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Abstract

The reductionist approach of dissecting biological systems into their constituents
was proven successful in the first stage of molecular biology, in order to elu-
cidate the chemical basis of several biological processes. This knowledge has
helped biologists to understand the complexity of biological systems, further-
more pointing out that most biological functions do not arise from individual
molecules. Therefore, the emergent properties of biological systems cannot be
explained or predicted by investigating individual molecules without taking
into consideration their relations. Thanks to the improvement of the current -
omics technologies and the increasing understanding of molecular relationships,
more and more studies are evaluating biological systems through approaches
based on graph theory. In this context, Protein-protein interaction (PPI) net-
works are viable tools in understanding cell functions, disease machinery, and
drug design/repositioning. As PPI networks involve hundreds to thousands of
components, the use of these models, for clinical and biological applications, is
strictly dependent on the Bioinformatics field. Bioinformatics sustains research,
on one hand, making available infrastructures to collect both protein interac-
tions and proteomics data; on the other hand, it provides softwares and tools to
build and analyze these networks.

PPI networks are based on physical/functional interactions deriving from
experimental and computational techniques and collected in public reposito-
ries. However, PPIs often lack reliability and do not cover all the interactions of
an organism. Moreover, because of their biological nature, they are condition-
specific. Thus, the PPIs detected in a specific biological context may not be valid
to build a model of a system under different conditions. To overcome these is-
sues, an alternative to building protein interaction network models consists in
using large-scale quantitative proteomic data, i.e. the levels of expression of
protein sets detected in condition-specific organic samples. While correlation
within gene expression (i.e. co-expression analysis) is normally used to build
gene co-expression networks, this technique is rarely used on proteomics data.
However, it represents a complementary procedure which gives the opportu-
nity to evaluate a biological context at system level, including organisms that
lack information on PPlIs.
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PPI network structures are routinely analyzed by algorithms and tools so
as to identify key proteins known as hubs/bottlenecks as well as functionally
linked protein groups, called modules. Interpreting a PPI, however, is a par-
ticularly challenging task due to network complexity and limitations owing to
their biological nature, such as the detection of small/sparse modules. Several
algorithms were proposed for an automatic PPI interpretation, at first by solely
considering the network topology, and later by integrating Gene Ontology (GO),
in order to take into account the biological nature of the problem. However, to
date, these methods provide only a topological interpretation of the networks,
and further analysis is needed so as to infer biological knowledge regarding the
phenomenon represented.

Based on these premises, this dissertation introduces the reader to protein
interaction networks, and in particular to PPI based and co-expression based
networks, in order to address different aspects of reconstruction and analysis.

Regarding the reconstruction of these networks, the new concept of evalu-
ating large-scale proteomic data by means of co-expression networks has been
investigated, focusing on several state-of-the-art studies. As a result, an anal-
ysis pipeline, specific to amyloidosis diseases based on protein co-expression
networks, has been developed.

Concerning the analysis of these networks, a special attention has been de-
voted to topological and module analysis. Firstly, the most used metrics and
mathematical models have been revised. Secondly, the problem of module iden-
tifications in PPI networks has been faced, considering characteristics and limi-
tations of state-of-the-art techniques. As a result of this study, a novel algorithm
has been developed known as MTGO, which stands for Module detection via
Topological information and GO knowledge.

MTGO let emerge the biomolecular machinery underpinning PPI networks
by leveraging on both biological knowledge and topological properties. In par-
ticular, it directly exploits GO terms during the module assembling process and
provides a set of GO terms as output, thus easing network biological interpreta-
tion. A software version of MTGO, freely available at https:/ / gitlab.com /d1vella/MTGO,
has been produced and some examples of application have been explored, in-
cluding the use on an experimentally-derived PPI network of Myocardial infarc-
tion. Moreover, for method validation, MTGO has been compared with state-of-
the-art algorithms (including recent GO-based ones), using four different PPI
Networks and three gold-standard target sets. MTGO shows largely better re-
sults than others when searching for small or sparse modules, while providing
comparable or better results in all other cases. To conclude, the stability of the

algorithm has been investigated, considering both the random components, on


https://gitlab.com/d1vella/MTGO

which it relies on, and the presence of noisy PPl interactions on network models.
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Chapter 1

Introduction

A goal of the biomedical sciences is to transfer new findings in tools in order
to enhance the current clinical practices, ranging from an accurate early diagno-
sis to the selection of proper therapeutic strategies [1]. The possibility to real-
ize this idea is strictly related to the knowledge of the patho-physiological pro-
cesses. Furthermore, their investigation by advanced strategies may result in
a more preventive, predictive and personalized medicine [2]. The knowledge
of the patho-physiological processes is supplied by various sciences, Biology,
Chemistry, Mathematics, Informatics and Physics, applied to the investigation
of complex biological systems.

The claim made by Francis Crick (1966) that “The ultimate aim of the mod-
ern movement in biology is to explain all biology in terms of physics and chem-
istry” well depicts the main concept that has dominated this research field for
half a century, commonly known as reductionism. According to this term, an ef-
fective way to explain living processes consists in dissecting biological systems
into their constituent parts, focusing attention on isolated molecules and their
structure, so as to provide an understanding of the whole system [3].

Today, many findings suggest this approach has reached its limit to give rise
to a new holistic concept already conceived by Aristotele: "The whole is some-
thing over and above its parts and not just the sum of them all". According this
vision, the behaviour of a biological system does not arise from the specificity
of the individual molecules that are involved, but rather through the way in
which these components assemble and function together [4]. Living systems are
perceived as an ensemble of highly interconnected networks, where the most
cellular functions occur from a concerted action of multiple molecules [5, 6].

The success of this new concept has been sustained by the development of
new high-throughput technologies over recent years, such as microarray and
mass-spectrometry (MS), leading to the availability of a large amount of complex
data. The mere size of these datasets requires specialized analytical tools, able to
deal with large lists of objects. This holistic vision, alongside the availability of a
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big quantity of biological data, has posed new challenges for scientific research,
pursuing the aim to analyse cells, tissues or microorganisms at systems level [7,
8].

This scenario has lead to the development of Systems Biology, a set of inter-
disciplinary techniques and approaches aimed at interpreting a complex biolog-
ical system through the analysis of relations between its component parts, which
are studied not in isolation but as elements of the entire system. According to
Systems Biology, one of the most used approaches consists in the use of graph
theory to model the relations between molecular components. The main idea
behind graph theory was introduced in 1736 by Euler [9]: "Graphs are simple
mathematical objects used to describe interactions between different actors: a
vertex, also called node, is an abstract and featureless object describing an entity
in a certain context, while an edge is a connection, e.g. a link, between two ver-
tices". This formalism has the ability to sum up complex high dimensional data
into a net model.

In contrast to the study on individual molecules, biological networks aim to
investigate how biological phenotypes, i.e. the biological traits characterizing
a living organism, arise from cellular systems, conceived as networks involving
bio-molecules, such as genes, proteins and metabolites [10]. In particular, the oc-
currence and development of a pathology can be viewed as the spatio-temporal
change of the respective bio-molecular network. Therefore, the study based on
these network models offers a new conceptual framework in order to investigate
pathologies.

Early biological experiments revealed that proteins interacting with each
other as well as with other bio-molecules, are the main agents of biological func-
tions, therefore directly responsible in determining the phenotype of an organ-
ism. On the basis of this concept, the complexity of a disease can be viewed
as the result of an intricate net of proteins involved in the process. This key
concept, alongside the spread of technologies to measure the interaction among
molecules [11], has lead to the increasing interest towards Protein-Protein In-
teraction (PPI) Networks. To date, there are many public repositories collecting
known protein interactions in addition to many analysis specific tools which en-
courage the use of PPI networks, in order to pursue numerous objectives, such
as protein function discovery [12], disease mechanism understanding [13] and
drug target identification [14]. A common approach of PPI network modelling
consists in building the model by retrieving the protein interactions from pub-
lic repositories, starting from a set of proteins, identified in organic samples by
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high-throughput technologies. These databases collect protein interactions ob-
tained both by experiment and by computational prediction algorithms. How-
ever, the effectiveness of this model is limited by the accuracy and reliability of
the information contained therein and the ability of the analysis tools to infer
useful knowledge. The PPI networks built via public databases may not well
represent the specific studied biological state, due to the fact that protein rela-
tionships are strictly dependent on the biological conditions. PPI networks are a
result of different experiments performed on different conditions and therefore
represent possible rather than active interactions (static rather than dynamic in-
formation). Therefore, following this modelling approach, the network interac-
tions may not be specific of the biological context under study.

In recent years, the spread of Mass-Spectrometry technologies made avail-
able quantitative data of thousands of proteins from a biological tissue or sam-
ple, providing a snapshot of the studied biological system. To fully exploit these
technologies, new procedures and methods should be developed in order to in-
tegrate this information into the network model, aiming to build a PPI network
able to describe a specific biological state.

The use of PPI network is also influenced by the ability of dedicated analysis
tools to provide reliable results. Indeed, due to the complexity of the biologi-
cal system studied and the biological nature of the elements considered, these
tools are often proved to be scarce in the extent of elucidating the organization
principles of cellular functions and disease mechanisms.

The work presented in this thesis is based on this line of research. The con-
tribution of my research considers mainly two fields. Firstly, the reconstruction
of protein network models starting from the expression profiles of proteins from
organic samples; following the approach of the newly proposed applications of
the co-expression networks to proteomics data. Secondly, the development of a
new algorithm for protein interaction network analysis, MTGO (Module detec-
tion via Topological information and Gene Ontology (GO) knowledge); which
has been created with two main aims (I) to overcome certain issues linked to the
biological nature of the problem and (II) to provide biological insight regard-
ing the system represented by the network model. This double aim is obtained
through the combination of information both from graph theory and a-priori
biological knowledge concerning proteins involved.
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1.1 Preliminary concepts

1.1.1 Bio-Molecular Interaction Networks

The main molecules involved in living organisms are DNA, RNA and proteins;
DNA is a long macro-molecule, consisting in a sequence of smaller units, the
nucleotides; RNA is a DNA-derived molecule involved in protein synthesis;
and proteins are large macro-molecules consisting of one or more long chains
of smaller units, the amino-acids. Much of twentieth-century biology has been
an attempt to reduce biological phenomena to the behaviour of molecules. Fol-
lowing this research line, biologist inferred the existence of genes, functional
parts of the DNA molecule, and their properties; as a result, several principles
have been established, such as: each gene controls the synthesis of one protein,
DNA contains genetic information, the genetic code links the sequence of DNA
to the structure of proteins. In order to better understand these concepts, Section
1 in Chapter 2 is devoted to a brief description of elements of Molecular Biology.

To investigate biological phenomena, several techniques have been devel-
oped over the years to identify (I) which types of bio-molecular components are
present in samples coming from a specific biological context (qualitative anal-
ysis), and (II) their respective abundances, commonly called expression profile
(quantitative analysis). A briefly description of the path leading from Molecular
Biology to the development of these modern technologies will be presented in
Chapter 2, Section 2.

In order to understand complex biological systems starting from the knowl-
edge of molecular components, the integration of mathematical models with
experimental data has brought to a widespread approach called network anal-
ysis [15-17]. A biological network is a model representing the bio-molecular
relationships in terms of nodes and edges. The nodes represent the compo-
nents of the system, such as genes and proteins, or other molecules, while edges
represent their relation, such as chemical transformations, regulatory relation-
ships or functional associations. These biological networks are commonly in-
vestigated for extracting relevant knowledge regarding cellular functions and
disease mechanisms [17, 18].

In the genomics field, the great availability of quantitative data deriving
from high through-put methods for gene expression profiling [19, 20], has led
to the development of techniques of network modelling. These methods are
based on the inference of interactions directly from the gene expression level
obtained by processing organic samples. These models, derived from the inves-
tigation of pairwise gene-expression profile associations, are commonly called
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co-expression networks.

On the other hand, in the proteomics field, the spread of different techniques
to directly investigate molecular interactions, such as yeast two-hybrid systems
[21], X-ray crystallography [22] and protein chip technologies [23], has led to the
diffusion of the so called Protein-Protein Interaction (PPI) network. These PPI
networks can be obtained retrieving information from many public databases
which collect protein interactions obtained from both experimental techniques
and various computational approaches. The latter include techniques based on
genes, the amino-acid sequence, the molecular structure and machine learning
[24]. In Section 3 of Chapter 2, PPI networks will be presented, dealing with
the different nature of the interactions and the state-of-art bioinformatics tools
to manage them.

In this scenario, PPI networks are among the most important and widely
studied networks [25, 26]. The widespread of PPI networks is justified by their
versatility, promoting applications for: experimental data integration [27], pro-
tein function discovery [12], molecular mechanism comprehension [13], and
drug discovery [14].

In recent years, as well as in the genomic field, the spread of MS-based tech-
niques provides availability of large scale proteomics data. However, the poten-
tial of these high-throughput technologies have yet to be fully exploited [28,
29]; these data may improve the effectiveness of network-based approaches,
thus providing new insight of the investigated systems. Therefore, the avail-
ability of these proteomics data represents a challenge for the bioinformatics
field, which should provide new methodologies and computational techniques

to infer context-specific protein network models.

1.1.2 PPI network analysis

The structure of biological networks is closely related to the biological func-
tions performed by a system (cell or tissue) under a given condition. Starting
from this point, many studies aim to face biological questions by investigating
network models in terms of topology [30] and modular properties [31]. Given
the network sizes, typically involving thousands of elements, the analysis often
requires automated methods [32, 33]. For this reason, the bioinformatics field
has received a boost towards the development of graph-theory based tools to
manage and analyse network models, in order to extract biological insight to
elucidate the bio-molecular mechanisms which are at the basis of physiologi-
cal/pathological states of interest.
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The term topology refers to the arrangement of graph elements, nodes and
edges, in the network; therefore topological analysis means the investigation of
the PPI network structure according to the graph theory principles at the basis
of these models. A key point of topological studies is the definition of math-
ematical models and metrics to describe the network’s properties in order to
select the most relevant nodes and substructures that may be of biological sig-
nificance. This theoretical area of research has led to the definition of (I) several
metrics, generally called centralities, to investigate the property of nodes, edges,
or whole networks and of (II) mathematical models to describe biological net-
works, such as Erdos—-Rényi random graphs [34] and scale-free model proposed
by Barabasi et al. [35]. Section 5 of Chapter 2 is dedicated to (I) introduce the
main state-of-art centralities and (II) discuss the main state-of-art mathematical
models used to describe biological network features. In this context, a common
approach in analysing PPI networks is performed through the identification of
sub-networks, or modules, showing specific topological and/or functional char-
acteristics [5, 17, 36-38]. In biological networks, the term module has acquired
three meanings: topological, functional, and pathological/disease. The analy-
sis of the network structure allows to detect the topological modules defined
as a highly interconnected group of nodes [31]. These nodes are often related
to well defined molecular functions. Therefore, their detection in PPI networks
can help identifying functional modules [39], defined as a group of functionally
linked proteins/genes, such as connected by genetic/physical interactions, by
co-expression relations, as well as members of the same molecular complex or
biological pathway [5]. The comparison between pathological and physiologi-
cal conditions has finally led to the definition of disease modules, i.e. a set of
nodes with a putative key role concerning mechanisms impaired due to disease
[14, 17]. Topological, functional, and disease modules are generally not fully
overlapped and often, a single topological module can be linked to different
functional or disease modules or vice-versa (Fig. 1.1).

Due to the complex connectivity of the biological networks, the identifica-
tion of modules is a challenging task. Various methods have been proposed and
most of them are exclusively based on network topology. Section 6 in Chapter
2 presents the module identification problem in PPI Networks in detail, in par-
ticular several unresolved issues linked with the biological nature of the context
will be faced.
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Topological module Functional module Disease module

FIGURE 1.1: Example of topological, functional and disease

modules not fully overlapped. The green nodes indicate a topo-

logical module, the blue nodes indicate a functional module,
while the yellow nodes indicate a disease module.

1.2 Motivation and aim

1.2.1 Protein Co-expression Networks

A PPI interaction network can be used to elucidate a specific biological con-
text since it is able to represent the protein interactions from which that con-
text gives rise, i.e. the bio-molecular mechanism making possible the cellular
functions linked to the context. Given that the presence/absence of the pro-
tein interactions is strictly dependent on the biological conditions, in order to
pursue this objective it is necessary that network interactions derive directly
from the same context which is the object of study. Nonetheless, in general,
PPI networks are built by retrieving the protein interaction from public repos-
itories, therefore deriving from experiments carried out in different biological
contexts/conditions than the specific studied system. This aspect represents
a weak point of the use of PPI networks in clinical /biological studies; a new
procedure able to build protein interaction networks, exploiting the data pro-
duced by a specific biological context, should be searched. Regarding graph
inference, a great boost consists in using information on gene/protein expres-
sion levels in order to predict network structures. Microarray techniques made
available quantitative data regarding the expression level of thousands of genes
in specific experimental conditions. These data led to building the so called co-
expression networks, where the edges represent gene relations detected from
the corresponding expression profiles. These models are based on the assump-
tion that, in time or across several experimental conditions, genes with statisti-
cally similar (highly correlated) expression profiles are linked from a biological
perspective. In the proteomics field, the opportunity to obtain large-scale data
regarding protein profile expression has been explored more recently, especially
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thanks to the enormous progress achieved in MS-based proteomics. Thus, the
use of protein expression level data to infer co-expression networks has been
explored through few studies [40—46]. Similar to PPI and gene co-expression
networks, these networks have been evaluated at a topological level, in terms
of edge rearrangement, as well as of modules, i.e. node groups associated with
common cellular functions. Although different aspects, including data collec-
tion and network reconstruction, need to be improved, the preliminary results
are proving this approach is promising. Protein co-expression networks are an
alternative to evaluate large-scale proteomic data, in order to provide new hy-
potheses concerning key molecules acting in patho-physiological states [18, 43,
47-49]. These procedures may have important effects in clinical applications,
opening the way towards the discovery of multiple biomarkers (key molecules
indicative of disease presence) and their relationships. They could represent a
first step in developing advanced diagnosis and prognosis methods.

In this thesis, one of the main scopes is the investigation of the co-expression
network approach in order to evaluate large-scale proteomics data. Section 4 in
Chapter 2 introduces this approach, discussing the state-of-the-art techniques to
implement it as well as the issues linked to its application on proteomics data.
On the other hand, Chapter 3 is dedicated to some practical examples; firstly,
several state-of-the-art applications will be discussed, secondly, a pipeline of
analysis specific for the amyloidosis disease study will be presented. The fi-
nal aim is to propose a building procedure of condition-specific co-expression
networks in order to provide a model able to give the possibility of generating
biological insight and hypotheses on the influence of the various proteins on the
pathology.

1.2.2 Module identification in PPI networks

With the growing amount of PPI data recorded, PPI network analysis has be-
come a common practice in proteomics, genomics, and computational biology,
with direct translational impacts in pharmaceutical and medical applications
(such as drug repositioning or drug target discovery) [50]. With hundreds to
thousands of nodes, and even more edges, PPl networks are impossible to man-
ually analyse in detail. For this reason, more and more algorithms have been
proposed so as to automatically identify functional parts of these networks,
called modules.

These methods provide a set of topological modules as output, commonly
also known as clusters, grouping together nodes sharing topological properties,
such as characterized by a high density of connections. These techniques face
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the problem only from a topological/graph-based perspective, often forgetting
the biological nature of the input model. A discussion on the limits of this tech-
niques will be presented in Chapter 2 Section 6.1.

Moreover, traditional approaches provide solely a set of clusters as a result.
As a consequence, the output is far from providing a PPI network evaluation
from a biological perspective; therefore, a second step of analysis is needed to
investigate the biological role of clusters. To supply this lack, after module de-
tection, biologists routinely use an enrichment analysis to assess the biological
relevance of the identified clusters [51, 52] (Fig. 1.2). Enrichment analysis is a
technique based on statistical tests to evaluate if a set of genes/proteins are en-
riched in common functional properties [53]. This analysis is generally based
on Gene Ontology (GO) [54], a collection of terms aimed at describing all the
functions at the basis of living systems (see Section 1 in Chapter 2 for details).

As a result, two typical steps of PPI network analysis can thus be outlined:
module identification, which consider the problem from a topological /graph-based
perspective, and enrichment analysis, which consider the problem from a biolog-
ical perspective.

Generally, the standard methods for enrichment analysis treat each gene/protein
as isolated objects. However, in the last few years, several network-based en-
richment approaches have emerged, taking into consideration also interactions
among bio-molecules [55-57]. On the other hand, to improve the accuracy of
module identification, the integration of functional information is increasingly
used in several algorithms [58-61]. These methods often exploit the a-priori
knowledge provided by GO; for example, it can be used to compute a similarity
score which measures the edge weights and drives the module detection [62,
63]. These recent methods will be presented in Chapter 2, Section 6.2.

As a result, the two typical steps of PPI network analysis are becoming ever
closer. This is due to the fact that module identification algorithms seek to integrate
a-priori functional information (via GO knowledge) and enrichment analysis at-
tempts to involve graph theory principles.

The aim of this PhD has been to conceive a novel algorithm of module iden-
tification specific for PPI networks, pursuing (I) the idea to integrate topological
analysis and biological analysis in a single step, and (II) the objective to improve
the detection of hard-to-identify modules, such as small and sparse, thanks to
the use of GO knowledge. This algorithm is known as MTGO, Module detection
via Topological information and Gene Ontology knowledge. In other words, it
simultaneously takes into account limits and properties typical of both the topo-
logical and biological nature of the network model treated. In fact, MTGO relies
on both a graph-theory-based measure, Modularity [64], and GO knowledge



Chapter 1. Introduction

10

0@, E.CM .. ® s e Secreted
B € = ) P e, S &
> ) e

(o O + S TR
/ 90 . - e o
I A B s e

7 o o) . Y o

the Gene Ontology ~ Keratins NN 5= 1
1 e o %:;@ Associated

Genetic

information =" g
and processing e
ol
Y= o -
L L Be r

e ™ T i...... = ey

e - S

e

FIGURE 1.2: Procedure used to identify/predict modules in biological networks. The network structure is used to identify

groups of highly connected nodes by graph clustering algorithm, while the GO annotations are used to improve the

accuracy of the cluster prediction. The final result are clusters of nodes highly connected and related to functions/processes
significantly enriched, thus acting at the basis of the emergent phenotypes.
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regarding proteins involved in the network. Moreover, MTGO output consists
both in a set of clusters (i.e. topological modules) and a set of GO categories,
representing the functional modules. In this way, each cluster is tagged with a
specific GO term, describing its biological nature.

The algorithm will be presented in detail in Chapter 4, and further insight
will be provided in the Appendix Section. MTGO has been implemented in a
software version; its use and case study applications will be shown in Chapter 5.
To validate MTGO algorithm, the comparison with seven state-of-the-art algo-
rithms (including recent GO-based ones) have been performed. Three different
gold-standard protein complex sets have been used as target sets to compare the
predicted modules to each algorithm. The algorithms were tested on four differ-
ent PPI networks, from Saccharomyces Cerevisiae and Human organisms. Several
metrics were used to compare the target sets with the predicted modules, in-
cluding Accuracy, Maximum Matching Ratio, F-Measure and Composite Score. The
biological quality of the predicted modules was measured through GO Term
Finder, a software used to perform GO enrichment analysis [65]. Moreover, a
statistical test was used in order to compute a p-value for each GO term pro-
vided by MTGO, so as to verify that a GO term is statistically significant com-
pared to the protein set of the cluster to which it is associated with. Further-
more, since a weak point in state-of-the-art algorithms is the detection of small
or sparse modules, MTGO ability to detect these specific sets of modules was
evaluated. All these results will be presented in Chapter 6, including a short
short discussion about run time.

As MTGO rely on random components, stability of the results across dif-
ferent runs is a critical aspect of the algorithm. In addition, when evaluating
an algorithm specific for PPI Networks, an important aspect is the stability in
presence of false positive and false negative edges. For these reasons, two dif-
ferent stability analyses were executed in order to evaluate MTGO performance.
The first was used to evaluate the stability of the result over many runs starting
from a same input and in order to consider the range of variability introduced
by the random components of the algorithm; the second was used so as to eval-
uate the robustness of the output clusters when input is affected by noise and
uncertainty. These analyses will be discussed in Chapter 7.
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Chapter 2

Protein Interaction Network
Background

In this chapter, the basic concepts will be introduced for a proper understand-
ing of this dissertation. Starting from the key concepts of the Molecular Biol-
ogy field, protein interaction networks will be discussed, with insight regarding
protein co-expression networks and state-of-the-art analysis methods, specific
for these models. Several parts of the chapter are based on the scientific pa-
per "From protein-protein interactions to protein co-expression networks: a new
perspective to evaluate large-scale proteomic data" by Vella, D., Zoppis, 1., Mauri,
G., Mauri, P, & Di Silvestre,D., published on EURASIP Journal on Bioinformatics
and Systems Biology.

