
SCUOLA DI DOTTORATO

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

Department of

 Informatics Systems and Communication

PhD program Computer Science Cycle XXX

IDENTIFYING AND EVALUATING

SOFTWARE ARCHITECTURE EROSION

Surname Roveda Name Riccardo

Registration number 723299

Tutor: Prof. Alberto Ottavio Leporati

Supervisor: Prof. Francesca Arcelli Fontana

Coordinator: Prof. Stefania Bandini

 ACADEMIC YEAR 2016/2017

C O N T E N T S

1 introduction 1

1.1 Main contributions of the thesis 2

1.2 Research Questions . 4

1.3 Publications . 5

1.3.1 Published papers . 5

1.3.2 Submitted papers . 6

1.3.3 To be submitted papers 6

1.3.4 Published papers not strictly related to the thesis 6

2 related work 8

2.1 Architectural smells definitions 8

2.2 Architectural smells detection . 19

2.3 Code smells and architectural smells correlations 20

2.3.1 Code smells correlations 20

2.3.2 Code smells and architectural smell correlations 21

2.4 Studies on software quality prediction and evolution 22

2.4.1 Studies on software quality prediction 22

2.4.2 Studies on software quality evolution 23

2.5 Technical Debt Indexes . 23

2.5.1 CAST . 24

2.5.2 inFusion . 25

2.5.3 Sonargraph . 26

2.5.4 SonarQube . 26

2.5.5 Structure101 . 27

2.6 Architectural smell refactoring 27

3 experience reports on the detection of architectu-
ral issues through different tools 29

3.1 Tools for evaluating code and architectural issues 29

3.2 Tool support for evaluating architectural debt 31

3.2.1 Evaluating the results inspection of the tools 32

3.2.2 Evaluating the extracted data by the tools 35

3.3 Detecting and repairing software architecture erosion 38

3.3.1 Detecting and Repairing Design Erosion with Sonar-
graph . 39

3.3.2 Detecting and Repairing Design Erosion with Struc-
ture101 . 45

3.3.3 Discussion and Lessons Learned 50

3.4 The impact evaluation of architectural problems refactoring . . 52

3.4.1 Study Setup . 53

3.4.2 Results . 55

3.4.3 Observations on the results 59

3.4.4 Threats of Validity . 59

3.5 Conclusions . 61

3.5.1 First Study of Section 3.2 61

contents iii

3.5.2 Second Study of Section 3.3 62

3.5.3 Third Study of Section 3.4 63

4 architectural smell detection through arcan 65

4.1 Architecture of Arcan . 65

4.2 Architectural Smells . 68

4.2.1 Cyclic Dependency (CD) 68

4.2.2 Unstable Dependency (UD) 69

4.2.3 Hub-Like Dependency (HL) 70

4.2.4 Specification-Implementation Violation (SIV) 71

4.2.5 Multiple Architectural Smell (MAS) 72

4.2.6 Implicit Cross Package Dependency (ICPD) 72

4.3 Conclusions . 74

5 evaluation and validation of arcan results 76

5.1 Initial evaluation of Arcan results 76

5.1.1 Unstable Dependency Smell Results 77

5.1.2 Hub-Like Results . 78

5.1.3 Cyclic Dependency Results 80

5.1.4 Implicit Cross Package Dependency Results 80

5.2 Architectural Smells Validation: An Industrial Case Study . . . 83

5.3 Architectural Smells Validation: A Mixed-Method Study 85

5.3.1 Study Variables and Data Extraction 86

5.3.2 Data Extracted to Answer the Research Questions 89

5.3.3 Empirical Study Results 89

5.3.4 Threats to Validity . 90

5.4 Conclusions . 91

6 empirical analysis with arcan 93

6.1 Architectural Smell Prediction and Evolution 93

6.1.1 Definition and setup of the case study 95

6.1.2 Results . 98

6.1.3 Threats to validity . 106

6.1.4 Conclusions . 107

6.2 Code smells and Architectural smells correlations 108

6.2.1 Background . 109

6.2.2 Case Study Design . 112

6.2.3 Data Collection . 113

6.2.4 Data Analysis . 115

6.2.5 Results . 116

6.2.6 Discussion . 120

6.2.7 Lessons Learned . 123

6.2.8 Threads to Validity . 124

6.2.9 Conclusions . 125

7 proposal of a new architectural debt index 126

7.1 Discussion on the main TDI features 126

7.2 A new Architectural Debt Index 129

7.3 Which Index should be defined? 129

7.4 An Architectural Debt Index . 131

7.4.1 ASIS . 132

contents iv

7.4.2 The ASIS evaluation . 134

7.4.3 History . 138

7.4.4 Architectural Debt Index evaluation 139

7.4.5 Architectural Debt Index Profiles 141

7.5 Conclusion . 142

8 architectural smells refactoring : a preliminary study144

8.1 Set up of the Study . 145

8.1.1 Analyzed Projects . 145

8.1.2 Data collection . 146

8.2 Architectural Smells Refactoring Results 147

8.2.1 Refactoring Results of the Hub-Like Dependency (HL)
smell . 149

8.2.2 Refactoring Results of the Unstable Dependency (UD)
smell . 149

8.2.3 Refactoring Results of the Cyclic Dependency (CD) smell150

8.2.4 Refactoring Results of all the three AS 151

8.2.5 Impact of Refactoring on Quality indexes 152

8.3 Discussion . 152

8.3.1 Hints on how to refactor the AS 152

8.3.2 Hints on how to improve the AS detection through Arcan153

8.3.3 Hints on which AS remove first 154

8.4 Threats to Validity . 154

8.4.1 Threats to Internal Validity 154

8.4.2 Threats to External Validity 155

8.4.3 Threats to Conclusion Validity 155

8.5 Conclusions Remarks . 155

9 conclusions and future developments 157

9.1 Conclusions . 157

9.2 Future Developments . 158

bibliography 161

a appendix 2

a.1 The analyzed projects . 2

L I S T O F F I G U R E S

Figure 3.1 Sonargraph - package exploration view 33

Figure 3.2 inFusion - SAP Breaker instance inspection 34

Figure 3.3 Sonargraph - Cycles view 36

Figure 3.4 SonarQube - dependency matrix among non-maven
modules . 37

Figure 3.5 Sonargraph - Example of cycle to cut in the Cycles
View on RepoFinder . 39

Figure 3.6 Sonargraph - Exploration view on RepoFinder 40

Figure 3.7 Sonargraph - Architecture Violations in RepoFinder . . 42

Figure 3.8 Structure101 - Structural over-complexity view on Ant 46

Figure 3.9 Structure101 - Exploration View on Ant 46

Figure 3.10 Structure101 - Architecture Diagram of Ant 47

Figure 3.11 S101 - Structural over-Complexity 60

Figure 4.1 Arcan Architecture . 66

Figure 4.2 Example of Git history log 67

Figure 4.3 Cycles shapes [2] . 69

Figure 4.4 Hub-Like Dependency smell example (on classes) . . . 71

Figure 4.5 Specific-Implementation Violation example 72

Figure 4.6 Implicit Cross Package Dependency example 73

Figure 5.1 Filtered Unstable Dependency Results 78

Figure 5.2 Example of Junit Hub-Like class 79

Figure 5.3 Commit of Tomcat by month and number of modified
Java files . 81

Figure 5.4 Max ICPD of Tomcat by month 81

Figure 5.5 Commit of JGit by month and number of modified
Java files . 81

Figure 5.6 Max ICPD of JGit by month 82

Figure 5.7 ICPD trend changes for Support and Strength in Tomcat 82

Figure 5.8 ICPD trend changes for Support and Strength in JGit . 83

Figure 5.9 Architecture Issues in the Dataset, a pie chart. 90

Figure 6.1 Evolution of architectural smells of Commons-Math
by month . 104

Figure 6.2 Evolution of architectural smells of JGit by month . . . 105

Figure 6.3 Evolution of architectural smells of JUnit by month . . 105

Figure 6.4 Evolution of architectural smells of Tomcat by month . 105

Figure 6.5 Data Collection Process 114

Figure 6.6 Number of packages infected by code smells or archi-
tectural smells . 117

Figure 6.7 Number of code smells and architectural smells per
package . 118

Figure 7.1 ADI workflow . 131

Figure 7.2 Example of AS evolution 138

list of figures vi

Figure 7.3 Evolution of ADI by project 139

Figure 8.1 Sonargraph indexes . 153

L I S T O F TA B L E S

Table 3.1 Tools feature overview 30

Table 3.2 Sonargraph results overview 36

Table 3.3 SonarQube results overview 37

Table 3.4 Sonargraph - Extracted metrics 40

Table 3.5 RepoFinder components definition patterns 41

Table 3.6 Ant components definition patterns 43

Table 3.7 Structure101 - Detected Tangles 48

Table 3.8 Density of tangled and fat item in Ant 48

Table 3.9 Density of tangled and fat item in RepoFinder 49

Table 3.10 Systems analyzed and refactored 53

Table 3.11 Metrics and Indexes measured for every system 56

Table 3.12 Architectural smells and Antipatterns detected on every
system . 57

Table 5.1 Analyzed Projects . 76

Table 5.2 Unstable Dependency Results 77

Table 5.3 Quartz Unstable Dependency Results 78

Table 5.4 Hub-Like Results . 78

Table 5.5 Cyclic Dependency Results 79

Table 5.6 Cyclic Dependency Results 80

Table 5.7 Analyzed Projects . 84

Table 5.8 Architectural Smells in the Analyzed Component . . . 84

Table 5.9 Detected Architectural Smells by Arcan 84

Table 5.10 Projects demographic data of the dataset 87

Table 5.11 Mapping between Concurrency Bugs and Architectu-
ral Smells . 88

Table 5.12 Krippendorff’s Alpha test results for mapping of Bug
and AS . 90

Table 6.1 F-measure and Accuracy results of machine learning
models . 99

Table 6.2 Prediction performance rule of CD Smell 101

Table 6.3 Prediction rules leading to addition of UD Smell 102

Table 6.4 Prediction rules leading to addition of ICPD Smell . . . 103

Table 6.5 Code Smells Taxonomy 112

Table 6.6 Projects Infected by Code Smells, category of Code
Smells or Architectural Smells 119

Table 6.7 Projects Infected by Cyclic Dependency architectural
smell (CD) and code smells (RQ1) 120

Table 6.8 Projects Infected by Hub-like Dependency architectu-
ral smell (HD) and code smells (RQ1) 121

Table 6.9 Projects Infected by Unstable Dependency architectu-
ral smell (UD) and code smells (RQ1) 122

list of tables viii

Table 6.10 Projects Infected by Multiple Architectural Smell (MAS)
and code smells (RQ1.1) 123

Table 6.11 Projects Infected by architectural smells (RQ2) or Mul-
tiple Architectural Smells (RQ2.1) and by categories of
code smells . 124

Table 7.1 Input information of Technical Debt Indexes used by
tools . 127

Table 7.2 Output of Technical Debt Indexes provided by tools . 127

Table 7.3 ADI’s components Quantile and value associated . . . 135

Table 7.4 Systems ADI computation and AS detection 136

Table 7.5 Projects selected for the ADI evolution evaluation . . . 139

Table 7.6 Evolution of ADI and TDI Index by project 140

Table 8.1 Analyzed Projects . 146

Table 8.2 Overall architectural smells in the analyzed systems
before and after the refactoring steps 148

Table 8.3 Structure 101 - Structural over-complexity index com-
ponents . 152

Table A.1 Number of Architectural Smells, Group of Code smells
and Code smells infecting the analyzed projects 3

A C R O N Y M S

API Application Programming Interface

AS Architectural Smell (See Chapter 2)

TD Technical Debt (See Section 2.5)

TDI Technical Debt Index (See Section 2.5)

1
I N T R O D U C T I O N

It is an established fact that good software architecture and design lead
to better evolvability, maintainability, availability, security, software cost re-
duction and more [24]. Conversely, when that architecture and design pro-
cess are compromised by poor or hasted design choices, the architecture is
often subject to different architectural problems or anomalies, that can lead
to software faults, failures or quality downfalls such as a progressive archi-
tecture erosion [58, 144].

Van Gurp et al. said that systems erode over time when they evolve [57]
bringing architectural erosion and degradation [58] to the applications, and
the challenge to keep the intended architecture aligned with code is still
hard when software engineers must deal with obsolescence and mainte-
nance. In order to combat obsolescence and rigidity of designs, the metaphor
of Technical Debt (TD) introduced by Cunningham [42] to explain the causes
and need of refactoring covers an important role for software maintenance.
As defined by Suryanarayana et al. [149], Design debt is concerned with the
design evolution and trade-off decisions made during the architecting and
implementation phases, and has to be repaid during maintenance. Today,
the ways for identifying the most visible TD symptoms are several [75, 89,
118], e.g., smells, metrics and violations of different kings and at different
levels. Software designers must identify and estimate the size of the debt to
be repaid to yield more sustainable architectures [77]. As stated by Letou-
zey and Ilkiewicz [86], there is no exact method to estimate TD because its
calculation should be based on all the violations to be fixed. Nevertheless,
the cost of fixing design violations sometimes exceeds the allocated budget.
Thus, the estimated cost of the debt is often based on the severity of the
design/code violations and the cost of their repair.

Most methods attempt to estimate the debt and software quality based
on source code analysis, often related to specific quality characteristics [66],
but there is a need for more approaches focused on identifying and estima-
ting the debt at architectural level. Different tools provide support in this
direction, even if they often offer too much information. For example, a
huge number of different quality metrics is often reported. Their interpreta-
tion is difficult, and deciding how to improve the system by simply relying
on the metrics values is very hard. Moreover, many of the proposed views
are often completely incomprehensible. It would be also useful if the tools
could provide some kind of prioritization of the problems to be removed
and suggestions to improve the architectural degradation. Among the dif-
ferent problems, we can identify, e.g., code smells, architectural smells and
possible relations among them that could be investigated to find the patterns
of smells leading to architectural problems [7, 99].

1.1 main contributions of the thesis 2

Code smells have been defined by Fowler et al. [48] as symptoms of pos-
sible problems that can be removed through refactoring steps. Other defini-
tions of smells have been proposed in the literature, as for example those of
Lanza and Marinescu [80], of Kerievsky [73], and Wake [160].

Code smells are problems relying code level, while architectural smells
(AS) are their natural counterpart at architectural level. As defined by Garcia
et al. [52], “An Architectural smell is a commonly used architectural decision A first definition of

Architectural Smellthat negatively impacts system quality. Architectural smells may be caused
by applying a design solution in an inappropriate context, mixing design
fragments that have undesirable emergent behaviours, or applying design
abstractions at the wrong level of granularity.”

However this definition rises two questions: are both internal and external
quality considered? Which decisions cause architectural smells? Trying to answer
this questions, I propose an enhanced AS definition: “An architectural smell My definition of

Architectural Smellis a commonly used architectural decision, intentional or not intentional,
that negatively impact internal system quality”. Hence, architectural smells
can have a large effect on software maintainability [93].

For what concerns code smells and metrics, many tools have been develo-
ped, both open source and commercial ones. Architectural smells received
less attention, even if some tools have been developed [17], see Section 2.2.

1.1 main contributions of the thesis

The main contributions of the thesis are: 1) the development of Arcan, a tool
for architectural smells detection on Java projects, 2) the validation of Arcan
results, 3) different empirical analysis on architectural smells related to ar-
chitectural smells prediction, and the possible correlations existing between
architectural smells and code smells, 4) the definition of a new architectural
smells index.

Before introducing Arcan I report three experiences, described in Chap-
ter 3, which aim to evaluate architectural erosion through different available
tools.

The first experience [11] was performed using three known tools to cap-
ture information that can be useful to identify and evaluate the architectural
debt of an application; I outlined the main differences among these tools and
the results they produce by analyzing a project. The second experience [16]
has been done using two tools to analyze 2 projects in order to detect pro-
blems that could cause architecture degradation, and in repairing some of
these problems directly through the support of the tools, e.g., by removing
cyclic dependencies, or by manually changing the code to remove some ar-
chitectural violations. The third experience consisted in repairing and remo-
ving architectural smells and antipatterns on 4 open source projects [18], by
monitoring the impact on different Technical Debt (TD) indexes using four
tools.

1.1 main contributions of the thesis 3

In Chapter 4, I described the design of Arcan and explained its architec-
ture. Since Arcan analyzes compiled Java projects, Arcan reconstructs them
from class files. Arcan represents the analyzed projects through their de-
pendency graph which can be stored using a graph database. Moreover,
the graph could be useful to identify possible refactoring opportunities of
an architectural smell. I defined the algorithms to detect the architectural
smells and I focused my attention on the detection of six dependency-based
architectural smells, i.e., architectural smells detected using the dependency
graph. I exploited techniques to detect one architectural smell using the
project’ development history data obtained through the Versioning Control
Systems. This smell is called Implicit Cross Package Dependency and re-
veals hidden dependencies (such as co-changes) among files which are not
belonging to the same package. Finally, the tool has been validated through
three different case studies [17, 19, 135] described in Chapter 5.

