator defined for all finite signed Borel
measures ν on I as

Byν(dz) := 1h−1(y)(z)
∫
I

λ(x, dz) ν(dx)− λ(z)ν(dz)

where λ(z) := λ(z, I).
For every initial law ν ∈ ∆e of the unobserved process X , the filtering process is a

Piecewise Deterministic Process with starting point ν and with respect to the following
characteristic triple (F, r,R)

F (ν) := Byν − ν Byν(I), ν ∈ ∆y.

r(ν) := −Byν(I) =
∫
I

λ
(
x, h−1(y)c

)
ν(dx), ν ∈ ∆y.

R(ν,D) :=
∫
O

1D

(
Hυ[Λ(ν)]

)
ρ(ν, dυ), ν ∈ ∆y, D ∈ B(∆e)



Introduction 6

where Λ is a suitably defined operator acting on finite measures on I and ρ is a transi-
tion probability defined for all ν ∈ ∆y and all Borel subsets B of O as

ρ(ν,B) :=


1

r(ν)

∫
I

λ
(
x, h−1(B \ {y})

)
ν(dx), if r(ν) > 0

qy(B), if r(ν) = 0

where (qy)y∈O is a family of probability measures, each concentrated on the level set
h−1(y), y ∈ O, whose exact values are irrelevant.

As said earlier, the importance of characterizing the filtering process resides in the
fact that it allows to transform our optimal control problem with partial observation
into a complete observation one, where the state variable is the filtering process in
place of the unobserved process X . This follows from an easy computation performed
on the cost functional J and involving nothing more than conditional expectations and
Fubini-Tonelli theorem. However, proving the equivalence between the problem with
partial observation and the one with complete observation is not an easy task. In fact,
to solve our optimal control problem we need to reformulate it as a control problem
with complete observation for a PDP, called the separated problem, for various reasons
that will be thoroughly discussed. More specifically, the separated problem will be a
discrete-time one related to a specific Markov decision model formulated in terms of a
PDP. The reduction of PDP optimal control problems to discrete-time Markov decision
processes is exploited e. g. in [1, 26, 30, 32]. This reformulation produces the separated
control problem that we prove to be equivalent to the original one and that allows to
study its value function. The equivalence between the original and the separated control
problems can be summarized by the explicit equality linking the corresponding value
functions, denoted respectively by V and v.

Theorem. For all initial laws µ of the unobserved process X we have that

V (µ) =
∫
O

v(Hy[µ])µ ◦ h−1(dy)

where µ ◦ h−1 is the image measure defined as µ ◦ h−1(B) := µ
(
h−1(B)

)
for all

Borel subsets B of O and Hy, y ∈ O, are suitably defined operators acting on finite
measures on I .

This equality allows to study the value function v of the separated control problem
to provide an indirect characterization of the value function V of the original control
problem, that we are not able to analyze directly.

It is worth noticing that there is a significant difference between the approach to
PDP optimal control problems presented in [32] and ours. In the book by Davis the
class of control processes is represented by piecewise open-loop controls, a class of
processes introduced by D. Vermes in [61] depending only on the time elapsed since
the last jump and the position at the last jump time of the PDP. In our separated control
problem, instead, we are forced to use a more general class of control policies depen-
ding on the past history of jump times and jump positions of the PDP. In fact, as we
shall later see, it is only looking at this larger class that we can find a correspondence
between controls for the original problem with partial observation, i. e. in the class Uad,
and policies for the separated PDP control problem. In this sense, an approach closer
to ours can be traced in [27]. However, in that paper the authors consider an optimal
control problem for a PDP (with complete observation), where the control parameter
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acts only on the jump intensity and on the transition measure of the process but not on
its deterministic flow.

The value function is characterized as the unique fixed point of a contraction map-
ping. This operator, denoted by G, is defined for all real-valued bounded and continuous
functions w on ∆e as

Gw(ν) := inf
α∈A

∫ ∞
0

e−βtL(φαν (t), χαν (t), α(t), w) dt, ν ∈ ∆e,

where the infimum is taken in the set A := {α : [0,+∞) → U, measurable} of all
possible ordinary controls, instead of relaxed ones, and L is a real-valued function
depending on all the quantities relevant to the separated control problem, i. e. the cha-
racteristic triple of the PDP, the cost function f and the control function α ∈ A. The
functions φαν , χ

α
ν and L are introduced in Sections 3.1 and 3.2 in the Markov chain

setting and in Sections 4.1 and 4.2 in the jump Markov process case.
The operator G can be associated with a deterministic optimal control problem

connected with the stochastic one. It is the problem that an agent must solve to optimize
the dynamics of the PDP given by the filtering process between two consecutive jump
times, i. e. when the filtering process moves along the deterministic flow of the PDP.
We stress once more that in this deterministic problem the agent optimizes among all
ordinary control functions, not relaxed ones.

We will prove that the operator G maps the space of real-valued bounded and con-
tinuous functions on the effective simplex into itself and we will show the following
result.

Theorem. Under suitable assumptions on the cost function f and the rate transition
measure λ of the unobserved process X , the value function v of the separated optimal
control problem is the unique fixed point of the operator G in the space of real-valued
bounded and continuous functions on ∆e.

Our value function v is, thus, bounded and continuous.
We can provide a further characterization of this value function in the case where

the set I , the state space of the unobserved process, is a finite set. In this case, covered in
Chapter 3, the unobserved processX is a continuous-time homogeneous Markov chain,
whose controlled rate transition matrix Λ is given. The space of probability measures on
I can be identified with the canonical simplex on R|I|, where |I| denotes the cardinality
of the set I . Hence, the effective simplex ∆e is a proper subset of this canonical simplex
and it is a compact set. The filtering process can be viewed as a vector-valued process
and, in particular, is regarded as a row vector. Also the cost function f is seen as a
(column) vector-valued function f defined on the space of control actions U .

Before anticipating this characterization, we point out that this setting has been
analyzed in two other works. The filtering problem for a continous-time Markov chain
has been studied in [25]. In that paper, filtering equations are computed, the filtering
process is characterized as a PDP and its local characteristics are written down expli-
citly. There the authors consider an application of those results to an optimal stopping
problem.

An optimal control problem is, instead, studied in [63]. This PhD thesis analyzes a
more general model than ours: alongside the processes X and Y with values in finite
spaces, a further finite-state jump process appears, called environmental, influencing
both the unobserved and the observed processes. Our function h is encoded in the
specification of an information structure, i. e. a partition of the state space I . Although
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in some specific situations our problem can be described in the setting of [63], there
are some differences, both at level of definitions and of techniques adopted. In our
thesis, for instance, the initial state X0 of the unobserved process is a random variable
with law µ, not just a pre-specified deterministic state; this is a common feature of
Markov chains models but it induces some non-trivial complications as we shall see,
in particular in connection with the value function v of the separated control problem.
In addition, as we anticipated earlier, we prove the equivalence between the original
problem and the separated one and we provide a detailed description of the structure of
admissible controls in both problems: this is required to make the results in [63] fully
rigorous.

Moreover, alongside the characterization of the value function v as unique fixed
point of the contraction mapping G mentioned earlier, we are able to prove the follo-
wing result.

Theorem. Under suitable assumptions on the cost function f and the rate transition
measure λ of the unobserved process X , the value function v of the separated opti-
mal control problem is the unique constrained viscosity solution of the following HJB
equation

H(ν,Dv(ν), v) + βv(ν) = 0, ν ∈ ∆e

where the hamiltonian function H is defined for all ν ∈ ∆e, all vectors b ∈ R|I| and
all bounded and continuous functions w : ∆e → R as

H(ν,b, w) := sup
u∈U

{
−F (ν, u)b− νf(u)− r(ν, u)

∫
∆e

[
w(p)− w(ν)

]
R(ν, u; dp)

}
.

The concept of constrained viscosity solution was introduced by H.M. Soner in
[58, 59]. This result allows to avoid using generalized gradient methods, as in [63],
which require locally Lipschitz continuity of v and additional assumptions on the data
of the problem. It is our opinion that the viscosity solutions approach deserves a de-
tailed exposition, since this concept is extensively adopted in the literature to solve
HJB equations associated to stochastic optimal control problems (see e. g. [8, 38]).
Considering in particular PDP optimal control problems, this approach can be found
in [31, 33]. We also mention, as recalled at the beginning of the Introduction, that a
characterization of the value function v via BSDEs may be studied (in the PDP optimal
control setting see e. g. [5, 6]).

The last result that we anticipate here, remaining in the Markov chain setting, is the
existence of an optimal ordinary control.

Theorem. For each initial law µ of the unobserved process X there exists an optimal
ordinary control u? ∈ Uad, i. e. an admissible control process (u?t )t­0 ∈ Uad such
that, for each time t ­ 0, u?t depends on the last jump time and position of the process
Y prior to time t, takes values in the set U , and minimizes the cost functional J .

We notice that this optimal control corresponds to a piecewise open-loop control
in the sense of Vermes. Thus, in some sense this result closes the circle, ensuring the
existence of control processes that are standard in PDP optimal control problems.

The thesis is organized as follows. In order to make it as self-contained as possible,
the first Chapter is devoted to recall some results on Marked Point Processes (Section
1.1) and Piecewise Deterministic Markov Processes (Section 1.2).

Marked Point Processes are a useful tool to describe the control problem discussed
above and play a central rôle in Chapter 2, where we obtain the explicit filtering equa-
tions anticipated earlier (Section 2.1) and we prove the characterization of the filtering
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process as a PDP (Section 2.2). In Section 2.3 we introduce the notation adopted in the
Markov chain case, studied in Chapter 3, and in Section 2.4 we provide some remarks
on the rôle of the function h in the filtering problem.

In Section 3.1 we introduce the setting of the optimal control problem and we prove
a useful property concerning the transition kernel associated to the filtering process. In
Section 3.2 we define the separated optimal control problem for the filtering process
and we prove its equivalence with the original one. In Section 3.3 we prove the two
characterizations of the value function associated to the separated control problem, as
the unique fixed point of the contraction mapping G mentioned earlier and as the unique
constrained viscosity solution of the HJB equation stated above. Finally, in Section 3.4
we prove the existence of an ordinary optimal control for our problem and in Section
3.5 we provide an example where we are able to solve explicitly our optimal control
problem.

In Chapter 4, the final one, the optimal control problem for a continuous-time ho-
mogeneous pure jump Markov process is studied. The steps are almost the same of
Chapter 3. In Section 4.1 the optimal control problem is introduced and its equivalence
with the separated optimal control problem for the filtering process is proved in Section
4.2. The characterization of the value function associated to the separated control pro-
blem as the unique fixed point of the contraction mapping G is studied in Section 4.3.
In Section 4.4 we make some comments on the rôle of the function h in the control
problem.

We point out that all the proofs contained in this thesis are original. Results stated
without proof are either generalizations (or slight modifications) of other proofs contai-
ned in this work or can be found elsewhere in the literature. In this case, we explicitly
indicate references for the interested reader.



CHAPTER 1

Preliminaries

This Chapter is devoted to a synthetic and brief review of the main concepts regarding
marked point processes and piecewise deterministic processes. The reader will encoun-
ter these kind of processes in the following Chapters and we will use various results,
stated in this Chapter without proof in order to make this thesis as self contained as
possible. For the reader’s convenience, we will point out the precise reference of the
presented results.

1.1 Marked point processes
In this Section we introduce marked point processes, or MPP for short. These processes
have been deeply studied and characterized in the past years. The main references on
this topic are [43, 17, 47, 42] and the interested reader is invited to consult them for
detailed expositions on the subject. Here we present a summary of the main results on
MPPs that we are going to use in the next Chapters. We mostly follow the discussions
in [43] and [17] and we provide the precise reference to the results shown, for sake of
clarity.

1.1.1 General results on marked point processes
Marked point processes are countable collections of couples of random variables, de-
noted by (Tn, ξn)n∈N and defined on some probability space (Ω,F ,P). The random
variables Tn : Ω→ (0,+∞], n ∈ N satisfy

Tn ¬ Tn+1, P–a.s., n ∈ N.
Tn < +∞⇒ Tn < Tn+1, P–a.s., n ∈ N.

They represent the time of occurrence of some random phenomenon. The collection
(Tn)n∈N is called simple point process, or just point process. The random variables
ξn : Ω → E, n ∈ N, take their values in a measurable space (E, E), called the
mark space, and represent a quantity related to each random time Tn. We denote by
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T∞(ω) := limn→∞ Tn(ω), ω ∈ Ω the accumulation or explosion point of the MPP. If
T∞ = +∞, P–a.s., the MPP is said to be non-explosive. Notice that the accumulation
point may be finite and, in that case, there is no point after T∞.

A marked point process can be equivalently described via a random counting mea-
sure, or RCM for short. This is a random measure on

(
(0,+∞)×E,B

(
(0,+∞)

)
⊗E
)

defined as

µ(ω,dtdx) :=
∑
n∈N

δ(
Tn(ω),ξn(ω)

)(dtdx)1Tn(ω)<+∞, ω ∈ Ω

where δa denotes the Dirac probability measure concentrated on the point a. With the
expression random measure on some measurable space (A,A) we mean a transition
kernel from (Ω,F) to (A,A). We will base our analysis of MPPs on their correspon-
ding RCMs.

Another quantity associated to MPPs is the counting process Nt := µ
(
(0, t] ×

E
)
, t ­ 0, that counts the number of jumps occurred up to time t. We can also define a

family of counting processes parameterized by measurable sets in the σ-algebra E , i. e.
consider the processes

Nt(A) := µ
(
(0, t]×A

)
, t ­ 0, A ∈ E . (1.1.1)

Notice that, in the case of a simple point process, the counting process N = (Nt)t­0
completely describes it and there is no need to consider its associated RCM.

For the rest of this Chapter, the following assumption will be in force.

Assumption 1.1.1. The mark space E is a Borel subset of a compact metric space
(a.k.a. Lusin space). The σ-algebra E is the Borel σ-algebra on E, i. e. E = B(E).

We will sometimes consider an extra point ∆ that we add to the mark space E,
defining E∆ := E ∪ {∆} with its Borel σ-algebra E∆ := B(E∆).

To study MPPs we will adopt a dynamic point of view and treat them as continuous
time stochastic processes through their RCMs. From now on, we are given a filtration
F := (Ft)t­0 on (Ω,F ,P), i. e. an increasing sequence of sub-σ-algebras of F . We
assume that the usual conditions of Dellacherie are satisfied, meaning that the proba-
bility space (Ω,F ,P) is complete and all the σ-algebras of F are augmented with the
collection N of all P–null sets of F .

A marked point process (Tn, ξn)n∈N is said to be F–adapted if the sequence of(
(0,+∞]× E

)
–valued random variables (Tn, ξn)n∈N is such that for all n ∈ N

1. Tn is a F–stopping time and Tn ¬ Tn+1, P–a.s.

2. ξn is FTn–measurable.

3. If Tn < +∞ then Tn < Tn+1, P–a.s.

Clearly, we can always consider a marked point process (Tn, ξn)n∈N as adapted to its
natural completed filtration, that we denote by G := (Gt)t­0, where

Gt := σ
(
µ
(
(0, s]×A

)
: 0 ¬ s ¬ t, A ∈ E

)
∨N , t ­ 0. (1.1.2)

It is possible to give an extremely careful description of the filtration G.

Theorem 1.1.1 ([17, Appendix A2, Th. T30]). Let (Tn, ξn)n∈N be an E–marked point
process defined on (Ω,F). We have that
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1. GTn = σ(T1, ξ1, . . . , Tn, ξn) ∨N , n ∈ N.

2. GT−n = σ(T1, ξ1, . . . , Tn−1, ξn−1, Tn) ∨N , n ∈ N.

3. GT∞ = σ(T1, ξ, . . . ) ∨N .

Let P(F) be the σ-algebra on Ω× [0,+∞) generated by the maps (ω, t) 7→ Yt(ω)
that are Ft-measurable in ω and left-continuous in t. We recall that a real-valued
process X = (Xt)t­0 is called F–predictable if the map (t, ω) 7→ Xt(ω) is P(F)–
measurable. An important characterization of predictable processes is given in the fol-
lowing Theorem. First, we need to introduce the following assumption concerning the
structure of the filtration F.

Assumption 1.1.2 ([43, (A.1)]). We have that for all t ­ 0, Ft = F0 ∨ Gt = σ(F0 ∪
Gt), where G = (Gt)t­0 is the natural completed filtration of the MPP (Tn, ξn)n∈N
introduced in (1.1.2).

Theorem 1.1.2 ([17, Appendix A2, Th. T34] and [43, Lemma 3.3]). Let T0(ω) =
0, ω ∈ Ω and let Assumption 1.1.2 be in force. In order for the process X = (Xt)t­0
to be F–predictable it is necessary and sufficient that X0 is F0–measurable and it
admits the representation

Xt(ω) =
∑
n∈N0

f (n)(t, ω)1Tn(ω)<t¬Tn+1(ω)+f (∞)(t, ω)1T∞(ω)<t<+∞, t > 0, ω ∈ Ω

where for each n ∈ N̄0 the mapping (t, ω) 7→ f (n)(t, ω) is FTn ⊗ B
(
[0,+∞)

)
–

measurable.

Remark 1.1.1. Thanks to Theorem 1.1.1 it is possible to write the functions f (n), n ∈
N̄0 of Theorem 1.1.2 as

• f (0)(t, ω) = f0
(
t,X0(ω)

)
, t > 0, ω ∈ Ω.

• f (n)(t, ω) = fn
(
t,X0(ω), . . . , Tn(ω), ξn(ω)

)
, t > 0, ω ∈ Ω, n ∈ N.

• f (∞)(t, ω) = f∞
(
t,X0(ω), T1(ω), ξ1(ω), . . . ), t > 0, ω ∈ Ω.

where the functions fn, n ∈ N̄0 are suitably defined deterministic functions.

In what follows we also consider stochastic or random fields on E, i. e. stochastic
processes depending on an additional parameter x ∈ E. Similarly to stochastic pro-
cesses, a random field Z =

(
Zt(x)

)
t­0, x∈E is said to be F–predictable if the map

(t, ω, x) 7→ Zt(ω, x) is P(F)⊗ E–measurable.
The concept of predictability can be extended to random measures thanks to the

following definition.

Definition 1.1.1 ([43]). A random measure η on (E, E) is said to be F–predictable if
for all nonnegative F–predictable random fields Z =

(
Zt(x)

)
t­0, x∈E we have that the

real-valued process (∫
(0,t]×E

Zs(x) η(dsdx)
)
t­0

is F–predictable.
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Dual predictable projection of a RCM
Let (Tn, ξn)n∈N be a F–adapted marked point process with associated random counting
measure µ. One of the main results concerning marked point processes is the existence
of the dual predictable projection of the associated random counting measure.

Theorem 1.1.3 ([43, Th. 2.1]). There exists one and only one (up to a modification
on a P–null set) F–predictable random measure ν such that for each nonnegative F–
predictable random field Z =

(
Zt(x)

)
t­0, x∈E we have:

E
∫

(0,+∞)×E
Zt(x)µ(dtdx) = E

∫
(0,+∞)×E

Zt(x) ν(dtdx).

The F–predictable random measure ν is called the F–dual predictable projection of µ.

Proposition 1.1.4 ([43, Prop. 2.3]). One can choose a version of ν satisfying identi-
cally

ν
(
{t} × E

)
¬ 1, t > 0

ν
(
[T∞,+∞)× E

)
= 0.

(1.1.3)

Theorem 1.1.3 is of fundamental importance because it paves the way for a mar-
tingale description of a MPP. In particular, we have the following result.

Proposition 1.1.5 ([43, (2.4), (2.5) and (2.6)]). The F–dual predictable projection ν of
µ is characterized by any of these equivalent facts.

1. ν satisfies (1.1.3) and for each A ∈ E the process
(
ν
(
(0, t] × A

))
t­0 is the

F–dual predictable projection of
(
µ
(
(0, t]×A

))
t­0.

2. ν satisfies (1.1.3) and

(a) for all A ∈ E the process
(
ν
(
(0, t]×A

))
t­0 is F–predictable,

(b) for all A ∈ E and all F–stopping times T it holds

E
[
ν
(
(0, T ]×A

)]
= E

[
µ
(
(0, T ]×A

)]
.

3. ν satisfies (1.1.3) and

(a) for all A ∈ E the process
(
ν
(
(0, t]×A

))
t­0 is F–predictable,

(b) for all A ∈ E and all n ∈ N the process(
ν
(
(0, t ∧ Tn]×A

)
− µ

(
(0, t ∧ Tn]×A

))
t­0

is a uniformly integrable F–martingale. If P(T∞ = +∞) = 1 one can
replace (3b) by

(b’) for all A ∈ E the process(
ν
(
(0, t]×A

)
− µ

(
(0, t]×A

))
t­0

is a F–local martingale.

The following result allows to give a complete description of a marked point pro-
cess in terms of its local characteristics, by disintegrating the dual predictable pro-
jection ν as specified below (here Assumption 1.1.1 is fundamental).
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Theorem 1.1.6 ([17, Ch. VIII, Th. T14]). There exists

1. a unique (up to P–indistinguishability) right-continuous F–predictable increa-
sing process A = (At)t­0 with A0 ≡ 0,

2. a transition measure Φt(ω, dx) from
(
(0,+∞) × Ω,P(F)

)
into (E, E), such

that, for all n ∈ N

E
∫

(0,Tn]×E
Zs(x)µ(dsdx) = E

∫
(0,Tn]×E

Zs(x) Φs(dx) dAs

for all nonnegative F–predictable random fields Z =
(
Zt(x)

)
t­0, x∈E .

The pair
(
A,Φt(dz)

)
gives the (P,F)–local characteristics of the MPP (Tn, ξn)n∈N.

The following result gives an important characterization of the probability kernel
Φt(dx).

Theorem 1.1.7 ([17, Ch. VIII, Th. T16]). Let (Tn, ξn)n∈N be a F–adapted marked
point process, with F–local characteristics

(
A,Φt(dx)

)
. Under Assumption 1.1.2, the

transition probability Φt(dx) satisfies for all n ∈ N

ΦTn(A) = P
[
ξn ∈ A | FT−n

]
, P–a.s. on {Tn < +∞}.

It is possible in some cases to give an explicit form for the dual predictable pro-
jection ν. Let us define the sojourn times (Sn)n∈N by

Sn =
{
Tn − Tn−1, on {Tn−1 < +∞}
+∞, on {Tn−1 = +∞}

(1.1.4)

Let us denote by Gn(ω,dtdx), n ∈ N0 a regular version of the conditional law of
(Sn+1, ξn+1) given FTn and let Hn(ω,dt) := Gn(ω,dt×E∆), be the conditional law
of Sn+1 given FTn . We point out that thanks to Assumption 1.1.1 the regular versions
of these conditional laws always exist.

Proposition 1.1.8 ([43, Prop. 3.1]). Under Assumption 1.1.2 the following formula
defines a version of the F–dual predictable projection of µ (which satisfies (1.1.3)).

ν(dtdx) =
∑
n∈N0

Gn(dt− Tn dx)
Hn([t− Tn,+∞])1Tn<t¬Tn+1 .

Another important question regarding dual predictable projections concerns the
opposite question answered by Theorem 1.1.3. Suppose that we have a predictable
random measure ν: under which conditions it is possible to construct a probability
measure P on a suitably defined measurable sample space such that ν is the dual pre-
dictable projection of µ?

Assumption 1.1.3 ([43, (A.2)]). We have that Ω = Ω′ × Ω′′ where

• Ω′ is the canonical space for MPPs, i. e. the set of all possible marked point
processes (T ′n, ξ′n)n∈N.

• (Ω′′,F ′′) is an arbitrary measurable space.
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Moreover, we are given a MPP (Tn, ξn)n∈N such that

(Tn, ξn)(ω′, ω′′) = (T ′n, ξ′n)(ω′), ω = (ω′, ω′′) ∈ Ω, n ∈ N

and a filtration F = (Ft)t­0 such that

F0 = {∅,Ω′} ⊗ F ′′, Ft = F0 ∨ Gt

where (Gt)t­0 is the natural completed filtration of µ defined in (1.1.2).

We denote by F∞ :=
∨
t­0 Ft. We have the following important result.

Theorem 1.1.9 ([43, Th. 3.6]). Let Assumption 1.1.3 be in force. Let P0 be a probabi-
lity measure on (Ω,F0) and ν a predictable random measure satisfying (1.1.3). Then
there exists a unique probability measure P on (Ω,F∞) whose restriction to F0 is P0
and for which ν is the predictable projection of µ.

Martingale representation theorem
As it is known, martingale representation theorems are ubiquitous and fundamental
in stochastic processes analysis. As everyone expects, such a theorem exists also for
marked point processes. Its importance is never to be underestimated and in our case it
will be central to solve the stochastic filtering problem in Chapter 2.

Let (Ω,F ,P) be a fixed probability space and let (Tn, ξn)n∈N a F–adapted marked
point process defined on it, with associated random counting measure µ. We have the
following two results.

Proposition 1.1.10 ([43, Prop. 5.3]). Let Z =
(
Zt(x)

)
t­0, x∈E be a real-valued F–

predictable random field satisfying∫
(0,t]×E

|Zs(x)| ν(dsdx) < +∞, t > 0, P–a.s. on {t < T∞}.

Let X = (Xt)t­0 be a right-continuous F–adapted process, such that

Xt = X0 +
∫

(0,t]×E
Zs(x)

[
µ(dsdx)− ν(dsdx)

]
, t > 0, P–a.s. on {t < T∞}.

Then there exists a sequence (Sn)n∈N of F–stopping times increasing P–a.s. towards
T∞, for which (Xt∧Sn)t­0 is a uniformly integrable martingale for each n ∈ N.

Theorem 1.1.11 ([43, Th. 5.4]). Let Assumption 1.1.2 be in force and letX = (Xt)t­0
be a right-continuous F–adapted process. Then there exists a sequence (Sn)n∈N of F–
stopping times increasing P–a.s. towards T∞, for which (Xt∧Sn)t­0 is a uniformly
integrable martingale for each n ∈ N, if and only if there exists a real-valued F–
predictable random field Z =

(
Zt(x)

)
t­0, x∈E satisfying∫

(0,t]×E
|Zs(x)| ν(dsdx) < +∞, t > 0, P–a.s. on {t < T∞}.

Xt = X0 +
∫

(0,t]×E
Zs(x)

[
µ(dsdx)− ν(dsdx)

]
, t > 0, P–a.s. on {t < T∞}.
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1.1.2 Stochastic intensities
Important examples of marked point processes are those admitting a stochastic inten-
sity.

Let us start discussing the case of a F–adapted simple point process (Tn)n∈N defi-
ned on (Ω,F ,P). For sake of simplicity, we assume that it is P–a.s. non-explosive. We
denote by N = (Nt)t­0 its associated counting process.

Definition 1.1.2 ([17, Ch. II, Def. D7]). Let λ = (λt)t­0 be a F–progressive nonnega-
tive process such that for all t ­ 0∫ t

0
λs ds < +∞ P–a.s.

If for all nonnegative F–predictable processes Z = (Zt)t­0 the equality

E
∫ ∞

0
Zs dNs = E

∫ ∞
0

Zsλs ds

is verified, then we say that N admits the F-stochastic intensity λ.

The stochastic intensity may fail to exist. However, we know from Theorem 1.1.3
that the dual predictable projection always does. In the case of a simple point process
this can be identified with an increasing right-continuous F–predictable process A =
(At)t­0 with A0 ≡ 0 (cfr. Theorem 1.1.6). In particular, we are granted the existence
of a stochastic intensity if the measure dA is absolutely continuous with respect to
the Lebesgue measure on

(
(0,+∞),B

(
(0,+∞)

))
, in the sense that there exists a F–

predictable nonnegative process λ = (λt)t­0 such that

At =
∫ t

0
λs ds, t ­ 0, P–a.s.

We now present some explicit examples of stochastic intensities.

Example 1.1.1 (Homogeneous Poisson Process). Let (Tn)n∈N be a F–adapted point
process, with associated counting process N = (Nt)t­0, and let λ > 0.

If for all 0 ¬ s ¬ t and all u ∈ R it holds

E
[
eiu(Nt−Ns)

∣∣ Fs] = exp
{
λ(t− s)(eiu − 1)

}
, (1.1.5)

then N is called a F–homogeneous Poisson process with intensity λ. In other words,
its stochastic intensity is the deterministic constant process equal to λ.

Condition (1.1.5) implies that for all 0 ¬ s ¬ t the increments Nt − Ns are P–
independent of Fs given F0. Moreover, it leads to the usual formula

P(Nt −Ns = k | Fs) = e−λ(t−s)
(
λ(t− s)

)k
k! , k ∈ N.

A simple calculation using formula (1.1.5) shows that ENt = λt. This allows us
to interpret the intensity of the process N as the expected number of “events” that
occur per unit time and identifying it with λ. This reasoning can be further generali-
zed in order to consider a wider class of processes that are still related to the Poisson
distribution, as shown in the following example.
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Example 1.1.2 (Conditional Poisson Process). Let (Tn)n∈N be a F–adapted point pro-
cess, with associated counting process N = (Nt)t­0, and let λ = (λt)t­0 be a nonne-
gative F–progressive process.

Suppose that the following conditions hold:

• λt is F0–measurable, for all t ­ 0,

•
∫ t

0 λs ds < +∞, P–a.s., for all t ­ 0,

• E
[
eiu(Nt−Ns)

∣∣ Fs] = exp
{

(eiu − 1)
∫ t
s
λr dr

}
, P–a.s., for all 0 ¬ s ¬ t.

Then N is called a F-conditional Poisson process, or F–Cox process, with stochas-
tic intensity λ.

Allowing stochastic intensities to be F–progressive processes has the effect that
uniqueness (modulo indistinguishability) is lost. However, it is always possible to find
a F–predictable version of the stochastic intensity, so that uniqueness is restored, as the
following Theorem shows.

Theorem 1.1.12 ([17, Ch. II, Th. T12 and T13]). Let (Tn)n∈N be a F–adapted point
process, with associated counting process N = (Nt)t­0. Suppose that it admits a F–
stochastic intensity λ = (λt)t­0. Then a F–predictable version of λ exists. Moreover,
if λ̂ = (λ̂t)t­0 and λ̃ = (λ̃t)t­0 are two F–predictable intensities of N , then

λ̂t(ω) = λ̃t(ω) P(dω)dNt(ω)–a.e. (1.1.6)

In particular, P–a.s.,

λ̂Tn = λ̃Tn on {Tn <∞}, n ∈ N, (1.1.7a)

λ̂t(ω) = λ̃t(ω) λ̂t(ω)dt– and λ̃t(ω)dt–a.e., ω ∈ Ω, (1.1.7b)

λ̂Tn > 0 on {Tn <∞}, n ∈ N. (1.1.7c)

Let us know discuss the existence of a stochastic intensity for a marked point pro-
cess.

Definition 1.1.3 ([17, Ch. VIII, Def. D2]). Let (Tn, ξn)n∈N be a F–adapted marked
point process, with associated random counting measure µ. Suppose that for each
A ∈ E , the counting process

(
Nt(A)

)
t­0 defined in (1.1.1) admits the F–predictable

intensity
(
λt(A)

)
t­0, where λt(ω,dx) is a transition measure from

(
Ω×[0,+∞),F⊗

B
(
[0,+∞)

))
into (E, E). We say that µ admits the F–intensity kernel λt(dx).

Also in this case, intensity kernels may fail to exist. Again, by Theorem 1.1.3 we
know that the F–dual predictable projection ν of µ always exists and we are granted the
existence of the F–intensity kernel whenever ν is absolutely continuous with respect
to the Lebesgue measure on

(
(0,+∞),B

(
(0,+∞)

))
. This means that there exists a

transition measure λt(ω,dx) from
(
Ω× [0,+∞),F ⊗ B

(
[0,+∞)

))
into (E, E) such

that (λt(A))t­0 is a F–predictable nonnegative process for all A ∈ E and

ν
(
(0, t]×A

)
=
∫ t

0
λs(A) ds, t ­ 0, A ∈ E , P–a.s.
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We recall that, since Assumption 1.1.1 is in force, the F–dual predictable projection
ν of µ is a random measure that can always be disintegrated to produce the F–local
characteristics of the MPP (Tn, ξn)n∈N. When a stochastic kernel exists, we obtain
that the F–local characteristics can be expressed as in the following definition.

Definition 1.1.4 ([17, Ch. VIII, Def. D5]). Let (Tn, ξn)n∈N be a F–adapted marked
point process, with associated random counting measure µ. Suppose that it admits the
F–intensity kernel λt(dx). Then we have that

λt(dx) = λtΦt(dx), t ­ 0, P–a.s.

where λ = (λt)t­0 is a nonnegative F–predictable process and Φt(ω,dx) is a transition
probability from

(
Ω × [0,+∞),F ⊗ B

(
[0,+∞)

))
into (E, E). The pair

(
λ,Φt(dx)

)
gives the F–local characteristics of µ.

Under some conditions, we are able to obtain an explicit form of the F–local charac-
teristics

(
λ,Φt(dx)

)
of a marked point process, similarly to what we saw in Proposition

1.1.8.

Theorem 1.1.13 ([17, Ch. VIII, Th. T7]). Let Assumption 1.1.2 be in force and let
(Tn, ξn)n∈N be a F–adapted marked point process, with associated random counting
measure µ. Suppose that, for each n ∈ N0, there exists a regular conditional distribu-
tion of (Sn+1, ξn+1) given FTn of the form

P(Sn+1 ∈ A, ξn+1 ∈ C | FTn) =
∫
A

g(n+1)(s, C) ds, A ∈ B
(
[0,+∞)

)
, C ∈ E

where (Sn)n∈N are the sojourn times defined in (1.1.4) and, for each n ∈ N0, g
(n+1)

is a finite kernel from
(
Ω× [0,∞),FTn ⊗ B

(
[0,+∞)

))
into (E, E), that is to say:

1. (ω, s) 7→ g(n+1)(ω, s, C) is FTn ⊗ B
(
[0,+∞)

)
–measurable, for all C ∈ E ,

2. for all (ω, s) ∈ Ω× [0,∞), C 7→ g(n+1)(ω, s, C) is a finite measure on (E, E).

Then µ admits the F–local characteristics
(
λ,Φt(dx)

)
defined by (set T0 ≡ 0)

λt(C) = g(n+1)(t− Tn, C)
1−

∫ t−Tn
0 g(n+1)(s, E) ds

, t ∈ (Tn, Tn+1], n ∈ N0 (1.1.8a)

λt = λt(E), t > 0 (1.1.8b)

Φt(C) = λt(C)
λt(E) , t > 0, C ∈ E . (1.1.8c)

1.1.3 Filtering with marked point process observation
Stochastic filtering techniques address the issue of estimating the state at time t of a
given dynamical stochastic system, based on the available information at the same time
t. Historically and in the context of second-order stationary processes, two approaches
have mainly been used:

• Frequency spectra analysis (Kolmogorov-Wiener).

• Time-domain analysis (Kalman).
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Since we adopted a dynamical approach so far to describe and study marked point
processes, we will use tools that are based on Kalman’s innovations theory.

The basic datum of a filtering problem is a pair of stochastic processes: a state
process and an observed process. The former is also said unobserved or signal process;
we are interested in the estimation of its state or, more generally, of the state of a
process that depends on it. To estimate its state we will use the information provided
by the latter process, i. e. the observed one.

Having in mind this setting, we will proceed along this path:

1. Find the innovating representation of the state process and then project this re-
presentation on the natural filtration of the observed process.

2. Search for filtering formulas, expressed in terms of the innovations gain and of
the innovating part, using the representation of martingales with respect to the
observed filtration.

3. Use martingale calculus to identify the innovations gain.

The Innovating Structure of the Filter
Let X = (Xt)t­0 and Y = (Yt)t­0 be two (E, E) valued processes and let Z =
(Zt)t­0 = (ϕ(Xt))t­0 be a real-valued process, with ϕ : E → R a measurable
function. We assume that X is the unobserved process, Y is the observed process and
Z as the process that we aim to filter.

Let X = (Xt)t­0 and Y = (Yt)t­0 be the natural completed filtrations of the
processes X and Y respectively. With F = (Ft)t­0, where Ft = Xt ∨ Yt, t ­ 0, we
denote the global filtration.

In the sequel we suppose that the process Z satisfies the equation

Zt = Z0 +
∫ t

0
fs ds+Mt, P–a.s., t ­ 0 (1.1.9)

where

1. (ft)t­0 is a F–progressive process such that∫ t

0
|fs|ds < +∞ P–a.s., t ­ 0,

2. (Mt)t­0 is a zero mean F–local martingale.

Equation (1.1.9) is called the semi-martingale representation of Z. In most cases of
practical interest, the existence of this representation can be directly exhibited as shown
in the following examples.

Example 1.1.3 (Signal corrupted by a white noise1). Let X be the real-valued process

Xt = X0 +
∫ t

0
Su du+Wt, t ­ 0

where
1For a background in stochastic processes driven by Wiener-processes, see [45].
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• (St)t­0 is a F–adapted process such that∫ t

0
|Su|du < +∞ P–a.s., t ­ 0

• (Wt)t­0 is a F-Wiener process.

Let ϕ : R → R be a twice continuously differentiable function and let Zt =
ϕ(Xt), t ­ 0. Then, an application of Ito’s formula yields

Zt = Z0 +
∫ t

0

(
Suϕ

′(Xu) + 1
2ϕ
′′(Xu)

)
du+

∫ t

0
ϕ′(Xu) dWu, t ­ 0 (1.1.10)

where the last term in the sum is an Ito’s integral. Formula (1.1.10) is a representation
for the process X of type (1.1.9) with

ft = Stϕ
′(Xt) + 1

2ϕ
′′(Xt), t ­ 0

Mt =
∫ t

0
ϕ′(Xu) dWu, t ­ 0.

Example 1.1.4 (Markov processes with a generator). Let X be a E-valued homogene-
ous F-Markov process with infinitesimal generator L of domain D(L). Then applying
Dynkin’s formula we obtain that for any ϕ ∈ D(L) it holds

ϕ(Xt) = ϕ(X0) +
∫ t

0
Lϕ(Xs) ds+Mt, t ­ 0 (1.1.11)

where (Mt)t­0 is a F–martingale. The representation (1.1.11) is clearly of the form
(1.1.9) and will be used in Chapter 2.

As previously stated, the first step in the innovations method consists in projecting
the semi-martingale representation given in (1.1.9) on the observed filtration Y. This is
the content of the following Theorem.

Theorem 1.1.14 (Projection of the State [17, Ch. IV, Th. T1]). Let Z = (Zt)t­0 be an
integrable real-valued process with semi-martingale representation given by

Zt = Z0 +
∫ t

0
fs ds+Mt, t ­ 0

where

(i) (ft)t­0 is a F–progressive process such that

E
[∫ t

0
|fs|ds

]
< +∞, t ­ 0

(ii) (Mt)t­0 is a zero mean F–martingale.

Then

E[Zt | Yt] = E[Z0 | Y0] +
∫ t

0
f̂s ds+ M̂t, t ­ 0 (1.1.12)

where
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• (M̂t)t­0 is a zero mean Y–martingale,

• (f̂t)t­0 is a Y–progressive process defined by

E
[∫ t

0
Csfs ds

]
= E

[∫ t

0
Csf̂s ds

]
, t ­ 0 (1.1.13)

for all nonnegative bounded Y–progressive processes (Ct)t­0.

Remark 1.1.2. It can be shown that a process (f̂t)t­0 satisfying (1.1.13) always ex-
ists (see e. g. [17, Remark (β), p. 88]). A more concrete version of it can be obtained
whenever we are granted the existence of a version of the conditional expectation of ft
given Yt such that the mapping (ω, t) 7→ E[ft | Yt](ω) is Y–progressively measura-
ble, for all t ­ 0. Then the process

(
f̂t(ω)

)
t­0 =

(
E[ft | Yt](ω)

)
t­0 clearly satisfies

(1.1.13), as an application of the Fubini-Tonelli theorem shows.

Filtering Equations
We now assume that the observed process Y is a F–adapted E–marked point process
(Tn, ξn)n∈N, with associated random counting measure µ. Until the end of this dis-
cussion, Assumption 1.1.2 will be in force and we suppose that µ admits the F-local
characteristics

(
λ,Φt(dx)

)
and the Y-local characteristics

(
λ̂, Φ̂t(dx)

)
. For technical

reasons, Dellacherie’s usual conditions stated in Section 1.1.1 are assumed to hold for
the probability space (Ω,F ,P) and for all the filtrations here specified.

Let Z = (Zt)t­0 be a real-valued process satisfying the conditions stated in Theo-
rem 1.1.14. We add the following hypothesis.

Assumption 1.1.4. The semi-martingale representation of Z is such that

(H1) Mt = Md
t +M c

t , t ­ 0, where (Md
t )t­0 is a F–martingale of integrable variation

over finite intervals and (M c
t )t­0 is a continuous F–martingale.

(H2) (Zt −M c
t )t­0 is a bounded process.

We are now in a position to state the main result of this Subsection. In fact, recalling
the Martingale Representation Theorem 1.1.11, we can express in a more precise way
the Y–martingale (M̂t)t­0 that figures in (1.1.12).

Theorem 1.1.15 (Filtering Theorem [17, Ch. VIII, Th. T9]). Let the conditions stated
in Theorem 1.1.14 and Assumption 1.1.4 hold. Then for all t ­ 0 and P–a.s.

Ẑt = E[Zt | Yt] = E[Z0 | Y0] +
∫ t

0
f̂s ds+

+
∫

(0,t]×E
Ks(x)

[
µ(dsdx)− λ̂sΦ̂s(dx) ds

]
. (1.1.14)

The random field
(
Kt(x)

)
t­0,x∈E is Y–predictable and is defined P(dω)µ(dtdx)–

essentially uniquely by

Kt(x) = Ψ1
t (x)−Ψ2

t (x) + Ψ3
t (x), t ­ 0, x ∈ E. (1.1.15)
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The Y–predictable random fields
(
Ψi
t(x)

)
t­0, x∈E , i = 1, 2, 3, are P(dω)µ(dtdx)–

essentially uniquely defined by the following equalities, holding for all t ­ 0 and all
bounded Y–predictable random fields

(
Ct(x)

)
t­0,x∈E

E
[∫ t

0

∫
E

Ψ1
s(x)Cs(x) λ̂s(dx) ds

]
= E

[∫ t

0

∫
E

ZsCs(x)λs(dx) ds
]

E
[∫ t

0

∫
E

Ψ2
s(x)Cs(x) λ̂s(dx) ds

]
= E

[∫ t

0

∫
E

ZsCs(x) λ̂s(dx) ds
]
, (1.1.16)

E
[∫ t

0

∫
E

Ψ3
s(x)Cs(x) λ̂s(dx) ds

]
= E

[∫
(0,t]×E

[
Zs − Zs−

]
Cs(x)µ(dsdx)

]
.