2.1 Organisms and cells

All living organisms are composed of small cells. A cell can also exist as in-
dependent organisms to the effect that they can grow, reproduce, convert en-
ergy, control their internal working, respond to their environment, and so on
[66]. More evolved organisms, including humans, are communities of cells, per-
forming specialized functions and coordinated by complex systems of commu-
nication. Cells vary widely in size, shape and functions, as well as in chemical
requirements and activities. Some appear to be specialized factories for the pro-
duction of particular substances; some are engines, like muscles, burning fuel
to do mechanical work, while others are electricity generators. Nevertheless,
cells resemble one another to a surprising degree in the details of their chem-
istry, sharing the same machinery for the most basic of functions. Cells con-
sist of molecules participating in chemical reactions. There are four basic types
of molecules implied in life: (I) small molecules, (II) proteins, (III) DNA and
(IV) RNA. Proteins, DNA and RNA are collectively known as macromolecules.
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Small molecules can be the building blocks of macromolecules or can have inde-
pendent roles, such as signal transmissions or a source of energy or material for
cells. In addition to water, other relevant examples are sugar, fatty acids, amino-
acids and nucleotides. The rest of living material consists of macromolecules
[67].

2.1.1 Proteins

Amino-acids molecules are the main constituents of proteins. Short chains of
amino-acid constitute peptides and numerous poly-peptides arranged in a bi-
ologically functional way constitute a protein. There are 20 different amino-
acid molecules which have peculiar properties. When combined in different se-
quences and polypetides, they give rise to thousands of different proteins. Pro-
teins are the workhorses of the cell and are the most abundant and functionally

versatile of the cellular macromolecules. The most important classes are:

e transmembrane proteins, which play a key role in the maintenance of the

cellular environment and communication between cells;
e structural proteins, which are the main basic building blocks of organisms;

e enzymes, which increase the rate of chemical reactions (catalyse) such as
altering, joining together or dividing other molecules. Together, the reac-
tions and pathways they make is known as metabolism. Generally, en-
zymes are very specific and catalyse only a single type of reaction, how-
ever, the same enzyme can play a role in more than one pathway.

Protein interactions underlie the assembly of macromolecular machines,
mediate signalling pathways in cellular networks and control cell-to-cell
communication. Nearly 650,000 interactions regulate human life [68]. Pro-
teins are the core ingredient of this thesis. In fact, the long term target of
the scientific line of this thesis is the investigation of protein functionality
in a specific biological context through the exploration of their mutual in-
teractions. In order to approach this aim, the relations between proteins
will be later investigated through a knowledge extraction from condition-
specific proteomics data and their integration with a-priori knowledge.

2.1.2 DNA, RNA and Genes

Deoxyribonucleic acid (DNA) is an informational molecule constituted mainly
by sequences of nucleotides. Its main role consists in containing the information

required to build all proteins of an organism, hence the cells and tissues of that
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organism. Due to this feature of information storage, it is often compared to a
set of blueprints or recipe, or even a code. The DNA segments that carry this ge-
netic information are known as genes [69]. The gene definition given by Lodish
et al. in [66] is: "A Gene is the entire nucleic sequence that is necessary for the
synthesis of a functional polypeptide." Biologists once believed in the paradigm
"one gene - one protein". Today, we know that this is no longer true, as due to
biological phenomenon such as alternative splicing and post-translational mod-
ifications, one gene can produce a variety of proteins. Although the product
of a gene in general is a different entity from a protein, for practical reasons, the
term gene product is often used as synonymous with protein. The synthesis pro-
cess, starting from DNA and ending with proteins, is mediated by another key
molecule, namely Ribonucleic acid (RNA). RNA was discovered after DNA; it is
constructed from nucleotides, as DNA, but differs in several important details.
RNA functions are necessary for protein synthesis. Its main role consists in read-
ing the genetic information contained in DNA molecules (transcription process)
and allowing for protein synthesis (translation process). For this reason, RNA
molecules are often referred to the term transcripts.

2.2 From Molecular Biology to modern technologies

A phenotype is the ensemble of observable traits/characteristics in a living or-
ganism; for example, a human phenotype clearly includes eye and skin colour.
Proteins dictate virtually every reaction in the cell and are thus directly respon-
sible for observable characteristics. For instance, a slight variation in the activity
of an enzyme for pigment synthesis in a plant may result in white rather than
orange flowers. In contrast, a genotype is the genetic endowment of the individ-
ual. Through the mediation of proteins, a phenotype is the result of a genotype
and its interaction with several environmental factors [29]. Much of life sci-
ence research has been focused on understanding the complex relationship be-
tween genotype and phenotype, in other words, how the information encoded
in the genome is expressed and modulated by external/internal factors in order
to generate a specific phenotype. This interest is likewise motivated by the fact
that understanding how genes and proteins act, in order to produce a specific
phenotype, allows to better understand specific pathological conditions and dis-
eases. Over the past decades, the “one gene-one protein-one function” paradigm
proposed by Beadle and Tatum [70] has dominated the ideas of biologists and
guided the research into the Molecular Biology field. This paradigm requires a
direct link between gene and protein function, implying that knowledge of all
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genes and their translation products can explain biological functions and cellu-
lar functioning. The series of processes in which the information encoded in a
gene is used to produce a functional protein is commonly known as Gene ex-
pression. In detail, only a fraction of the genes in a cell are expressed at any one
time, and only these expressed genes may determine the protein production
of that cell in a given time. Therefore, the study of gene expression processes
(which include the transcription and the translation) plays a critical role in de-
termining what proteins are present in a cell and in what amount. As protein
dictates cell functions, the study of expressed genes has gained great attention
in recent years. In the genomic age, powerful technologies have been developed
to support research at a global scale within the Molecular Biology paradigm.
These technologies attempt to measure the level of the gene expression from
cell and tissue samples, characterized by specific biological conditions/contexts.
In particular, these techniques include methods to identify (I) which types of
bio-molecular components are present in samples (qualitative analysis), and (II)
their respective abundances, commonly known as expression profile (quantita-
tive analysis). The most recent techniques include genome sequencing in order
to identify all protein-coding genes of a genome (RNA /transcript molecules),
such as Microarray [71] and proteomic methods to identify and quantify the
proteins in a biological sample, such as Mass Spectrometry coupled with liquid
chromatography (LC-MS) [7].Moreover, a great interest has been addressed in
the development of techniques in order to detect protein interactions, such as
yeast two-hybrid (Y2H) method [21]. These technologies, alongside many oth-
ers, have led to the availability of a big quantity of data, commonly referred
to as -omics data. These recent advances in the Molecular Biology field have
led to the development of new disciplines, with the main being genomics and
proteomics. Genomics is a multidisciplinary approach to studying genes, their
products, and the interactions among them in order to mediate physiological re-
sponses; proteomics is a branch of research aimed at assessing protein activities
via their modifications, their localization, and their interactions, in order to im-
prove our understanding of system level cellular behaviour [72]. In this context,
clinical research has shown an increasing interest towards these disciplines, and
in particular towards proteomics, hoping to benefit both by the identification of
new drug targets as well as the development of new diagnostic markers. New
development of these disciplines has been mediated by the success obtained in
the computer science field, which in turn has received a boost towards the cre-
ation of new systems for data storage and analysis. These have led to the birth

of many registries, databases and public repositories so as to manage the large
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amount of data to facilitate and support research for biological and clinical ap-
plications. Thanks to these developments, we are today in the post-genomic era
in which several bio-techniques have been developed to utilize -omics informa-
tion in order to explain the biology and physiology of cells or tissues, as well as

to explore the pathogenic mechanisms of various diseases.

Gene Ontology

At this stage, it is worth mentioning the Gene ontology (GO) project, the ma-
jor bio-informatics initiative to unify the representation of gene and gene prod-
uct/protein attributes across all species [73]. The objectives pursued by the Gene
Ontology Consortium is manifold. It aims at maintaining and developing a con-
trolled vocabulary of gene and gene product attributes, providing tools for easy
access to data in order to enable the functional interpretation of experimental
data through the use of GO. For this purpose, three independent ontologies
accessible on the World-Wide Web are being constructed: biological process,
molecular function and cellular component [54]. Thanks to annotation data,
each GO term is assigned to a specific set of gene products/proteins, i.e. the set
of bio-molecules involved in the specific function represented by the term.

2.3 Protein interaction networks

Systems Biology is a discipline which collects several approaches sharing a com-
mon aim: the understanding of biological processes performed by a system in
terms of all its components. These approaches are based on the assumption that
all phenomena can be viewed as a web of relationships among elements [74].
This concept has risen thanks to recent advances in technologies which have
made available a large quantity of data regarding bio-molecules acting at the
basis of biological systems. According to this holistic view, graph theory, that is
to say network science, has been receiving even more increasing interest. The
birth of graph theory dates back to the year 1736 in Euler’s description of a map
of seven bridges of the river in Konigsberg (a city in Prussia). Its description lays
the foundations of graph theory, in fact, Euler presents the map in abstract terms,
eliminating all features except the list of land masses and the bridges connect-
ing them. Since then, graph theory has developed into an extensive branch of
mathematics. Today, it is a powerful abstracting machinery which allows for the
modelling of several types of systems, both natural and human-made, ranging
from Biology to the science of Sociology [75]. ]. The main concept at the basis of
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network science is the graph. A graph, also known as a network, provides a sys-
tem representation in terms of relationships among the elements that compose
it; a set of nodes V stands for the elements of the system, while a set of edges E
stands for their relations. Mathematically, we refer to a graph as G = (V, E).

The development of systems biology approaches based on graph theory [76—
78] is receiving a great boost due to the improvement of proteomics technologies
[79, 80], in particular those increasing knowledge regarding protein-protein in-
teractions (PPI) [21]. As a result, the use of network models, which combine
information from PPI and protein/gene expression levels, is widespread today
in the study of biological systems [27, 81, 82].

With respect to biological networks, nodes may be associated to attributes
representing characteristics of interest, such as expression levels or GO terms.
In the same way, edges may possess attributes describing the relation between
nodes, for example indicating the strength of the interaction or its reliability;
edges may also be directed or undirected. In this dissertation, we shall mainly
deal with undirected edges. Using the framework described in Fig.2.1, a protein
interaction network is defined as a complex graph, where nodes are proteins
and edges represent their relation, generally physical or functional, as proposed
by Vidal et al. [18].

2.3.1 PPI physical and functional protein interactions

A protein interaction network usually refers to physical PPIs [83], but several
meanings have been attributed to this term. In fact, a group of proteins work-
ing together to perform a biological function not necessarily are in direct con-
tact, but their relation may be of regulation or influence, for example, making
use of intermediary molecules. For this reason, the term PPI has not only been
exclusively used to indicate a physical contact between proteins, but also pro-
teins connected by functional links. It is important to bear in mind that proteins
participate to physical-chemical connection depending on the biological context
where they are [84]. Thus, the interactions measured in a specific experiment
could not occur in any cell or at any time. However for simplicity, if two inter-
acting proteins are experimentally identified in a given sample, it is generally
assumed they also interact in a specific studied context, thus their relation is
reported in the reconstructed PPI network representing the specific context.
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FIGURE 2.2: Pathguide website [94]. A repository containing
information about 547 resources of molecular interactions and
pathways

2.3.2 PPI: detection, storage, and analysis tools

The main approaches to demonstrate physical interaction between proteins are
the yeast two-hybrid (Y2H) method and the tandem affinity purification cou-
pled with mass-spectrometry (TAP-MS) [21]. To reduce the identification of
false interactions, these experimental data are complemented with computa-
tional methods of prediction [85-87]. Other methods are used to identify func-
tional relationships, and most of them rely on protein expression data [46], anal-
ysis of gene co-expression patterns [88], and analysis of sequences or phyloge-
netic properties, as Rosetta Stone or Sequence co-evolution methods [89]. Both
physical and functional PPIs are stored in public repositories. The most popular
include MINT [90], IntAct [91], STRING [92], and HPRD [93]. The latter specif-
ically collects interactions related to Homo Sapiens, while other databases like
STRING collect different kinds of interactions (from experiments/biochemistry,
annotated pathways, gene neighborhood, gene fusion, gene co-occurrence, gene
co-expression, and text-mining) and different organisms. A useful list of reposi-
tories presented by De Las Rivas et al. [83] provides a classification in categories
(primary, meta, and prediction database) according to method used to detect
interactions. Moreover, an exhaustive collection of more than 500 databases is
available in the Pathguide website (Fig. 2.2) [94].

The development of computational tools to retrieve, visualize, and analyze
biological networks is a key aspect of the systems biology studies, like the pro-
duction of accurate -omics data and the collection of reliable molecular inter-
actions. The most broadly adopted software include Cytoscape and its plugin
[95], VisANT [96], atBioNet [97], PINA [98], and Ingenuity [99] which repre-
sents a commercial solution. On the contrary, Cytoscape is a software developed
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FIGURE 2.3: ReactomeFIViz: from disease pathway to PPI net-
work. Main steps to obtain a protein functional and a physi-
cal protein network, starting from a specific pathway (oncogene
induced senescence). Using ReactomeFIViz, pathways can be
visualized in relation with others (a), can be detailed as a di-
agram showing all inter-molecular relationships (b), and as a
protein functional interaction network (c) showing just the re-
lation among proteins that cooperate to perform a given molecu-
lar function. Finally, starting from a group of protein of interest,
it is possible to obtain a network of protein-protein interactions
by STRING; in the reported example, the interactions shown are
limited to physical type, in particular binding, activation and in-
hibition (d)

by an international consortium of open-source developers. Figure 2.3 shows a
possible use of the ReactomeFIViz Cytoscape’s plugin to obtain networks (both
functional and physical) associated with a given biological function. Reactome-
FIViz is focused to pathways and patterns related to cancer and other patholo-
gies [100]. The reconstruction and the analysis of networks are of importance in
the context of biomedical research, and detailed reviews about network models
to investigate complex diseases have been published by Cho et al. [101] and by
Vidal et al. [18]. Both works show how functional and physical links can be used
to investigate disease mechanisms, and PPI networks emerge as effective model
to evaluate different biomolecules acting in complex biological systems, thus
providing an insight on phenomenons involved in a given physio-pathological
context.
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2.4 Co-expression networks

The large amount of data produced by microarray and RNA-seq technologies
has driven the need for methods to objectively extract meaningful information.
A widely adopted approach to evaluate transcript levels is based on statistics
which measure the dependence between variables [102]. In this context, the use
of co-expression scores is of great interest for clinical/biological research (see
Paragraph 2.2 for an explanation of expression process). These scores, through
the processing of transcript profiles, attempt to define a relation between pairs
of transcripts. These approaches are based on the concept that transcript profiles
of time series, or result of specific perturbations, may be indicative of the acting
mechanism between transcripts. For example, several studies have shown that
functionally related genes sharing Gene Ontology (GO) terms usually present
higher co-expression scores [103]. The co-expression score computation repre-
sents the first step of inference in order to build a co-expression network, defined
as an undirected graph, where nodes correspond to genes and edges indicate
significant co-expression relationships, but not causality. The aspect of causal-
ity is faced in the context of transcriptional regulatory networks [104], where
pairs of genes are considered in a systemic perspective of cooperation, includ-
ing co-regulation, activation/suppression, and indirect control through the ac-
tion of RNA, proteins, metabolites, and epigenetic mechanisms. This complexity
makes the inference of transcriptional regulatory networks difficult by using ex-
clusively transcriptional profiles. In fact, in this type of model, in addition to co-
expression, the following levels of inference require more information and dif-
ferent modelling techniques, including Boolean networks, Bayesian networks,
or differential equations (ODEs) [104]. Many are the network models used to
interpret and represent bio-molecular mechanisms; that discussed in this dis-
sertation is the co-expression based model. Regarding these models, the most
widespread are gene co-expression networks, as more progress has been made
in obtaining information on genetic molecules (DNA, RNA). Conversely, global
analysis of proteins was exceedingly difficult in the past. However, the avail-
ability of information on proteins is crucial, as proteins can interact with all of
the other classes of bio-molecular components, influencing all cellular activities
at various levels. In some studies, several attempts to infer protein abundance
from RNA molecules have been made in order to supply this lack of informa-
tion, since RNA is directly responsible for protein synthesis. However, changes
in protein abundance cannot be simply inferred from RNA data; many studies
show how abundance of RNA poorly correlates with protein abundance [105].
Over the last 10 years, the improvement of Mass-Spectrometry (MS) based
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FIGURE 2.4: The figure shows the ACSL1 protein and its neigh-
bors in two co-expression networks obtained by processing the
protein expression profiles of a control group and a group of pa-
tients affected by amyloidosis disease. In the considered groups
of samples, ACSL1 shows a different interaction number. It sug-
gests that this protein may have a key role in the emergent phe-
notypes. Green edges represent a positive correlation between
the expression profiles, while black edges indicate negative cor-
relations. The thick edges indicate known interactions present in
public repositories as PPI.

proteomics has given a great boost to large-scale proteomics analysis, making
available the expression profiles of thousands of proteins per sample [55]. There-
fore, MS offers a new range of opportunities to improve existing models of
how phenotypes emerge [29]. Due to the similarity of the output between ge-
nomics and proteomics technologies, the use of proteomic data to infer protein
co-expression networks has been recently explored in order to investigate the
role of proteins in specific physio-pathological contexts. For example, variations
of the co-expression score are evaluated so as to select relevant proteins whose
number of bio-molecular interactions changes under specific conditions or per-
turbations [44] (Fig. 2.4).

Although different aspects need to be improved, this approach takes into
account condition-specific protein relationships. Thus, with respect to conven-
tional methods (i.e. via PPI public repositories, as discussed in Paragraph 1.3), it
represents an alternative approach to gain a deeper insight of the proteins char-

acterizing a given system.

2.4.1 Aspects of construction

To build a co-expression network, an important aspect concerns the computation
of a co-expression score, which weighs the correlation of two genes/proteins in
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response to the considered conditions (Fig. 2.5).

To address this issue, metrics to measure gene/protein co-expression have
to be considered (Table 2.1); the most used metrics include Pearson correlation
(PC), Spearman correlation, Kendall correlation, and mutual information [102,
106]. Various methods have been also proposed to define proper thresholds to
select significant relations. Some of them are based on statistical analysis [107]
and on network properties [108], while other interesting approaches aim to min-
imize the false positive links [109]. Finally, not less important is the selection
of appropriate experimental samples/conditions to be processed. A condition-
independent analysis is used to find relations of co-expression actual in different
biological contexts; on the contrary, a condition-dependent analysis aims to find
relations associated with specific phenotypes. The co-expression score compu-
tation may be faced by using any statistical or computational tool that allows to
evaluate the dependence between variables. Some tools have been specifically
designed to construct, visualize, and analyze co-expression networks. For ex-
ample, the ExpressionCorrelation Cytoscape’s plugin allows to process microar-
ray data and provides a similarity matrix computed by PC [110]. In addition
to being user-friendly, the main advantage of this tool is that the reconstructed
networks are directly imported in Cytoscape (Cytoscape software is presented
in Paragraph 1.2.2), where it may be evaluated by other plugins.

In this context, Weighted Gene Co-expression Network Analysis (WGCNA)
is one of the most used approaches to build and to analyze gene co-expression
networks [111], and it has been recently adapted for proteomics use also [40,
41, 44-46, 100, 112]. It provides a weighted network model by converting a co-
expression measure to a connection weight. The network is fully specified by an
adjacency matrix, where the component a;; defines the strength of connection
between nodes i and j. The value of a;; is computed through the coexpression
similarity s;; (2.1), defined as the absolute value of correlation among the pro-
files of nodes i and j. It can be defined in two ways: to obtain an unweighted
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network, the s;; is filtered by a threshold 7 such that a;; takes on value [0,1]
(hard-thresholding) (2.2), while to obtain a weighted network a;; is defined by a
power adjacency function (soft-thresholding) (2.3):

sij = |cor(4, j)| (2.1)
1 s>
ai]' = { S] =T (22)
0 Sjj <T
aij = Si]ﬂ (23)

WGCNA pipeline has been implemented as a package of R software, which is
a free software environment for statistical computing and graphics. Thanks
to its modeling capabilities and its flexibility, R is one of the most used soft-
ware in bioinformatics field. The R WGCNA package provides the possibility
to use different types of metrics, including Spearman, Pearson, Kendall corre-
lation (function cor, see Table 2.1), and the biweight midcorrelation (function
bicor) [113]. Spearman’s correlation is a non-parametric measure of correlation
(see Table 2.1). Pearson’s correlation can be used when data are normally dis-
tributed, but it is quite susceptible to the presence of outliers (see Table 2.1). Bi-
weight midcorrelation is a similarity measure based on the median rather than
the mean, for this peculiar characteristic it results less sensitive to outliers. Data
from gene samples are often characterized by a high presence of outliers, thus
the recommended correlation measure is the biweight midcorrelation, since it is
more robust to outliers. The package allows to compute both the correlation and
the Student p-value for multiple correlations in case of missing data, thanks to
the functions corAndPuvalue and bicorAndPvalue; while the function qualue com-
putes the g-value to measure the significance of each feature in terms of false
discovery rate rather than false positive rate [114]. The unweighted network
displays sensitivity to the choice of the correlation values cut-off, thus, it is im-
portant to use a proper criterion to select the edges to include in the network.
It is important to take into account the correlations are computed among each
pairs of genes/proteins leading to a high rate of false positive values. Thus,
to build an unweighted network and to reduce the inclusion of not significant
correlations, it is recommended to set a cut-off also for p and q values. Concern-
ing the weighted networks, the choice of the 3 parameter is based on the scale-
free topology criterion [115]. This method represents an improvement over un-
weighted networks based on dichotomizing the correlation matrix; the contin-
uous nature of the gene co-expression information is preserved, and the results
of weighted network analyses are highly robust with respect to the choice of the
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parameter 3 (soft-thresholding power). However, this thresholding method is
based on the assumption that the network follows a scale-free topology, a hy-
pothesis weak in some cases, as discussed in Paragraph 2.5.1.

WGCNA package also provides a analysis procedure for the obtained net-
work, consisting of a hierarchical clustering algorithm based on a distance ma-
trix calculated by similarity measure between gene/protein pairs [111]. Accord-
ing which each node is assigned to modules, and then an aggregate module
signature, called eigenvector, is computed; it can be considered as an object rep-
resenting the expression profiles of the molecules belonging to the module, thus,

it simplifies the comparison of different modules [116].

2.4.2 WGCNA and proteomic issues

When the WGCNA is applied to proteomic or to metabolomic data, the choice
of the optimal cutting parameters should be evaluated in relation to the nature
of the data analyzed. In fact, due to the low coverage of the current analytical
technologies, the produced dataset are often incomplete, and the methods need
to be properly modified [117]. A major concern is the high rate of missing val-
ues that introduce loss of information and significant bias. To address this issue,
several approaches including K nearest neighbor, least square methods, or lo-
cal least square methods have been proposed for proteomic and metabolomic
datasets too [117]. In other cases, a very simple approach has been adopted,
such as the removal of all species with a number of missing data bigger than a
given threshold [118]. However, to implement a more accurate analysis, it is rec-
ommended to process data by using an imputation method taking into account
the nature of missing data. Three types of missing value have been identified:
MCAR (missing completely at random), i.e., due to stochastic fluctuations in
a proteomic dataset, MAR (missing at a random), i.e., due to multiple minor
errors, and MNAR (missing not at a random), i.e., due to limits of abundance
of peptides/proteins that instruments are able to detect. In general, methods
work fine when a low percentage of missing value (< 10%) is present, but this
threshold could be different in relation to the missingness mechanisms and im-
putation approach used [117, 119]. In addition to missing value, another impor-
tant step of proteomic data preprocessing concerns their normalization [120].
Batch effects may occur in datasets run in different days or by different techni-
cians. This phenomenon may increase by using isotope reagents which allow
the quantitation of a limited number of samples, thus, preventing a simultane-
ous analysis of multiple samples which could reduce data heterogeneity. For
these reasons, an appropriate data transformation is a prerequisite to capture
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true correlations. Also in the case of protein co-expression, valid correlations
have to be selected by applying proper thresholds. To date, the most appli-
cations of WGCNA method on proteomic datasets used the soft-thresholding,
which defines the /5 value according the scale-free criterion [40, 112, 118]. How-
ever, since the application of WGCNA to proteomic dataset is a recent issue and
literature reports few examples, the future evaluation of hard-thresholding ap-
proach might be useful.

2.5 Network topological analysis

The literature underlines how the topological structure of a network model is
closely related with biological relevant features of real-world systems. To fully
understand disease mechanisms, the knowledge of both the topological and the
biological aspects of these models is needed [75]. In this dissertation, the term
topology is used to refer to all the properties and characteristics of a network,
related to the structure of the graph, i.e. related to the way in which nodes and
edges are arranged to give rise to the network. An important aspect of topo-
logical studies is the construction of mathematical/theoretical models in order
to describe features observed in the networks. The capacity to abstract from ex-
perimental data to mathematical models could provide a better understanding
of biological systems. In this Paragraph, the main approaches found in liter-
ature on topology analysis will be presented. The first part will describe the
main metrics used to investigate which are the key proteins in a network. The
second part will discuss the main mathematical models affirmed in describing
the topology of biological interaction networks. The discussed models, namely
random graphs, small-world, scale-free and geometric random graphs, will not
be described in detail as it is not the objective of this dissertation to illustrate
their mathematical basis. Rather, the aim of this paragraph is to introduce the
reader to the main state-of-the-art techniques used to investigate and explore the
topology of these network models. In order to show that the topological prop-
erties are directly linked to specific biological meanings, thus their investigation
represents a way to infer useful knowledge about the biological phenomenon
represented by the network.