In Chapter 6, I studied the development history of 4 projects. By applying
machine learning techniques, I identified that it is possible to predict archi-
tectural smells by using the architectural smells which are present in the
past. I discovered that changes made in past can lead to introduction of
new architectural smells, while other factors like the number of developers
do not lead to the introduction of a new architectural smell. The study of
the evolution of architectural smells overtime has shown an increasing trend
and a visual correlation was discovered among different types of architec-
tural smell during the development history. Moreover, I conducted a large-
scale empirical study to investigate the relations between code smells and
architectural smells, and to understand if code smells affect the presence of
architectural smells and vice versa. I found empirical evidence on the inde-
pendence between code smells and architectural smells [135] and therefore,
I can formulate that the presence of code smells does not imply the presence
of architectural smells.

In Chapter 7, I proposed and validated a new Architectural Debt Index
(ADI) focused on the evaluation of the severity of the architectural smells in
a project, as outlined in [10]. The index computation takes into account a)
the number of architectural smells in a projects, b) the severity of the archi-
tectural smells, which is defined according to their type and c) the history
of the smells, which indicates the impact of the architectural smell presence.
The ADI can be used to compare different projects and their quality during
their evolution. I also proposed a profile-oriented ADI computation, based
on the ISO/IEC 25010:2011 standard [65], where the architectural smells can
be grouped according to the affected quality attribute. I outlined that the
ADI can be used to identify the most critical classes or packages in the pro-
jects; in this way, the developer/maintainer can easily identify and focus his
attention on the most critical classes or packages.

In Chapter 8, I described a preliminary case study on architectural smells
refactoring that allowed to identify a series of refactoring opportunities for

1.2 research questions 4

the architectural smells detected in a project and allowed to study the impact
of the performed refactoring on selected quality metrics and indexes.

1.2 research questions

In the thesis I aim to answer the following Research Questions:

• Arcan Results Validation
According to architectural smell detection validation described in Chap-
ters 4 and 5, from a first validation of the tool in two industrial projects,
I received a positive evaluations and useful feedbacks from the develo-
pers of Arcan. Hence, I tried to answer these research questions:

rq1 Is Arcan exhaustive in architectural smells detection?

rq2 Is Arcan correct in its architectural smells detection?

• Empirical Analysis with Arcan
According to the empirical studies described in Chapter 6, I answe-
red some research questions related to the prediction of architectural
smells and another related to the possible correlations between code
smells and architectural smells:

rq3 Can we use the presence of architectural smells in the project’s history
to predict the presence of architectural smells in the future?
According to this topic I answered other three RQs described in
detail in Chapter 6.1.

rq4 Is the presence of an architectural smell independent from the presence
of code smells?
According to this topic I answered other three RQs described in
detail in Chapter 6.2.

• Technical Debt Index
According to the index described in Chapter 7, I tried to answer some
research questions in order to define a new Architectural Debt Index:

rq5 How should a new index be formulated to better represent the architec-
tural debt?
According to this topic I answered other two RQs described in
detail in Chapter 7.

• Architectural Smell Refactoring
According to the refactoring of architectural smells, I tried to answer a
research question related to the detection of refactoring recommenda-
tion opportunities of architectural smell:

rq6 How often can refactoring opportunities and/or recommendation be iden-
tified for architectural smells?
According to this topic I answered other three RQs described in
detail in Chapter 8.

1.3 publications 5

1.3 publications

The lists of published, submitted or unsubmitted papers with the linked RQs
are reported in the following.

1.3.1 Published papers

I. Tollin, F. Arcelli Fontana, M. Zanoni, and R. Roveda, “Change Prediction
through Coding Rules Violations”, in Proceedings of the 21st International
Conference on Evaluation and Assessment in Software Engineering, EASE
2017, Karlskrona, Sweden, June 15-16, 2017, pp. 61–64.

related rq : RQ3

F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. A. Tamburri, M. Zanoni, and
E. D. Nitto, “Arcan: A Tool for Architectural Smells Detection”, in 2017
IEEE International Conference on Software Architecture Workshops, ICSA
Workshops 2017, Gothenburg, Sweden, April 5-7, 2017, pp. 282–285.

related rq : RQ1, RQ2

F. Arcelli Fontana, R. Roveda, M. Zanoni, C. Raibulet, and R. Capilla, “An
Experience Report on Detecting and Repairing Software Architecture
Erosion”, in 13th Working IEEE/IFIP Conference on Software Architecture,
WICSA 2016, Venice, Italy, April 5-8, 2016, pp. 21–30.

related rq : RQ6

F. Arcelli Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic
Detection of Instability Architectural Smells”, in 2016 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2016, Raleigh,
NC, USA, October 2-7, 2016, pp. 433–437.

related rq : RQ1, RQ2

F. Arcelli Fontana, R. Roveda, S. Vittori, A. Metelli, S. Saldarini, and F.
Mazzei, “On evaluating the impact of the refactoring of architectural
problems on software quality”, in Proceedings of the Scientific Workshop
Proceedings of XP2016, Edinburgh, Scotland, UK, May 24, 2016, p. 21.

related rq : RQ6

F. Arcelli Fontana, R. Roveda, and M. Zanoni, “Technical Debt Indexes
Provided by Tools: A Preliminary Discussion”, in 8th IEEE International
Workshop on Managing Technical Debt, MTD 2016, Raleigh, NC, USA,
October 4, 2016, pp. 28–31.

related rq : RQ5

F. Arcelli Fontana, R. Roveda, and M. Zanoni, “Tool support for evaluating
architectural debt of an existing system: an experience report”, in Pro-
ceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa,
Italy, April 4-8, 2016, pp. 1347–1349.

1.3 publications 6

F. Arcelli Fontana, V. Ferme, M. Zanoni, and R. Roveda, “Towards a pri-
oritization of code debt: A code smell Intensity Index”, in 7th IEEE
International Workshop on Managing Technical Debt, MTD@ICSME 2015,
Bremen, Germany, October 2, 2015, pp. 16–24.

related rq : RQ5

1.3.2 Submitted papers

The list of submitted papers:

R. Roveda, F. Arcelli Fontana, I. Pigazzini, M. Zanoni and P. Avgeriou, “A
Study on Architectural Smells Prediction and Evolution”, Submitted to
Research Track of 34th IEEE International Conference on Software Mainte-
nance and Evolution, (ICSME 2018), Madrid, Spain, 2018, IEEE.

related rq : RQ3

F. Arcelli Fontana, R. Roveda, V. Leonarduzzi and D. Taibi, “Are Archi-
tectural Smells Independent from Code Smells? An Empirical Study”,
Submitted Journal of Information and Software Technology (IST), 2018, Else-
vier.

related rq : RQ4

R. Roveda, F. Arcelli Fontana, I. Pigazzini and M. Zanoni, “Towards an Ar-
chitectural Debt Index”, Submitted to TechDebt 2018 International Confe-
rence on Technical Debt, co-located with ICSE 2018, (TechDebt 2018), 2018,
Gothenburg, Sweden, ACM SIGSOFT/IEEE TCSE.

related rq : RQ5

1.3.3 To be submitted papers

List of papers that have to be submitted:

R. Roveda, F. Arcelli Fontana and D. A. Tamburri, “Automated detection
and Evaluation of Architectural Smells: a Mixed-Methods Study”, To
be submitted.

related rq : RQ1, RQ2

R. Roveda, F. Arcelli Fontana, M. Zanoni, “Refactoring of Architectural
Smells Detected with Arcan: Lessons Learned”, To be submitted.

related rq : RQ6

1.3.4 Published papers not strictly related to the thesis

The list of papers not directly related to the main topics of the thesis:

F. Arcelli Fontana, R. Roveda, and M. Zanoni, “Discover Knowledge on
FLOSS Projects Through RepoFinder”, in KDIR 2014 - Proceedings of the

1.3 publications 7

International Conference on Knowledge Discovery and Information Retrieval,
Rome, Italy, 21 - 24 October, 2014, pp. 485–491.

F. Arcelli Fontana, R. Roveda, and M. Zanoni, “A System for the Discovery
and Selection of FLOSS Projects”, ERCIM News, vol. 2014, no. 97, 2014.

F. Arcelli Fontana, P. Braione, R. Roveda, and M. Zanoni, “A Context-
Aware Style of Software Design”, in 2nd IEEE/ACM International Works-
hop on Context for Software Development, CSD 2015, Florence, Italy, May
19, 2015, pp. 15–19.

R. Roveda, F. Arcelli Fontana, C. Raibulet, M. Zanoni, and F. Rampazzo,
“Does the Migration to GitHub Relate to Internal Software Quality?”,
in ENASE 2017 - Proceedings of the 12th International Conference on Evalu-
ation of Novel Approaches to Software Engineering, Porto, Portugal, April
28-29, 2017, pp. 293–300.

2
R E L AT E D W O R K

In this section I will introduce the related work on the different areas/topics
addressed in my thesis:

• Architectural Smells Definitions;

• Architectural Smells Detections;

• Code Smell and Architectural Smells Correlations

• Technical Debt Indexes;

• Architectural Smells Refactoring.

2.1 architectural smells definitions

Different AS have been defined in the literature by different authors as pre-
viously outlined. In this section, it is provided a short definition of all the
architectural smells that I found in the literature. In most of the works, the
authors refer to this type of smell as architectural smell, in one case they
are called design smells [149], Model View Controller smells [4] or Hotspot
pattern [114].

Architectural Smells of Lippert at al.

Lippert et al. [93] classified 30 architectural smells into the following five
categories: smells in Dependency Graphs, in Inheritance Hierarchies, in
Packages, in Subsystems, and in Layers. They essentially considered depen-
dency and inheritance issues and aspects related to dimension with respect
to packages, subsystems and layers. In particular, they defined the following
AS:

• Smells in Dependency Graph are related to classes coupled through use
dependency. The use relations among the classes of the system are re-
lated to the static dependency graph. In the following the architectural
smells of this category:

– Obsolete classes: classes that are no longer in use will burden the
system with obviously obsolete functionality. Not only single clas-
ses can be no longer in use, but also entire dependency graphs
whether all the classes on the entire dependency graphs are not
used.

– Tree-like Dependency Graph: tree-like dependency graphs indicate
a functional decomposition of the system. Each class of the tree is
used by exactly one other class. Reuse does not happen.

2.1 architectural smells definitions 9

– Static Cycle in Dependency Graph: two classes using each other
constitute the simplest imaginable cycle in a dependency graph.
More complex cycles can also include various classes.

– Visibility of Dependency Graph: it arise when the principles of en-
capsulation and of information hiding is not applied correctly, i.e.,
the internal implementation is hidden behind an interface. A sy-
stem with a public dependency graph will create more problems
if one tries to change it, whereas changes to a private dependency
graph will only have local effects.

• Smells in Inheritance Hierarchies are related to Object-Oriented (OO) in-
heritance coupling between classes. The coupling via inheritance pro-
vides the advantage of polymorphism (the ability to adopt multiple
shapes). During run-time, objects of different types can stand behind
one identifier. This is made possible through polymorphic assign-
ments. If an object is bound to a variable, this object must not necessa-
rily possess this particular variable type. It is sufficient if the object’s
type is a subtype of the variable type. Inheritance also results in a clo-
ser coupling than use. This is why inheritance hierarchy problems are
quite severe: due to the close coupling of the classes in the hierarchy,
problems will be passed on from superclasses to their subclasses. In
the following the architectural smells of this category:

– Type queries: the inheritance relation expresses itself not only in
the classes of the inheritance hierarchy, but in the clients too. It
violate the Once and Only Once principle.

– List-like Inheritance Hierarchy: in a list-like inheritance hierarchy
each class possesses a maximum number of one subclass. Such
inheritance hierarchies either point to speculative generalizations
or to too big classes. Speculative generalization means that super-
classes were implemented for a definitely required class in hopes
that the created abstraction might come in handy later on. This
situation occurs quite often when the class hierarchy only consists
of two classes.

– Subclasses Do Not Redefine Methods: if subclasses don’t redefine
methods of their superclass, this can indicate that no abstraction
is expressed through inheritance and pure implementation inher-
itance. Often a uses relation between classes will turn out to be
more effective.

– Inheritance Hierarchies Without Polymorphic Assignments: similar to
the Subclasses Do Not Redefine Methods smell, inheritance hierar-
chies without their respective polymorphic assignments point to
the presence of unnecessary generalizations. The most significant
advantage of inheritance as opposed to use is its flexibility, which
is achieved through polymorphism. If no polymorphic assign-
ments exist, this flexibility will not be used, and inheritance can
be replaced by uses relations.

2.1 architectural smells definitions 10

– Parallel Inheritance Hierarchies: when two or more classes inheri-
tance hierarchies grow together because they are dependent. For
example, an existing domain-specific inheritance hierarchy bet-
ween the business objects Partner, Customer and Supplier. Part-
ners, customers and suppliers should be displayed on the UI level
in list form. Thus, one view class exists for each of the three bu-
siness object classes. These view classes inherit from each other
according to the business object classes’ hierarchy.

– Too Deep Inheritance Hierarchy: deep inheritance hierarchies can
result in extremely flexible systems. Unfortunately, at the same
time the system’s understandability and the adaptability of its
inheritance hierarchies suffers. If inheritance takes place across 10

levels, it is almost impossible to determine which implementation
of a method is called by reading the code.

• Smells in Packages (e.g. smell related to Java packages):

– Unused Packages: packages that are not in use burden the system
with clearly obsolete functionality

– Cycles between Packages: cycles between packages can be created
through use, inheritance or through a combination of use and
inheritance

– Too Small Packages: packages with one or two classes are often not
worth the effort of introducing them: the complexity created by
the package is not offset by its additional structuring. Such too
small packages can easily be removed through relocation of their
classes to other packages. However, one must make sure that in
this process no new cycles between packages are created.

– Too Large Packages: packages with a high number of classes can
be handled much easier if they are broken down into several sub-
packages. This will especially lead to their better understandabi-
lity. Sometimes too large packages indicate missing subsystems.
The creation of a subsystem from a too large package can solve
this problem – for instance, if one splits the initially too large
package into an interface package and one or more implementa-
tion packages.

– Package Inheritance Unbalanced: similarly to inheritance hierarchies,
shallow package hierarchies are easier understandable than deep
ones.

– Package Not Clearly Named: especially packages containing clas-
ses that are not domain-oriented are often named ambiguously,
and assigning of identical names occurs. Ambiguously named
packages frequently indicate that the developers had no real un-
derstanding of what’s inside the packages, so it will come as no
surprise if such packages contain classes with workarounds or
were simply created by mistake.

2.1 architectural smells definitions 11

• Smells in Subsystems (i.e., a collection of packages):

– No Subsystems: from a certain size on, a system’s structure – if
it is exclusively defined on the package level – will become in-
creasingly incomprehensible. If the system consists of more than
100 packages, for example, it is extremely difficult to recognize
and define the structure between the packages and to maintain it
consistently.

– Subsystem Too Large: the subsystem are incomprehensible and con-
taining too many concerns. In many cases, the occurrence of very
large subsystems is accompanied by a loss of clarity: the subsy-
stem is no longer responsible for a single task, but it also takes on
concerns in other areas.

– Subsystems Too Small: too small subsystems shift complexity from
subsystems into the dependencies among the subsystems them-
selves. In the most extreme case, each class represents its own
subsystem. Obviously this will not lead to a reduction of com-
plexity, instead developers are confronted with an impracticable
tangle of dependencies between subsystems.

– Too Many Subsystems: if a system consists of many more than 30

subsystems without further grouping, the understandability of
the system will be seriously impaired. This many subsystems
and their interrelations can no longer be handled.

– Subsystems-API Bypassed: the abstract public interface are defined
to access and use a subsystem. Experience shows that such con-
ventions are bypassed under pressure, e.g. lack of project time –
either by mistake or on purpose. Bypassing the subsystem-API
and directly accessing the internal implementation of the compo-
nent is a practice that is not only common, but also potentially
fatal.

– Subsystems-API Too Large: when the API of subsystem becomes
too large in relation to the implementation, the main purpose of
the subsystems is not served. A major part of the system will be
visible to all other subsystems. Therefore, no significant complex-
ity reduction has been achieved.

– Cycles Between Subsystems: cycles between subsystems can be cre-
ated via use, inheritance or through a combination of use and
inheritance

– Overgeneralization: In order to assure that subsystems provide
the greatest extent of reusability, they must be flexibly applicable.
This generalization can be overdone though, which will result in
the subsystem’s over-generalization. It will become more flexible
than it actually needs to be. Not only does this lead to additional
subsystem development work; it also makes using the subsystem
more difficult. Over-generalization occurs when the clients – in re-

2.1 architectural smells definitions 12

lation to the size of the used subsystems – require a large amount
of code.

• Smells in Layers, ordered group of subsystems:

– No Layers: layers are not defined and there is no ordering between
the subsystems.

– Cycles (Upward References) between Layers: if a layer uses a higher
located layer, the basic principle of layering has been ignored.