Remark 1.1.3. The existence of the random fields
(
Ψi
t(x)

)
t­0, x∈E , i = 1, 2, 3 and, in

turn, of the random field
(
Kt(x)

)
t­0, x∈E , is granted since they are Radon-Nikodym

derivatives. In fact:

1. The map (ω, t, x) 7→ Ψ1
t (ω, x) is the Radon-Nikodym derivative of the measure

µ1
1(dω dtdx) with respect to the measure µ1

2(dω dtdx), where

µ1
1(dω dtdx) = P(dω)Zt(ω)λt(ω,dx) dt,
µ1

2(dω dtdx) = P(dω) λ̂t(ω,dx) dt.

Both measures are defined on
(
Ω × (0,∞) × E,P(Y) ⊗ E

)
. The first one is

a signed measure, is σ-finite since Z is bounded and is absolutely continuous
with respect to the second one. Moreover, being a Radon-Nikodym derivative,
the random field

(
Ψ1
t (x)

)
t­0, x∈E is Y–predictable.

2. The map (ω, t, x) 7→ Ψ2
t (ω, x) is the Radon-Nikodym derivative of the measure

µ2
1(dω dtdx) with respect to the measure µ2

2(dω dtdx), where

µ2
1(dω dtdx) = P(dω)Zt(ω) λ̂t(ω,dx) dt,
µ2

2(dω dtdx) = P(dω) λ̂t(ω,dx) dt.

Similar considerations to the ones made for the random field
(
Ψ1
t (x)

)
t­0, x∈E

apply to this process.

3. The map (ω, t, x) 7→ Ψ3
t (ω, x) is the Radon-Nikodym derivative of the measure

µ3
1(dω dtdx) with respect to the measure µ3

2(dω dtdx), where

µ3
1(dω dtdx) = P(dω) dZt(ω)µ(dtdx),
µ3

2(dω dtdx) = P(dω) λ̂t(ω,dx) dt.

Both measures are defined on
(
Ω×(0,∞)×E,P(Y)⊗E

)
. The first one is a sig-

ned measure, is σ-finite since Z, hence (|Zt−Zt−|)t­0 is bounded and is absolu-
tely continuous with respect to the second one, because on the space of definition
of these measures, P(dω) λ̂t(ω,dx) dt = P(dω)µ(dtdx). The Y–predictability
of the random field

(
Ψ3
t (x)

)
t­0,x∈E comes from the same arguments applied to

the previous points.

Remark 1.1.4. We end this Subsection with a consideration very useful when applying
the filtering formula given in (1.1.14). The random field

(
Ψ2
t (x)

)
t­0, x∈E is P–a.s.

equal to the process (Ẑt−)t­0. This can be easily obtain using the Fubini-Tonelli The-
orem in the second relation of (1.1.16).
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1.2 Piecewise Deterministic Markov Processes
In this Section we discuss piecewise deterministic Markov processes, or PDMP for
short. These processes have been introduced by M.H.A. Davis and we will refer to the
monograph [32] to present some general facts about them. The interested reader may
also consult [42]. PDMPs have received a lot of attention in the literature, since they
can efficiently describe a wide range of non-diffusive stochastic models. They have
also been studied in connection with optimal control problems, starting from the work
by D. Vermes [61], in which the author introduces the concept of piecewise open-loop
control.

Here we give a synthetic introduction to PDMPs, limiting our statements only to
those that will be referred to in the next Chapters. We also simplify the setting of [32],
for sake of clarity.

1.2.1 Construction of a PDMP
As the name suggests, piecewise deterministic Markov processes are Markovian pro-
cesses that evolve deterministically between some random jump times.

To start constructing a PDMP, we specify first the state space. Let E0 be an open
subset of Rd, d ∈ N. We are given a locally Lipschitz continuous vector field F : E0 →
E0, determining a flow φ(t, x), where t ­ 0 is the time variable and x ∈ E0 is the
starting point of the PDMP. We will often write φ(t, x) = φx(t).

Let us denote by ∂E0 := clE0 \ E0 the boundary of E0 and define

t?(x) := inf{t > 0: φx(t) ∈ ∂E0}, x ∈ E0

under the usual convention inf ∅ := +∞. It can be shown (see [32, Lemma 27.1])
that t? : E0 → [0,+∞] is a Borel-measurable function. We also make the following
assumption, that excludes the possibility of "explosions" of the flow.

Assumption 1.2.1. Denote by t∞(x) the explosion time of the flow φx(t), x ∈ E. We
assume that if t?(x) = +∞, then t∞(x) = +∞.

Next, define the following two sets

∂±E0 := {z ∈ ∂E0 : z = φx(±t), for some x ∈ E0 and t > 0}.

The set ∂+E0 (resp. ∂−E0) is the set of points of the boundary of E0 that can be
reached forwards (resp. backwards) by the flow, starting from some point x ∈ E0.

Finally, we set E := E0 ∪ (∂−E0 \ ∂+E0) and, to ease the notation, Γ? = ∂+E0.
The set E is the state space of our PDMP. We denote by E := B(E) its Borel σ-
algebra. It is worth noticing that the measurable space (E, E) is a Borel-space, i. e. a
Borel subset of a complete metric space (cfr. [13]). The set Γ? represents the boundary
of our PDMP.

Remark 1.2.1. Choosing a state space for a PDMP as the one above is not the only
available option. It is possible to choose E as a closed subset of Rd, d ∈ N (as did,
e. g. , in [39]), as a differentiable manifold (as said in [32, Par. 24]) or even an infinite
dimensional set (as in [55]). We will see such different settings also in the following
Chapters.

The vector field F determines the behavior of the PDMP between two consecutive
jump times. The distribution of jump times is governed by a jump rate function r : E →
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[0,+∞). This is a measurable function and we assume that for each x ∈ E there exists
ε(x) > 0 such that the following integrability condition holds∫ ε(x)

0
r
(
φx(t)

)
dt < +∞.

The post-jump location of the PDMP is given by a transition probability R : E∪Γ? →
P(E), such that

1. for each A ∈ E the map x 7→ R(x,A) is measurable,

2. R(x, {x}) = 0.

Notice that this transition probability prescribes also jumps from the boundary Γ? of
our PDMP. The functions in the triple (F, r,R) give the local characteristics of the
PDMP.

We are now ready to explicitly construct a PDMP, that we indicate by X(ω) =(
Xt(ω)

)
t­0, ω ∈ Ω. Let (Ω,F ,P) be the probability space defined as follows.

• Ω := [0, 1]N.

• F := A⊗N, where A is the Lebesgue σ-algebra on [0, 1].

• P := λ⊗N, where λ is the Lebesgue measure on ([0, 1],A).

This is the canonical space for a countable sequence of independent random variables
uniformly distributed on [0, 1], that we denote by (Un)n∈N.

Let us fix a starting point x ∈ E and define the survivor function of the first jump
time T1 of the PDMP as

G(t, x) := 1t<t?(x) exp
{
−
∫ t

0
r
(
φx(s)

)
ds
}
, t ­ 0.

We set its generalized inverse as ψ(u, x) := inf{t ­ 0: G(t, x) ¬ u} (again, under
the assumption inf ∅ := +∞) and define the random variables S1(ω) := T1(ω) :=
ψ(U1(ω), x). It is clear that, by definition, P(T1 > t) = G(t, x), t ­ 0. To define the
post-jump location of the PDMP after the first jump time T1, let Ψ: [0, 1]×E∪Γ? → E
be a measurable function such that λ({u ∈ [0, 1] : Ψ(u, z) ∈ A}) = R(z,A), z ∈
E ∪ Γ?, A ∈ E , where we recall that λ is the Lebesgue measure on ([0, 1],A). It can
be shown that such a function exists (see [32, Par. 24]).

The sample path X(ω), ω ∈ Ω, of our PDMP up the first jump time T1 is defined
as follows

Xt(ω) :=
{
φx(t), t ­ 0, if T1(ω) = +∞
φx(t), t ∈ [0, T1(ω)), if T1(ω) < +∞

.

If ω ∈ Ω is such that T1(ω) < +∞ we set XT1(ω)(ω) := Ψ
(
U2(ω), φx

(
T1(ω)

))
.

Notice that, given the definition of the transition probabilityR, we have that our PDMP
immediately jumps away from the boundary Γ? into E whenever the flow reaches Γ?.

Now our PDMP restarts from the post-jump location following the same recipe.
With this we mean that, for those ω ∈ Ω such that T1(ω) < +∞ we define S2(ω) :=
ψ
(
U3(ω), XT1(ω)(ω)

)
and T2(ω) := T1(ω) + S2(ω). Then, the sample path X(ω) of

our PDMP up the second jump time T2(ω) is given by

Xt(ω) :=
{
φXT1(ω)(ω)

(
t− T1(ω)

)
, t ­ T1(ω), if T2(ω) = +∞

φXT1(ω)(ω)
(
t− T1(ω)

)
, t ∈ [T1(ω), T2(ω)), if T2(ω) < +∞
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and the post-jump location after T2(ω), if T2(ω) < +∞, is specified by XT2(ω)(ω) :=
Ψ
(
U4(ω), φXT1(ω)(ω)

(
T2(ω)− T1(ω)

))
. And so on.

Notice that with this construction we implicitly defined a map from Ω into the set
of all possible marked point processes with mark space E, i. e.

Ω 3 ω 7→ {T1(ω), ξ1(ω), . . . , Tk̄−1(ω), ξk̄−1(ω), Tk̄(ω)}

where k̄ = k̄(ω) := min{k ∈ N̄ : Tk(ω) = +∞} and ξn(ω) := XTn(ω)(ω), N 3 n <
k̄. Therefore, we can always associate a MPP to a PDMP that, together with the flow,
completely specifies it.

On the MPP associated to our PDMP we make the following assumption.

Assumption 1.2.2. Let N = (Nt)t­0 denote the counting process associated to a
PDMP, i. e.

Nt(ω) :=
∑
n∈N

1Tn(ω)¬t, t ­ 0, ω ∈ Ω.

We assume that for every starting point x ∈ E of the PDMP we have that ENt < +∞
for all t ­ 0. In other words, we require that the simple point process (Tn)n∈N is P–a.s.
non-explosive (cfr. Subsection 1.1.1).

Although this assumption is usually satisfied in applications, it is difficult to provide
general conditions under which it holds. This is due to the complicated interaction
between the three components (F, r,R) of the local characteristics of a PDMP and the
geometry of the boundary, as the following simple example shows.

Example 1.2.1 ([32, Example 24.5]). Let us define

E = [0, 1)× [0, 2], Γ? = {1} × [0, 2],
F ≡ (1, 0), r ≡ 0, R

(
(x, y), A

)
= δ(1−y/2,y/2)(A), (x, y) ∈ Γ?.

Notice that the flow, starting from any point z = (x, y) ∈ E is equal to φz(t) =
(x + t, y). Suppose that the PDMP starts from z = (0, 1). Then we have that T1 =
1, T2 = 1 + 1

2 , T3 = 1 + 3
4 , hence T∞ = limn→∞ Tn = 2.

This example shows that explosion of the MPP associated to a PDMP is possi-
ble even when the jump rate function r is null, if the sequence

(
t?(XTn)

)
n∈N is not

bounded away from zero.

A pair of useful condition guaranteeing that Assumption 1.2.2 is satisfied is given
in the following Proposition.

Proposition 1.2.1 ([32, Prop. 24.6]). Suppose that for all x ∈ E, r(x) ¬ c for some
real constant c > 0. Then Assumption 1.2.2 holds if at least one of the following facts
is satisfied.

1. There are no "active" boundaries, i. e. t?(x) = +∞ for all x ∈ E.

2. For some ε > 0, R(x,Aε) = 1 for all x ∈ Γ?, where Aε := {x ∈ E : t?(x) ­
ε}.

As a final comment to this Subsection, let us specify that to identify a process as
a PDMP it is not necessary to trace step by step the construction previously shown.
As we said earlier, a PDMP is completely determined by the flow and the law of its
associated MPP, which in turn is given by the jump rate function and the transition
probability. Hence, whatever (Ω,F ,P) is the probability space on which X is defined,
one just need to prove that
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• X is a (strong) Markov process on (Ω,F ,P) with respect to some filtration
(Ft)t­0.

• X has càdlàg paths, jumping at some random times (Tn)n∈N and satisfying for
all n ∈ N0 (set T0 ≡ 0)

Xt = φXTn (t− Tn), t ∈ [Tn, Tn+1), P–a.s. on {Tn < +∞}.

P(Tn+1 − Tn > t, Tn < +∞ | FTn)

= 1Tn<+∞ exp
{
−
∫ t

0
r
(
φXTn (s)

)
ds
}
, t ­ 0.

P(XTn+1 ∈ A, Tn+1 < +∞ | FTn+1)
= 1Tn+1<+∞R

(
φXTn (Tn+1 − Tn), A

)
, A ∈ E .

1.2.2 The strong Markov property
A fundamental property regarding stochastic processes is undoubtedly the strong Mar-
kov property. In this brief Subsection we will state a result confirming that the Piece-
wise Deterministic Process constructed in Subsection 1.2.1 satisfies it. However, to do
so we need to see our process as defined on a suitable canonical space. We warn the
reader that such a procedure will be extensively used in Chapters 3 and 4.

Let Ω̄ = {ω̄ : [0,+∞) → E, cádlág} denote the canonical space for E–valued
piecewise deterministic processes. We define the coordinate mapping X̄t(ω̄) = ω̄(t),
for ω̄ ∈ Ω̄, t ­ 0.

Let (F̄◦t )t­0 denote the natural filtration of our PDP, i. e.

F̄◦t := σ(X̄s, 0 ¬ s ¬ t), F̄◦ := σ(X̄s, s ­ 0).

LetX be the PDP constructed on (Ω,F ,P) in Subsection 1.2.1. Under Assumption
1.2.2, such a construction defines for each starting point x ∈ E a measurable mapping
ψx : Ω → Ω̄ such that X̄t

(
ψx(ω)

)
= Xt(ω). We denote by P̄x := P ◦ ψ−1

x , x ∈ E
the image measure of P under ψx. This provides a family of measures (P̄x)x∈E on
(Ω̄, F̄◦) and our PDP can be also thought of as a Markov family defined on Ω̄, i. e. as
(Ω̄, F̄◦, (F̄◦t )t­0, (X̄t)t­0, (P̄x)x∈E).

For any probability measure Q on (E, E) indicate by P̄Q the following probability
measure on (Ω̄, F̄◦)

P̄Q(A) :=
∫
E

P̄x(A)Q(dx), A ∈ E .

Finally, let F̄Q be the P̄Q-completion of F̄◦ (we still denote by P̄Q the measure
naturally extended to this new σ-algebra) and, indicating by Z̄Q the family of sets in
F̄Q with zero P̄Q-probability, define

F̄Qt := σ(F̄◦t ∪ Z̄Q), F̄t :=
⋂

Q∈P(E)

F̄Qt , t ­ 0.

(F̄t)t­0 is called the natural completed filtration of X̄ . It satisfies the following impor-
tant property.
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Theorem 1.2.2 ([32, Th. 25.3]). The natural completed filtration (F̄t)t­0 of X̄ is right
continuous, i. e. for any t > 0 we have that

F̄t = F̄t+ :=
⋂
ε>0
F̄t+ε.

We are now ready to state the main result of this Subsection. For any bounded
and measurable function ϕ : E → R, define Ptϕ(x) := Ēxϕ(X̄t), where Ēx denotes
expectation with respect to the probability measure P̄x.

Theorem 1.2.3 ([32, Th. 25.5]). The process X̄ is a homogeneous strong Markov pro-
cess, i. e. for any x ∈ E, any (F̄t)t­0–stopping time T and any bounded measurable
function ϕ : E → R we have that

Ēx[ϕ(X̄T+s)1T<+∞ | F̄T ] = Psϕ(X̄T )1T<+∞, s ­ 0, P̄x–a.s.



CHAPTER 2

The filtering problem

In this Chapter we study the filtering problem connected to the optimal control problem
with partial observation that we intend to analyze in Chapters 3 and 4. To simplify
matters, in this Chapter we introduce the setting and prove the results of the filtering
problem in the uncontrolled case. We will see in the next Chapters that, thanks to some
measurability properties of controls, we will be able to reproduce these results also in
the controlled case (and exactly in the same way).

We briefly recall some basic aspects of stochastic filtering. Let us fix two complete
and separable metric spaces I and O equipped with their respective Borel σ-algebras
I and O. The basic datum of a stochastic filtering problem consists in a couple of sto-
chastic processes (X,Y ) = (Xt, Yt)t­0, defined on some complete probability space
(Ω, F , P). The process X , called unobserved or signal process, takes values in the
set I , while the process Y , called observed or data process takes values in the set O.
The aim is to find a P(I)-valued process π = (πt)t­0 such that for all t ­ 0 and all
ϕ ∈ Bb(I) ∫

I

ϕ(x)πt(dx) = E [ϕ(Xt) | Yt] , P – a.s. (2.0.1)

where (Yt)t­0 is the natural completed filtration of the observed process Y . That is,
we are looking for a probabilistic estimate of the unobserved state (or of a measurable
function of it) given the observation provided by Y . For sake of brevity we will often
write

πt(ϕ) :=
∫
I

ϕ(x)πt(dx).

The key tool used in this Chapter is given by Marked Point Processes. Thanks to
these processes, whose main properties are recalled in Section 1.1, we are able to use
known results on filtering with point process observations and to deduce in Section 2.1
the filtering equation, i. e. the evolution equation satisfied by the filtering process π.
With this result at our disposal, in Section 2.2 we characterize the filtering process as
a Piecewise Deterministic Markov Process (see Section 1.2 for a recap on PDMPs), a
fact that will be fundamental to study the optimal control problem in Chapters 3 and
4. In Section 2.3 we introduce the notation and recall the main results (already known
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from [25]) on the filtering problem for a Markov chain with noise-free observation.
Finally, in Section 2.4 we provide some remarks on the rôle of the function h in the
filtering problem.

Setting of the filtering problem
We now introduce the setting of the filtering problem discussed in this thesis. Let us
fix a complete probability space (Ω, F , P). The I-valued unobserved process defined
on this space is a continuous time homogeneous pure jump Markov process. We are
given the law µ of X0. We can equivalently describe it (see e. g. [47]) by recording its
jump times and jump locations, i. e. by defining for all n ∈ N0 the random variables
Tn : Ω→ [0,+∞] and ξn : Ω→ I , where for each n ∈ N

T0(ω) := 0 Tn(ω) := inf{t > Tn−1(ω) : Xt(ω) 6= XTn−1(ω)(ω)}. (2.0.2)

ξ0(ω) := X0(ω) ξn(ω) := XTn(ω)(ω). (2.0.3)

We denote by X := (Xt)t­0 the natural completed filtration associated to the unob-
served process, where Xt := σ(Xs : 0 ¬ s ¬ t) ∨ N for each t ­ 0 and N is the
collection of P–null sets in F . Its dynamics are described by a rate transition measure
λ, i. e. a transition kernel from (I, I) into itself such that for all n ∈ N0 and all t ­ 0

P(Tn+1 − Tn > t, ξn+1 ∈ A | XTn) = λ(ξn, A)
λ(ξn, I) e

−λ(ξn,I)t, P–a.s. (2.0.4)

To have a more synthetic notation it is convenient to define the jump rate function
λ : I → [0,+∞) as

λ(x) := λ(x, I), x ∈ I.

We point out that no confusion shall arise from the notation λ used both for the tran-
sition measure and the jump rate function. It will always be clear from the context to
which object we will be referring to.

The following assumption will be in force throughout this section and ensures some
important facts about the process X that we will recall later on.

Assumption 2.0.1. The jump rate function λ satisfies

sup
x∈I

λ(x) < +∞. (2.0.5)

Remark 2.0.1. It should be noted that the definition of rate transition measure given
in (2.0.4) implies that λ(x, {x}) = 0 for all x ∈ I . This is evident by looking at the
definition of the jump times appearing in (2.0.2).

We assume that the O-valued observed process is a function of the signal process
via a given measurable function h : I → O, i. e. it satisfies

Yt(ω) = h
(
Xt(ω)

)
, ω ∈ Ω, t ­ 0. (2.0.6)

This means that in our setting the observation is noise-free: the only source of rand-
omness is represented by the unobserved process and no exogenous noise is acting on
the observation. Of course, we exclude the cases where the function h is one to one
or constant, being the first case trivial and the second one of no interest in the context
of a filtering problem. We will provide some remarks on these special cases in Section



Chapter 2. The filtering problem 30

2.4. We assume, without loss of generality, that this function is surjective. It is straig-
htforward to notice that also in this case we can equivalently describe the process Y
by defining for all n ∈ N0 the random variables τn : Ω → [0,+∞] and ηn : Ω → O,
where for each n ∈ N

τ0(ω) := 0 τn(ω) := inf{t > τn−1(ω) : Yt(ω) 6= Yτn−1(ω)(ω)}. (2.0.7)

η0(ω) := Y0(ω) ηn(ω) := Yτn(ω)(ω). (2.0.8)

We denote by Y := (Yt)t­0 the natural completed filtration associated to the observed
process, where Yt := σ(Ys : 0 ¬ s ¬ t) ∨ N for each t ­ 0. Finally, we define the
explosion points of the processes X and Y as the random variables

T∞(ω) := lim
n→∞

Tn(ω) τ∞(ω) := lim
n→∞

τn(ω). (2.0.9)

2.1 The filtering equation
To tackle the noise-free filtering problem described previously, we will adopt an inno-
vations approach (see Subsection 1.1.3 for more details), basing our analysis on the fact
that we can represent (X,Y ) as a pair of Marked Point Processes (or MPPs for short).
These processes are countable collections of pairs of random variables, describing the
occurrence of some random phenomena by recording the time of these events and a
related mark. The main features of MPPs are recalled in Section 1.1 and in this Section
we will use some results contained therein.

It is immediate to see that the pairs (Tn, ξn)n∈N and (τn, ηn)n∈N are MPPs. Mo-
reover, thanks to Assumption 2.0.1 they are P–a.s. non-explosive, i. e. we have that
P-a.s.

T∞(ω) = +∞ τ∞(ω) = +∞. (2.1.1)

Together with the initial conditions ξ0 = X0 and η0 = Y0, they describe completely the
unobserved process X and the observed process Y respectively, so when speaking of
the signal or data process we can equivalently use the jump process formulation or the
MPP one. A third useful description of these two processes is possible. Let us define
the following random counting measures (or RCMs for short)

n(ω,dtdz) :=
∑
n∈N

δ(
Tn(ω), ξn(ω)

)(dtdz)1{Tn(ω)<+∞}, ω ∈ Ω (2.1.2)

m(ω,dtdy) :=
∑
n∈N

δ(
τn(ω), ηn(ω)

)(dtdy)1{τn(ω)<+∞}, ω ∈ Ω (2.1.3)

where, for any arbitrary point a in some measurable space, δa denotes the Dirac proba-
bility measure concentrated at a. For each fixed ω ∈ Ω, n is a measure on

(
(0,+∞)×

I,B
(
(0,+∞)

)
⊗I
)

and is associated to the unobserved process X , while m is a mea-
sure on

(
(0,+∞)×O,B

(
(0,+∞)

)
⊗O

)
and is associated to the observed process Y .

Random counting measures are particularly useful in connection with their dual pre-
dictable projections (see e. g. [43, Th. 2.1] for more details), also called compensators.

It is a known fact that the X–compensator of the RCM n is given by the predictable
random measure λ(Xt−(ω), dz) dt, since it is associated to a pure jump process with
known rate transition measure. We will denote by ñ the corresponding compensated
random measure, i. e.

ñ(ω,dtdz) := n(ω,dtdz)− λ(Xt−(ω), dz) dt. (2.1.4)
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It is important to recall that for all A ∈ I the compensated process ñ
(
(0, t] × A) is a

X–martingale.
A preliminary step to the solution of our filtering problem consists in computing

the X– and Y–compensators of the RCM m.

Lemma 2.1.1. The X– and Y–dual predictable projections of the random counting
measure m are respectively given by the predictable random measures µt(ω,dy) dt
and µ̂t(ω,dy) dt, where for all B ∈ O and t > 0

µt(ω,B) := λ
(
Xt−(ω), h−1(B \ {Yt−(ω)})

)
(2.1.5)

µ̂t(ω,B) :=
∫
I

λ
(
x, h−1(B \ {Yt−(ω)})

)
πt−(ω ; dx) (2.1.6)

and π = (πt)t­0 is the filtering process defined in (2.0.1).

Proof. Let B ∈ O and t > 0 be fixed. Then we can write

m
(
ω, (0, t]×B

)
=
∑

0<s¬t
1{Ys 6=Ys−, Ys∈B}(ω)

=
∑

0<s¬t
1{Xs∈h−1(Ys−)c, Xs∈h−1(B)}(ω)

=
∫

(0,t]×I
1h−1(B\{Ys−(ω)})(z)n(ω,dsdz).

The field
(
1h−1(B\{Ys−(ω)})(z)

)
s∈(0,t], z∈I is bounded and X–predictable and un-

der Assumption 2.0.1 we have that

E
∫

(0,t]×I

1h−1(B\{Ys−})(z)λ(Xs−,dz) ds = E
∫

(0,t]

λ
(
Xs−, h

−1(B \ {Ys−})
)

ds <∞.

Therefore, by Proposition 1.1.10∫
(0,t]×I

1h−1(B\{Ys−})(z) ñ(dsdz) = m
(
(0, t]×B

)
−
∫

(0,t]

λ(Xs−, h
−1(B\{Ys−})) ds

is a X–local martingale. The first part of the claim follows from number 3 of Proposi-
tion 1.1.5 by noticing that(∫

(0,t]×B
µs(dz) ds

)
t­0

=
(∫

(0,t]
λ(Xs−, h

−1(B \ {Ys−})) ds
)
t­0

is a X–predictable process for all B ∈ O.
What we have just shown is that for all X–predictable and non-negative random

fields C = (Ct(z))t­0, z∈I it holds

E
∫

(0,+∞)×I
Cs(z)m(dsdz) = E

∫
(0,+∞)×I

Cs(z)µs(dz) ds.

To prove the second part of the claim we have to show that the same kind equality
holds for all Y–predictable and non-negative random fields C, with µ̂ replacing µ on
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the right hand side. Let a Y–predictable and non-negative random field C be fixed and
write

E
∫

(0,+∞)×I
Cs(z)µs(dz) ds = E

∫
(0,+∞)

∫
I

Cs(z)1h−1(Ys−)c(z)λ(Xs−, dz) ds

=
∫

(0,+∞)
E
[
E
[∫

I

Cs(z)1h−1(Ys−)c(z)λ(Xs, dz) | Ys
]]

ds

=
∫

(0,+∞)
E
∫
I

∫
I

Cs(z)1h−1(Ys−)c(z)λ(x, dz)πs(dx) ds

= E
∫

(0,+∞)

∫
I

∫
I

Cs(z)1h−1(Ys−)c(z)λ(x, dz)πs−(dx) ds

= E
∫

(0,+∞)×I
Cs(z)µ̂s(dz) ds

where the passages from the first to the second and from the third to the fourth line are
justified by repeatedly using the Fubini-Tonelli theorem and the fact that Xs− = Xs

and πs = πs−, ds–a.e., while the passage from the second to the third line is due to
the freezing lemma.

Now, thanks to number 1 of Proposition 1.1.5 it suffices to take Cs(z) = Cs1B(z),
for any fixed B ∈ O, with (Ct)t­0 a Y–predictable process. Then we get that

E
∫

(0,+∞)
Csm(ds×B) = E

∫
(0,+∞)

Csµ̂s(B) ds

holds for all Y–predictable processes (Ct)t­0, i. e.
(∫

(0,t]
Csµ̂s(B) ds

)
t­0

is the Y–

dual predictable projection of m
(
(0, t] × B

)
for all B ∈ O. The claim follows, being

clearly µ̂t(ω,dy) dt a Y–predictable random measure.

Remark 2.1.1. To be more precise we should have defined the X– and Y–compensators
of the RCM m as

µt(ω,B) dt = 1(
0,τ∞(ω)

)(t)λ(Xt−(ω), h−1(B \ {Yt−(ω)})
)

dt

µ̂t(ω,B) dt = 1(
0,τ∞(ω)

)(t)∫
I

λ
(
x, h−1(B \ {Yt−(ω)})

)
πt−(ω ; dx) dt

so that the two random measures would have satisfied (1.1.3). However, these measures
coincide P–a.s. with the corresponding ones defined in (2.1.5)–(2.1.6), since the MPP
(τn, ηn)n∈N is P–a.s. non-explosive, thanks to Assumption 2.0.1. For this reason we
will adopt the simpler notation of (2.1.5)–(2.1.6).

Another important step to solve the filtering problem is to represent the process to
be filtered (in this case ϕ(Xt), for some ϕ ∈ Bb(I)) as a semimartingale and then use
a martingale representation theorem to obtain an expression for the filtering process
π(ϕ).

Let us fix ϕ ∈ Bb(I). A semimartingale representation for ϕ(Xt) is easily obtained
by using Dynkin’s formula (cfr. Example 1.1.4)

ϕ(Xt) = ϕ(X0) +
∫ t

0
Lϕ(Xs) ds+Mt, t ­ 0 (2.1.7)
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where L is the infinitesimal generator associated to the process X , i. e.

Lf(x) :=
∫
I

[
f(z)− f(x)

]
λ(x, dz), f ∈ Bb(I) (2.1.8)

and (Mt)t­0 is a X–martingale whose expression is given by

Mt =
∫

(0,t]×I

[
ϕ(z)− ϕ(Xs−)

]
ñ(dsdz), t ­ 0. (2.1.9)

In order to get the expression for the filtering process provided in the next Proposi-
tion, some assumptions have to be checked and this is done in the following Lemma.

Lemma 2.1.2. Let ϕ ∈ Bb(I) be fixed. The next properties hold true:

1. The process
(
Lϕ(Xt)

)
t­0 is X–progressive and for all t > 0

E
∫ t

0

∣∣∣Lϕ(Xs)
∣∣∣ds <∞.

2. The X–martingale (Mt)t­0 is such that for all t > 0

E
∫

(0,t]

∣∣∣dMs

∣∣∣ <∞.
3. The process

(
ϕ(Xt)

)
t­0 is bounded.

Proof. Claim 1. Clearly enough, the process
(
Lϕ(Xt)

)
t­0 is X–adapted and càdlàg,

sinceX is. Hence it is X–progressive. Moreover we have the following estimate, thanks
to Assumption 2.0.1, holding for all t > 0.

E
∫ t

0

∣∣∣Lϕ(Xs)
∣∣∣ds = E

∫ t

0

∣∣∣∣∫
I

[
ϕ(z)− ϕ(Xs)

]
λ(Xs, dz)

∣∣∣∣ds
¬ E

∫ t

0

[∫
I

∣∣ϕ(z)
∣∣λ(Xs, dz) +

∫
I

∣∣ϕ(Xs)
∣∣λ(Xs, dz)

]
ds

¬ 2 sup
z∈I
|ϕ(z)|E

∫ t

0
λ(Xs) ds ¬ 2t sup

z∈I

[
|ϕ(z)|λ(z)

]
< +∞.

Claim 2. From (2.1.9) we have dMt =
∫
I

[
ϕ(z) − ϕ(Xt−)

]
ñ(dtdz) for all t > 0,

hence

E
∫

(0,t]

∣∣∣dMs

∣∣∣ = E
∫ t

0

∣∣∣∣∫
I

[
ϕ(z)− ϕ(Xs−)

]
ñ(dsdz)

∣∣∣∣
¬ E

∫
(0,t]

∣∣∣∣∫
I

ϕ(z)ñ(dsdz)
∣∣∣∣+
∣∣∣∣∫
I

ϕ(Xs)ñ(dsdz)
∣∣∣∣. (2.1.10)

From the definition of the compensated measure ñ given in (2.1.4) we get that∫
(0,t]

∣∣∣∣∫
I

ϕ(z)ñ(dtdz)
∣∣∣∣ =

∣∣∣∣∫
I

ϕ(z)
[
n(dtdz)− λ(Xt−,dz) dt

]∣∣∣∣
¬
∫

(0,t]

∫
I

|ϕ(z)|n(dtdz) +
∫
I

|ϕ(z)|λ(Xt−,dz) dt

¬ sup
z∈I

∣∣ϕ(z)
∣∣ ∫

(0,t]

[
n(dt× I) + λ(Xt−) dt

]
¬ sup

z∈I

∣∣ϕ(z)
∣∣ [n((0, t]× I)+ sup

z∈I
λ(z)

]
< +∞, P–a.s.
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thanks to the fact that n is P–a.s. non-explosive. A similar estimate is obtained analo-
gously for the second summand of (2.1.10), whence the claim.
Claim 3. It is obvious, thanks to the boundedness of the function ϕ.

Proposition 2.1.3. Let ϕ ∈ Bb(I) be fixed. Then for all t ­ 0 we have that P–a.s.

πt(ϕ) = π0(ϕ) +
∫ t

0

∫
I

Lϕ(x)πs−(dx) ds+
∫

(0,t]×O

{
Ψs(y)− πs−(ϕ)

}
m̃(dsdy)

(2.1.11)
where m̃(dsdy) = m(dsdy) − µ̂s(dy) ds,

(
Ψt(y)

)
t­0, y∈O is the Y–predictable

random field defined as

Ψt(ω, y) := ψt(ω; dυ)
µ̂t(ω; dυ) (y) (2.1.12)

and ψt(ω, dυ) is the Y–predictable random measure given by

ψt(ω,B) =
∫
I

∫
I

ϕ(z)1h−1(B\{Yt−(ω)})(z)λ(x, dz)πt−(ω; dx), B ∈ O.

Proof. Thanks to Lemma 2.1.2 we can apply Theorem 1.1.15 and we can write

πt(ϕ) = π0(ϕ) +
∫ t

0
f̂s ds+ m̂t, t ­ 0, P–a.s.,

where (f̂t)t­0 is a Y–progressive version of
(
E[Lϕ(Xt) | Yt]

)
t­0 (see Remark 1.1.2)

and (m̂t)t­0 is the Y–martingale given by

m̂t =
∫

(0,t]×O
{Ψ1

s(y)−Ψ2
s(y) + Ψ3

s(y)} m̃(dsdy), t ­ 0

with the Y–predictable fields
(
Ψi
t(y)

)
t­0, y∈O, i = 1, 2, 3 defined by the following

equalities

E
∫ t

0

∫
O

Cs(y) Ψ1
s(y) µ̂s(dy) ds = E

∫ t

0

∫
O

Cs(y)ϕ(Xs)µs(dy) ds (2.1.13)

E
∫ t

0

∫
O

Cs(y) Ψ2
s(y) µ̂s(dy) ds = E

∫ t

0

∫
O

Cs(y)ϕ(Xs) µ̂s(dy) ds (2.1.14)

E
∫

(0,t]×O
Cs(y) Ψ3

s(y) µ̂s(dy) ds = E
∫

(0,t]×O
Cs(y) [ϕ(Xs)− ϕ(Xs−)]m(dsdy)

(2.1.15)

holding for all t ­ 0 and all non-negative Y–predictable fields
(
Ct(y)

)
t­0, y∈O.

It is clear that f̂t =
∫
I
Lϕ(x)πt(dx), t ­ 0, as a straightforward computation

shows. It is also immediate to notice that Ψ2
t (y) = πt−(ϕ), t > 0 (see Remark 1.1.4).

We now proceed to compute Ψ3
t (y), t ­ 0, y ∈ O. We will see that it is not

necessary to compute the term Ψ1
t (y). Let us elaborate the right hand side of (2.1.15)

E
∫

(0,t]×O
Cs(y) [ϕ(Xs)− ϕ(Xs−)]m(dsdy)

= E
∫
I

Cs(h(z)) [ϕ(z)− ϕ(Xs−)]1h−1(Ys−)c(z)n(dsdz)

= E
∫ t

0

∫
I

Cs(h(z)) [ϕ(z)− ϕ(Xs−)]1h−1(Ys−)c(z)λ(Xs−, dz) ds
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where the former passage is justified by the same reasoning as in the beginning of the
proof of Lemma 2.1.1 and the latter one is due to the fact that λ(Xs−, dz) ds is the
X–compensator of n(dsdz) and that the integrand is a X–predictable process.

It is easy to check that the term

E
∫ t

0

∫
I

Cs(h(z))ϕ(Xs−)1h−1(Ys−)c(z)λ(Xs−, dz) ds

leads to the expression of the process
(
Ψ1
t (y)

)
t­0, y∈O, obtainable by elaborating the

right hand side of (2.1.13). Hence defining Ψt(ω, y) = Ψ1
t (ω, y) + Ψ3

t (ω, y), ω ∈
Ω, t ­ 0, y ∈ O, we are left to characterize the following equality, holding for all
t ­ 0 and all non-negative Y–predictable random fields

(
Ct(y)

)
t­0, y∈O.

E
∫ t

0

∫
O

Cs(y) Ψs(y) µ̂s(dy) ds =

E
∫ t

0

∫
I

Cs(h(z))ϕ(z)1h−1(Ys−)c(z)λ(Xs−, dz) ds. (2.1.16)

Applying the freezing lemma and the Fubini-Tonelli theorem to the right hand side
of (2.1.16) and noticing that Xs = Xs− and πs = πs−, ds–a.e., we get that

E
∫ t

0

∫
I

Cs(h(z))ϕ(z)1h−1(Ys−)c(z)λ(Xs−, dz) ds

= E
∫ t

0

∫
I

∫
I

Cs(h(z))ϕ(z)1h−1(Ys−)c(z)λ(x, dz)πs−(dx) ds

= E
∫ t

0

∫
O

Cs(y)ψs(dy) ds = E
∫ t

0

∫
O

Cs(y) Ψs(y) µ̂s(dy) ds.

Therefore, if we define the random field
(
Ψt(y)

)
t­0, y∈O as in (2.1.12) we get (2.1.11).

The random field
(
Ψt(y)

)
t­0, y∈O is well defined since for all t ­ 0 and all ω ∈ Ω we

have that ψt(ω; dy)� µ̂t(ω; dy), as it is straightforward to verify. Its Y–predictability
follows from an easy generalization of [15, Exercise 6.10.72].

Before stating an explicit equation for the filtering process π(ϕ), we need to define
an operator, denoted by H . The notation adopted is due to [25], where the authors
discuss the case of a signal process X given by a finite-state Markov chain. The aim is
to characterize, for each n ∈ N, the probability measure πτn , i. e. the filtering process
evaluated at each jump time τn of the observed process Y (we will use H also to
characterize the initial value π0). This will be done by identifying πτn as a probability
measure obtained via this operator and depending on the position Yτn of the observed
process at the n-th jump time and on a specific random measure. This measure will be
determined by the values πτn− and Yτn− and by the rate transition measure λ.

Let us introduce some more notation. LetM(I),M+(I), P(I) be the sets of (re-
spectively) finite signed, finite, probability Borel measures on (I, I). For all signed
measures µ ∈ M(I) let µ ◦ h−1 denote the image measure of µ by h, i. e. the signed
measure on (O,O) defined as

µ ◦ h−1(B) := µ
(
h−1(B)

)
, B ∈ O.
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In addition, for all ϕ ∈ Bb(I) let ϕµ be the (signed) measure on (I, I) defined as

ϕµ(A) :=
∫
A

ϕ(z)µ(dz), A ∈ I.

In what follows, for fixed µ ∈ M+(I) and ϕ ∈ Bb(I), we will need to consider
the Radon-Nikodym derivative of the signed measure ϕµ ◦ h−1 with respect to the
measure µ◦h−1. It is clear that this derivative is well defined, being the former measure
absolutely continuous with respect to the latter.

Remark 2.1.2. The operator H presents strong analogies with the regular version of
a conditional probability. Consider (I, I) =: (Ω,F) as the measurable sample space;
take P ∈ P(I) and define the sub-σ-algebra h−1(O) =: G. Then what we will denote
by Hh(z)[P] (in this example, we should write Hh(ω)[P]) corresponds to a regular
version of the conditional distribution P given G, i. e. a function (P | G) : F × Ω →
[0, 1] such that

• the map ω 7→ (P | G)(F, ω) is a version of P(F | G) for all F ∈ F

• the function F 7→ (P | G)(F, ω) is a probability measure on (Ω,F) for all
ω ∈ Ω.

However, in the definition of the operator H we do not use as "parameter" space (i. e.
the sample space) the set I , but the state space O of the observed process. Moreover,
the operator H acts on the larger spaceM+(I).

Let us begin the construction of the operator H with the following Lemma.

Lemma 2.1.4. Suppose that I is a compact metric space and fix µ ∈ M+(I). For
each ϕ ∈ C(I) take a version (i. e. any function in the equivalence class) of the Radon-
Nikodym derivative of ϕµ ◦ h−1 with respect to µ ◦ h−1 and define, for fixed y ∈ O,
the functional Ly : C(I)→ R as

Ly(ϕ) := ϕµ ◦ h−1(dυ)
µ ◦ h−1(dυ) (y), ϕ ∈ C(I).

If y ∈ supp(µ ◦ h−1) there exists a unique probability measure ρy on (I, I) such that

Ly(ϕ) =
∫
I

ϕ(z) ρy(dz), ϕ ∈ C(I).

Remark 2.1.3. The hypothesis that the point y belongs to the support of the measure
µ◦h−1 ensures that the functional L is not zero on the whole space Bb(I) (for instance,
it takes value 1 on the function ϕ = 1, as will be proved). To see what happens if this
is not the case, consider the example below.

Example 2.1.1. Let µ ∈ M+(I), O = [0, 1] and a point y ∈ O, y /∈ supp(µ ◦ h−1).
Take (An)n∈N ⊂ O to be the sequence of open intervals given by

An :=
(
y − 1

n
, y + 1

n

)
∩O, n ∈ N.

By definition of support and set inclusion, we have that there exists a natural number
n̄ ∈ N such that µ ◦ h−1(An) = 0 for all n ­ n̄. Since ϕµ ◦ h−1 is absolutely
continuous with respect to µ ◦ h−1, we also have that ϕµ ◦ h−1(An) = 0 for all n ­ n̄
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and for all ϕ ∈ Bb(I). Therefore, thanks to [15, Theorem 5.8.8.] and under the usual
convention 0

0 := 0 we have that

ϕµ ◦ h−1(dυ)
µ ◦ h−1(dυ) (y) = lim

n→∞

ϕµ ◦ h−1(An)
µ ◦ h−1(An) = 0

and we obtain L(ϕ) = 0 for all ϕ ∈ Bb(I).