2.5.1 Centrality measures

Table 2.2 lists the main basic centralities used in the network topological analy-
sis [121]. In the context of network organization, these centralities facilitate the
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answer to question about which proteins are most important and why. For ex-
ample, to give an idea of such analysis, a vertex (i.e., a protein) is important (or
central) if it is close to many other vertexes. There are many different centrality
measures that have been proposed in literature but probably the most applied,
and simple, is called vertex degree. The degree d(v) of a vertex v, in a network
G = (V, E), counts the number of edges in E incident upon v. Given G and a
constant value D, f(D) is defined as the fraction of vertexes v € V with degree
d(v) = D. For different Dy, Do, ..., Dy, the collection f(D1), f(Da2), ..., f(Dy) is
called the degree distribution of G. A useful generalization of degree is the no-
tion of vertex strength, which is obtained simply by summing up the weights
of edges incident to a given vertex. The distribution of vertex strength is some-
times called the weighted degree distributions defined in analogy to the ordi-
nary degree distribution. Another centrality measure widely used is known as
betweenness [122]. It can be defined as follows: this measure summarizes the
extent to which a vertex is located “between” other pairs of vertexes. In this
case, centrality is based upon the perspective that importance relates to where a
vertex is located with respect to the paths in the network graph. In other terms,
betweenness centrality is based on communication flow. Nodes with a high be-
tweenness centrality are interesting because they lie on cellular communication
paths and control information flow. Also called hubs/bottlenecks [123], they
can represent important proteins in signaling pathways and can form targets for
drug discovery. Formally, betweenness can be defined as

o(s,t|v)

B =S oD

(2.4)

where o(s,t|v) is the total number of shortest paths between s and ¢ that
pass through v, and (s, t) is the total number of shortest paths between s and
t (regardless of whether or not they pass through v). Other centralities used to
globally evaluate the structure of a network include:

e Degree distribution: a function describing the proportion of nodes related

to each observed degree

e Modularity: evaluates the presence of modules, such as a group of nodes
characterized by the tendency to form more connections within the group
than outside [124]

o Cluster coefficient: the ratio of the number of edges among a node and its
neighbors and the maximum possible number of edges among all of them
[125]
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e Motif/graphlet frequency: evaluates the presence of small subgraphs with
a specific pattern that appear in a real-world network more frequently than

in the relative random network [126]

e Edge clustering coefficient: the ratio between the number of triangles (three
nodes connected by three edges) including an edge, and the maximum
number of possible triangles may include the edge [127]

e Maximal Clique centrality: a property of a node taking into account the
cliques (i.e, a subgraph in which each pair of nodes is connected) including
the node [128]

The simplest way to perform a network topological analysis by evaluating
these properties is through Cytoscape’s plugins, such as CentiScaPe [121] and
NetworkAnalyzer [129], that provide the main basic methods to compute the
topological properties of nodes, edges, and networks, both directed and undi-
rected. Moreover, new plugins implementing recent developed topological cen-
tralities are CytoNCA [130] and CytoHubba [128].

2.5.2 Theoretical mathematical models

As regards biological networks many studies have been carried out to compare
experimental networks with mathematical models with the aim to found the
best fitting model for using it to evaluate experimental results [75]. As for the-
oretical mathematical models proposed to describe the biological networks, the
most claimed are Erdos-Rényi random graphs [34] and scale-free [35] (see Fig.
2.6).

Other models, such as the geometric random graph (GEO) [132] and the
small-world [125], have recently been proposed. In the context of biology, the
random graph, proposed in 1950, has been overtaken by the scale-free model;
in fact, the degree distribution of the scale-free model is a power-law curve that
fits better than Poisson curve (typical of random graphs and small-world) the
degree distribution of the experimental networks [35] (Fig. 2.7).

In networks with a power law distribution, most nodes have a degree value
far from the mean value; specifically, most nodes have a low number of interac-
tions while few nodes have a high number of interactions. These features lead
to a network structure little vulnerable respect to the random removal of a node
and make the related system biologically robust [133]. Of note, the degree distri-
bution may reflect the different role of proteins/genes, and those with a highest
number of connections, so-called hubs, have a higher probability to be more bi-
ologically relevant than others. In other words, removal or modification of hubs
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TABLE 2.2: CentiScaPe’s centralities and their topological and biological meaning. The ~indicates network’s properties.

The = indicates node’s properties. The *] indicates edge’s property.

Centrality

Description

Biological Meaning

Diameter ~

Defines the longest shortest path in the network

Average Distance

Defines the mean length of all the shortest paths in the net-
work

Degree *

Describes the number of neighbors a node has

Highlights the number of nodes that are

lated /regulate the node v

regu-

Eccentricity *

Describes the longest shortest paths a node develop, giving
us a proximity information

Highlights the easiness of a protein to reach/to be reached
by all the other proteins in the network

Closeness *

Describes, for the node v, the minimal sum of all the dis-
tances in the network

Highlights the probability of a protein to be functionally
relevant for several proteins, but irrelevant for a few other

Radiality * Describes the integration of a node into the network Highlights the ability of a protein to be functionally rele-
vant for several proteins, but irrelevant for a few other
Centroid * Describes the neighborhood of nodes by highlighting | Highlights a protein that tends to be functionally capable of
nodes that have the highest number of neighbors separated | organizing discrete protein clusters or modules
by the minimal shortest path
Stress x* Describes the number of shortest paths that pass through a | Highlights the relevance of a protein as functionally capa-

node

ble of holding together communicating nodes

Betweenness x

Describes, for each couple of nodes, the number of shortest
paths that pass through a specific node

Highlights the relevance of a protein as functionally capa-
ble of holding together communicating nodes

Bridging

Describes the neighborhood of nodes by highlighting
nodes with a high number of high-degree neighbors

Highlights a protein possibly bringing in communication
sets of regulatory protein

Eigen Vector *

Describes a sort of weighted degree, where not only the
number of the neighbors is important but also the Eigen-
Vector of the neighbors itself

Highlights a protein interacting with several important
proteins, suggesting a central super-regulatory role or a
critical target of a regulatory pathways

Edge

ness *x

Between-

Describes, for each couple of nodes, the shortest paths that
pass through a specific edge

Highlights the relevance of the interaction as capable of or-
ganize regulatory process
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may induce stronger alteration of the system equilibrium rather than removal or
modification of nodes with low degree [134]. Although some topological prop-
erties are well described by a theoretical model, it may not be enough to affirm
that the model represents well the real-world network considered [135]. For ex-
ample, a study on PPI network of Drosophila Melanogaster and Saccharomyces
Cerevisiae showed that the degree distribution was in agreement with scale-
free model, but diameter, cluster coefficient, and graphlet frequency were closer
to GEO [136]. Of note, based on graphlet frequency, the comparison among
scale-free, random graph, and GEO models has shown a higher agreement of
GEO with PPI network from eukaryotic organism [137, 138]. A possible reason
of these findings is that the scale-free model fits networks that emerged from a
stochastic growth, not subjected to an optimization process; while, PPI networks
emerge from stochastic processes, and their structure is influenced by the evo-
lutionary optimization that living systems have gone through [136]. Another
model used to describe the PPI networks is the small-world, characterized by
low average path length, an high clustering coefficient, and (like the random
graph model) by a Poisson curve. In a study focused on the investigation of
proteins regulating the fat storage, the corresponding PPI network had a degree-
distribution close to a Poisson curve rather than a power-law [139]. Moreover,
the investigation of its topology indicate a network organized into communities,
i.e. with a modular structure. This modular arrangement of the nodes has been
often observed in PPI networks [140-142]. Modules are associated to groups of
proteins that work together to achieve some specific biological functions. The
presence of these communities allows to split a complex process, as the fat stor-
age function, in sub-tasks each performed by a specific cluster of nodes. The
small-world model preserves the modular structure, and it is not characterized
by hub nodes, these properties make the network more robust in the case of
removal or modification of any node [133].

The proposed models were born from the need to describe the various spe-
cific features observed in real-world networks and are thus not able to sum-
marize the complexity of the whole system investigated. Moreover, certain
model properties do not agree with experimental data. The real-world net-
works used to infer these general theoretical models are not standard and of-
ten represent only an incomplete part of the interactions of the studied system.
Another important aspect to consider is the error introduced by technologies
used for detecting interactions; for example the observed structural modularity
may be an artifact because the current PPI data include interactions detected
through technological approaches that create modules [142]. Moreover, several
edges/interactions may occur in the experimental procedure but not in vivo,
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due to the fact that protein pairs may not be expressed under different time-
space conditions [137]. This evidence leads to the incapacity to completely prove
or rule out a model. The actual high-throughput technologies for data acquisi-
tion are far from providing complete and reliable data regarding bio-molecule
interactions [75]; however, as more data becomes available, more insights could
be gained and as consequence, the definition and evaluation of mathematical

models can improve.

2.6 Module identification

Studying the modularity of a network not only provides structural information
on the network, but may also reveal the underlying mechanisms that determine
the network structure. Regardless of the approaches used in obtaining a biolog-
ical network, the detection of protein/gene modules is of great interest, because
they represent the functional units at the base of the mechanisms responsible for
cellular life [143, 144].

A PPI module represents a group of proteins taking part in specific, sepa-
rable functions such as protein complexes, metabolic pathways or signal trans-
duction systems. A module is identified on the basis of its double role (i) as an
isolated entity, being responsible of specific steps of cellular processes; and (ii)
as part of a connection pattern, in which one process influences another in order
to perform higher-level cellular functions [5]. For example, the Generic Tran-
scription pathway (R-HSA-212436) [100] achieves its functions through its sub-
processes, such as the nuclear Receptor Transcription pathway, the NotchHLH
Transcription pathway, etc. (see Figure 2.8). Moreover, each sub-process can be
described as a module made of proteins and other molecules working together
to perform a specific step of a bigger pattern. In network biology and graph
theory, it is possible to define topological and functional modules [145]. The first
refers to a group of nodes having many more connections with the nodes of the
group rather than with the ones outside of it. The second refers to a group of
nodes sharing a common biological function. Note that a group of nodes poten-
tially representing a module might possess both topological and functional prop-
erties. Ideally, topological and functional modules should coincide; in practice,
they constitute two different entities, though typically, they largely overlap [17].
As a consequence, both the network topology and the functional information
contribute to the overall understanding of the biological mechanisms underly-
ing the PPI network.

Topological properties are measured with specific metrics such as modular-
ity, betweenness, degree distribution, density and closeness [36]. On the other
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hand, functional properties are widely described by the three Gene Ontology
categories (GO), Biological Process, Molecular Function and Cellular Compo-
nent [54].

Trascriptional activity of
SMAD2/SMAD3:SMAD4
heterotrimer

Nuclear receptor

YAP1 and WWTR1 e
trascription pathway
=

TAZ-stimulated gene
expression

FIGURE 2.8: The figure represents the processes at the base of

the Generic Transcription pathway (R-HSA-212436). Each pro-

cess consists of a group of proteins with intra-modular and inter-

modular connections. The image has been obtained with Reac-
tomeFVIZ software [100].

Due to the complex connectivity of the networks, the identification of mod-
ules is a challenging task. Various methods have been proposed, and most of
them are exclusively based on network topology (see Paragraph 2.5.1 for a de-
scription of the metrics used to measure topological properties). Some repre-
sentative examples include the betweenness based method [64], the modular-
ity optimization method [146], the spectral partitioning method [147], the core-
attachment based method [148], and the graph-theoretic approach relying on
cliques [149] and other topological properties [150]. A number of scientific re-
views describe many of these tools for module detection [118, 151, 152]. Among
the most used there are ClusterOne [153], MCODE [150], Markov Cluster Algo-
rithm (MCL) [154] and CFinder [149].

ClusterOne consists of three major steps. Firstly, starting from a single seed,
i.e. a vertex, some vertexes are added or removed so as to find groups on the
basis of a new introduced measure, namely cohesiveness. This measure takes



2.6. Module identification 35

two aspects into account: the module should contain many interactions, and it
should be well-separated from the rest of the network. This process is repeated
from different seeds, thus forming multiple and overlapping groups. Overlap-
ping means that the groups share one or more nodes. In the second step, groups
with an overlapping score above a specified threshold are merged. In the third
step, the groups that contain less than three proteins, or whose density is below
a given threshold, are discarded [153].

The MCODE algorithm consists of three phases. Firstly, a score is assigned
to each vertex; the score is the cluster coefficient relative to the neighbourhood
(directly connected vertexes) of the vertex. Secondly, protein modules are con-
structed adding vertexes to those with the highest score. The growth process
of a module is limited by a parameter. Moreover, another parameter executes a
control on the scores of the vertexes within the same module. Thirdly, the mod-
ules found are post-processed in two ways. Firstly, by removing the vertexes
that are connected by only a single edge to the rest of the module and secondly;,
by trying to expand the module with other vertexes, if they are connected to a
large number of vertexes of the same module [150].

At the heart of the MCL algorithm lies the idea to simulate flow within a
graph; MCL promotes flow where the current is strong and demotes flow where
the current is weak, in order to detect natural groups present in the graph. The
MCL algorithm has a single parameter known as inflation. Larger inflation val-
ues result in smaller clusters, while smaller inflation values generate only a few
large clusters [154].

CFinder was one of the first overlapping clustering methods published in
the literature. CFinder finds all k-cliques of the original network, i.e. the cliques
made of k nodes, (where k is a parameter of the algorithm). These cliques are
used to construct a graph, where the nodes are represented by the k-cliques and
the edges connect k-cliques which share k-1 vertexes. The connected compo-
nents of this graph are then used to derive the overlapping topological modules
[149].

Among the most popular algorithms for module detection, it is important to
mention those based on Modularity optimization, such as fast-greedy, walktrap,
label propagation, spinglass and multi-level community [155]. Modularity is a
metric specific for the evaluation of the modular structure of a network [124]; as
discussed in Paragraph 2.5.2, this structure is typical of PPI Networks.

Although many methods are available in detecting topological modules, none
of them provide a biological interpretation of the protein groups found. For this
reason, other approaches are used in order to annotate the identified modules
with known cellular functions. For example, GO term enrichment analysis is
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routinely used to assess the biological relevance of the identified modules [51,
52]. Making use of statistical tests, these approaches evaluate if genes/proteins
of a module are enriched in common functional properties represented by GO
terms (see Paragraph 2.2 for a description of the GO).

2.6.1 Issues linked with module identification algorithms

Several graph-based algorithms have been developed to tackle PP module iden-
tification. Most of these approaches infer modules relying solely on their topo-
logical properties. These methods exploit community detection algorithms de-
veloped for generic graphs, readjusting them to the context of biological net-
works [155, 156]. Module identification algorithms are also most commonly
known as clustering algorithms. Nevertheless, clustering algorithm is a general
term including also other types of algorithms, which ignore the graph structure
typical of input models specific to module identification algorithms. While the
topological approach is sound in network theory, it is sub-optimal in the case of
PPI networks, due to their biological nature.

The scarce sensitivity of PPI discovery techniques (such as yeast two hybrid
method and tandem affinity purification coupled with mass-spectrometry) leads
to the presence of noise, in the form of falsely detected edges [85]. As a conse-
quence, the modules obtained with algorithms based solely on network topol-
ogy are strongly influenced by the presence of noise. Algorithms should con-
sider this noise during module detection; for example, further information may
be introduced to model the uncertainty associated with interactions [145, 157].
To overcome the issues of noisy edges, several recent algorithms pre-process the
network with a-priori knowledge, such as co-expression relations and/or func-
tional associations. In practice, they filter out the low reliability edges, and/or
enrich the network with edge weights [62, 63, 144, 158, 159]. Despite the integra-
tion of a-priori information, module identification in these algorithms is strictly
topological.

Since PPI network analysis aims to clarify the molecular mechanisms in-
volved in the physiological /pathological context investigated, a main require-
ment of module identification algorithms is the ability to provide full coverage
of the network. Indeed, to obtain a bird’s eye-view of the phenomenon, all
the elements of the system should be considered, given that high-level func-
tions emerge from the combined work of many modules/processes [13, 145].
Topological approaches are often focused on the identification of high quality
clusters, thus not considering many of the network hard-to-label nodes. More-
over, module identification algorithms focus mainly on the detection of densely
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connected subgraphs, ignoring functional modules that are often sparsely con-
nected [145, 160], and/or very small, i.e. composed of only two or three proteins
[59]. Ignoring these modules means excluding key proteins influencing/driving
the inspected biological process. Alongside these aspects, there are two relevant
requirements which these algorithms should assure: overlapping [157] and the
inclusion of known protein annotations [145]. As a protein can have several
different roles in cellular functioning, it can therefore be involved in different
modules; for this reason, a key characteristic of these algorithms is the abil-
ity to provide overlapping modules i.e. modules sharing proteins. Although
some strategies have been proposed over recent years to assure overlapping,
this problem is still a challenging issue [157].

In recent years, thanks to knowledge obtained through omics technologies,
biological literature on the roles of proteins has been growing steadily. In de-
tail, proteins are annotated with attributes (such as GO) to encode information
such as functions, localization, and biological processes that they are involved
in. The wealth provided by this knowledge opens the door to new opportunities
of creating superior quality modules, although the inclusion of this information
is challenging, due to the high dimensionality of protein annotations [145].

2.6.2 Module identification: the inclusion of GO annotations

To ensure that the identified modules are biologically meaningful, these algo-
rithms should take into account not only topological features but also known
functional information [144]. For this purpose, several algorithms have been
proposed attempting to integrate this information into the network model. For
example, SWEMODE is an approach in identifying dense subgraphs using net-
work measures which combine functional information with topological proper-
ties. Each edge is weighted taking into account two measures: clustering coef-
ficient and functional similarity, obtained according to GO annotations. Finally,
SWEMODE creates modules starting from certain nodes and adding more in a
similar way as MCODE does [158]. Another approach has been proposed by
Wang et al. [161], which uses GO annotations to estimate the reliability of inter-
actions in PPI networks. Interaction pairs with low GO similarity are removed
from the network, as they are considered unreliable, and a clustering algorithm
is used to detect modules. Moreover, a similar approach is followed by Zhang
et al. [162], where the authors apply a clustering algorithm to an augmented
network, constructed to integrate GO annotations in the PPI Network.

All these approaches integrate GO information into the network model, later
applying a topological-based approach to detect modules; in this way, GO is not
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included in the process of module assembling but is rather used in a preliminary
phase of network model pre-processing.

Recently, several novel methods have been proposed, they try to include GO
annotations directly in the process of module identification, such as DCAFP and
GMFTP. In the DCAFP method, a preference vector is introduced for each pro-
tein to indicate the functional categories (GO) to which it belongs. Then, the
problem is formulated as a constrained optimization problem based on a likeli-
hood matrix which considers graph topology as well as the preference vectors
of proteins [61]. In the GMFTP method, the functional profile (given by GO an-
notations) is coupled with the network topology to detect overlapping protein
complexes. The process of module assembling is dominated by two variables:
one represents the degree of a protein related to a considered module, while the
other represents the protein functional profile. The module detection problem is
later converted into a parameter estimation problem [60].

Although new approaches have been proposed, the module detection prob-
lem remains a challenging task. The possibility to include GO knowledge has
at present been little explored. Moreover, all these methods do not provide any
biological interpretation concerning the modules found. For this reason, fur-
ther analysis is needed in order to investigate the role of modules found in the

biological mechanism represented by the PPI network.

2.6.3 MTGO: a novel algorithm for module detection

The main research scope of this PhD work has been the development of a new
algorithm for module detection. This has been done in order to overcome the
issues linked with the biological nature of the problem and to supply the lack of
methods able to provide a PPI Network evaluation, both from a topological and
biological perspective. The algorithm proposed is MTGO (Module detection via
Topological information and Gene Ontology knowledge). It combines informa-
tion from network topology and knowledge on the biological role of proteins.
In order to identify relevant modules, MTGO executes iterative steps in order to
obtain repeated network partitions. A partition is a subdivision of the graph into
sub-graphs, covering all the network nodes. For each step, starting from a net-
work partition, moving nodes among sub-graphs, a new partition is computed.
In this way, at each step the modules are reshaped on the basis of both the GO
annotations and the graph Modularity. Therefore, the module detection prob-
lem is faced through a process of optimization, taking into account the network
structure as well as its biological nature.
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Moreover, MTGO differs from previous works as it integrates GO terms di-
rectly into the construction of functional modules. As a result, it provides both a
set of clusters/communities (topological modules) and a list of functional mod-
ules, represented by GO terms. In other words, MTGO facilitates and simpli-
fies PPI Network analysis, coupling both the clustering analysis and the bio-
logical /GO analysis in a single step (as it provides both the clusters and their
biological meaning, through the set of GO terms describing the clusters). In
this way, MTGO simultaneously obtains both full coverage of the network and
overlapping functional modules, the ideal characteristics of functional module
identification algorithms. Furthermore, MTGO is tailored to search for small or
sparse modules, which typically elude other approaches.

As opposed to previous approaches based on GO, such as DCAFP [61] and
GMFTP [60], MTGO provides a unique GO term that best describes the biolog-
ical nature of each identified module. This supports a better explanation of the
results obtained, highlighting the main processes involved in the biological sys-
tem represented by PPI network models. Due to its unique way of GO exploita-
tion (directly when modules are assembled), MTGO differs from state-of-the-art
algorithms, where GO does not directly guide module assembling.



40

Chapter 3

Protein Co-expression network

analysis

3.1 Introduction

Accumulating findings show that the phenotypic impact of a disease is not a
consequence of the abnormal action of a single gene, but reflects the perturba-
tions on those molecules that are involved and interconnected with the dam-
aged protein or gene [17]. In agreement with this concept an approach to study
diseases consists in investigating the different way in which bio-molecules are
connected among them in the two different conditions: healthy people and af-
fected people [44, 112]. This is possible through the study of the rewiring of the
condition-specific protein interaction networks related to the studied pathology.
In order to implement this strategy the network models related to each condi-
tion should be built. This means that the information about the bio-molecules
acting in a specific context should be used to directly infer their relation-ships,
that are the edges of the network model.

Given a list of proteins of interest, a common way to build a protein inter-
action network consists in retrieving information about their interactions from
public repositories [43, 52]. In fact, there are many databases (MINT, DIP, STRING,
IntAct, HPRD) collecting both physical and functional protein interactions, ob-
tained from experiments and computational methods of prediction (see Chapter
2 Paragraph 2.3.2 for further details). Since the proteins participate to physical-
chemical connections depending by the biological context where they act, the
interactions collected in these databases are peculiar of the system conditions
during the experiments. As consequence, the use of these interactions to de-
scribe another system, likely characterized by a very different biological con-
text, could limit the analysis and lead to misunderstanding of the phenomenon
studied.
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To overcome these issues, some original works have used graph models ris-
ing from data obtained combining the mass-spectrometry and liquid chromatog-
raphy (LC-MS) [40, 41, 44]. These techniques allow to investigate all the proteins
in a given cell/tissue/sample in qualitative and quantitative terms and provide
a big amount of proteomics data, providing a new range of opportunities to im-
prove existing models and to build pathology-specific networks. Moreover, as
PPIs often do not cover all the interactions of an organism, the use of proteomics
data from LC-MS gives the opportunity to evaluate those organisms that lack in-
formation on PPIs. The set of proteins and related information extracted form a
sample of a specific phenotype is commonly called protein profile. The big quan-
tity of protein expression data produced by these technologies is a source to
build network model for investigating disease signature. Where, disease signa-
ture is an expression commonly used, which stands for a set of genes/proteins
whose levels of expression can be used to predict a biological state (for example,
in the case of cancer, gene signatures have been developed both to distinguish
cancerous from non-cancerous conditions) [163]. Currently, robust methods for
network construction starting from protein expression data is still unrealized
and the most used network are built from PPI database [43].

These proteomics datasets show a similar structure as gene expression data,
usually coming from Microarray technologies. The big diffusion of tools and
statistics for analyzing genomics data and the similarity of these outputs lead
to various attempts to adapt these procedures for proteomics data. This is the
case of the protein co-expression network analysis, rising from the application
of gene-expression network analysis to proteomics data. To date there are few
examples of application, mainly because there are some issues to adapt this ap-
proach to the protein field, in fact some data properties are specifically related to
the analytic technology used to generate data (Chapter 2, Pararaph 2.4 presents
a discussion about this topic). In this chapter, firstly, some state-of-art appli-
cations of protein co-expression network analysis for disease studying will be
discussed; secondly, an implementation of the protein co-expression network
approach to evaluate large-scale proteomics data coming from a study on amy-
loidosis disease will be showed. The Figure 3.1 sums-up the main steps of the

analysis pipeline proposed.
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FIGURE 3.1: Building pipeline of condition-specific protein co-expression networks
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3.2 Form protein expression profile to protein co-expression

networks

The combination of PPI networks with protein expression profiles is demon-
strating useful for rapidly identify biological pathways and sub-networks af-
fected by disease mechanisms [164]. An interesting approach came from a study
by Brambilla et al. [52], where the information on protein profiles is integrated
in a network model. They used Multidimensional Protein Identification Tech-
nology (MudPIT) to obtain the protein expression profiles from two different
groups of subjects, amyloidosis patients and relative controls. The expression
profiles have been used for the identification of differentially represented pro-
teins, i.e. the protein expressed with different abundance in two samples under
different conditions. Then, these results have been combined with protein inter-
actions retrieved from major public online repositories. In this way, they built a
network where the edges represent PPI and nodes correspond to the differential
proteins. The integration of different types of knowledge from expression data
and literature data in a same model lead to new findings, which provide both
a relevant contribute for clarification of the mechanisms of human amyloidosis
and a basis for further experimental/clinical studies [52].