– Strict Layers Violated: since the common programming languages
do not provide concepts for the definition of layers, layers must be
built based on conventions. In this scenario, one cannot reliably
prevent that strict layers are violated. It can always happen that a
layer skips the one directly beneath it and accesses a layer further
below instead, be it accidentally or on purpose

– Inheritance between Protocol-oriented Layers: inheritance between
protocol-oriented layers is not allowed. Otherwise a stricter than
desirable coupling would occur. In particular it would become im-
possible to re-implement the layer that inherited in a non-object-
oriented programming language later on. Moreover, inheritance
generally restricts the alterability of the lower layer, because chan-
ges to the superclasses can only to a certain extent be hidden from
subclasses

– Too Many Layers: the existence of many layers can create unneces-
sary indirections: one indication of unnecessary indirections are
dumb delegations: one method simply invokes another method
without implementing any functionality of its own.

– References between Vertical Separated Layers: layers can be arranged
also vertically. This is often done to structure separate products or
business sections. For example, a product line is a set of software
systems that share a common basis. Besides using the same ba-
sis, no further references between these systems are allowed. Re-
ferences between vertically separated layers create dependencies
between layers. Thus the purpose of product lines a) Delivery, a
vertical layers shall be deliverable and applicable independently
from each other; b) Parallel development, for each single vertical
layer one team shall be responsible, which does not have to confer
with other layer teams regarding changes.

They essentially considered dependency and inheritance issues and as-
pects related to small/large size respect to packages, subsystems and layers.

Architectural Smells of Suryanarayana et al.

Suryanarayana et al. [149] classify a number of recurring structural design
smells based on how they violate key Object-Oriented (OO) design princi-
ples of the PHAME “design principles” of Booch’s object model [29] (Prin-
ciple of Hierarchy, Abstraction, Modularity and Encapsulation). Based on

2.1 architectural smells definitions 13

that model, they defined and organized design smells in 4 categories: ab-
straction smells, encapsulation smells, modularization smells and hierarchy
smells. In the following, each category and the contained design smells are
described.

Abstraction Smells These smells violate techniques for applying the prin-
ciple of abstraction, e.g., ensure coherence and completeness, assign single
and meaningful responsibility, and avoid duplication. The principle of ab-
straction advocates the simplification of entities through reduction and ge-
neralization: reduction is by elimination of unnecessary details and gene-
ralization is by identification and specification of common and important
characteristic.

• Duplicate Abstraction arises when two or more abstractions have identi-
cal names, identical implementations, or both.

• Imperative Abstraction arises when an operation is turned into a class;

• Incomplete Abstraction arises when an abstraction does not support com-
plementary or interrelated methods completely;

• Missing Abstraction arises when clumps of data or encoded strings are
used instead of creating a class or an interface;

• Multifaceted Abstraction arises when an abstraction has more than one
responsibility assigned to it;

• Unnecessary Abstraction occurs when an abstraction which is actually
not needed (and thus could have been avoided) is introduced in a soft-
ware design;

• Unutilized Abstraction arises when an abstraction is left unused (either
not directly used or not reachable);

Encapsulation Smells These smells violate the encapsulation principle, e.g.,
hiding implementation details and hiding variations. The principle of encap-
sulation advocates separation of concerns and information hiding through
techniques such as hiding implementation details of abstractions and hiding
variations.

• Deficient Encapsulation occurs when the declared accessibility of one
or more members of an abstraction is more permissive than actually
required;

• Leaky Encapsulation arises when an abstraction “exposes” or “leaks” im-
plementation details through its public interface;

• Missing Encapsulation occurs when the encapsulation of implementa-
tion variations in a type or hierarchy is missing;

2.1 architectural smells definitions 14

• Unexploited Encapsulation arises when client code uses explicit type
checks (using chained if-else or switch statements) instead of exploi-
ting the variation in types encapsulated within a hierarchy.

Modularization Smells These smells violate techniques for applying the
principle of modularization, e.g., localize related data and methods, decom-
pose abstractions to manageable size, create acyclic dependencies and limit
dependencies. The principle of modularization advocates the creation of
cohesive and loosely coupled abstractions through techniques such as locali-
zation and decomposition.

• Broken Modularization arises when data and/or methods that ideally
should have been localized into a single abstraction are separated and
spread across multiple abstractions;

• Insufficient Modularization arises when an abstraction (such as a class or
interface) exists that has not been completely decomposed and a furt-
her decomposition could reduce its size, implementation complexity,
or both;

• Cyclically-Dependent Modularization arises when two or more abstracti-
ons depend on each other directly or indirectly, creating a tight cou-
pling between the abstractions;

• Hub-like Modularization arises when an abstraction has dependencies
(both ingoing and outgoing) with a large number of other abstractions.

Hierarchy Smells These smells violate techniques for defining proper ab-
straction hierarchies, e.g., apply meaningful classification, ensure substituta-
bility, avoid redundant paths, and ensure proper ordering. The principle of
hierarchy advocates the creation of a hierarchical organization of abstracti-
ons using techniques such as classification, generalization, substitutability
and ordering.

• Missing Hierarchy arises when a code segment uses conditional logic to
explicit manage variation in behaviour, where a hierarchy could have
been created and used to encapsulate those variations;

• Unnecessary Hierarchy arises when the whole inheritance hierarchy is
unnecessary, indicating that inheritance has been applied needlessly
for the particular design context;

• Unfactored Hierarchy arises when there is unnecessary duplication among
types in hierarchy;

• Wide Hierarchy arises when an inheritance hierarchy is “too” wide in-
dicating that some intermediate types may be missing;

• Speculative Hierarchy arises when one or more types in a hierarchy are
provided speculatively, for future use;

2.1 architectural smells definitions 15

• Deep Hierarchy arises when an inheritance hierarchy is “excessively”
deep;

• Rebellious Hierarchy arises when a subtype rejects the methods provided
by its supertype;

• Broken Hierarchy arises when a supertype and its subtype conceptually
do not share an “IS-A” relationship resulting in broken substitutability;

• Multipath Hierarchy arises when a subtype inherits both directly and
indirectly from a supertype, leading to unnecessary inheritance paths
in the hierarchy;

• Cyclic Hierarchy arises when a supertype in a hierarchy depends on any
of its subtypes.

Architectural Smells of Macia

Macia [98] analysed different architectural smells, as those defined in the
following:

• Ambiguous Interface: The interface offers only a single general entry-
point and, hence, it can handle more requests than it should actually
process.

• Component Concern Overload (Component Responsibility Overload): A
component is responsible for realizing two or more unrelated systems
concerns.

• Connector Envy: A component realizes functionality that should be as-
signed to a connector.

• Cyclic Dependency: A relation between two or more architectural ele-
ments that depend on each other either directly or indirectly.

• Extraneous Connector: occurs when two connectors of different types
are used to link a pair of components. The problem is that the bene-
ficial effects of each individual connector may cancel each other out.
This smell is also known as Extraneous Adjacent Connector [52].

• Feature concentration: opposes the properties in the Scattered Functiona-
lity smell by implementing different functionalities in a single design
construct. Such decision might also be accompanied by the definition
of only one generic entry point for a component, indicating the occur-
rence of the ambiguous interfaces smell.

• Overused Interface: Interface that requires a lot of data or is required by
several interfaces.

• Redundant Interface: Interface that requires the same information of
other interfaces.

• Scattered (Parasitic) Functionality: A high-level concern is spread over
multiple modules that implement different concerns.

2.1 architectural smells definitions 16

Architectural Smells of Garcia et al.

Garcia et al. [52] defined the Connector Envy, Scattered Functionality, Am-
biguous Interface and Extraneous Connector also defined by Macia above.
They provide a description of each AS, with a section on the Quality Impact
and Trade-offs and a generic schematic view of each smell captured in one
or more UML diagrams. They assert that architects can manually use such
diagrams to inspect their own designs to look for architectural smells.

Architectural Smells of Kazman at al.

Kazman et al. [72] and Mo et al. [114] have defined five AS, four defined at
file level and one at package level, that they call Hotspot Patterns. These
AS have been defined in the context of the authors’ research on Design Rule
Spaces (DRSpaces) [162].

• Unstable Interface: when a leading file is changed frequently with other
files in the revision history.

• Implicit Cross-module Dependency: based on the concept of true modules,
this pattern aims to reveal hidden dependencies connecting modules
that appear to be mutually independent. Files belong to different in-
dependent modules in the Design Rule Hierarchy clustering, but are
changed together frequently. This pattern represents a kind of modu-
larity violation.

• Unhealthy Inheritance Hierarchy: it detects hierarchical structures that
violate either design rule theory or the Liskov Substitution principle.

• Cross-Module Cycle: when there is a dependency cycle and not all the fi-
les belong to the same module; the smell addresses a proper definition
of a hierarchy structure among modules.

• Cross-Package Cycle: related to forming a proper hierarchy structure
among packages. A cycle among packages is typically considered to
be harmful.

Implicit Cross-module Dependency and Unstable Interfaces cannot be de-
tected by examining a single version of a code base, but its history.

Architectural Smells of Marinescu

Marinescu et al. [106, 108] defined three AS:

• Cyclic Dependency refers to a subsystem (component) that is involved in
a chain of relations that break the desirable acyclic nature of a subsys-
tems dependency structure. The subsystems involved in a dependency
cycle can be hardly released, maintained or reused in isolation.

2.1 architectural smells definitions 17

• Stable Abstraction Breaker is a subsystem (component) for which its sta-
bility level is not proportional with its abstractness. This usually me-
ans that the incoming dependencies that make a subsystem stable are
not directed towards interfaces and abstract classes, but rather towards
concrete implementation classes. As a result, such subsystems are in
a “zone of pain” in which it becomes impossible to extend subsystems
without changing them.

• Unstable Dependency describes a subsystem (component) that depends
on other subsystems that are less stable than itself. In this context, sta-
bility refers to the balance between the incoming and outgoing depen-
dencies of a subsystem: many incoming dependencies make the subsy-
stem more stable, while a large number of outgoing dependencies in-
crease the chances that the subsystem may have to change. Subsystems
affected by this flaw may cause a ripple effect of changes in the system.

Architectural Smells of Le et al.

Le et al. [83, 84] proposed the detection techniques and a classification fra-
mework of architectural smells composed by 11 architectural smells and 4

categories: concern-based smells, dependency-based smells, interface-based
smells and coupling-based smells. 7 architectural smells are new, since the
other AS were defined previously by Macia and Garcia.

• Interface-Based Smell, which emerge from carelessly defined component
interfaces:

– Unused Interface is an interface of a component that is linked with
no other components. That interface adds unnecessary complex-
ity to a software system which, in turn, hinders software mainte-
nance.

– Unused Brick is a component, whose interfaces are all unused in-
terfaces. Similar to Unused Interface smell, Unused Brick adds
unnecessary complexity to a system which, in turn, hinders main-
tenance.

– Sloppy Delegation occurs when a component delegates to another
component a small amount of functionality that it could have
performed itself. In particular, a component could perform that
functionality itself if all the data it needs to perform that functi-
onality is part of that component’s state. This inappropriate se-
paration of concerns complicates the functionality of the system
which, in turn, hinders maintenance of that system.

– Brick Functionality Overload occurs when a component performs
an excessive amount of functionality. Excessive functionality is
another form of inappropriate modularity in a software system,
which violates the principles of separation of concerns and isola-
tion of change.

2.1 architectural smells definitions 18

– Lego Syndrome occurs when a component handles an extremely
small amount of functionality. This smell represents components
that are excessively small and do not represent an appropriate
separation of concerns. Then, such components should be moved
into another component.

• Change-Based Smells refers to a sets of components changing together:

– Duplicate Functionality affects a component if the component shares
the same functionality with other components. Changing one in-
stance of the functionality without changing the others may create
errors. Duplicated functionality increases complexity by causing
any changes to one instance of the functionality to possibly re-
quire changes in the other instances.

– Logical Coupling occurs when a part of a component has logical-
coupling with another part in another component. Two parts have
logical-coupling if they are frequently changed together in many
code commits of developers. Logical-coupling could be identified
by mining commit logs. This smell also increases system complex-
ity like Duplicate Functionality.

Architectural Smells of Aniche et al.

Aniche et al. [4] provided a catalogue of six smells that are specific to web
systems that rely on the MVC pattern [78] (Model View Controller pattern),
where Controllers are classes for responsible to control the flow between the
view and the model layers. Commonly, these classes represent an endpoint
for other classes, do not contain state, and manage the control flow. Besi-
des being possibly affected by “traditional smells” (e.g., God Classes), good
programming practices suggest that Controllers should not contain complex
business logic and should focus on a limited number of services offered to
the other classes. Similarly, Data Access Object (DAO) classes [49] in MVC
applications are responsible for dealing with the communication towards the
databases. These classes, besides not containing complex and long methods
(traditional smells) should also limit the complexity of SQL queries residing
in them. The defined smells are:

• Brain Repository: the smell is defined as “Complex logic in the reposi-
tory”. Repositories are meant to deal with the persistence mechanism,
such as databases. However, when Repositories contain complicated
(business) logic or even complex queries, it is considered a smelly class.

• Fat Repository: the smell is defined as “a Repository managing too
many entities”. Commonly, there is a one-to-one relation between
an Entity and a Repository, e.g., the entity Item is persisted by Item-
repository. If a Repository deals with many entities at once, this may
imply low cohesion and may make maintenance harder.

2.2 architectural smells detection 19

• Promiscuous Controller: the smell is defined as “Controllers offering
too many actions”. Controllers should be lean and provide cohesive
operations and endpoints to clients.

• Brain Controller: the smell is defined as “Controllers with too much
flow control”. In Web MVC applications, Entities and Services should
contain all business rules of the system and manage complex control
flow. Even if a Controller contains just a few routes (i.e., is not a Pro-
miscuous Controller), it can be overly smart.

• Laborious Repository Method: the smell is defined as “a Repository met-
hod having multiple database actions”. As a good practice, a method
should have only one responsibility and do one thing. Analogously,
if a single method contains more than one query (or does more than
one action with the database), it may be considered too complex or
non-cohesive.

• Meddling Service: the smell is defined as “Services that directly query
the database”. Services are meant to contain business rules and/or
to control complicated business logic among different domain classes.
However, they should not contain SQL queries.

In my thesis I considered 6 architectural smells: some are already defined
in the literature, but I detect them with different techniques.

2.2 architectural smells detection

As reported in Section 2.1, AS have been defined by different authors, in some
cases the definitions of the AS are very similar but not identical, leading to
different names for the AS and different detection strategies. Architectural
smells have received significantly less attention even though they are usually
considered more critical than code smells, and harder to detect, remove, and
refactor. In this section, the attention is focused on the detection of the
architectural smells.

Tools have been developed, but some of them are prototypes or not yet
publicly available. There are also commercial tools, e.g., Sotograph1, Sonar-
graph2, Structure101

3, CAST4 which are able to detect architectural violati-
ons of different types, where some of them correspond to specific architectu-
ral smells, e.g., in the case of Cyclic Dependencies.

The commercial tool inFusion5, no more available, and its evolution in Ai
Reviewer6 support the detection of both code smells and some design or
architectural smells. These architectural smells have been defined by Mari-
nescu [106]: Cyclic Dependency, SAP breaker and Unstable Dependency.

1 https://www.hello2morrow.com/products/sotograph

2 https://www.hello2morrow.com/products/sonargraph

3 https://structure101.com/

4 https://www.castsoftware.com

5 http://www.intooitus.com/products/infusion

6 http://www.aireviewer.com

https://www.hello2morrow.com/products/sotograph
https://www.hello2morrow.com/products/sonargraph
https://structure101.com/
https://www.castsoftware.com
http://www.intooitus.com/products/infusion
http://www.aireviewer.com

2.3 code smells and architectural smells correlations 20

Another commercial tool is Designite7 that detects several architectural
smells, defined by Suryanarayana et al. [149], in C# projects.

Other tool prototypes have been proposed, e.g., SCOOP [100], and one
from Garcia et al. [51]. SCOOP use a Prolog rules engine to detect architec-
tural smells but it needs a thorough tagging-concern process of the code. The
prototype defined by Garcia et al. [51] retrieves the components/connectors
from the code which are used for AS detection.

The Hotspot Detector [114] prototype tool detects five architectural smells,
called Hotspot Patterns. It computes architectural smells based on the De-
sign Rule Spaces (DRSpaces) [162]. Two of five detectable architectural
smells are based on the history evaluation: Unstable Dependency and Im-
plicit Cross Module Dependency. The detector takes as input several files
produced by another tool, called Titan [162]. In particular Hotspot Detector
takes a file that contain structural dependencies among files, another with
the evolutionary coupling information of files and a file with the clustering
information of the files. Moreover, Titan takes dependency information out-
put through the Understand reverse engineering tool.

Given this list of tools: AiReviewer, Designite, CAST, Sonargraph and So-
tograph are commercial tools and according to my knowledge the other tools
are not yet publicly available. Hence, there needed to be a tool for Java which
is able to detect architectural smells, so I addressed this problem through the
development of Arcan tool, which is one of the main contribution of my the-
sis. Arcan is available at http://essere.disco.unimib.it/wiki/arcan for
free.

2.3 code smells and architectural smells correlations

Many works have been done in the literature on code smells by considering
their relation and impact on different features such as faults [59, 88], maintai-
nability [44, 71], comprehensibility [28], change frequency [123, 140], change
size [123, 124] and maintenance effort [95, 145]. Fewer works are available
on architectural smells. Hence in this section we describe some works of the
literature on code smells correlations and works that considered both code
smells and architectural smells.