Proof of Lemma 2.1.4. Fix µ ∈ M+(I) and y ∈ O such that y is in the support of
µ ◦ h−1. Let C denote a countable dense subset of the set C(I) of continuous functions
on I , containing the constant function equal to 1 (denoted by 1) and such that C is a
vector space over Q. The result will follow from an application of a slight modification
of the Riesz Representation Theorem to the functional Ly (see [56, Par. 88] for further
details). What we need to prove is that (remember: y ∈ supp(µ ◦ h−1)):

1. Ly is a linear functional on C (as a vector space over Q).

2. Ly(ϕ) ¬ Ly(ψ), whenever ϕ ¬ ψ, ϕ, ψ ∈ C.

3. Ly(1) = 1.

Claim 1. Let α, β ∈ Q and ϕ,ψ ∈ C be fixed and let us define

g(υ) := (αϕ+ βψ)µ ◦ h−1(dυ)
µ ◦ h−1(dυ) (υ), υ ∈ O.

By definition of Radon-Nikodym derivative we have that for all B ∈ O∫
B

g(υ)µ ◦ h−1(dυ) = (αϕ+ βψ)µ ◦ h−1(B) = αϕµ ◦ h−1(B) + βψµ ◦ h−1(B).

Therefore, setting g1 := αϕµ◦h−1(dυ)
µ◦h−1(dυ) and g2 := βψµ◦h−1(dυ)

µ◦h−1(dυ) we get that g = g1 + g2

except on a (µ ◦ h−1)–null measure set C. On this set we may redefine, for instance,
g1(υ) := g(υ) and g2(υ) = 0, υ ∈ C to have that g = g1 + g2 for all υ ∈ O, whence
Ly(αϕ+ βψ) = αLy(ϕ) + βLy(ψ).
Claim 2. By linearity, this is equivalent to prove that Ly(ϕ) ­ 0, for all ϕ ∈ C, ϕ ­ 0.
It is immediate to see that, for all ϕ ­ 0, we have that ϕµ ◦ h−1 ∈ M+(I), hence
g := ϕµ◦h−1(dυ)

µ◦h−1(dυ) ­ 0, µ ◦ h−1–a.e. . Redefining g to be zero on the µ ◦ h−1–null
measure set C ∈ O where this does not happen, we get that Ly(ϕ) ­ 0.
Claim 3. If {y} is an atom for µ then the result is obvious. Otherwise, we can consider
µ to be atomless, without loss of generality.

Consider first the caseO = [0, 1]. Define (An)n∈N ⊂ O to be the sequence of open
intervals given by

An :=
(
y − 1

n
, y + 1

n

)
∩O, n ∈ N.

Then, by definition of support, we have that for all n ∈ N

µ ◦ h−1(An) = µ
(
h−1(An)

)
> 0.

Therefore, thanks to [15, Theorem 5.8.8.] we have that

µ ◦ h−1(dυ)
µ ◦ h−1(dυ) (y) = lim

n→∞

µ
(
h−1(An)

)
µ
(
h−1(An)

) = 1.
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The case of O being a complete and separable metric space is treated by reducing
it to the previous case. This is possible since we are taking the σ-algebra O on O as
the Borel one, hence we know that O is countably generated and countably separated.
Then, by [15, Theorem 6.5.5.], there exists a measurable function ψ : O → [0, 1] such
that

O = {ψ−1(B) : B ∈ B
(
[0, 1]

)
}

and, by [15, Theorem 6.5.7.], we know that this function is injective.
We are now in a position to apply the Riesz Representation Theorem to the functi-

onal Ly and say that there exists a unique probability measure ρy on (I, I) such that

Ly(ϕ) =
∫
I

ϕ(z) ρy(dz), ϕ ∈ C.

We get the same equality for all ϕ ∈ C(I) by uniform convergence.

Proposition 2.1.5. Let µ ∈ M+(I) be fixed. Then there exists a probability measure
ρy on (I, I) such that for all ϕ ∈ Bb(I) and µ ◦ h−1–almost all y ∈ O it holds

ϕµ ◦ h−1(dυ)
µ ◦ h−1(dυ) (y) =

∫
I

ϕ(z) ρy(dz).

Moreover the set

A := {z ∈ I : ρh(z)(G) = 1G(z), ∀G ∈ H}, H := h−1(O)

is such that µ(Ac) = 0 and

ρy(h−1(y)) = 1, µ ◦ h−1–a.e.

Proof. The scheme followed in this proof is the same used to prove the existence of
a regular version of a conditional probability (see e. g. [56, Th. 89.1]). To start, let us
prove the first claim in the case where I is a compact metric space. From Lemma 2.1.4
we know that there exists a unique probability measure ρy on (I, I) such that

ϕµ ◦ h−1(dυ)
µ ◦ h−1(dυ) (y) =

∫
I

ϕ(z) ρy(dz), ϕ ∈ C(I)

for all y ∈ supp(µ ◦ h−1). Clearly the set supp(µ ◦ h−1)c has µ ◦ h−1–measure zero
and on this set we can define ρy = νy , where νy is an arbitrary but fixed probability
measure on (I, I), such that νy

(
h−1(y)

)
= 1. Then, we get that for µ ◦ h−1–almost

all y ∈ O
ϕµ ◦ h−1(dυ)
µ ◦ h−1(dυ) (y) =

∫
I

ϕ(z) ρy(dz), ϕ ∈ C(I).

By a monotone class argument, the same equality holds for all ϕ ∈ Bb(I).
To show that the second assertion holds, let us notice, first, that the σ-algebra H

is countably generated. In fact, since O is a complete and separable metric space, its
Borel σ-algebraO can be written asO = σ(C1, C2, . . . ), for some countable collection
C = (Ci)i∈N of subsets of O. By a standard fact from measure theory (see e. g. [15,
Corollary 1.2.9]) we have that

H = h−1(O) = h−1(σ(C)
)

= σ
(
h−1(C)

)



Chapter 2. The filtering problem 39

hence the collection h−1(C) =
(
h−1(C1), h−1(C2), . . .

)
forms a countable class ge-

neratingH.
Now, let K be the π-system formed by all finite intersections of sets in h−1(C)

(notice that σ(K) = H) and define

A1 := {z ∈ I : ρh(z)(K) = 1K(z), ∀K ∈ K}.

Fix K ∈ K. By definition of Radon-Nikodym derivative we have that for all B ∈ O∫
h−1(B)

1K(z)µ(dz) = 1Kµ ◦ h−1(B) =
∫
B

∫
I

1K(z) ρy(dz)µ ◦ h−1(dy) =∫
B

ρy(K)µ ◦ h−1(dy) =
∫
h−1(B)

ρh(z)(K)µ(dz)

therefore ρh(z)(K) = 1K(z), µ–a.e. on H. This equality holds for all K ∈ K and
since this is a countable collection of sets, we get that µ(Ac1) = 0.

Next, for fixed z ∈ A1, let D := {G ∈ H : ρh(z)(G) = 1G(z)}. Obviously I ∈ D
and it is immediate to see that for any A,B ∈ D with A ⊂ B

ρh(z)(B \A) = ρh(z)(B)− ρh(z)(A) = 1B(z)− 1A(z) = 1B\A(z).

In addition, for any sequence (An)n∈N ⊂ D, An ↑ A

ρh(z)(A) = lim
n→∞

ρh(z)(An) = lim
n→∞

1An(z) = 1A(z).

Hence, D is a d-system, clearly containing the π-system K. Therefore, by Dynkin’s
π − λ theorem we get that σ(K) = H ⊂ D. This implies that the equality

ρh(z)(G) = 1G(z), for all G ∈ H

holds for all z ∈ A1, hence µ(Ac) = 0.
Finally, fix y ∈ O. Clearly h−1(y) ∈ H and from the previous discussion we have

that for µ–almost all z ∈ I

ρh(z)(h−1(y)) = 1h−1(y)(z) =
{

1, if z ∈ h−1(y)
0, if z /∈ h−1(y)

.

Notice, also, that

ρh(z)(h−1(y)) =
{
ρy(h−1(y)), if z ∈ h−1(y)
ρυ(h−1(y)), if z /∈ h−1(y)

for some υ ∈ O, υ 6= y. Therefore, ρy(h−1(y)) = 1 for µ ◦ h−1–almost all y ∈ O.
To prove the claim in the case where I is a complete and separable metric space,

it suffices to remember (see e. g. [4, Theorem A.7]) that I is homeomorfic to a Borel
subset of some compact metric space J (in particular, I ∈ B(J)). After extending the
measure µ to (J,B(J)) in the usual way, one can apply the result just shown to the
measure space (J,B(J), µ), considering H := σ

(
h−1(O)

)
⊂ B(J). To conclude, it

is enough to set ρy , for each y ∈ O, to be the restriction to h−1(O) of the probability
measure found with the above procedure.

Following these results, we can give the definition of the operator H .
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Definition 2.1.1 (Operator H). For each y ∈ O the operator Hy : M+(I) → P(I) is
given by

Hy[µ] :=
{
ρy, if y ∈ supp(µ ◦ h−1)
νy, if y /∈ supp(µ ◦ h−1)

where ρy is the unique probability measure on (I, I) satisfying

ϕµ ◦ h−1(dy)
µ ◦ h−1(dy) (y) =

∫
I

ϕ(z) ρy(dz), ϕ ∈ Bb(I)

and νy is an arbitrary probability measure on (I, I), such that νy
(
h−1(y)

)
= 1.

Remark 2.1.4. A more explicit definition of the operator H can be obtained whenever
this operator acts on a measure µ ∈ M+(I) such that µ ◦ h−1 is discrete. It is clear
that in this case we have that

Hy[µ](ϕ) =
ϕµ
(
h−1(y)

)
µ
(
h−1(y)

) = 1
µ
(
h−1(y)

) ∫
h−1(y)

ϕ(z)µ(dz), y ∈ O

under the usual assumption 0
0 := 0. Otherwise said, the probability measure Hy[µ] is

Hy[µ](dz) = 1
µ
(
h−1(y)

)1h−1(y)(z)µ(dz), y ∈ O.

As an example of such a setting, see [25], where both the state spaces I and O of the
unobserved and observed processes are assumed to be finite sets.

This simplification can be interpreted in a Bayesian setting, by looking at this sim-
ple dominated model. We can view (I, I) as the parameter space and (O,O) as the
data one. If we fix a prior distribution µ on (I, I) of our unknown parameter X , such
that µ ◦ h−1 is discrete, then we can interpret µ ◦ h−1 as the likelihood, i. e. the law
on (O,O) of the datum Y given X and, finally, we can see HY [µ] as the posterior
distribution of X given Y .

Unfortunately, this setting cannot be generalized to encompass the range of possible
cases covered by our model and, as it is known, the Bayesian framework fails in a non-
dominated setting.

We are now ready to state the final version of the filtering equation, giving the
dynamics of the process π(ϕ).

Theorem 2.1.6 (Filtering equation). Let ϕ ∈ Bb(I) be fixed. Let us define, for each
fixed y ∈ O, the linear operator Ay : Bb(I)→ Bb(I) as

Ayϕ(x) := Lϕ(x)−
∫
I

1h−1(y)c(z)ϕ(z)λ(x, dz), x ∈ I (2.1.17)

and let us denote by 1 : I → R the function identically equal to 1.
The process π(ϕ) satisfies for all t ­ 0 and P–a.s. the following equation

πt(ϕ) = HY0 [µ](ϕ)

+
∫ t

0

∫
I

AYs− ϕ(x)πs−(dx) ds−
∫ t

0
πs−(ϕ)

∫
I

AYs− 1(x)πs−(dx) ds

+
∑

0<τn¬t

{
HYτn

[µn](ϕ)− πτn−(ϕ)
}
,

(2.1.18)
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or, in differential form
d
dtπt(ϕ) = πt(AYτnϕ)− πt(ϕ)πt(AYτn 1), t ∈ [τn, τn+1), n ∈ N0

πτn(ϕ) = HYτn
[µn](ϕ), n ∈ N0

(2.1.19)

where the (random) measures µn on (I, I) are given by

µn(dz) :=


µ(dz), n = 0

1h−1(Yτn−)c(z)
∫
I

λ(x, dz)πτn−(dx), n ∈ N
. (2.1.20)

Proof. To prove this theorem it suffices to elaborate the terms appearing in (2.1.11). We
show that the integral form (2.1.18) holds true. The differential form (2.1.19) follows
immediately.

Let us start by computing π0(ϕ) = E[ϕ(X0) | Y0]. By definition of conditional
expectation the equality

E[Zπ0(ϕ)] = E[Zϕ(X0)]
holds for all bounded and σ(Y0) measurable random variables Z. Otherwise said, we
have that

E[g(Y0)f(Y0)] = E[g(Y0)ϕ(X0)]
for all bounded and measurable functions g : O → R, where f : O → R is a measurable
function such that f(Y0) = π0(ϕ), P–a.s. (notice that π0(ϕ) is σ(Y0) measurable).
Then we can write

E[g(Y0)f(Y0)] =
∫
I

g
(
h(x)

)
f
(
h(x)

)
µ(dx) =

∫
O

g(y)f(y)µ ◦ h−1(dy)

on one hand. On the other hand

E[g(Y0)ϕ(X0)] =
∫
I

g
(
h(x)

)
ϕ(x)µ(dx) =

∫
O

g(y)ϕµ ◦ h−1(dy).

Therefore ∫
O

g(y)f(y)µ ◦ h−1(dy) =
∫
O

g(y)ϕµ ◦ h−1(dy)

for all bounded and measurable functions g : O → R, whence

f(y) = ϕµ ◦ h−1(dy)
µ ◦ h−1(dy) (y) =

∫
I

ϕ(z)Hy[µ](dz) = Hy[µ](ϕ), y ∈ O

and finally π0(ϕ) = f(Y0) = HY0 [µ](ϕ), P–a.s. .
Let us now analyze the term∫

(0,t]×O

{
Ψs(y)− πs−(ϕ)

}[
m(dsdy)− µ̂s(dy) ds

]
appearing in (2.1.11).

From the definition of the field
(
Ψt(y)

)
t­0, y∈O given in (2.1.12) and recalling that

L 1 = 0, we easily get that P–a.s.∫ t

0

∫
O

{
Ψs(y)− πs−(ϕ)

}
µ̂s(dy) ds

=
∫ t

0

∫
I

[∫
I

1h−1(Ys−)c(z)ϕ(z)λ(x, dz)− πs−(ϕ)AYs− 1(x)
]
πs−(dx) ds.
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Therefore P–a.s.∫ t

0

∫
I

Lϕ(x)πs−(dx) ds−
∫

(0,t]×O

{
Ψs(y)− πs−(ϕ)

}
µ̂s(dy) ds

=
∫ t

0

∫
I

AYs− ϕ(x)πs−(dx) ds−
∫ t

0
πs−(ϕ)

∫
I

AYs− 1(x)πs−(dx) ds.

We are left to elaborate the term∫
(0,t]×O

{
Ψs(y)− πs−(ϕ)

}
m(dsdy) =

∑
0<τn¬t

{
Ψτn(Yτn)− πτn−(ϕ)

}
.

Let us recall that the Y–predictable random field
(
Ψt(y)

)
t­0, y∈O satisfies

E
∫ t

0

∫
O

Cs(y)ψs(dy) ds = E
∫ t

0

∫
O

Cs(y) Ψs(y) µ̂s(dy) ds

for all non-negative Y–predictable random fields
(
Ct(y)

)
t­0, y∈O. A simple computa-

tion involving just the Fubini-Tonelli theorem shows that we can rewrite the previous
equation as

E
∫ t

0

∫
O

Cs(y)ϕνt ◦ h−1(dy) ds = E
∫ t

0

∫
O

Cs(y) Ψs(y) νt ◦ h−1(dy) ds

where the Y–predictable random measure νt(ω; dz) dt is given by

νt(dz) dt = 1h−1(Yt−)c(z)
∫
I

λ(x, dz)πt−(dx) dt.

Therefore, we have that

Ψt(ω, y) = Hy[νt(ω)](ϕ), νt(ω) ◦ h−1(dy) dtP(dω)–a.e.

or, equivalently

Ψt(ω, y) = Hy[νt(ω)](ϕ), m(ω,dtdy)P(dω)–a.e.

whence we deduce that Ψτn(Yτn) = HYτn
[µn](ϕ), P–a.s, for all n ∈ N.

The differential form (2.1.19) of the filtering equation gives an important insight on
the structure of the filtering process π(ϕ). In fact, in each time interval [τn, τn+1), n ∈
N0, the filtering process satisfies P–a.s. a deterministic differential equation (observe
that since Yt = Yτn for all t ∈ [τn, τn+1), the operator AYt is defined and fixed at each
jump time τn). This will be a crucial fact in the characterization of π as a PDP.

The final and most important Theorem of this Section shows that, starting from the
filtering equation (2.1.18) we can obtain an explicit equation for the measure-valued
filtering process π. It provides the evolution equation satisfied by the filtering process
π on the space P(I).

Theorem 2.1.7. For each fixed y ∈ O let By : M(I)→M(I) be the operator

Byν(dz) := 1h−1(y)(z)
∫
I

λ(x, dz) ν(dx)− λ(z)ν(dz), ν ∈M(I). (2.1.21)
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The filtering process π = (πt)t­0 satisfies for all t ­ 0 and P–a.s. the following SDE
d
dtπt = BYtπt − πt BYtπt(I), t ∈ [τn, τn+1), n ∈ N0

πτn = HYτn
[µn], n ∈ N0

(2.1.22)

where the random measures µn, n ∈ N0 were defined in (2.1.20).

Proof. Let us notice first that from (2.1.19) we have that for all n ∈ N0 and P–a.s.

πτn(ϕ) =
∫
I

ϕ(z)HYτn
[µn](dz), P–a.s., ϕ ∈ Bb(I).

Since we also have that πτn(ϕ) =
∫
I
ϕ(z)πτn(dz), P–a.s., we get

πτn = HYτn
[µn], P–a.s., n ∈ N0.

We need to prove that the filtering process satisfies for each n ∈ N0 the ODE

d
dtπt = BYtπt − πt BYtπt(I), t ∈ [τn, τn+1), P–a.s.

It suffices to show that for each fixed y ∈ O the operator By is the restriction toM(I)
of the adjointA?y of the operatorAy introduced in Theorem 2.1.6. To see this, we have
to recall that the dual space Bb(I)? of Bb(I) is isometrically isomorfic to the space
ba(I) of bounded finitely additive regular measures defined on the algebra generated
by open sets in I . Notice thatM(I) ⊂ ba(I).

Denote by 〈ϕ, ν〉 :=
∫
I
ϕ(x) ν(dx) the duality pairing between ϕ ∈ Bb(I) and

ν ∈ Bb(I)? and fix n ∈ N0. Then (2.1.19) can be written as

〈ϕ, π̇t〉 = 〈AYtϕ, πt〉 − 〈ϕ, πt〉〈AYt1, πt〉, t ∈ [τn, τn+1), P–a.s. .

The claim follows if we are able to show that

〈ϕ, π̇t〉 = 〈ϕ,A?Ytπt − πtA
?
Ytπt(I)〉, t ∈ [τn, τn+1), P–a.s.

This fact follows from a repeated application of the Fubini-Tonelli theorem in the
following chain of equalities, holding for all ν ∈M(I) and ϕ ∈ Bb(I).

〈Ayϕ, ν〉 =
∫
I

Lϕ(x) ν(dx)−
∫
I

∫
I

1h−1(y)cϕ(z)λ(x, dz) ν(dx) =∫
I

ϕ(z)
{
1h−1(y)(z)

∫
I

λ(x, dz) ν(dx)− λ(z) ν(dz)
}

= 〈ϕ,Byν〉.

So, clearly By = A?y|M(I).

2.2 The filtering process
In this Section we want to investigate the properties of the filtering process π. The core
of this Section will be devoted to prove that this is a Piecewise Deterministic Markov
Process, or PDMP for short. This class of processes, whose study has been started by
by M.H.A. Davis (see [32] or [42]), has gained a lot of attention in applications, since
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it provides a framework to describe a vast range of phenomena whose behavior does
not fit any diffusive model.

The main feature of PDMPs is that their dynamic, as the name suggests, is determi-
nistic in specific time intervals, given by the occurrence of random jumps. In this time
window the evolution of the process is governed by a flow, determined by a vector field,
satisfying an ODE. The distribution of the time passing between two consecutive jump
times is given by an exponential-like law. The position of the process after a jump, i. e.
its post jump location, is provided by another specified probability measure. In Section
1.2 the reader can find a synthetic summary of the main results concerning PDMPs.

It is clear that, in our situation, the filtering process π appears to be a PDMP. The
main task is to identify the characteristic triple that uniquely determines a PDMP, com-
posed by the flow, the distribution of sojourn times and the law of the post jump loca-
tions.

Let us start by studying the flow. In particular, we are concerned with the well-
posedness of the initial value problem described by equation (2.1.22) between two
consecutive jump times. From now on we consider the set M(I) endowed with the
total variation norm, indicated by ‖·‖TV := | · |(I) (where | · | denotes the total variation
measure). It is worth to recall that this norm is equivalent to the one defined asM(I) 3
µ 7→ supA∈I |µ(A)|. In particular, from the Hahn decomposition of signed measures,
we have that

‖µ‖TV ¬ 2 sup
A∈I
|µ(A)| ¬ 2‖µ‖TV , µ ∈M(I). (2.2.1)

We define, for each fixed y ∈ O, the set ∆y as the family of probability measures on
(I, I) concentrated on h−1(y), i. e.

∆y := {ν ∈ P(I) : ν
(
h−1(y)c

)
= 0}, y ∈ O. (2.2.2)

This is a closed subset of M(I) since it can be written as the intersection of closed
sets P(I) andMy(I), whereMy(I) := {µ ∈ M(I) : µ

(
h−1(y)

)
= 1}. In particular,

My(I) is closed since the functional µ 7→ µ
(
h−1(y)

)
is continuous onM(I) for all

y ∈ O.
Let us define, for each fixed y ∈ O the vector field Fy : M(I)→M(I)

Fy(ν) := Byν − νByν(I), ν ∈M(I), y ∈ O (2.2.3)

where By is the operator defined in (2.1.21). We already know that the solution to the
following ODE 

d
dtzt = Fy(zt), t ­ 0

z0 = ρ, ρ ∈ ∆y,
(2.2.4)

exists for each fixed y ∈ O (for instance, consider the fact that the filtering process
π satisfies it P–a.s. in the time interval [0, τ1) when y = Y0). We want to investigate
whether the solution to that equation is unique. In the following Lemma we prove that
for each y ∈ O the operator By is linear and continuous. This fact will be used in
Proposition 2.2.2 to prove the local Lipschitz continuity of the vector field Fy .

Lemma 2.2.1. Under Assumption 2.0.1, for each fixed y ∈ O the operator By is linear
and continuous onM(I).
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Proof. Fix y ∈ O. Linearity is obvious. To prove continuity, fix A ∈ I and µ, ν ∈
M(I). Then, we get

|Byν(A)− Byµ(A)|

=
∣∣∣∣∫
A

1h−1(y)(z)
∫
I

λ(x, dz) [ν − µ](dx)−
∫
A

λ(x) [ν − µ](dx)
∣∣∣∣

¬
∣∣∣∣∫
I

λ
(
x,A ∩ h−1(y)

)
[ν − µ](dx)

∣∣∣∣+ ∣∣∣∣∫
A

λ(x) [ν − µ](dx)
∣∣∣∣

¬ 2
∫
I

λ(x) |ν − µ|(dx) ¬ 2 sup
x∈I

λ(x)‖ν − µ‖TV .

Since this equality holds for all A ∈ I we easily get

‖Byν − Byµ‖TV ¬ 2 sup
A∈I
|Byν(A)− Byµ(A)| ¬ 4 sup

x∈I
λ(x)‖ν − µ‖TV

whence the continuity of the operator By .

Proposition 2.2.2. Under Assumption 2.0.1, for each fixed y ∈ O, the map Fy is
locally Lipschitz continuous onM(I).

Proof. Fix y ∈ O and µ, ν ∈ M(I). Then, recalling (2.2.1) and the result of Lemma
2.2.1, we have that

‖Fy(ν)− Fy(µ)‖TV = ‖Byν − νByν(I)− Byµ+ µByµ(I)‖TV
¬ ‖By(ν − µ)‖TV + ‖Byµ(I)[ν − µ]‖TV + ‖ν[Byν(I)− Byµ(I)]‖TV
¬ 4 sup

x∈I
λ(x)‖ν − µ‖TV + |Byµ(I)|‖ν − µ‖TV + ‖ν‖TV |Byν(I)− Byµ(I)|

¬ (4 + ‖µ‖TV ) sup
x∈I

λ(x)‖ν − µ‖TV + ‖ν‖TV ‖By(ν − µ)‖TV

¬ (4 + ‖µ‖TV + 4‖ν‖TV ) sup
x∈I

λ(x)‖ν − µ‖TV

whence the result. Notice that the term |Byµ(I)| =
∣∣∫
I
λ
(
x, h−1(y)c

)
µ(dx)

∣∣ is easily
majorized by ‖µ‖TV supx∈I λ(x).

Remark 2.2.1. It is worth noting that from the previous computations we deduce that
the field Fy is Lipschitz continuous on P(I).

Theorem 2.2.3. Under Assumption 2.0.1, for each fixed y ∈ O the ODE (2.2.4) admits
a unique global solution z ∈ C1([0,+∞); ∆y

)
.

Proof. Fix y ∈ O. The claim follows from [50, Th. 4]. To apply it we have to verify
the following assumptions (we point out in square brackets the reference to the corre-
sponding hypotheses of the cited work. We invite the interested reader to consult it for
further details).

1. Fy is continuous from ∆y intoM(I) [Condition C1].

2. lim
ε→0+

1
ε

inf
ν∈∆y

‖µ+ εFy(µ)− ν‖TV = 0 for all µ ∈ ∆y [Condition C2].

3. For all K > 0 there exists CK > 0 such that for all µ ∈ ∆y with ‖µ‖TV ¬ K it
holds that ‖Fy(µ)‖TV ¬ CK [(i) of Theorem 4].
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4. 〈µ − ν, Fy(µ) − Fy(ν)〉+ ¬ C‖µ − ν‖2TV for all µ, ν ∈ ∆y and some C > 0
[(3.11)]

where for all µ, ν ∈ M(I) we define 〈µ, ν〉+ := sup
Φ∈M(I)?

Φµ=‖µ‖2TV

Φν. The setM(I)? is the

topological dual space ofM(I).
Claim 1. In Proposition 2.2.2 we proved that the vector field Fy is locally Lipschitz
continuous onM(I). In Remark 2.2.1 we also noted that it is Lipschitz continuous on
P(I), hence we easily deduce its continuity on ∆y .
Claim 2. Fix µ ∈ ∆y . To get the claim, it suffices to prove that for ε > 0 small enough
µ+ εFy(µ) ∈ ∆y .

We prove, first that µ + εFy(µ) ∈ M+(I) for ε > 0 small enough. For all fixed
A ∈ I we have that[

µ+ εFy(µ)
]
(A) = µ(A) + εFy(µ; A) = µ(A) + ε

[
Byµ(A)− µ(A)Byµ(I)

]
= µ(A) + ε

[∫
I

λ(x,A ∩ h−1(y))µ(dx)−
∫
A

λ(z)µ(dz)

+ µ(A)
∫
I

λ(x, h−1(y)c)µ(dx)
]

Recalling that Assumption 2.0.1 is in force, we have the obvious estimate∫
A

λ(z)µ(dz) ¬ sup
x∈A

λ(x)µ(A) ¬ sup
x∈I

λ(x)µ(A).

Hence, taking ε < [sup
x∈I

λ(x)]−1 we get

[
µ+ εFy(µ)

]
(A) > ε

[∫
I

λ(x,A ∩ h−1(y))µ(dx)

+ µ(A)
∫
I

λ(x, h−1(y)c)µ(dx)
]
­ 0.

Now it remains to prove that µ + εFy(µ) is a probability measure and that is
concentrated on h−1(y). This can be easily shown, since it is immediately seen that[
µ+ εFy(µ)

]
(I) = 1 and we have that[

µ+ εFy(µ)
](
h−1(y)

)
= µ

(
h−1(y)

)
+ εFy

(
µ; h−1(y)

)
= 1 + ε

[∫
h−1(y)

∫
I

λ(x,dz)µ(dx)−
∫
h−1(y)

λ(z)µ(dz)

−
∫
h−1(y)

∫
I

λ(x, dz)µ(dx) +
∫
I

λ(z)µ(dz)
]

= 1

thanks to the equality
∫
h−1(y) λ(z)µ(dz) =

∫
I
λ(z)µ(dz), implied by the fact that

µ ∈ ∆y .
Claim 3. Fix µ ∈ ∆y . The claim is easily proved thanks to the following estimate,
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holding for all A ∈ I.

|Fy(µ; A)| = |Byµ(A)− µ(A)By(I)|

=
∣∣∣∣∫
I

λ(x,A ∩ h−1(y))µ(dx)−
∫
A

λ(z)µ(dz)

+ µ(A)
∫
I

λ(x, h−1(y)c)µ(dx)
∣∣∣∣ ¬ 3 sup

x∈I
λ(x).

From this inequality, it follows that ‖Fy(µ)‖TV ¬ 6 supx∈I λ(x), whence the result.
Claim 4. Fix µ, ν ∈ ∆y and take Φ ∈ M(I)? such that Φ(µ − ν) = ‖µ − ν‖TV =
‖Φ‖?, where ‖·‖? denotes the norm in the dual spaceM(I)?. Thanks to Proposition
2.2.2 (see also Remark 2.2.1) we have that

Φ
(
Fy(µ)− Fy(ν)

)
¬ ‖Φ‖? ‖Fy(µ)− Fy(ν)‖TV ¬ 9 sup

x∈I
λ(x)‖µ− ν‖2TV .

Since this estimate holds for all required Φ, we get the result taking the supremum.

Remark 2.2.2. In what follows, we will denote the solution z by φy,ρ(·), to stress the
dependence on y ∈ O and ρ ∈ ∆y . By standard results on ODEs, (t, ρ) 7→ φy,ρ(t)
is continuous for each y ∈ O and it enjoys the flow property, i. e. φy,φy(s,ρ)(t) =
φy,ρ(t + s), for t, s ­ 0. The function y 7→ φy,·(·) is called the flow associated with
the vector field Fy on ∆y . To simplify the notation, it is convenient to define the set
∆e =

⋃
y∈O ∆y , named the effective simplex to preserve the terminology used in [25].

Notice that the union is disjoint, as is immediate to prove from the definition given
in (2.2.2). In this way we can define a global flow φ on ∆e setting φρ(t) = φy,ρ(t), if
ρ ∈ ∆y . For all fixed t ­ 0, ρ 7→ φρ(t) is a function mapping ∆e into itself and leaving
each set ∆y invariant. Finally, we can associate to the global flow a global vector field
F : ∆e → ∆e defined as

F (ν) := Fy(ν) = Byν − ν Byν(I), ν ∈ ∆y. (2.2.5)

The effective simplex bears this name because of its relationship with the canonical
simplex on euclidean spaces. In fact, if we consider the state spaces I and O of the sig-
nal and observed processes as finite sets (we will do so in Chapter 3), then the effective
simplex is made of pairwise disjoint faces of the canonical simplex on R|I|, where |I|
denotes the cardinality of the set I . The shape of these faces (points, segments, triang-
les, tetrahedra, etc . . . ) depends on the function h. The evolution of the filtering process
takes place only on parts of the boundary of the canonical simplex.

Before moving on to prove the characterization of the filtering process as a PDMP,
let us precise that, as far as topology is concerned, the effective simplex will be regarded
as a topological space (∆e, τe) under the relative topology τe. This is defined as

τe := {∆e ∩ U, U ∈ τTV }

where τTV is the topology onM(I) induced by the total variation norm. In this way,
we can also consider the effective simplex as a measurable space, endowing it with the
Borel σ-algebra B(∆e).

In order to prove that the filtering process is a PDMP, it is convenient to put our-
selves in a canonical setting for our filtering problem with respect to the unobserved
process X . This construction will have a fundamental role in studying the optimal con-
trol problem, as done in Chapters 3 and 4.
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Let us define Ω as the set

Ω = {ω = (i0, t1, i1, t2, i2, . . .) :
i0 ∈ I, in ∈ I, tn ∈ (0,+∞], tn < +∞⇒ tn < tn+1, n ∈ N}.

For each n ∈ N we introduce the following random variables

T0(ω) = 0; Tn(ω) = tn; T∞(ω) = lim
n→∞

Tn(ω); ξ0(ω) = i0; ξn(ω) = in

and we define the random measure on
(
(0,+∞)× I, B

(
(0,+∞)

)
⊗ I

)
n(ω,dtdz) =

∑
n∈N

δ(
Tn(ω), ξn(ω)

)(dtdz)1{Tn<+∞}(ω), ω ∈ Ω

with associated natural filtration Nt = σ
(
n
(
(0, t]× A

))
, 0 ¬ s ¬ t, A ∈ I

)
. Finally,

let us specify the σ-algebras

X ◦0 = σ(ξ0); X ◦t = σ(X ◦0 ∪Nt); X ◦ = σ
(⋃
t­0
Xt
)
.

The unobserved process X is defined as

Xt(ω) =
{
ξn(ω), t ∈

[
Tn(ω), Tn+1(ω)

)
, n ∈ N0, Tn(ω) < +∞

i∞, t ∈
[
T∞(ω),+∞), T∞(ω) < +∞

where i∞ ∈ I is an arbitrary state, that is irrelevant to specify. Next, we define the
observed process Y and its natural filtration (Y◦t )t­0 as

Yt(ω) = h(Xt(ω)), t ­ 0, ω ∈ Ω; Y◦t = σ
(
Ys, 0 ¬ s ¬ t

)
, t ­ 0.

It is clear that we can equivalently describe this process (as is the case for X) via a
MPP (ηn, τn)n∈N together with the initial condition η0 = h(ξ0) = Y0. Accordingly,
the σ-algebras of the natural filtration of Y are the smallest σ-algebras generated by
the union of σ(η0) and the σ-algebras of the natural filtration of the MPP (ηn, τn)n∈N.

Remark 2.2.3. Notice that here we constructed the unobserved processX starting from
its MPP counterpart (Tn, ξn)n∈N, whereas at the beginning of this Chapter we were
given a pure jump Markov process and we associated its corresponding MPP. We could
have done the same also here and the subsequent results would have remained the same.
However, it is preferable to use this construction because this definition of the space Ω
is the most natural to the MPP setting, upon which we heavily rely in all of this thesis.

Next, for every µ ∈ P(I) let Pµ be the unique probability measure on (Ω,X ◦) such
that X is a (X ◦,Pµ)–Markov process with state space I , initial law µ and generator L,
defined in (2.1.8). This means that for all A ∈ I, all s, t ­ 0 and all f ∈ Bb(I) it holds

Pµ(X0 ∈ A) = µ(A), Pµ–a.s.

Eµ
[
f(Xt+s) | X ◦t

]
= esLf(Xt), Pµ–a.s.

It follows from Assumption 2.0.1 and by standard arguments that the point process n
is Pµ-a.s. non-explosive, i. e. that T∞ = +∞, Pµ-a.s..

To conclude the previous construction, for a fixed probability measure µ on I we
define
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• X µ the Pµ-completion of X ◦ (Pµ is extended to X µ in the natural way).

• Zµ the family of elements of X µ with zero Pµ – probability.

• Yµt = σ(Y◦t ,Zµ), for t ­ 0.

(Yµt )t­0 is called the natural completed filtration of Y .
In this canonical framework for the unobserved process X we can consider, for

each fixed µ ∈ P(I), the process πµ = (πµt )t­0 defined as the trajectory-wise unique
solution to the SDE (2.1.22). This means that for each ω ∈ Ω we define πµ(ω) to be
the unique solution to

d
dtπ

µ
t (ω) = FYt(ω)

(
πµt (ω)

)
, t ∈ [τn(ω), τn+1(ω)), n ∈ N0

πµ0 (ω) = HY0(ω)[µ]
πµτn(ω)(ω) = HYτn(ω)

[
Λ
(
πµ
τ−n

(ω)
)]
, n ∈ N

(2.2.6)

where Λ: ∆e →M+(I) is the function given by

Λ(ν) := 1h−1(y)c(z)
∫
I

λ(x, dz) ν(dx), ν ∈ ∆y (2.2.7)

and the quantity πτ−n (ω)(ω) is defined as

πτ−n (ω)(ω) := lim
t→τn(ω)−

πt(ω), on {ω ∈ Ω: τn(ω) < +∞}

Thanks to Theorem 2.2.3, Equation (2.2.6) uniquely determines a (Y◦t )t­0–adapted
cádlág and ∆e–valued process. By Theorem 2.1.7, we deduce that it is a modification
of the filtering process, i. e. for all t ­ 0 and all A ∈ I it holds

πµt (A) = Pµ(Xt ∈ A | Yµt ), Pµ–a.s.

Since the filtering process is (Yµt )t­0–adapted and the filtration (Yµt )t­0 is right-
continuous, we can choose (and we will, whenever needed) a (Yµt )t­0–progressive
version of the filtering process itself.

We are now ready to state the Markov property for the filtering process πµ with
respect to the natural completed filtration of the observed process Y , for each fixed
µ ∈ P(I). This is the content of Proposition 2.2.5, preceded by the useful technical
Lemma 2.2.4. We omit their proof, being slight generalizations of [25, Proposition 3.3
and Proposition 3.4].

Lemma 2.2.4. For fixed t ­ 0, let us denote byX∞t the future trajectory of the process
X starting at time t. For all µ ∈ P(I), t ­ 0 and C ∈ X µ, it holds

Pµ(X∞t ∈ C | Y
µ
t ) = Pπµt (C), Pµ–a.s.

Proposition 2.2.5. For fixed t ­ 0 consider the transition kernel pt from
(
∆e, B(∆e)

)
into itself given by

pt(ν,D) := Pν(πνt ∈ D), ν ∈ ∆e, D ∈ B(∆e).

Then (pt)t­0 is a Markov transition function on
(
∆e, B(∆e)

)
. Moreover, for every

fixed µ ∈ P(I), the process πµ in the probability space (Ω,X µ,Pµ) is a ∆e–valued
Markov process with respect to (Yµt )t­0, having transition function (pt)t­0. Otherwise
said, the following equality holds, for all s, t ­ 0 and all D ∈ B(∆e)

Pµ(πµt+s ∈ D | Y
µ
t ) = ps(πµt , D), Pµ–a.s.
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Having proved the Markov property for the filtering process πµ, we can show that
it is a PDMP by introducing the following three quantities that will be proved to form
its characteristic triple.

1. The vector field F is the global vector field defined in Equation (2.2.5), i. e.

F (ν) := Byν − ν Byν(I), ν ∈ ∆y. (2.2.8)

The global flow φ previously introduced is associated to this vector field (see
Remark 2.2.2).

2. The jump rate function r : ∆e → [0,+∞) is defined by

r(ν) := −Byν(I) =
∫
I

λ
(
x, h−1(y)c

)
ν(dx), ν ∈ ∆y. (2.2.9)

3. The transition probability R from
(
∆e,B(∆e)

)
into itself is defined by

R(ν,D) :=
∫
O

1D

(
Hυ[Λ(ν)]

)
ρ(ν, dυ), ν ∈ ∆y, D ∈ B(∆e) (2.2.10)

where ρ is a transition probability from
(
∆e,B(∆e)

)
into (O,O) defined for all

ν ∈ ∆y and all B ∈ O as

ρ(ν,B) :=


1

r(ν)

∫
I

λ
(
x, h−1(B \ {y})

)
ν(dx), if r(ν) > 0

qy(B), if r(ν) = 0
(2.2.11)

where (qy)y∈O is a family of probability measures, each concentrated on the
level set h−1(y), y ∈ O, whose exact values are irrelevant.

Since for any given ν ∈ ∆y the probability ρ(ν, ·) is concentrated on the set
O \ {y}, the probability R(ν, ·) is concentrated on ∆e \∆y , as we expected to
be, given the structure of the filtering process.

Remark 2.2.4. Note that if r(ν) > 0 then r(ν) ρ(ν, dy) = Λ(ρ) ◦ h−1(dy).
In the following Proposition, which will be needed to characterize the filtering pro-

cess as a PDMP, we show that the law of the observed process Y can be expressed
via the filtering process itself. It is clear that since the process Y is piecewise constant,
its law is uniquely determined by the finite dimensional distributions of the process
{Y0, τ1, Yτ1 , . . . }. These in turn are completely characterized by the law of Y0, which
is obvious, and by the following distributions

Pµ(τn+1 − τn > t, τn < +∞ | Yµτn), t ­ 0, n ∈ N0

Pµ(Yτn+1 ∈ B, τn+1 < +∞ | Yµτn), B ∈ O, n ∈ N0.

Proposition 2.2.6. For all fixed µ ∈ P(I) the distributions of the sojourn times and
the post jump locations of the observed process Y are given by the following equalities,
holding Pµ–a.s. for all t ­ 0, B ∈ O and all n ∈ N0

Pµ(τn+1 − τn > t, τn < +∞ | Yµτn) = exp
{
−
∫ t

0
r
(
φπµτn (s)

)
ds
}
1τn<+∞

(2.2.12)

Pµ(Yτn+1 ∈ B, τn+1 < +∞ | Yµτn) = ρ
(
φπµτn (τ−n+1 − τn), B

)
1τn+1<+∞.

(2.2.13)
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Proof. Let us fix n ∈ N0. To start, we will look for an expression for the joint distribu-
tion of the jump times and post jump locations of the process Y , i. e. for all T ­ 0 and
all B ∈ O the quantity

Pµ(τn+1 ¬ T, Yτn+1 ∈ B | Yµτn), on {τn < +∞}.

Notice, first, that for all fixed T ­ 0 and B ∈ O we can write

ZT (B) := 1τn+1¬T1Yτn+1∈B = m
(
(0, T ∧ τn+1]×B

)
−m

(
(0, T ∧ τn]×B

)
wherem is the random counting measure associated to Y and defined in (2.1.3). To see
this, it suffices to observe that

m
(
(0, T ∧ τn]×B

)
=

n∑
k=1

1τk¬T1Yτk∈B .

Clearly, (ZT (B))T­0 is a (YµT )T­0–adapted point process and, thanks to Lemma 2.1.1,
a straightforward computation (using once more the obvious facts Ys− = Ys and πs− =
πs, ds–a.e.) shows that its (YµT )T­0–compensator is given by

ζT (B) :=
∫ T∧τn+1

T∧τn

∫
I

λ
(
x, h−1(B \ {Ys−})

)
πµs−(dx) ds

=
∫ T

0
1τn¬s<τn+1

∫
I

λ
(
x, h−1(B \ {Ys})

)
πµs (dx) ds.