The protein profiles has been used in an original way by Wu et al. [43],
for understanding renal dysfunction mechanism and finding phenotype-related
biomarkers. At first, they followed a standard approach. The differentially
expressed proteins, among different status of kidney transplant patients, have
been used to build two networks, retrieving PPI from STRING database [92].
Then, they have introduced a new idea. In fact, the information on protein
profiles has been exploited to validate the found PPI networks. They compute
Pearson Correlation (PC) between each pair of PPI, reserving in the networks
just those interactions with a high value of correlation, assuming those with a
low PC value would not occur in corresponding sample. Finally, they extract
from the two networks the differential interactions, i.e the subgraph made of
the edges exclusive of each network, i.e. the uncommon edges between the two
networks. From this subgraph they selected twelve relevant proteins involved
in the pathology. This strategy links PPI networks with protein profiles, permit-
ting to obtain condition-specific models related to studied phenotypes. The use
of protein expression profiles to study differential interactions rather than dif-
ferential proteins represents a new approach respect to conventional methods.

The investigation of quantitative proteomic data by WGCNA approach (this
technique is discussed in Chapter 2 Paragraph 2.4) has been first addressed by
Gibbs et al. to infer the protein abundance and to overcome issues linked to
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peptide-protein mapping [41]. Starting from experimental datasets obtained by
LC-MS, the authors proposed a protein co-expression network approach (Pro-
CoNa) where the nodes are peptides (segments of proteins) and the edges are
calculated by processing peptide intensity, a measure indicative of their abun-
dance in analyzed samples. The modules computed by co-expression analysis
were strictly correlated with the investigated phenotypes and showed a sig-
nificant enrichment of some GO terms. Following these findings, the authors
explored the relationship between co-expression networks reconstructed from
transcriptomic and proteomic data [40]. In this study, concerning SARS-CoV
infection, they used a graph analysis to evaluate phenotype associations and
module correlation between protein and transcript networks. In this way, pro-
viding a foundation of a true multi-omics disease signatures. The idea to use
the WGCNA method on proteomic data was followed also by MacDonald et al.
[44] to clarify the role of the glutamate signaling in schizophrenia (SCZ). The
topological evaluation of the co-expression networks from SCZ affected subjects
and healthy controls led to observe in SCZ affected group a lower average node
degree (see Chapter 2 Pragraph 2.5.1 for a node degree explanation). This result
was probably due to the loss of coordination of the biological functions, as well
as disease heterogeneity. However, in SCZ network, it was found the exclusive
presence of a module enriched in GO terms related to glutamate signaling path-
way and whose proteins had a significant increased degree. This analysis has
brought to the conclusion that this module is linked with spine loss symptom in
schizophrenia patients. The application of the WGCNA on protein expression
profiles was also faced by Chang Guo et al. to characterize the role of different
protein isoforms in E. Coli resistance to serum killing [112]. Like in other cases,
the authors evaluated the topological variations of the co-expression networks
between control- and serum-treated groups. By considering the connectivity of
modules identified in both networks, a protein, IleS, was found with a differen-
tial number of connections in control and treated groups. Of note, its involve-
ment in the response to serum killing was confirmed by independent functional
test based on a gene-deletion mutant, thus, confirming the utility to use pro-
tein co-expression networks also to identify putative drug targets. Likewise,
Yu et al. investigated the molecular mechanisms underlying the glioblastoma
multiforme (GBM) [46]. They analyzed samples of macaque rhesus brain by
both iTRAQ (a technique for protein profiling) and RNA-seq approaches. The
proteins identified were combined with STRING database and, for each exper-
imentally validated PPI, the PC score was calculated using both protein and
transcript levels. Since the PC score from proteomic data resulted significantly
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higher than score calculated using transcript levels, the authors focused on pro-
tein co-expression network to identify protein modules involved in the disease.
Finally, a more detailed evaluation of these modules allowed the selection of
eight genes of interest, and two of them were already known drug targets of
GBM.

These findings confirm that the topological differences of network models
building on protein expression data related to condition-specific groups can be
directly linked to phenotypic differences among the groups. Thus, this type
of models represent a starting point to investigate protein alterations linked to

tissue-specific abnormalities due to pathological states.

3.3 An analysis pipeline based on protein co-expression

networks

Amyloidosis diseases include rare as well as common dysfunctions, such as
Alzheimer’s disease, and are overall responsible for about 1 of 1000 deaths in
developed countries. The common clinical manifestations are protein misfold-
ing and tissue deposition as interstitial amyloid fibrils; the disease could lead
to severe dysfunction of vital organs and ultimately to the patient’s death [165].
Much is still unknown about the molecular mechanism of cell/tissue reaction to
misfolded proteins and amyloid fibrils leading to the devastating clinical man-
ifestations [52, 166]. The use of proteomics analysis of amyloid affected tissues
has recently gained attention. In particular, in the scientific work Reliable typ-
ing of systemic amyloidosis through proteomic analysis of subcutaneous adipose tissue,
Brambilla et al. proposed a method based on two-dimensional liquid chromatog-
raphy coupled to tandem mass spectrometry (2DC-MS/MS), also referred to as
MudPIT, for high-throughput proteome analysis of fresh abdominal fat tissue
obtained from patients with various types of amyloidosis [167].

To develop a pipeline of analysis specific for amyloidosis disease based on
protein co-expression networks, the starting point was the analysis of a sample
set of adipose tissue from amyloidosis patients. The analysis procedure is the
same of that proposed by Brambilla et al. [167] and was performed by the Pro-
teomic and Metabolomic Laboratory of the Institute of Biomedical Technology
of the Italian Research Council (ITB-CNR). These data have been published in
Journal of Proteome Research by Brambilla et al. [52].

The sample set is made of three groups: the control, made of 11 healthy
people, the group K, made of 11 patients affected by amyloidosis disease of type
K and the group L, made of 13 patients affected by amyloidosis disease of type
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L. The amyloidosis type, k or L, refers to which protein is the main constituent
of the fibrils. All the samples are provided by Fondazione I.R.C.C.S. Policlinico
San Matteo Pavia.

The output of the analysis is presented as a matrix in which the columns rep-
resent the samples, coming from the analyzed subjects, and the rows the proteins
found in the corresponding sample. The matrix contains a total of 958 proteins,
identified in the three groups. Each cell contains a Spectral Count (SpC) value,
which measures the abundance of each protein (row) found in the correspond-
ing sample (column). SpC corresponds to the total number of spectra taken from
a given protein, provided by the MudPIT analysis. This value is linearly corre-
lated with the protein abundance and allows to define the expression profile of
a protein across different samples. Moreover, the SpC value is corrected by a
correction factor that normalizes the spectral counts of a protein to its molecular
weight [168].

The matrix presents the problem of missing data (discussed in Chapter 2
Paragraph 2.4.2), in fact the percentage of null SpC value was 74% in control
group, 70% in L group and 81% in k group. To overcome this issue, those pro-
teins with a number of missing data bigger than a given threshold has been
removed. This simple approach has been previously adopted to process pro-
teomics dataset [118]. The value of threshold used was 4. After this correction,
the number of selected proteins were 153, 150 and 110 for control group, L group
and k group, respectively. This matrix has been used to extract the relations
among the proteins. The data has been processed using the function CorAndP-
value of the WGCNA package of R software. This function allows to compute
the value of correlation between two proteins using the expression profile, i.e.
the quantitative measures represented by the SpC values of a protein in a group
of samples. In this analysis, the Spearman Correlation, a non-parametric mea-
sure of statistical dependence between two variables (see Chapter 2 Paragraph
2.4.1), has been computed using the SpC values. Moreover the CorAndPvalue
function provides for each computed correlation a p-value to verify the signif-
icance. Moreover, in this analysis the function p.adjust has been used to apply
the False Discovery Rate correction on the p-values computed, as this is the case
of multiple comparisons. All the protein pairs showing a correlation value over-
taking the threshold +0.8 and with a p-value less than 0.05 have been translated
in a edge list for creating the network model. As result, three co-expression net-
work models have been obtained, each one specific of a condition; the detail of
node and edge number for each network is reported in Table 3.1.

Subsequently, the graphical aspect of the network models has been used to
integrate other information, to enrich the model making it as informative as
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TABLE 3.1: Network characteristics

| Nodes Edges
Control 134 487
L 117 287
K 89 242

possible, in order to facilitate the comprehension of the biological context repre-
sented. In particular, the edge colour has been used to represent the sign of the
correlation relation ( for positive sign and black for negative sign), while
node colour and edge thickness have been used to integrate information from
other analysis. Node colour represents differential expression analysis. This
analysis allows to compare the expression of each protein both in control and
patient group. In particular differential average (DAve) formula 3.1 has been
used between the expression profiles of each protein in the two groups of com-
parison, control against K and control against L.

z—y
DAve = ——— 7 3.1
T S (wty) G.1)

In DAve function, z is the normalized SpC of the protein in the first sam-
ple, while y represents the normalized SpC of the same protein but in the sec-
ond sample. In detail, DAve average > + 0.2 correspond to proteins down-
represented in patients, while DAve average < - 0.2 correspond to proteins up-
represented in patients [168]. The colour red represents proteins up-represented
in control group, while light blue represents proteins up-represented in K/L
group. To include a-priori information about the proteins involved in the ana-
lyzed biological system, PSICQUIC [169] has been used to retrieve information
about known Protein-Protein Interactions (PPI) between the protein pairs linked
by edges in the networks. PSICQUIC is a query interface for computational ac-
cess to molecular-interaction data resources, collecting more than 16 million in-
teractions from major molecular interaction databases. The PSICQUIC project
site [170] offers open-source libraries for programmatic access to the PSICQUIC
registry. Thus, a Python script has been implemented for registry interroga-
tion. The interactions found have been represented in the network models in
form of edge thickness; in particular, thick edges represent PPI linking two pro-
teins, while thin edges represent just a sample-specific correlation relation be-
tween protein expression profiles. In this way, the integration of protein co-
expression network with the commonly used PPI has been realized, to enrich
the models and facilitate the comprehension of the biological mechanism rep-
resented. Moreover, the overlapping between the correlation relations and the
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FIGURE 3.2: Node color represents differential analysis informa-

tion: red for up-representation in Control group and light blue

for up-representation in K/L group. Edge color represents the

correlation sign: blac for negative correlation and for pos-

itive correlation. Edge thickness represents presence in public

repositories: thick means present in public repositories and thin
means not present.

known interactions have been evaluated: the percentages of overlapping are
12%, 22%, 19% respectively for control, L and K networks.

Following these steps four graphical network models have been obtained:
one network model for amyloidosis L (Figure 3.3), one network model for amy-
loidosis K (Figure 3.4) and two networks for the control group. In these two
networks from control group the node colour represents the differential analy-
sis respect to L group (Figure 3.5) and respect to K group (Figure 3.6). A visual
analysis of these networks led to identify some groups of highly interconnected
proteins belonging to a same protein families (these groups are highlighted in
Figures 3.3,3.4,3.6,3.5). The identification of these groups, such as Fibrinogen,
Laminin, Collagen, suggests that the proposed approach is able to represent
the bio-molecular mechanism acting at the basis of the investigated biological
context. All the elaborations of information integration have been executed
through Cytoscape software, an open source platform for visualizing molecu-
lar interaction networks [95]. The three networks, control, L and K, have been
analyzed with CentiScape plug-in of Cytoscape [121], to identify the most topo-
logical relevant proteins. In details the three metrics, Betwenneess, Centroid and
Stress, have been computed for all the network proteins (a description of these
metrics can be found in Chapter 2 Paragraph 2.5.1). For each metric the mean
value has been used as threshold to select the proteins more relevant, Table 3.2
shows the thresholds used for each network. For each network, just the proteins
that exceeds the thresholds for all the three metrics has been selected. Finally,
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FIGURE 3.7: Three group-specific sub-networks made of nodes
topologically relevant detected by CentiScape plug-in [121]

each found set of relevant proteins has been used to build a group-specific sub-
network (Figure 3.7 shows the three sub-networks).

TABLE 3.2: Metric thresholds

H Betwenneess Centroid Stress

Control 177 -61 3454
L 163 -53 3114
K 133 -42 180

Moreover, the intersections among the three networks have been computed
to investigate the relations in common but showing a different behaviour as re-
gards the correlation sign. In this way some interesting proteins and relations
have been selected; Figure 3.8 shows for each obtained intersection (Control-
K,Control-L and L-K) just the common relations found with a discordant sign
of correlation. These identified relations, thus the corresponding proteins, may
represent key elements for the mechanism of action of the amyloidosis. These
findings should be studied with deeper analysis or further biological experi-
ments.

These results have been provided to the biologist group of the Proteomic
and Metabolomic Laboratory of the Institute of Biomedical Technology of the
Italian Research Council (ITB-CNR). The analysis of these models led to the
identification of four relevant proteins, involved in the biological pathway of
the lipid metabolism, showing a different behaviour in the three models both
among them and with the other proteins in the networks (see Figure 3.9); for
these reasons they could play a key role in the molecular mechanism of action of
the amyloidosis disease. Finally, the first neighbors of these proteins have been
selected to investigate the behavior of these key proteins respect to the other pro-
teins in the three group-specific networks. The result is showed in Figure 3.10.
The configurations obtained seem like coloured wheels, for this reason a funny
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FIGURE 3.9: The Figure shows the Pearson correlation relations

found for the four identified proteins in the three conditions. The

edge thickness represents the correlation value found, ranging
from 0.6 to 0.9
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name was coined by biologist "Proteomics eyes", because of similarity with the
famous London eye. It is interesting to note that the selected proteins show in
many cases a very different number of neighbors in the different conditions. For
example, LIPE proteins has many connections in control group, but just three
connections in K group; this finding may suggest that the biological processes
in which this protein is involved are impaired because of the effect of amyloido-
sis. As consequence LIPE protein may have a key role for the investigated dis-
ease. These "Proteomics eyes" have been used to perform an enrichment analy-
sis to find the Reactome Pathways [171] most represented in each sub-network,
in order to find some impaired biological functions because of the amyloido-
sis disease. The analysis has been executed using ReactomeFIViz, a Cytoscape
plug-in [100]. The results show that some biological functions in Control group
are represented by a bigger set of proteins respect to the disease group, K and
L. For example in Figure 3.11 the results of the analysis for ACSL1 protein are
showed: almost the same pathways are identified in the two conditions and in-
teresting, in the Control group the pathways are represented by a bigger set of
proteins respect to L group. This situation may reflect that these functions are
impaired in the disease group, as these proteins are involved in the mechanism
of action of the pathology. Clearly, these findings are just hypothesis and should
be tested by further focused experiments; however, we can conclude that the ob-
tained models are a valuable base for improving the comprehension of the stud-
ied biological context and to infer information for generating new hypothesis.
The described method represents an attempt to build context-specific protein
networks starting from a data-set of MS proteomics data about amyloidosis dis-
ease. This elaboration has the final aim to provide an easy-to-understand model
of the phenomenon studied, in order to facilitate the work of interpretation and
understanding of the big quantity of proteomics data, in particular to support
the work of biologist or clinician to extract from these rough data-sets useful
information for biological/medical applications (the whole analysis process is
described in Figure 3.12).



56

Chapter 3. Protein Co-expression network analysis

Control L K

FIGURE 3.10: The Figure shows the first neighbors of the four
identified proteins in the three group-specific network Control
(left), L (center) and K (right)
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Reactome Pathway in Control P-value Proteins

Fatty acid, triacylglycerol, and ketone body metabolism 0,0002 HADHA,APOA1,ACSL1,FASN,GPD1,ACADVL

Triglyceride Biosynthesis 0,0004 ACSL1,FASN,GPD1

Metabolism of lipids and lipoproteins 0,0009 HADHA,APOA1,ACSL1,PLIN1,FASN,GPD1,ACADVL,FABP4,LIPE
Fatty Acyl-CoA Biosynthesis 0,0025 ACSL1,FASN

Reactome Pathway in L P-value Proteins

Fatty Acyl-CoA Biosynthesis 0,0001 ACSL1,FASN

Triglyceride Biosynthesis 0,0002 ACSL1,FASN

Fatty acid, triacylglycerol, and ketone body metabolism 0,0080 ACSL1,FASN

FIGURE 3.11: Enriched Reactome pathways for the ACSL1 Pro-
teomics eyes related to the groups Control and L.
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Chapter 4

MTGO algorithm

4.1 Introduction

The increasing amount of -omics data leads to development of models to in-
terpret and analyse them. A common approach consists in representing data
as PPI Networks. These models can be very complex and informatics tools are
needed to analyse them. In this chapter MTGO, an algorithm of module detec-
tion specific for PPI Network, will be presented. This algorithm exploits both
the network topological information and the Gene Ontology (GO) knowledge
about network proteins. MTGO output consists in a network partition, where
each obtained cluster is labelled with a specific GO term describing its biological
nature. In a single step, MTGO performs a double PPI network analysis; from
a topological perspective, through the individuation of a meaningful network
partition and, from a biological perspective, through the selection of significant
GO terms describing the biological role of network proteins.

Some preliminary results on MTGO algorithm have been presented for the
workshops NETTAB 2017 Methods, tools & platforms for Personalized Medicine in
the Big Data Era and have been published in the abstract MTopGO: a tool for
module identification in PPI Networks by following authors Danila Vella, Simone
Marini, Francesca Vitali and Riccardo Bellazzi [172]. Currently, a scientific pa-
per on MTGO algorithm, including some results of the validation analysis pre-
sented in Chapter 6, has been submitted to Scientific Reports Journal: "MTGO:
PPI network analysis via topological and functional module identification” by Danila
vella, Simone Marini, Francesca Vitali, Dario Di Silvestre, Giancarlo Mauri and

Riccardo Bellazzi.

4.2 Input and output

A PPI network can be represented as G = (V, E)), where V and E are the nodes
and edges of the network, respectively. V' is the set of proteins and it is defined
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FIGURE 4.1: Example of § elements represented in a network,
they may share more nodes or be included into a bigger category.

as V = {v1,v2,v3,...,un}, with N is the total number of proteins/nodes. E rep-
resents the set of all the relationships between network nodes and it is defined
as E = {e;j|1 < i,j < N,i # j}. Therefore, G carries the PPI topological prop-
erties. In order to integrate biological function information in the PPI Network,
we can assign GO terms to the network nodes. Given a user-provided list of GO
terms (e.g. the entire GO or a sub-list), MTGO computes the set T = (L, A),
where the p — th element is ¢, = (I}, d,), [, is the ontology term, while 9, is the
l,-associated set of network proteins. Examples of the network J,, elements and
their structure are shown in Figure 4.1. Note that if a GO term of the input list is
not associated with any network protein, MTGO automatically filters it out.

I = (G,T) is the input of the system. The goal of MTGO is to process G to
find groups of nodes sharing both the topological (V, E), and the functional (7")
properties. The result of MTGO is the final output RI" = (CF', ®T"), where C*" is
the set of the topological modules, ®F is the set of functional modules, and H is
the total number of topological and functional modules, i.e. |C| = |®| = H. The
relation between the elements of C and @ is 1:1. MTGO iteratively computes
C and @, and the pair R = (CF, ®F) is selected as final output. Note that
modules are generally called clusters in literature. Since MTGO considers two
different kinds of modules, here for clarity and simplicity we will not use the
term cluster, but topological and functional modules. The model R is a global
representation of the system in terms of modules, each one with a topological
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(CT) and a functional (®1) representation. The set of the topological modules C
is a partition of the network, defined as C = {c¢1,...,¢p, ..., cu} such that:

caNe...Ncp...Necg=0;c1Uc...Uch...Ucg=V; 4.1)

Note that by definition, each node of a partition C is uniquely assigned to
a single topological module. The set ® = {¢1,...,¢n,...,¢n}, on the other
hand, describes the functional modules involved in the network. ® is defined as
follows:

e1N@a...Npp...NegZDe1Upr...Upp...Upg CV 4.2)

Where @ C T, i.e. @ is the subset of T" selected by MTGO to describe the
biological functions the PPI network represents.

Full coverage and overlapping are considered the ideal features of module
identification algorithms [145]. MTGO grants both with its dual complemen-
tary output C' and @, respectively. In particular, the C' topological modules rep-
resent a network partition, thus granting full coverage by definition. On the
other hand, the ® functional modules overlap, allowing the assignment of a node
to two or more modules. This feature is particularly important since it reflects
the behavior of biological systems, where a protein may be involved in multiple
functions.

4.3 MTGO functions

The MTGO algorithm is based on four main functions: two local metrics Mod-
ularity Variation MV, as regards topological aspects, and Selection -, as regards
biological aspects, applied locally on each single module during the building
process; and their global counterparts Modularty (topological) and QGO (biolog-
ical), which are applied to the whole network.

4.3.1 MTGO local metrics

Function ~ is used to assign to a single topological module ¢, a pair tp =
(IB,dB), where [p is the GO term best describing the biological meaning of ¢,
and ¢p is (i) the list of network nodes associated to Iz, and (ii) the functional
module linked to c;. To explain the meaning of ¢;, and ¢, a practical example is
presented below. Let’s suppose that ¢;, = C, where C' = { K7TFU93, P20065, Q6S9C5} C
V, then a possible example of tp is [p = {GO : 1905271} and 03 = D; where D is
the set of proteins/genes associated to I = {GO : 1905271} and belonging to V,
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for example D = {G3T9E9, K7TFU93, P20065, P62327, P62328, P62329, Q659C5} C
V. The nodes in the set S = {G3T9E9, P62327, P62328, P62329}, such that
S Cc Dand S ¢ C, are distributed to other topological modules in the network.

The rationale is that nodes are added /removed to let the topological module
cp, fit its assigned functional module ¢ g, preserving the topological nature of the
module (checked with the MV function).

Selection function

We define the v function as

~(8k,) = ‘5§,h| ~ ‘6§,h nepl ekl - |5];,h N ck|
7h -
’ Ol — 1 ekl =1

(S1)

where ¢} is the h-th topological module at iteration k; 5]’;7 ;, is the p-th element
of Aﬁ and it represents a candidate functional module linked to cz ; and Aﬁ is a
subset of the set A (see Section 4.2 for A details), i.e. the GO terms associated to
the network nodes belonging to c;. The term |6];, ,Nck | represents the intersection
between the topological module ¢; and the candidate functional module. In
the formula S1, the first addend has a low value (i.e. a good value) when the
nodes belonging to 5]’;7 , and excluded from cf are few respect to the total nodes
contained in 5]’; 5~ While, the second addend has a low value (i.e. a good value)
when the nodes belonging to ¢} and excluded from 5}’;’ ,, are few respect to the
total nodes contained in cf. The value 1 at the denominator allows that the result
of each addend has as superior limit 1; the superior limit represents the worst
case when the intersection between ¢} and 5]’;7 , is just 1 (the minimum value of
intersection possible).

The aim of Selection v function is to choose a GO term (represented by 5@7 n)

as model to drive the building process of a topological module.

0 = argminy (3} ;) (S2)

k k
6p,}LEAh

The GO term assigned to a topological module should assure a good fitting,
thus proving both a high overlapping and high specificity. In general, if a GO
term has high degree of overlapping, it is very likely that the GO term is lit-
tle specific for the topological module and vice-versa. In fact, the choice of a GO
term involving all the topological module nodes could lead to select a low speci-
ficity GO term. A low specificity GO term contains many nodes not belonging
to the topological module (i.e. included in other topological modules in the net-
work). This problem is depicted in Figure 4.2. Selection  is designed, therefore,



4.3. MTGO functions 63

to find a trade off between overlapping and specificity. Figure 4.3 shows the
behavior of the Selection function.

High intersection, low GO specificity Low intersection, high GO specificity

k k k A ck
O h 8% N cf 63, O3nNCy

FIGURE 4.2: Two cases of fitting of Js to a topological module
cf. In the first case, 5’1“7 ;, has a good overlap with the topologi-
cal module, involving almost all the nodes (green nodes), but it
tags many other nodes (yellow nodes) outside of the topological
module as well. Thus, &7 ,, is not very specific to this topological

module. In the second case, 05, is very specific for the topolog-
ical module, in effect almost all 557 ;, nodes are included in it, but
it has a low overlap (green nodes).

MYV function

The main constraint of module modification is represented by the MV function.
MYV allows the topological nature of the module to be preserved. In fact, it is
possible to add a node only if, by adding it, the module topology is ameliorated.
We define the MV function as

MV (cy,vi) = q(cf + vi) — q(cf — vi) (S3)

Where ¢ (54) represents the contribute of a single topological module to
global function Modularity @ (S5); cﬁ + v; indicates the topological module in-
cluding v;, while ¢} —v; indicates the topological module without node v;. Defin-
ing ¢ as the modularity contribute of c’fL, MYV calculates the variation of ¢ due to
adding the node v;.

k dk 2
och) = i~ (525 59
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FIGURE 4.3: The Selection function operates a trade-off to asso-
ciate a J, to a topological module, in particular mediating the d,
nodes internal to the topological module vs. the external ones
(Figure 4.2). This graphic shows the behavior of the Selection
function when the size of the topological module is 10 nodes,
and the size of the ¢,s ranges from 1 to 100. Each curve shows
the function value for different values of intersection between
topological module and d,, i.e. how many nodes are internal to
module. The intersection values are showed in the right. The
Selection value decreases according to both the 4, size shrinking,
and to the intersection value increasing.