2.3.1 Code smells correlations

Pietrzak and Walter [132] described several types of inter-smell relations to
support more accurate code smell detection and to understand better the
effects caused by interactions between smells. They found different kinds of
relations among six different code smells by analyzing the Apache Tomcat
project.

Arcelli Fontana et al. [7] analyze 74 systems of the Qualitas Corpus, de-
tecting six smells and some relations among smells and possible co-occurrence
of smells. They found a high number of relations among God Class and Data

7 http://www.designite-tools.com/

http://essere.disco.unimib.it/wiki/arcan
http://www.designite-tools.com/

2.3 code smells and architectural smells correlations 21

Class, among other code smells that tend to go together and a high number
of co-occurrence of Brain Method with Dispersed Coupling, and with Mes-
sage Chains.

Liu et al. [94] propose a detection and resolution sequence for different
smells by analyzing some code smells relations given by commonly occur-
ring bad smells. They analyze if it is better to remove first smell A than
smell B, e.g., Large Class versus Feature Envy or versus Primitive Obsession,
or Useless Class versus other smells. They considered 9 code smells and
identified 15 relations of this kind.

Yamashita et al. [163] studied possible correlations among smells. They in-
corporated dependency analysis for identifying a wider range of inter-smell
relations, and analyzed one industrial and two open source systems. They
found the following relations: collocated smells among God Class, Feature
Envy, and Intensive Coupling, and coupled smells between Data Class and
Feature Envy.

Moreover, some authors provided some code smells classifications or taxo-
nomy that are useful to capture possible relations existing among smells.

Mäntylä et al. [105] categorized all Fowler’s code smells except for Incom-
plete Library Class and Comments smells into five groups: Bloaters, Object
Orientation Abusers, Change Preventers, Dispensables, Encapsulators and
Couplers. The study outlined the existence of several relations among smells
belonging to the same category.

Moha et al. [116] proposed a taxonomy of smells and described some
relations among design smells, as Blob and (many) Data Class, or as Blob
and (Large Class and Low Cohesion).

Lanza and Marinescu [80] proposed a classification of twelve smells, cal-
led ”design disharmonies”, into 3 categories: Identity, Collaboration, and
Classification disharmonies, and they describe the most common correlati-
ons between the disharmonies, in a type of diagram called correlation web.
However, these correlations have not been empirically validated.

2.3.2 Code smells and architectural smell correlations

There is little knowledge, as outlined by Macia [98], about to what extent
code anomalies relate to architectural degradation. We report below some
works, where sometimes the term code anomalies is used instead of code
smells and architectural anomalies for architectural smells.

Macia et al. [101] analyzed code anomaly occurrences in 38 versions of 5

applications using existing detection strategies. The outcome of their evalu-
ation suggests that many of the code anomalies detected were not related to
architectural problems. Even worse, over 50% of the anomalies not observed
by the employed techniques (false negatives) were found to be correlated
with architectural problems.

In another work, Macia et al. [102] studied the relationships between code
anomalies and architectural smells in 6 software systems (40 versions). They
considered 5 architectural smells and 9 code smells. They empirically found
that each architectural problem represented by each AS is often refined by

2.4 studies on software quality prediction and evolution 22

multiple code anomalies. More than 80% of architectural problems were re-
lated to code anomalies. They found 1) that certain types of code smells,
as Long Method or God Class, were consistently related to architectural
problems, 2) that the highest percentages of code smells that introduce ar-
chitectural problems occur for God Class, Long Method and Inappropriate
Intimacy instances, and 3) that the occurrences of both God Class and Di-
vergent Change smells in the same code element are strong indicators of
architectural problems, i.e., Scattered Functionalities that violates the Sepa-
ration of Concerns design principle. But the study reveals that no type of
code smell stands out as the best indicator of harmfulness respect to archi-
tecture degradation.

Oizumi et al. [122] propose to study and assess to what extent code smells
agglomerations help developers to locate and prioritize design problems.
They proposes also to consider not only the structural relations existing
among code smells, but also the semantic relations to find more powerful
smells agglomerations in order to identify design problems.

Oizumi et al. [121] analyzed 7 systems and suggest that certain topologies
of code smells agglomerations are better indicators, than other, of architec-
tural problems. They have considered six code smells detected through the
rules of Lanza Marinescu [80] and 7 architectural smells detected through
the rules defined Macia [98].

In Chapter 6 I will describe my work and the results obtained on code
smells and architectural smells correlation.

2.4 studies on software quality prediction and evolution

2.4.1 Studies on software quality prediction

As outlined before, the identification of issues is important, but it could be
even more important to predict them before they actually appear. In order
to study methods to predict issues, it is necessary an analysis through the
development history of projects.

A number of works in the literature use history-based analysis of projects
to predict different issues like code smells, changes or bugs, that impact
software quality. For example, Palomba et al. [127] defined HIST (Histori-
cal Information for Smell deTection), an approach exploiting change history
information to detect instances of five different code smells. With respect
to bug prediction many works exist, e.g., Khomh et al. [150] explore the
presence of antipatterns for bug prediction by analyzing multiple versions
of Eclipse and ArgoUML, and Palomba et al. [128] explore if it is possible
to improve bug prediction performances using an Intensity Index for code
smells [15]. With respect to changes, Code Churn is one of the most used
measures when dealing with change prediction, and it is also used, e.g., as
a predictor of post-release failures [117].

Romano et al. [134] use antipatterns to predict source code changes, fin-
ding that classes affected by antipatterns change more frequently along the
evolution of a system. Malhotra and Khanna [104] use search-based techni-

2.5 technical debt indexes 23

ques and exploit software metrics to predict changes in object-oriented soft-
ware. Oyetoyan et al. [126] perform an empirical study on different versions
of 11 systems to analyze circular dependencies and change proneness and
they found that classes involved in circular dependency are more change
prone.

Kouroshfar et al. [76] analyzed if co-changes spanning multiple architec-
ture modules are more likely to introduce bugs than co-changes that are
within modules. Their results show that the co-changes that cross architec-
tural module boundaries are more correlated with defects than co-changes
within modules, implying that, to improve accuracy, bug predictors should
also take the software architecture of the system into consideration.

2.4.2 Studies on software quality evolution

Different studies in the literature focused on software quality evolution, ta-
king into account the evolution of different quality metrics or the evolution
of other issues, such as code smells.

Olbrich et al. [123] investigated two code smells, God Class and Shotgun
Surgery, by analyzing the historical data over several years of development
of two large scale open source systems. They show that it is possible to
identify different phases in the evolution of code smells during the system
development and that code smell infected components exhibit a different
change behavior: the classes infected with code smells have a higher change
frequency.

Vaucher et al. [159] studied in two open-source systems the “life cycle” of
the God Class smell: how they arise, how prevalent they are, and whether
they remain or they are removed as the systems evolve over time.

Chatzigeorgiou et al. [37], and Peters et al. [131] considered selected pro-
perties of code smells, e.g., their evolution and longevity. The authors ob-
served that the number of code smells in software systems increase over
time and developers almost never invest significant effort in removing them.
This finding was further confirmed by [21], who reported results of a survey
aimed at understanding the longevity of code smells. They observed that
code smells frequently persist in source code for a long time and developers
witheld from refactoring them to avoid API modifications.

In Chapter 6, I will describe the work done on architectural smells pre-
diction and evolution.

2.5 technical debt indexes

Many tools are available, addressing software quality and architecture as-
sessment, e.g., through metrics computations, or code and design anoma-
lies detection, i.e., code smells [48], architectural smells [52, 93] and anti-
patterns [8]. Detecting these anomalies is useful to identify problems to
be solved through the right refactoring steps, but this does not provide us
an indication of the overall quality assessment of a project. Hence, some

2.5 technical debt indexes 24

tools offer some kind of Technical Quality Index, often called, e.g., Technical
Debt/Severity, Deficit Index, that offers an evaluation of the overall quality
of an analyzed project. In the thesis, the term Technical Debt Index (TDI) is
referred to any kind of quality index computed by the tools. These indexes
are derived in different ways and take into account different features. The
attention is focused on the TDI provided by known tools.

In this section I describe five tools that provide some kind of TDI: CAST,
inFusion, Sonargraph, SonarQube and Structure101. The choice of the tools
is due, with respect to my knowledge, to the availability of tools providing
this kind of Index and my experimentations of all of them on several OSS
projects. For example, I experimented, with the aim to refactor or evalu-
ate some architectural problems on existing systems, SonarQube, InFusion
and Structure101 on 4 projects [18], Sonargraph and Structure 101 on 2 pro-
jects [16], and Sonargraph, SonarQube and inFusion on one project [11].

Obviously, other tools are available, which are able to compute a huge
number of metrics, also related to architectural issues, e.g., Massey Archi-
tecture Explorer computes an Antipatterns Score [46] and the Tangledness
metric [143], Lattix provides Stability, Cyclicality, and Coupling metrics, and
STAN supports different R. Martin’s metrics [109]. These kinds of metrics
are very interesting, but they do not represent (alone) a TDI trying to sum-
marize the overall quality of a system, as those index considered in this
thesis.

In in particular I describe how the TDI is computed by the following versi-
ons of the tools: CAST 7.3.2, inFusion v.1.8.5, Sonargraph v.8.8.0, SonarQube
v.5.2, Structure101 v.4.2.10071. SonarQube is free and open source, while the
other ones are commercial tools. The data described were gathered through
the use of the tools, their documentation, and by communicating with their
technical support, when needed.

2.5.1 CAST

CAST8 defines Technical Debt as the future costs attributable to known struc-
tural flaws in production code that need to be fixed, a cost that includes both
principal and interest. CAST estimates the amount of principal in the Techni-
cal Debt (hereafter called TD-Principal or TDP) of an application based on
detectable structural problems. TDP is a function of three variables: 1) the
number of must-fix problems in an application, 2) the time required to fix
each problem, 3) and the cost for fixing a problem. Each detected problem
can affect one or more Health Factors: Robustness, Performance Efficiency,
Security, Transferability and Changeability. Scores assigned to each internal
quality characteristic are aggregated from the component to the application
level and reported on a scale from high to low risk, using an algorithm that
weights the severity of each violation and its relevance to each Health Factor.
CAST assumes that an IT organization would fix 100% of the high severity

8 http://www.castsoftware.com/

http://www.castsoftware.com/

2.5 technical debt indexes 25

problems, 50% medium severity, and no more than 0% of low severity. Weig-
hts are assigned to severity levels using the following schema:

• Low severity = Weight of 1, 2 or 3

• Medium severity = Weight of 4, 5 or 6

• High severity = Weight of 7, 8 or 9

To keep the estimate of TDP conservative, the tool assumes that problems
can be fixed in 1 hour. CAST sets the labor rate to an average of $75 per hour.
The initial formula (and parameters) used to compute TDP is the following:

TDP = (75 $
hr)× (1hr.)×

((Σhigh_severity_violations)× (1)+

(Σmedium_severity_violations)× (0.5)+

(Σlow_severity_violations)× (0))

2.5.2 inFusion

inFusion9 (IF) supports the evaluation of software quality with a focus on
code smells (CS) and architectural smells (AS), called design flaws, detected
by evaluating different metrics. Design flaws are used as the basis for the
computation of the Quality Deficit Index (QDI), which is reported as a global
score or grouped by quality dimension (Complexity, Encapsulation, Cou-
pling, Inheritance, Cohesion). The QDI, the detected design flaws and me-
tric values can be browsed and filtered in different ways, e.g., by quality
dimension, by package, or by focusing on single flaws or flawed entities.

The QDI evaluates the impact of all detected design flaws using three
factors:

• Influence (I f law_type) This factor expresses how strongly a type of design
flaw affects four criteria of good design [40]. It uses a three-level scale
(high, medium, low) to characterize the negative influence of a design
flaw on each of the four criteria. The assignment of high/medium/low
to each design flaw is reported in [108]. I f law_type is computed as the
weighted arithmetic mean of numerical values assigned to the three
levels for each of the four criteria.

• Granularity (G f law_type) In general, a flaw that affects methods has a
smaller impact on the overall quality than one that affects classes; con-
sequently, it is assigned a weight to each design flaw according to the
type of design entities that it affects: class→ 3 and method→ 1.

• Severity (S f law_instance) The first two factors refer to design flaw types,
which means that all instances of the same flaw weigh equally; since
not all cases are equal, for each flaw a severity score is defined, ba-
sed on its most critical symptoms, measured by one or more metrics.
Severity scores span the range 1–10 (low–high).

9 https://www.intooitus.com/, its evolution at http://www.aireviewer.com

https://www.intooitus.com/
http://www.aireviewer.com

2.5 technical debt indexes 26

Based on the three factors, inFusion computes the Flaw Impact Score (FIS)
of a design flaw instance, and derives the QDI value, combining FIS with
the size (KLOC) of the system, as follows:

FIS f law_instance = I f law_type · G f law_type · S f law_instance

QDI = ∑
k∈ f law_instances

FISk/KLOC

2.5.3 Sonargraph

Sonargraph (SG) is meant to support quality controllers, software develo-
pers, architects, and consultants. One of its main function related to ar-
chitectural debt evaluation is the ability to detect deviations from a defined
architecture, where the developer specifies which dependencies are allowed
(or not) between the elements of the system. Moreover, the tool computes
different metrics and detects code smells and violations to programming
best practices. All detection results can be traced across different versions of
the same software.

Sonargraph’s Structural Debt [112] is quantified through two measures:
Structural Debt Index (SDI) and Structural Debt Cost (SDC). The first mea-
sure is a score computed as the weighted sum of the type dependencies
that would need to be cut to break all cyclic package dependencies. The se-
cond measure (SDC) is computed by multiplying the SDI by a constant time
amount. The tool analyzes the dependency graph to find a good breakup set
to disentangle cyclic nodes. The algorithm output is a set of links that need
to be removed. The SDI metric is computed by multiplying the number of
links to be removed by 10 and then adding the weight (number of depen-
dencies) for each link. As for the SDC metric, the suggested time factor is
between 6 and 10 minutes for each SDI point, as a starting point. Then it is
possible to define programmers’ hour costs, to obtain an estimation of the
cost of correcting the issues in the system. Both measures can be computed
at the level of system, project or build unit.

2.5.4 SonarQube

SonarQube (SQ) is a platform to manage code quality. Its main features are
the ability to check large sets of coding rules and to gather software metrics.
Examples of rules are the verification of coding constraints and the verifica-
tion of the range of metric values. Currently, SonarQube’s TDI computation
does not take into account architectural or dependency information. Each
rule is classified in five categories of increasing gravity: Info, Minor, Major,
Critical, Blocker. Rule violations are reported as Issues, and can be browsed
using different criteria, or shown in source code.

2.6 architectural smell refactoring 27

SonarQube implements the SQALE [85] model for the estimation of Techni-
cal Debt. We experimented with the free plugin integrated in the platform10.
There are three values computed on the analyzed project, i.e., Technical Debt
(TD), Technical Debt Ratio (TDR) and SQALE Rating (SR).

TD represents the time needed to fix all the Issues (i.e., rules violations)
detected by SonarQube. A remediation cost (resolution time) is assigned to
each issue, and TD is computed as the sum of all the single remediation costs.
The TD value associated to single issues can be customized only by purcha-
sing the commercial version of the SQALE plugin. As a result of an aggrega-
tion, TD can be associated to any project element (project, sub-project, file)
or any quality characteristic (e.g., maintainability, security). The TDR is a deri-
ved index, obtained as: TDR = technical_debt/estimated_development_cost.
estimated_development_cost represents the estimated time needed to rewrite
the project from scratch. In SonarQube, this is set to LOC ∗ 30minutes. Please
note that in the formula reported above, the two variables are time measures,
and need to be in the same unity of measure. The TDR is produced to allow
better comparability among different projects. Finally, the SQALE Rating is
a letter from A (best) to E (worst), obtained by applying thresholds to the
TDR value: A=0–0.1, B=0.11–0.2, C=0.21–0.5, D=0.51–1.

2.5.5 Structure101

Structure101
11 (S101) is a tool specialized in architectural evaluation and pro-

vides an automatically reconstructed view of the software architecture with
different kinds of refactoring support. Structure101 shows a Structural over-
Complexity (SoC) view to estimate the percentage of the system involved in
architectural issues. The view displays two measures: %Tangle and %Fat,
i.e., the percentage of metrics Fat and Tangle in the system. The Tangle
metric is the count of tangles in packages or classes; specifically, a tangle
is a dependencies subgraph containing one or more connected cycles. The
Fat metric measures the complexity of the system. At the method level, it is
computed using Cyclomatic Complexity (McCabe’s metrics), while at any ot-
her level it corresponds to the number of inter-dependencies existing among
items (e.g., classes, packages). The Excessive Structural Complexity, in Struc-
ture101, is called XS (“excess”) and is computed on every item: methods,
classes, packages, components. XS represents an estimation of the portion
of the LOC of an item that are “affected” by Fat or Tangle.

In Chapter 7, I will describe a proposal of a new indexes, called Architec-
tural Debt Index.