Moreover, since for all k ∈ N the stopped process(
m
(
(0, T ∧ τk]×B

)
−
∫

(0,T∧τk]

∫
I

λ
(
x, h−1(B \ {Ys−})

)
πµs−(dx) ds

)
T­0

is a uniformly integrable (YµT )T­0–martingale (cfr. number 3 of Proposition 1.1.5),
the compensated process (ZT (B) − ζT (B))T­0 is a uniformly integrable (YµT )T­0–
martingale. Hence by applying Doob’s optional sampling theorem we get that for all
T ­ 0

Eµ[ZT (B) | Yµτn ] = Eµ[ζT | Yµτn ], Pµ–a.s.

or otherwise written

Pµ(τn+1 ¬ T, Yτn+1 ∈ B | Yµτn) =

Eµ
[∫ T

0
1τn¬s<τn+1

∫
I

λ
(
x, h−1(B \ {Ys})

)
πµs (dx) ds

∣∣∣∣ Yµτn], Pµ–a.s.

Noting that for τn ¬ s < τn+1 we have that Ys = Yτn and πs = φπµτn (s− τn) we can
write the previous equation as

Pµ(τn+1 ¬ T, Yτn+1 ∈ B | Yµτn) =

Eµ
[∫ T

0

∫
I

1τn¬s<τn+1λ
(
x, h−1(B \{Yτn})

)
φπµτn (s−τn; dx) ds

∣∣∣∣ Yµτn], Pµ–a.s.

(2.2.14)
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Now let t ­ 0 be fixed. Since the random variable t + τn is Y µτn–measurable, we
immediately get from (2.2.14)

Pµ(τn+1 − τn ¬ t, Yτn+1 ∈ B | Yµτn) =

Eµ
[∫ t+τn

0

∫
I

1τn¬s<τn+1λ
(
x, h−1(B \ {Yτn})

)
φπµτn (s− τn; dx) ds

∣∣ Yµτn] =

Eµ
[∫ t

0

∫
I

1τn+1−τn>sλ
(
x, h−1(B \ {Yτn})

)
φπµτn (s; dx) ds

∣∣ Yµτn], Pµ–a.s.

(2.2.15)

We need to exchange the conditional expectation and the time integral appearing in the
last line of (2.2.15). Let us consider a regular versionGn of the conditional distribution
Pµ(τn+1 − τn ∈ ·, Yτn ∈ · | Yµτn), which always exists in our setting. Define the
function gn : Ω× [0,+∞)→ [0, 1] as

gn(ω, t) := Gn
(
ω, (t,+∞], O

)
.

Clearly gn enjoys the following properties

• gn(ω, t) = Pµ(τn+1 − τn > t | Yµτn), Pµ–a.s.

• gn is
(
Yµτn ⊗ B

(
[0,+∞)

))
–measurable.

• For all ω ∈ Ω the map t 7→ gn(ω, t) is non-increasing and right-continuous.

Applying the Fubini-Tonelli theorem to the last line of (2.2.15) we get

Pµ(τn+1 − τn ¬ t, Yτn+1 ∈ B | Yµτn) = G
(
(0, t], B

)∫ t

0
gn(s)

∫
I

λ
(
x, h−1(B \ {Yτn})

)
φπµτn (s; dx) ds, Pµ–a.s. (2.2.16)

We are now ready to use Proposition 1.1.8 (or, equivalently, Theorem 1.1.13) and obtain
that gn satisfies

gn(t) = 1−
∫ t

0
gn(s)

∫
I

λ
(
x, h−1(Yτn)c

)
φπµτn (s; dx) ds, t ∈ (0, τn+1 − τn].

This equality implies that on (0, τn+1 − τn] the function gn is absolutely continuous
for each ω ∈ Ω and solves ω-by-ω the following ODE

d
dtg

n(t) = −gn(t)
∫
I

λ
(
x, h−1(Yτn)c

)
φπµτn (t; dx), t ∈ (0, τn+1 − τn]

gn(0) = 1

whose solution is clearly gn(t) = exp
{
−
∫ t

0
∫
I
λ
(
x, h−1(Yτn)c

)
φπµτn (s; dx) ds

}
for

t ∈ (0, τn+1 − τn]. Therefore we get (2.2.12).
Finally, (2.2.13) follows from an immediate application of both Theorem 1.1.13

and Theorem 1.1.7. In fact, we have that on {τn+1 < +∞}

Pµ(Yτn+1 ∈ B | Yµτn) =

= 1
r
(
φπµτn (τ−n+1 − τn)

) ∫
I

λ
(
x, h−1(B \{Yτn})

)
φπµτn (τ−n+1− τn; dx), Pµ–a.s.

whence the desired equality. Notice that the fraction is well defined since, by Theorem
1.1.12, r

(
φπµτn (τ−n+1 − τn)

)
> 0 on {τn+1 < +∞}.
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We are now ready to prove the main Theorem of this Section, that is the characte-
rization of the filtering process as a PDMP.

Theorem 2.2.7. For every ν ∈ ∆e the filtering process πν = (πνt )t­0 defined on the
probability space (Ω,X ν ,Pν) and taking values in ∆e is a Piecewise Deterministic
Markov Process with respect to the filtration (Yνt )t­0 and the triple (F, r,R) defined
in (2.2.8)–(2.2.10) and with starting point ν.

More specifically, we have that πν is a (Yνt )t­0–Markov process and the following
equalities hold Pν–a.s.

πνt = φπντn (t− τn), t ∈ [τn, τn+1), n ∈ N0 (2.2.17)

Pν(τn+1 − τn > t, τn < +∞ | Yντn) =

1τn<+∞ exp
{
−
∫ t

0
r
(
φπµτn (s)

)
ds
}
, t ­ 0, n ∈ N0 (2.2.18)

Pν(πντn+1
∈ D, τn+1 < +∞ | Yν

τ−n+1
) =

1τn+1<+∞R
(
φπντn (τ−n+1 − τn);D

)
, D ∈ B(∆e), n ∈ N0 (2.2.19)

where, for each n ∈ N0, φπντn is the flow starting from πντn and determined by the
vector field F .

Proof. Fix ν ∈ ∆e, hence ν ∈ ∆y for some y ∈ O. It is clear that Pν(Y0 = y) = 1
and that Hy[ν] = ν. Hence Pν(πν0 = ν) = 1, i. e. the filtering process πν starts from
ν. The (Yνt )t­0–Markov property for the process πν has already been proved in Pro-
position 2.2.5. The deterministic dynamic between consecutive jump times expressed
by (2.2.17) easily follows from (2.2.6). Moreover (2.2.18) coincides with (2.2.12).

It remains to prove (2.2.19). From (2.2.6) we have that on {τn+1 < +∞} and for
all D ∈ B(∆e)

Pν
(
πντn+1

∈ D
∣∣∣ Yν

τ−n+1

)
= Pν

(
HYτn+1

[
Λ
(
πν
τ−n+1

)]
∈ D

∣∣∣ Yν
τ−n+1

)
.

Observing that Λ(πντn+1−) = Λ
(
φπντn (τ−n+1 − τn)

)
is a Yν

τ−n+1
–measurable random

variable (with values on ∆e), an easy application of the freezing lemma to the last
displayed equation entails that

Pν
(
πντn+1

∈ D
∣∣∣ Yν

τ−n+1

)
=
∫
O

1D

(
Hυ

[
Λ
(
φπντn (τ−n+1−τn)

)])
ρ
(
φπντn (τ−n+1−τn),dυ

)
hence the desired result.

Remark 2.2.5. In PDMP literature it is common to require thatR is a Feller kernel, i. e.
that for all w ∈ Cb(∆e) the map ρ 7→

∫
∆e
w(p)R(ρ; dp) is bounded and continuous

on ∆e. In our situation this fact may fail, since it may happen that the function r is null
on some non-empty subset of ∆e. However, we are able to show the following weaker
form of the Feller property of R.

Proposition 2.2.8. Let Assumption 2.0.1 hold. Then for every bounded and continu-
ous function w : ∆e → R the function ρ 7→ r(ρ)

∫
∆e
w(p)R(ρ; dp) is bounded and

continuous on ∆e.
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To prove this Proposition we will use the following Lemma.

Lemma 2.2.9. Suppose that (µn)n∈N ⊂ M+(I) is a sequence converging in total
variation to a measure µ ∈ M+(I), i. e. ‖µn − µ‖TV → 0. Then, the sequence of
P(I)–valued functions on O given by (Hy[µn])n∈N converges in measure µ ◦ h−1 to
Hy[µ], i. e.

lim
n→∞

µ ◦ h−1({y ∈ O : ‖Hy[µn]−Hy[µ]‖TV > δ}) = 0, for all δ > 0.

Proof. Fix δ > 0 and a sequence (µn)n∈N ⊂ M+(I) such that ‖µn − µ‖TV → 0 for
some µ ∈M+(I). Let us define the following sets

Cδn := {y ∈ O : sup
A∈I

∣∣Hy[µn](A)−Hy[µ](A)
∣∣ > δ}, n ∈ N

Cδ,An := {y ∈ O :
∣∣Hy[µn](A)−Hy[µ](A)

∣∣ > δ}, n ∈ N, A ∈ I.

We immediately notice that, since ‖µn − µ‖TV → 0, we have

‖µn ◦ h−1 − µ ◦ h−1‖ −−−−→
n→∞

0

‖1Aµn ◦ h−1 − 1Aµ ◦ h−1‖ −−−−→
n→∞

0, for all A ∈ I.

Recalling Definition 2.1.1 and thanks to [15, Exercise 3.10.36], we deduce that for
all A ∈ I we have that lim

n→∞
µ ◦ h−1(Cδ,An ∩ supp(µ ◦ h−1)

)
= 0, whence µ ◦

h−1(Cδ,An ) −−−−→
n→∞

0, being supp(µ ◦ h−1) a set of full µ ◦ h−1–measure.

Given (2.2.1), to prove our claim it suffices to show that µ ◦ h−1(Cδn) −−−−→
n→∞

0 for
all δ > 0. To start, let us recall that since I is a separable metric space, there exists a
countable base U = (Uj)j∈N for its topology. Let us define the set of all possible finite
or countable unions of sets in U , i. e.

B := {B =
⋃
j∈J

Uj , Uj ∈ U , j ∈ J, |J | ¬ |N|}.

Notice that B is a countable class.
We want to prove first that

sup
A∈I

∣∣Hy[µn](A)−Hy[µ](A)
∣∣ = sup

B∈B

∣∣Hy[µn](F )−Hy[µ](F )
∣∣ (2.2.20)

It is clear that the term on the left is greater or equal to the one on the right. To
prove the reverse inequality, fix y ∈ O and ε > 0. Thanks to the fact that for all y ∈ O
each of the measuresHy[µn], n ∈ N andHy[µ] is regular, we have that for eachA ∈ I
there exist open sets F ε, F εn ∈ I, n ∈ N and closed sets Gε, Gεn ∈ I, n ∈ N such
that Gε ⊂ A ⊂ F ε, Gεn ⊂ A ⊂ F εn for all n ∈ N and

Hy[µn](F εn)− ε ¬ Hy[µn](A) ¬ Hy[µn](Gεn) + ε

Hy[µ](F ε)− ε ¬ Hy[µ](A) ¬ Hy[µ](Gε) + ε.

Moreover, there exist at most countable index sets Iεn and Iε such that F εn =
⋃
i∈Iεn

Ui
and F ε =

⋃
i∈Iε Ui, where Ui ∈ U , i ∈ Iεn, Iε. Thanks to this, we have that Therefore,
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we get that

Hy[µn](A)−Hy[µ](A) ¬ Hy[µn](Gεn) + ε−Hy[µ](F εn)

¬ Hy[µn](F εn)−Hy[µ](F εn) + ε ¬ Hy[µn]
( ⋃
i∈Iεn

Ui

)
−Hy[µ]

( ⋃
i∈Iεn

Ui

)
+ ε

¬ sup
B∈B

Hy[µn](B)−Hy[µ](B) + ε.

Similarly, exchanging the roles of Hy[µn](A) and Hy[µ](A) we get

Hy[µ](A)−Hy[µn](A) ¬ sup
B∈B

Hy[µn](B)−Hy[µ](B) + ε

whence ∣∣Hy[µn](A)−Hy[µ](A)
∣∣ ¬ sup

B∈B
Hy[µn](B)−Hy[µ](B) + ε.

Taking the supremum with respect to all A ∈ I in the l.h.s. and then letting ε → 0+

we get the desired inequality and from (2.2.20) we deduce that

Cδn = {y ∈ O : sup
A∈I

∣∣Hy[µn](A)−Hy[µ](A)
∣∣ > δ}.

Now, let y ∈ Cδn. Then, by definition of supremum, we have that there exists some
B ∈ B such that

∣∣Hy[µn](B) −Hy[µ](B)
∣∣ > δ, hence y ∈

⋃
B∈B

Cδ,Bn =
⋃
i∈N
Bi∈B

Cδ,Bin

(recall that B is a countable class). Therefore, for all n ∈ N

µ ◦ h−1(Cδn) ¬
∑
i∈N

µ ◦ h−1(Cδ,Bin )

whence

lim sup
n→∞

µ ◦ h−1(Cδn) ¬ lim sup
n→∞

∑
i∈N

µ ◦ h−1(Cδ,Bin )

¬
∑
i∈N

lim sup
n→∞

µ ◦ h−1(Cδ,Bin ) =
∑
i∈N

lim
n→∞

µ ◦ h−1(Cδ,Bin ) = 0

and our claim is, thus, proved.

Proof of Proposition 2.2.8. Fix w : ∆e → R bounded and continuous and ρ ∈ ∆e,
hence ρ ∈ ∆y for some y ∈ O. Let (ρn)n∈N be a sequence such that ‖ρn− ρ‖TV → 0
as n→∞. Notice that we can assume, without loss of generality that ρn ∈ ∆y for all
n ∈ N.

We consider first the case where r(ρ) > 0. It is easy to show that the function
ρ 7→ r(ρ) is continuous on ∆e, hence r(ρn) > 0 apart from a finite number of indices
n ∈ N. We want to prove that∣∣∣∣r(ρn)

∫
∆e

w(p)R(ρn; dp)− r(ρ)
∫

∆e

w(p)R(ρ; dp)
∣∣∣∣ −−−−→n→∞

0. (2.2.21)
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Recalling Remark 2.2.4, from (2.2.21) we obtain∣∣∣∣r(ρn)
∫

∆e

w(p)R(ρn; dp)− r(ρ)
∫

∆e

w(p)R(ρ; dp)
∣∣∣∣

=
∣∣∣∣∫
O

w
(
Hυ[Λ(ρn)]

)
Λ(ρn) ◦ h−1(dυ)−

∫
O

w
(
Hυ[Λ(ρ)]

)
Λ(ρ) ◦ h−1(dυ)

∣∣∣∣
¬
∣∣∣∣∫
O

w
(
Hυ[Λ(ρn)]

)[
Λ(ρn) ◦ h−1(dυ)− Λ(ρ) ◦ h−1(dυ)

]∣∣∣∣
+
∫
O

∣∣∣w(Hυ[Λ(ρn)]
)
− w

(
Hυ[Λ(ρ)]

)∣∣∣Λ(ρ) ◦ h−1(dυ).
(2.2.22)

The first summand of the last line of (2.2.22) can be easily estimated thanks to the
boundedness of w and Assumption 2.0.1 by∣∣∣∣∫

O

w
(
Hυ[Λ(ρn)]

)[
Λ(ρn) ◦ h−1(dυ)− Λ(ρ) ◦ h−1(dυ)

]∣∣∣∣
¬ sup
p∈∆e

|w(p)| ‖Λ(ρn) ◦ h−1 − Λ(ρ) ◦ h−1‖TV

¬ 2 sup
p∈∆e

|w(p)| sup
x∈I

λ(x) ‖ρn − ρ‖TV .

Hence it vanishes as n→∞.
As for the second summand of the last line of (2.2.22) notice that

‖Λ(ρn)− Λ(ρ)‖TV ¬ 2 sup
x∈I

λ(x) ‖ρn − ρ‖TV −−−−→n→∞
0

thanks again to Assumption 2.0.1. Thanks to Lemma 2.2.9, taking also into account
thatw is continuous, the sequence

(
w
(
Hυ[Λ(ρn)]

))
n∈N

converges tow
(
Hυ[Λ(ρ)]

)
in

Λ(ρ) ◦h−1–measure. Applying the dominated convergence theorem (since Λ(ρ) ◦h−1

is a finite measure, we can replace almost everywhere convergence of the sequence(
w
(
Hυ[Λ(ρn)]

))
n∈N

with convergence in measure, see e. g. [15, Th. 2.8.5]) we get

that ∫
O

∣∣∣w(Hυ[Λ(ρn)]
)
− w

(
Hυ[Λ(ρ)]

)∣∣∣Λ(ρ) ◦ h−1(dυ) −−−−→
n→∞

0

as desired.
We conclude the proof considering the case r(ρ) = 0. By continuity of the function

r, we have that r(ρn)→ 0 as n→∞. In case r(ρn) = 0 eventually, the claim is trivial.
So, let us consider the case r(ρn) 6= 0 for all n big enough. We have to prove that∣∣∣∣r(ρn)

∫
∆e

w(p)R(ρn; dp)
∣∣∣∣ −−−−→n→∞

0. (2.2.23)

Notice that 0 = r(ρ) = −Byρ(I) = λ(ρ) ◦ h−1(O), hence by boundedness of w
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and Assumption 2.0.1 we get∣∣∣∣r(ρn)
∫

∆e

w(p)R(ρn; dp)
∣∣∣∣ =

∣∣∣∣∫
O

w
(
Hυ[Λ(ρn)]

)
Λ(ρn) ◦ h−1(dυ)

∣∣∣∣
¬ sup
p∈∆e

|w(p)|Λ(ρn) ◦ h−1(O) = sup
p∈∆e

|w(p)|
[
Λ(ρn) ◦ h−1(O)− Λ(ρ) ◦ h−1(O)

]
¬ sup
p∈∆e

|w(p)| ‖Λ(ρn) ◦ h−1 − Λ(ρ) ◦ h−1‖TV

¬ 2 sup
p∈∆e

|w(p)| sup
x∈I

λ(x) ‖ρn − ρ‖TV

whence (2.2.23).

At this point, many properties of the filtering process may be deduced from the fact
that it is a PDMP, thanks to the widespread study of this class of processes. However,
in the following Chapters we will need nothing more than what we have already proved
about the PDMP nature of the filtering process.

To end this Section we introduce a canonical version of the filtering process. This
construction is useful for various applications, e. g. optimal stopping and optimal swit-
ching. In Chapter 3 and 4 we will adopt a slightly different construction, to take into
account the setting of the optimal control problem. Let us introduce the following ob-
jects.

• Ω̄ = {ω̄ : [0,+∞)→ ∆e, cádlág} denotes the canonical space for ∆e – valued
PDMPs. We define π̄t(ω̄) = ω̄(t), for ω̄ ∈ Ω̄, t ­ 0, and

τ̄0(ω̄) = 0,
τ̄n(ω̄) = inf{t > τ̄n−1(ω̄) s.t. π̄t(ω̄) 6= π̄t−(ω̄)}, n ∈ N,
τ̄∞(ω̄) = lim

n→∞
τ̄n(ω̄).

• The family of σ-algebras (F̄◦t )t­0 given by

F̄◦t = σ(π̄s, 0 ¬ s ¬ t), F̄◦ = σ(π̄s, s ­ 0),

is the natural filtration of the process π̄ = (π̄t)t­0.

• For every ν ∈ ∆e we denote by P̄ν the probability measure on (Ω̄, F̄◦) such that
the process π̄ is a PDMP, starting from the point ν and with characteristic triple
(F, r,R). We this, we mean that P̄ν–a.s.

π̄t = φπ̄τ̄n (t− τ̄n), t ∈ [τ̄n, τ̄n+1), n ∈ N0. (2.2.24)

P̄ν(τ̄n+1 − τ̄n > t, τ̄n < +∞ | F̄◦τ̄n) =

1τ̄n<+∞ exp
{
−
∫ t

0
r
(
φπ̄τ̄n (t)

)
ds
}
, t ­ 0, n ∈ N0. (2.2.25)

P̄ν(π̄τ̄n+1 ∈ D, τ̄n+1 < +∞ | F̄◦
τ̄−n+1

) =

1τ̄n+1<+∞R(φπ̄τ̄n (τ̄−n+1 − τ̄n);D), D ∈ B(∆e), n ∈ N0. (2.2.26)

where, for each n ∈ N0, φπ̄τ̄n is the flow starting from π̄τ̄n and determined by
the vector field F . We recall that this probability measure always exists by the
canonical construction of a PDMP (see Section 1.2).
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• For every Q ∈ P(∆e) we define a probability P̄Q on (Ω̄, F̄◦) by P̄Q(C) =∫
∆e

P̄ν(C)Q(dν) for C ∈ F̄◦. This means that Q is the initial distribution of π̄
under P̄Q.

• Let F̄Q be the P̄Q-completion of F̄◦. We still denote by P̄Q the measure natu-
rally extended to this new σ-algebra. Let Z̄Q be the family of sets in F̄Q with
zero P̄Q-probability and define

F̄Qt = σ(F̄◦t ∪ Z̄Q), F̄t =
⋂

Q∈P(∆e)

F̄Qt , t ­ 0.

(F̄t)t­0 is called the natural completed filtration of π̄. By Theorem 1.2.2 it is
right-continuous.

The PDMP (Ω̄, F̄ , (F̄t)t­0, (π̄t)t­0, (P̄ν)ν∈∆e
) constructed as above admits the cha-

racteristic triple (F, r,R).
The following Proposition, that we will revisit later in Chapters 3 and 4, provides

for each initial distribution µ of the unobserved process X the law of the filtering
process πµ under Pµ. Its proof will be omitted, since it is a slight generalization of [25,
Prop. 5.6.].

Proposition 2.2.10. For every µ ∈ P(I) the law of πµ = (πµt )t­0 is P̄Q where Q is
the Borel probability measure on ∆e defined as

Q := µ ◦ h−1 ◦ H−1, H(y) := Hy[µ].

Moreover, Q is concentrated on the set
⋃
y∈O
{Hy[µ]}.

Remark 2.2.6. The set ∪y∈O{Hy[µ]} is the image of the mapH defined in Proposition
2.2.10. This map is clearly a bijection, with inverse given for all ρ ∈ ∆e byH−1(ρ) =
projY(ρ) := y, whenever ρ ∈ ∆y . This shows also that H and its inverse are both
measurable, hence ∪y∈O{Hy[µ]} ∈ B(∆e).

2.3 The Markov chain case
In this brief Section we introduce the notation that will be used in Chapter 3, where
we assume that the state space I of the unobserved process is a finite set. The notation
adopted is almost the same used in [25]. The purpose of this Section is to get the reader
acquainted with this setting and also to give the chance to revisit the results obtained so
far in this Chapter in a simpler situation, before tackling the optimal control problem
studied in the next Chapters. Since any result that we are going to show is an adaptation
of the corresponding ones earlier obtained, we will state them without proof.

Let the set I be finite. We put ourselves in the canonical framework described in
Section 2.2. In particular, the definitions of the function h, the unobserved and observed
processes X and Y remain unchanged. Notice that the state space O of the observed
process is a finite set, too, and since we are considering h as a surjective function its
cardinality is no greater than that of the set I . As done in the general case, for any fixed
probability distribution µ on I we can find a probability measure Pµ on (Ω,X ◦) such
that the unobserved process X is a finite-state (X ◦,Pµ)–Markov chain, with initial
distribution µ and known rate transition matrix Λ = (λij)i,j∈I . This is a real square
matrix such that
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1. λij ­ 0 for all i, j ∈ I , i 6= j.

2.
∑
j∈I λij = 0 for all i ∈ I .

It is common to define λi := −λii =
∑
j∈I
j 6=i

λij for each i ∈ I . Analogously to

Assumption 2.0.1, we require that λi < +∞ for all i ∈ I .
The filtering process is defined for all i ∈ I as

Pµ(Xt = i | Yµt ), t ­ 0.

Its state space P(I) can be naturally identified with the canonical simplex on R|I|, i. e.

∆ := {ρ ∈ R|I| : ρ(i) ­ 0, ∀i = 1, . . . , |I|,
|I|∑
i=1

ρ(i) = 1}.

However, as we already know, the actual values of π lie in the so called effective simplex
∆e = ∪y∈O∆y , where for each y ∈ O the set ∆y is the family of probability measures
concentrated on h−1(y). The effective simplex is a proper subset of ∆ (unless the
function h is constant) and it is compact in the present finite dimensional setting.

We identify probability measures (or, more generally, finite measures) on I with
row vectors on R|I|. We will also denote by 1h−1(y) the column vector

[1h−1(y)]i =
{

1, i ∈ h−1(y)
0, otherwise

with subscript i indicating the i-th component of a vector.
Before discussing the filtering equation, let us observe that the definition of the

operator H is greatly simplified in this setting (see also Remark 2.1.4). In fact, we can
write it as

Hy[µ](i) =


0, if i /∈ h−1(y),

µ(i)
µ1h−1(y)

, if i ∈ h−1(y), µ1h−1(y) 6= 0,
νy, if µ1h−1(y) = 0,

(2.3.1)

where νy is an arbitrary probability measure concentrated on h−1(y) whose exact va-
lues are irrelevant.

The analogue of Equation (2.1.22) satisfied by the filtering process can be deduced
immediately from (2.1.19) considering the test functions ϕ = 1{i}, i ∈ I . To further
simplify the notation, let us introduce the revisited version of the vector field F : ∆e →
∆e.

Fj(ν) =
{

[νΛ]j − (νΛ1h−1(y))νj , j ∈ h−1(y)
0, otherwise

, ν ∈ ∆y, y ∈ O. (2.3.2)

Before introducing the filtering equation, we need to be sure that the ODE governed
by the vector field F admits a unique solution.

Proposition 2.3.1 ([25, Prop. 2.1]). For every y ∈ O, ρ ∈ ∆y the differential equation
d
dtz(t) = F

(
z(t)

)
t ­ 0

z(0) = ρ
(2.3.3)

has a unique global solution z : [0,+∞)→ R|I|. Moreover z(t) ∈ ∆y for all t ­ 0.
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The filtering equation can be stated as follows.

Theorem 2.3.2 ([25, Th. 2.2]). For all ω ∈ Ω define τ0(ω) ≡ 0 and for fixed µ ∈ ∆
the stochastic process πµ = (πµt )t­0 as the unique solution of the following system of
ODEs 

d
dtπ

µ
t (ω) = F

(
πµt (ω)

)
, t ∈ [τn(ω), τn+1(ω)), n ∈ N0

πµ0 (ω) = HY0(ω)[µ],
πµτn(ω) = HYτn (ω)[πµτ−n (ω)Λ], n ∈ N.

(2.3.4)

where F is the vector field defined in (2.3.2).
Then, πµ is (Yµt )t­0 - adapted and is a modification of the filtering process, i. e.

πµt (i) = Pµ(Xt = i | Yµt ), Pµ–a.s., t ­ 0, i ∈ I.

To end this Section, we discuss the characterization of the filtering process π as a
PDMP. The characteristic triple (F, r,R) is given by the vector field F introduced in
(2.3.2) and by

• The jump rate function r : ∆e → [0,+∞) defined as

r(ρ) := −ρΛ1h−1(y), ρ ∈ ∆y. (2.3.5)

• The transition probability R from
(
∆e,B(∆e)

)
into itself given for all D ∈

B(∆e) by
R(ρ;D) :=

∑
υ∈O

1D

(
Hυ[ρΛ]

)
q(ρ, υ), ρ ∈ ∆y (2.3.6)

with

q(ρ, υ) :=


ρΛ1h−1(υ)

−ρΛ1h−1(y)
1υ 6=y, if ρΛ1h−1(y) 6= 0

qy(υ), if ρΛ1h−1(y) = 0
, ρ ∈ ∆y

and where for each y ∈ O we denote by qy = (qy(υ))υ∈O a probability measure
concentrated on O \ {y} whose exact values are irrelevant.

The following Theorem is the counterpart of Theorem 2.2.7 and characterizes the
filtering process as a PDMP.

Theorem 2.3.3 ([25, Th. 5.4]). For every ν ∈ ∆e the filtering process πν = (πνt )t­0
defined on the probability space (Ω,X ,Pν) and taking values in ∆e is a controlled
Piecewise Deterministic Markov Process with respect to the triple (F, r,R) defined in
(2.3.2), (2.3.5), (2.3.6) and with starting point ν.

More specifically, we have that Pν–a.s.

πνt = φπντn (t− τn), t ∈ [τn, τn+1), n ∈ N0 (2.3.7)

Pν(τn+1 − τn > t, τn < +∞ | Yντn) =

1τn<+∞ exp
{
−
∫ t

0
r
(
φπντn (s)

)
ds
}
, t ­ 0, n ∈ N0 (2.3.8)
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Pν(πντn+1
∈ D, τn+1 < +∞ | Yν

τ−n+1
) =

1τn+1<+∞R
(
φπντn (τ−n+1 − τn);D

)
, D ∈ B(∆e), n ∈ N0 (2.3.9)

where, for each n ∈ N0, φπντn is the flow starting from πντn and determined by the
vector field F .

2.4 Some remarks on the observed process
In this brief Section we highlight what happens to the results proved in this Chapter
if we allow the function h, providing the observed process as in (2.0.6), to be one-
to-one or constant. We recall that these cases were excluded from our analysis since
the control problem arising from them is not of true partial observation nature and the
filtering problem is, in some sense, trivial. However, the assumption that h is neither
one-to-one nor constant is not used in any of the proofs contained in this Chapter and,
in fact, the reader may check that they still hold even in these cases, leading to the
results shown below.

The case where h is one-to-one is associated to a control problem with complete
observation. The state spaces of the processesX and Y are isomorphic and the filtering
problem is trivial, in the sense that the filtering process possesses piecewise constant
trajectories and takes values in the subset of P(I) given by Dirac probability measures.
In fact, the σ-algebras Xt and Yt coincide for all t ­ 0, up to P–null sets. Therefore,
we get that for all ϕ ∈ Bb(I)

πt(ϕ) = E[ϕ(Xt) | Yt] = E[ϕ(Xt) | Xt] = ϕ(Xt), t ­ 0, P–a.s.

whence πt(dx) = δXt(dx), t ­ 0, P–a.s.. Notice that the operator H , given in Defini-
tion 2.1.1, reduces to Hy[µ] = δy, y ∈ O, for all µ ∈ P(I).

The filtering process π is still a PDMP although, more specifically, is a pure jump
process. Its state space ∆e, i. e. the effective simplex, can be identified with the state
space I of the unobserved process X via Dirac probability measures

∆e = {δx : x ∈ I} ↔ I.

Its local characteristics are given for all ν ∈ ∆e and all D ∈ B(∆e) by

F (ν) = 0 r(ν) = r(δx) = λ(x) R(ν,D) = R(δx, D) = λ(x,A)
λ(x)

where A ∈ B(I) is the unique Borel set corresponding to D ∈ B(∆e) and λ is the rate
transition measure of the process X .

The case where h is constant is associated to a control problem with no information.
The state space of the observed process Y reduces to a single point and the filtering pro-
blem is trivial, in the sense that the filtering process becomes a deterministic function
of the time variable, taking values in P(I). In fact, the σ-algebras Yt coincide with the
trivial σ-algebra for all t ­ 0. Therefore, we get that for all ϕ ∈ Bb(I)

πt(ϕ) = E[ϕ(Xt) | Yt] = E[ϕ(Xt)], t ­ 0.

The filtering process π coincides with the law of the unobserved process X , its state
space is ∆e = P(I) and it satisfies the following evolution equation

d
dtπt = L?πt, t ­ 0

π0 = µ ∈ P(I)
(2.4.1)
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where L? is the adjoint operator associated to the infinitesimal generator L of the unob-
served processX , defined in (2.1.8). Since L is linear and bounded, the unique solution
to (2.4.1) is given by πt = etL

?

µ, t ­ 0, where
(
etL

?)
t­0 is the strongly continuous

semigroup associated to L?. Notice that if we assume that the process X takes values
on Rn and its law admits density with respect to the Lebesgue measure, then (2.4.1)
can be rewritten as a PIDE for the density process of X , called the Fokker-Planck
equation. Sometimes, also evolution equations as (2.4.1) in the space P(I) are called
Fokker-Planck equations.



CHAPTER 3

Optimal control: the finite dimensional case

In this Chapter we specialize the setting of Chapter 2 to the case where the unobserved
process X = (Xt)t­0 is a continuous-time homogeneous Markov chain and we study
an optimal control problem on infinite time horizon with partial observation.

The aim of our control problem is to optimize the dynamics of the Markov chainX
through the actions described by another stochastic process u = (ut)t­0, with values
in the set of Borel probability measures P(U) on a measurable space (U,U), the space
of control actions. Thus, control actions are specified by relaxed controls. This process
is chosen in a well defined class and is called control process. At any time the chosen
control action shall be based on the information provided by the observed process Y =
(Yt)t­0, that will be of noise-free type as in the previous Chapter. The choice of the
control process is done following a performance criterion that, in our setting, is the
minimization of a discounted cost functional.

Throughout this Chapter we will assume that I and O are finite sets and that U
is a compact metric space equipped with its Borel σ-algebra U . Therefore P(U) is
a compact metric space, too. As in Chapter 2, we are given a function h : I → O
that gives the values of the observed process Y as a deterministic transformation of
the values assumed by the unobserved process X . We consider this function to be
surjective, without loss of generality. We remind that, in general, h can be constant
or one-to-one, but we will exclude these cases in what follows. In the next Chapter,
precisely in Section 4.4, we will make some comments on the rôle of the function h in
the control problem.

We start our analysis in Section 3.1 by formulating our optimal control problem
with partial observation in a canonical setting for the Markov chain X . We will see
that, thanks to the filtering process (introduced in the uncontrolled case in Chapter 2),
we are able to rewrite this control problem in an equivalent one with complete ob-
servation, where the new state variable is the filtering process itself, in place of the
unobserved Markov chain X . However, we will need to reformulate our control pro-
blem, introducing a separated discrete-time control problem for the filtering process,
seen as a PDP.

The separated control problem will be formulated in Section 3.2 in a canonical
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setting for the PDP given by the filtering process. We will prove that the original and
the separated control problem are linked in various ways, culminating with a formula
providing an equality involving the value function V of the original control problem
and the value function v of the separated control problem.

At this point, as is common in the study of optimal control problems, we want to
characterize the original value function V . To do so, it is convenient to focus on the
value function v of the separated control problem. This is done in Section 3.3, where
we obtain, first, that v is the unique fixed point of a certain contraction mapping and,
second, that is the unique constrained viscosity solution (in Soner’s sense, see [59]) of
a Hamilton-Jacobi-Bellman integro-differential equation.

In Section 3.4 we provide an existence result of an ordinary optimal control. This
is of great importance since from the preceding results we are sure only about the
existence of a relaxed optimal control. Finally, in Section 3.5 we provide an example
where we are able to solve explicitly our optimal control problem.

3.1 The Markov chain optimal control problem
The setting that we will adopt in this Section is fairly similar to that introduced in
Section 2.3 and we advise the reader to give at least a quick glance to its contents, in
order to get acquainted with the notation used here. Nonetheless, we provide here all
the definitions and the results needed for our optimal control problem, since they must
be modified with respect to Section 2.3 to take into account the control process.

The aim of this Section is to provide a canonical framework for a continuous time
homogeneous Markov chain described by an initial law and a controlled rate transition
matrix on I , sometimes called Q-matrix (see e. g. [51]). By this we mean that for each
fixed u ∈ U we have a real square matrix Λ(u) = (λij(u))i,j∈I such that

1. λij(u) ­ 0 for all i, j ∈ I , i 6= j.

2.
∑
j∈I λij(u) = 0 for all i ∈ I .

It is quite common to write for each i ∈ I

λi(u) := −λii(u) =
∑
j∈I
j 6=i

λij(u).

On these matrix coefficients we introduce the following assumption

Assumption 3.1.1. For each i, j ∈ I the map u 7→ λij(u) is continuous (hence boun-
ded and uniformly continuous). In particular, we have that

sup
u∈U

λi(u) < +∞, i ∈ I.

We are going now to build the probability space on which the processes X , Y , u
are defined. The construction is very similar to that shown in Section 2.2. Let us define
Ω as the set

Ω = {ω = (i0, t1, i1, t2, i2, . . .) :
i0 ∈ I, in ∈ I, tn ∈ (0,+∞], tn < +∞⇒ tn < tn+1, n ∈ N}.
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For each n ∈ N we introduce the following random variables

Tn(ω) = tn; T∞(ω) = lim
n→∞

Tn(ω); ξ0(ω) = i0; ξn(ω) = in

and we define the random measure on
(
(0,+∞]× I, B

(
(0,+∞]

)
⊗ I

)
n(ω,dtdz) =

∑
n∈N

δ(
Tn(ω), ξn(ω)

)(dtdz)1{Tn<+∞}(ω), ω ∈ Ω

with associated natural filtration Nt = σ
(
n
(
(0, t] × {i}

)
, 0 ¬ s ¬ t, i ∈ I

)
. Finally,

let us specify the σ-algebras

X ◦0 = σ(ξ0); X ◦t = σ(X0 ∪Nt); X ◦ = σ
(⋃
t­0
Xt
)
.

The unobserved process X is defined as

Xt(ω) =


ξ0(ω), t ∈

[
0, T1(ω)

)
ξn(ω), t ∈

[
Tn(ω), Tn+1(ω)

)
, n ∈ N, Tn(ω) < +∞

i∞, t ∈
[
T∞(ω),+∞), T∞(ω) < +∞

where i∞ ∈ I is an arbitrary state, that is irrelevant to specify. Next, we define the
observed process Y and its natural filtration (Y◦t )t­0 as

Yt(ω) = h(Xt(ω)), t ­ 0, ω ∈ Ω; Y◦t = σ
(
Ys, 0 ¬ s ¬ t

)
, t ­ 0.

As we already pointed out in Section 2.2, we notice that we can equivalently describe
this process via a MPP (ηn, τn)n∈N with initial condition η0 = h(ξ0) = Y0. Each σ-
algebra Y◦t , t ­ 0 is the smallest σ-algebra generated by the union of σ(η0) and the
σ-algebra at time t of the natural filtration of the MPP (ηn, τn)n∈N.

As said at the beginning of this Chapter, we need to consider control processes u
that are based on the information brought by the observed process Y . More precisely,
we will choose controls in the class of admissible controls, defined as the set

Uad =
{

u : Ω× [0,+∞)→ P(U), (Y◦t )t­0 – predictable
}
. (3.1.1)

Remark 3.1.1. It must be pointed out that considering P(U) – valued processes (the
so called relaxed controls), instead of ordinary U – valued processes, has considerable
technical benefits that will be fully clear in Section 3.2. At this stage such a choice
has almost no impact on the problem itself (except for a slightly more complicated no-
tation), being both U and P(U) compact metric spaces. It is important to notice that
any ordinary control is included in this formulation by considering its corresponding
process in Uad whose value at each time t ­ 0 and ω ∈ Ω is given by a probability me-
asure concentrated at a single point in U . Ordinary controls are far easier to understand
and implement and we will later mention some technical results enabling us to use such
controls to prove the main results of this Chapter. As a final note on this subject, we
recall that the existence of an ordinary optimal control will be proved in Section 3.4.

Thanks to the peculiar structure of the natural filtration of Y we have a precise
characterization of the class Uad (see Theorem 1.1.2 and Remark 1.1.1 following it). A
control process u ∈ Uad is completely determined by a sequence of Borel-measurable



Chapter 3. Optimal control: the finite dimensional case 66

functions (un)n∈N̄0
, with un : [0,+∞) × O ×

(
(0,+∞) × O

)n → P(U) for each
n ∈ N̄0 and we can write

ut(ω) = u0(t, Y0(ω))1(0 ¬ t ¬ τ1(ω))+
∞∑
n=1

un(t, Y0(ω), τ1(ω), Yτ1(ω), . . . , τn(ω), Yτn(ω))1(τn(ω) < t ¬ τn+1(ω))+

u∞(t, Y0(ω), τ1(ω), Yτ1(ω), . . . )1(t > τ∞(ω)), (3.1.2)

where τ∞(ω) = limn→∞ τn(ω). This kind of decomposition of a control process u ∈
Uad will be of fundamental importance throughout this Chapter and we will frequently
switch between the notation (ut)t­0 and (un)n∈N̄0

. To simplify the notation, we will
often use the more compact writing un(·) instead of un(·, Y0(ω), . . . , τn(ω), Yτn(ω)),
for all n ∈ N0.

The dynamics of the unobserved process will be specified by the initial distribution
µ, a probability measure on I , and by the following random measure depending on u

νu(ω; dt× {i}) =

1
(
t < T∞(ω)

) ∫
U

λXt−(ω)i(u)ut(ω ; du) dt, if i 6= Xt−(ω)

0, if i = Xt−(ω)
(3.1.3)

for any ω ∈ Ω and u ∈ Uad. For sake of simplicity, we will drop ω in what follows.
Now set P0 as the probability measure on

(
Ω,X ◦0

)
such that X0 = ξ0 has law

µ. It is easy to see that the previously described setting is equivalent to that provided
in Assumption 1.1.3. In fact, one can show that the random measure νu is (X ◦t )t­0–
predictable and satisfies (1.1.3), i. e.

1. νu({t} × I) ¬ 1,

2. νu([T∞,+∞)× I
)

= 0.

Therefore, by Theorem 1.1.9, there exists a unique probability measure Pu
µ on

(
Ω,X ◦

)
,

such that Pu
µ|X◦0 = P0 and νu is the

(
Pu
µ,X ◦t

)
–predictable projection of n. Once

specified the control u ∈ Uad and consequently the probability measure Pu
µ, it follows

from Assumption 3.1.1 and by standard arguments that the point process n is Pu
µ-a.s.

non-explosive, i. e. that T∞ = +∞, Pu
µ-a.s.. For this reason we will drop the term

1(t < T∞) appearing in (3.1.3) and, since also τ∞ = +∞ Pu
µ-a.s., we will avoid

specifying the function u∞ in (3.1.2).
Finally, we define for each probability measure µ on I and u ∈ Uad the completions

of the natural filtrations of the processes X and Y as follows.

• X µ,u is the Pu
µ-completion of X ◦ (Pu

µ is extended to X µ,u in the natural way).

• Zµ,u is the family of elements of X µ,u with zero Pu
µ – probability.

• Yµ,ut := σ(Y◦t ,Zµ,u), for t ­ 0.

(Yµ,ut )t­0 is called the natural completed filtration of Y .
As we anticipated earlier, we choose control actions in order to minimize, for all

possible choices of the initial distribution µ of the processX , the following cost functi-
onal

J(µ,u) = Eu
µ

[∫ ∞
0

e−βt
∫
U

f(Xt, u)ut(du) dt
]

(3.1.4)
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where f is called cost function and β > 0 is a fixed constant called discount factor. In
other words, we want to characterize the value function

V (µ) = inf
u∈Uad

J(µ,u). (3.1.5)

We make the following Assumption on the cost function f , ensuring that the functi-
onal J is well defined (and also bounded).