In this function, e} is the total number of edges in the h-th topological mod-
ule; dF is the sum of the node degrees of the h-th topological module; E is the
number of total edges.

4.3.2 MTGO global functions

MTGO uses two different global functions to check if the convergence is reached:
modularity (@) [64] and Quality GO (QGO). @ evaluates the global quality of
the partition C, while QGO evaluates the agreement between C' and ®. Ideally,
C and @ should overlap.

Modularity Q

Modularity () is the most popular quality function for evaluating the graph parti-
tions. The quality functions allow to assign a number to each possible partition,
to assess the goodness and identifying a subset of meaningful ones for a graph.
Its values range from —1 to 1, with positive values if there are more links within



4.4. MTGO algorithm. 65

topological modules than expected at random, and negative otherwise [156].

ach= 3 (G0 )2 s9)

AN
k

Here, C* is the k-th partition; H* is the number of topological modules; ef is the
total number of edges in the h-th topological module; d¥ is the sum of the node
degrees of the h-th topological module.

Modularity @ (S5) can also be written as the sum of q(cfl)s over the cﬁs of a
partition C*.

Quality GO

ok, Nk
QGO = Dichein 19,0 )
Neco

Here 6%} , is the functional module minimizing the Selection v function for the
topological module ¢} (see Iteration Section, step 1); and N¢o is the total number
of nodes with at least one 9, assigned. QGO evaluates the degree of overlapping
between C* and ®*.

Moreover, Modularity @) (55) can be written as the sum of q(cﬁ)s (54) over the
cFs of a partition C*.

44 MTGO algorithm.

In the following, we provide a description of MTGO. Given the input I = (G, T),
MTGO performs its tasks in three main phases: (i) initialization; (ii) iteration;
and (iii) check for convergence. MTGO whole process is summed up in Figure
44.

4.4.1 Initialization.

In the initialization phase, V and F are used to create a random partition C"
(Figure 4.5, Panel A), in which the number of topological modules is VN. T
is created from a GO term list provided by the user, according to the set V. Two
user-defined parameters, minSize and maxSize, set the minimum and maximum
size of T' modules respectively, i.e. the minimum and maximum number of

nodes in a dp,.
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FIGURE 4.4: Workflow of MTGO. Iteratively, MTGO associates
the functional module dp; optimizing ~ for each topological
module ¢;. Nodes of module ¢, are redistributed according to
the sets V;, V, and V.. Hard-to-assign nodes are at first moved
to the Temporary Node List (TNL). The TNL is emptied either
moving its nodes to existing c;s or to the newly created topo-
logical module crrn. At each iteration %, the output is a pair
(C*+1 k1) MTGO checks threshold T for steady state. If
reached, the pair C¥', &% is the final output.

4.4.2 Iteration.

MTGO follows an iterative process. At each iteration, a pair (C, ®) is computed:
C by re-assigning the nodes of the previous partition, and ® by selecting el-
ements from 7' that best describe C. Each partition C' is made of topological
modules ¢;, with h representing the index of the single topological module and
1 < h < H; (the total number of functional modules H varies at each itera-
tion). Ideally, MTGO aims to assign nodes such that topological modules coin-
cide with functional modules. In detail, the iteration phase is performed with

two main sub-processes.

Step 1.

Topological modules are randomly processed at each iteration. Each ¢, is pro-
cessed as described in Figure 4.5. Firstly, 5 is selected from the group of all
the ds associated to ¢y, i.e. the Js containing at least one node of ¢, (Figure 4.5,
Panels B and C). 6 j, is the element minimizing the Selection function v (S1), i.e.
the one minimizing the number of not included nodes in c;,Ndy,. The assignment
of dp , to ¢}, defines three node sets V,, V}, and V... Vj, is the set of nodes shared
by dpn and cy; Vj is the set of nodes belonging to ¢;, but not to g 5; V. is the
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TNL TNL

Modularity
Variation?

E

FIGURE 4.5: Iteration Phase of MTGO. Nodes are assigned to
topological modules c¢;, (Panel A). Functional modules § fit topo-
logical modules differently. For example, 61 1, 621, and 63 1, over-
lap differently with ¢;. The best functional module is d3 1, since it
minimizes the number of nodes out of the intersection between
c1 and itself. It is then selected as 6,1 (Panels B and C). Once
0p.1 is selected, the nodes of 63,1 U ¢y are grouped into three sets:
Va, Vb, and V. (Panel D). V, are the nodes shared by g ; and c¢;;
Vj are the nodes belonging to ¢; but not to d 1; V.. are the nodes
belonging to dp 1 but not to ¢;. V,, nodes stay in ¢;; V; nodes are
moved to the TNL; V. nodes either remain in their topological
module c3, or are moved to ¢;, according to the Modularity Vari-
ation function. Here, one V, node is embedded in ¢;, while the
other stay within its original topological module c3.
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set of nodes belonging to g j, but not to ¢;,. Note that V. nodes belong to other
topological modules of the partition (Figure 4.5, Panel D). From here, nodes in

cp, are re-assigned as follows:
e V, nodes remain in the topological module cy,.

e 1}, nodes are moved to the Temporary Node List (TNL). The TNL is a tem-
porary repository of nodes discarded from their original topological mod-
ules, and waiting to be re-assigned (Figure 4.5, Panel E).

e V. nodes can either stay in their original topological module ¢, (m # h)
or be assigned to ¢y, as they are biologically related to it, since they share
dB,n- A node v; € V, is moved to ¢, if it increases the global Modularity
[156] (S5 and further details in paragraph 4.3.1), according to a Modularity
Variation (M V') function (S3), and in particular if MV (cp, v;) > MV (¢, vi)
(Figure 4.6).

0
Cy, B.,h

If (MV(Cy V> MV(CV,)
ThenV, ¢C,,.V, €C,

>
»

FIGURE 4.6: V. node repositioning. The node v;, belonging to
dn and ¢, moves to ¢, topological module if MV (cp,v;) >
MV (e, ;).

Step 2.

In this step the TNL nodes are re-assigned. All the TNL nodes with at least
one associated J, Ngo, are used to create a new topological module crrn. It is
worthwhile to note that Ngo is a subset of the total nodes present in the PPI
Network, in fact some nodes may not be covered by any GO term. While, each
node v; without any associated ¢ is assigned to the existing topological module
optimizing the MV function (Figure 4.7). crry is integrated into the network
through the repetition of Step 1.

At the end of the Iteration phase, MTGO outputs the selected functional
modules dp s, along with their linked Ip s, grouped into ®, and the newly
computed topological modules cjs, grouped into C.
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Note that a detailed version of the MTGO Iteration phase is provided in the

Appendix Section Al.
MV(C,)=0.3
TNL
® TLN
®
i -ah
® MV(C,)=0.11
o
® ‘ /
® | - . .
°
MV(C;)=0.002

FIGURE 4.7: Step 2, the TNL is emptied. The nodes with at least

one GO term (N¢o), the first TNL five nodes, are grouped to gen-

erate a new topological module c¢rry. Nodes without any GO

term, the last three TNL nodes, are assigned to the topological

module that maximizes the A/ V. In this example, the red node is

assigned to the topological module ¢;, showing the max value of
MV.

4.4.3 Check for convergence.

Two different functions are used to check if the convergence is reached: Modu-
larity (@) (S5) [64] and Quality GO (QGO) (S6). @Q evaluates the global quality
of the partition C, while QGO evaluates the agreement between C' and ®. Set
a threshold 7', the steady state is reached when |Q**! — Q¥| < T and |QGO* —
QGO*~1| < T. When this condition is verified, the network partition configura-
tion is stable, i.e. across next iterations the module composition aren’t undergo
to significant changes; both from a topological points of view (checked with @
function), and from a biological point of view (checked with QGO function).
The solution R = (CF, ®%) is taken as the one with maximum value of QGO.
The set CF is the partition maximizing QGO, while the set " is the set of all
pairs t5;, = (05,15 ;) assigned for each ¢; topological module. Note that in
our experiments, we set T' = 104,

4.4.4 Parameters

The parameter minSize ranges from 2 to 15 and is used to limit the minimum
number of nodes in modules. The parameter maxSize ranges from 30 to 300
and is used to limit the maximum number of nodes in modules. Tuning these



70 Chapter 4. MTGO algorithm

parameters is useful to adjust the final output in accordance to the needs of a
specific study. For example, if the user is interested in identifying a specific
process or small protein complexes, minSize and maxSize should be set to small
values (e.g. 2 and 5). In order to identify the general/high level biological pro-
cesses involved in the network, on the other hand, the user should set minSize
and maxSize to high values (e.g. 10 and 200). Figure 4.8 shows an example of
how different results can be obtained from the same network by changing the

parameters.
A
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FIGURE 4.8: Different values of parameters MaxSize and MinSize
lead to different results.

4.4.5 Density optimization result

MTGO provides also an alternative output Rp based on density optimization,
to be used in case of poorly GO-enriched networks (see MTGO User Manual).
For example, when the GO term list is very poor and the node percentage cov-
ered by the GO terms are under 50%. The solution Rp = (CP, ®P) is taken as
the one with maximum value of mean density over topological modules. For
this solution, the set @7 is scarce in term of biological quality, while the set C”

preserves its quality in term of topological properties.
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Chapter 5

MTGO: use and applications

5.1 Introduction

In the context of -omics approaches, Next Generation Sequencing instrument
[173] and mass spectrometry-based proteomic technologies [174] are even more
increasing amount and quality of data produced providing a good snapshot of
the investigated systems. Due to the big mass of data produced per experiment,
the challenge for biologists and bio-informaticians is to decipher the molecu-
lar mechanisms underlying the emergent phenotypes. For this purpose, both
experimental transcript and protein levels are often combined with PPI mod-
els. Thus, computational tools dedicated to data processing and data mining are
key to improve their functional evaluation and to facilitate their interpretation.
MTGO tool belongs to this category; it provides the possibility to process a pro-
tein network model in order to extract useful information and elucidating the
protein role respect to the biological system in which they are involved.

In this chapter, the main characteristics of the tool will be described in order
to show how it can be a applied to a network model to obtain a graph clusteri-
zation and a biological description of the protein modules involved. Moreover,
two practical examples of MTGO application will be presented.

5.2 MTGO software version

MTGO (Module detection via Topological information and Gene Ontology (GO)
knowledge) is an algorithm of module detection in PPI networks. The module
search is based on network topology and knowledge on the biological role of
proteins. MTGO employs repeated partitions of the network; at each iteration, a
new partition is created starting from the previous one, reshaping the modules
on the basis of the GO annotations and the graph modularity. In this way the
partition is learned through a process of optimization taking into account both
the structure of the network and its biological nature. MTGO can be used to
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analyze a PPI network to elucidate the biological processes involving the phe-
nomenon represented by the network. In particular, the import of MTGO re-
sult in Cytoscape [175] allows to re-arrange a PPI network grouping nodes into
functional modules. A software version of MTGO is available freely for non-
commercial purposes at https://gitlab.com/d1vella/MTGO; the software has
been implemented using the Java Programming Language. In this section the
input and output files will be described in detail to show how to use in practical
the MTGO software version.

5.2.1 Input files
Two are the input files of MTGO software version:

e Edge: this file contains the edges of the PPI Network. The file contains two

columns of nodes, each row indicates an edge.

e GO: this file contains the Gene Ontology (GO) terms. The first column is
a list of proteins and the second a list of Gene Ontology terms. Each row
indicates an association between a protein and a GO term. The protein
list contains the proteins of the PPI network. In the best case all the pro-
teins of the PPI network are contained in the file; anyway MTGO is able
to work even if some network proteins aren’t associated to any GO term.
The number of proteins associated to one or more GO terms is indicated in
the output file Single iteration properties (described in the next paragraph)
in the column NGO. If the protein list of the file GO contains proteins not
included in the PPI network, they are ignored by MTGO.

YBR109C YMR109MW YHR@47C GO:0005886
YBR109C YMLOS7W YHR@47C GO:0070006
YBR109C YPR171M YHR@47C GO:0043171
YBR109C YOR326M YHR@47C GO:0008270
YBR130C YKL130C YHR@47C GO:0042277
YBR130C YGL106HW YKL106W GO:0006533
YFL@39C YGL150C YKL106W GO:0042802
Edge GO

FIGURE 5.1: Example of input data: Edge and GO files.

The GO file can be build in two different ways:

e downloading the annotation file directly from the Gene Ontology Consor-
tium website at link http:/ / geneontology.org/page /download-annotations,
selecting the corresponding organism of the input PPI network [54]


https://gitlab.com/d1vella/MTGO
http://geneontology.org/page/download-annotations
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e using Bingo plug-in of Cytoscape [176] to select the list of Gene Ontology
terms enriched in the network.

The first method consists in retrieving the whole list of GO terms linked to
a given organism, this list contains a big quantity of terms. The second method
allow to obtain a pre-selected list of GO terms, thus a smaller list respect to the
first method. These terms selected by Bingo are specific for the PPI network;
for this reason, this further step of analyses facilitates the MTGO research of the
best-fitting GO term set for the network model, allowing to obtain final modules

of better quality.

5.2.2 Output files

MTGO software version returns six output files, namely Modules_Best_QGO,
Nodes_Best_QGO, Modules_Best_Density, Nodes_Best_Density, Properties and Sin-

gle_iteration_properties. The two main files are:
o Modules_Best_QGO, where each row represents a module:

— "Modules phi: nodes": the nodes of the functional module dy, of the
set OF

— "Cluster C: nodes": the nodes of the topological module ¢}, of the set

CF associated to the functional module 8},

- "Gene Ontology Term": the GO term [}, (corresponding to the func-
tional module dy,) attached to the topological module ¢,

e Nodes_Best_QGO, this file contains two columns, the first one is the list of
all proteins in the PPI network, the second one indicates the GO terms (I,
from the set ®F) attached to the topological modules of the set CF. Each
row contains a protein belonging to a topological module ¢, and the GO
term [}, associated to c¢y,.

For further explanations of the elements named in this files (d, ¢y, etc..) see
Chapter 4. These two files allow to import the MTGO results into Cytoscape.
Nodes_Best_QGO can be used to obtain the configuration showed in Figure 5.3,
through the import of the GO terms as node attribute of the PPI Network and
using the Cytoscape function "Group Attribute Layout".

The user can use this configuration and the information contained in Mod-
ules_Best_QGO file to obtain a final result where each module is attached to its
GO description. The CF topological modules cover all the PPI network and can
be used as a network partition, while the ®F functional modules don’t cover all
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A

Index

Modules Phi: nodes Clusters C: nodes
333 YBLO26W,YBR152W,YCR020C-A,' YBL026W,YBL074C,YBRO55C,YBR GO:0000398
318 YBR251W,YGR084C,YKL155C,YM YBLOSOW,YBR251W,YCR0O89W,Y[ GO:0005763
106 YBLO41W,YBLOS8W,YBR105C,YCI YBLO20W,YBLO41W,YBLOS8W,YB GO:0043161
325 YDR156W,YHR143W-A,YJL148W, YDL042C,YDL150W,YDR156W,YH GO:0001054
342 YDL130W,YDRO87C,YDR496C,YEF YBR150C,YDL130W,YDL168W,YD G0:0030687
116 YBLO93C,YER022W,YHR058C,YNL YBLO82C,YBL093C,YBR193C,YBRZ GO:0070847
144 YDLOO7W,YDR394W,YILO07C,YKL YBR168W,YDLOO7W,YDL036C,YD GO:0008540

93 YBR154C,YDL108W,YDR145W,YC YBLOSSW,YBR154C,YBR259W,YD GO:0006366
322 YBR268W,YCR071C,YDR116C,YDI YBR268W,YCR003W,YCRO71C,YC GO:0005762
125 YAL021C,YDL0O84W,YFRO37C,YGL YCL0O44C,YDL179W,YFR037C,YGL GO:0006368

42 YBRO67C,YBR171W,YDR164C,YDI YAL02SC,YBR067C,YBR109C,YBR: GO:0071944
209 YGR095C,YIL079C,YNL232W,YOL YDL111C,YGR095C,YGR158C,YHR GO:0071038

12 YBLO84C,YDL156W,YGR142W,YH YBLO84C,YDL156W,YDL235C,YER GO:0034399

Gene Ontology term

B

Nodes  Nodes Gene Ontology

YBLO26W GO:0000338
YBLO74C  GO:0000398
YBRO55C G0:0000338
YBR119W GO0:0000398
YBR152W GO:0000398
'YCR020C-/ GO:0000398
YCRO63W GO:0000338
YDLO30W GO:0000398
YDLO85C-£G0:0000398
YDL098C GO0:0000398
YDR235W G0:0000338
YDR240C G0:0000398
YDR378C GO:0000398

FIGURE 5.2: Example of output files: (A) Modules_Best_QGO
and (B) Nodes_Best_QGO.

the network but identify the functional units acting at the base of the biological

system. Furthermore, they can overlap unlike topological modules. Using this

two files a final network model can be obtained to improve the interpretation of

the biological phenomenon described by PPI network (see Figure 5.4 and Figure

5.7 in the next paragraph). Other two files are provided also, containing the final

result computed at the iteration corresponding to the Mean Density maximum

value of the topological modules: Nodes_Best_Density and Modules_Best_Density.
This result can be used in substitution to the "Best_QGO" result when the GO
terms, provided as input, have a low quality or cover a little part of network

nodes (low NGO). In effect, this result relies on much more the topological prop-

erties of the network than the Gene Ontology (see Paragraph 2.3.5 in Chapter 4
for further details).

Finally, there are two other files:

e Properties contains some general properties of the two final results “Best_QGO”
and “Best_Density”:

- "Modularity": modularity of the partition CF
- "QGO": QGO computed on the set CF and oF
- "Density": mean Density of topological modules of the set CT
o Single iteration properties shows the same three values of the file Properties
(Modularity, QGO, Cluster Mean Density) and the value NGO (the number

of network proteins associated at least to one GO term) computed at each

iteration.
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FIGURE 5.3: Import of the MTGO results in Cytoscape, through Nodes_Best_QGO file.
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5.3 Two case studies

5.3.1 Myocardial infarction network model

To show an application of MTGO on real data, an undirected PPI network was
used; this model was obtained by analyzing the proteomics of swine heart tis-
sues affected by myocardial infarction (MI) and treated by human mesenchymal
stem cells [177]. The network is made of 502 nodes and 4316 edges consisting
in physical PPIs and it is represented in Figure 5.4, panel A. Although it may be
considered a network of medium size, its structure is too complex to be man-
ually interpreted and the use of tools like MTGO may be of great support to
tease out the main hidden biological functions and processes. The parameter
value used are minSize=5, maxSize=30. The input list consists in 1256 GO term:s,
belonging to the GO class Biological Processes. The obtained results clearly out-
line well known heart physiology processes, including ATP synthesis coupled
to electron transport, muscle system process, regulation of cell adhesion or lipid
oxidation, and glucose metabolic process, all in agreement with the investigated
samples [177]. Moreover, many of these processes are associated also to well
defined protein groups (ribosomal complex, heterogeneous nuclear ribonucleo-
protein complex, myosin complex, ATP synthase complex, Proteasome complex,
T-complex proteins, NADH dehydrogenase complex) showing the attitude of
MTGO to correctly identify molecular complexes (Figures 5.4 panel B; Appendix
Section, Table C). The overlapping of functional modules is achieved via GO
terms attribution, i.e. some nodes belong to more than one functional module
(Figure 5.6 depicts the network without PPIs, with nodes representing proteins
and GO terms connected by belongs to edges). The GO terms found are quite
general, if the user is interested in conducting a deeper analysis a lower value
of minSize, for example 2, could help in retrieving more specific GO terms to de-
scribe the PPI Network. Following the application of MTGO algorithm, we used
Cytoscape [175] to split the network nodes in well defined functional modules
(Figure 5.4, panel B); this structure may be more easily interpreted by biologists
and further improve identification of processes and functions modulated in the
considered phenotypes [177].
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Response to metal ion

- oo

FIGURE 5.5: Detail of the network represented in Figure 5.4.
Small nodes represent proteins excluded from the GO term as-
signed to the topological module. Big nodes (both circles and
rectangles) indicate proteins associate with the same GO term
assigned to topological module, while rectangles indicate nodes
assigned to more than one functional modules.

FIGURE 5.6: Functional modules identified by MTGO for the

myocardial infarction PPI network. Here, links indicate protein

membership to one or more functional modules, identified by the
GO terms. PPI edges are not represented in this figure.
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5.3.2 PPI Network model from String database

A second example of MTGO application regards a human PPI Network built
with String database[92]. In this case, the network was built using as seed 54
genes mutated in acute myeloid leukemia [178] and retrieving PPIs from String
database, both known interactions (curated databases and experimentally de-
termined) and predicted interactions (gene fusion, gene neighborhood, gene co-
occurrence). Some other interacting nodes were added to the seeds from String
database to reach a final network of 78 nodes and 545 edges. The added nodes
are retrieved automatically by String on-line application, among them inter-
acting with the 54 seed nodes through known (curated databases and experi-
mentally determined) and predicted (gene fusion, gene neighborhood, gene co-
occurrence) relations. The list of GO terms includes those related to the Human
organism and tagged with Experimental evidence and/or computational anal-
ysis evidence Score, for a total of 7909 terms [179]. The parameter value used
are minSize=2, maxSize=30. The original PPI network and the MTGO output are
showed in Figure 5.7. To evaluate the MTGO ability to detect a set of GO terms

Transcription factor activity

sequence-specific DNA U12-type spliceosomal
binding Nucleoplasm complex
- b 4
- i

Cytoplasm RNA Binding

FIGURE 5.7: Example of MTGO applied on a Human PPI net-
work. The algorithm produces a partition of 5 clusters, each one
tagged with a specific GO term.

able to describe the network in terms of biological functions, the Fisher’s exact
test has been used to compute a p-value for each module and its corresponding
GO term; the found p-values are all significant, under the 0.05 threshold (see
Table 5.8). The details about the procedure of Fisher test application is reported
in Paragraph 6.3.1. These results have been presented for the workshops NET-
TAB 2017 Methods, tools & platforms for Personalized Medicine in the Big Data Era
and have been published in the abstract MTopGO: a tool for module identification in
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GOterm Description P-value
1 GO:0005737 Cytoplasm 0.005033703
2 GO:0044822 RNA Binding 1.12€-12
3 G0O:0005654 Nucleoplasm 0.000229789
4 G0O:0003700 Transcription factor activity 0.003453057
5 GO:0005689 U12-type complex 6.17E-08

FIGURE 5.8: The p-values computed by Fisher’s exact test of the
GO terms attached by MTGO to each module.

PPI Networks by following authors Danila Vella, Simone Marini, Francesca Vitali
and Riccardo Bellazzi [172].
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Chapter 6

Validation

6.1 Introduction

To validate MTGO algorithm, a standard approach has been followed. In the
same way as similar algorithms [60, 61, 153], MTGO has been compared with
other state-of-the-art algorithms, including recent GO-based ones. Three differ-
ent gold-standard protein complex sets have been used as target sets to compare
the predicted modules to each algorithm. The algorithms were tested on four
different PPI networks, from Saccharomyces Cerevisiae and Human organisms.
Several metrics, presented in literature [153, 180, 181], were used to compare
the target sets with the predicted modules, including Accuracy, Maximum Match-
ing Ratio, F-Measure and Composite Score. The biological quality of the predicted
modules was measured through GO Term Finder, a software used to perform
GO enrichment analysis [65]; this approach has been used for the evaluation of
similar algorithms [61, 158].

AS MTGO has the unique characteristic of providing a set of GO terms de-
scribing the PPI Network, a statistical approach has been designed to evaluate
if this set of GO terms well explains the biological context represented by the
network. For this reason, a statistical test was used in order to compute a p-
value for each GO term provided by MTGO, so as to verify that each GO term
is statistically significant compared to the protein set of the cluster to which it is
associated with.

Furthermore, since a weak point in state-of-the-art algorithms is the detec-
tion of small or sparse modules, MTGO ability to detect these specific sets of
modules was evaluated in detail. Finally, the MTGO run time has been evalu-
ated respect to networks of different sizes. Most part of validation analysis has
been carried out in collaboration with Ing. Simone Marini (PhD in Bioingeneer-

ing).
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6.2 Data collection for seven scenarios

To evaluate the performance of MTGO, four real PPI networks have been se-
lected, including Krogan PPI Network [182], Gavin PPI Network [183], Collins
PPI Network [184] and DIP Hsapi Network [185]. The first three networks were
built using yeast Saccharomyces Cerevisiae data, while DIP Hsapi network was
built with Human data. Although the three networks of Saccharomyces Cerevisiae
are in part overlapping, as they come from the same organism, it is important to
test all of them because they are obtained with different experimental processes.
In fact, the presence of false-positive edges and noise in a network is strictly de-
pendent upon the experiment used to detect PPI, thus networks characterized
by different noise sources should be used to test the robustness of module iden-
tification algorithms. Table 6.1 shows the main characteristics of each network,

including the number of nodes covered by GO terms, used as input for MTGO.
TABLE 6.1: PPI network characteristics.