2.6 architectural smell refactoring

Different works have considered the impact of code smell [48] refactoring
on some quality metrics, e.g., [5, 12, 35], but few works address the problem

10 http://docs.sonarqube.org/display/SONARQUBE52/Technical+Debt

11 http://structure101.com/products/

http://docs.sonarqube.org/display/SONARQUBE52/Technical+Debt
http://structure101.com/products/

2.6 architectural smell refactoring 28

of the refactoring of architectural smells or other architectural issues. We
introduce below some of them.

Bourquin et al. [30] analyze a mid-sized Java enterprise application and
show how through the combination of several tools and techniques, they can
identify opportunities for high-impact refactorings, which are refactorings
with a strong impact on the quality of the system’s architecture.

Samarthyam et al. [139] outline that architectural smells and the corre-
sponding refactorings haven’t received a large attention from the software
engineering community and hence they motivate the need of architecture
refactoring and present few potential research directions for architecture re-
factoring.

Amirat et al. [3] explored the idea of architectural refactoring and intro-
duced an approach for refactoring component based software architecture
artifacts using graph transformations. In particular, they used a specific
graph transformation tool called AGG (Attribute Graph Grammar) in order
to get rid of some architectural bad smells.

Stal [147] analyzed different architecture refactoring scenarios and propo-
sed a catalogue of architecture refactoring steps.

Terra et al. [155] described the preliminary design of a recommendation
system to provide refactoring guidelines for developers and maintainers du-
ring the task of reversing an architectural erosion process.

Dietrich et al. [46] present a novel approach to detect starting points for
architectural refactoring of systems based on the analysis and manipulation
of the type dependency graph extracted from programs. They validated
their approach by using a set of four antipatterns that are known to compro-
mise modularisation of programs and they found that in most cases, their
approach is able to detect high impact refactoring opportunities.

Laval et al. [82] propose eDSM, an enhanced Dependency Structure Ma-
trix (DSM) using colors to distinguish direct and indirect cycles and cells
enriched with the nature and strength of the dependencies. They applied
eDSM on several systems and assert that their tool allows developers to get
a better understanding of cycles between packages, helping to resolve them.

In [16] I described an experience on identifying architectural erosion pro-
blems on existing open source software projects through the support of two
well known tools, Sonargraph [168] and Structure101 Studio [60]. Moreover,
we outline if the tools provide useful hints in repairing some of the detected
problems and if the suggested restructuring actions effectively help in the
simplification of the system.

In [18] I removed some architectural problems through refactoring steps
and we checked the impact that the refactoring has on different quality me-
trics. In particular, we focused the attention on some Quality Indexes com-
puted by four tools: SA4J, Structure101, Sonarqube and inFusion. These
tools have been used also for the detection of the architectural problems.

3
E X P E R I E N C E R E P O RT S O N T H E D E T E C T I O N O F
A R C H I T E C T U R A L I S S U E S T H R O U G H D I F F E R E N T T O O L S

Architectural erosion and degradation [58] of an application lead to architec-
tural debt, and cause problems to the maintainability and evolution of the
application. These problems have to be identified and then solved through
the right refactoring and reengineering steps. The earlier structural pro-
blems are recognized, the easier it is to repair them, but their identification
is not an easy task and it can be very expensive, even for experienced soft-
ware engineers. It is possible to capture signals of architecture erosion in
different ways by exploiting several tools with the aim to identify architectu-
ral violations, architectural smells [52] or other relevant features.

This chapter describes the analysis done through different tools towards
the evaluation of different issues and the impact of their refactoring on qua-
lity indexes. Three studies were performed using mainly tools providing
technical debt indexes. The studies are part of an incremental study perfor-
med to better understand the different features of the tools, their weakness
and how they behave in different situations. I outline that the tools I expe-
rienced are commercial tools except for SonarQube.

section 3 .2 : It is provided the experience report in using three known
tools to capture information that can be useful to identify and evaluate
possible sources architectural debt of an application [11]. I outline the
main differences among these tools and the results they produce by
analyzing a project.

section 3 .3 : It is provided the experience report in applying two tools by
analyzing 2 projects [16]. It is described the experience in detecting
problems that could cause architecture degradation, and in repairing
some of these problems directly through the support of the tools, by
removing for example cyclic dependencies, or by manually changing
the code to remove some architectural violations.

section 3 .4 : It is provided the experience on repairing and removing pos-
sible architectural smells and antipatterns on open source projects [18],
by monitoring the impact on 4 TD indexes through different 4 tools.

The tools and their characteristics are reported in the following section.

3.1 tools for evaluating code and architectural issues

Several tools have been developed, providing different functionalities that
can be used to evaluate architecture degradation. These tools support soft-
ware analysis in different ways and collect different data. Some tools are
proprietary and some are open source. They can detect different kinds of

3.1 tools for evaluating code and architectural issues 30

Table 3.1: Tools feature overview

Tools M
et

ri
cs

C
od

e
Sm

el
ls

A
rc

hi
te

ct
ur

al
Sm

el
ls

A
nt

ip
at

te
rn

s

T
D

I

R
ef

ac
to

ri
ng

Su
gg

es
ti

on
s

W
ar

ni
ng

V
io

la
ti

on

C
lu

st
er

V
ie

w

A
rc

hi
te

ct
ur

e
V

io
la

ti
on

STAN [120] 44 0 2 1 No No Yes Partial No

MAE [45] 10 0 1 5 No No No Partial No

inFusion [67] 61 21 3 0 Yes No Yes No No

Lattix [81] 9 0 1 0 No No Yes No No

JDepend [39] 6 0 1 0 No No No No No

SA4J [64] 5 0 1 6 Partial No No No No

Understand [141] 47 1 0 0 No No Yes No No

Bauhaus [133] 12 2 0 0 No No No No No

IntelliJ IDEA [70] 250 9 0 0 No Yes No No No

CodePro Analytix [54] 35 2 0 0 No Yes Yes No No

SonarQube [146] 35 2 1 0 Yes No Yes No No

Sonargraph [168] 103 15 1 0 Yes Yes Yes No Yes

Structure101 Studio [60] 6 0 1 0 Partial Yes Yes Yes Yes

code and design anomalies, i.e. code smells [48], architectural smells [52, 93]
and antipatterns [27] . Moreover, they can compute different categories of
metrics (e.g., coupling, complexity, cohesion, size) at code and design level.
In particular, those regarding dependency or modularity are important indi-
cators of architectural debt [90, 118]. However, it is not easy to fix the right
thresholds to identify the critical metric values and to decide what to do to
improve the system by exploiting only these values.

In Table 3.1 well known tools are reported which offer different functiona-
lities useful for software quality assessment and for identifying architectural
debt.

The following features are considered in Table 3.1:

• Metrics: the number of metrics supported by the tool.

• Code Smells: the number of detected code smells as defined, e.g., by
Fowler [48] or Lanza and Marinescu [80].

• Architectural Smells: the number of detected architectural smells [53,
93].

• AntiPatterns: the number of detected structural antipatterns [8, 27],
e.g., Breakable, Butterfly, Hub; the Tangle antipattern here is excluded,
because the same concept is covered by the Cyclic Dependencies archi-
tectural smell.

• Technical Debt Index: if the tool provides some kind of Technical Debt
(TD) or quality index giving an overall evaluation of the analyzed sy-
stem.

• Refactoring Suggestions: if the tool supports refactoring and suggests
the way to solve the identified problems.

3.2 tool support for evaluating architectural debt 31

• Warning Violations: if the tool provides some contextual warning of the
detected violations.

• Clustered View: if the tool provides an automatic clustered view of
the system architecture, grouping together tied components and dis-
playing them in a graphical view.

• Architectural Violations: if the tool is able to detect some kinds of viola-
tions of a specified architecture.

The above features were considered because they can be useful for the
analysis, but not all the tools computing metrics, or detecting code smells,
or providing the same or similar features, are cited in the table; many other
tools exist, but the tools included are providing more than one of the features
outlined Table 3.1.

An interesting characteristic of the tools reported in Table 3.1 is that no
one of them uses historical information regarding the system to discover
architectural issues. Instead, Sonargraph, SonarQube and Structure101 allow
recording analysis snapshots and track them over time, to understand the
trend in the quality of the analyzed project.

Moreover, we can observe that only inFusion, not more available, detects
3 architectural smells, while the other tools do not recognise architectural
smells or only one.

3.2 tool support for evaluating architectural debt

In this study [11], the attention is particularly focused on evaluating archi-
tectural debt by identifying possible architectural violations, dependency
violations or other kinds of structural violations. In this perspective, the
aim is to explore the usefulness of a set of tools in identifying architectural
anomalies and possibly in providing some recommendations or refactoring
guidelines for developers and maintainers during the task of reversing an
architectural erosion process. A first way to face and get perhaps some more
concrete information on the quality of an application could be through an
Index, such as Technical Debt Index, which aggregates the data collected
through metrics and the different architectural violations, providing us an
indication of the quality and architectural debt of the application.

In Table 3.1, it is shown that Sonargraph, SonarQube and inFusion tools
provide a Technical Debt Index estimation.

It is not easy to define a formal framework for the comparison of this
kind of tools, because the information they provide can be very different, at
different levels of granularity and often named in different ways. Hence, the
attention is focused on comparing some architectural evaluation issues:

• the results inspection capabilities of the data the tools provide;

• the data extracted by the tools on the same system.

3.2 tool support for evaluating architectural debt 32

The three tools, SonarQube v.5.1, inFusion Hydrogen v.1.8.5, and Sonar-
graph-Quality v.7.2.2, are experimented by analyzing an application, Repo-
Finder [9] made of 417 Java files composed of 53,640 text lines, which I have
developed for the crawling and analysis of FLOSS projects; the main aspects
of the overall experimentation are discussed, comparing the considered ar-
chitectural evaluation issues provided by the three tools.

3.2.1 Evaluating the results inspection of the tools

In this section, the experimentation is described through the three tools by
analyzing RepoFinder.

3.2.1.1 Evaluation through Sonargraph

One of the main functions of Sonargraph is related to architectural debt eva-
luation through the ability to detect deviations from a defined architecture,
where the developer specifies which static dependencies are allowed (or not)
between the elements of the system. Another relevant function is the de-
tection of Cyclic Dependency among compilation units, Java packages, or
higher architectural aggregates. Moreover, the tool computes different me-
trics and detects violations to programming best practices. The only sup-
ported architectural smells are Cyclic Dependency. Detection results can be
traced across different versions of the same software, showing the trends
existing in the available measures.

The logical software architecture for a software system can be specified
in two different dimensions: horizontal, defining layers identifying technical
components, and vertical, defining slices that identify the structure of the
domain. The specification supports the definition of the allowed or forbid-
den dependencies among the abstraction levels. In this way, the tool can
check if the specified architecture is respected by the analyzed system.

It is also possible to simulate the application of refactoring on the model of
the system that is created by Sonargraph, and check the consequences at the
structural level before any effort is spent.

The Quality Index of Sonargraph’s Structural Debt [112] is quantified by
two measures: Structural Debt Index and Cost, as described in Section 2.5.

Results inspection: The Exploration tab (see Figure 3.1) shows allowed/di-
sallowed links between project elements. Elements, e.g., layers, packages,
types, are reported in a list with drill-down capabilities, so that it is possible
to inspect the project at different abstraction levels at the same time. Allo-
wed links are shown in green and disallowed links in red. In particular, links
on the right side of the list represent dependencies creating cycles between
components, while the ones on the left side of the list represent all the other
dependencies. The detected cycles can be inspected in a different dedicated
view, as the extracted metrics and their violations.

3.2 tool support for evaluating architectural debt 33

Figure 3.1: Sonargraph - package exploration view

3.2.1.2 Evaluation through SonarQube

SonarQube is a platform to manage code quality. Its main features are the
ability to check large sets of coding and design rules and to gather software
metrics. Examples of rules are the verification of coding constraints, both
generic or specific to a particular technology, and the verification of the range
of metric values. Each rule is classified in five categories of increasing gravity.
Violations of the rules are reported as “Issues” in the platform, and can be
inspected using different criteria, or shown in source code.

Among its different functions, SonarQube deals with dependencies. It
computes the dependency graph of the analyzed system, and provides a
dependency matrix through its “Design” view. Therefore, it supports the
detection of the Cyclic Dependency architectural smell. The tool provides the
number of cycles, the number of dependencies to cut at the directory or
file level, and a Directory Tangle Index, i.e., the ratio between the number of
dependencies to cut to remove cycles and the total number of dependencies.

SonarQube’s implements the SQALE [85] model for the estimation of
technical debt, we applied the free Technical Debt1 capability integrated in
SonarQube. There are basically three values computed on the project, i.e.,
TD, Technical Debt Ratio and SQALE rating, as described in Section 2.5.

Results inspection: The inspection of the dependency matrix view allows
two operations on a cell: highlighting the name of the Components relative

1 http://docs.sonarqube.org/display/SONAR/Technical+Debt

http://docs.sonarqube.org/display/SONAR/Technical+Debt

3.2 tool support for evaluating architectural debt 34

Figure 3.2: inFusion - SAP Breaker instance inspection

to the cell and opening the list of elements on both ends of the dependency
represented by the cell. The matrix uses a color code: components highligh-
ted in green depend on the ones in orange (see Figure 3.4). When inspecting
a dependency’s contents there is no way to be directed to the specific point(s)
in the source code where the dependency exists.

3.2.1.3 Evaluation through inFusion

inFusion supports the evaluation of software quality with a focus on code
smells, called Design Flaws (i.e. code smells and architectural smells). De-
sign Flaws are detected by evaluating different metrics, which are also avai-
lable to the user and reported in different views. Design Flaws are used as
the basis for the computation of the Quality Deficit Index (QDI) [108] of inFu-
sion, which is reported as a positive value aggregating the detected Design
Flaws: as a global score or also grouped by quality dimension (Complexity,
Encapsulation, Coupling, Inheritance, Cohesion), as described in Section 2.5.

Architectural smells in inFusion are categorized as Design Flaws [80], and
are all associated to the Coupling quality dimension, plus other dimensi-
ons for each specific case. In addition to the Cyclic Dependency architectural
smell, supported also by the other two tools, inFusion supports other two
architectural smells (described in Section 2.2): SAP Breaker and Unstable De-
pendency.

Results inspection: The inspection is focused now on architectural smells.
These smells are defined over different evaluations of dependencies among
modules, and they can be inspected through a graphical representation of
the slice of the dependency graph regarding the specific Flaw. From this

3.2 tool support for evaluating architectural debt 35

view, it is possible to access the source code associated to each class or met-
hod.

The tool allows to show, in a single view (see Figure 3.2), the description
(upper left), graph (upper right), code (lower right) and dependency details
(lower left) of an architectural smell instance.

3.2.1.4 Concluding Remarks on Results Inspection

In inFusion, the report of Cycle Dependency have duplicated records, in fact,
are reported once for each module containing it, and not as distinct entities.
Selecting a cyclic dependency, it is possible to see both the corresponding
dependency graph and the respective source code. As it is explained above,
SonarQube represents cycles on the dependency matrix. This representation
is very clear and unambiguous, but does not scale well on a large number of
elements. Moreover, it is not possible to see dependency cycles with more
than two elements, and the inspection function does not allow to jump into
the code where the problem is located. Sonargraph provides a dedicated
view for cycles (see Figure 3.3), at different levels of granularity. This view
provides functions to manage and inspect the found cycles. It also integrates
with the architecture specification, by representing forbidden dependencies
as red arrows (allowed dependencies are green). An additional function
of this view is the computation of “break-up” dependencies sets, to suggest
possible ways to resolve the detected cycles, associated to different metrics
estimating the effort of the resolution.

Summarizing, Sonargraph surely addresses the management of Cyclic De-
pendency with the larger feature set, while SonarQube provides the poorer
experience from this point of view.

3.2.2 Evaluating the extracted data by the tools

The architecturally-relevant data extracted by each tool are discussed highlig-
hting differences and similarities. All the tools were applied on the analyzed
project two times, one by defining the static logical architecture of the project,
with the level of detail allowed by the tool, and the other without defining
the architecture, and considering packages as the modules of the project.

3.2.2.1 Evaluation through Sonagraph

The Exploration view was used (see Figure 3.1) to find cycles and violations
of the logical architecture. Some logical architecture violations were disco-
vered; for instance, an access to an external library (JOOQ) was found that
should be used only by the storage management layer. The user interface
was uses directly some libraries instead of using the correct module. Cyclic
Dependency are shown to exemplify how a package is used by the other
packages. For example, Figure 3.3 shows in the Cycles tab that the dfmc4j

package contains a dependency cycle composed of 9 sub-packages. The Cy-
cles tab allows to see the graph of the detected cycles, where nodes may be
types, packages or subsystems and (directed) edges represent dependencies.

3.2 tool support for evaluating architectural debt 36

Figure 3.3: Sonargraph - Cycles view

Table 3.2: Sonargraph results overview

Logical Architecture

Rule No Yes

Structural Debt index 12,563 25,968

Cyclic elements 95 95

Cyclic packages 31 31

Biggest pkg cycle group 9 9

Logical pkg cycle groups 9 9

Layer cycle groups 0 0

Layer group cycle groups 0 0

Architectural Violations 374 1,073

Table 3.2 are reported the main global measures related to architectural
evaluation. The definition of the logical architecture influences a lot the
Structural Debt index and the number of detected architectural violations.
Defining the logical architecture makes the detection of violations more pre-
cise, and more of them are detected. This raises the value of the Index, as it
is strongly based on the detected violations.