Assumption 3.1.2. The function f : I × U → R is continuous. Since U is compact
and I finite, f is uniformly continuous and it holds that

sup
(i,u)∈I×U

|f(i, u)| ¬ Cf , (3.1.6)

for some constant Cf > 0.

Since I is a finite set, we will denote by f(u) the column vector whose components
are the values f(i, u) as i varies in the set I , for each fixed u ∈ U .

We can transform the problem formulated above into a complete observation pro-
blem by means of the filtering process. In what follows we state some results on this
process that in the uncontrolled case were already obtained in [25] and previously re-
called in Section 2.3. Hence, they can be deduced in the present controlled setting as
slight generalizations of those results or, alternatively, as generalizations of the corre-
sponding statements obtained in Chapter 2. That considered, we will present these facts
without proof.

The filtering process is defined for all i ∈ I as

Pu
µ(Xt = i | Yµ,ut ), t ­ 0.

It takes values on the set P(I) of probability measures on I which, being I a finite set,
can be naturally identified with the canonical simplex on R|I|, i. e.

∆ := {ρ ∈ R|I| : ρ(i) ­ 0, ∀i = 1, . . . , |I|,
|I|∑
i=1

ρ(i) = 1}.

As we already know the actual values of the filtering process lie in the so called effective
simplex ∆e, defined as ∆e := ∪y∈O∆y; for each y ∈ O, ∆y indicates the set of
probability measures concentrated on h−1(y). It is important to point out that in the
present setting we have also compactness of the effective simplex. Moreover, it is a
proper subset of ∆ unless the function h is constant.

It is worth noticing that the filtering process is a (Yµ,ut )t­0 – adapted process and
since (Yµ,ut )t­0 is right continuous we can choose a (Yµ,ut )t­0 – progressive version.
We will assume this whenever needed.

As did in Section 2.3, we will identify probability measures (or, more generally,
finite measures) on I with row vectors on R|I|.

Let us now define on the effective simplex the vector field F : ∆e × U → ∆e as

Fj(ν, u) =
{

[νΛ(u)]j − (νΛ(u)1h−1(y))νj , j ∈ h−1(y)
0, otherwise

, ν ∈ ∆y, y ∈ O, u ∈ U.

(3.1.7)
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We recall that subscript j denotes the j-th component of a vector and 1h−1(y) is the
column vector

[1h−1(y)]i =
{

1, i ∈ h−1(y)
0, otherwise

, y ∈ O.

It is clear that the map u 7→ F (ν, u) is measurable for all ν ∈ ∆e. Moreover, Assump-
tion 3.1.1 implies that F is Lipschitz continuous in ν uniformly in u, i. e. there exists a
constant LF > 0 such that

sup
u∈U
|F (ν, u)− F (ρ, u)| ¬ LF |ν − ρ|, for all ν, ρ ∈ ∆y, y ∈ O. (3.1.8)

Therefore, a generalization of Proposition 2.3.1 or Theorem 2.2.3 provides us with the
following result.

Proposition 3.1.1. For every y ∈ O, ρ ∈ ∆y and all measurable m : [0,+∞) →
P(U), the differential equation

d
dtz(t) =

∫
U

F (z(t), u)m(t ; du), t ­ 0

z(0) = ρ

(3.1.9)

has a unique global solution z : [0,+∞)→ R|I|. Moreover z(t) ∈ ∆y for all t ­ 0.

We will write φmy,ρ(t) instead of z(t) to stress the dependence of the solution to
(3.1.9) on ρ and on the measurable function m. To ease up the notation a little, we also
define φmρ (t) = φmy,ρ(t) if ρ ∈ ∆y to denote the global flow associated to the vector
field F .

As we already know, the filtering process solves a SDE, the filtering equation.
This SDE can be written pathwise as a system of ODEs, that specify the deterministic
behavior of the filtering process between two consecutive jump times of the process Y ;
its post-jump locations and its initial value are determined by the operator H , i. e. the
collection of functions Hy : R|I| → R|I|, as y varies in O, mapping row vectors into
row vectors and defined for each y ∈ O as

Hy[µ](i) =


0, if i /∈ h−1(y),

µ(i)
µ1h−1(y)

, if i ∈ h−1(y), µ1h−1(y) 6= 0,
νy, if µ1h−1(y) = 0,

(3.1.10)

where νy is an arbitrary probability measure supported on h−1(y) whose exact values
are irrelevant. Whenever the process Y jumps, say to y ∈ O, the filtering process jumps
to a specific state prescribed by the function Hy . This state belongs to the subset ∆y of
the effective simplex, necessarily different from the subset of ∆e to which the pre-jump
state belonged.

We are now ready to state the filtering equation, which extends to the case of con-
trolled process X the corresponding Theorem 2.3.2 and Theorem 2.1.6.

Theorem 3.1.2 (Filtering equation). For all ω ∈ Ω define τ0(ω) ≡ 0 and for fixed u ∈
Uad the stochastic process πµ,u = (πµ,ut )t­0 as the unique solution of the following
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system of ODEs

d
dtπ

µ,u
t (ω) =

∫
U

F (πµ,ut (ω), u)ut(ω ; du), t ∈ [τn(ω), τn+1(ω)), n ∈ N0

πµ,u0 (ω) = HY0(ω)[µ],

πµ,uτn (ω) = HYτn(ω)

[
πµ,u
τ−n (ω)(ω)

∫
U

Λ(u)uτ−n (ω ; du)
]
, n ∈ N.

(3.1.11)
where F is the vector field defined in (3.1.7).

Then, πµ,u is (Y◦t )t­0 - adapted and is a modification of the filtering process, i. e.

πµ,ut (i) = Pu
µ(Xt = i | Yµ,ut ), Pu

µ–a.s., t ­ 0, i ∈ I.

Remark 3.1.2. Thanks to the structure of admissible controls shown in (3.1.2) we can
write (3.1.11) as

d
dtπ

µ,u
t =

∫
U

F (πµ,ut , u)un(t, Y0, . . . , τn, Yτn ; du), t ∈ [τn, τn+1), n ∈ N0

πµ,u0 = HY0 [µ],

πµ,uτn = HYτn

[
πµ,u
τ−n

∫
U

Λ(u)un−1(τ−n , Y0, . . . , τn−1, Yτn−1 ; du)
]
, n ∈ N.

Also in the controlled case, we can clearly characterize the process π as a Piecewise
Deterministic Process (PDP), generalizing the corresponding Theorem 2.3.3 and The-
orem 2.2.7. Its characteristic triple (F, r,R) is given by the controlled vector field F
defined in (3.1.7), a controlled jump rate function r : ∆e×U → [0,+∞) and a control-
led stochastic kernel R, i. e. a probability transition kernel from (∆e ×U,B(∆e)⊗U)
to (∆e,B(∆e)). We define the functions in this triple as

Fj(ν, u) =
{

[νΛ(u)]j − (νΛ(u)1h−1(y))νj , j ∈ h−1(y)
0, otherwise

, ν ∈ ∆y, y ∈ O.

r(ρ, u) = −ρΛ(u)1h−1(y), ρ ∈ ∆y

R(ρ, u;D) =
∑
b∈O

1D

(
Hb[ρΛ(u)]

)
q(ρ, u, b), ρ ∈ ∆y

q(ρ, u, b) =


ρΛ(u)1h−1(b)

−ρΛ(u)1h−1(y)
1b 6=y, if ρΛ(u)1h−1(y) 6= 0

qy(b), if ρΛ(u)1h−1(y) = 0
, ρ ∈ ∆y

(3.1.12)

where for each y ∈ O we denote by qy = (qy(b))b∈O a probability measure concen-
trated on O \ {y} whose exact values are irrelevant. It is important to notice that under
Assumption 3.1.1 r is Lipschitz continuous uniformly in u, i. e.

sup
u∈U
|r(ρ, u)− r(ϑ, u)| ¬ Lr|ρ− ϑ|, for all ρ, ϑ ∈ ∆y, y ∈ O, (3.1.13)

with Lipschitz constant given by Lr =
∑
i∈I supu∈U λi(u). We also have that for

some Cr > 0
sup

(ρ,u)∈∆e×U
|r(ρ, u)| ¬ Cr. (3.1.14)
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Theorem 3.1.3. For every ν ∈ ∆e and all u ∈ Uad the filtering process πν,u =
(πν,ut )t­0 defined on the probability space (Ω,X ◦,Pu

ν ) and taking values in ∆e is a
controlled Piecewise Deterministic Process with respect to the triple (F, r,R) defined
in (3.1.12) and with starting point ν.

More specifically, we have that Pu
ν –a.s.

πν,ut = φun
πν,uτn

(t− τn), on {τn < +∞}, t ∈ [τn, τn+1), n ∈ N0 (3.1.15)

Pu
ν (τn+1 − τn > t, τn < +∞ | Yν,uτn ) =

1τn<+∞ exp
{
−
∫ t

0

∫
U

r
(
φ
un(·+ τn)
πν,uτn

(s), u
)
un(s+ τn ; du) ds

}
, t ­ 0 (3.1.16)

Pu
ν (πν,uτn+1

∈ D, τn+1 < +∞ | Yν,u
τ−n+1

) =

1τn+1<+∞

∫
U

R
(
φ
un(·+ τn)
πν,uτn

(τ−n+1 − τn), u;D
)
un(τ−n+1 ; du), D ∈ B(∆e)

(3.1.17)

where, for each n ∈ N0, φun
πν,uτn

is the flow starting from πν,uτn and determined by the
controlled vector field F under the action of the control function un(·, Y0, . . . , τn, Yτn).

Remark 3.1.3. We already pointed out in Section 2.2 the importance of characterizing
the filtering process as a PDP. Concerning the situation described in this Chapter, an
additional advantage of this characterization comes from the available works in the
literature regarding optimal control problems involving PDPs. In these problems it is
customary to define the class of admissible controls as piecewise open-loop controls.
These control functions, first studied by Vermes in [61], depend at any time t ­ 0 on
the position of the PDP at the last jump-time prior to t and on the time elapsed since
the last jump.

In (3.1.1) we specified a different class of admissible controls, more suited to our
problem and imposed by the fact that we are dealing with partial observation, hence
equations (3.1.15), (3.1.16) and (3.1.17) are changed with respect to the standard for-
mulation with piecewise open-loop controls. Another element in contrast with the usual
definition of a PDP is the absence in our model of a boundary, since this will be enough
for our purposes.

A common assumption in PDP optimal control problems is that the transition mea-
sureR is a Feller kernel. This fails to happen in our situation but, nonetheless, a weaker
form of this property holds and it is stated in the following Proposition.

Proposition 3.1.4. Let Assumption 3.1.1 hold. Then for every bounded and continuous
function w : ∆e → R the function ρ 7→ r(ρ, u)

∫
∆e
w(p)R(ρ, u; dp) is continuous on

∆e uniformly in u ∈ U .

Proof. Fix ρ ∈ ∆e, i. e. ρ ∈ ∆a for some a ∈ O, and u ∈ U . Let (ρn)n∈N be a
sequence such that ρn → ρ as n → +∞. Without loss of generality we can assume
that ρn ∈ ∆a for all n ∈ N.

Let us consider, first, the case where r(ρ, u) > 0. It is easy to see that the function
ρ 7→ r(ρ, u) is continuous on ∆e uniformly in u ∈ U , therefore r(ρn, u) > 0 apart
from a finite number of indices n ∈ N. We want to prove that∣∣∣∣r(ρn, u)

∫
∆e

w(p)R(ρn, u; dp)− r(ρ, u)
∫

∆e

w(p)R(ρ, u; dp)
∣∣∣∣→ 0, as n→ +∞,
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uniformly with respect to u ∈ U , i. e.∣∣∣∣ ∑
a6=b∈O

∑
i∈h−1(a)

∑
j∈h−1(b)

{
w(Hb[ρnΛu])ρni − w(Hb[ρΛu])ρi

}
λij(u)

∣∣∣∣→ 0, (3.1.18)

as n→ +∞ uniformly in u ∈ U .
Let B = {b ∈ O, b 6= a, such that

∑
i∈h−1(a)

∑
j∈h−1(b)

ρiλij(u) > 0} and B0 =

Bc \ {a}. Clearly, reasoning as before, we have that
∑

i∈h−1(a)

∑
j∈h−1(b)

ρni λij(u) > 0,

apart from a finite number of indices n ∈ N, for each b ∈ B. We have also that∑
i∈h−1(a)

∑
j∈h−1(b)

ρni λij(u) → 0 for all b ∈ B0 uniformly in u. Then from equation

(3.1.18) we can get the estimate∣∣∣∣∑
b∈B

∑
i∈h−1(a)

∑
j∈h−1(b)

{
w(Hb[ρnΛu])ρni − w(Hb[ρΛu])ρi

}
λij(u)

+
∑
b∈B0

∑
i∈h−1(a)

∑
j∈h−1(b)

w(Hb[ρnΛu])ρni λij(u)
∣∣∣∣

¬CΛ
∑
b∈B

∣∣w(Hb[ρnΛu])− w(Hb[ρΛu])
∣∣+ |B|CΛ sup

p∈∆e

|w(p)|
∑

i∈h−1(a)

∣∣ρni − ρi∣∣
+ sup
p∈∆e

|w(p)|
∑
b∈B0

∑
i∈h−1(a)

∑
j∈h−1(b)

ρni λij(u),

(3.1.19)

where CΛ = maxi∈h−1(a) supu∈U λi(u) is finite thanks to Assumption 3.1.1.
It is clear that the second and the third summand of the last inequality tend to 0,

as n goes to infinity, uniformly in u. The difficult task is to show that this is the case
also for the first summand. Since the function w is continuous on ∆e, there exists a
modulus of continuity ηw such that∑

b∈B

∣∣w(Hb[ρnΛu])− w(Hb[ρΛu])
∣∣ ¬∑

b∈B

ηw(
∣∣Hb[ρnΛu]−Hb[ρΛu]

∣∣). (3.1.20)

Therefore we can fix b ∈ B and concentrate ourselves on the term
∣∣Hb[ρnΛu] −

Hb[ρΛu]
∣∣. We need to show that∣∣Hb[ρnΛu]−Hb[ρΛu]

∣∣ =

∑
j∈h−1(b)

∣∣∣∣∣
∑

i∈h−1(a)
ρiλij(u)

∑
k∈h−1(a)

∑
l∈h−1(b)

ρkλkl(u)
−

∑
i∈h−1(a)

ρni λij(u)

∑
k∈h−1(a)

∑
l∈h−1(b)

ρnkλkl(u)

∣∣∣∣∣ (3.1.21)

tends to 0 as n→ +∞ uniformly in u. Notice that defining

K := 1( ∑
k∈h−1(a)

∑
l∈h−1(b)

ρkλkl(u)
)( ∑

k∈h−1(a)

∑
l∈h−1(b)

ρnkλkl(u)
)
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we can rewrite
∣∣Hb[ρnΛu]−Hb[ρΛu]

∣∣ as∣∣Hb[ρnΛu]−Hb[ρΛu]
∣∣ =

K
∑

j∈h−1(b)

∣∣∣ ∑
i∈h−1(a)

{
ρiλij(u)

∑
k∈h−1(a)

∑
l∈h−1(b)

ρnkλkl(u)

− ρni λij(u)
∑

k∈h−1(a)

∑
l∈h−1(b)

ρkλkl(u)
}∣∣∣ (3.1.22)

Let A0 = {i ∈ h−1(a) such that ρi = 0} and A = h−1(a) \ A0. It is obvious
that

∑
k∈h−1(a)

∑
l∈h−1(b)

ρkλkl(u) =
∑
k∈A

∑
l∈h−1(b)

ρkλkl(u). Using such a decomposition

of the set h−1(a) the sums appearing in (3.1.22) can be estimated in the following way

∑
j∈h−1(b)

∣∣∣∣∣ ∑
i∈h−1(a)

{
ρiλij(u)

∑
k∈h−1(a)

∑
l∈h−1(b)

ρnkλkl(u)

− ρni λij(u)
∑

k∈h−1(a)

∑
l∈h−1(b)

ρkλkl(u)
}∣∣∣∣∣

=
∑

j∈h−1(b)

∣∣∣∣∣∑
i∈A

ρiλij(u)
∑

k∈h−1(a)

∑
l∈h−1(b)

ρnkλkl(u)

−
∑

i∈h−1(a)

ρni λij(u)
∑
k∈A

∑
l∈h−1(b)

ρkλkl(u)

∣∣∣∣∣
¬ 2

∑
i∈A
|ρi − ρni |

∑
j∈h−1(b)

λij(u)
∑

k∈h−1(a)

∑
l∈h−1(b)

ρnkλkl(u)

+ 2
∑
i∈A

∑
k∈A0

∑
j,l∈h−1(b)

ρni ρ
n
kλij(u)λkl(u).

Therefore we obtain∣∣Hb[ρnΛu]−Hb[ρΛu]
∣∣

¬ 2

∑
i∈A
|ρi − ρni |

∑
j∈h−1(b)

λij(u)

∑
i∈A

∑
j∈h−1(b)

ρiλij(u)
+ 2

∑
i∈A

∑
k∈A0

∑
j,l∈h−1(b)

ρni ρ
n
kλij(u)λkl(u)

∑
i∈A

∑
k∈A

ρiρnk
∑

j,l∈h−1(b)
λij(u)λkl(u)

.

(3.1.23)

We are left to prove that the two terms appearing in (3.1.23) tend to zero uniformly
in u. It suffices to rewrite them in a suitable way, exploiting the properties granted by
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the decomposition h−1(a) = A ∪A0. As for the first summand:∑
i∈A
|ρi − ρni |

∑
j∈h−1(b)

λij(u)

∑
i∈A

∑
j∈h−1(b)

ρiλij(u)
=

∑
i∈A

|ρi − ρni |
∑

j∈h−1(b)
λij(u)

ρi
∑

j∈h−1(b)
λij(u)

ρi
∑

j∈h−1(b)
λij(u)

∑
i∈A

∑
j∈h−1(b)

ρiλij(u)︸ ︷︷ ︸
¬1 ∀u∈U

¬
∑
i∈A

|ρi − ρni |
ρi

→ 0

uniformly in u ∈ U . Finally, for the second summand 1:∑
i∈A

∑
k∈A0

∑
j,l∈h−1(b)

ρni ρ
n
kλij(u)λkl(u)

∑
i∈A

∑
k∈A

ρiρnk
∑

j,l∈h−1(b)
λij(u)λkl(u)

=

∑
i∈A

∑
k∈A0

ρni ρ
n
k

∑
j,l∈h−1(b)

λij(u)λkl(u)

ρiρni
∑

j,l∈h−1(b)
λij(u)λkl(u)

ρiρ
n
i

∑
j,l∈h−1(b)

λij(u)λkl(u)

∑
i∈A

∑
k∈A

ρiρnk
∑

j,l∈h−1(b)
λij(u)λkl(u)︸ ︷︷ ︸

¬1 ∀u∈U

¬
∑
i∈A

∑
k∈A0

ρnk
ρi
→ 0 uniformly in u ∈ U.

Combining the result just obtained with equations (3.1.19) and (3.1.20) we get the
claim in the case r(ρ, u) > 0.

The case r(ρ, u) = 0 is much less cumbersome to analyze. Without loss of genera-
lity we can assume that the sequence r(ρn, u) 6= 0 starting from some index n on (the
case in which the sequence is equal to 0 eventually is trivial). We have to prove that∣∣∣∣r(ρn, u)

∫
∆e

w(p)R(ρn, u; dp)
∣∣∣∣= ∣∣∣∣ ∑

a6=b∈O
w(Hb[ρnΛu])

∑
i∈h−1(a)

∑
j∈h−1(b)

ρni λij(u)
∣∣∣∣

tends to zero, as n tends to infinity, uniformly with respect to u ∈ U . Thanks to the
boundedness of the function w we immediately get∣∣∣∣ ∑

a6=b∈O
w(Hb[ρnΛu])

∑
i∈h−1(a)

∑
j∈h−1(b)

ρni λij(u)
∣∣∣∣

¬ sup
p∈∆e

|w(p)|
∑

a6=b∈O

∑
i∈h−1(a)

∑
j∈h−1(b)

ρni λij(u). (3.1.24)

The properties of the matrix coefficients λij(u) ensure that

0 =
∑

i∈h−1(a)

∑
j∈h−1(a)

ρiλij(u)

︸ ︷︷ ︸
r(ρ,u)=0

+
∑

a6=b∈O

∑
i∈h−1(a)

∑
j∈h−1(b)

ρiλij(u)

︸ ︷︷ ︸
­0, ∀b6=a

.

1Provided that
∑

j,l∈h−1(b)
λij(u)λkl(u) 6= 0 for all i ∈ A and all k ∈ A0. If this is not the case for

some indices i, k, one can just exclude these indices from the sum appearing in the numerator of this term.
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Therefore the terms
∑

i∈h−1(a)

∑
j∈h−1(b)

ρiλij(u) are equal to zero for all b 6= a and

since ρni
∑

j∈h−1(b)
λij(u) → ρi

∑
j∈h−1(b)

λij(u) = 0 for all i ∈ h−1(a) and all b 6= a

uniformly in u, we get the desired result from equation (3.1.24).

We can now turn our attention back to the optimal control problem. We recall that
the aim is to minimize the cost functional J defined in (3.1.4), i. e. to study the value
function V defined in (3.1.5). Since the control processes u are (Y◦t )t­0 – predictable
and we know that the filtering process πµ,u provides us with the conditional law of Xt

given Yµ,ut , for all t ­ 0, it is easy to show that

J(µ,u) = Eu
µ

[∫ ∞
0

e−βtπµ,ut

∫
U

f(u)ut(du) dt
]
. (3.1.25)

Evidently, this form of the functional J has the advantage of depending on com-
pletely observable processes, namely πµ,u and u (which in turn depend on Y ), so that
we have turned the optimal control problem for the Markov chain X into an optimal
control problem for the PDP πµ,u. Moreover, we can write J in a way that allows us
to interpret our problem as a discrete-time control problem. Exploiting the structure of
admissible controls u = (un)n∈N0 ∈ Uad and recalling that for each n ∈ N0, un is
Y◦τn–measurable, it is easy to see that

J(µ,u) = Eu
µ

[+∞∑
n=0

∫ τn+1

τn

e−βtπµ,ut

∫
U

f(u)un(t ; du) dt
]

=Eu
µ

[+∞∑
n=0

e−βτn
∫ τn+1−τn

0
e−βtφ

un(·+ τn)
πµ,uτn

(t)
∫
U

f(u)un(t+ τn ; du) dt
]

=
+∞∑
n=0

Eu
µ

[
Eu
µ

[
e−βτn

∫ τn+1−τn

0
e−βtφ

un(·+ τn)
πµ,uτn

(t)
∫
U

f(u)un(t+ τn ; du) dt | Yµ,uτn

]]

=Eu
µ

[+∞∑
n=0

e−βτn
∫ +∞

0
e−βtχ

un(·+ τn)
πµ,uτn

(t)φun(·+ τn)
πµ,uτn

(t)
∫
U

f(u)un(t+ τn ; du) dt
]

=Eu
µ

[+∞∑
n=0

e−βτng
(
πµ,uτn , un(·+ τn, Y0, τ1, Yτ1 , . . . , τn, Yτn)

)]
(3.1.26)

where the function g (that will be defined precisely in Section 3.2) represents the double
integral appearing in the fourth line and χun(·+ τn)

πµ,uτn
is the survival distribution appearing

in (3.1.16).
Unfortunately, the reformulated problem does not fit in the framework of a classical

discrete-time optimal control problem (see e. g. [13]) for various reasons. For instance,
the problem should be based only on the discrete-time process given by the pairs of
jump times and jump locations of the filtering process πµ,u (notice that in (3.1.26)
also the process Y appears) which, in turn, should not depend on the initial law of the
process X and on the control trajectory u. Moreover, the class of admissible controls
Uad is not adequate for a discrete-time problem, since its policies should be functions
depending at each time step exclusively on the past trajectory of a discrete-time process
(in this case, the one based on the filtering process, as explained above). It is immediate
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to see that this is not the case for (3.1.26), since each of the functions un depends on a
continuous-time variable and on the positions of the process Y .

We will solve these issues by reformulating our original control problem into a
discrete-time one based on the filtering process, introducing also a new class of controls
strongly related to the family Uad.

3.2 The separated optimal control problem
In this Section we will reformulate the original optimal control problem into a discrete-
time one based on the filtering process. This reformulation will fall in the framework
of [13] (from which we will borrow some terminology), a fact that enables us to use
known results to study the value function V defined in (3.1.5). We will prove that the
original control problem and the separated one are deeply connected. In particular, we
will show that the value function V can be indirectly characterized by its counterpart
in the separated problem, that will be analyzed in detail in the next section.

Let us introduce the action space

M = {m : [0,+∞)→ P(U), measurable} (3.2.1)

whose elements are relaxed controls. It is known that this space endowed with the
Young topology is compact (see e. g. [32]). As already pointed out in Remark 3.1.1, the
set of ordinary controls

A = {α : [0,+∞)→ U, measurable}

can be identified as a subset ofM via the function t 7→ δα(t), α ∈ A, where δu denotes
the Dirac probability measure concentrated at the point u ∈ U . As proved in [67,
Lemma 1], this set becomes a Borel space when endowed with the coarsest σ-algebra
such that the maps

α 7→
∫ +∞

0
e−tψ(t, α(t)) dt

are measurable for all ψ : [0,+∞) × U → R, bounded and measurable. This is a
fundamental fact to be used in the sequel. Finally, we define the class of admissible
policies Aad for the separated optimal control problem as

Aad = {a = (an)n∈N̄0
, an : ∆e ×

(
(0,+∞)×∆e

)n →M measurable ∀n ∈ N̄0}.
(3.2.2)

We are now ready to introduce the separated PDP optimal control problem. Since
this separated control problem uses the filtering process as a state variable, we need to
put ourselves in a canonical framework for this process. Notice that the construction is
similar to that given at the end of Section 2.2. We define the following objects.

• Ω̄ = {ω̄ : [0,+∞)→ ∆e, cádlág} denotes the canonical space for ∆e – valued
PDPs. We define π̄t(ω̄) = ω̄(t), for ω̄ ∈ Ω̄, t ­ 0, and

τ̄0(ω̄) = 0,
τ̄n(ω̄) = inf{t > τ̄n−1(ω̄) s.t. π̄t(ω̄) 6= π̄t−(ω̄)}, n ∈ N,
τ̄∞(ω̄) = lim

n→∞
τ̄n(ω̄).
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• The family of σ-algebras (F̄◦t )t­0 given by

F̄◦t = σ(π̄s, 0 ¬ s ¬ t), F̄◦ = σ(π̄s, s ­ 0),

is the natural filtration of the process π̄ = (π̄t)t­0.

• For every ν ∈ ∆e and all a ∈ Aad we denote by P̄a
ν the probability measure

on (Ω̄, F̄◦) such that the process π̄ is a PDP, starting from the point ν and with
characteristic triple (F, r,R). We this, we mean that P̄a

ν–a.s.

π̄t = φanπ̄τ̄n (t− τ̄n), on {τ̄n < +∞}, t ∈ [τ̄n, τ̄n+1), n ∈ N0. (3.2.3)

P̄a
ν(τ̄n+1 − τ̄n > t, τ̄n < +∞ | F̄◦τ̄n) =

1τ̄n<+∞ exp
{
−
∫ t

0

∫
U

r(φanπ̄τ̄n (t), u) an(s ; du) ds
}
, t ­ 0. (3.2.4)

P̄a
ν(π̄τ̄n+1 ∈ D, τ̄n+1 < +∞ | F̄◦

τ̄−n+1
) =

1τ̄n+1<+∞

∫
U

R(φanπ̄τ̄n (τ̄−n+1− τ̄n), u;D) an(τ̄−n+1− τ̄n ; du), D ∈ B(∆e).

(3.2.5)

where we simplified the notation by indicating an = an(π̄0, . . . , τ̄n, π̄τ̄n) and,
for each n ∈ N0, we denoted by φanπ̄τ̄n the flow starting from π̄τ̄n and deter-
mined by the controlled vector field F under the action of the relaxed control
an(π̄0, . . . , τ̄n, π̄τ̄n). We recall that the probability measure P̄a

ν always exists by
the canonical construction of a PDP (see Section 1.2).

• For everyQ ∈ P(∆e) and every a ∈ Aad we define a probability P̄a
Q on (Ω̄, F̄◦)

by P̄a
Q(C) =

∫
∆e

P̄a
ν(C)Q(dν) for C ∈ F̄◦. This means that Q is the initial

distribution of π̄ under P̄a
Q.

• Let F̄Q,a be the P̄a
Q-completion of F̄◦. We still denote by P̄a

Q the measure na-
turally extended to this new σ-algebra. Let Z̄Q,a be the family of sets in F̄Q,a
with zero P̄a

Q-probability and define

F̄Q,at = σ(F̄◦t ∪ Z̄Q,a), F̄t =
⋂

Q∈P(∆e)
a∈Aad

F̄Q,at , t ­ 0.

(F̄t)t­0 is called the natural completed filtration of π̄. By a slight generalization
of Theorem 1.2.2 it is right-continuous.

The PDP (Ω̄, F̄ , (F̄t)t­0, (π̄t)t­0, (P̄a
ν)a∈Aad
ν∈∆e

) constructed as above admits the charac-
teristic triple (F, r,R). For sake of brevity, let us introduce the function χmρ , depending
on ρ ∈ ∆e and m ∈M, given by

χmρ (t) = exp
{
−
∫ t

0

∫
U

r(φmρ (s), u)m(s ; du) ds
}
, t ­ 0. (3.2.6)
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In this way, we can write (3.2.4) as

P̄a
ν(τ̄n+1 − τ̄n > t | F̄◦τ̄n) = χanν (t), t ­ 0, on {τ̄n < +∞}.

It is worth noticing that χmρ solves the ODE
d
dtz(t) = −z(t)

∫
U

r(φmρ (t), u)m(t ; du), t ­ 0

z(0) = 1
(3.2.7)

We define the observed process Ȳ on Ω̄ as follows. Let us introduce the (obviously
measurable) function projY : ∆e → O given by

projY(p) = y, if p ∈ ∆y, for some y ∈ O

and set

Ȳt(ω̄) =


projY(π̄0(ω̄)), t ∈

[
0, τ̄1(ω̄)

)
projY(π̄τ̄n(ω̄)(ω̄)), t ∈

[
τ̄n(ω̄), τ̄n+1(ω̄)

)
, n ∈ N, τ̄n(ω̄) < +∞

o∞, t ∈
[
τ̄∞(ω̄),+∞), τ̄∞(ω̄) < +∞

,

where o∞ ∈ O is an arbitrary state, that is irrelevant to specify. In fact, it is easy to
prove by standard arguments that under Assumption 3.1.1 for each fixed ν ∈ ∆e and
a ∈ Aad we have that τ̄∞ = +∞, P̄a

ν–a.s., i. e. also in this framework the observed
process is P̄a

ν–a.s. non explosive.
Next, let us define the counterpart of the functional J , appearing in (3.1.25), as

follows. Let g : ∆e ×M→ R be the discrete-time one-stage cost function defined as

g(ν,m) =
∫ +∞

0
e−βtχmν (t)φmν (t)

∫
U

f(u)m(t ; du) dt. (3.2.8)

For each ν ∈ ∆e and a ∈ Aad the cost functional J̄ of the separated problem is defined
in analogy with the last line of (3.1.26) as

J̄(ν,a) = Ēa
ν

[+∞∑
n=0

e−βτ̄ng
(
π̄τ̄n , an(π̄τ̄0 , . . . , τ̄n, π̄τ̄n)

)]
. (3.2.9)

Finally, we define the value function of the separated problem as

v(ν) = inf
a∈Aad

J̄(ν,a). (3.2.10)

It is now fundamental to establish a connection between the cost functionals given
in (3.1.25) and (3.2.9). This link will be given by constructing corresponding admissi-
ble controls in Uad and admissible policies in Aad.

Theorem 3.2.1. Fix µ ∈ ∆ and let Q ∈ P(∆e) the Borel probability measure on ∆e

concentrated at points Hy[µ] ∈ ∆e, as y varies in the set O, defined as

Q(D) =
∑
y∈O

µ(h−1(y))δHy [µ](D), D ∈ B(∆e). (3.2.11)
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For all µ ∈ ∆ and all u ∈ Uad there exists an admissible policy a ∈ Aad such
that the laws of πµ,u under Pu

µ and of π̄ under P̄a
Q are the same. Moreover, for such an

admissible policy
J(µ,u) =

∑
y∈O

µ(h−1(y))J̄(Hy[µ],a). (3.2.12)

Viceversa, for all µ ∈ ∆ and all a = (an)n∈N ∈ Aad there exists an admissible control
u ∈ Uad such that the same conclusions hold.

Proof. Let us prove the first part of the theorem. Let u ∈ Uad be fixed and for all
n ∈ N0 let us define the functions an : ∆e ×

(
(0,+∞)×∆e

)n →M as

an(ν0, . . . , sn, νn)(t ; du) = un
(
t+ sn,projY(ν0), . . . , sn,projY(νn) ; du

)
for all possible sequences (νi)ni=0 ⊂ ∆e and (si)ni=1 ⊂ (0,+∞).

Thanks to the fact that projY is Borel-measurable and that M is a Borel space,
we can apply [67, Lemma 3(i)] and it follows that each function an is measurable.
Therefore we have that a = (an)n∈N0 ∈ Aad.

The laws of πµ,u under Pu
µ and π̄ under P̄a

Q are determined respectively by the
finite-dimensional distributions of the stochastic processes {πµ,u0 , τ1, π

µ,u
τ1 , . . . } and

{π̄0, τ̄1, π̄τ1 , . . . } and by the flows associated to the controlled vector fields Fu and
F a. These laws, in turn, can be expressed via the initial distributions of πµ,u0 and π̄0
and the conditional distributions of the sojourn times and post-jump locations, i. e. for
t ­ 0 and D ∈ B(∆e) the quantities

Pu
µ(τn − τn−1 > t, τn−1 < +∞ | πµ,u0 , . . . , τn−1, π

µ,u
τn−1

); (3.2.13)

P̄a
Q(τ̄n − τ̄n−1 > t, τ̄n−1 < +∞ | π̄0, . . . , τ̄n−1, π̄τ̄n−1); (3.2.14)

Pu
µ(πµ,uτn ∈ D, τn < +∞ | πµ,u0 , . . . , πµ,uτn−1

, τn); (3.2.15)

P̄a
Q(π̄τ̄n ∈ D, τ̄n < +∞ | π̄0, . . . , π̄τ̄n−1 , τ̄n). (3.2.16)

We will now prove that under the two different probability measures Pu
µ and P̄a

Q the
distributions (3.2.13) - (3.2.16) along with the initial laws of πµ,u0 and π̄0 are equal.
Initial distribution. Fix D ∈ B(∆e). Then

Pu
µ(πµ,u0 ∈ D) = Pu

µ(HY0 [µ] ∈ D) =
∑
y∈O

Pu
µ(Hy[µ] ∈ D,Y0 = y)

=
∑
y∈O

Pu
µ(Y0 = y)δHy [µ](D) =

∑
y∈O

µ(h−1(y))δHy [µ](D) = Q(D),

since the events {Hy[µ] ∈ D} are either of probability zero or one with respect to Pu
µ

for all y ∈ O. On the other side

P̄a
Q(π̄0 ∈ D) =

∫
∆e

P̄a
ν(π̄0 ∈ D)Q(dν) =

∑
y∈O

µ(h−1(y))P̄a
Hy [µ](π̄0 ∈ D)

=
∑
y∈O

µ(h−1(y))δHy [µ](D) = Q(D).

Sojourn times. Let us analyze, first, the conditional law (3.2.13). Notice that since we
are considering (3.2.13) on the set τn−1 < +∞, πµ,uτn−1

is well defined and the law of
τn − τn−1 is not trivial. Fix p0, . . . , pn−1 ∈ ∆e, where for each i = 0, . . . , n − 1,
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pi ∈ ∆bi for some b0 6= b1 6= · · · 6= bn−1 ∈ O; fix also 0 < s1 < · · · < sn−1 < +∞.
Since a trajectory of the observed process Y uniquely determines a trajectory of the
filtering process πµ,u and viceversa, we can immediately deduce that, up to Pu

µ-null
sets

Yµ,uτn−1
= σ(πµ,u0 , . . . , τn−1, π

µ,u
τn−1

) and Yµ,u
τ−n

= σ(πµ,u0 , . . . , πµ,uτn−1
, τn).

From this fact and (3.1.16) we can write for t ­ 0

Pu
µ(τn − τn−1 > t, τn−1 < +∞ | πµ,u0 = p0, . . . , τn−1 = sn−1, π

µ,u
τn−1

= pn−1)

=χun−1
pn−1

(t) = exp
{
−
∫ t

0

∫
U

r
(
φun−1
pn−1

(s), u
)
un−1(s+ sn−1 ; du) ds

}
.

The function un−1 = un−1(· + sn−1, b0, . . . , sn−1, bn−1) can be clearly expressed
as

un−1(·+ sn−1, projY(p0), . . . , sn−1, projY(pn−1)).

Therefore, if we compare the previous computation with

P̄a
Q(τ̄n − τ̄n−1 > t, τ̄n−1 < +∞ | π̄0 = p0, . . . , τ̄n−1 = sn−1, π̄τn−1 = pn−1)

=χan−1
pn−1

(t) = exp
{
−
∫ t

0

∫
U

r
(
φan−1
pn−1

(s), u
)
an−1(p0, . . . , sn−1, pn−1)(s ; du) ds

}
,

we get the desired result, by definition of a.
Post-jump locations. Continuing with the notation previously introduced (where we
add only a new value sn such that 0 < s1 < · · · < sn < +∞), we can write (3.2.15)
as

Pu
µ(πµ,uτn ∈ D, τn < +∞ | πµ,u0 = p0, . . . , π

µ,u
τn−1

= pn−1, τn = sn)

=
∫
U

R
(
φun−1
pn−1

(s−n − sn−1), u ;D
)
un−1(s−n , b0, . . . , sn−1, bn−1 ; du).

On the other hand, we know from (3.2.4)

P̄a
Q(π̄τn ∈ D, τ̄n < +∞ | π̄0 = p0, . . . , π̄τn−1 = pn−1, τ̄n = sn)

=
∫
U

R
(
φan−1
pn−1

(s−n − sn−1), u ;D
)
an−1(p0, . . . , sn−1, pn−1)(s−n − sn−1 ; du).

Hence again by definition of a we get the equality of the conditional laws (3.2.15) and
3.2.16.

It remains to prove (3.2.12). Fix µ ∈ ∆ and u ∈ Uad with corresponding a ∈ Aad
defined as above. Let us define the function Φ: Ω̄→ R as

Φ(ω̄) =
+∞∑
n=0

e−βτ̄n(ω̄)g
(
π̄τ̄n(ω̄)(ω̄), an(. . . , τ̄n(ω̄), π̄τn(ω̄)(ω̄)

)
=

+∞∑
n=0

e−βτ̄n(ω̄)g
(
π̄τ̄n(ω̄)(ω̄), un(·+ τ̄n(ω̄), . . . , τ̄n(ω̄),projY(π̄τn(ω̄)(ω̄))

)
.

Thanks to Assumptions 3.1.1 and 3.1.2 this function is bounded. Since for each n ∈ N0
the functions an (equivalently un) are measurable it is also F̄-measurable.
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Now, take ω̄ = πµ,u(ω), ω ∈ Ω. It is clear that for all t ­ 0 we have π̄t(ω̄) =
ω̄(t) = πµ,ut (ω) and also, by definition of the jump times (τ̄n)n∈N0 , that τ̄n(ω̄) =
τn(ω), Pu

µ-a.s.. Then, we get that Pu
µ-a.s.

Φ(πµ,u(ω)) =
+∞∑
n=0

e−βτn(ω)g
(
πµ,uτn(ω)(ω), un(·+ τn(ω)

)
=

+∞∑
n=0

e−βτn(ω)g
(
πµ,uτn(ω)(ω), un(·+ τn(ω), . . . , τn(ω), Yτn(ω)(ω))

)
,

hence, comparing this result with (3.1.26) we obtain

J(µ,u) =
∫

Ω
Φ(πµ,u(ω))Pu

µ(dω) =
∫

Ω̄
Φ(ω̄)P̄a

Q(dω̄)

=
∑
y∈O

µ(h−1(y))
∫

Ω̄
Φ(ω̄)P̄a

Hy [µ](dω̄) =
∑
y∈O

µ(h−1(y))J̄(Hy[µ],a),

by definition of the functional J̄ .
To prove the second part of the theorem, fix µ ∈ ∆ and a = (an)n∈N ∈ Aad. Let

us start by defining, for each possible sequence b0, b1, · · · ∈ O and s1, · · · ∈ (0,+∞)
the following quantities by recursion for all n ∈ N

p0 = p0(b0) = Hb0 [µ]
pn = pn(b0, s1, . . . , sn, bn) =Hbn

[
φan−1
pn−1

(s−n − sn−1)
∫
U

Λ(u) an−1(s−n − sn−1 ; du)
]
, if s1 < · · · < sn

ρ, otherwise

Here s0 = 0 and ρ ∈ ∆e is an arbitrarily chosen value.
For all n ∈ N0 we define the functions un : [0,+∞) × O ×

(
(0,+∞) × O

)n →
P(U) as

un(t, b0, . . . , sn, bn ; du) =
{
an(p0, . . . , sn, pn)(t− sn ; du), if t ­ sn,
u, if t < sn,

where u ∈ U is some fixed value that is irrelevant to specify. Thanks to the fact that
each of the functions (b0, . . . , sn, bn) 7→ pn is Borel-measurable and thatM is a Borel
space, we can use [67, Lemma 3(ii)] to conclude that all the functions un are Borel-
measurable and therefore u = (un)n∈N0 ∈ Uad.

Similarly to what we did in the proof of the first part of the theorem, we need to
characterize the laws of πµ,u under Pu

µ and π̄ under Pa
Q. First of all, let us notice that

we do not need to prove again that the initial distributions of the two processes are
equal since they do not depend on the controls u and a. Therefore, we need only to
compare the conditional distributions

Pu
µ(τn − τn−1 > t, τn−1 < +∞ | Y0, . . . , τn−1, Yτn−1);

P̄a
Q(τ̄n − τ̄n−1 > t, τ̄n−1 < +∞ | Ȳ0, . . . , τ̄n−1, Ȳτ̄n−1);

Pu
µ(πµ,uτn ∈ D, τn < +∞ | Y0, . . . , Yτn−1 , τn);

P̄a
Q(π̄τ̄n ∈ D, τ̄n < +∞ | Ȳ0, . . . , Ȳτ̄n−1 , τ̄n),
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where t > 0 and D ∈ B(∆e). This can be done in the same way as in the first part
of the proof, this time using the definition of the control u ∈ Uad and the obvious fact
that, up to P̄a

Q-null sets we have

F̄τ̄n−1 = σ(Ȳ0, . . . , τ̄n−1, Ȳτ̄n−1) and F̄τ−n = σ(Ȳ0, . . . , Ȳτ̄n−1 , τ̄n).