H Nodes GO-covered nodes Edges

Krogan 2709 2537 7123
Gavin 1856 1778 7669
Collins 1622 1596 907
Human 2734 2474 4058

This functional information has been retrieved downloading the annotation
files submitted by GO Consortium members related to Saccharomyces Cerevisiae
and Homo Sapiens. The GO terms used as input for MTGO include all the three
categories of Cellular Component, Biological Process and Molecular Function
(see Paragraph 2.2 in Chapter 2 for GO details). On the basis of reliability,
only the GO terms tagged with an Experimental evidence and/or computa-
tional analysis evidence Score have been retrieved [54]. To evaluate the pre-
dicted modules with MTGO, gold standard protein complexes have been used
as target sets. In fact, a protein complex is an aggregate of multiple proteins that
interact with each other and perform certain biological activities [186]. This def-
inition is conceptually very similar to the definition of a functional module. In
detail, the protein complex sets used are: CYC2008 [187] and the union of MIPS
[188] and SGD [189], for Saccharomyces Cerevisine PPI networks; and CORUM
[190] for Human PPI network. Protein complexes made of just one protein have
been excluded. The number of curated complexes in CYC2008, MIPS+SGD and
CORUM are 408, 509 and 1765, respectively. This led to scenarios, i.e. six for
Saccharomyces Cerevisine networks (Krogan, Gavin and Collins) against CYC2008
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and MIPS+SGD target sets; and one for Human network against CORUM target
set.

6.2.1 Q and QGO trends

Figure 6.1 shows the trend of the functions ) and QGO (see Paragraph 4.2.2 in
Chapter 4 for function details). These two functions evaluate the global topo-
logical and functional properties of each partition. Each red line in Figure 6.1
depicts the value of @Q computed with the fast greedy modularity optimization
algorithm [191]. To compute this value, an implementation of the fast-greedy
algorithm, provided by the package iGraph of the R Software, has been used.
The red line can be considered the reference value of the maximum reachable
modularity for each network. In the initial iterations the modularity shows a
fast increment and it almost reaches its maximum value, while QGO shows a
slower, steady increment. After reaching its peak, the modularity decreases,
allowing a re-arrangement of the partition in order to improve the GO qual-
ity of the single topological modules (as supported by the slowly increment of
global QGO). However, reaching the last iteration, when QGO reaches its maxi-
mum value, () remains positive (i.e. GO quality increases at the expenses of the
best modularity, but without cripple the topological properties of the partition).
MTGO provides also an alternative model Rp based on density optimization, to
be used in case of poorly GO-enriched networks (see Paragraph 4.3.5 in Chapter
4 for further details).
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6.3 Comparison with other approaches

To evaluate the effectiveness of MTGO, results were compared with state-of-
the-art algorithms. In particular, MTGO is compared with ClusterOne [153],
MCODE [150], COACH [98], CFinder [149], Markov Cluster (MCL) [192] and
DCAFP [61] and GMFTP [60]. While the first five algorithms are based only on
topological properties, DCAFP and GMFTP, similarly to MTGO, exploit func-
tional GO information as well. All the algorithms were run with default param-
eters, with the exception of the k parameter in CFinder, which has been chosen
as the best among k = 4, 5 or 6 for each run. Note that this range is considered
ideal for biological networks, as it is advised in literature [153]. MTGO param-
eters were set to default for Human network (minSize=2 and maxSize=100); for
Saccharomyces Cerevisiae, on the other hand, maxSize was set to 80, according to
the size of the biggest target complex [187] (see Paragraph 4.3.4 in Chapter 4 for
parameters details).

Three independent measures were used to compare predicted complexes
with the target sets: Recall, Accuracy [157] and Maximum Matching Ratio (MMR)
[153]. To have a global vision another metric was used, the Composite Score, a
comprehensive measure specifically introduced to assess module identification
algorithms [153, 193]. The Composite Score is calculated as the sum of Recall,
Accuracy and MMR. Recall is the fraction of true complexes matched by at least
one predicted complex over the overlapping score (OS) [181], defined as

_|[TCnPCP?

(S5)
where TC stands for Target Complex (module), and PC Predicted Complex (mod-
ule). For this work, we set the OS threshold to 0.5. Recall is calculated as

Norc (S6)
TC
where Norc = {C| C € TC, 3C € PC, OS > 0.5} is the set of TC with
0S > 0.5.
Accuracy is defined as

Recall =

Accuracy = \/Coverage x PPV (57)

Where Coverage (also called Sensitivity) and Positive Predictive Value (PPV)

are:
>, max; |[TC' N PC|

2. TC

(S8)

Coverage =
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>_jmax; [TC N PC|
> 2| TCNPC

where i indicates the i-th TC and j the j-th PC [181]. The Figure 6.3 shows a

comparison of Coverage and PPV in all seven scenarios.

PPV = (89)

MMR has been introduced as a specific measure for module identification al-
gorithms [153]. It is based on the maximal one-to-one mapping between PC and
TC'. It was proposed to overcome an Accuracy-related issue in the specific case
of module identification algorithms, i.e. the misleading role of Positive Predictive
Value if some proteins in a 7'C are present in either more than one PC or in none.
The MMR is based on maximal matching in a bipartite graph, in which the two
sets of nodes represent the reference and predicted complexes, respectively, and
an edge connecting a reference complex with a predicted one is weighted by the
overlapping score (OS) between the two. To obtain the maximum weighted bi-
partite graph, a subset of edges were chosen, such that the sum of the weights
of such edges was maximal. The MMR between the predicted and the reference
complex set is then given by the total weight of the selected edges, divided by
the number of reference complexes. Moreover, Recall has been used to compute
another metric, the F-measure, defined as follow:

2 % Precision * Recall
B —measure = Precision + Recall (510)

where Precision is defined as:

Nopc
Npc

Precision = (511)
where Nopc = {C|C € PC,3C € TC, OS > 0.5} is the set of PC with OS > 0.5.
The Figure 6.4 shows a comparison of Precision and Recall in all seven scenarios.
While, the Figure 6.5 shows a comparison of Accuracy and F-measure in all seven
scenarios. The overall performance of MTGO and its competing algorithms on
the seven scenarios is depicted in Figure 6.2. These results, along with other
computed measures, including F-measure, Precision, Coverage, Positive Predictive
Value, Nopc, |PC|, Norc and |T'C| are reported in Appendix A Table A. Note
that the performance of GMFTP on the Human network (Fig. 6.2, Panel B) is not
recorded since the algorithm did not converge after multiple attempts.

MTGO showed the best overall performance in six out of seven scenarios
(best Composite Score, Recall and MMR). The value of Recall is particularly good,
for example in the Human scenario, where Recall is doubled compared to the
second best algorithm (MTGO 0.12, MCL 0.06; MTGO and MCL unveil 203 vs
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111 modules respectively). Reaching a high Recall is one of the major challenges
for module identification algorithms [59]. The worst performance of MTGO is
on the Collins vs. CYC2008 scenario, where nonetheless it reaches the third
best Composite Score (MTGO 1.31 vs ClusterONE 1.42). Interestingly, in the close
scenario Collins vs. MIPS+SGD, where protein complexes are different, MTGO
shows the best Composite Score (MTGO 1.18 vs ClusterONE 1.16).
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6.3.1 GO term analysis

In the literature, given a chosen p-value as threshold, a predicted module is
defined as functionally significant if at least one GO term is significantly en-
riched (i.e. associated with a p-value lower than the threshold) in the module
proteins [61]. For the protein complexes predicted in each network, we used
GOTermFinder [65] to perform the function enrichment test with 10~ and 1010
p-value thresholds. We compared our results with DCAFP and GMFTP, both
GO-based as MTGO. The results are reported in Figure 6.6 and in Appendix A
Table B. Overall, by considering the sum of the enriched terms in all the three
GO ontologies, MTGO outperforms DCAFP and GMFTP in all the networks
but Collins (where DCAFP gets the best performance, consistently with the pre-
viously discussed Composite Score results). Nonetheless, MTGO outperforms
DCAFP and GMFTP on the Biological Process related GOs in all the four net-
works (Supplementary Table S2 and Figure 6.6). Furthermore, the superiority
of MTGO is clear in the Human network, where MTGO is able to retrieve a
particularly high percentage of modules with at least one significant GO term.
Compared to DCAFP for p-values of 10 and 107° respectively, MTGO retrieves
91% (vs 62%) and 55% (vs 42%) for Biological Process-related GO terms; 65% (vs
57%) and 27% (vs 15%) for Cellular Component-related GO terms; 81% (vs 43%)
and 28% (vs 8%) for Molecular Function-related GO terms. Note that GMFTP
results are not shown for the Human network as the algorithm failed to provide
a viable result after multiple attempts.

To further validate our results, we measured the p-values (Fisher’s exact test)
of the GO terms related to each topological module of each partition. In detail,
the Fisher test has been used to verify if the GO term assigned by MTGO to a
cluster, i.e. as set of genes/proteins, is over-represented in the set. In order to
perform a Fisher test, we need the following information:

e Class: the GO term we want to consider for the enrichment analysis; in this
case the class is the GO term assigned to a cluster by MTGO

e Background: list of proteins; in this case the background is the full list of
proteins present in the PPI network

o Test set: set of proteins on which to perform enrichment analysis; in this
case the test set is the proteins set of a cluster identified by MTGO

On the base of these sets the contingency table and the corresponding p-value
is computed. For p-value computation, the function fisher.test of R software has
been used. To clarify, an example is described below. Let’s suppose MTGO pre-
dicts a cluster of 3 proteins and the assigned term is GO:0000733; the Class is
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the GO term GO:0000733; the Background is the set of 1622 proteins contained
in PPI network, and the test set are the 3 proteins of the cluster. An example of
contingency table is presented in table 6.2 The p-value computed is 1.183264¢ —

TABLE 6.2: Contingency table

| GO:0000733 not GO:0000733
3 0
6 1613

Into cluster
Not into cluster

07; this value means that the probability of randomly selecting from the Back-
ground a set of 1622 proteins, containing one or more proteins associated with
the GO:0000733 term is lower than 1.183264e — 07. Since the analysis involves
multiple testings at the same time, in this case the number of clusters, thus mul-
tiple statistical comparisons need p-value adjustments. For this reason, the Bon-
ferroni correction has been applied. Bonferroni correction consists in multiply-
ing the p-value by the number of tested hypothesis, in this case the number of
clusters. This correction has the limit to be very conservative, thus there is an
high risk of introducing false negatives. Let’s suppose the total clusters are 353,
then the final p-value is 4.176e — 05. Following this procedure for all clusters,
we found the great majority of GO terms (81% to 96% in all four networks) to
be significant (< 0.001) and about a half (39% to 59%) to be highly significant
(10°19). These results are reported in Table 6.3.

TABLE 6.3: Percentage of significant attached GO terms

| 10° 1070
Krogan || 96% 49%
Gavin 89%  44%
Collins || 81% 39%
Human || 94% 59%
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GO Term Enrichment (% clusters) M P-value < E-3
100 M P-value < E-10
% DCAFP
B GMFTP
80
B MTGO
70
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PPP ccc FFF PPP ccc FFF PPP ccc FFF PPP ccc FFF
Krogan Collins Gavin Human

FIGURE 6.6: GO term enrichment. The histogram shows the per-
centage of predicted clusters, from each algorithm for the net-
works Krogan, Gavin, Collins, and Human, enriched with GO
terms with a p-value under the threshold of 10 and 10°1°. The P,
C, F labels indicate respectively the three classes of GO: Biologi-
cal processes, Cellular Component, and Molecular Function.

6.3.2 Small and Sparse complexes

An open problem in module identification algorithm is the detection of small
and sparse complexes. While small complexes are defined has having three
nodes or less [160], there is no clear consensus about how to define sparse ones
[59, 145, 160]. We defined four additional scenarios (one per network) to assess
both small and sparse module detection. As regards sparse complexes, four dif-
ferent target sets have been created for each network, Krogan, Collins, Gavin
and Human. In fact, the same target complex shows different density values
according the network considered. Each target set has been created selecting
from the whole target set (CYC2008 for Krogan, Collins, Gavin; and CORUM
for Human) the subset of complexes with density lower than 0.5 with respect
to the network considered. (For example, for the Krogan network the target set
of sparse complexes is made of the CYC2008 complex subset showing a density
of less than 0.5 with respect to the krogan network). As regards small com-
plexes, two target sets were assembled by considering complexes made of three
nodes or less were considered from CYC2008 and CORUM sets. Predicted com-
plexes were compared to target sets using the overlapping score (see formula
S5). Figure 6.7 shows results for small and sparse complex detection, while Ta-
ble 6.4 shows the number of complexes in each target set built specifically for
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TABLE 6.4: Complex number inside each target set.

| Small complexes Sparse complexes
Krogan vs CYC2008 259 233
Gavin vs CYC2008 259 244
Collins vs CYC2008 259 217
Human vs CORUM 1046 1516

By optimizing a trade-off between GO terms and topology, MTGO is ex-

tremely accurate in unveiling small and/or sparse functional modules, often

missed by other algorithms. We found MTGO performance to be consistent

with the previous measure, i.e. MTGO outperforms all other algorithms in all

scenarios, except in the Collins network. The performances on Human scenarios

are remarkably high, especially in detecting sparse modules, MTGO correctly
identifies 135 modules, while the second best MCL only 44, less than one third

(Figure 6.7).
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6.3.3 Run time evaluation

As regards the time, MTGO has been designed for networks of little/middle
size, about five hundreds nodes. As MTGO aim is that to identify the biological
pathways or cellular functions acting in a specific context (cells or tissues un-
der pathological /physiological conditions), the target PPI networks for MTGO
involve just the proteins identified in specific samples. This type of network
generally collects about a few hundred of nodes; for example the PPI network
obtained by Brambilla et al. is made of 584 nodes and 5246 edges [52], that used
by MacDonald et al. contains 155 nodes [44] and that used by Wu et al. contains
37 nodes and 322 interactions [43].

For MTGO validation, in order to follow standard approaches [60, 61, 153],
the networks used (Gavin, Krogan, Collins and Human network described in
previous paragraphs) are very big. In fact, these networks are interactome, i.e.
networks collecting all the interactions of an entire biological system, such as an
organism. For this reason, MTGO in the four analyzed networks results very
slow. For example, Table 6.5 shows the run time of all considered algorithms
for the Gavin network, that is made of 1856 nodes and 7669 edges. It is possible
to observe that the algorithms are very fast (more or less some seconds), except
for those including GO information. Evidently, the inclusion of further infor-
mation lengthens the time of processing of the input data. Moreover, GMFTP
and MTGO are the slowest, this can be due to the fact that the two algorithms
are both based on iterative processes. In details, for Gavin network GMFTP exe-
cuted 100 iterations (according default parameters), while MTGO executed 355

iterations.

TABLE 6.5: Time for Gavin Network

Gavin Network (sec)

MTGO 10237
ClusterOne <1

GMFTP 51371

MCL <1

MCODE 3

DCAFP 233
COACH 4

CFinder 2

Table 6.6 shows MTGO computation time for networks with different num-
ber of nodes and edges. In Leukemia and Myocardal networks (described in
Chapter 4), MTGO shows a very short processing time. In Test Network, MTGO
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TABLE 6.6: MTGO run time

| Nodes Edges Time (sec)

Leukemia Network 78 545 1
Test Network 446 24567 120
Myocardial Network || 502 4316 30
Krogan Network 2709 7123 54000

shows a relatively short time, considering that the network has a very high num-
ber of edges (24567). Finally, in Krogan network MTGO is very slow. These re-
sults underline MTGO run time is robust against the increase of the edges, but
not to the increase of nodes.

As the main part of this PhD research has been devoted to development
and validation of the novel algorithm, and since MTGO shows a good run time
for its PPI target networks (middle size), the time aspect has been relatively
little considered. A deeper analysis about time should be executed, in order to
evaluate the limits of the algorithm and to improve the processing time where
possible. For example, a possible way to reduce the run time is using as initial
configuration not a random partition but a computed ones, which takes into
account the GO. These investigations will be the main objective of the future
developments on MTGO algorithm.
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Chapter 7
Stability analysis

7.1 Introduction

One of the most popular approaches for PPI Network analysis is module de-
tection, a challenging task faced by many algorithms [17, 36]. A PPI network
module (also called cluster) is represented by a group of proteins with a spe-
cific biological role, i.e. they work together to perform a specific cellular pro-
cess, along with particular topological features, i.e. they share lot of connections
[145]. Because of the complexity of biological systems, there are likely to be
many valid clustering results, each revealing some aspect of underlying biologi-
cal behavior. Therefore, clusters must be evaluated both for biological relevance
and stability. Understanding and accounting for the stability of the clusters with
respect to the presence of noise and uncertainty in the data is an important fac-
tor when evaluating an algorithm specific for PPI Networks [194]. In fact, the in-
put graphs are obtained from high-throughput methods (e.g. yeast-two-hybrid,
etc..) for detecting pairwise protein-protein interactions (PPIs), which are gen-
erally noisy with high false positive and false negative rates [177]. Moreover
many module detection algorithms rely on a random component, thus stability
of the results across different runs is considered to be an asset of the algorithm
[195]. As MTGO is a non-deterministic algorithm, to evaluate its performance
two different stability analyses have been executed. Firstly, one to evaluate the
stability of the result over many runs starting from a same input, to consider
the range of variability introduced by the random components of the algorithm;
secondly, one to evaluate the robustness of the output clusters when the input
is affected by noise and uncertainty. For both analyses, module biological rel-
evance has been taken into account. The following work has been carried out
in the Department of Computer Science at Brunel Univesity in London in col-
laboration with the Senior Lecturer Allan Tucker. Part of these results has been
presented for the workshops NETTAB 2017 Methods, tools & platforms for Per-
sonalized Medicine in the Big Data Era and have been published in the abstract
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Stability analysis of MTopGO for module identification in PPI networks by following
authors Danila Vella, Allan Tucker and Riccardo Bellazzi [196].

7.2 MTGO stability analysis

For the first analysis a PPI Network is used from human proteins [177] with 502
proteins and 4316 edges. MTGO has been run 500 times over the same input
network, using the same parameters (default) and the same GO list (7909 in to-
tal, including MF, CC and BP classes). The 500 clusterings obtained have been
analyzed to evaluate their consistency. Each clustering result is made of a num-
ber of clusters of size equal to 77.428 £ 10.106. In Figure 7.1 the values of Q
against QGO are shown for all 500 clusterings: it can be observed that the QGO
values are more stable than Q values. In fact, the 94.8% of QGO values show lit-
tle variability, ranging from 0.92 to 0.97. While, the 95.2% Q values show higher
variability, ranging from 0.18 to 0.24 (Figure 7.2). It is interesting to note that
about 95% of the total results can be identified in two main zones of high den-
sity, the first one on the left is linked to lower Q values, Zone 1, and the second
one on the right is linked to higher Q values, Zone 2, suggesting that the Zone
1 correspond to a local Q maximum, while the Zone 2 corresponds to higher Q
maximum (see Figure 7.3). As regards the remaining 5% of the results, a third
zone (Zone 3) of lower density can be observed. It is represented by points set
along a diagonal line, with QGO < 0.92. Zone 3 suggests a negative correlation
between Q and QGO (see Figure 7.3). In fact, the Pearson Correlation value be-
tween Q and QGO for the Zone 3 points is —0.78. In Figure 7.4 the Q values of the
final partitions are compared with the Q values of the initial random partitions,
the graph shows there is a random relation, implying that the final results are
little influenced by the random initialization of the algorithm. To evaluate the
agreement among all 500 clusterings the Weighted Kappa (WK) metric has been
used [197]. This metric allows one to compare two partitions in terms of cluster
similarity, producing a score ranging from -1 (no concordance) to +1 (total con-
cordance). The WK score has been computed among each pair of clusterings, for
a total of 124750 comparisons (the values are shown in Figure 7.5). The obtained
values are in the range 0.67 £ 0.12.

The next step of the analysis was the application of Robust Clustering (RC)
and Consensus Clustering (CC) algorithm [198]. Robust Clustering is used to
compute robust clusters, i.e. groups of proteins allocated to the same cluster in
all of the repeated 500 clusterings. These can be construed as the most stable
clusters with respect to the randomness within the MTGO algorithm. As a re-
sult, 28 robust clusters have been found, covering 85/502 proteins. The mean
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and standard deviation of robust cluster size are 3.03 + 2.16. The robust clus-
tering algorithm is useful for creating clusters with high confidence, however,
robust clustering can be too restrictive and discarding many proteins that do
not have full agreement, this explains because robust clusters cover just 85/502
proteins. Consensus clustering overcomes this problem, requiring a minimum-
agreement parameter to generate clusters based on the combined results of all
clusterings. Thus, the Consensus Clustering allows one to compute a new clus-
tering over all proteins by maximizing agreement over all the 500 repeated clus-
terings. CC uses a form of simulated annealing and therefore requires two key
parameters. The starting temperature was set to 100 and the number of itera-
tions to 1000000. The CC Q value falls in the middle of the Zone 1 (see Figure 7.6).
To compare the CC with all 500 clusterings the WK values have been computed
between the CC and each clusterings, the obtained values are shown in Figure
7.7. It can be observed that the WK values are always positive, however there
are some clusterings with low agreement with CC. To investigate the character-
istics of these clusterings, those with WK value less than a selected threshold
(0.6) have been highlighted in Figure 7.8. These results are concentrated in the
Zone 2 and Zone 3, it is interesting that the clusterings with low CC agreement
are included in the lowest density area, Zone 3. In fact, the points in the Zone 3
can be considered the less representative clusterings. As a result, the generation
of CC can be used to filter out the less stable clusterings to ensure results that
are closer to the more preferred Zone 1 and Zone2. To improve the CC, the less
stable clustering set (WK<0.6) has been removed and the remaining clusterings
have been used to recompute a new CC. Peculiarly, this resulted in a decreasing
of the value of Q (see Figure 7.9), this may be due to the removal of the Zone
3 points, which have very low QGO but with the most high values of Q. In the
light of these results, as MTGO can converge to a different local optimum, multi-
ple runs followed by the CC application are suggested to the end-user to obtain
superior quality predicted complexes. Obviously, this task is hindered by the
necessary run time; for this reason, multiple runs are recommend just in case of
small networks, such as involving about 500 nodes. Selecting as cut-off for Zone
2, the @ values ranging in [0.21, 0.24] and the QGO values higher than 0.92, the
percentage of clusterings falling down in Zone 2 (i.e. global optimum) are 46%.
Thus, for large networks, the probability to find a global optimum with a single

execution can be estimated as 46%.
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7.2.1 Gene Ontology stability

As regards the biological aspect, to evaluate stability, the GO terms assigned by
MTGO to each cluster have been considered. To evaluate the GO terms assigned,
a probability score has been used to test the significance of observing multiple
proteins, belonging to a GO term assigned, in the corresponding cluster against
the null hypothesis of this happening by chance [198]. The probability score was
computed using the normal approximation:

-
z = Uu;uzk‘p;az V kpq (7.1)

where p = s/n,q = 1 — p. In this formula, s is the cluster size, n is the total
number of proteins in the PPI network, k is the GO term size, lastly x is the
number of proteins shared by both the GO term and the cluster. z takes high
values when the probability of observing x proteins, belonging to the assigned
GO term, in the cluster by chance is very small.