3.2.2.2 Evaluation through SonarQube

SonarQube does not analyze dependencies between modules for non-maven
projects. This issue is clear by looking at the module dependency matrix (see
Figure 3.4) computed on the project (modules have been specified using So-
narQube Runner). The alternative way of analyzing dependencies in Sonar-
Qube is to avoid the specification of modules and obtain a single dependency
matrix. However, due to the number of packages contained in the project,
the matrix is large and consequently difficult to read. Another relevant li-

3.2 tool support for evaluating architectural debt 37

Figure 3.4: SonarQube - dependency matrix among non-maven modules

Table 3.3: SonarQube results overview

Logical Architecture

Rule No Yes

SQALE Rating A A

Technical Debt Ratio 5.80% 5.30%

Technical Debt 238d 216d

Dependencies To Cut (Directories) 20 20

Dependencies To Cut (Files) 304 304

Directory Tangle Index 25.4% 29.4%

Cycles >25 >25

mitation is that dependencies from external libraries are not shown. This
functionality is also available when running SonarQube on Maven projects.
Table 3.3 shows the global quality measures of the same project in the two
setups. Technical Debt and Technical Debt Ratio are slightly higher without
the definition of modules, while the SQALE Rating remains unchanged.

3.2.2.3 Evaluation through inFusion

The differences in the two result sets are remarkable. When setting modules
manually, the tool found only 3 instances of the SAP Breakers Flaw, while
in the other setting it found 14 SAP Breakers and 6 Cyclic Dependency. This
difference results in QDI values of 10.7 and 18.3, respectively. Given that the
QDI is computed relying on the detected Design Flaws, it is shown how the
module setting affects its value.

3.2.2.4 Concluding Remarks on extracted data

Some differences were experienced in the two result sets. For example, it was
noticed that in Sonargraph the Structural Debt Index rises when the logical
architecture is defined. In SonarQube, instead, the SQALE rating is stable
and the Technical Debt Ratio is lower when modules are specified. inFusion
behaves similarly: its QDI index is lower when modules are specified.

With respect to the detected Cyclic Dependency, Sonargraph and Sonar-
Qube detected the same number of cycles in both configurations. inFusion,

3.3 detecting and repairing software architecture erosion 38

instead, computes Cyclic Dependency only among modules; when modules
have been specified w.r.t. the logical architecture, no cycles were detected,
while when modules have been associated to packages, 3 distinct cycles were
detected. inFusion detected the smallest set of Cyclic Dependency; the same
cycles have been detected also by the other two tools was checked. Sonar-
graph and SonarQube found more than 25 cycles. According to SonarQube,
20 folder Cycle Dependency need to be cut, while for Sonargraph there are 9

dependency cycles. It is attributed this difference to the fact that SonarQube
shows (and perhaps computes) cycles on pairs of packages, while Sonar-
graph considers also larger sets. It is verified that the Cyclic Dependency
reported by the tools were correct. While inspecting the reported cycles
were not resolved them, since they were not harmful in my opinion, and
their resolution was not clear. Architectural smells, like code smells, point
to possible issues, that need to be verified.

3.3 detecting and repairing software architecture erosion

In this section, we describe the experience on the support provided by tools
towards the identification of architectural erosion problems [144] and their
solution. In particular, well known product families for software quality
assessment are experimented, i.e., Sonargraph [168] and Structure101 Stu-
dio [60]. Other tools are available, but Sonargraph was chosen since it has
been recognised as the best tool in the previous work [11] (described in
Section 3.2) and Structure101, since it is specialized in architectural evalua-
tion and re-engineering support, and takes a different approach with respect
to Sonargraph in both the analysis and re-engineering phases. Structure101

is also the only considered tool that provides an automatically reconstructed
view of the architecture that clusters related components, with the aim of
simplifying the comprehension of the project.

In this study, the architecture of two projects is analyzed, and their re-
engineering is attempted according to the tools’ suggestions. The experi-
mentation is performed by running the tools on a FLOSS (Free, Libre and
Open Source System) project (Ant v1.8.4) and an application developed by
me for the crawling and analysis of FLOSS projects, called RepoFinder [9].
By analyzing a project that I have developed, I was able to better capture the
functionalities of the tools in reconstructing the software architecture when
a reference architecture is available, in better identifying the problems and
applying the right suggestions to remove them. Hence, it is described the
experience in detecting problems that could cause architecture degradation,
and in repairing some of these problems directly through the support of So-
nargraph and Structure101, by removing for example Cyclic Dependency, or
by manually changing the code to remove some architectural violations.

Few research works in the literature report experiences to control architec-
ture erosion by evaluating the support provided by different tools. As an
example, Gorton and Zhu [55] experiment five tools (Understand for Java,
JDepend, SA4J, ARMIN, Enterprise Architect) on an industrial Java project
composed of 50kLOC. After reconstructing the architecture with each tool,

3.3 detecting and repairing software architecture erosion 39

Figure 3.5: Sonargraph - Example of cycle to cut in the Cycles View on RepoFinder

they identify different general and specific points for the improvement of
the tools. In this study, two state-of-the-art and complete tools are experien-
ced, and it is identified how they complement each other and the possible
improvement directions.

3.3.1 Detecting and Repairing Design Erosion with Sonargraph

The experience in detecting and repairing some architectural problems with
Sonargraph on the two systems, Repofinder and Ant, is described in this
section. The size of the two systems can be found in Table 3.4. A description
about some of the principal features and functionalities offered by Sonar-
graph respect to the study aims is given below. The evolution of these fea-
tures is also evaluated (see Table 3.4), as indicators of possible architecture
erosion, before and after the refactoring steps.

Sonargraph checks the conformance of the software architecture with re-
spect to a predefined model and finds possible violations in the project. The
logical architecture can be defined using horizontal layers and vertical slices,
each containing some code artifact, as described in Section 2.5. It is also im-
portant to define external libraries and subsystems, to better understand the
project and how it relates to the external components. Packages and classes
have to be assigned to layers, slices, subsystems, libraries and external com-
ponents. This assignment is realized by specifying wildcard/glob patterns
to match the names of packages and classes.

Sometimes, internal components are made for common usages like “da-
tabase manager” (DBM), where the database must be accessed by a single
component and the other components have to use it to access the database.
In order to verify automatically if this practice is respected, it is necessary to
create “allowed dependencies” from the DBM to the database driver and from
other components to the DBM. Otherwise it is necessary to define “denied
dependencies” from all components except for DBM to the database. After
the definition of the allowed dependencies, defining denied dependencies is
redundant.

Sonargraph provides a concise dependency graph called Exploration view,
which shows the allowed, denied and Cyclic Dependency, between compo-

3.3 detecting and repairing software architecture erosion 40

Table 3.4: Sonargraph - Extracted metrics

RepoFinder Ant

Name Property before after before after

Structural Debt Index 25,698 11,080 4,959 4,895

Architecture Violations 1.073 437 2 0

Cyclic Packages 31 22 30 25

Biggest Package Cycle Group 9 9 26 25

Code Smells 5,265 2,902 5,338 5,324

Code Smells/LOC 0.08 0.05 0.05 0.05

Packages 116 124 70 70

Classes 912 819 1,278 1,278

Lines of Code 67,536 58,300 105,007 105,054

Figure 3.6: Sonargraph - Exploration view on RepoFinder

nents, external components (e.g., libraries) and packages. A Cyclic package
group is shown in the Cycles view (see Figure 3.5), where packages are no-
des and the edges represent dependencies.

The information extracted from the source code and the architecture is
synthesized in a single measure, called Structural Debt Index. It has the aim
of being roughly proportional to the effort needed to clean up structural
quality problems in the code, as described in Section 2.5.

Detecting Design Erosion

RepoFinder is a project that I designed and developed. For this reason, I
were able to fully specify its reference architecture in Sonargraph. Table 3.5
reports the rules used to group packages in components in RepoFinder. “*”
means that every class and interface directly contained in the package is con-
sidered. “**” considers every subpackage and contained classes or interfaces.

Several architectural violations were found in RepoFinder (1073), as shown
in Table 3.4. As it was observed and then checked, the most frequent ar-
chitectural violations were related to the database usage. The only compo-
nent allowed to access the database library (JOOQ2) is the database manager,
but the accesses found from other components, e.g., directly reading tables

2 https://www.jooq.org/

https://www.jooq.org/

3.3 detecting and repairing software architecture erosion 41

Table 3.5: RepoFinder components definition patterns

Package Component

it.unimib.disco.essere.serial.** search engine

it.unimib.disco.essere.serial.* search engine

it.unimib.disco.essere.serial search engine

it.unimib.disco.essere.analysis.** analyzer

it.unimib.disco.essere.analysis.* analyzer

it.unimib.disco.essere.analysis analyzer

it.unimib.disco.essere.repofinderUI.tool.** analyzer

it.unimib.disco.essere.repofinderUI.tool.* analyzer

it.unimib.disco.essere.repofinderUI.tool analyzer

it.unimib.disco.essere.dashboard.** user interface

it.unimib.disco.essere.dashboard.* user interface

it.unimib.disco.essere.dashboard user interface

it.unimib.disco.essere.repofinderUI.storage.** db manager

it.unimib.disco.essere.repofinderUI.storage.* db manager

it.unimib.disco.essere.repofinderUI.storage db manager

org.apache.lucene.** apache

org.apache.lucene.* apache

org.apache.lucene apache

org.jooq.** jooq

org.jooq.* jooq

org.jooq jooq

org.jsoup.** jsoup

org.jsoup.* jsoup

org.jsoup jsoup

net.sourceforge.pmd.** pmd

net.sourceforge.pmd.* pmd

net.sourceforge.pmd pmd

jdepend.xmlui.** jdepend

jdepend.xmlui.* jdepend

jdepend.xmlui jdepend

com.puppycrawl.tools.checkstyle.** checkstyle

com.puppycrawl.tools.checkstyle.* checkstyle

com.puppycrawl.tools.checkstyle checkstyle

com.aragost.javahg.** hg

com.aragost.javahg.* hg

com.aragost.javahg hg

com.vaadin.** vaadin

com.vaadin.* vaadin

com.vaadin vaadin

org.tmatesoft.svn.core.** svn

org.tmatesoft.svn.core.* svn

org.tmatesoft.svn.core svn

org.eclipse.jgit.** git

org.eclipse.jgit.* git

org.eclipse.jgit git

javancss.** javancss

javancss.* javancss

javancss javancss

jxl.** jxl

jxl.* jxl

jxl jxl

3.3 detecting and repairing software architecture erosion 42

Figure 3.7: Sonargraph - Architecture Violations in RepoFinder

through JOOQ. The second most frequent architecture violation is related to
the direct access to the Apache Lucene index. This, in fact, has to be accessed
only by the crawling and indexing components of RepoFinder.

A large number of smells was also found. For what concern code smells,
Sonargraph identifies few of the ones defined by Fowler and other code
anomalies of different kinds and granularity, as unused/missed/hideable-
something. In particular, 4987 code smells were found, with a high num-
ber of unused methods (2985), hideable public methods (600), missed ab-
straction methods (522), unused classes unreachable (452).

Moreover, the number of Cyclic Packages detected in RepoFinder and the
biggest package cycle, which is composed by 9 packages are outlined in
Table 3.4. Cyclic packages, also called Cyclic Dependency, represent one of
the most critical architectural smell [53, 93].

Sonargraph requires the definition of the reference architecture of the pro-
ject, to provide the detection of architectural violations. For Ant, architectu-
ral documentation is very scarce. A reference to the separation of packages
in modules was found in the Javadoc contained in the project’s binaries3. In
the documentation, allowed and disallowed dependencies are not defined.
The only information available is the division of packages in modules.

The packages of Apache Ant 1.8.4 have been grouped in five components:
core, task, types, util and tools. Table 3.6 summarizes the rules used to group
packages.

Sonargraph reported only two architectural violations in Ant (see Table 3.4),
where two classes located in sub-packages of org.apache.tools.ant access
classes outside the ant package, e.g., classes contained in org.apache.tools.-

zip. Compared to RepoFinder, Ant has lower Structural Debt Index but
contains a much larger package cycle group (26 packages). The number of
identified code smells in the two systems is comparable (5338 vs 5265), while
code smell density is higher in RepoFinder.

Repairing Design Erosion

In order to highlight architectural violations, Sonargraph provides the “Ex-
ploration View”, which shows dependencies using colored edges: green for
correct dependencies and red for violated dependencies. Figure 3.6 shows
the view over RepoFinder.

3 http://archive.apache.org/dist/ant/binaries/apache-ant-1.8.4-bin.zip

http://archive.apache.org/dist/ant/binaries/apache-ant-1.8.4-bin.zip

3.3 detecting and repairing software architecture erosion 43

Table 3.6: Ant components definition patterns

Package Component

org.apache.tools.ant Core

org.apache.tools.ant.* Core

org.apache.tools.ant.taskdefs Task

org.apache.tools.ant.taskdefs.* Task

org.apache.tools.ant.taskdefs.** Task

org.apache.tools.ant.taskdefs.optional Task

org.apache.tools.ant.taskdefs.optional.* Task

org.apache.tools.ant.taskdefs.optional.** Task

org.apache.tools.ant.types Types

org.apache.tools.ant.types.* Types

org.apache.tools.ant.types.** Types

org.apache.tools.ant.types.optional Types

org.apache.tools.ant.types.optional.* Types

org.apache.tools.ant.types.optional.** Types

org.apache.tools.ant.util Util

org.apache.tools.ant.util.* Util

org.apache.tools.ant.util.** Util

org.apache.tools.bzip2 Tools

org.apache.tools.bzip2.* Tools

org.apache.tools.bzip2.** Tools

org.apache.tools.mail Tools

org.apache.tools.mail.* Tools

org.apache.tools.mail.** Tools

org.apache.tools.tar Tools

org.apache.tools.tar.* Tools

org.apache.tools.tar.** Tools

org.apache.tools.zip Tools

org.apache.tools.zip.* Tools

org.apache.tools.zip.** Tools

3.3 detecting and repairing software architecture erosion 44

In RepoFinder, the indications about violated dependencies reported on
the use of database libraries were followed and removed the violated de-
pendency. In the logical architecture of the project, the JOOQ library was
defined as an external sub-system. The Architecture Violations view lists
the existing violations (see Figure 3.7). The information of this view was
used as starting point to perform the refactoring. The refactoring operations
can be summarized with three refactoring actions: (i) the first is to create an
external component dedicated to the use and management of the database,
(ii) the second one is to eliminate, where it is possible, all usages and referen-
ces to the JOOQ subsystem from all the components, and (iii) the third one
is to use the new database manager component to access and use the JOOQ
library. These actions significantly lowered the Structural Debt Index of the
project, by more than a half.

In Ant, the two reported architectural violations were solved. In order to
solve these violations, the methods from the called class were moved to the
calling class, removing the dependency between the packages.

Maintainability and Evolution using SonarGraph

In Table 3.4, the evolution of the data collected before and after repairing
some of the identified problems were reported for the two systems.

In RepoFinder, the number of Architecture Violations and Cyclic Packa-
ges and the Structural Debt Index decreased significantly. The three values
are tied since the Index is computed over the other two measures. While
code smells are not directly related to the applied refactoring, their number
changed drastically: unused methods lowered by a half (5265→ 2860), hide-
able public methods by a half (600 → 301), missed abstraction methods by
a tenth (522 → 66); unused classes unreachable did not lower so drastically
(452→ 398). Lines of Code significantly decreased, too.

In Ant, refactoring actions slightly decreased the Structural Debt Index.
The removal of Cyclic Dependency was attempted, exploiting the recom-
mended dependency cuts proposed by Sonargraph. However, after solving
five cycles, it was clear that this operation was not effective in tackling the
measured Structural Debt. The number of code smells decreased by only 14

code smells, of these types: unused attributes, unused methods.
Considering the refactoring actions executed on the two systems, as far

as it is observable from the data the Structural Debt Index has been propor-
tional to the effort spent. The reason why no more changes were applied
to Ant is mainly that the tool did not provide many feasible refactoring op-
portunities. Some relevant proposed changes were extremely complex, and
were not addressed. The tool is certainly useful both for detecting and repai-
ring architecture defects and monitor the quality of an application during
maintenance. However, on a project where the architecture is not known in
much detail, the proposed refactoring opportunities can be not effective or
very difficult to address.

3.3 detecting and repairing software architecture erosion 45

3.3.2 Detecting and Repairing Design Erosion with Structure101

In this section, the same analysis performed with Sonargraph by exploiting
Structure101 Studio for Java v4.2.10071 (Structure101 in the following) [60]
was executed. The tool provides different views, with the ability to define,
inspect and manipulate the model of the analyzed project, to show the col-
laboration between code items, understand the class hierarchy, navigate the
call method graph and detect Fat items and/or Tangles.