Finally, to prove (3.2.12) it suffices to define Φ: Ω̄→ R as

Φ(ω̄) =
+∞∑
n=0

e−βτ̄n(ω̄)g
(
π̄τ̄n(ω̄)(ω̄), un(·+ τ̄n, Ȳ0(ω̄), . . . , τ̄n(ω̄), Ȳτn(ω̄)(ω̄)

)
.

and notice that pn(Ȳ0, . . . , τ̄n, Ȳτ̄n) = π̄τ̄n , so that we can write

Φ(ω̄) =
+∞∑
n=0

e−βτ̄n(ω̄)g
(
π̄τ̄n(ω̄)(ω̄), an(π̄0(ω̄), . . . , τ̄n(ω̄), π̄τn(ω̄)(ω̄)

)
.

The desired equality follows from the same reasoning as in the first part of the proof.

Remark 3.2.1. The proof of this theorem provides us with an explicit way to construct
an admissible policy a given an admissible control u and viceversa. The case that most
concerns us is to build an admissible control u when a is a stationary admissible policy.
A policy a ∈ Aad is said to be stationary if it is of the form a = (a0, a, a, . . . ), where
a0 : ∆e →M and a : (0,+∞) ×∆e →M. The function a0 depends on the starting
point of the filtering process while at each discrete time step the function a depends
on the last jump time and jump location of the filtering process. In other words, this
kind of admissible policy represents a piecewise open-loop control. Notice that here
dependency on jump times (and not only on the time elapsed since the last one) must
be taken into account. This is a generalization of the original definition by Vermes (cfr.
[61]).

Having identified the original problem with the discrete-time PDP problem, we can
concentrate our analysis on the latter one. What we are aiming at is to prove that v is
the unique fixed point of the operator T : Bb(∆e)→ Bb(∆e) defined for all ν ∈ ∆e as

T w(ν) := inf
m∈M

∫ ∞
0

∫
U

e−βtL(φmν (t), χmν (t), u, w)m(t; du) dt

:= inf
m∈M

∫ ∞
0

∫
U

e−βtχmν (t)
[
φmν (t)f(u)+

r(φmν (t), u)
∫

∆e

w(p)R(φmν (t), u; dp)
]
m(t; du) dt. (3.2.17)

A first result in this direction is provided by the following lemma. In what follows we
equip the space Bb(∆e) with the usual sup-norm, denote by ‖·‖∞. In this way Bb(∆e)
becomes a Banach space.

Lemma 3.2.2. Under Assumptions 3.1.1 and 3.1.2 the operator T is a contraction
mapping on the space Bb(∆e).
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Proof. Fix w1, w2 ∈ Bb(∆e). For each ν ∈ ∆e we have that

∣∣T w1(ν)− T w2(ν)
∣∣ ¬ sup

m∈M

∣∣∣∣∫ ∞
0

∫
U

e−βt
[
L(φmν (t), χmν (t), u, w1)

− L(φmν (t), χmν (t), u, w2)
]
m(t; du) dt

∣∣∣∣. (3.2.18)

Observe that for all m ∈M, u ∈ U and t ­ 0∣∣L(φmν (t), χmν (t), u, w1)−L(φmν (t), χmν (t), u, w2)
∣∣ ¬ ‖w1−w2‖∞χ

m
ν (t)r(φmν (t), u)

whence∣∣∣∣∫ ∞
0

∫
U

e−βt
[
L(φmν (t), χmν (t), u, w1)− L(φmν (t), χmν (t), u, w2)

]
m(t; du) dt

∣∣∣∣
¬ ‖w1−w2‖∞

∫ ∞
0

e−βtχmν (t)
∫
U

r(φmν (t), u)m(t; du) dt ¬ ‖w1−w2‖∞
Cr

β + Cr
.

(3.2.19)

The last inequality comes from the following estimate, that can be obtained integrating
by parts and recalling that χmν satisfies (3.2.7)∫ ∞

0
e−βtχmν (t)

∫
U

r(φmν (t), u)m(t; du) dt = 1− β
∫ ∞

0
e−βtχmν (t) dt ¬ Cr

β + Cr

where Cr is the constant appearing in (3.1.14). Since the estimate obtained in (3.2.19)
does not depend on m ∈ M we can take the supremum on the l.h.s. with respect to
m ∈M and obtain from (3.2.18)∣∣T w1(ν)− T w2(ν)

∣∣ ¬ ‖w1 − w2‖∞
Cr

β + Cr
, ν ∈ ∆e. (3.2.20)

Finally, taking the supremum with respect to ν ∈ ∆e on the l.h.s. of (3.2.20) we get
the result.

At this point, we just need to show that v is a fixed point of T . To do so, we need
to build a Markov Decision Process (or MDP) so that we can resort to results con-
nected with the so called lower semicontinuous model of [13], that ensure the existence
of an optimal non-randomized stationary (Borel-)measurable policy a ∈ Aad, in the
same sense given in Remark 3.2.1 above. For sake of clarity, we briefly sketch here the
construction of the MDP and recall what is meant by a lower semicontinuous model.

Let Z̄ = (Z̄n)n∈N0 the discrete-time process defined on (Ω̄, F̄0) as

Z̄0 := π̄τ̄0 , Z̄k := (τ̄k ∧ τ̄ , π̄τ̄k1τ̄k<τ̄ + δ1τ̄k­τ̄ ), k ∈ N

where δ is a cemetery point outside ∆e and τ̄ is an exponential random variable, in-
dependent of all the random variables τ̄1, π̄τ̄1 , . . . , with rate parameter β, the discount
factor of our control problem. The state space of the process (Z̄n, n)n∈N0 is given by

S :=
{

(z0, 0), z0 ∈ ∆e

} ∞⋃
k=1

{
(zk, k), zk ∈ (0,+∞)×∆e ∪ {δ}

}
.
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The reason for considering in this definition the value of the current discrete-time step,
is that in this way we are able to obtain a stationary MDP. Otherwise we should consider
a non-stationary MDP (to use the terminology of [13]), i. e. a model with parameters
(state space, action space, cost function, etc. . . ) that can change at each time step.

As control space we choose the setM introduced in (3.2.1) and, for all t ­ 0, D ∈
B(∆e), m ∈M, we set as one-stage cost function ḡ and transition kernel q̄

ḡ
(
(zk, k),m

)
=
{
g(ρ,m), if z0 = ρ ∈ ∆e or zk = (s, ρ) ∈ (0,+∞)×∆e, k ∈ N
0, if k ∈ N, with zk = (s, δ), s > 0

(3.2.21)

q̄
({

(zk+1, k + 1): zk+1 ∈ (0, t]×D
}
| (zk, k),m

)
=

∫ t

0
q(σ,D | ρ,m) dσ, if k = 0, with z0 = ρ ∈ ∆e

1t>s e
−βs

∫ t−s

0
q(σ,D | ρ,m) dσ, if k ∈ N, with

zk = (s, ρ) ∈ (0,+∞)×∆e

(3.2.22)

q̄
({

(zk+1, k + 1): zk+1 ∈ (0, t]× {δ}
}
| (zk, k),m

)
=

∫ t

0
βe−βσχmρ (σ) dσ, if k = 0, with z0 = ρ ∈ ∆e

1t>s

[
1− e−βs + e−βs

∫ t−s

0
βe−βσχmρ (σ) dσ

]
, if k ∈ N, with

zk = (s, ρ) ∈ (0,+∞)×∆e

(3.2.23)

where the function g is given in (3.2.8) and we define for all t ­ 0, D ∈ B(∆e),
ν ∈ ∆e and m ∈M

q(t,D | ν,m) := e−βtχmν (t)
∫
U

r(φmν (t), u)R(φmν (t), u;D)m(t; du). (3.2.24)

The so called k-th originating cost associated with the MDP, denoted for each k ∈
N0 by Ja(zk, k), is the cost functional for the optimal control problem starting at the
k-th stage from (zk, k) ∈ S with control policy a ∈ Aad. A simple calculation shows
that we can write it as follows

Ja(zk, k) :=
{
J̄(ν,a), if z0 = ν or zk = (t, ν), k ∈ N
0, if k ∈ N, with zk = (t, δ)

. (3.2.25)

The optimal cost at (zk, k) ∈ S, k ∈ N0 is given by

J ?(zk, k) = inf
a∈Aad

Ja(zk, k). (3.2.26)

Notice that v(ν) = J ?(zk, k), whenever z0 = ν or zk = (t, ν), k ∈ N. From [13,
Prop. 10.1] we know that each of the k-th originating optimal costs satisfies

J ?(zk, k) = inf
m∈M

{
ḡ
(
(zk, k),m

)
+
∫

(0,+∞)×∆e

J ?(zk+1, k+ 1) q̄(dzk+1 | zk,m)
}

(3.2.27)
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and is a lower semianalytic function. Hence, given the previous discussion, we deduce
that the value function v is lower semianalytic and satisfies the optimality equation 2

v(ν) := inf
m∈M

∫ ∞
0

∫
U

e−βtχmν (t)
[
φmν (t)f(u)+

r(φmν (t), u)
∫

∆e

v(p)R(φmν (t), u; dp)
]
m(t; du) dt. (3.2.28)

As we anticipated earlier, to deduce that v is the unique fixed point of the operator
T we use results connected to the so called lower semicontinuous model of [13]. In our
context, given the construction of the MDP above, this means that

a. The control spaceM is compact.

b. The transition kernel q̄ is continuous on S ×M.

c. The cost function ḡ is lower semicontinuous and bounded below on S ×M.

From the discussion at the beginning of this Section, we know thatM is compact
under the Young topology. The other points are proved in the following Lemma.

Lemma 3.2.3. Under Assumptions 3.1.1 and 3.1.2 we have the following results.

1. The transition kernel q̄ defined in (3.2.22) and (3.2.23) is continuous on S ×M.

2. The cost function ḡ defined in (3.2.21) is bounded and continuous on S ×M.

Proof. To start, let us observe that the maps (ν,m) 7→ φmν and (ν,m) 7→ χmν are
continuous from ∆e×M into C([0, T ]; ∆e) and C([0, T ];R) respectively, for all T >
0. This follows from an application of Warga’s Theorem (see [62, Proof of Th. V.6.1,
p. 325]. The interested reader may also look at [32, Th. 44.11]).
Claim 1. It is clear that continuity of the transition kernel q̄ on S ×M is implied by
continuity on ∆e ×M of the kernel q(t, dp | ν,m) dt, as in (3.2.24). By definition we
have to check that for all functions w ∈ Cb

(
[0,+∞)×∆e

)
the map

∆e ×M 3 (ν,m) 7→
∫ +∞

0

∫
∆e

w(t, p) q(t, dp | ν,m) dt (3.2.29)

is continuous (clearly, we consider the product topology). Fix w ∈ Cb
(
[0,+∞)×∆e

)
.

Continuity with respect to the ν variable is easy to show, thanks to Proposition 3.1.4
and the fact, noticed at the beginning of the proof, that φmν and χmν are continuous in ν.

It remains to show continuity with respect to them variable. Let us fix ν ∈ ∆e,m ∈
M and consider a sequence (mn)n∈N converging to m with respect to the Young to-

2Observe that the integral with respect to the measure R appearing in (3.2.28) is well defined, being the
integral of a lower semianalytic function against a Borel probability measure (see [13] for more details).
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pology. We have that∣∣∣∣∫ +∞

0

∫
∆e

w(t, p) q(t,dp | ν,mn) dt−
∫ +∞

0

∫
∆e

w(t, p) q(t,dp | ν,m) dt
∣∣∣∣

¬
∫ +∞

0
e−βt

∣∣χmnν (t)− χmν (t)
∣∣

×
∣∣∣∣∫

∆e

w(t, p)
∫
U

r(φmnν (t), u)R(φmnν (t), u; dp)mn(t; du)
∣∣∣∣dt

+
∫ +∞

0
e−βtχmν (t)

∫
U

∣∣∣∣r(φmnν (t), u)
∫

∆e

w(t, p)R(φmnν (t), u; dp)

− r(φmν (t), u)
∫

∆e

w(t, p)R(φmν (t), u; dp)mn(t; du)
∣∣∣∣ dt

+
∣∣∣∣∫ +∞

0
e−βtχmν (t)

×
∫
U

r(φmν (t), u)
∫

∆e

w(t, p)R(φmν (t), u; dp)
[
mn(t; du)−m(t; du)

]
dt
∣∣∣∣

(3.2.30)
We want to show that all of the three terms appearing in (3.2.30) tend to zero as

n→∞. We can estimate the first summand by∫ +∞

0
e−βt

∣∣χmnν (t)− χmν (t)
∣∣

×
∣∣∣∣∫

∆e

w(t, p)
∫
U

r(φmnν (t), u)R(φmnν (t), u; dp)mn(t; du)
∣∣∣∣ dt

¬ Cr sup
t­0, p∈∆e

∣∣w(t, p)
∣∣ ∫ +∞

0
e−βt

∣∣χmnν (t)− χmν (t)
∣∣dt −−−−→

n→∞
0

where Cr is the constant given in (3.1.14). The conclusion is justified by an application
of Lebesgue’s dominated convergence theorem, that is possible thanks to the continuity
of χmν with respect to m and the obvious fact e−βt

∣∣χmnν (t)− χmν (t)
∣∣ ¬ 2e−βt.

As for the second summand∫ +∞

0
e−βtχmν (t)

∫
U

∣∣∣∣r(φmnν (t), u)
∫

∆e

w(t, p)R(φmnν (t), u; dp)

− r(φmν (t), u)
∫

∆e

w(t, p)R(φmν (t), u; dp)mn(t; du)
∣∣∣∣ dt

¬
∫ +∞

0
e−βt sup

u∈U

∣∣∣∣r(φmnν (t), u)
∫

∆e

w(t, p)R(φmnν (t), u; dp)

− r(φmν (t), u)
∫

∆e

w(t, p)R(φmν (t), u; dp)
∣∣∣∣ dt −−−−→n→∞

0

since the supremum converges to zero, as n → ∞, thanks to Proposition 3.1.4, the
continuity properties of φmν recalled at the beginning of the proof and the fact that the
integrand is bounded by 2Cre−βt supt­0, p∈∆e

∣∣w(t, p)
∣∣.

Finally, to get the same conclusion for the third summand let us notice that the map

[0,+∞)× U 3 (t, u) 7→ e−βtχmν (t)r(φmν (t), u)
∫

∆e

w(t, p)R(φmν (t), u; dp)
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is measurable in t, continuous in u and such that∫ +∞

0
e−βtχmν (t) max

u∈U

∣∣∣∣r(φmν (t), u)
∫

∆e

w(t, p)R(φmν (t), u; dp)
∣∣∣∣dt < +∞

(continuity with respect to the u variable can be obtained following a reasoning similar
to that of the proof of Proposition 3.1.4). Hence, we get our result by definition of
Young topology.
Claim 2. Let us notice, first, the obvious fact that the properties we want to prove
about the function ḡ follow from the analogous properties of the function g defined in
(3.2.8). It is clear that the function g is bounded thanks to Assumption 3.1.2. Keeping
in mind the continuity properties of φmν and χmν recalled at the beginning of the proof,
continuity of g with respect to the ν variable is easy to show. As for continuity with
respect to control functions, fix ν ∈ ∆e, m ∈ M and consider a sequence (mn)n∈N
converging to m with respect to the Young topology. We have that∣∣g(ν,mn)− g(ν,m)

∣∣ ¬ Cf ∫ +∞

0
e−βt

∣∣χmnν (t)− χmν (t)
∣∣dt

+ Cf

∫ +∞

0
e−βt

∣∣φmnν (t)− φmν (t)
∣∣dt

+
∣∣∣∣∫ +∞

0

∫
U

e−βtχmν (t)φmν (t)f(u)
[
mn(t; du)−m(t; du)

]
dt
∣∣∣∣

where Cf is the constant appearing in (3.1.6). Proceeding similarly to previous claim
we get the result.

Since the hypotheses of the lower semicontinuous model of [13] are verified, we
are able to state (details on the proof can be found in e. g. [13, Corollary 9.17.2]) the
following standard result on the existence of an optimal policy and regularity of the va-
lue function. Notice that we can apply it since our MDP can be equivalently formulated
in the so called positive case, being the cost function ḡ bounded, hence positive up to
the addition of a suitable constant.

Proposition 3.2.4. Under Assumptions 3.1.1 and 3.1.2 there exists an optimal policy
a? ∈ Aad, i. e. a policy such that

v(ν) = J̄(ν,a?), for all ν ∈ ∆e.

Moreover, this policy is stationary, the value function v is lower semicontinuous and it
is the unique fixed point of the operator T .

Remark 3.2.2. It is worth noticing that Assumption 3.1.1 reveals its fundamental role
in the course of the proof of Proposition 3.2.4. In fact, it ensures the continuity of the
function u 7→ r(ρ, u)

∫
∆e
w(p)R(ρ, u; dp) for all ρ ∈ ∆e and all w ∈ Cb(∆e), which

is crucial to guarantee continuity of q with respect to m ∈ M. However all the other
results shown so far remain true even if we weaken Assumption 3.1.1 and just ask that
the maps u 7→ λij(u) are measurable for all i, j ∈ I and that supu∈U λi(u) < +∞ for
all i ∈ I .

Relaxed controls are difficult to interpret and implement in practice. Fortunately,
we are able to show from Proposition 3.2.4 that v is also the unique fixed point of the
operator G : Bb(∆e)→ Bb(∆e) given by

Gw(ν) = inf
α∈A

∫ ∞
0

e−βtL(φαν (t), χαν (t), α(t), w) dt, ν ∈ ∆e (3.2.31)
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where the infimum is taken among all possible ordinary controls instead of relaxed
ones. It can be proved, similarly to Lemma 3.2.2, that under Assumptions 3.1.1 and
3.1.2 G is a contraction.

Theorem 3.2.5. Under Assumptions 3.1.1 and 3.1.2 v is the unique fixed point of the
operator G.

Proof. It is clear that v = T v ¬ Gv, so we just need to prove the reverse inequality. We
previously saw that there exists a stationary optimal policy a? for the discrete time con-
trol problem. By [13, Corollary 9.12.1] this implies that the infimum in (3.2.17) is attai-
ned for each ν ∈ ∆e by somem? ∈M, withm? = m?(ν), and since the setA of ordi-
nary controls is dense inMwith respect to the Young topology (see e. g. [57, V, Th. 7]),
we can construct a sequence (αn)n∈N ⊂ A such that αn → m? as n→∞. Moreover
we have that the function J (ν,m) :=

∫∞
0
∫
U
e−βtL(φmν (t), χmν (t), u, v)m(t; du) dt

is continuous in m for all ν ∈ ∆e (the computations are similar to those of Lemma
??). Hence we get that for each fixed ν ∈ ∆e

J (ν, αn)→ J (ν,m?) = T v(ν) = v(ν).

Noticing that Gv(ν) ¬ J (ν, αn) for all n ∈ N, we get the result.

We can finally provide the link between the two value functions V and v.

Theorem 3.2.6. For all µ ∈ ∆ we have that

V (µ) =
∑
y∈O

µ(h−1(y))v(Hy[µ]). (3.2.32)

Proof. Recall that we know from Theorem 3.2.1 that for all µ ∈ ∆

J(µ,u) =
∑
y∈O

µ(h−1(y))J̄(Hy[µ],a)

where u ∈ Uad and a ∈ Aad are corresponding admissible controls and admissible
policies.

Let now µ ∈ ∆ be fixed. It is obvious that V (µ) ­
∑
y∈O µ(h−1(y))v(Hy[µ]). In

fact, since J̄(Hy[µ],a) ­ v(Hy[µ]) for all a ∈ Aad and all y ∈ O, we get that for all
u ∈ Uad

J(µ,u) ­
∑
y∈O

µ(h−1(y))v(Hy[µ])

and we get the desired inequality by taking the infimum on the left hand side with
respect to all u ∈ Uad.

The reverse inequality is easily obtained by taking an optimal policy a? ∈ Aad
(whose existence is guaranteed by Proposition 3.2.4) and considering its corresponding
admissible control u? ∈ Uad. From Theorem 3.2.1 we immediately get that

V (µ) ¬ J(µ,u?) =
∑
y∈O

µ(h−1(y))J̄(Hy[µ],a?) =
∑
y∈O

µ(h−1(y))v(Hy[µ]).

Theorem 3.2.6 gives us a way to go back and forth between the original control
problem and the separated one. Moreover, we easily deduce that an admissible control
u ∈ Uad is optimal if and only if its corresponding admissible policy a ∈ Aad is. In
the next Section we will focus our attention on the analysis of the value function v, that
will indirectly give informations about the original value function V .
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3.3 Characterization of the value function
We will characterize the PDP value function v in two ways: first we will study a fixed
point problem related to the operator G. We already know that v is the unique fixed
point of G as an operator acting on the space of bounded Borel-measurable functions on
∆e into itself. What we will prove is that it is the unique fixed point of G as an operator
acting on the space of continuous functions into itself. Once gained the continuity of
v on ∆e, hence its uniform continuity and boundedness, we will prove that it is also a
constrained viscosity solution of a HJB equation.

3.3.1 The fixed point problem
Let us denote by C(∆e) the space of continuous functions on ∆e equipped with the
usual sup norm. We recall that, since ∆e is a compact subset of R|I|, it coincides with
the space of bounded and uniformly continuous functions on ∆e.

To prove continuity of v we need to show that G maps the space C(∆e) into itself
and that v is its unique fixed point in that space (recall that we already established that G
is a contraction). We shall also need a version of the Dynamic Programming Principle
suited to this problem, that we are going to prove.

Proposition 3.3.1 (Dynamic Programming Principle). For all functions w ∈ Bb(∆e)
and all T > 0 the function Gw satisfies the following identity

Gw(ν) = inf
α∈A

{∫ T

0
e−βtL(φαν (t), χαν (t), α(t), w) dt+ e−βTχαν (T )Gw(φαν (T ))

}
.

(3.3.1)

Remark 3.3.1. It is worth noticing that taking w = v we get the standard statement of
the Dynamic Programming Principle.

Proof. Let T > 0, w ∈ Bb(∆e) and ν ∈ ∆e be fixed and let us define w̃(ν) the right
hand side of (3.3.1).

We will show first that Gw(ν) ¬ w̃(ν). Choose an arbitrary α ∈ A and define
ρ := φαν (T ). For some fixed ε > 0, let αε ∈ A be such that, in accordance with
(3.2.31)

Gw(ρ) + ε ­
∫ ∞

0
e−βtL(φα

ε

ρ (t), χα
ε

ρ (t), αε(t), w) dt. (3.3.2)

Next, define the function α̃ : [0,+∞)→ U as

α̃(t) = α(t)1[0,T ](t) + αε(t− T )1(T,+∞)(t).

It is clearly measurable, i. e. α̃ ∈ A, and it is straightforward to notice that

Gw(ν) ¬
∫ T

0
e−βtL(φαν (t), χαν (t), α(t), w) dt

+
∫ ∞
T

e−βtL(φα̃ν (t), χα̃ν (t), α̃(t), w) dt.

Thanks to the flow property of φ we have that the equality φα̃ν (t) = φα
ε

ρ (t− T ) holds,
for all t > T . Moreover, it can be easily shown that χα̃ν (t) = χαν (T )χαεν (t − T ), for
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t > T . With this in mind and performing a simple change of variables, we get that∫ ∞
T

e−βtL(φα̃ν (t), χα̃ν (t), α̃(t), w) dt =

e−βTχαν (T )
∫ ∞

0
e−βtL(φα

ε

ρ (t), χα
ε

ρ (t), αε(t), w) dt.

Therefore, we have from (3.3.2) that for all ε > 0

Gw(ν) ¬
∫ T

0
e−βtL(φαν (t), χαν (t), α(t), w) dt+ e−βTχαν (T )

[
Gw(ρ) + ε

]
Since α is arbitrary, we can take the limit as ε → 0+ and then the infimum on the set
A to get that Gw(ν) ¬ w̃(ν). The reverse inequality is easily obtained with similar
computations.

We provide now an estimate that will be fundamental in proving the next Proposi-
tion.

Lemma 3.3.2. Let T > 0 and w ∈ C(∆e) be fixed and define for all ν ∈ ∆e and all
α ∈ A

JT,w(ν, α) =
∫ T

0
e−βtL(φαν (t), χαν (t), α(t), w) dt. (3.3.3)

Then, under Assumptions 3.1.1 and 3.1.2, there exist constants C,K1,K2 > 0 and a
modulus of continuity η 3 such that for all α ∈ A∣∣JT,w(ν, α)− JT,w(ρ, α)

∣∣ ¬ K1|ν − ρ|+K2η(C|ν − ρ|). (3.3.4)

Proof. Let α ∈ A and ν ∈ ∆e be fixed. It is clear that ν ∈ ∆a for some a ∈ O. Let us
consider a sequence (νk)k∈N such that νk → ν as k → +∞. Without loss of generality
we can take (νk)k∈N ⊂ ∆a.

First of all, we need an estimate for the term∣∣L(φαν (t), χαν (t), α(t), w)− L(φαρ (t), χαρ (t), α(t), w)
∣∣.

Thanks to the linearity ofL in the second argument, it is easy to get that for all t ∈ [0, T ]∣∣L(φαν (t), χαν (t), α(t), w)− L(φαρ (t), χαρ (t), α(t), w)
∣∣

¬
∣∣χαν (t)− χαρ (t)

∣∣∣∣∣∣φαν (t)f(α(t)) + r(φαν (t), α(t))
∫

∆e

w(p)R(φαν (t), α(t); dp)
∣∣∣∣

+ χαρ (t)
∣∣∣∣[φαν (t)f(α(t)) + r(φαν (t), α(t))

∫
∆e

w(p)R(φαν (t), α(t); dp)
]

−
[
φαρ (t)f(α(t)) + r(φαρ (t), α(t))

∫
∆e

w(p)R(φαρ (t), α(t); dp)
]∣∣∣∣.

The first summand can be estimated observing that Assumptions 3.1.1, 3.1.2 entail
that ∣∣∣∣φαν (t)f(α(t)) + r(φαν (t), α(t))

∫
∆e

w(p)R(φαν (t), α(t); dp)
∣∣∣∣ ¬ K,

3i. e. a continuous, nondecreasing, subadditive function η : [0,+∞) → [0,+∞) such that η(t) → 0 as
t ↓ 0.
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where K > 0 is a constant depending on Cf and Cr defined in (3.1.6) and (3.1.14)
and on supϑ∈∆e

|w(ϑ)|. Moreover, by repeatedly applying Gronwall’s Lemma, it can
be shown that for all t ∈ [0, T ]∣∣χαν (t)− χαρ (t)

∣∣ ¬ Lr
LF

(eLFT − 1)eLrT |ν − ρ|

where LF is the constant defined in (3.1.8).
As for the second summand, notice that χαν (t) ¬ 1. In addition, Assumption 3.1.2

and Proposition 3.1.4 imply that there exists a modulus of continuity η : [0,+∞) →
[0,+∞) such that

sup
u∈U

∣∣∣∣νf(u) + r(ν, u)
∫

∆e

w(p)R(ν, u; dp)− ρf(u)

− r(ρ, u)
∫

∆e

w(p)R(ρ, u; dp)
∣∣∣∣ ¬ η(|ν − ρ|).

So we have that for all t ∈ [0, T ]∣∣∣∣[φαν (t)f(α(t)) + r(φαν (t), α(t))
∫

∆e

w(p)R(φαν (t), α(t); dp)
]

−
[
φαν (t)f(α(t)) + r(φαν (t), α(t))

∫
∆e

w(p)R(φαν (t), α(t); dp)
]∣∣∣∣

¬ η(|φαν (t)− φαρ (t)|) ¬ η(|ν − ρ|eLFT ),

where the last inequality follows from the fact that η is non decreasing and Gronwall’s
Lemma again.

Collecting all the computations made so far and defining C = eLFT we get∣∣L(φαν (t), χαν (t), α(t), w)− L(φαρ (t), χαρ (t), α(t), w)
∣∣ ¬

Lr
LF

(eLFT − 1)eLrT |ν − ρ|+ η(C|ν − ρ|).

We are now in a position to prove our claim. It suffices to notice that∣∣JT,w(ν, α)− JT,w(ρ, α)
∣∣

¬
∫ T

0
e−βt

∣∣∣∣L(φαν (t), χαν (t), α(t), w)− L(φαρ (t), χαρ (t), α(t), w)
∣∣∣∣dt

¬ e−βT − 1
β

[
Lr
LF

(eLFT − 1)eLrT |ν − ρ|+ η(C|ν − ρ|)
]

(3.3.5)

and define K1 = e−βT−1
β

Lr
LF

(eLFT − 1)eLrT and K2 = e−βT−1
β .

Proposition 3.3.3. Under Assumptions 3.1.1 and 3.1.2, for each function w ∈ C(∆e)
we have that Gw ∈ C(∆e).

Remark 3.3.2. In the literature we could only find [58, Theorem 3.3] as a result similar
to this one. However, it is not directly applicable to our case. Therefore we provide a
complete proof of this Proposition, adapting whenever necessary the arguments of the
cited work.
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Proof. To start, let us pick ν, ρ ∈ ∆a, a ∈ O, such that for some δ > 0 |ν − ρ| < δ.
Let ε > 0, T > 0 be arbitrarily fixed and choose αε ∈ A such that

Gw(ρ) + ε ­
∫ T

0
e−βtL(φα

ε

ρ (t), χα
ε

ρ (t), αε(t), w) dt+ e−βTχα
ε

ρ (T )Gw(φα
ε

ρ (T ))
(3.3.6)

according to the Dynamic Programming Principle. We immediately get from (3.3.6)

Gw(ν)− Gw(ρ) ¬ JT,w(ν, αε)− JT,w(ρ, αε) + ε

+ e−βT
[
χα

ε

ν (T )Gw(φα
ε

ν (T ))− χα
ε

ρ (T )Gw(φα
ε

ρ (T ))
]

¬
∣∣JT,w(ν, αε)− JT,w(ρ, αε)

∣∣
+ e−βT

∣∣χαεν (T )− χα
ε

ρ (T )
∣∣ sup
ϑ∈∆e

∣∣Gw(ϑ)
∣∣

+ e−βT
∣∣Gw(φα

ε

ν (T ))− Gw(φα
ε

ρ (T ))
∣∣+ ε

where JT,w was defined in (3.3.3) and supϑ∈∆e

∣∣Gw(ϑ)
∣∣ < +∞ since w is bounded

and G maps bounded functions into bounded functions.
We need to provide an estimate for the terms appearing in the last lines of the

previous equation. We know from Lemma 3.3.2 that∣∣JT,w(ν, αε)− JT,w(ρ, αε)
∣∣ ¬ K1δ +K2η(Cδ)

where C,K1,K2 > 0, η is a modulus of continuity and it is worth remarking that the
estimate is independent of αε. In particular, C = eLFT . Applying Gronwall’s Lemma
one is able to obtain (see the proof of Lemma 3.3.2 for more details)∣∣χαεν (T )− χα

ε

ρ (T )
∣∣ ¬ K1

K2
δ.

As for the term
∣∣Gw(φαεν (T ))− Gw(φαερ (T ))

∣∣, let us define for r > 0

ζ(r) = sup
ν,ρ∈∆e

|ν−ρ|<r

∣∣Gw(ν)− Gw(ρ)
∣∣

and set ζ(0) = limr↓0 ζ(r). Since |φαεν (T )− φαερ (T )| ¬ Cδ, we get that∣∣Gw(φα
ε

ν (T ))− Gw(φα
ε

ρ (T ))
∣∣ ¬ ζ(Cδ).

Summarizing all the results obtained so far, we get that for all ε > 0 and all ν, ρ ∈
∆a, a ∈ O, with |ν − ρ| < δ,

Gw(ν)− Gw(ρ) ¬ K1δ +K2η(Cδ) + e−βT sup
ϑ∈∆e

∣∣Gw(ϑ)
∣∣K1

K2
δ + e−βT ζ(Cδ) + ε.

Thus, as ε→ 0+ and defining K0 = K1 + e−βT supϑ∈∆e

∣∣Gw(ϑ)
∣∣K1
K2

,

ζ(δ) ¬ K0δ +K2η(Cδ) + e−βT ζ(Cδ). (3.3.7)

Now it is left to prove that ζ is a modulus of continuity for the function Gw and to
do so it suffices to show that ζ(0) = 0. Let us choose δ = 1

C2n , for some n ∈ N. Since
C = eLFT > 1, proving that ζ(0) = 0 is equivalent to verify that limn→+∞ ζ( 1

C2n ) =
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0, by definition of ζ in 0. Assuming, without loss of generality, that Ce−βT 6= 1 and
iterating the inequality shown in (3.3.7) we get

ζ(0) ¬ lim
n→+∞

[
K0

C2n

n−1∑
j=0

(Ce−βT )j +K2η
( 1
Cn

) n−1∑
j=0

(e−βT )j + e−nβT ζ(1)
]

¬ lim
n→+∞

[
K0

1− Ce−βT
[ 1
C2n −

e−nβT

Cn

]
+ K2

1− e−βT η
( 1
Cn

)
[1− e−nβT ]

]
= 0,

hence the desired result.

We are now ready to state the first characterization of the value function v.

Theorem 3.3.4. Under Assumptions 3.1.1 and 3.1.2 we have that v is the unique fixed
point of the operator G in the space of continuous functions on ∆e.

Proof. The result follows by combining the fact that v is the unique fixed point of G
in the space Bb(∆e), the fact that the operator G : Cb(∆e) → Cb(∆e) is a contraction
mapping and, finally, Proposition 3.3.3.

3.3.2 The HJB equation
Now we move to the second characterization of the value function v of the separated
problem in the sense of viscosity solutions. Using standard arguments of control theory,
the Dynamic Programming Principle stated in Proposition 3.3.1 admits a local version
in the form the following Hamilton-Jacobi-Bellman equation

H(ν,Dv(ν), v) + βv(ν) = 0, ν ∈ ∆e. (3.3.8)

The function H : ∆e × R|I| × C(∆e)→ R is called the hamiltonian and is defined as

H(ν,b, w) := sup
u∈U

{
−F (ν, u)b− νf(u)− r(ν, u)

∫
∆e

[
w(p)− w(ν)

]
R(ν, u; dp)

}
.

(3.3.9)
The aim of this subsection to characterize the value function v as the unique con-

strained viscosity solution of the HJB equation (3.3.8). This concept has been develo-
ped by H. M. Soner. In [58] it is used to characterize the value function of a determinis-
tic optimal control problem with state space constraint; in [59] the author extends this
definition to study the solution to an integro-differential HJB, associated to an optimal
control problem of a PDP with state space constraint.

This approach is particularly well suited to our problem, not only because of the si-
milarities between our situation and the one studied in [59], but also because of the fact
that the state space constraint is embedded in our formulation. In fact, the trajectories of
the PDP π̄ lie in the effective simplex ∆e and may as well take values on the boundary
of ∆e. Despite these similarities we will not able to apply directly results of [59] to our
problem. Some assumptions are not satisfied in our case, e. g. the hypothesis stated in
(1.3) of that paper, and the proof of the main theorem relies on a slightly different (and
somewhat more classical) version of the Dynamic Programming Principle. We will,
then, provide a full proof of the following Theorem 3.3.6 adapting the arguments given
in [59, Th. 1.1] as needed.

First, let us recall the definition of constrained viscosity solution. In what follows,
whenever K is a subset of ∆e, we will denote by K̄ its relative closure and by intK
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its relative interior. It is understood that all statements referring to topological pro-
perties are with respect to the relative topology of ∆e as a subset of R|I| (the latter
one equipped with the standard euclidean topology). The set C1(K) will be the set of
continuously differentiable real functions on K.

Definition 3.3.1. A uniformly continuous and bounded function w : K̄ → R is called
a

• viscosity subsolution of H(ν,Dw(ν), w) + βw(ν) = 0 on K if

H(ρ,Dψ(ρ), w) + βw(ρ) ¬ 0

whenever ψ ∈ C1(Nρ) and (w − ψ) has a global maximum, relative to K, at
ρ ∈ K, where Nρ is a neighborhood of ρ.

• viscosity supersolution of H(ν,Dw(ν), w) + βw(ν) = 0 on K if

H(ρ,Dψ(ρ), w) + βw(ρ) ­ 0

whenever ψ ∈ C1(Nρ) and (w − ψ) has a global minimum, relative to K, at
ρ ∈ K, where Nρ is a neighborhood of ρ.

• constrained viscosity solution of H(ν,Dw(ν), w) + βw(ν) = 0 on K̄ if it is a
subsolution on K and a supersolution on K̄.

Remark 3.3.3. The fact that w is a viscosity supersolution on the closed set K̄ of
(3.3.8) automatically imposes a boundary condition. For more details, see the Remark
following [58, Definition 2.1]

Before stating the main Theorem, we need the following lemma. We omit its proof
for the reader’s convenience. It can be found in [59, Lemma 2.1] (see also Remark 2.1
therein).

Lemma 3.3.5. Let Assumption 3.1.1 hold. A function w ∈ C(∆e) is a viscosity subso-
lution on int ∆e (resp. supersolution on ∆e) of H(ν,Dw(ν), w) + βw(ν) = 0 if and
only if

H(ρ,Dψ(ρ), ψ) + βw(ρ) ¬ (resp. ­) 0,

whenever ψ ∈ C1(Nρ)∩Cb(∆e) and (v−ψ) has a global maximum relative to ∆e at
ρ ∈ int ∆e (resp. minimum at ρ ∈ ∆e), where Nρ is a neighborhood of ρ.

Theorem 3.3.6. Under Assumptions 3.1.1 and 3.1.2, the value function v of the sepa-
rated problem is the unique constrained viscosity solution of (3.3.8).

Proof. Uniqueness follows easily from the very same argument given in [59, Th. 1.1].
In fact, the hypothesis labelled as (A1) is satisfied in our framework by each connected
component of ∆e and other hypotheses are invoked only to show that the functions

fi(ν, u) = νf(u)+r(ν, u)
∫

∆e

[
wi(p)−wi(ν)

]
R(ν, u; dp), ν ∈ ∆e, u ∈ U, i = 1, 2,

are uniformly continuous in ν, uniformly with respect to u (here w1, w2 are two arbi-
trary constrained viscosity solutions of (3.3.8) ). This is true in our setting because of
Assumption 3.1.2 and Proposition 3.1.4. Therefore, one can follow the same reasoning
to show uniqueness of the solution.



Chapter 3. Optimal control: the finite dimensional case 94

Let us now show that v is a viscosity subsolution on int ∆e of (3.3.8). It is easy
to see that in Lemma 3.3.5 we can substitute ψ ∈ C1(Nρ) ∩ Cb(∆e) by ψ ∈ C1(∆e)
(see also [59, Remark 2.1]). So, let us fix ψ ∈ C1(∆e) and ρ ∈ int ∆e such that
(v−ψ)(ρ) = maxν∈∆e

{(v−ψ)(ν)} = 0. Since v ¬ ψ, from the DPP we get that for
all α ∈ A

v(ρ) = ψ(ρ) ¬
∫ T

0
e−βtL(φαρ (t), χαρ (t), α(t), ψ) dt+ e−βTχαρ (T )ψ(φαρ (T )).

(3.3.10)
Differentiating e−βtχαρ (t)ψ(φαρ (t)) we have

d
(
e−βtχαρ (t)ψ(φαρ (t))

)
= e−βtχαρ (t){

−βψ(φαρ (t))− r(φαρ (t), α(t))ψ(φαρ (t)) + F (φαρ (t), α(t))Dψ(φαρ (t))
}

dt. (3.3.11)

Integrating (3.3.11) in [0, T ] and substituting the result in (3.3.10) we obtain

∫ T

0
e−βtχαρ (t)

{
βψ(φαρ (t))− F (φαρ (t), α(t))Dψ(φαρ (t))

−φαρ (t)f(α(t))−r(φαρ (t), α(t))
∫

∆e

[
ψ(p)−ψ(φαρ (t))

]
R(φαρ (t), α(t); dp)

}
dt ¬ 0.

(3.3.12)

By means of Assumption 3.1.2, Proposition 3.1.4 and the properties of the flow φαρ (·),
we are able to obtain from the previous inequality the estimate

1
T

∫ T

0

{
βψ(ρ)− F (ρ, α(t))Dψ(ρ)

− ρf(α(t))− r(ρ, α(t))
∫

∆e

[
ψ(p)− ψ(ρ)

]
R(ρ, α(t); dp)

}
dt ¬ h(T )

where h is a continuous function such that h(0) = 0. Now, let t0 = dist(ρ,∂∆e)
CF

, where
CF = sup

(ν,u)∈∆e×U
F (ν, u), so that on [0, t0) the flow never reaches the boundary of

∆e. For each fixed u ∈ U it is clearly possible to pick a control α ∈ A such that
α(T ) = u, for all T < t0. Using this strategy in the last inequality we get that for all
T ∈ [0, t0) and all u ∈ U

βψ(ρ)− F (ρ, u)Dψ(ρ)− ρf(u)− r(ρ, u)
∫

∆e

[
ψ(p)− ψ(ρ)

]
R(ρ, u; dp) ¬ h(T ).

Taking the limit as T → 0+ and the supremum with respect to all u ∈ U we obtain the
subsolution property.

Let us now show that v is a viscosity supersolution on ∆e of (3.3.8). Let ψ ∈
C1(∆e) and ρ ∈ ∆e such that (v−ψ)(ρ) = minν∈∆e

{(v−ψ)(ν)} = 0. Since v ­ ψ,
from the DPP we get that for all T > 0

v(ρ) = ψ(ρ) ­ inf
α∈A

{∫ T

0
e−βtL(φαρ (t), χαρ (t), α(t), ψ) dt+e−βTχαρ (T )ψ(φαρ (T ))

}
.

(3.3.13)
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For each n ∈ N consider T = 1/n and pick a control αn ∈ A such that

ψ(ρ) + 1
n2 ­

∫ 1/n

0
e−βtL(φαρ (t), χαρ (t), α(t), ψ) dt+ e−β/nχαρ

(
1
n

)
ψ

(
φαρ

(
1
n

))
.