For all 500 clusterings and for each assigned GO the p-value was computed
according Equation 1.1. A GO term is considered significant if the p- value is un-
der the threshold 0.05. For each clustering the number of insignificant GO terms
has been computed (see Figure 7.10), most of the clusterings show a percentage
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of insignificant GO terms ranging from 10% to 15%. To investigate the charac-
teristics of the clusterings with a high percentage of insignificant GO (>15%),
these results have been highlighted in the main graph Q-QGO (see Figure 7.11).
It is interesting to observe that these results fall mostly in Zone 2 and Zone 3,
the zones with the highest Q values. Moreover, for each clustering the GO p-
value mean has been computed, and results are shown in Figure 7.12. Next, the
results with poor mean values (mean>0.09) have been highlighted in the main
graph Q-QGO (see Figure 7.13); according to previous results the correspond-
ing points are concentrated in (Zone 2 and Zone 3), suggesting that results with
high Q values are linked to lower GO quality. It suggests that the increasing
of the topological quality of a clustering (measured by Q) leads to a declining
of the biological quality of the clusters. Thus, the zones with higher value of
@ are linked with bad quality GO clusters (Zone 2 and Zone 3), while the zones
with low @ values are linked to cluster with a richer biological meaning (Zone
1). One of the challenge linked to clustering algorithms for PPI networks is the
ability to detect small complexes [59]. This is particularly true for algorithms
based on modularity optimization[64]; in fact, because of resolution limit [156]
the maximum modularity partitions tend towards collecting small clusters in
larger communities, leading the small module loss. MTGO faces this issue driv-
ing the cluster building process not only by topological properties but also re-
lying on GO knowledge. To investigate this ability, for each GO term linked to
a cluster the functional module size has been compared to the extraction fre-
quency, for all 500 clusterings. In Figure 7.14 the MTGO ability to detect both
big and small functional modules can be observed. In fact, the high frequency
points are linked both with small and big GO sizes. Moreover, there are a lot of
points concentrated in the zone with size < 20, confirming the ability of MTGO
to detect small functional modules. It is interesting that very big GO (size > 50)
are linked with very high frequency, this can be explained by modularity reso-
lution limit. According to this limit a large community combining some small
sub-modules maximizes the modularity much more than the same small mod-
ules separated from each other [199]. A big size GO certainly collect into itself
same smaller GO groups, because of the hierarchical GO structure, this configu-
ration has a strong biological relevance alongside a good power to increase the
global network modularity, for these reason the GO with these properties are
detected in almost all the 500 clustering.
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7.3 Stability analysis for perturbed networks

The PPI Networks can often be affected by false positive and false negative
edges. In fact, they are often produced with the results of high-throughput ex-
perimental methods and many computational methods, able to quickly detect
a large amount of novel PPIs but with relatively low quality [200]. For exam-
ple, the PPIs are influenced by the experimental conditions, thus the experi-
mental methods may detect PPIs that do not occur under physiological condi-
tions, resulting in high false positive detection rates [201]. Moreover, the high-
throughput methods may fail to detect many interactions because of their com-
plex biological nature, for example the interactions may be transient or too weak
[202], this results in false negative edges and low coverage of the interactomes.
For these reasons, it is important to investi- gate the robustness of MTGO on PPI
networks affected by these types of error. This is now explored by perturbing
existing PPI networks and investigating the impact on MTGO. For this analy-
sis the human network has been used to create eleven networks with different
levels of alteration, keeping the same node set (502 proteins) but changing the
edge set (4316 interactions). To simulate the missing and false positive edges the

eleven networks have been produced randomly removing and adding edges to
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different degrees. In particular, combining three different percentages (0% - 5% -
10%) of random edge removal and addition, eight different networks have been
obtained.

TABLE 7.1: The table shows the edge number of each perturbed

network obtained combining different percentages of random
edge removal (columns) and random edge addition (rows)

% removal
% addition 0 5 10

0 4316 4101 3885
5 4531 4316 4100
10 4316 4532 4316

Two additional networks have been obtained to explore more dramatic per-
turbations by removing and adding 50% of the edges (2159 edges and 6474 edges
respectively). Finally, the last network has been obtained from the original node
set adding only random edges in equal number as the original network (100%
removal and 100% addition). Each network has been processed by MTGO one
hundred times. Q and QGO values obtained for the 100 run for each perturbed
network are shown in Figures 7.15 and 7.16. In the Figures the networks are
identified through labels, nA-mR which represents the network that has been
obtained by adding n% of edges and removing m% of edges. The Random la-
bel means the network is random, obtained randomly removing and adding the
100% of edges. In the Q boxplot, it can be observed in the first eight networks
the modularity is quite preserved, in fact these networks are the most similar
to the original. The Q distributions clearly show the MTGO algorithm is more
robust against the edge removal than the edge addition, in fact a Q decreasing
can be observed when the edge addiction percentage increases while the edge
removal percentage is constant. Otherwise, the Q distributions for the two net-
works obtained through a 50% edge addition and a removal, show very similar
results. It may be due to a high percentage of error introduced, that mostly de-
stroys the modular structure of the networks so decreasing the Q values. As
expected, the random network shows the lower Q values as the modular struc-
ture is completely damaged.

As regards the QGO distributions for all networks a similar trend, character-
ized by very high values, can be observed. To explain these results, the meaning
of QGO needs to be clarified. MTGO provides as a result two paired sets, the
topological modules and the functional modules. The topological modules are
the clusters obtained from a network partition. While,a functional module is a

group of proteins, belonging to the network, linked to a GO term. The elements
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of the two sets are coupled, i.e. each topological module is linked to a functional
module. The QGO metric measures the agreement between each topological
module, the cluster, and its corresponding functional module, i.e the GO term
assigned by MTGO. While a cluster is a sub-network, with own specific topo-
logical structure, a functional module is just a node set, without any topological
feature. For this reason QGO evaluates just the node/protein intersection be-
tween the clusters and the functional modules. Since the input list of GO terms
is made of many redundant and overlapped GO-linked protein groups, what-
ever network node subset can be covered by many GO protein groups, inde-
pendently by the topological features of the sub-network linked to the node set.
For this reason MTGO is able to find a good set of GO terms (high QGO) for a
PPI network even if this network is completely "loose" in terms of its modular
structure.

To compare the clusterings obtained for each perturbed network the CC al-
gorithm has been applied over the 100 runs to find a single clustering synthesiz-
ing the MTGO behavior. The agreement between each perturbed network CC
and the original network CC has been evaluated through the WK. The results
are shown in Figure 7.17. The WK values show a very similar trend to Q value
distributions. In fact, they show a fast decrease respect to the increment of the
edge addition percentage. While, the WK values for the two highly perturbed
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network 0A-50R and 50A-0R are almost the same. Finally, as expected, the ran-
dom network shows the lowest WK values.

To evaluate the robustness of the clusters in presence of errors, the RC algo-
rithm has been applied to find for each network a set of RCs representative of the
100 runs. The RCs derived from the perturbed networks have been compared
with those from the original network using the measure Maximum Matching
Ratio [153]. The result is shown in Figure 7.18, showing a similar trend as Q
distribution (see Figure 1.14). In fact, the MMR decreases along with the in-
creasing of random edge addition, confirming that MTGO is more sensitive to
edge addition than edge removal. This can be due to modularity function limits;
Fortunato et al. studying the modularity limits find that both for a random and
scale-free graph the expected maximum modularity increase when the graphs
gets sparser, i.e. the edge number decrease [156]. As the PPI networks often
shown scale-free properties [36], this could be the reason behind the fact that
the networks 0A-5R and 0A-10R , those with higher number of removed edges,
show the maximum values of modularity. Moreover Fortunato et al. assert that
modularity is extremely sensitive to even individual connections, thus the edge
addition can change a lot final results [156]. In detail, modularity tends to join

together two small clusters if there is even a single connection between them.
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FIGURE 7.17: The figure shows the WK values computed be-

tween the original network CC and each perturbed network CC.

The labels in x-axis identify the perturbed networks, each la-

bel nA-mR means the network has been obtained adding n% of
edges and removing m% of edges.

If the connection is a false positive edge, this could bring to set nodes in wrong
clusters. This could explain as MTGO is more sensitive to edge addition (i.e.
false positive edges) than edge removal (i.e. false negative edges). PPI networks
are affected by both false positive and false negative edges, thus to face the low
robustness of MTGO against the presence of false positive edges could be useful
to pre-process the network to remove them. Up to now, there are some valuable
technique for edge reliability assessment, a review of the state-of-art approaches
have been published by [200].

7.3.1 Gene Ontology stability

For the MTGO algorithm, an important aspect to evaluate is the ability to detect
the most represented GO terms in a PPI Network, i.e. the ability to select from
the whole GO list of an organism the subset of GO term linked to protein groups
represented in the network as highly connected nodes. For this reason, the GO
set computed for the original and perturbed networks over the 100 run have
been compared. To investigate how similar are the GO set, the root mean square
error (RMSE) between the GO frequency distribution has been computed for
each perturbed network and the original one, the results are showed in Figure
7.19. The GO frequency distribution foe each perturbed network is computed
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FIGURE 7.18: The figure shows the MMR values computed be-

tween the perturbed network RCs and original network RC. The

labels in x-axis identify the perturbed networks, each label nA-

mR means the network has been obtained adding n% of edges
and removing m% of edges.

considering just the GO terms contained in the GO term set belonging to the
original network. A slight RMSE increase can be observed as the network alter-
ation level increase; however, it seems there isn’t a different behaviour in case
of edge removal and edge addition. Finally, as expected the highest error value
correspond to the random network. Figure 7.20 confirms these results, it shows
a good agreement between the GO frequency distributions of the lowest RMSE
network (0A-5R) and the original one (green points against red points respec-
tively); while it shows a bad agreement between the GO frequency distribution
from random and original network (blue points against red points respectively).

To investigate how the GO significance is influenced by the presence of PPI
Net- work errors, a probability score was computed according equation 7.1 to
measure the significance of each GO term assigned by MTGO to a cluster. For
each network a distribution of p-value mean values has been computed to ob-
tain a p-value distribution representative for the network (see Figure 7.1), each
value of the distribution corresponds to the mean of the p-values obtained with
equation 7.1 for each pair cluster-GO in a clustering. The values follow an almost
random trend, it seems there isn’t a specific dependence from the edge addition
and removal. However, it is interesting to view that all of the distributions are

quite similar and the distribution with the lowest p-value means corresponds
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FIGURE 7.19: The figure shows the RMSE values computed be-

tween GO frequency from each perturbed network and the orig-
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FIGURE 7.20: The figure shows the GO frequency distribution
of a low error affected network (green points) and the random
network (blue points) against the original one (red points)
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to the random network. A similar result has been obtained computing for each
network the distribution of percentage values of "GO-insignificant” clusters. A
cluster is considered "GO-insignificant" if the p-value computed with equation
7.1 is bigger than threshold 0.05 (see Figure 7.22). The distribution seems to be
very similar and also in this case the lowest value distribution is for the ran-
dom network, confirming previous results. Moreover, this result agrees with
that obtained for the QGO distributions (see Figure 7.16). These good results
for the perturbed and random networks could be explained with the decreas-
ing of network modular structure and with the GO term nature. In fact, the GO
term set is redundant and the network nodes are covered by many GO terms.
Because of this, independent from the network structure, it is always possible
to find a subset of GO terms assuring a good overlapping between the network
node groups and the GO-linked protein groups. MTGO aims to find clusters
both with high topological quality and biological quality, meaning the clusters
should assemble nodes that are both highly connected and highly overlapped to
the proteins linked to a specific GO. To reach this scope MTGO makes a trade-off
trying to build a cluster that is as overlapped as possible to the GO protein group
and at the same time with its own high topological property. Thus, in a modu-
lar structure network MTGO is able to detect highly connected clusters and the
search of the best GO term is limited in order to preserve the cluster topological
nature, in the extreme case this could lead to GOs with low significance but at
the same time cluster of high topological properties. While, in a network with
scarce modular structure, the clusters lack high self-topological properties and
therefore MTGO is free to search for the best representative GO for each cluster
without any restrictions, this leads to cluster linked with high significant GO but

low topological features.
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FIGURE 7.21: The figure shows for each network the distribution

(obtained with the 100 MTGO run) of the mean values of the p-

values obtained with equation 7.1 for each pair cluster-GO in a

clustering. The labels in x-axis identify the perturbed networks,

each label nA-mR means the network has been obtained adding
n% of edges and removing m% of edges.
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Chapter 8

Conclusions and future
developments

8.1 Protein Co-expression Networks

Protein co-expression networks give the opportunity to represent and to evalu-
ate biological contexts at system level, including organisms that lack informa-
tion about PPIs. In fact, except for human and other few organisms, the the-
oretical models to describe the real-world networks are incomplete, and with
a connectivity affected by false positive interactions. Although literature is yet
too weak, protein co-expression networks represent a valid approach to obtain
a novel overview of proteomic data and to provide new hypotheses about key
molecules acting in pathological /physiological states. Of course, its real value
has to be assessed by further studies, but preliminary findings make it promis-
ing.

The reviewed studies (in Paragraph 3.2) have evidenced a good relation be-
tween the topology of protein co-expression networks and the emergent pheno-
types. Like PPI networks, the investigation of key proteins and modules from
these graphs has proved to select the most important bio-molecules. Despite
these findings, statistical methods to construct co-expression networks by pro-
cessing large-scale proteomic data still need to be improved. To date, the avail-
able applications are mainly based on WGCNA framework, and studies to eval-
uate other approaches are needed.

The main limitation to perform the construction of protein co-expression net-
works may be attributed to the difficulty in measuring a proteome with enough
coverage. A major consequence is the high rate of missing values that introduce
loss of information and significant bias. This aspect will be surely improved by
future advances of the proteomic technologies which in recent years have re-

ceived a big boost from genome sequencing and from the combination of liquid
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chromatography and mass spectrometry. In any case, the availability of large-
scale proteomic data already offers a new range of opportunities to improve the
existing network models, and in particular PPI, in understanding the mecha-
nisms behind the emergent phenotypes.

Collection and integration of different -omics data represent essential points
to perform a global evaluation of the biological systems and to improve the ef-
fectiveness of the current systems biology approaches. For these purposes, ge-
nomic and proteomic data are often used in combination with PPI networks. In
this scenario, PPIs and co-expression networks provide the possibility to apply a
multi-omic strategy that should improve level of significance in understanding
biological mechanisms, including those related to diseases.

Computational tools are required to effectively build and integrate models to
represent data from multi-omic experiments. In addition to basic research, these
improvements may have important effects into clinical applications opening the
way toward the use of multiple biomarkers and their relationships. These ap-
proaches represent a chance to generate new advanced diagnosis and prognosis
methods which may lead toward a more preventive, predictive, and personal-
ized medicine. These objectives are the major challenges to be addressed in the
near future, and their achievement rely on the synergistic cooperation of biolo-
gists, physicists, mathematicians, and bioinformaticians.

The pipeline described in Chapter 3 aims to propose a procedure to build
protein co-expression networks, facing the related critical aspects. On one hand,
it shows a simple way to overcome the problem of missing data, and on the
other hand, it realizes the integration of this model with the PPI data, in order
to enrich the model and facilitate the understanding of the biological mecha-
nism represented. Moreover, this pipeline presents an original method based on
network models for a global investigation of amyloidosis disease, starting from
proteomics data. The method includes (I) the creation of the models, (II) the
topological analysis and (II) the model integration with other information, such
as PPI and the edge differential analysis.

This elaboration has the final aim to provide an easy-to-understand model
of the phenomenon studied, in order to facilitate the work of interpretation and
understanding of the big quantity of proteomics data, in particular to support
the work of biologist or clinician to extract from these rough data-sets useful
information for biological /medical applications.

However, some steps of this procedure should be evaluated in more detail,
for example, other approaches to face missing data or to compute network edges
should be applied and compared. In addition, the hypothesis generated with
the proposed models should be evaluated by targeted experiments, especially
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as regards the role of the four identified proteins for the amyloidosis disease.
Finally, the scripts created to perform the different steps of analysis (Python,
Cytoscape, R software) should be integrated into a unique software solution to
make easy-to-use the pipeline for future applications. These goals will be taken

into account for future developments of this work.

8.2 MTGO:PPI network analysis via topological and func-
tional module identification

With hundreds to thousands nodes, and even more edges, PPI networks are
impossible to manually analyze in detail. For this reason, more and more algo-
rithms have been proposed to automatically identify functional parts of these
networks, i.e. groups of proteins, called modules or clusters. Traditional clus-
tering approaches provide as result solely a set of clusters. As consequence, a
second step of analysis (for example Gene Ontology (GO) enrichment analysis)
is needed to investigate the biological role of the clusters.

In this dissertation a novel method to identify functional modules in PPI
networks has been presented, called MTGO (Module detection via Topological
information and Gene Ontology knowledge). Its theoretical architecture is based
on the optimization of both GO term annotations and topology measures.

The MTGO approach differs from previous works as it integrates GO terms
directly in the construction of functional modules. It provides as result both a set
of clusters/communities (topological modules) and a list of functional modules,
represented by GO terms, each associated to a cluster. In other words, MTGO
facilitates and simplifies the PPI Network analysis coupling in a single step both
the clustering analysis and the biological/GO analysis (as it provides both the
clusters and their biological meaning, through the set of GO terms describing
the clusters). MTGO is therefore not just a clustering algorithm but also a tool to
automatically analyze the biological phenomenon described by a PPI network
and guide experts’ research providing clinically interpretable results.

MTGO provides both overlapping and full network coverage, two optimal
features for module identification algorithms. In particular, topological modules
ensures full coverage of the network, while functional modules are allowed to
share nodes, de facto allowing overlapping. On the other hand, it must be noted
that MTGO does not consider topological overlapping (i.e. the topological mod-
ules belong to a graph partition, thus they are separated by definition). MTGO
heavily depends on the quality of the associated GO, therefore if this is not
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well represented, or lacks information, it is biased, the results are affected nega-
tively. To overcome this issue, MTGO gives the possibility to use the results opti-
mized for density (see Pargraph 4.3.5). Furthermore, MTGO is tailored to search
for small or sparse modules, important to shed light on the analysed network,
which typically elude other approaches. Finally, MTGO has been implemented
in a software version, available freely at https:/ /gitlab.com/d1vella/MTGO.

Tested on benchmark scenarios, MTGO provides results comparable to or
better than state of the art algorithms. Furthermore, by optimizing a trade-off be-
tween GO terms and topology, MTGO is extremely accurate in unveiling small
and/or sparse functional modules, often missed by other algorithms. The high
reliability of MTGO-retrieved modules is confirmed by GO term enriched anal-
ysis, with associated p-values comparable to or better than other GO-based state
of the art algorithms. In addition, the significance of GO terms provided for de-
scribing the PPI network has been investigated using a statistical test. The per-
centage of topological modules associated with significant GO terms has been
computed and it results greater than 80% in four different networks.

Moreover, the stability of MTGO has been explored. The results, obtained
testing MTGO on perturbed network, showed that the algorithm is more stable
in case of false negative edges than false positive edges (adding false edges is
more damaging than removing existing links).

As future direction, the use of functional/topological module identified by
MTGO should be explored in order to define the disease modules. This applica-
tion is particularly interesting for Protein Co-expression Networks, where edges
represent protein relations in the specific physiological /pathological context an-
alyzed. MTGO has the ability to select a subset of GO terms describing a protein
network, i.e. each GO term selected is biologically linked to a protein subset
represented in the network in form of nodes sharing an high number of edges.
For this reason, the application of MTGO on a Protein Co-expression Network
allows to exploit at most its ability, because in co-expression networks the edges
are directly inferred from the biological system investigated. In this way, the
comparison of MTGO functional and topological sets in case (disease) vs con-
trol (healthy) networks would pinpoint the GO term difference and network
rewiring characterizing the analyzed disease. In other words, explicitly address-
ing the disrupted/altered cellular functions. Finally, future works should be ad-
dressed to improve two aspects: the run time optimization and the building of
a graphical interface. A more deep run time evaluation should be executed, in
order to investigate the temporal limit of MTGO and to optimize the run time
for applications on bigger networks. Furthermore, a graphical interface should
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be provided to make the software easy-to-use, especially for those users, as bi-
ologists, who may not possess informatic skills.
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Appendix A

A.1 Details of the Iteration phase

In this section a detailed description of the two main steps of the Iteration phase

is presented.

Step 1.

Topological modules are randomly processed at each iteration k. Each topo-
logical module with size < minSize (see main test Section 1.5 for a parameter
description) is discarded and its nodes are added to the Temporary Node List
(TNL). The rationale behind TNL is to use it as a temporary repository for dis-
carded nodes. Discarding small topological modules is the way of MTGO to
decrease H, i.e. to decrease the number of modules between two consecutive
iterations. For each remaining topological module ¢}, the following four steps

are executed:

1.1 A¥ is the subset of A containing the elements involving ¢} nodes; Each 51’;’ b
p — th element of AZ is evaluated by the Selection v function (see function
S1 in Chapter 4).

The functional module minimizing Selection ~y (the best functional module

ks : k
0% 5) is assigned to cj.

The attribution of 5%7 p to c’,‘i defines three node sets V,,, Vg and V., as fol-
lows:

Va=065,Nci Ve =cf — Vs Vo= 65, — Va (S6)

V, are the nodes shared by 5@7,1 and cﬁ; Vp are the nodes belonging to c;‘;
but not to 5%’ 1 Ve are the nodes belonging to 5%’ , but not to cf. Note that
Ve nodes belong to other topological modules of the partition. At the end
of Step 1, each ci has its associated 5%7 5, generating V;,, Vg and V..

1.2 Set V, remains in topological module cf.
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1.3

1.4

Set Vg is moved to the TNL. Vg nodes are excluded from the 5@7,1, and
therefore they are not significantly related to the biological meaning as-
signed to cf.

A single node v; € V, belongs to either another topological module of the
current partition C*, or the TNL (e.g. it has been assigned to the TNL
by processing a previous c¥, and 5%7771 pair). v; is moved to the topolog-
ical module ¥ either if (i) it belongs to the TNL; or (i) if VM (cF,v;) >
VM (ck  v;) (see function S3 in Chapter 4), where c¥, is the other topo-
logical module of Ck containing it. In other words, v; is added to cﬁ if
the topological quality is increased by adding it. Figure 1.6 in Chapter 4
graphically describes this process.

When these four steps are executed for all the topological modules of C¥,

MTGO performs another size check. Topological modules with size < minSize
are discarded, and their nodes added to the TNL. At this point, all nodes have
been assigned either to the topological modules, or to the TNL. Finally, we need
to empty the TNL.

Step 2.

In this step the nodes of the TNL are re-assigned to the topological modules:

2.1

2.2

2.3

24

All the TNL nodes with at least an associated ¢, Ngo set, are used to create
a new topological module crpn (Figure 1.7 in Chapter 4).

Each node v; without any associated J, is assigned to the existing topo-
logical module maximizing its MV (¢}, v;) (see function S3 in Chapter 4)
(Figure 1.7 in Chapter 4).

crrn is the garbage topological module made of the rejected nodes. To
integrate it in the partition, Step 1 is repeated and a second TNL is created.
This procedure is the way MTGO introduces new topological modules and
increases H in two consecutive iterations. ®**! set is obtained here, by

grouping all 5;“37 »s and their associated lg S

The second TNL is emptied assigning each node v; to the topological mod-
ule maximizing its M V(c’fL, v;), regardless of having at least an associated

dp or not.