Fat corresponds to complexity measured on a single item, at any level of
granularity. Cyclomatic Complexity (CC) is used to measure Fat on methods,
while at any other level of granularity Fat is measured as the number of
inter-dependencies existing among the item’s contents. For example, Fat in
packages is the number of dependencies among the contained classes. Size
measures are not used to measure Fat, since it is assumed that the complexity
of the control flow or of the structure makes an item hard to understand, and
not, e.g., its number of sequential lines of code. Items are considered “Fat”
when their Fat value exceeds a defined threshold. For example, the default
threshold for methods is 15.

Tangles are cyclic, package-level dependencies. As widely known, they
drive up the coupling of a structure, making it much harder to understand,
extend or modify. Moreover, activities such as regression testing, software
reuse, and porting to modern frameworks become virtually impossible. Struc-
ture101 organizes Tangles into levels by calculating the Minimum Feedback
Set (MFS), i.e., a minimum set of dependencies that, if removed, would ren-
der the dependency graph acyclic, and by showing the levels as if the MFS
dependencies were removed. Tangles are computed at the package and de-
sign granularity levels. Each package or component is assigned to a Tangle
percentage, reflecting the portion of its content participating to a tangle.

By using Fat, Tangle, and a Size metric (LOC), Structure101 computes
another metric called XS (“excess”), on every item: methods, classes, packa-
ges, components. XS represents an estimation of the portion of the LOC of
an item that are “affected” by Fat or Tangle (see Section 2.5).

Detecting Design Erosion

Structure101 was used to analyze the software architecture of Ant 1.8.4 and
RepoFinder. Structure101 reconstructs the software architecture and shows
the top list of Tangles and Fat elements. The structural over-complexity
graph, shown in Figure 3.8 4, shows the percentage of the elements of the
project are considered “Tangled” or “Fat”. The graph classifies a project as
structured or unstructured. If the percentage of Tangled and Fat items in
the project is near to 0%, the project is structured, while if it is near to 100%
the project is considered unstructured. The graph shows how much struc-
ture the project has, and how much it will have after the planned refactoring
actions.

4 the background color is not relevant to understand the figure

3.3 detecting and repairing software architecture erosion 46

Figure 3.8: Structure101 - Structural over-complexity view on Ant

Figure 3.9: Structure101 - Exploration View on Ant

The reconstructed architecture is shown using the Levelized Structure
Map (LSM), which allows choosing different grouping methods: cohesive
cluster, tangles and tagged items. Figure 3.9 shows Ant’s LSM, applying the
Cohesive Cluster grouping method. System items are grouped according
to their common dependencies and LSM levels. It helps to understand Fat
regions, and can help in the process of subdividing a Fat item in several
smaller items. The large red/dark rectangular group depicted in Figure 3.9
is a tangle of 48 items, contained in a clustered group of 56 items belon-
ging to the org.apache.tools.ant package. There is also an orphan item
(MagicNames class) that is not referred by items of its package. Items can be
tagged, simplifying their comprehension process, by allowing to easily lo-
cate them in different views and to understand their collaboration with the
rest of the project.

Defining the logical architecture of the project is important to check pos-
sible architecture violations. This feature is provided by Structure101 in the
rule tab shown in Figure 3.10. It is possible to define more than one diagram
and check different configurations of the project architecture, counting how
many class dependencies violations there are w.r.t. the designed one. The
diagram defines layering through the top-down arrangement of cells. In ge-
neral, cells may only be used by others in higher layers, but it is possible to
define exceptions and to override this rule, by drawing green (continuous
line) arrows (to allow dependencies) and red (dashed line) arrows (to disal-

3.3 detecting and repairing software architecture erosion 47

Figure 3.10: Structure101 - Architecture Diagram of Ant

low dependencies). Black arrows are reported only when there is a violation
among the designed components.

Other views exist for the detailed evaluation of Tangles or Fat items, to fo-
cus attention on tangles and their elements, to show the collaboration among
different source items, and display an overview of the hierarchical composi-
tion of code and call graphs.

Structure101 found 3 tangles at package level, and 26 at class level in Ant
(see Table 3.7). It also found 29 class-to-class dependency violations from
the defined architecture.

RepoFinder (see Table 3.7) contains more tangles than Ant, but they are
smaller: the largest package tangle in RepoFinder contains 9 classes, while
in Ant the largest tangle contains 26 classes. The result is consistent with the
one reported by Sonargraph and described in Section 3.3.1.

Tables 3.8-3.9 show the density of Tangle and Fat items in the project, and
their respective thresholds, at all granularity levels. In Ant, 9 of 17 defined
component are tangled. Tangles are the prominent XS violation for Ant. In
fact, Tangles cover 63% all the XS measured on the proect. The density of
Fat items is generally low (1%–3%).

3.3 detecting and repairing software architecture erosion 48

Table 3.7: Structure101 - Detected Tangles

Ant RepoFinder

Level before after before after

Package #Items 70 70 308 289

Package #Tangles 3 2 9 7

Package #Tangled items 30 28 30 25

Package Biggest 26 26 9 9

Class #Items 845 850 1,467 1,288

Class #Tangles 26 14 39 13

Class #Tangled items 300 272 296 200

Class Biggest 181 181 74 74

Table 3.8: Density of tangled and fat item in Ant

Threshold before after

Tangled (design) #Offenders 0 9 of 17 8 of 17

Tangled (design) %Offenders 0 53% 47%

Tangled (design) %XS 0 63% 63%

Fat (design) #Offenders 120 0 of 17 0 of 17

Fat (design) %Offenders 120 0% 0%

Fat (design) %XS 120 0% 0%

Fat (package) #Offenders 120 2 of 70 2 of 70

Fat (package) %Offenders 120 3% 3%

Fat (package) %XS 120 11% 12%

Fat (class) #Offenders 120 16 of 1,270 16 of 1,270

Fat (class) %Offenders 120 1% 1%

Fat (class) %XS 120 13% 14%

Fat (method) #Offenders 15 95 of 11,205 95 of 11,205

Fat (method) %Offenders 15 1% 1%

Fat (method) %XS 15 12% 12%

3.3 detecting and repairing software architecture erosion 49

Table 3.9: Density of tangled and fat item in RepoFinder

Threshold before after

Tangled (design) #Offenders 0 16 of 202 14 of 190

Tangled (design) %Offenders 0 8% 7%

Tangled (design) %XS 0 69% 66%

Fat (design) #Offenders 120 0 of 202 0 of 190

Fat (design) %Offenders 120 0% 0%

Fat (design) %XS 120 0% 0%

Fat (package) #Offenders 120 0 of 308 0 of 289

Fat (package) %Offenders 120 0% 0%

Fat (package) %XS 120 0% 0%

Fat (class) #Offenders 120 17 of 1,816 16 of 1,614

Fat (class) %Offenders 120 1% 1%

Fat (class) %XS 120 17% 19%

Fat (method) #Offenders 15 41 of 12,212 38 of 9,500

Fat (method) %Offenders 15 0% 0%

Fat (method) %XS 15 14% 15%

In RepoFinder, the density of Tangles is lower, but they still represent the
largest part of the XS in the project. Fat items are present only at class level
and method level, with density value of 0%–1%.

Repairing Design Erosion

Structure101 builds a model of the analyzed project, containing, e.g., its
structure, architectural violations, XS metric values and offenders. Each mo-
del is stored in a repository that can be accessed by different developers. A
single repository can contain the models of several versions of several diffe-
rent systems.

To support the removal of tangles from source code, Structure101 provides
an action plan, which is also stored in the model, containing the recommen-
ded refactoring to perform on the project, to apply the refactoring actions
simulated through the tool. Every single action is an atomic source code
change that involves one or two items (e.g., add class A or move method m()

from A to B).
The action plan can be accessed from the Eclipse IDE, but cannot be auto-

matically applied. Developers must choose how and if to follow the action
plan. The selection of an item in the action plan redirects to the file interested
by the action. Structure101 does not provide a way to apply a refactoring
automatically. Since Eclipse provides some refactoring automation, e.g., ex-
tract class with parameters, move method, it is possible to exploit them, but

3.3 detecting and repairing software architecture erosion 50

they are not triggered by the Structure101 plugin. Moreover, the action plan
is not synchronized with the IDE. To update the action plan, a full project
analysis must be executed.

In Ant, 12 tangles at class level and 1 at package level were resolved, remo-
ving dependencies in the Minimum Feedback Set, to reduce the refactoring
effort. The resolution of tangles did not effectively enhance the structure of
the project measured by the tool, probably due to the fact that only relatively
small tangles were resolvable, and their resolution covered a small part of
the project. While working on Ant, which is a project not know, especially
about its design, Structure101 was particularly suitable to understand the
project without prior architecture knowledge. The tool provides a clear view
of the project, and allows experimenting with different refactoring simulati-
ons through its interactive user interface.

In RepoFinder, the problem of database access was noticed also, that was
spread across the project components. Refactoring actions were applied to
move to the database component a lot of dependencies regarding the JOOQ
library, similarly to what has been done with Sonargraph. The tool provi-
ded a precise list of the refactoring actions, but the overall effort has been
the same was spent with Sonargraph, because there is no automation of re-
factoring actions, and the additional information regarding clustering sets is
confusing.

Maintainability and Evolution using Structure101

The measures reported by Structure101 on Ant (see Table 3.8) did not change
significantly after the application of the refactoring actions. Most measures
did not change their value at all, with the exception of the percentage of
Tangle at design granularity. The number of Tangles has been decreased by
refactoring actions performed at both class level and package level. Despite
the resolution of 12 class Tangles and 2 package Tangles, the improvement
in the structural measures has been very low.

The refactoring actions applied to RepoFinder lowered significantly its
size, as shown in Table 3.9: number of methods (12, 212 → 9, 500), classes
(1816 → 1614) and package (308 → 289). This reduction of the project was
not proportionally followed by a reduction of Fat items, leading to a slight
increase in the Fat percentage. This aspect is something probably worth
noting, since Size does not influence Fat metrics, but a 22% change in the
size of the project probably has an impact on its understandability. However,
Size is always shown in the tool together with the other metrics, allowing
the user to take both indicators into consideration.

3.3.3 Discussion and Lessons Learned

According to the experimentation of Sonargraph and Structure101, was ob-
served that:

• The automatic clustering features provided by Structure101 are parti-
cularly useful to understand and analyze unknown systems. The de-

3.3 detecting and repairing software architecture erosion 51

tection of Tangles (or Cyclic Dependency) is another feature relevant
for this task, and is supported by both tools.

• The architecture definition functionalities of Sonargraph allow a more
precise architecture specification. The effect of the specification, i.e.,
the assignment of items to components, and the detected violations,
can be inspected interactively.

• Action plans generated by Sonargraph contain high-level restructuring
tasks, e.g., cutting the dependency between two classes. Structure101

gives the developer more support, providing a detailed action list that
realizes the high-level action plan.

• The tools do not associate refactoring actions to time/cost/effort me-
asures. Moreover, the structural measures provided by the tools are
not explicitly related to time or cost, and refactoring actions are not
associated to the expected gain in the respective structural measures.
This results in a lack of prioritization of the generated action plans.

• The action list provided by Structure101 is more detailed than the
action plan generated by Sonargraph, and can be inspected in the IDE.
Despite these advantages, there is space for improvement. A first is-
sue to solve is the lack of interaction with the IDE: when a refactoring
step coming from the action list is applied, it is not removed from the
action list. On large action lists, this can lead to confusion and lack of
manageability. A second issue is the fact that the action list items are
not contextualized with the project. The selection of an item can lead
to the relevant file, but not to the precise point of intervention, slowing
down the application of refactoring.

Conducting this experimentation on detecting and repairing software ar-
chitecture problems gave considerable insights into various facets of the ex-
perimented tools and how they tackle the essential problems that must be
dealt with during an evaluation and reconstruction effort. In the insights
below is outlined what in my opinion need still to be addressed:

1. as I observed, the experimented tools, and those cited in Table 3.1, do
not support software architecture history analysis. This could be a
relevant direction of improvement of the existing tools. Some techni-
ques exist that exploit this historical information, e.g., the detection of
evolutionary coupling can be used to discover unseen dependencies.

2. The experimented tools do not allow to execute the planned refacto-
ring actions automatically or semi-automatically. This would be of
great value for developers, and a gap to bridge for tool vendors. In
fact, most IDEs support refactoring actions, and a contextualized action
plan could easily trigger them in the IDE, leaving to the developer only
the effort of deciding details like the name of the new classes or met-
hods to be created.

3.4 the impact evaluation of architectural problems refactoring 52

3. Tools do not address the dynamic analysis of the project yet. This as-
pect of dynamic analysis is surely more difficult to tackle, but has the
potential of revealing very important information about the connecti-
ons among the components of the project, especially in distributed or
service-oriented architectures.

4. The only architectural smell detected by the two tools is Cyclic Depen-
dency (Tangle). Many other architectural smells have been defined [93,
114], addressing very different properties of the software architecture.

3.4 the impact evaluation of architectural problems refac-
toring

In this study the attention is focused on the detection of some architectural
problems, as architectural smells [52] (AS) and antipatterns [33] (AP), and
on the evaluation of several metrics through the support of different tools.
In particular the study aims to evaluate the impact that the refactoring of
some AS or AP has on the values of some metrics. Among them, particular
attention is given to Quality Indexes evaluated by some tools, as Quality
Deficit or Technical Debt Indexes. For this reason,four tools were experimen-
ted (inFusion, SA4J, Sonarqube and Structure101), that are able to compute
some kind of Index providing an evaluation of a project, as Table 3.1 shows.
Structure101 was preferred to Sonargraph since in [16] we argued that Struc-
ture101 provides better support in the case of unknown architecture. The
experimentation was done on four OSS projects taken from the Qualitas
Corpus (QC) [154].

Refactoring is expensive and it would be useful to focus the attention
on the refactoring of the most critical problems. Architectural problems as
AS are considered more critical, for example, respect to code smells and
if they are not removed, it could be possible to assist to a progressively
software architecture erosion and degradation [102]. Hence, in this study
the investigation is started from the impact of the refactoring of these more
critical problems on Quality Indexes. A developer could be interested to know
the benefits of refactoring this kind of problems on some quality features, as
those captured by the indexes. Moreover, he could be interested to know
which kinds of problems the tools are able to detect, problems that for the
developer could be difficult to be manually identified.

The goal of these study is to better understand if the refactoring of AS
or AP is easy or not, if the refactoring of these problems improves or not
the quality of a system according to the different Quality Indexes, and if
the definition and computation of the considered Quality Indexes could be
improved.

3.4 the impact evaluation of architectural problems refactoring 53

3.4.1 Study Setup

Analyzed Systems

Four systems written in Java were analyzed, reported in Table 3.10. The se-
lected systems belongs to two main categories from Qualitas Corpus: Midd-
leware and Tool.

Table 3.10: Systems analyzed and refactored

Middleware Tool

Quartz Informa Jag Commons

Version 1.8.6 0.7.0 6.1 3.2.1

LOC 40477 12830 20385 42285

of methods 2659 1297 1434 3694

of classes 244 160 257 428

of packages 25 13 16 12

Quartz and Informa are projects of the Middleware category. Quartz is
an open source job scheduling library that can be integrated within virtually
any Java application. Informa is an open source project that provides a news
aggregation library based Java platform.

JAG and Commons-collections are projects of the Tool category. Jag is an
application that creates working J2EE applications. Commons-collections is
a standard for collection handling in Java, e.g, Maps, Bidirectional Maps,
Bags.

Tools

Four tools were used to assess software quality from different points of view
and to detect different architectural problems. These tools were used since
they are able to detect AS or AP and compute different metrics and Qua-
lity Indexes, as shown in Table 3.1: SonarQube (SQ), inFusion (InF) and
Structure101 (S101); Structural Analysis for Java (SA4J)5, developed by IBM,
computes the dependencies in a project, provides several views and the de-
tection of several antipatterns.

Data Collection: Architectural smells and antipatterns

The AS reported by inFusion are the following three (see Section 2.5): Cyclic
Dependency, Unstable Dependency and Stable Abstraction Breaker.

The AP detected by SA4J are the following:

• Tangle - is a large group of objects or package whose relationships are
so interconnected that a change in any one of them could affect all the

5 IBM Alphaworks - http://alphaworks.ibm.com

http://alphaworks.ibm.com

3.4 the impact evaluation of architectural problems refactoring 54

others. Large Tangles are a major cause of instability in large systems
(Tangles exist both class and package level).

• Local Butterfly - is an object with many immediate dependents. It has
many immediate relationships when another object depends upon it.

• Global Butterfly - is an object with many global dependents. Many
objects are affected when a Global Butterfly changes.

• Local Breakable - is an object that has many immediate dependencies
and relationships when it depends on another object. Local Breakables
are typically undesirable because they “know too much”.

• Global Breakable - is an object that has many global dependencies and
is often affected when any other object is changed in the system. They
have to be avoided, as they indicate fragility and lack of modularity in
the system.

• Local Hub - is an object with both many immediate dependencies and
dependents. It has both many immediate relationships that affect other
objects and where other objects affect it.

• Global Hub - is an object with both many global dependencies and
many global dependents. It is often affected when any other object is
changed, and it affects a significant percentage of the system when it
changes.