With similar computations as before we are able to obtain

n

∫ 1/n

0

{
βψ(ρ)− F (ρ, αn(t))Dψ(ρ)

− ρf(αn(t))− r(ρ, αn(t))
∫

∆e

[
ψ(p)− ψ(ρ)

]
R(ρ, αn(t); dp)

}
dt ­ hn (3.3.14)

where hn → 0 as n→ +∞. Let us define the following quantities

Fn := n

∫ 1/n

0
F (ρ, αn(t)) dt

Kn := n

∫ 1/n

0

{
ρf(αn(t)) + r(ρ, αn(t))

∫
∆e

[
ψ(p)− ψ(ρ)

]
R(ρ, αn(t); dp)

}
dt

and the setC(ρ) := {(F (ρ, u), ρf(u)+r(ρ, u)
∫

∆e

[
ψ(p)−ψ(ρ)

]
R(ρ, u; dp)), u ∈ U}.

Notice that (Fn,Kn) ∈ coC(ρ) for all n ∈ N and coC(ρ) is compact since C(ρ) is
bounded. Hence there is a subsequence, still denoted by (Fn,Kn) that converges to
some (F,K) ∈ coC(ρ). Therefore, taking the limit as n goes to infinity in (3.3.14) we
get

βψ(ρ)− F ·Dψ(ρ)−K ­ 0
so that

βψ(ρ) + sup
(F,K)∈coC(ρ)

{−F ·Dψ(ρ)−K} ­ 0.

Finally, noticing that

sup
(F,K)∈coC(ρ)

{−F ·Dψ(ρ)−K} = H(ρ,Dψ(ρ), ψ)

we get the desired supersolution property for v.

3.4 Existence of an ordinary optimal control
We want now to prove that under some additional assumptions there exists an optimal
ordinary control u? ∈ Uad such that the minimum in (3.1.5) is achieved. Thanks to
Theorem 3.2.1 this optimal control exists if and only if there exists an optimal policy
a? = (a0, a1, . . . ) ∈ Aad such that for all n ∈ N0 the functions an take values in the
set A of ordinary controls. Since we already established the existence of a stationary
optimal policy made of relaxed controls, we want to find an analogous policy made of
ordinary controls.

First, we need to find α? ∈ A such that for each fixed ν ∈ ∆e the functional

J (ν, α) =
∫ ∞

0
e−βtL(φαν (t), χαν (t), α(t), v) dt, α ∈ A (3.4.1)

reaches its infimum (the function v appearing as the last argument of the function L
is the value function of the separated problem characterized in the previous section).
If this is the case, then an optimal stationary policy a? ∈ Aad is granted by standard
results in discrete-time control theory, as stated in Theorem 3.4.2.
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Theorem 3.4.1. Let Assumptions 3.1.1 and 3.1.2 hold and suppose that for each ρ ∈
∆e and s ∈ [0, 1] the set

C(ρ, s) = {(f, g, l) ∈ ∆e × [0, 1]× R s.t.

f = F (ρ, u), g = −r(ρ, u)s, l ­ L(ρ, s, u, v), u ∈ U}

is convex.
Then for each fixed ν ∈ ∆e there exists α? ∈ A such that the infimum of the

functional J appearing in (3.4.1) is achieved.

Proof. Fix ν ∈ ∆e and let us write (3.4.1) in a lighter way, suppressing the explicit
mention of the value function v and the dependence on the control α and ν of the
functions φαν and χαν . We will then write

J (α) =
∫ ∞

0
e−βtL(φ(t), χ(t), α(t)) dt, α ∈ A.

Let αn ∈ A, n ∈ N be a minimizing sequence for J (i. e. J (αn) → infα J (α)
as n → +∞) and let (φn, χn)n∈N be the corresponding trajectories of the flow and
the survival distribution of the first jump time of the PDP. For each n ∈ N, φn ∈
C([0,+∞); ∆e) and χn ∈ C([0,+∞); [0, 1]). It can be easily checked that both se-
quences (φn)n∈N and (χn)n∈N are uniformly bounded and equicontinuous on each
compact subset of [0,+∞), hence by Ascoli-Arzelà theorem we get that there ex-
ist φ ∈ C([0,+∞); ∆e) and χ ∈ C([0,+∞); [0, 1]) such that, up to a subsequence,
φn → φ and χn → χ uniformly on each compact subset of [0,+∞).

Let us now define for all t ­ 0

• Fn(t) = F (φn(t), αn(t)),

• Gn(t) = −r(φn(t), αn(t))χn(t),

• Ln(t) = L(φn(t), χn(t), αn(t)).

Denoting by L1
β the weighted L1 space (with weight given by the discount factor

β), it can be easily shown that, for each n ∈ N, Fn ∈ L1
β([0,+∞); ∆e), Gn ∈

L1
β([0,+∞);R), Ln ∈ L1

β([0,+∞);R) and that the sequences (Fn)n∈N, (Gn)n∈N
and (Ln)n∈N are uniformly bounded and uniformly integrable. Hence there exist F̂ ∈
L1
β([0,+∞); ∆e), Ĝ ∈ L1

β([0,+∞);R) and L̂ ∈ L1
β([0,+∞);R) such that, up to a

subsequence, Fn ⇀ F̂ , Gn ⇀ Ĝ and Ln ⇀ L̂ weakly in L1
β .

By Mazur’s Theorem (see e. g. [16, Corollary 3.8, p. 61], or [66, Theorem 2, p.
120]), there exist sequences, still denoted by (Fn)n∈N, (Gn)n∈N and (Ln)n∈N, that
are convex combinations of the elements of the original ones, such that Fn → F̂ ,
Gn → Ĝ and Ln → L̂ strongly in L1

β and also, again up to a subsequence, a.e. in
[0,+∞). Thanks to the hypotheses we have that the functions F , L and −r(ρ, u)s are
continuous on the compact set ∆e× [0, 1]×U and it can be proved that the sets C(ρ, s)
are closed for each ρ ∈ ∆e and s ∈ [0, 1] (see e. g. [23, 8.5.vi, p. 296]). Therefore, for
almost all t ­ 0 the triple (F̂ (t), Ĝ(t), L̂(t)) belongs to the set C(φ(t), χ(t)) and we
can apply standard measurable selection theorems (see e. g. [23, 8.2.ii, p. 277], or [48,
Corollary 2.26, p. 102]) to obtain a measurable function α? such that

• F̂ (t) = F (φ(t), α?(t)),
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• Ĝ(t) = −r(φ(t), α?(t))χ(t),

• L̂(t) = L(φ(t), χ(t), α?(t)) + z(t),

where z is a non-negative function defined on [0,+∞).
Now it remains to prove that α? is optimal for the functional J . Let (γk,n), where

n ∈ N and k ­ n, be the system of non-negative numbers of Mazur’s Theorem, such
that for each n ∈ N

Kn∑
k=n

γk,n = 1, L(φ(t), χ(t), α?(t)) = lim
n→+∞

Kn∑
k=n

γk,nL(φk(t), χk(t), αk(t)).

(3.4.2)

First of all, let us notice that z has to be zero a.e. in [0,+∞). If this were not the case,
we would reach a contradiction (arguing as in the following lines) with the fact that
(αn)n∈N is a minimizing sequence for J . Since the function L is bounded by some
constant K > 0 and obviously the function Ke−βt ∈ L1([0,+∞)), we can apply
Fatou’s Lemma to obtain

J (α?) =
∫ ∞

0
e−βtL(φ(t), χ(t), α?(t))

¬ lim inf
n→+∞

Kn∑
k=n

γkn

∫ ∞
0

e−βtL(φk(t), χk(t), αk(t))

= lim inf
n→+∞

Kn∑
k=n

γknJ (αk) = inf
α
J (α).

(3.4.3)

The claim follows since clearly infα J (α) ¬ J (α?).

Remark 3.4.1. Convexity of the sets C(ρ, s) is guaranteed, for instance, when

• U ⊂ R is a closed interval.

• Matrix coefficients λij(u) are linear in u, for all i, j ∈ I , i 6= j.

• The functions u 7→ f(i, u) are convex for each i ∈ I .

We are now ready to state the main result of this Section. To be fully precise its
proof would require to formulate the entire control problem in a broader setting. This
should be done to allow for more general control policies, namely universally measu-
rable ones. However, this formulation does not pose any particular problem (the inte-
rested reader may consult [13]) and it is irrelevant to the results of this thesis. Therefore,
we will omit all unnecessary technical details.

Theorem 3.4.2. For each initial law µ ∈ ∆ there exists an optimal ordinary stationary
policy a? ∈ Aad (with corresponding optimal ordinary control u? ∈ Uad), i. e. an
admissible policy with values in the set of ordinary controls A such that

V (µ) = J(µ,u?) =
∑
y∈O

µ
(
h−1(y)

)
J̄(Hy[µ],a?) =

∑
y∈O

µ
(
h−1(y)

)
v(Hy[µ]).
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Proof. Let µ ∈ ∆ be fixed. Thanks to Theorem 3.4.1, to the fact that the function J
appearing in (3.4.1) is measurable and to the fact that ∆e and A are Borel spaces, stan-
dard selection theorems (see e. g. [13, Prop. 7.50]) ensure that there exists a universally
measurable selector au : ∆e → A such that for all ν ∈ ∆e

v(ν) = J
(
ν, au(ν)

)
= inf
α∈A
J (ν, α).

LetQ be the probability measure on ∆e defined in (3.2.11) and let us define the optimal
strategy au = (au, au, . . . ). Thanks to [68, Th. 3.1] we can conclude that there exists
a stationary policy a? ∈ Aad such that

J̄(·,au) = J̄(·,a?) Q− a.s.

Since Q is concentrated at points {Hy[µ]}y∈O we get that for all y ∈ O

v(Hy[µ]) = J̄(Hy[µ],au) = J̄(Hy[µ],a?)

and the claim follows immediately.

3.5 A numerical example
In this Section we provide an explicit and rather simple example of optimal control
problem with noise-free partial observation of a Markov chain. We are able to provide
the value function and to write down the ordinary optimal control, whose existence was
established in Section 3.4.

Let us fix I := {1, 2, 3} and O := {a, b} as the state spaces of the unobserved
Markov chain X and of the observed process Y respectively. We recall that to solve
the optimal control problem we first put ourselves in a canonical framework for the
Markov chain X . Therefore, all the following processes are defined as in Section 3.1.
In this example, we assume that the observed process satisfies Yt = h(Xt), t ­ 0, with
function h : I → O given by

h(i) =
{
a, if i = 1, 2
b, if i = 3

.

Hence, we have a perfect observation whenever Yt = b for some t ­ 0, i. e. if this is the
case we know that Xt = 3 almost surely. On the contrary, we face uncertainty about
the true state of the Markov chain X at some time t ­ 0 if we have Yt = a.

Next, we define the space of control actions U , the controlled rate transition matrix
Λ(u) associated to the Markov chain X and the cost function f : I × U → R of our
optimal control problem. We choose them as specified in Remark 3.4.1, in order to be
sure about the existence of an optimal control.

Λ(u) :=

−2u u u
0 −u u
u 0 −u

 f(u) :=

u2 + 1
u2 + 1
u2

 u ∈ U := [0, 1].

We recall that, since the set I is finite, we identify the function f with the vector-valued
function f .

From the data of our problem given above, we can specify the state space ∆e (called
the effective simplex) of the filtering process and explicitly compute its local characte-
ristics, defined in (3.1.12).
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The effective simplex ∆e is given by ∆e = ∆a ∪ ∆b ⊂ R3, where ∆a :=
P({1, 2}) = {(p, 1 − p, 0), p ∈ [0, 1]} and ∆b := P({3}) = {(0, 0, 1)}. We will
identify probability measures ν ∈ ∆a with vectors of the form (p, 1 − p, 0) ∈ R3 for
some p ∈ [0, 1]. The local characteristics of the filtering process, that is a PDP, are
given, for all u ∈ [0, 1], by

F (ν, u) =
{[
−up up 0

]
, if (p, 1− p, 0) = ν ∈ ∆a[

0 0 0
]
, if (0, 0, 1) = ν ∈ ∆b

r(ν, u) = u, ν ∈ ∆e

R(ν, u,dρ) =
{
δ[0 0 1](dρ), if (p, 1− p, 0) = ν ∈ ∆a

δ[1 0 0](dρ), if (0, 0, 1) = ν ∈ ∆b

.

Notice that, in this case, the ODE (3.1.9). hence the filtering equation, admits an explicit
solution, given, for all relaxed controls m ∈M, by

φmν (t) =
{[
p(t) 1− p(t) 0

]
, if (p, 1− p, 0) = ν ∈ ∆a[

0 0 1
]
, if (0, 0, 1) = ν ∈ ∆b

, t ­ 0

with p(t) = p exp
{
−
∫ t

0
∫
U
um(s; du) ds

}
, t ­ 0.

Having written the local characteristics of the filtering process, we can provide the
explicit form of the operator G, defined in (3.2.31), and of the HJB equation (3.3.8)
satisfied by the value function v of the separated optimal control problem, defined in
(3.2.10).

First of all, let us notice that we can identify any function w : ∆e → R with the
pair (ŵ, wb), where ŵ : [0, 1]→ R and wb ∈ R. In fact,

w(ν) =
{
w(p, 1− p, 0) =: ŵ(p), if (p, 1− p, 0) = ν ∈ ∆a

w(0, 0, 1) =: wb, if (0, 0, 1) = ν ∈ ∆b

.

Thanks to this identification, for any function w ∈ Bb(∆e), we can write the operator
G as

Gw(ν) =


inf
α∈A

∫ +∞

0
e
−
∫ t

0
[β+α(s)] ds[

α(t)2 + α(t)wb + 1
]

dt, if ν ∈ ∆a

inf
α∈A

∫ +∞

0
e
−
∫ t

0
[β+α(s)] ds[

α(t)2 + α(t)ŵ(1)
]

dt, if ν ∈ ∆b

(3.5.1)
where A is the set of ordinary controls, i. e. A := {α : [0,+∞) → U, measurable}.
The HJB equation is given by

sup
u∈[0,1]

{
−u2 + 2puv̂′(p)− u[vb − v̂(p)]

}
+ βv̂(p) = 0, if ν ∈ ∆a

sup
u∈[0,1]

{
−u2 − u[v̂(1)− vb]

}
+ βvb = 0, if ν ∈ ∆b

. (3.5.2)

We now search for an explicit solution of the fixed point problem and the HJB
equation. Notice that, since the cost function f is non-negative, we have that v ­ 0.
Moreover, in (3.5.1) there is no dependence on the parameter p ∈ [0, 1] defining all
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probability measures ν ∈ ∆a. This suggests that the value function v of the separated
problem, satisfying v = Gv, should be a constant function.

For ν ∈ ∆b the fixed point relationship v = Gv takes the form

vb = inf
α∈A

∫ +∞

0
e
−
∫ t

0
[β+α(s)] ds[

α(t)2 + α(t)v̂(1)
]

dt. (3.5.3)

It is clear that, since vb ­ 0, if we choose the constant control α(t) = 0, t ­ 0, we
achieve the minimum in (3.5.3), with value vb = 0. Substituting this into (3.5.2) we get

sup
u∈[0,1]

{
−u2 + 2upv̂′(p) + uv̂(p)

}
+ βv̂(p) = 0, if ν ∈ ∆a

sup
u∈[0,1]

{
−u2 − uv̂(1)

}
= 0, if ν ∈ ∆b

. (3.5.4)

After some computations, we obtain that the second equality in (3.5.4) is satisfied for all
possible values of v̂(1), while the ODE appearing as first equality admits the constant
solution v̂(p) = 2

(√
β2 + 1 − β

)
, p ∈ [0, 1]. Hence, we have that the value function

of the separated problem is given by

v(ν) =
{

2
(√

β2 + 1− β
)
, if ν ∈ ∆a

0, if ν ∈ ∆b

. (3.5.5)

The value function V of the optimal control problem with noise-free partial observation
for the Markov chain X , defined in (3.1.5), is given for all µ ∈ P(I) by

V (µ) = V (q1, q2, 1− q1 − q2) =
{

2
(√

β2 + 1− β
)
(q1 + q2), if q1 + q2 6= 0

0, if q1 + q2 = 0
(3.5.6)

where µ = (q1, q2, 1− q1 − q2) for some q1, q2 ∈ [0, 1], q1 + q2 ¬ 1.
At this point, we can also provide an explicit optimal policy a? ∈ Aad, with cor-

responding optimal control u? ∈ Uad. It is clear that if Y0 = b the optimal policy a?
is composed by the single constant optimal control α?b(t) = 0, t ­ 0, i. e. a? = α?b .
In fact, given the structure of the controlled rate transition matrix, applying this policy
means that the Markov chain X remains in the state 3 forever and we sustain no cost,
since f(3, 0) = 0. If, instead, Y0 = a the optimal policy is given by a? = (α?a, α?b),
where α?a ∈ A solves

2
(√

β2 + 1− β
)

=
∫ +∞

0
e
−
∫ t

0
[β+α?a(s)] ds[

α?a
2 + 1

]
dt. (3.5.7)

Notice that this characterization comes from the fixed point equation v = Gv. The
optimal policy α?a, whose existence is granted by Theorem 3.4.1, guarantees that we
achieve the minimum cost up to the first jump time of the Markov chain X into the
state 3. This jump time is finite almost surely, as can be easily checked. Therefore,
when X jumps into the state 3, i. e. the observed process takes value b, we can choose
the optimal control α?b and stop the motion of the Markov chain in that state at zero
cost.

Searching for constant solutions to (3.5.7) we are able to obtain that the optimal
control α?a is given by α?a(t) :=

√
β2 + 1− β, t ­ 0.



CHAPTER 4

Optimal control: the infinite dimensional case

In this Chapter we return to the setting of Chapter 2, i. e. the case where the unobserved
processX = (Xt)t­0 is a continuous-time pure jump Markov process and we study an
optimal control problem on infinite time horizon with partial observation in the same
setting of Chapter 3.

We recall that the aim of our control problem is to optimize the dynamics of the
unobserved processX through the actions described by a control process u = (ut)t­0,
with values in the set of Borel probability measures P(U) on a measurable space
(U,U), the space of control actions. A priori, we are selecting control actions specified
by relaxed controls. We anticipate that, while we are able to guarantee the existence
of a (relaxed) optimal control, we can not provide the existence of an ordinary optimal
control. The control process is chosen in a specific class of admissible controls. At any
time the chosen control action shall be based on the information provided by the obser-
ved process Y = (Yt)t­0, that will be of noise-free type as in the previous Chapters.
The choice of the control process is done following a performance criterion that, also
in this Chapter, is the minimization of a discounted cost functional.

Throughout this Chapter we will assume that I and O are complete and separa-
ble metric spaces, equipped with their respective Borel σ-algebras I := B(I) and
O := B(O). The set U is a compact metric space equipped with its Borel σ-algebra
U := B(U). This assumption entails that P(U) is a compact metric space, too. As
in the previous Chapters, we are given a function h : I → O that gives the values of
the observed process Y as a deterministic transformation of the values assumed by the
unobserved processX . We consider this function to be surjective, without loss of gene-
rality. We remind that, in general, h can be constant or one-to-one, but we will exclude
these cases in what follows.

Our analysis will follow essentially the same steps of Chapter 3. In Section 4.1 we
formulate our optimal control problem with partial observation in a canonical setting
for the pure jump Markov process X . Thanks to the filtering process we are able to
rewrite this control problem in an equivalent one with complete observation, where
the new state variable is the filtering process itself, in place of the unobserved process
X . Also in this case, we will need to reformulate our control problem, introducing a
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separated discrete-time control problem for the filtering process.
The separated control problem will be formulated in Section 4.2 in a canonical

setting for the PDP given by the filtering process. We will prove that the original and
the separated control problem are linked in such a way, that we are able to write down
a formula providing an equality involving the value function V of the original control
problem and the value function v of the separated control problem.

The original value function V is indirectly characterized by studying the value
function v of the separated control problem. This is done in Section 4.3, where we
obtain that v is the unique fixed point of a certain contraction mapping. Contrary to
what we proved in Section 3.3, we are not able to characterize v as a viscosity solu-
tion to some Hamilton-Jacobi-Bellman equation, since this equation would be defined
in an infinite dimensional space (consider that the effective simplex ∆e introduced in
Remark 2.2.2 is a subset of the a priori infinite dimensional metric spaceM(I)). The
study of HJB equations in infinite dimensional spaces is a recent subject in the litera-
ture, but still limited to some particular cases. For an up-to-date reference to this kind
of equations, studied in connection with stochastic optimal control problems, see [35].
In the context of control problems with partial observation, see also [7, 40, 49].

Finally, in Section 4.4 we make some comments on the rôle of the function h in the
control problem.

4.1 The jump Markov process optimal control problem
We will shortly introduce the setting under which we will formulate the optimal control
problem for the unobserved pure jump Markov process. The construction is almost
identical to that provided in Section 3.1 for the Markov chain optimal control problem.
We will return to the notation adopted in Chapter 2.

The aim of this Section is to provide a canonical framework for a continuous time
pure jump Markov process described by an initial law and a controlled rate transition
measure on I . By this we mean that we have a transition measure λ from (I×U, I⊗U)
into (I, I) such that

λ(x, u, {x}) = 0, x ∈ I, u ∈ U.

To simplify the notation it is convenient to define the controlled jump rate function
λ : I × U → [0,+∞) as

λ(x, u) := λ(x, u, I), x ∈ I, u ∈ U.

It will always be clear from the context if λ refers to the rate transition measure or the
jump rate function.

We introduce the following Assumption.

Assumption 4.1.1.

1. For each x ∈ I, A ∈ I the map u 7→ λ(x, u,A) is continuous on U (hence
bounded and uniformly continuous on U ).

2. sup
(x,u)∈I×U

λ(x, u) < +∞.

We are now ready to build the probability space on which the processes X , Y , u
are defined. As recalled at the beginning of this Chapter, the construction is almost
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identical to that provided in Section 3.1. Let us define Ω as the set

Ω = {ω = (i0, t1, i1, t2, i2, . . .) :
i0 ∈ I, in ∈ I, tn ∈ (0,+∞], tn < +∞⇒ tn < tn+1, n ∈ N}.

For each n ∈ N we introduce the following random variables

T0(ω) = 0; Tn(ω) = tn; T∞(ω) = lim
n→∞

Tn(ω); ξ0(ω) = i0; ξn(ω) = in

and we define the random measure on
(
(0,+∞)× I, B

(
(0,+∞)

)
⊗ I

)
n(ω,dtdz) =

∑
n∈N

δ(
Tn(ω), ξn(ω)

)(dtdz)1{Tn<+∞}(ω), ω ∈ Ω

with associated natural filtration Nt = σ
(
n
(
(0, t] × A

)
, 0 ¬ s ¬ t, A ∈ I

)
. Finally,

let us specify the σ-algebras

X ◦0 = σ(ξ0); X ◦t = σ(X0 ∪Nt); X ◦ = σ
(⋃
t­0
Xt
)
.

The unobserved process X is defined as

Xt(ω) =
{
ξn(ω), t ∈

[
Tn(ω), Tn+1(ω)

)
, n ∈ N0, Tn(ω) < +∞

i∞, t ∈
[
T∞(ω),+∞), T∞(ω) < +∞

where i∞ ∈ I is an arbitrary state, that is irrelevant to specify. Next, we define the
observed process Y and its natural filtration (Y◦t )t­0 as

Yt(ω) = h(Xt(ω)), t ­ 0, ω ∈ Ω; Y◦t = σ
(
Ys, 0 ¬ s ¬ t

)
, t ­ 0.

As we already pointed out in Section 2.2, we can equivalently describe this process
via a MPP (ηn, τn)n∈N together with the initial condition η0 = h(ξ0) = Y0. Each
σ-algebra Y◦t , t ­ 0 is the smallest σ-algebra generated by the union of σ(η0) and the
σ-algebra at time t of the natural filtration of the MPP (ηn, τn)n∈N.

The control processes u that we want to consider are based on the information
coming from the observed process Y . We will pick them in the following class of
admissible controls

Uad =
{

u : Ω× [0,+∞)→ P(U), (Y◦t )t­0 – predictable
}
. (4.1.1)

Concerning the choice of P(I) as target space for control processes, i. e. the choice of
relaxed controls, see Remark 3.1.1.

In Section 3.1 we noticed that predictable processes with respect to the natural
filtration of a point process admit a precise description (see Theorem 1.1.2 and Remark
1.1.1). Thus, control processes in the class Uad can be characterized by a sequence of
Borel-measurable functions (un)n∈N̄0

, with un : [0,+∞)×O ×
(
(0,+∞)×O

)n →
P(U) for each n ∈ N̄0, so that we can write

ut(ω) = u0(t, Y0(ω))1(0 ¬ t ¬ τ1(ω))+
∞∑
n=1

un(t, Y0(ω), τ1(ω), Yτ1(ω), . . . , τn(ω), Yτn(ω))1(τn(ω) < t ¬ τn+1(ω))+

u∞(t, Y0(ω), τ1(ω), Yτ1(ω), . . . )1(t > τ∞(ω)), (4.1.2)
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where τ∞(ω) = limn→∞ τn(ω), ω ∈ Ω. Also in this Chapter, the reader must always
remember this kind of decomposition, since it will be of fundamental importance in the
analysis of the optimal control problem. Moreover, we will frequently switch between
the notation (ut)t­0 and (un)n∈N̄0

and, to simplify matters, we will often use the more
compact writing un(·) instead of un(·, Y0(ω), . . . , τn(ω), Yτn(ω)), n ∈ N0.

The dynamics of the unobserved process will be specified by the initial distribution
µ, a probability measure on I , and by the following random measure depending on the
chosen control process u ∈ Uad.

νu(ω; dtdz) = 1t<T∞(ω)

∫
U

λ(Xt−(ω), u,dz)ut(ω ; du) dt (4.1.3)

for any ω ∈ Ω and u ∈ Uad. For sake of simplicity, we will drop ω in what follows.
Now set P0 as the probability measure on

(
Ω,X ◦0

)
such that X0 = ξ0 has law

µ. It is easy to see that the previously described setting is equivalent to that provided
in Assumption 1.1.3. In fact, one can show that the random measure νu is (X ◦t )t­0–
predictable and satisfies (1.1.3), i. e.

1. νu({t} × I) ¬ 1,

2. νu([T∞,+∞)× I
)

= 0.

Therefore, by Theorem 1.1.9, there exists a unique probability measure Pu
µ on

(
Ω,X ◦

)
,

such that Pu
µ|X◦0 = P0 and νu is the

(
Pu
µ,X ◦t

)
–predictable projection of n. Once speci-

fied the control u ∈ Uad and consequently the probability measure Pu
µ, it follows from

the second part of Assumption 4.1.1 that the point process n is Pu
µ-a.s. non-explosive,

i. e. that T∞ = +∞, Pu
µ-a.s. . For this reason we will drop the term 1t<T∞ appearing

in (3.1.3) and, since also τ∞ = +∞ Pu
µ-a.s., we will avoid specifying the function u∞

in (3.1.2).
Finally, we define for each probability measure µ on I and u ∈ Uad the completions

of the natural filtrations of the processes X and Y as follows.

• X µ,u is the Pu
µ-completion of X ◦ (Pu

µ is extended to X µ,u in the natural way).

• Zµ,u is the family of elements of X µ,u with zero Pu
µ – probability.

• Yµ,ut := σ(Y◦t ,Zµ,u), for t ­ 0.

(Yµ,ut )t­0 is called the natural completed filtration of Y .
As we anticipated at the beginning of this Chapter, we choose control actions in

order to minimize, for all possible choices of the initial distribution µ of the processX ,
the following cost functional

J(µ,u) = Eu
µ

[∫ ∞
0

e−βt
∫
U

f(Xt, u)ut(du) dt
]

(4.1.4)

where f is called cost function and β > 0 is a fixed constant called discount factor. In
other words, we want to characterize the value function

V (µ) = inf
u∈Uad

J(µ,u). (4.1.5)

We make the following assumption on the cost function f , ensuring that the functi-
onal J is well defined (and also bounded).
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Assumption 4.1.2. The function f : I×U → R is bounded and uniformly continuous.
In particular, for some constant Cf > 0 it holds that

sup
(x,u)∈I×U

|f(x, u)| ¬ Cf , (4.1.6)

We can transform the problem formulated above into a complete observation pro-
blem by means of the filtering process. Similarly to what we did in Section 3.1 we pro-
vide without proof some results concerning this process. They can be obtained as slight
generalizations of the corresponding statements that the reader can found in Chapter 2.

The filtering process is defined as the P(I)–valued process given by

Pu
µ(Xt ∈ A | Yµ,ut ), t ­ 0, A ∈ I.

As we already know, the true image set of this process is the so called effective simplex
∆e, defined as

∆e :=
⋃
y∈O

∆y, ∆y := {ν ∈ P(I) : ν
(
h−1(y)c

)
= 0}, y ∈ O (4.1.7)

It is a proper subset of P(I) unless the function h is constant. Moreover, the sets ∆y

are clearly pairwise disjoint. We recall that the effective simplex can be regarded as a
topological space (∆e, τe) under the relative topology τe induced on ∆e by the total
variation norm, with which we endow the spaceM(I).

It is worth noticing that the filtering process is a (Yµ,ut )t­0 – adapted process and
since (Yµ,ut )t­0 is right continuous we can choose a (Yµ,ut )t­0 – progressive version.
We will assume this whenever needed.

We want to state an explicit equation satisfied by the filtering process. To do so, let
us define for each y ∈ O the map Fy : M(I)× U →M(I) as

Fy(ν, u) := Buyν − ν Buyν(I), ν ∈M(I), u ∈ U (4.1.8)

where the controlled operator Buy is defined for all y ∈ O and u ∈ U by

Buyν(dz) := 1h−1(y)(z)
∫
I

λ(x, u,dz) ν(dx)− λ(z, u)ν(dz), ν ∈M(I). (4.1.9)

It is clear that, for each fixed y ∈ O, the map u 7→ Fy(ν, u) is measurable for
all ν ∈ M(I). Moreover, we can provide the following generalization of Proposition
2.2.2, concerning the Lipschitz continuity of Fy .

Proposition 4.1.1. Under Assumption 4.1.1, for each fixed y ∈ O the map Fy is locally
Lipschitz continuous in ν uniformly in u, i. e. there exists a constant LF > 0 such that

sup
u∈U
‖F (ν, u)− F (ρ, u)‖TV ¬ LF ‖ν − ρ‖TV , for all ν, ρ ∈M(I). (4.1.10)

Thanks to this, we can generalize Theorem 2.2.3 to get the following result.

Theorem 4.1.2. For all y ∈ O, ρ ∈ ∆y and all measurable m : [0,+∞) → P(U),
the ODE 

d
dtz(t) =

∫
U

Fy(z(t), u)m(t ; du), t ­ 0

z(0) = ρ

(4.1.11)



Chapter 4. Optimal control: the infinite dimensional case 106

admits a unique global solution z : [0,+∞)→M(I). Moreover z(t) ∈ ∆y for all t ­
0 and, if z1 and z2 are solutions to (4.1.11) with z1(0) = ρ1 ∈ ∆y, z2(0) = ρ2 ∈ ∆y ,
we have that the estimate

‖z1(t)− z2(t)‖TV ¬ ‖ρ1 − ρ2‖TV e
LF t, t ­ 0 (4.1.12)

holds for all measurable m : [0,+∞)→ P(U).

Remark 4.1.1. Similarly to what we did following Remark 2.2.2, in the remainder of
this Chapter we will denote the solution z by φmy,ρ(·), to stress the dependence on ρ ∈
∆y and the measurable function m. By standard results on ODE, (t, ρ) 7→ φmy,ρ(t) is
continuous for each y ∈ O and it enjoys the flow property, i. e. φmy,φmy (s,ρ)(t) = φmy,ρ(t+
s), for t, s ­ 0. The function y 7→ φmy,·(·) is called the controlled flow associated with
the vector field Fy on ∆y and the control function m. To simplify the notation, it is
convenient to define a global controlled flow φm on ∆e setting φmρ (t) = φmy,ρ(t), if
ρ ∈ ∆y . In this way, for all fixed control functions m and t ­ 0, ρ 7→ φmρ (t) is a
function ∆e → ∆e leaving each set ∆y invariant. Finally, we can associate to the
global flow a global controlled vector field F : ∆e × U → ∆e defined as

F (ν, u) := Fy(ν, u) = Buyν − ν Buyν(I), ν ∈ ∆y, u ∈ U. (4.1.13)

We are now ready to state the filtering equation, which can be deduced from Theo-
rem 2.1.6.

Theorem 4.1.3 (Filtering equation). For all ω ∈ Ω define τ0(ω) ≡ 0 and for fixed u ∈
Uad the stochastic process πµ,u = (πµ,ut )t­0 as the unique solution of the following
system of ODEs

d
dtπ

µ,u
t (ω) =

∫
U

F (πµ,ut (ω), u)ut(ω ; du), t ∈ [τn(ω), τn+1(ω)), n ∈ N0

πµ,u0 (ω) = HY0(ω)[µ]
πµ,uτn (ω) = HYτn(ω)(ω)

[
Λ
(
πµ,u
τ−n (ω)(ω), uτ−n (ω)(ω)

)]
, n ∈ N.

(4.1.14)
where F is the vector field defined in (4.1.8), H is the operator given in Definition
2.1.1, Λ: ∆e × P(U)→M+(I) is defined as

Λ(ν, u) := 1h−1(y)c(z)
∫
I

∫
U

λ(x, u,dz)u(du) ν(dx), ν ∈ ∆y, u ∈ P(U)
(4.1.15)

and the quantity πµ,u
τ−n (ω)(ω) is defined as

πµ,u
τ−n (ω)(ω) := lim

t→τn(ω)−
πµ,ut (ω), on {ω ∈ Ω: τn(ω) < +∞}.

Then, πµ,u is (Y◦t )t­0–adapted and is a modification of the filtering process, i. e.

πµ,ut (A) = Pu
µ(Xt ∈ A | Yµ,ut ), Pu

µ–a.s., t ­ 0, A ∈ I.

Remark 4.1.2. Thanks to the structure of admissible controls shown in (4.1.2) we can
write (4.1.14) as

d
dtπ

µ,u
t =

∫
U

F (πµ,ut , u)un(t, Y0, . . . , τn, Yτn ; du), t ∈ [τn, τn+1), n ∈ N0

πµ,u0 = HY0 [µ]
πµ,uτn = HYτn

[
Λ
(
πµ,u
τ−n

, un−1(τ−n , Y0, . . . , τn−1, Yτn−1)
)]
, n ∈ N
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We can characterize the filtering process as a Piecewise Deterministic Process
(PDP). Its characteristic triple (F, r,R) is given by the controlled vector field F defined
in (4.1.13), a controlled jump rate function r : ∆e × U → [0,+∞) and a controlled
stochastic kernel R, i. e. a probability transition kernel from (∆e × U,B(∆e) ⊗ U) to
(∆e,B(∆e)). We define the functions in this triple as

F (ν, u) := Fy(ν, u) = Buyν − ν Buyν(I), ν ∈ ∆y, u ∈ U

r(ν, u) := −Buyν(I) =
∫
I

λ
(
x, u, h−1(y)c

)
ν(dx), ν ∈ ∆y, u ∈ U

R(ν, u,D) :=
∫
O

1D

(
Hυ[Λ(ν, u)]

)
ρ(ν, dυ), ν ∈ ∆y, D ∈ B(∆e), u ∈ U

(4.1.16)

where ρ is a transition probability from
(
∆e ×U,B(∆e)⊗U

)
into (O,O) defined for

all ν ∈ ∆y, u ∈ U and all B ∈ O as

ρ(ν, u,B) :=


1

r(ν, u)

∫
I

λ
(
x, u, h−1(B \ {y})

)
ν(dx), if r(ν, u) > 0

qy(B), if r(ν, u) = 0
(4.1.17)

where (qy)y∈O is a family of probability measures, each concentrated on the level set
h−1(y), y ∈ O, whose exact values are irrelevant.

Since for any given ν ∈ ∆y and u ∈ U the probability ρ(ν, u, ·) is concentrated on
the set O \ {y}, the probability R(ν, u, ·) is concentrated on ∆e \∆y .

It is important to notice that under Assumption 4.1.1 r is Lipschitz continuous
uniformly in u, i. e.

sup
u∈U
|r(ρ, u)− r(ϑ, u)| ¬ Lr‖ρ− ϑ‖TV , for all ρ, ϑ ∈ ∆y, y ∈ O, (4.1.18)

for some constant Lr > 0. We also have that for some Cr > 0

sup
(ρ,u)∈∆e×U

|r(ρ, u)| ¬ Cr. (4.1.19)

We can now state the characterization of the filtering process as a PDP. This is a
generalization of Theorem 2.2.7. However, notice that we lose the Markov property
with respect to the natural filtration of the observed process, a loss due to the structure
of admissible controls.

Theorem 4.1.4. For every ν ∈ ∆e and all u ∈ Uad the filtering process πν,u =
(πν,ut )t­0 defined on the probability space (Ω,X ◦,Pu

ν ) and taking values in ∆e is a
controlled Piecewise Deterministic Process with respect to the triple (F, r,R) defined
in (4.1.16) and with starting point ν.

More specifically, we have that for all n ∈ N0 and Pu
ν –a.s.

πν,ut = φun
πν,uτn

(t− τn), on {τn < +∞}, t ∈ [τn, τn+1) (4.1.20)

Pu
ν (τn+1 − τn > t, τn < +∞ | Yν,uτn ) =

1τn<+∞ exp
{
−
∫ t

0

∫
U

r
(
φ
un(·+ τn)
πν,uτn

(s), u
)
un(s+ τn ; du) ds

}
, t ­ 0 (4.1.21)
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Pu
ν (πν,uτn+1

∈ D, τn+1 < +∞ | Yν,u
τ−n+1

) =

1τn+1<+∞

∫
U

R
(
φ
un(·+ τn)
πν,uτn

(τ−n+1 − τn), u;D
)
un(τ−n+1 ; du), D ∈ B(∆e)

(4.1.22)

where, for each n ∈ N0, φun
πν,uτn

is the flow starting from πν,uτn and determined by the
controlled vector field F under the action of the control function un(·, Y0, . . . , τn, Yτn).

Remark 4.1.3. We point out once more (cfr. Remark 3.1.3) that equations (4.1.20)–
(4.1.22) are changed with respect to the standard formulation with piecewise open-
loop controls. This is necessary because of the chosen type of control processes, i. e.
the class Uad. Another difference with respect to the usual definition of a PDP is the
absence in our model of a boundary behavior of the PDP, i. e. the specification of a
transition kernel giving the post-jump position of the process in case it touches the
boundary.

Clearly enough, also in the infinite dimensional setting we do not have that the
transition measure R is a Feller kernel. Analogously to what we did in Proposition
3.1.4, we can state a weaker form of this property.

Proposition 4.1.5. Let Assumption 4.1.1 hold. Then for every bounded and continuous
function w : ∆e → R and u ∈ U the function ρ 7→ r(ρ, u)

∫
∆e
w(p)R(ρ, u; dp) is

bounded and continuous on ∆e.

Proposition 4.1.5 establishes continuity of the map therein considered for each fixed
control parameter u ∈ U , but this is not enough for our purposes. In the following
Sections we will invoke whenever needed the following condition.

Assumption 4.1.3. For every bounded and continuous function w : ∆e → R the map
ρ 7→ r(ρ, u)

∫
∆e
w(p)R(ρ, u; dp) is continuous on ∆e uniformly in u ∈ U .

Remark 4.1.4. It is important to notice that Assumption 4.1.3 is satisfied in some si-
tuations, e. g. in the Markov chain setting studied in Chapter 3, as Proposition 3.1.4
shows. It can be proved that it holds also in the case where the rate transition mea-
sure λ is absolutely continuous with respect to some fixed measure on (I, I) and the
resulting transition density is uniformly bounded from above and bounded away from
zero.

To conclude this Section, we make some concluding remarks on the cost functional
J defined in (4.1.4). Let us fix some more notation, first. Let us consider a measurable
space (E, E) and for each ν ∈ P(I) and all ϕ : I × E → R bounded and measurable,
let us denote by ν(ϕ; ·) : E → R the following function

ν(ϕ; e) :=
∫
I

ϕ(x, e) ν(dx), e ∈ E.

Since the control processes u are (Y◦t )t­0 – predictable and we know that the
filtering process πµ,u provides us with the conditional law of Xt given Yµ,ut , for all
t ­ 0, an easy application of the Fubini-Tonelli Theorem and of the freezing lemma
shows that

J(µ,u) = Eu
µ

[∫ ∞
0

e−βt
∫
U

πµ,ut (f ; u)ut(du) dt
]
. (4.1.23)

In this way, our control problem depends on completely observable quantities, since
the new state process πµ,u and the control process u depend on the observed process
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Y . The optimal control problem for the pure jump Markov process X becomes an
optimal control problem for the PDP πµ,u. As we did at the end of Section 3.1, we
can exploit the structure of admissible controls u = (un)n∈N0 ∈ Uad to rewrite J as a
discrete-time cost functional.

J(µ,u) = Eu
µ

[+∞∑
n=0

∫ τn+1

τn

e−βt
∫
U

πµ,ut (f ; u)un(t ; du) dt
]

= Eu
µ

[+∞∑
n=0

e−βτn
∫ +∞

0
e−βtχ

un(·+ τn)
πµ,uτn

(t)
∫
U

φ
un(·+ τn)
πµ,uτn

(f ; u, t)un(t+ τn ; du) dt
]

= Eu
µ

[+∞∑
n=0

e−βτng
(
πµ,uτn , un(·+ τn, Y0, τ1, Yτ1 , . . . , τn, Yτn)

)]
(4.1.24)

where the function g (that will be defined precisely in Section 4.2) represents the dou-
ble integral appearing in the second line and χ

un(·+ τn)
πµ,uτn

is the survival distribution
appearing in (4.1.21).

The reformulated problem does not fit in the framework of a classical discrete-
time optimal control problem (see e. g. [13]) for the same reasons already expressed at
the end of Section 3.1. The problem should be based only on the discrete-time process
given by the pairs of jump times and jump locations of the filtering process πµ,u (notice
that in (4.1.24) also the process Y appears) which, in turn, should not depend on the
initial law of the process X and on the control trajectory u. Moreover, the class of
admissible controls Uad is not adequate for a discrete-time problem, since its policies
should be functions depending at each time step exclusively on the past trajectory of a
discrete-time process (in this case, the one based on the filtering process, as explained
above). It is immediate to see that this is not the case for (4.1.24), since each of the
functions un depends on a continuous-time variable and on the positions of the process
Y .

The solution to these issues is represented by a separated discrete-time control pro-
blem based on the filtering process and related to the present one.

4.2 The separated optimal control problem
In this Section we will reformulate the original optimal control problem into a discrete-
time one based on the filtering process. Also in the infinite dimensional setting of this
Chapter, such a reformulation will fall in the framework of [13]. Therefore, we will be
able to use the same results used in Section 3.2 to study the value function V defined
in (4.1.5). We will prove the equivalence between the original control problem and the
separated one. In particular, we will show that the value function V can be indirectly
characterized by its counterpart in the separated problem, that will be studied in the
next Section.