Now all the nodes of TNL have been assigned to topological modules (full

coverage). The obtained topological modules are grouped in the new partition
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Phase 1. Initialization
* Read inputs: PPI Network G=(V,E), GO list
« Build initial random partition C, (Hy™VN)
 Build the set T, according to minSize, maxSize and V
Phase 2. Iteration
Ck = k1
Step 1. For each cf
1 £ size(ck) > minSize
8%, =argmin Selection(8,,, ck)
If S};h #0:
For each v, €8, &v; &cf
Tfv,€ TNL:v; > cf
Else If MV(ckv,)> MV(ck,v;) :v; > cf
For each v,€Eck&v, &8,
v, > TNL
Elseck> TNL
Elseck > TNL
For each cf
1f size(c) < minSize: ¢k > TNL
Step 2. 1f Size (Ngo) > minSize:
Ngo = e
V V; € Nygo: V; > ck=argmax MV/(ck)
Else Vv, € TNL: v; > ck=argmax MV/(ck)
Repeat Step 1 (Compute ®k1)
V v; € second TNL : v, > ck=argmax MV(c)
Phase 3. Check for steady state
If (]Q“1-Q¥|<T and |QGO*1-QGOX|<T)
CF =argmax QGO(C¥), ®F=(8 1, 8§ - Sk, )
Else > Phase 2. Iteration

FIGURE A.1: MTGO pseudocode

C**+1. While C**1 is computed as described above, ®**! is simply the set of all
5%7 1,8, along with their associated l% LS

Detailed pseudocode of the Iteration phase, along with the whole MTGO
algorithm are provided in the Figure A.1.
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Precision Recall F-measure Coverage Positive Predictive Value
MTGO 0,32 0,36 0,34 0,63 0,46
c ClusterOne 0,29 0,28 0,29 0,43 0,70
© GMFTP 0,33 0,27 0,30 0,50 0,73
%‘o MCL 0,15 0,24 0,18 0,55 0,68
S MCODE 0,36 0,07 0,12 0,25 0,58
X DCAFP 0,37 0,21 0,27 0,35 0,65
COACH 0,11 0,09 0,10 0,58 0,25
Cfinder 0,51 0,09 0,15 0,35 0,53

Precision Recall F-measure Coverage Positive Predictive Value
MTGO 0,41 0,38 0,39 0,67 0,43
(7,) 8 ClusterOne 0,45 0,36 0,40 0,67 0,64
.E () GMFTP 0,52 0,28 0,37 0,54 0,67
— (o] MCL 0,45 0,36 0,40 0,67 0,64
(@) o MCODE 0,57 0,15 0,24 0,43 0,65
o c DCAFP 0,57 0,15 0,24 0,43 0,65
COACH 0,38 0,17 0,24 0,60 0,43
Cfinder 0,39 0,14 0,21 0,51 0,53

Precision Recall F-measure Coverage Positive Predictive Value
MTGO 0,35 0,33 0,34 0,61 0,48
ClusterOne 0,24 0,21 0,22 0,54 0,62
.E GMFTP 0,41 0,27 0,33 0,51 0,68
% MCL 0,19 0,17 0,18 0,57 0,59
w MCODE 0,43 0,13 0,20 0,41 0,57
DCAFP 0,38 0,19 0,26 0,42 0,59
COACH 0,19 0,11 0,14 0,60 0,40
Cfinder 0,39 0,14 0,21 0,51 0,53

Precision Recall F-measure Coverage Positive Predictive Value
MTGO 0,31 0,39 0,34 0,52 0,23
c ClusterOne 0,24 0,25 0,24 0,33 0,32
© GMFTP 0,33 0,33 0,33 0,41 0,32
%0 mcL 012 021 0,15 0,42 0,31
S MCODE 0,39 0,09 0,15 0,24 0,24
X DCAFP 033 024 0,28 0,31 0,28
COACH 0,12 0,11 0,11 0,47 0,12
Cfinder 0,51 0,11 0,18 0,31 0,24

Precision Recall F-measure Coverage Positive Predictive Value
0O wmrco 039 0,39 0,39 0,54 0,24
7, O clusterone 0,36 0,37 0,36 0,49 0,32
c v GMFTP 0,51 0,35 0,41 0,45 0,32
= * va 036 034 0,35 0,50 0,31
o ‘n’_’ MCODE 0,57 0,20 0,30 0,37 0,28
o = DCAFP 0,37 0,26 0,30 0,41 0,37
E COACH 0,42 0,24 0,31 0,50 0,27
Cfinder 0,60 0,16 0,25 0,43 0,26

Precision Recall F-measure Coverage Positive Predictive Value
MTGO 0,35 0,37 0,36 0,50 0,24
ClusterOne 0,22 0,23 0,22 0,43 0,29
.E GMFTP 0,36 0,30 0,33 0,41 0,30
> MCL 0,18 0,20 0,19 0,46 0,29
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6 MCODE 0,41 0,17 0,24 0,36 0,25
DCAFP 0,34 0,24 0,28 0,36 0,27
COACH 0,18 0,13 0,15 0,49 0,22
Cfinder 0,42 0,19 0,27 0,43 0,25
Precision Recall F-measure Coverage Positive Predictive Value
MTGO 0,10 0,12 0,11 0,48 0,05
c == ClusterOne 0,10 0,05 0,07 0,24 0,15
c O GMFTP  NA NA  NA NA NA
E < MCL 0,07 0,06 0,07 0,36 0,15
- % MCODE 0,21 0,02 0,04 0,14 0,10
I DCAFP 0,17 0,03 0,05 0,14 0,14
COACH 0,08 0,01 0,02 0,42 0,05
Cfinder 0,40 0,02 0,04 0,13 0,10
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Accuracy MMR Composite Score PC TC oTC OPC
0,54 0,40 1,30 453 408 146 143
c 0,55 0,29 1,12 391 408 113 115
© 0,60 0,28 1,15 319 408 111 105
%‘o 0,61 0,32 1,17 645 408 98 94
S 0,38 0,10 0,55 77 408 28 28
X 0,48 0,21 0,90 618 408 86 231
0,38 0,14 0,61 963 408 37 109
0,43 0,10 0,61 67 408 35 34

Accuracy MMR Composite Score PC TC oTC OPC
0,54 0,40 1,31 353 408 153 145
(7, 8 0,66 041 1,42 330 408 163 150
.E (=) 0,61 0,29 1,18 199 408 116 104
— (o] 0,66 0,39 1,40 297 408 146 134
(@) O 0,53 0,17 0,84 95 408 61 54
o c 0,53 0,22 0,89 649 408 92 256
0,51 0,21 0,89 1098 408 70 422
0,52 0,15 0,81 75 408 51 45

Accuracy MMR Composite Score PC TC oTC OPC
0,54 0,35 1,22 362 408 133 127
0,58 0,26 1,05 310 408 85 75
.E 0,59 0,27 1,13 246 408 111 101
% 0,58 0,24 0,99 324 408 62 70
w 0,48 0,15 0,76 109 408 52 47
0,50 0,21 0,90 702 408 79 267
0,49 0,17 0,77 1301 408 45 242
0,52 0,17 0,84 137 408 59 54

Accuracy MMR Composite Score PC TC oTC OPC
0,34 043 1,16 453 509 198 140
c 0,33 0,28 0,85 391 509 125 92
© 0,36 0,33 1,01 319 509 166 104
%0 0,36 0,30 0,87 645 509 106 76
Pl 0,24 0,14 0,47 77 509 46 30
4 0,30 0,26 0,80 618 509 124 206
0,24 0,17 0,52 963 509 55 117
0,27 0,14 0,52 67 509 56 34

Accuracy MMR Composite Score PC TC oTC OPC
(@] 036 043 1,18 353 509 199 136
w O 0,40 0,40 1,16 330 509 188 118
| v 0,38 0,36 1,08 199 509 178 101
= + 039 038 1,11 297 509 171 107
@) ‘n’_’ 032 0,24 0,76 95 509 102 54
o — 0,39 0,28 0,92 649 509 132 239
E 0,37 0,28 0,89 1098 509 122 465
0,33 0,19 0,68 75 509 81 45

Accuracy MMR Composite Score PC TC oTC OPC
0,34 0,39 1,10 362 509 187 125
0,35 0,28 0,86 310 509 117 68
.E 0,35 0,31 0,96 246 509 153 89
> 0,37 0,26 0,82 324 509 100 58
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G:

Human
HSAPI

NA

0,30 0,20 0,66
0,31 0,26 0,81
0,32 0,21 0,66
0,33 0,22 0,74
Accuracy MMR Composite Score
0,15 0,22 0,49
0,19 10,13 0,38
NA NA
0,23 0,19 0,48
0,12 0,05 0,19
0,14 0,08 0,25
0,14 0,09 0,24
0,11 0,05 0,19

PC

NA

109

702

1301

137
TC

691

441

698
57
227
441
40

509 85
509 121
509 67
509 99
oTC
1765 203
1765 93
1765 NA
1765 111
1765 40
1765 47
1765 23
1765 41

OPC

NA

45
239
240

58

70
46

51
12
39
44
16
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A.3 TableB

P-value threshold

Krogan

Collins

Gavin

Human

p
p
p

(@)

DCAFP
GMFTP
MTGO

DCAFP
GMFTP
MTGO

DCAFP
GMFTP
MTGO

DCAFP
GMFTP
MTGO

DCAFP
GMFTP
MTGO

DCAFP
GMFTP
MTGO

DCAFP
GMFTP
MTGO

DCAFP
GMFTP
MTGO

DCAFP
GMFTP
MTGO

DCAFP
GMFTP
MTGO

DCAFP
GMFTP
MTGO

DCAFP
GMFTP
MTGO

Percentage

1,00E-03

72,49191
60,81505
92,27373

77,6699
53,9185
69,31567

57,60518
44,20063
74,39294

88,90601
88,94472
91,21813

91,52542
85,42714
82,71955

76,73344
75,37688
76,77054

83,04843
71,95122
95,02762

85,18519
67,47967
79,83425

68,37607
58,53659
79,28177

62,55507

/
91,0275

57,70925

/
65,41245

43,17181

/
81,76556

25,56634
15,98746
36,20309

39,4822
25,07837
31,56733

18,60841
9,717868
18,7638

53,77504
36,1809
40,7932

64,71495
48,24121
42,49292

37,44222
20,1005
22,94618

43,01994
26,01626
40,88398

55,55556
35,77236
37,01657

26,21083
16,66667
24,86188

9,251101

/
42,54703

15,4185

/
27,6411

8,810573

/
28,65412

Number of found GO
1,00E-10 1,00E-03 1,00E-10

/

/

/

9886
3336
9882

5053
1505
3351

2142
719
2045

15968
4069
7787
9151
1841
3382
3108

812
1622

13865
3587
7900
7486
1635
3074
2778

774
1858
1526

32512

718
5131

507

7113

/

/

/

2106
590
2511

1648
440
1048

486
137
382

5359
797
2103
4316
593
1205
807
169
325
3281
644
1955
2778
517
1092
642
156
414
130
7865
84
1336

47

1197
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A.4 Table C

Nodes (minSize 5-maxSize Description (minSize 5-maxSize 30)
ARF4 6414 translational elongation
PHB2 6414 translational elongation
DDOST 6414 translational elongation
CACNA1C 6414 translational elongation
CAND1 6414 translational elongation
CIsD1 6414 translational elongation
DDX55 6414 translational elongation
EEF1A1 6414 translational elongation
EEF1A2 6414 translational elongation
EEF1G 6414 translational elongation
EIF4A2 6414 translational elongation
EIF5 6414 translational elongation
EIF5A2 6414 translational elongation
EIF6 6414 translational elongation
GLUD2 6414 translational elongation
PABPC4 6414 translational elongation
RPL10A 6414 translational elongation
RPL14 6414 translational elongation
RPL17 6414 translational elongation
RPL19 6414 translational elongation
RPL21 6414 translational elongation
RPL23 6414 translational elongation
RPL27 6414 translational elongation
RPL3 6414 translational elongation
RPL38 6414 translational elongation
RPL5 6414 translational elongation
RPL6 6414 translational elongation
RPL9 6414 translational elongation
RPLP2 6414 translational elongation
RPS10 6414 translational elongation
RPS13 6414 translational elongation
RPS15 6414 translational elongation
RPS15A 6414 translational elongation
RPS2 6414 translational elongation
RPS20 6414 translational elongation
RPS26 6414 translational elongation
RPS3A 6414 translational elongation
RPS4X 6414 translational elongation
RPS6 6414 translational elongation
SND1 6414 translational elongation
SOD2 6414 translational elongation
TUFM 6414 translational elongation
VARS 6414 translational elongation
GSN 10038 response to metal ion
ALDH3A2 10038 response to metal ion
SLC25A12 10038 response to metal ion
SLC25A13 10038 response to metal ion
FGA 10038 response to metal ion
FGB 10038 response to metal ion
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FGG
BSG
COL1A1
NACA
NID2
PPP2CA
PPP2R1A
NIT2
NPTN
BGN
LTBP1
TGFBI
THBS1
VTN
RAB7A
ARL8B
ASAH1
ATP5A1
ATP5B
ATP5C1
ATP5F1
ATP5J2
ATP50
ATP6V1A
COX5A
COX5B
COoXxe6B1
COXeC
GBP1
ITIH2
SLC25A4
TIPRL
USMG5
NNT
ATP6EV1E1
AKAP12
CALR
CAPN2
GMFB
MAPK1
NDUFA13
PEA15
CDC42
ATP2A2
CAPNS1
ESYT1
SUB1
ABLIM1
ACTR1A
CLIC4

10038
10038
30155
30155
30155
30155
30155
30155
30155
30155
30155
30155
30155
30155
30155
15992
15992
15992
15992
15992
15992
15992
15992
15992
15992
15992
15992
15992
15992
15992
15992
15992
15992
15992
15992
6605
6605
6605
6605
6605
6605
6605
6605
6605
6605
6605
6605
6605
6605
6605

response to metal ion
response to metal ion
regulation of cell adhesion
regulation of cell adhesion
regulation of cell adhesion
regulation of cell adhesion
regulation of cell adhesion
regulation of cell adhesion
regulation of cell adhesion
regulation of cell adhesion
regulation of cell adhesion
regulation of cell adhesion
regulation of cell adhesion
regulation of cell adhesion
regulation of cell adhesion
proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

proton transport

protein targeting

protein targeting

protein targeting

protein targeting

protein targeting

protein targeting

protein targeting

protein targeting

protein targeting

protein targeting

protein targeting

protein targeting

protein targeting

protein targeting

protein targeting
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CPNE1
CTNNA1
DCTN1
DYNC1H1
IPO5
KPNB1
LMNA
LMNB1
LUC7L2
MYOF
NUTF2
PDXK
PEX19
PKP2
PRKAR2B
SPTBN1
TUBA3C
YWHAG
YWHAZ
CANX
PDIA4
HSPA1A
NQO1
PPIF
ST13
CCT5
CCT6A
CCT7
CCT8
PPP2R2A
PPP2R2B
HSPA9
PPIB
ERO1L
S100A10
A2M
AMBP
CTSB
INPP5D
RTN4
COL1A2
COL3A1
COL6A1
COL6A3
SDC2
SERPINC1
SPARC
TNC
APOE
ACAA2

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6605 protein targeting

6457 protein folding

6457 protein folding

6457 protein folding

6457 protein folding

6457 protein folding

6457 protein folding

6457 protein folding

6457 protein folding

6457 protein folding

6457 protein folding

6457 protein folding

6457 protein folding

6457 protein folding

6457 protein folding

6457 protein folding

48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
48585 negative regulation of response to stimulus
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H2AFZ
CAMK2B
CAMK2G
MYOM1
ACTA2
ACTG2
ACTN2
CACNA1S
CAPN1
CKM
CRYAB
DES
DMD
LDB3
MYBPC3
MYH10
MYH11
MYH2
MYH3
MYH4
MYH7
MYL1
MYL12A
MYL12B
MYL6
MYL6B
MYLK
MYOM2
MYOZ2
PGM5
SLMAP
TMOD1
TTN
UTRN
VASP
WAS
CAMK2D
MYL4
MYL9
SNCG
HSPB2
HSPB3
CHCHD3
DCPS
DDX17
DHX9
FLNC
HDGF
HNRNPA1
HNRNPA2B1

48585
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
3012
16071
16071
16071
16071
16071
16071
16071
16071

negative regulation of response to stimulus
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
muscle system process
mRNA metabolic process
mRNA metabolic process
mRNA metabolic process
mRNA metabolic process
mRNA metabolic process
mRNA metabolic process
mRNA metabolic process
mRNA metabolic process
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HNRNPA3 16071 mRNA metabolic process

HNRNPAB 16071 mRNA metabolic process

HNRNPD 16071 mRNA metabolic process

HNRNPF 16071 mRNA metabolic process

HNRNPK 16071 mRNA metabolic process

HNRNPU 16071 mRNA metabolic process

IMMT 16071 mRNA metabolic process

MOV10 16071 mRNA metabolic process

PABPC1 16071 mRNA metabolic process

RBM39 16071 mRNA metabolic process

RBMS8A 16071 mRNA metabolic process

SF3B1 16071 mRNA metabolic process

SFPQ 16071 mRNA metabolic process

SNRNP200 16071 mRNA metabolic process

SNRPE 16071 mRNA metabolic process

SNRPF 16071 mRNA metabolic process

SSB 16071 mRNA metabolic process

VDAC2 16071 mRNA metabolic process

YBX1 16071 mRNA metabolic process

PHB 16071 mRNA metabolic process

HDLBP 43632 modification-dependent macromolecule catabolic process
CAST 43632 modification-dependent macromolecule catabolic process
CAT 43632 modification-dependent macromolecule catabolic process
PSMA1 43632 modification-dependent macromolecule catabolic process
PSMA2 43632 modification-dependent macromolecule catabolic process
PSMA3 43632 modification-dependent macromolecule catabolic process
PSMAG6 43632 modification-dependent macromolecule catabolic process
PSMB1 43632 modification-dependent macromolecule catabolic process
PSMB10 43632 modification-dependent macromolecule catabolic process
PSMB3 43632 modification-dependent macromolecule catabolic process
PSMB7 43632 modification-dependent macromolecule catabolic process
PSMB9 43632 modification-dependent macromolecule catabolic process
PSMC1 43632 modification-dependent macromolecule catabolic process
PSMD12 43632 modification-dependent macromolecule catabolic process
PSMD2 43632 modification-dependent macromolecule catabolic process
PSMD3 43632 modification-dependent macromolecule catabolic process
PSMD6 43632 modification-dependent macromolecule catabolic process
PSME2 43632 modification-dependent macromolecule catabolic process
RPN1 43632 modification-dependent macromolecule catabolic process
RPN2 43632 modification-dependent macromolecule catabolic process
STT3B 43632 modification-dependent macromolecule catabolic process
SUCLA2 43632 modification-dependent macromolecule catabolic process
ACADL 34440 lipid oxidation

ACADS 34440 lipid oxidation

ACADVL 34440 lipid oxidation

ETFA 34440 lipid oxidation

ETFB 34440 lipid oxidation

ETFDH 34440 lipid oxidation

GBAS 34440 lipid oxidation

HADH 34440 lipid oxidation
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HADHA 34440 lipid oxidation

HADHB 34440 lipid oxidation

AP2B1 48193 Golgi vesicle transport
CKMT2 48193 Golgi vesicle transport
COPG2 48193 Golgi vesicle transport
HLA-A 48193 Golgi vesicle transport
NAPA 48193 Golgi vesicle transport
NAPB 48193 Golgi vesicle transport
SAR1A 48193 Golgi vesicle transport
SEC22B 48193 Golgi vesicle transport
TMED2 48193 Golgi vesicle transport
TMED9 48193 Golgi vesicle transport
uso1 48193 Golgi vesicle transport
VPS29 48193 Golgi vesicle transport
HN1 48193 Golgi vesicle transport
SEPT2 48193 Golgi vesicle transport
SEPT6 48193 Golgi vesicle transport
SEPT9 48193 Golgi vesicle transport
AIFM1 48193 Golgi vesicle transport
HSPA2 48193 Golgi vesicle transport
TXNDC5 48193 Golgi vesicle transport
ZYX 48193 Golgi vesicle transport
COPA 48193 Golgi vesicle transport
COPB1 48193 Golgi vesicle transport
COPB2 48193 Golgi vesicle transport
COPG 48193 Golgi vesicle transport
COoPz1 48193 Golgi vesicle transport
CLTA 48193 Golgi vesicle transport
CLTC 48193 Golgi vesicle transport
DNM2 48193 Golgi vesicle transport
TWF2 6006 glucose metabolic process
NCL 6006 glucose metabolic process
TROVE2 6006 glucose metabolic process
VDAC3 6006 glucose metabolic process
NEBL 6006 glucose metabolic process
ACLY 6006 glucose metabolic process
ALDH2 6006 glucose metabolic process
ACTN1 6006 glucose metabolic process
GNAI2 6006 glucose metabolic process
GNAI3 6006 glucose metabolic process
MDH2 6006 glucose metabolic process
PRDX5 6006 glucose metabolic process
SLC25A11 6006 glucose metabolic process
GNAQ 6006 glucose metabolic process
AGL 6006 glucose metabolic process
AHCY 6006 glucose metabolic process
ALDOA 6006 glucose metabolic process
ALDOC 6006 glucose metabolic process
CFL2 6006 glucose metabolic process
CKB 6006 glucose metabolic process
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DDX3X 6006 glucose metabolic process
DLAT 6006 glucose metabolic process
ENO1 6006 glucose metabolic process
ENO3 6006 glucose metabolic process
FBP1 6006 glucose metabolic process
GANAB 6006 glucose metabolic process
GAPDH 6006 glucose metabolic process
GLO1 6006 glucose metabolic process
GPI 6006 glucose metabolic process
HEXA 6006 glucose metabolic process
HIBADH 6006 glucose metabolic process
HK1 6006 glucose metabolic process
IQGAP1 6006 glucose metabolic process
LDHA 6006 glucose metabolic process
LDHAL6B 6006 glucose metabolic process
LDHB 6006 glucose metabolic process
MAP4 6006 glucose metabolic process
MDH1 6006 glucose metabolic process
OGDH 6006 glucose metabolic process
PDHB 6006 glucose metabolic process
PDHX 6006 glucose metabolic process
PFKM 6006 glucose metabolic process
PGAM?2 6006 glucose metabolic process
PGD 6006 glucose metabolic process
PHGDH 6006 glucose metabolic process
PKM2 6006 glucose metabolic process
PLS3 6006 glucose metabolic process
PPA1 6006 glucose metabolic process
PYGB 6006 glucose metabolic process
PYGM 6006 glucose metabolic process
SORBS2 6006 glucose metabolic process
STIP1 6006 glucose metabolic process
TKT 6006 glucose metabolic process
TPI1 6006 glucose metabolic process
UGP2 6006 glucose metabolic process
RAB14 16197 endosome transport
RHOB 16197 endosome transport

GC 16197 endosome transport
DIABLO 16197 endosome transport
LGMN 16197 endosome transport
ECH1 16197 endosome transport
SERPINBS 16197 endosome transport
DPY30 16197 endosome transport
DBNL 16197 endosome transport
EHD1 16197 endosome transport
HLA-DMA 16197 endosome transport
HLA-DQB1 16197 endosome transport
HLA-DRB1 16197 endosome transport
PICALM 16197 endosome transport
TOM1 16197 endosome transport
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ACP6
RSU1
GFPT1
HLA-B
KCTD12
VDAC1
ALB

CLU

MIF
PON1
PRDX6
TUBB1
APOA2
APOA4
FH

CLic1
FBN1
HSPG2
RAB5C
SERPIND1
SERPING1
AHSG
C1QA
C4B
CST3
GCN1L1
IGHV®@
KRT1
KRT10
KRT9
SAMHD1
PLEC

CFH

Cé

c5

Cc7

C8A

Cc8B

C8G

C9
SERPINH1
NME1
BDH1
OXCT1
CBX3
H1FO
H2AFY
HISTIH1A
HIST1H1B
HIST1H2BN

16197
16197
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
6952
19835
19835
19835
19835
19835
19835
19835
6333
6333
6333
6333
6333
6333
6333
6333
6333
6333

endosome transport

endosome transport

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

defense response

cytolysis

cytolysis

cytolysis

cytolysis

cytolysis

cytolysis

cytolysis

chromatin assembly or disassembly
chromatin assembly or disassembly
chromatin assembly or disassembly
chromatin assembly or disassembly
chromatin assembly or disassembly
chromatin assembly or disassembly
chromatin assembly or disassembly
chromatin assembly or disassembly
chromatin assembly or disassembly
chromatin assembly or disassembly
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NAP1L1 6333 chromatin assembly or disassembly

SET 6333 chromatin assembly or disassembly
CMPK1 6333 chromatin assembly or disassembly
MYH9 6928 cellular component movement

PTPN6 6928 cellular component movement

RBM3 6928 cellular component movement

CALD1 6928 cellular component movement

COL12A1 6928 cellular component movement

FLNB 6928 cellular component movement

TLN1 6928 cellular component movement

ACTR2 6928 cellular component movement

ANP32B 6928 cellular component movement

ARPC1B 6928 cellular component movement

ARPC2 6928 cellular component movement

ARPC3 6928 cellular component movement

ARPC5 6928 cellular component movement

CALU 6928 cellular component movement
ARHGAP1 6928 cellular component movement
ARHGDIA 6928 cellular component movement

HBB 6928 cellular component movement

HBD 6928 cellular component movement

HBE1 6928 cellular component movement

HMGB1 6928 cellular component movement

HSPB1 6928 cellular component movement

RAC1 6928 cellular component movement

CDH2 6928 cellular component movement

CNN1 6928 cellular component movement

TPM3 6928 cellular component movement

COL5A1 6928 cellular component movement

COMP 6928 cellular component movement

DECR1 6928 cellular component movement

FBLN1 6928 cellular component movement

FMOD 6928 cellular component movement

FN1 6928 cellular component movement

ACAN 6928 cellular component movement

APOA1 6928 cellular component movement

VCAN 6928 cellular component movement

KRT2 6928 cellular component movement

HMGB2 6928 cellular component movement
MRPS18B 6928 cellular component movement

CRK 6928 cellular component movement

KRT77 6928 cellular component movement

KRT79 6928 cellular component movement

CORO1C 6928 cellular component movement

MFGES8 6928 cellular component movement

CYCS 42773 ATP synthesis coupled electron transport
MT-ND1 42773 ATP synthesis coupled electron transport
MT-ND4 42773 ATP synthesis coupled electron transport
NDUFA9 42773 ATP synthesis coupled electron transport
NDUFB6 42773 ATP synthesis coupled electron transport
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NDUFB8
NDUFS1
NDUFS2
NDUFS3
NDUFS4
NDUFS7
NDUFV1
NDUFV2
SDHA
SDHB
SDHD
SUCLG2
UQCR10
UQCR11
UQCRB
UQCRC1
ALDH6A1
comMT
GOT2
HIBCH
IVD
MTHFD1
PACSIN3
PCCB
PDCD6IP
PTPN23
ACTC1
AHNAK
ANK1
ARPC4
EZR
PRKACB
PRKAR2A
SPTA1
TPT1
DBN1
CNN2
FSCN1
LCP1
FLNA
AK1
RCN1
ACO2
AK2
DLST
EFHD2
GOT1
IDH1
IDH3A
IDH3B

42773
42773
42773
42773
42773
42773
42773
42773
42773
42773
42773
42773
42773
42773
42773
42773
9310
9310
9310
9310
9310
9310
9310
9310
7015
7015
7015
7015
7015
7015
7015
7015
7015
7015
7015
7015
7015
7015
7015
7015
6103
6103
6103
6103
6103
6103
6103
6103
6103
6103

ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
ATP synthesis coupled electron transport
amine catabolic process

amine catabolic process

amine catabolic process

amine catabolic process

amine catabolic process

amine catabolic process

amine catabolic process

amine catabolic process

actin filament organization

actin filament organization

actin filament organization

actin filament organization

actin filament organization

actin filament organization

actin filament organization

actin filament organization

actin filament organization

actin filament organization

actin filament organization

actin filament organization

actin filament organization

actin filament organization

actin filament organization

actin filament organization
2-oxoglutarate metabolic process
2-oxoglutarate metabolic process
2-oxoglutarate metabolic process
2-oxoglutarate metabolic process
2-oxoglutarate metabolic process
2-oxoglutarate metabolic process
2-oxoglutarate metabolic process
2-oxoglutarate metabolic process
2-oxoglutarate metabolic process
2-oxoglutarate metabolic process
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IDH3G 6103 2-oxoglutarate metabolic process
MTAP 6103 2-oxoglutarate metabolic process
RRBP1 6103 2-oxoglutarate metabolic process
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