Analogously to what we did in Section 3.2, we choose as action space the space of
relaxed controls

M = {m : [0,+∞)→ P(U), measurable}. (4.2.1)

We recall that M is compact under the Young topology (see e. g. [32]). The set of
ordinary controls

A = {α : [0,+∞)→ U, measurable} (4.2.2)
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can be identified as a subset ofM via the function t 7→ δα(t), α ∈ A, where δu denotes
the Dirac probability measure concentrated at the point u ∈ U . We recall that, thanks
to [67, Lemma 1], A is a Borel space when endowed with the coarsest σ-algebra such
that the maps

α 7→
∫ +∞

0
e−tψ(t, α(t)) dt

are measurable for all ψ : [0,+∞) × U → R, bounded and measurable. The class of
admissible policies Aad for the discrete-time optimal control problem is given by

Aad = {a = (an)n∈N̄0
, an : ∆e ×

(
(0,+∞)×∆e

)n →M measurable ∀n ∈ N̄0}.
(4.2.3)

We introduce now the separated optimal control problem. In this problem the state
to be controlled is represented by the filtering process, therefore we put ourselves in a
canonical framework for this process. The construction is exactly the same provided in
Section 3.2 and we repeat it here for the reader’s convenience.

• Ω̄ = {ω̄ : [0,+∞)→ ∆e, cádlág} denotes the canonical space for ∆e – valued
PDPs. We define π̄t(ω̄) = ω̄(t), for ω̄ ∈ Ω̄, t ­ 0, and

τ̄0(ω̄) = 0,
τ̄n(ω̄) = inf{t > τ̄n−1(ω̄) s.t. π̄t(ω̄) 6= π̄t−(ω̄)}, n ∈ N,
τ̄∞(ω̄) = lim

n→∞
τ̄n(ω̄).

• The family of σ-algebras (F̄◦t )t­0 given by

F̄◦t = σ(π̄s, 0 ¬ s ¬ t), F̄◦ = σ(π̄s, s ­ 0),

is the natural filtration of the process π̄ = (π̄t)t­0.

• For every ν ∈ ∆e and all a ∈ Aad we denote by P̄a
ν the probability measure

on (Ω̄, F̄◦) such that the process π̄ is a PDP, starting from the point ν and with
characteristic triple (F, r,R). With this, we mean that for all n ∈ N0 and P̄a

ν–a.s.

π̄t = φanπ̄τ̄n (t− τ̄n), on {τ̄n < +∞}, t ∈ [τ̄n, τ̄n+1). (4.2.4)

P̄a
ν(τ̄n+1 − τ̄n > t, τ̄n < +∞ | F̄◦τ̄n) =

1τ̄n<+∞ exp
{
−
∫ t

0

∫
U

r(φanπ̄τ̄n (t), u) an(s ; du) ds
}
, t ­ 0. (4.2.5)

P̄a
ν(π̄τ̄n+1 ∈ D, τ̄n+1 < +∞ | F̄◦

τ̄−n+1
) =

1τ̄n+1<+∞

∫
U

R(φanπ̄τ̄n (τ̄−n+1− τ̄n), u;D) an(τ̄−n+1− τ̄n ; du), D ∈ B(∆e).

(4.2.6)

where we simplified the notation by indicating an = an(π̄0, . . . , τ̄n, π̄τ̄n) and,
for each n ∈ N0, we denoted by φanπ̄τ̄n the flow starting from π̄τ̄n and deter-
mined by the controlled vector field F under the action of the relaxed control
an(π̄0, . . . , τ̄n, π̄τ̄n). We recall that the probability measure P̄a

ν always exists by
the canonical construction of a PDP (see Section 1.2).
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• For everyQ ∈ P(∆e) and every a ∈ Aad we define a probability P̄a
Q on (Ω̄, F̄◦)

by P̄a
Q(C) =

∫
∆e

P̄a
ν(C)Q(dν) for C ∈ F̄◦. This means that Q is the initial

distribution of π̄ under P̄a
Q.

• Let F̄Q,a be the P̄a
Q-completion of F̄◦. We still denote by P̄a

Q the measure na-
turally extended to this new σ-algebra. Let Z̄Q,a be the family of sets in F̄Q,a
with zero P̄a

Q-probability and define

F̄Q,at = σ(F̄◦t ∪ Z̄Q,a), F̄t =
⋂

Q∈P(∆e)
a∈Aad

F̄Q,at , t ­ 0.

(F̄t)t­0 is called the natural completed filtration of π̄. By a slight generalization
of Theorem 1.2.2 it is right-continuous.

The PDP (Ω̄, F̄ , (F̄t)t­0, (π̄t)t­0, (P̄a
ν)a∈Aad
ν∈∆e

) constructed as above admits the con-
trolled characteristic triple (F, r,R) defined in (4.1.16). To simplify the notation, let us
introduce the function χmρ , depending on ρ ∈ ∆e and m ∈M, given by

χmρ (t) = exp
{
−
∫ t

0

∫
U

r(φmρ (s), u)m(s ; du) ds
}
, t ­ 0. (4.2.7)

In this way, we can write (3.2.4) as

P̄a
ν(τ̄n+1 − τ̄n > t | F̄◦τ̄n) = χanν (t), t ­ 0, on {τ̄n < +∞}.

Notice that χmρ solves the ODE
d
dtz(t) = −z(t)

∫
U

r(φmρ (t), u)m(t ; du), t ­ 0

z(0) = 1
(4.2.8)

The observed process Ȳ can be defined on Ω̄ as follows. Let us introduce the mea-
surable function projY : ∆e → O given by

projY(p) = y, if p ∈ ∆y, for some y ∈ O

and set

Ȳt(ω̄) =


projY(π̄0(ω̄)), t ∈

[
0, τ̄1(ω̄)

)
projY(π̄τ̄n(ω̄)(ω̄)), t ∈

[
τ̄n(ω̄), τ̄n+1(ω̄)

)
, n ∈ N, τ̄n(ω̄) < +∞

o∞, t ∈
[
τ̄∞(ω̄),+∞), τ̄∞(ω̄) < +∞

,

where o∞ ∈ O is an arbitrary state, that is irrelevant to specify, since under Assumption
4.1.1 for each fixed ν ∈ ∆e and a ∈ Aad we have that τ̄∞ = +∞, P̄a

ν–a.s.. In other
words, the observed process is P̄a

ν–a.s. non explosive.
Next, we define the cost functional associated to the separated optimal control pro-

blem. Let us recall that, in the end, we want this problem to be equivalent to the original
optimal control problem for the unobserved process X . Consequently we define the
new cost functional J̄ in analogy to the form of the original cost functional J shown
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in (4.1.23). To this purpose, let us introduce the discrete-time one-stage cost function
g : ∆e ×M→ R as

g(ν,m) =
∫ +∞

0
e−βtχmν (t)

∫
U

φmν (f ; u, t)m(t ; du) dt. (4.2.9)

We define the cost functional J̄ as

J̄(ν,a) = Ēa
ν

[+∞∑
n=0

e−βτ̄ng
(
π̄τ̄n , an(π̄τ̄0 , . . . , τ̄n, π̄τ̄n)

)]
, ν ∈ ∆e, a ∈ Aad.

(4.2.10)
Finally, we define the value function of the separated problem as

v(ν) = inf
a∈Aad

J̄(ν,a). (4.2.11)

As we anticipated earlier, we need to establish a connection between the cost functi-
onals J and J̄ , respectively given in (4.1.23) and (4.2.10). In a similar manner to The-
orem 3.2.1, this link will be given by constructing corresponding admissible controls
in Uad and admissible policies in Aad.

Theorem 4.2.1. Fix µ ∈ P(I) and let Q ∈ P(∆e) the Borel probability measure on
∆e concentrated on the set

⋃
y∈O{Hy[µ]}, defined as

Q := µ ◦ h−1 ◦ H−1, H(y) := Hy[µ]. (4.2.12)

For all µ ∈ P(I) and all u ∈ Uad there exists an admissible policy a ∈ Aad such
that the laws of πµ,u under Pu

µ and of π̄ under P̄a
Q are the same. Moreover, for such an

admissible policy

J(µ,u) =
∫

∆e

J̄(ν,a)Q(dν) =
∫
O

J̄(Hy[µ],a)µ ◦ h−1(dy). (4.2.13)

Viceversa, for all µ ∈ P(I) and all a = (an)n∈N ∈ Aad there exists an admissible
control u ∈ Uad such that the same conclusions hold.

Proof. Let us start from the first part of the theorem. Given an admissible control u ∈
Uad we are able to construct a corresponding admissible policy in the same way as
did in the proof of Theorem 3.2.1. Let us define the functions an : ∆e ×

(
(0,+∞) ×

∆e

)n →M as

an(ν0, . . . , sn, νn)(t ; du) = un
(
t+ sn,projY(ν0), . . . , sn,projY(νn) ; du

)
for all possible sequences (νi)ni=0 ⊂ ∆e and (si)ni=1 ⊂ (0,+∞).

Thanks to the fact that projY is Borel-measurable and that M is a Borel space,
we can apply [67, Lemma 3(i)] and it follows that each function an is measurable.
Therefore we have that a = (an)n∈N0 ∈ Aad.

The laws of πµ,u under Pu
µ and π̄ under P̄a

Q are determined respectively by the
finite-dimensional distributions of the stochastic processes {πµ,u0 , τ1, π

µ,u
τ1 , . . . } and

{π̄0, τ̄1, π̄τ1 , . . . } and by the flows associated to the controlled vector fields Fu and
F a. These laws, in turn, can be expressed via the initial distributions of πµ,u0 and π̄0
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and the conditional distributions of the sojourn times and post-jump locations, i. e. for
t ­ 0, D ∈ B(∆e) and n ∈ N the quantities

Pu
µ(τn − τn−1 > t, τn−1 < +∞ | πµ,u0 , . . . , τn−1, π

µ,u
τn−1

); (4.2.14)

P̄a
Q(τ̄n − τ̄n−1 > t, τ̄n−1 < +∞ | π̄0, . . . , τ̄n−1, π̄τ̄n−1); (4.2.15)

Pu
µ(πµ,uτn ∈ D, τn < +∞ | πµ,u0 , . . . , πµ,uτn−1

, τn); (4.2.16)

P̄a
Q(π̄τ̄n ∈ D, τ̄n < +∞ | π̄0, . . . , π̄τ̄n−1 , τ̄n). (4.2.17)

It suffices to prove that under the two different probability measures Pu
µ and P̄a

Q the
initial laws of πµ,u0 and π̄0 are equal, since the proof of equivalence between (4.2.14)–
(4.2.15) and (4.2.16)–(4.2.17) is identical to that provided in the proof of Theorem
3.2.1. This is immediate, as for fixed D ∈ B(∆e) we have that

Pu
µ(πµ,u0 ∈ D) = Pu

µ(HY0 [µ] ∈ D) = Pu
µ

(
Y0 ∈ H−1(D)

)
=

Pu
µ

(
X0 ∈ h−1(H−1(D))

)
= µ

(
h−1(H−1(D))

)
= Q(D)

while P̄a
Q(π̄0 ∈ D) = Q(D), by definition of P̄a

Q.
We are left to prove (4.2.13). Fix µ ∈ P(I) and u ∈ Uad with corresponding

a ∈ Aad defined as above. Let us define the function Φ: Ω̄→ R as

Φ(ω̄) =
+∞∑
n=0

e−βτ̄n(ω̄)g
(
π̄τ̄n(ω̄)(ω̄), an(. . . , τ̄n(ω̄), π̄τn(ω̄)(ω̄)

)
=

+∞∑
n=0

e−βτ̄n(ω̄)g
(
π̄τ̄n(ω̄)(ω̄), un(·+ τ̄n(ω̄), . . . , τ̄n(ω̄),projY(π̄τn(ω̄)(ω̄))

)
.

Thanks to Assumptions 4.1.1 and 4.1.2 this function is bounded. Since for each n ∈ N0
the functions an (equivalently un) are measurable it is also F̄-measurable.

Now, take ω̄ = πµ,u(ω), ω ∈ Ω. It is clear that for all t ­ 0 we have π̄t(ω̄) =
ω̄(t) = πµ,ut (ω) and also, by definition of the jump times (τ̄n)n∈N0 , that τ̄n(ω̄) =
τn(ω), Pu

µ-a.s.. Then, we get that Pu
µ-a.s.

Φ(πµ,u(ω)) =
+∞∑
n=0

e−βτn(ω)g
(
πµ,uτn(ω)(ω), un(·+ τn(ω)

)
=

+∞∑
n=0

e−βτn(ω)g
(
πµ,uτn(ω)(ω), un(·+ τn(ω), . . . , τn(ω), Yτn(ω)(ω))

)
,

hence, comparing this result with (4.1.24) and applying the Fubini-Tonelli Theorem we
obtain

J(µ,u) =
∫

Ω
Φ(πµ,u(ω))Pu

µ(dω) =
∫

Ω̄
Φ(ω̄)P̄a

Q(dω̄) =
∫

Ω̄
Φ(ω̄)

∫
∆e

P̄a
ν(dω̄)Q(dν)

=
∫

∆e

{∫
Ω̄

Φ(ω̄)P̄a
ν(dω̄)

}
Q(dν) =

∫
∆e

J̄(ν,a)Q(dν)

by definition of the functional J̄ .
To prove the second part of the theorem, fix µ ∈ P(I) and a = (an)n∈N ∈ Aad.

Also in this case, the construction of a corresponding admissible control is analogous
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to that given in the proof of Theorem 3.2.1. We define, for each possible sequence
b0, b1, · · · ∈ O and s1, · · · ∈ (0,+∞) the following quantities by recursion for all
n ∈ N

p0 = p0(b0) = Hb0 [µ]
pn = pn(b0, s1, . . . , sn, bn) =Hbn

[
φan−1
pn−1

(s−n − sn−1)
∫
U

Λ(u) an−1(s−n − sn−1 ; du)
]
, if s1 < · · · < sn

ρ, otherwise

Here s0 = 0 and ρ ∈ ∆e is an arbitrarily chosen value.
For all n ∈ N0 we define the functions un : [0,+∞) × O ×

(
(0,+∞) × O

)n →
P(U) as

un(t, b0, . . . , sn, bn ; du) =
{
an(p0, . . . , sn, pn)(t− sn ; du), if t ­ sn,
u, if t < sn,

where u ∈ U is some fixed value that is irrelevant to specify. Thanks to the fact that
each of the functions (b0, . . . , sn, bn) 7→ pn is Borel-measurable and thatM is a Borel
space, we can use [67, Lemma 3(ii)] to conclude that all the functions un are Borel-
measurable and therefore u = (un)n∈N0 ∈ Uad.

Now the proof follows the same steps of the first part. Equality between the laws
of πµ,u under Pu

µ and π̄ under Pa
Q is established by proving equivalence between the

initial distributions of the two processes (that have not changed from the first part of
the proof) and of the conditional distributions

Pu
µ(τn − τn−1 > t, τn−1 < +∞ | Y0, . . . , τn−1, Yτn−1);

P̄a
Q(τ̄n − τ̄n−1 > t, τ̄n−1 < +∞ | Ȳ0, . . . , τ̄n−1, Ȳτ̄n−1);

Pu
µ(πµ,uτn ∈ D, τn < +∞ | Y0, . . . , Yτn−1 , τn);

P̄a
Q(π̄τ̄n ∈ D, τ̄n < +∞ | Ȳ0, . . . , Ȳτ̄n−1 , τ̄n),

where t ­ 0, D ∈ B(∆e) and n ∈ N.
Finally, to prove (4.2.13) it suffices to define Φ: Ω̄→ R as

Φ(ω̄) =
+∞∑
n=0

e−βτ̄n(ω̄)g
(
π̄τ̄n(ω̄)(ω̄), un(·+ τ̄n, Ȳ0(ω̄), . . . , τ̄n(ω̄), Ȳτn(ω̄)(ω̄)

)
.

and notice that pn(Ȳ0, . . . , τ̄n, Ȳτ̄n) = π̄τ̄n , so that we can write

Φ(ω̄) =
+∞∑
n=0

e−βτ̄n(ω̄)g
(
π̄τ̄n(ω̄)(ω̄), an(π̄0(ω̄), . . . , τ̄n(ω̄), π̄τn(ω̄)(ω̄)

)
.

The desired equality follows from the same reasoning as in the first part of the proof.

Remark 4.2.1. It is clear that both the classes Uad and Aad are strictly larger than the
corresponding classes of piecewise open-loop controls that are standard in PDP optimal
control problems. See Remark 3.2.1 for more details on this.
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We can focus now on the analysis of the auxiliary PDP optimal control problem.
What we are aiming at is to prove that its value function v is the unique fixed point of
the operator T : Bb(∆e)→ Bb(∆e), defined for all ν ∈ ∆e as

T w(ν) := inf
m∈M

∫ ∞
0

∫
U

e−βtL(φmν (t), χmν (t), u, w)m(t; du) dt

:= inf
m∈M

∫ ∞
0

∫
U

e−βtχmν (t)
[
φmν (f ; u, t)+

r(φmν (t), u)
∫

∆e

w(p)R(φmν (t), u; dp)
]
m(t; du) dt (4.2.18)

The operator T is a contraction under Assumptions 4.1.1 and 4.1.2, as it can be shown
analogously to Lemma 3.2.2. Therefore, we just need to show that v is a fixed point
of T . We will invoke results from [13]. In fact, our problem is an instance of a lower
semicontinuous model. The next results follow the same reasoning of Section 3.2 and
are stated without proof, being almost identical.

Proposition 4.2.2. Under Assumptions 4.1.1, 4.1.2 and 4.1.3 there exists an optimal
policy a? ∈ Aad, i. e. a policy such that

v(ν) = J̄(ν,a?), for all ν ∈ ∆e.

Moreover, this policy is stationary, the value function v is lower semicontinuous and it
is the unique fixed point of the operator T .

We get rid of relaxed controls, thanks to the following theorem.

Theorem 4.2.3. Let us define the operator G : Bb(∆e)→ Bb(∆e) as

Gw(ν) = inf
α∈A

∫ ∞
0

e−βtL(φαν (t), χαν (t), α(t), w) dt, ν ∈ ∆e (4.2.19)

where the infimum is taken among all possible ordinary controls in the set A, defined
in (4.2.2).

Under Assumptions 4.1.1, 4.1.2 and 4.1.3 the operator G is a contraction and v is
its unique fixed point.

The final statement of this Section gives an equality between the two value functi-
ons V and v. This proves the equivalence of the original control problem for the unob-
served process X and the auxiliary control problem for the filtering process π̄.

Theorem 4.2.4. Under Assumptions 4.1.1, 4.1.2 and 4.1.3, for all µ ∈ P(I) we have
that

V (µ) =
∫
O

v(Hy[µ])µ ◦ h−1(dy). (4.2.20)

In the next Section we will characterize the value function v (and, indirectly, the
original value function V ).

4.3 Characterization of the value function
In this Section we will prove that the value function v of the separated problem is
continuous, characterizing it as the unique fixed point of the operator G in the space of
bounded and continuous functions on ∆e.
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Let us denote by Cb(∆e) the space of bounded continuous functions on ∆e equip-
ped with the usual sup norm. To prove continuity of v we need to show that G maps
the space Cb(∆e) into itself and that v is its unique fixed point in that space (recall that
we already established that G is a contraction). The following version of the Dynamic
Programming Principle is an important piece to get continuity of v. We omit its proof
since it is identical to that of Proposition 3.3.1.

Proposition 4.3.1 (Dynamic Programming Principle). For all functions w ∈ Bb(∆e)
and all T > 0 the function Gw satisfies the following identity

Gw(ν) = inf
α∈A

{∫ T

0
e−βtL(φαν (t), χαν (t), α(t), w) dt+ e−βTχαν (T )Gw(φαν (T ))

}
.

(4.3.1)

The following Lemma is a key tool to be used in the proof of the next Proposition.

Lemma 4.3.2. Let T > 0 and w ∈ Cb(∆e) be fixed and define

JT,w(ν, α) :=
∫ T

0
e−βtL(φαν (t), χαν (t), α(t), w) dt, ν ∈ ∆e, α ∈ A. (4.3.2)

Then, under Assumptions 4.1.1, 4.1.2 and 4.1.3, the map ν 7→ JT,w(ν, α) is continuous
on ∆e, uniformly with respect to α ∈ A.

Proof. Let ε > 0, α ∈ A and ν, ρ ∈ ∆e be fixed. First of all, we need to estimate the
quantity ∣∣L(φαν (t), χαν (t), α(t), w)− L(φαρ (t), χαρ (t), α(t), w)

∣∣.
We have that for all t ­ 0∣∣L(φαν (t), χαν (t), α(t), w)− L(φαρ (t), χαρ (t), α(t), w)

∣∣
¬
∣∣χαν (t)− χαρ (t)

∣∣∣∣∣∣φαν (f ; α(t), t) + r(φαν (t), α(t))
∫

∆e

w(p)R(φαν (t), α(t); dp)
∣∣∣∣

+ χαρ (t)
∣∣φαν (f ; α(t), t)− φαρ (f ; α(t), t)

∣∣
+ χαρ (t)

∣∣∣∣r(φαν (t), α(t))
∫

∆e

w(p)R(φαν (t), α(t); dp)

− r(φαρ (t), α(t))
∫

∆e

w(p)R(φαρ (t), α(t); dp)
∣∣∣∣.

Thanks to Assumptions 4.1.1, 4.1.2 the first summand satisfies∣∣∣∣φαν (f ; α(t), t) + r(φαν (t), α(t))
∫

∆e

w(p)R(φαν (t), α(t); dp)
∣∣∣∣ ¬ K,

where K > 0 is a constant depending on Cf and Cr defined in (4.1.6) and (4.1.19) and
on supϑ∈∆e

|w(ϑ)|. Furthermore, a repeated application of (4.1.12) and of Gronwall’s
Lemma shows that for all t ­ 0∣∣χαν (t)− χαρ (t)

∣∣ ¬ Lr
LF

(eLFT − 1)eCrT ‖ν − ρ‖TV

where LF and Lr are the constants defined in (4.1.10) and (4.1.18) respectively.
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As for the second summand, observe that χαν (t) ¬ 1. Thanks to Assumption 4.1.2,
we can apply (4.1.12) to obtain∣∣φαν (f ; α(t), t)− φαρ (f ; α(t), t)

∣∣ ¬ CfeLF t‖ν − ρ‖TV .
Finally, by Assumption 4.1.3 we can find δ such that the third summand can be

estimated as∣∣∣∣r(φαν (t), α(t))
∫

∆e

w(p)R(φαν (t), α(t); dp)

− r(φαν (t), α(t))
∫

∆e

w(p)R(φαν (t), α(t); dp)
∣∣∣∣ < ε

2Kβ

as soon as ‖φαν (t) − φαρ (t)‖TV < η for some η > 0, i. e. – applying again (4.1.12)

– as soon as ‖ν − ρ‖TV < η
eLF T

. Here Kβ := eβT−1
β is a constant introduced for

convenience, as will be clear later. Notice that η depends on ε, β and T , but not on α.
Collecting all the computations made so far we get∣∣L(φαν (t), χαν (t), α(t), w)− L(φαρ (t), χαρ (t), α(t), w)

∣∣ ¬
Lr
LF

eCrT (eLFT − 1)(K + Cfe
LFT )‖ν − ρ‖TV + ε

2Kβ
.

We are now in a position to prove our claim. It suffices to notice that∣∣JT,w(ν, α)− JT,w(ρ, α)
∣∣

¬
∫ T

0
e−βt

∣∣∣∣L(φαν (t), χαν (t), α(t), w)− L(φαρ (t), χαρ (t), α(t), w)
∣∣∣∣dt

¬ e−βT − 1
β

[
Lr
LF

eCrT (eLFT − 1)(K + Cfe
LFT )‖ν − ρ‖TV + ε

2Kβ

]
= C‖ν − ρ‖TV + ε

2

(4.3.3)

where we defined C := Kβ

[
Lr
LF
eCrT (eLFT − 1)(K + Cfe

LFT )
]
. Notice, again, that

C is a constant depending on the functions F, r, f, w and on the constants β, T but
not on α ∈ A. We conclude observing that, thanks to (4.3.3), we have

∣∣JT,w(ν, α) −
JT,w(ρ, α)

∣∣ < ε as soon as we take ‖ν − ρ‖TV < min{ η
eLF T

, ε
2C } =: δ (recall that η

depends on ε, β, T ).

The following Proposition establishes a fundamental fact: the operator G maps
bounded and continuous functions into bounded and continuous functions. Thanks to
this Proposition we are able to prove that the value function v is the unique fixed point
of G in the space Cb(∆e).

Proposition 4.3.3. Under Assumptions 4.1.1, 4.1.2 and 4.1.3, for each function w ∈
Cb(∆e) we have that Gw ∈ Cb(∆e).

Proof. Let us choose ν0, ρ0 ∈ ∆e, such that for some δ > 0 small enough ‖ν0 −
ρ0‖TV < δ. Let ε > 0, T > 0 be arbitrarily fixed and choose αε0 ∈ A such that

Gw(ρ0)+ ε

4Kβ
­
∫ T

0
e−βtL(φα

ε
0
ρ0 (t), χα

ε
0
ρ0 (t), αε0(t), w) dt+e−βTχα

ε
0
ρ0 (T )Gw(φα

ε
0
ρ0 (T ))

(4.3.4)
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according to the Dynamic Programming Principle, where Kβ > 0 is a constant that we
will fix later. From (4.3.4) we easily get

Gw(ν0)− Gw(ρ0) ¬ JT,w(ν0, α
ε
0)− JT,w(ρ0, α

ε
0) + ε

4Kβ

+ e−βT
[
χ
αε0
ν0 (T )Gw(φα

ε
0
ν0 (T ))− χα

ε
0
ρ0 (T )Gw(φα

ε
0
ρ0 (T ))

]
¬
∣∣JT,w(ν0, α

ε
0)− JT,w(ρ0, α

ε
0)
∣∣

+ e−βT
∣∣χαε0ν0 (T )− χα

ε
0
ρ0 (T )

∣∣ sup
ϑ∈∆e

∣∣Gw(ϑ)
∣∣

+ e−βT
[
Gw(φα

ε
0
ν0 (T ))− Gw(φα

ε
0
ρ0 (T ))

]
+ ε

4Kβ

where JT,w was defined in (4.3.2) and supϑ∈∆e

∣∣Gw(ϑ)
∣∣ < +∞ since w is bounded

and G maps bounded functions into bounded functions.
We need to provide an estimate for the terms appearing in the last lines of the

previous equation. We know from Lemma 4.3.2 that for a suitably chosen δ we have∣∣JT,w(ν0, α
ε
0)− JT,w(ρ0, α

ε
0)
∣∣ < ε

4Kβ
.

Recall that this fact is independent of αε0. From the proof of Lemma 4.3.2 we know that∣∣χαε0ν0 (T )− χα
ε
0
ρ0 (T )

∣∣ ¬ Kδ
for a specific constant K depending on the functions F, r, f and T but not on αε0.

Taking into account what we have obtained so far, we get

Gw(ν0)− Gw(ρ0) < Kδe−βT sup
ϑ∈∆e

∣∣Gw(ϑ)
∣∣

+ e−βT
[
Gw(φα

ε
0
ν0 (T ))− Gw(φα

ε
0
ρ0 (T ))

]
+ ε

2Kβ
.

Now, let ν1 := φ
αε0
ν0 (T ), ρ1 := φ

αε0
ρ0 (T ). Notice that ‖ν1 − ρ1‖TV ¬ eLFT δ, thanks

to (4.1.12). Choose αε1 ∈ A such that

Gw(ρ1)+ ε

4Kβ
­
∫ T

0
e−βtL(φα

ε
1
ρ1 (t), χα

ε
1
ρ1 (t), αε1(t), w) dt+e−βTχα

ε
1
ρ1 (T )Gw(φα

ε
1
ρ1 (T ))

(4.3.5)
according to the Dynamic Programming Principle. We can apply the same estimates as
above to Gw(ν1)− Gw(ρ1) and obtain

Gw(ν0)− Gw(ρ0) <
(

ε

2Kβ
+Kδe−βT sup

ϑ∈∆e

∣∣Gw(ϑ)
∣∣)(1 + e−βT )

+ e−2βT [Gw(φα
ε
1
ν1 (T ))− Gw(φα

ε
1
ρ1 (T ))

]
.

Proceeding in this way, for all n ∈ N we can pick a sequence of control functions
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αε0, . . . , α
ε
n ∈ A such that

Gw(ν0)− Gw(ρ0) <
(

ε

2Kβ
+Kδe−βT sup

ϑ∈∆e

∣∣Gw(ϑ)
∣∣) n∑

k=0
e−kβT

+ e−(n+1)βT [Gw(φα
ε
n
νn (T ))− Gw(φαnερn (T ))

]
¬
(

ε

2Kβ
+Kδe−βT sup

ϑ∈∆e

∣∣Gw(ϑ)
∣∣)1− e−(n+1)βT

1− e−βT

+ 2e−(n+1)βT sup
ϑ∈∆e

∣∣Gw(ϑ)
∣∣

where νk = φ
αεk−1
νk−1 (T ), ρk = φ

αεk−1
ρk−1 (T ) with k = 1, . . . , n. It is clear that we obtain

the same estimate reversing the roles of ν0 and ρ0, hence for all n ∈ N we get∣∣Gw(ν0)− Gw(ρ0)
∣∣

<

(
ε

2Kβ
+Kδe−βT sup

ϑ∈∆e

∣∣Gw(ϑ)
∣∣)1− e−(n+1)βT

1− e−βT + 2e−(n+1)βT sup
ϑ∈∆e

∣∣Gw(ϑ)
∣∣.

(4.3.6)

Now, let us choose N ∈ N such that 2e−(N+1)βT supϑ∈∆e

∣∣Gw(ϑ)
∣∣ < ε

4 , fix Kβ =
1−e−(N+1)βT

1−e−βT and take δ such thatKδe−βT supϑ∈∆e

∣∣Gw(ϑ)
∣∣Kβ <

ε
4 . From (4.3.6) we

get that
∣∣Gw(ν0)− Gw(ρ0)

∣∣ < ε and, being ε arbitrary, we conclude.

Theorem 4.3.4. Under Assumptions 4.1.1, 4.1.2 and 4.1.3 the value function v of the
separated problem is the unique fixed point of the operator G in the space of bounded
and continuous functions on ∆e.

Proof. As in the proof of the corresponding Theorem 3.3.4, we just need to put together
the following facts: v is the unique fixed point of G in the space Bb(∆e); the operator
G : Cb(∆e)→ Cb(∆e) is a contraction mapping; Proposition 4.3.3.

4.4 Some comments on the observed process
In this brief Section we highlight what happens to the results proved in this Chapter and,
consequently, in Chapter 3 if we allow the function h, providing the observed process,
to be one-to-one or constant. We recall that these cases were excluded from our analysis
since the control problem arising from them is not of true partial observation nature.
However, the assumption that h is neither one-to-one nor constant is not used in any of
the proofs contained in Chapters 3 and 4 and, in fact, the reader may check that they
still hold even in these cases, leading to the results shown below.

The case where h is one-to-one is associated to a control problem with complete
observation. As explained in Section 2.4, both the observed process Y and the filtering
process can be identified with the pure-jump Markov processX . Therefore, our control
problem falls in the framework of optimal control problems for continuous-time pure-
jump processes, that have been treated, for instance, in [54, 68].

The case where h is constant is associated to a control problem with no information,
in particular a deterministic one. The class of admissible controls Uad given in (4.1.1)
can be identified with the set of relaxed controlsM, introduced in (4.2.1). In fact, our
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admissible controls have to be predictable with respect to the natural filtration (Y◦t )t­0
of the process Y , but since the σ–algebras Y◦t coincide with the trivial one for all t ­ 0,
we have that an admissible control is just a relaxed control.

As said in Section 2.4, the filtering process πµ,u coincides with the law of the
unobserved process X under the probability measure Pu

µ, for all µ ∈ P(I) and u ∈
Uad. Moreover, it satisfies the following evolution equation

d
dtπ

µ,u
t = L?uπ

µ,u
t , t ­ 0

πµ,u0 = µ
(4.4.1)

where (L?u)u∈U is the family of controlled adjoint operators associated to the family of
controlled infinitesimal generators (Lu)u∈U of the process X . In particular, the adjoint
operator L?u is defined by

L?uν(dz) =
∫
I

λ(x, u,dz) ν(dx)− λ(z, u)ν(dz), ν ∈ P(I), u ∈ U

where λ is the controlled rate transition measure of the process X .
Thanks to (4.4.1), for all µ ∈ P(I) and u ∈ Uad we can write the cost functional,

introduced in (4.1.4), as

J(µ,u) = Eu
µ

[∫ ∞
0

e−βt
∫
U

f(Xt, u)ut(du) dt
]

=
∫ ∞

0
e−βt

∫
U

∫
I

f(x, u)πµ,ut (dx)ut(du) dt

=
∫ ∞

0
e−βt

∫
U

f̃(πµ,ut , u)ut(du) dt

where f̃(ν, u) :=
∫
I
f(x, u) ν(dx), ν ∈ P(I), u ∈ U . Hence, our optimal control

problem can be reformulated as a deterministic optimal control problem.
If we assume that the process X takes values on Rn and that its law admits den-

sity with respect to the Lebesgue measure, then (4.4.1) can be rewritten as a PIDE
for the density process, called the controlled Fokker-Planck equation. Sometimes, also
evolution equations as (4.4.1) in the space P(I) are called Fokker-Planck equations.
Optimal control problems for Fokker-Planck equations have been studied in the lite-
rature, usually for probability density functions of diffusion processes. However, the
focus of those researches is mainly targeted to ensure the existence of an optimal cont-
rol or to find optimality conditions (see e. g. [2, 36]). Optimal control of Fokker-Planck
equations has also been studied in connection to mean-field games, for instance in [12].

As a final remark, we notice that in the case of constant h, no characterization of
the value function is possible through a fixed point argument.
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Optimal control problems with partial observation are still the subject of intense in-
vestigation in the literature. As pointed out in the Introduction, various techniques are
today available to solve these problems and the search for new methods is still ongoing.
In addition, a wide range of applications offers new impulses to analyze this kind of
problems and poses interesting questions. For instance, one may think of problems in
finance concerning portfolio optimization or risk minimization where latent unobser-
vable variables may influence the price processes of the traded assets. In economics,
optimal control problems with delay, due e. g. for a change in taxation or the effect of
a new law, may be of partial observation nature due to unobserved factors that influ-
ence macroeconomic variables. In engineering, dynamical systems that are not fully
observable or are affected by unknown stochastic parameters are common.

This thesis aims to deal with this kind of optimal control problems in a specific
situation, that of an unobserved process of pure-jump type and a noise-free observation.
The purpose is to fill, albeit in part, a void in the analysis of this kind of models and
to promote further investigations on noise-free problems. It is not so infrequent to deal
with models where the observation is truly of noise-free type or the noise affecting
it may be considered negligible with respect to the randomness of the whole system
under investigation. In this case, the opportunity to treat such a model as a noise-free
one may result in a simplification of the analysis. We point out the possible advantages
of our noise-free model by recapitulating the main results of this thesis.

In Chapter 2 we provided an explicit filtering equation and characterized the filte-
ring process as a Piecewise Deterministic Markov Process. Such an explicit result is
not always obtainable in filtering problems. Moreover, the fairly simple structure of
the filtering equation gives the opportunity to numerically approximate its solution or,
in some cases, to have an explicit closed formula for it. Characterizing the filtering
process as a PDMP has the important consequence that many results on this class of
processes are readily usable, e. g. the structure of its extended generator, or formulas to
compute distributions or expectations of functionals of a PDMP.

In Chapter 3 we studied an infinite-horizon optimal control problem with fixed dis-
count factor for a continuous-time homogeneous Markov chain. We provided an expli-
cit structure of admissible controls, something that only on very specific situations can
be obtained, and we investigated the discrete-time structure of the control problem. We
also showed that the value function is the unique fixed point of a suitable contraction
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mapping. Again, this is extremely useful from a computational point of view, since the
optimization algorithm can be loosely stated as follows: one minimizes the cost functi-
onal of the associated deterministic optimal control problem (the one solved between
two consecutive jump times) for every possible initial state of the filtering process and
then one optimizes the cost functional of the discrete-time stochastic problem, choo-
sing controls based at each time step on past and present jump times and positions of
the filtering process. Moreover, the characterization of the value function as the uni-
que constrained viscosity solution of an integro-differential Hamilton Jacobi Bellman
equation puts these results into the general framework for optimal control problem that
we can find in the literature. We also showed that under suitable assumptions a piece-
wise open-loop optimal control exists, hence we are able to implement in real-world
applications our control strategies.

In Chapter 4 we studied an optimal control problem in the same setting as in Chap-
ter 3 for a continuous-time pure jump Markov process. We showed that also in this more
complicated situation the same conclusions of Chapter 3 hold, apart from the charac-
terization of the value function as unique solution of a HJB equation. Even though the
problem analyzed in Chapter 4 is an infinite-dimensional one, we are able to express
the optimal control problem as a discrete-time one, with all the connected advantages
of this approach already pointed out.

The implications of our results from a computational point of view are not to be
underestimated, especially if we think about applications. In finance or engineering,
for instance, it is essential to write down algorithms enabling to compute the value
function or even provide optimal controls.

It is clear that analyses of optimal control problems with partial noise-free obser-
vation can be (and, in our opinion, should be) broadened to a wider range of models.
As examples we can think of

• A signal process given by a PDMP, a diffusion process or a Lévy process.

• Optimal control problems with a different kind of noise-free observation, e. g.
the running maximum of a real-valued signal process.

• Optimal switching problems where, for instance, the observation process solves
an ODE governed by coefficients that randomly commute according to an unob-
served Markov chain. In this situation, the controller wants to govern the dyna-
mic of the Markov chain so that the system switches between different regimes
in an optimal way with respect to some criterion.

• Jump Markov linear systems, that are physical systems described by a stochas-
tic linear dynamic model whose behavior is governed by an underlying jump
Markov process.

At this point it should be plain that optimal control problems with partial noise-free
observation represent a subject worth to be studied. Applications are possible in a wide
range of fields, such as economics, finance and engineering, and various models can
be described. In turn, these models can be more general than the present one, that can
represent a starting point, say a reference, for future studies. From a mathematical point
of view, challenges presented by noise-free models are undoubtedly intriguing.
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[46] H. Körezlioğlu and W. J. Runggaldier. Filtering for nonlinear systems driven
by nonwhite noises: an approximation scheme. Stochastics Stochastics Rep., 44
(1-2):65–102, 1993.

[47] G. Last and A. Brandt. Marked point processes on the real line. Probability and
its Applications (New York). Springer-Verlag, New York, 1995. The dynamic
approach.

[48] X. Li and J. Yong. Optimal control theory for infinite-dimensional systems. Sy-
stems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston,
MA, 1995.

[49] P.-L. Lions. Viscosity solutions of fully nonlinear second order equations and
optimal stochastic control in infinite dimensions. II. Optimal control of Zakai’s
equation. In Stochastic partial differential equations and applications, II (Trento,
1988), volume 1390 of Lecture Notes in Math., pages 147–170. Springer, Berlin,
1989.

[50] R. H. Martin, Jr. Differential equations on closed subsets of a Banach space.
Trans. Amer. Math. Soc., 179:399–414, 1973.

[51] J. R. Norris. Markov chains, volume 2 of Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998.

[52] É. Pardoux and S. G. Peng. Adapted solution of a backward stochastic differential
equation. Systems Control Lett., 14(1):55–61, 1990.

[53] H. Pham. Continuous-time stochastic control and optimization with financial ap-
plications, volume 61 of Stochastic Modelling and Applied Probability. Springer-
Verlag, Berlin, 2009.

[54] S. R. Pliska. Controlled jump processes. Stochastic Processes Appl., 3(3):259–
282, 1975.

[55] V. Renault, M. Thieullen, and E. Trélat. Optimal control of infinite-dimensional
piecewise deterministic Markov processes and application to the control of neu-
ronal dynamics via Optogenetics. Netw. Heterog. Media, 12(3):417–459, 2017.



Bibliography 128

[56] L. C. G. Rogers and David Williams. Diffusions, Markov processes, and mar-
tingales. Vol. 1. Wiley Series in Probability and Mathematical Statistics: Proba-
bility and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester, second
edition, 1994. Foundations.

[57] M.-F. Sainte-Beuve. Some topological properties of vector measures with boun-
ded variation and its applications. Ann. Mat. Pura Appl. (4), 116:317–379, 1978.

[58] H. M. Soner. Optimal control with state-space constraint. I. SIAM J. Control
Optim., 24(3):552–561, 1986.

[59] H. M. Soner. Optimal control with state-space constraint. II. SIAM J. Control
Optim., 24(6):1110–1122, 1986.

[60] Y. Takeuchi and H. Akashi. Least-squares state estimation of systems with state-
dependent observation noise. Automatica J. IFAC, 21(3):303–313, 1985.

[61] D. Vermes. Optimal control of piecewise deterministic Markov process. Stochas-
tics, 14(3):165–207, 1985.

[62] J. Warga. Optimal control of differential and functional equations. Academic
Press, New York-London, 1972.

[63] J. T. Winter. Optimal control of markovian jump processes with different infor-
mation structures. PhD thesis, Universität Ulm, 2008.

[64] J. Xiong. An Introduction to Stochastic Filtering Theory. Oxford University
Press, New York, 2008.

[65] J. Yong and X. Zhou. Stochastic controls, volume 43 of Applications of Mathe-
matics (New York). Springer-Verlag, New York, 1999. Hamiltonian systems and
HJB equations.

[66] K. Yosida. Functional analysis, volume 123 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin-New York, sixth edition, 1980.

[67] A. A. Yushkevich. On reducing a jump controllable Markov model to a model
with discrete time. Theory Probab. Appl., 25(1):58–69, 1980.

[68] A. A. Yushkevich. Controlled jump markov models. Theory of Probability & Its
Applications, 25(2):244–266, 1981.


	Dedication
	Abstract
	Sommario
	Contents
	Notation and Abbreviations
	Introduction
	Preliminaries
	Marked point processes
	General results on marked point processes
	Stochastic intensities
	Filtering with marked point process observation

	Piecewise Deterministic Markov Processes
	Construction of a PDMP
	The strong Markov property


	The filtering problem
	The filtering equation
	The filtering process
	The Markov chain case
	Some remarks on the observed process

	Optimal control: the finite dimensional case
	The Markov chain optimal control problem
	The separated optimal control problem
	Characterization of the value function
	The fixed point problem
	The HJB equation

	Existence of an ordinary optimal control
	A numerical example

	Optimal control: the infinite dimensional case
	The jump Markov process optimal control problem
	The separated optimal control problem
	Characterization of the value function
	Some comments on the observed process

	Conclusions and future developments
	Bibliography