The Cyclic Dependency smell detected by InF corresponds to the Tangle
at package level detected by SA4J and S101. Table 3.12 shows the number
of these AS and AP detected on all the four systems. Moreover, the number
of Tangle are reported in the Table (S101 and SA4J) and Cycles (SQ) at class
level and the number of the different AP (SA4J) always at class level.

Collected Data: Quality Indexes

As outlined before, the above tools were selected because they are all able
to compute a Quality Index. In particular the tools compute the following
Quality or Technical indexes (see Section 2.5):

• Software Quality Assessment based on Lifecycle Expectations [87] (SQALE)
and Technical Debt (TD) - SQALE and TD are computed by SonarQube.
There are basically three values computed on a project, i.e., TD (day),
TD Ratio and SQALE rating.

• Quality Deficit Index (QDI) - It is computed by inFusion, through the
number of code smells (CS) and architectural smells (AS) found in a
system.

• Stability Index - It is computed by SA4J and measures the stability of a
system, where systems are considered stable when internal and exter-
nal dependencies are balanced.

3.4 the impact evaluation of architectural problems refactoring 55

• Structural over-Complexity (SoC) - It is computed by Structure101 (see
Figure 3.11).

Refactoring

The same refactoring process was applied to remove AS and AP. The systems
were analyzed with all the tools every time the refactoring was performed,
in order to check if the Quality Indexes were improved or not by following
few steps:

1. Search and remove Tangles. For the Tangles at package level, S101 sug-
gestions were followed to solve them. For the Tangles at class level, the
javadoc documentation of the systems was read, and the dependencies
were reassigned, working directly on the source code;

2. Search and remove AS of InF. If the Cyclic Dependency or Tangles
were already removed, then for other AS was checked, as SAP Breakers
and Unstable Dependency. Then, the code was refactored in order to
remove them;

3. Remove Fat items found by S101. Fat at different granularity was remo-
ved using different techniques: on packages (extract class refactoring),
on classes (extract super class, extract subclass refactorings) and on
methods (extract method refactoring).

Some of the refactoring suggestions of S101 were exploited, Eclipse IDE
(v.4.5 Mars) was used to apply them and then the refactoring in the code was
manually checked. In some cases, as for example for long Extract Method,
the refactoring was done manually and not through Eclipse.

The refactoring steps have been applied by four Master students in compu-
ter science, following the course of Software Evolution and Reverse Engineer-
ing at University of Milano Bicocca, with a main focus on software quality
assessment through code and architectural smells detection and refactoring.
The same students applied the four tools to detect the different architectural
problems, to performe the different refactoring steps to remove them and
to evaluate the different Indexes before and after the refactoring. They all
worked together on the four analyzed systems, each one checked every step
and they discussed the critical cases on the refactoring or not of a problem
respect to another one in order to improve quality indexes. They performed
the task in 3 weeks part-time. At the end, the results were checked by a PhD
student.

3.4.2 Results

The obtained results for each system are described in Tables 3.11, where
some metrics and all the indexes computed by the tools are shown and in
Tables 3.12 the number of AS and AP, before and after refactoring.

In the following subsections the attention is focused on each system and
the impact of the refactoring steps applied to remove AS and AP is evalua-
ted.

3.4 the impact evaluation of architectural problems refactoring 56

Table 3.11: Metrics and Indexes measured for every system

Middleware Tool

To
ol

Quartz Informa Jag Commons

Name T O R D O R D O R D O R D

St
ru

ct
ur

e
1
0

1

Tangle score (XS) (Package) I 6436 0 -6436 672 0 -672 27386 0 -27386 9496 0 -9496

Fat (Package) M 0 0 0 0 0 0 0 1 1 0 0 0

Fat (Class) M 5 2 -3 0 0 0 3 3 0 6 6 0

Fat (Method) M 20 20 0 7 7 0 17 17 0 4 4 0

Fat score (XS) (Package) I 0 0 0 0 0 0 0 13314 13314 0 0 0

Fat score (XS) (Class) I 12098 5683 -6415 0 0 0 4166 4166 0 3304 3331 27

Fat score (XS) (Method) I 5088 4348 -740 1997 1997 0 2258 2258 0 103 103 0

in
Fu

si
on QDI I 11.80 11.2 -0.6 6.4 6 -0.4 12.8 10.9 -1.9 2.5 0.9 -1.6

CC (Average Method) M 1.88 1.85 -0.03 1.65 1.65 0 2.17 2.15 -0.02 1.74 1.75 0.01

Coupling Deficit Index I 19.5 15.3 -4.2 8.8 7.0 -1.8 23.4 16.2 -7.2 6.4 0.8 -5.6

So
na

rQ
ub

e

Tangle Directory Index (%) I 3.8 0 -3.8 5.4 0 -5.4 48.3 0 -48.3 50.6 0 -50.6

TD (Day) I 61 61 0 30 31 1 55 55 0 52 52 0

TD Ratio I 4 4 0 5.1 5.2 0.1 5.8 5.8 0 3.3 3.4 0.1

SQALE I A A – A A – A A – A A –

Number of issues M 2277 2296 19 1022 1028 6 2910 2923 13 1875 1884 9

LOC M 24539 24684 145 9722 9754 32 15375 15421 46 25069 25016 -53

Duplications (%) M 3.8 3.3 -0.5 5.5 5.5 0 1.6 1.6 0 7.6 7.8 0.2

Dependencies to cut (Pkg) M 7 0 -7 4 0 -4 16 0 -16 12 0 -12

Dependencies to cut (Cls) M 9 0 -9 9 0 -9 65 0 -65 129 0 -129

SA
4
J

Stability Index (%) I 90 90 0 85 86 1 85 85 0 97 97 0

Number of Object M 195 211 16 160 160 0 142 143 1 279 278 -1

Number of Packages M 28 35 7 17 17 0 23 20 -3 15 14 -1

Number of Relationships M 1209 1275 66 1013 1004 -9 994 976 -18 1334 1323 -11

Columns: T (Type), O (Original version), R (Refactored version), D (Differences);

Type: M (Metric), I (Index); Granularity: Cls (Class), Pkg (Package)

3.4 the impact evaluation of architectural problems refactoring 57

Table 3.12: Architectural smells and Antipatterns detected on every system

Middleware Tool

Quartz Informa Jag Commons

Tool Name Granularity O R D O R D O R D O R D

S101 Tangle Package 1 0 -1 2 0 -2 1 0 -1 1 0 -1

S101 Tangle Class 4 2 -2 3 1 -2 2 2 0 2 0 -2

InF Cyclic Dependencies Package 11 0 -11 4 0 -4 12 0 -12 10 0 -10

InF Unstable Dependencies Package 1 0 -1 0 0 0 0 0 0 2 0 -2

InF SAP Breakers Package 1 0 -1 0 0 0 0 0 0 2 0 -2

SQ Cycles Class 17 0 -17 5 0 -5 41 0 -41 35 0 -35

SA4J Tangle Package 1 0 -1 1 0 -1 1 0 -1 1 0 -1

SA4J Tangle Class 4 2 -2 3 1 -2 2 2 0 2 0 -2

SA4J Breakable (Local) Class 19 20 1 28 27 -1 28 28 0 17 17 0

SA4J Breakable (Global) Class 31 32 1 96 70 -26 51 51 0 0 0 0

SA4J Hub (Local) Class 8 8 0 4 4 0 14 14 0 0 0 0

SA4J Hub (Global) Class 1 1 0 7 6 -1 33 33 0 0 0 0

SA4J Butterfly (Local) Class 24 28 4 19 19 0 30 29 -1 24 24 0

SA4J Butterfly (Global) Class 20 22 2 27 25 -2 67 70 3 5 5 0

Columns: O (Original version), R (Refactored version), D (Differences)

Tools: S101 (Structure 101), InF (InFusion), SA4J (SA4J), SQ (Sonarqube)

Results for Quarz

After the refactoring, the following architectural problems were removed:

• 60% of Tangles recognized by SA4J and Structure 101. The percentage
of Tangle Directory Index computed by SQ is decreased to zero;

• 60% of class fatness (Fat score) computed by S101, removing 3 fat class;

• 100% of AS recognized by InF, which corresponds to the 20% of Design
Flaws (AS and CS) and to the 18% of Entity Flaws recognized by InF.

The QDI of InF is improved, from 11.8 to 11.2 (5%) and in particular the
Coupling Deficit Index. The Technical Debt Ratio of SQ is still constant after
the refactoring. Duplication percentage is decreased from the original to the
refactored version. Some compromises were accepted during the refactoring
operations:

• The removal of Tangles led to the introduction of some new AP, like
Local and Global Butterfly and/or Local and Global Breakable: 2 Brea-
kable and 6 Butterfly AP were introduced. Hub is constant to 9.

• The Number of Relationships of SA4J increased due to the introduction
of 16 new objects.

Results for Informa

The following architectural problems were removed after the refactoring:

3.4 the impact evaluation of architectural problems refactoring 58

• 80% of Tangles recognized by SA4J and S101. The percentage of Tang-
led Directory Index detected by SQ is decreased to zero.

• 100% of AS recognized by InF, which corresponds to the 10% of Design
Flaws and to the 10% of Entity Flaws recognized by InF.

27 Breakable, 1 Hub and 2 Butterfly AP were removed by refactoring the
above AS and AP, . The InF QDI was improved from 6.4 to 6.0 (7%) and was
slightly increased the Stability Index of SA4J. The Technical Debt Ratio of
SQ slightly increases after the refactoring steps.

Results for Jag

The following architectural problems were removed:

• 33% of Tangles recognized by SA4J and S101. the percentage of Tangle
Directory Index computed by SQ was decreased to zero;

• 100% of AS recognized by InF, which corresponds to the 22% of Design
Flaws and to the 15% of Entity Flaws of InF.

1 Local Butterfly was removed while Breakable and Hub AP remain con-
stant at zero by removing the above AS and AP.

The QDI of InF was improved from 12.8 to 10.9 (15%) and in particular
the Coupling Deficit Index. The Technical Debt Ratio of SQ is constant at 5.8
and the Number of Relationships of SA4J decreases.

The following compromises were accepted during the refactoring operati-
ons:

• Some new AP, like Global Butterfly, were introduced by removing the
Tangles.

• A Fat element at package level was introduced with an associated Fat
score of 13, 314, because this was the only way to remove Tangles and
improve other indexes. Fat issues are tied to complexity measures,
and by reducing coupling, it could increase complexity, as shown in
this case. Different strategies to remove Tangles were tried, but an
increment of the Fat score was always observed.

Results for Commons Collection

The following architectural problems were removed:

• 100% of Tangles recognized by SA4J and Structure 101. The percentage
of Tangled Directory Index computed by SQ were decreased to zero;

• 100% of AS recognized by InF, which corresponds to the 35% of Design
Flaws and to the 30% of Entity Flaws recognized by InF.

The QDI of InF was improved, from 2.5 to 0.9 (64%) and in particular
the Coupling Deficit Index. The AP Breakable, Hub and Butterfly AP are
constant to zero. The Technical Debt Ratio slightly increased.

3.4 the impact evaluation of architectural problems refactoring 59

3.4.3 Observations on the results

The quality of the four systems was generally improved through the refacto-
ring of the different architectural problems, but the following observations
respect to the Quality Indexes and the removed problems are reported.

The SQALE Index is constant at the best value A for all the systems before
and after refactoring. Technical Debt Ratio is related to the SQALE index and
it is constant for the systems, except for Informa and Commons-collection
systems where it slightly increases.

The Quality Deficit Index (QDI) is improved (decreased) for every system
after the refactoring, this is due to the decreasing value of the design flaws.
All the AS detected by InF were removed, resulting in a significant lower
value of QDI, except for the Quartz system with only a slightly decrement
of the index. A great attention was paid to avoid the introduction of new
code smells or other problems During the AS refactoring.

The Stability Index of SA4J remains constant for all the systems. Informa
is the only system with a slightly increment of the Stability Index.

The SoC Index of S101 shown in Figure 3.11 has been always improved
(decreased near to zero). Jag is the worse case where the tangleness is decre-
ased to zero against an increment of the fatness, but the refactored version
of Jag has a lower SoC index. The attention was focused in removing first
of all the AS, and after their refactoring a reduction of all the Fat issues was
not observed (XS at Package level), probably for the reasons outlined above
(lower coupling with an increment of complexity).

Moreover, to highlighting that the tools can compute the same metric by
providing different values. This has been observed in the literature also
for the very simple LOC metric. In our case for example, the cyclomatic
complexity computed by InF that slightly decreases or remains constant,
and Fat issues, related to complexity, computed by SoC that behave in the
same way, with the exception, as already observed for the Jag system.

The Tangles of SA4J and S101 at package level and all the Cycles detected
by SQ have been removed from each system. The Tangles detected by SA4J
are the same of the Tangles of S101. However, SA4J did not find one Tangle
at package level in Informa found by S101. Finally, the number of Depen-
dencies to cut (SQ), the Tangle Directory Index (SQ) and the Tangle score
(S101) decreased to zero.

The number of Hub AP is more or less constant in every system. Generally,
the refactoring of all the AS had a small impact on Hub AP, but a greater
impact on other AP as Breakable and Butterfly.

3.4.4 Threats of Validity

Some limitations of our experimentation are known. The experimentation
using four representative tools has been done, but other tools could be con-
sidered in future experimentation, as for example Sonargraph and CAST.
Moreover, many different architectural problems were removed, but not all
of them, as outlined before, for different reasons and compromises.

3.4 the impact evaluation of architectural problems refactoring 60

Figure 3.11: S101 - Structural over-Complexity

3.5 conclusions 61

As outlined in Section 3.4.1, the refactoring steps have been applied by
four Master students in computer science, hence also if they had experience
on this task, they could have not always made the best choice on the refacto-
ring to be applied or on the problem to be removed.

Only four systems were analyzed, hence, the experimentation has to be
extended, but in any case the analysis done on the four systems could be
representative of the impact of the refactoring of architectural problems and
can give hints on the different problems and compromises to be faced.

In following, the conclusions of this chapter are given about the three
studies explained before.

3.5 conclusions

Three studies [11, 16, 18] were performed using mainly the tools providing
technical debt indexes. In the following, I describe the main conclusions of
each study.

3.5.1 First Study of Section 3.2

In Section 3.2, the experience in using three tools (SonarGraph, SonarQube
and inFusion) able to provide a quality/debt index is described with the
aim of evaluating the architectural debt and the overall quality of a software
project. With this aim, the answer to the following research question is
provided:

rq1 Which tool has the largest set of useful function for evaluating architectural
debt?

Even if all the applied tools provide functions to evaluate the architecture,
they have different origins, and were initially developed with a different
set of core functions. SonarQube is mainly a code checker, and provides
lots of low-level checking rules, tracing them on different project versions;
it computes Technical Debt taking into account the violations to the rules.
inFusion’s main focus is on code smells (design flaws), and its QDI measure
relies on them and their severity; Sonargraph, instead, is more focused on
the evaluation of the architecture, and provides more facilities for this kind
of task; the index it provides, in fact, is mainly derived from architectural
smells or violations. Hence, Sonargraph provides the largest set of useful
functions for the considered task. In the other tools, some key features are
missing. For example, SonarQube does not allow to inspect the found depen-
dency cycles; inFusion is better, but has some localized issues, e.g., it reports
duplicated instances of dependency cycles, creating confusion in the analy-
sis phase; moreover, it reports less dependency cycles than the other tools.
As for the most useful functions provided by the applied tools, I think that
Sonargraph’s Exploration view allows to quickly inspect most architectural
issues from a single graphical entry point, substituting both the dependency
matrix and the graph representation of dependencies provided by the other

3.5 conclusions 62

tools. Moreover, only Sonargraph is able to support refactoring by simu-
lating the removal of dependencies. The other tools allow only to see the
issues, but not the way to mitigate them or the effect of the intervention.

I think that this experience report can be useful to developers or maintai-
ners to have a quick indication on the support given by the three tools in
identifying architectural debt, but also to tools’ developers to improve their
tools. For example, the available Indexes summarizing the quality or debt of
the projects are not directly useful when evaluating a single project. These
measures cannot be interpreted with the aim to understand the overall qua-
lity of the analyzed project on a global scale. In other words, the number
cannot tell if the project is good or not. The SQALE rating, which should go
in this direction, in my experience is overly optimistic. In fact, most of (if not
all) the projects analyzed received an A rating, even when significant issues
existed. Of consequence, I think that these Indexes are currently useful only
on a relative scale, in the case a single team evaluates an entire portfolio of
applications. In this case, the Index can be used, e.g., to rank new projects
with the respect to the old/existing ones. In this context, the support given
by Sonargraph and SonarQube to the management of different versions of
the same project, is useful to trace the trend of the Index and other metrics,
and to understand if the changes applied between two versions have been
harmful for the quality of the system.

3.5.2 Second Study of Section 3.3

In Section 3.3, it is described the experience using Sonargraph and Struc-
ture101 to detect code and architecture problems and in repairing some of
them. The aim of the study was to answer the following research questions:

rq1 How the tools differ in supporting the reconstruction of systems where a refe-
rence architecture is available or not (known/unknown system)?

Both tools allow specifying the reference architecture of the analyzed project.
Sonargraph was more mature and richer in terms of offered functionalities.
Its way of specifying the reference architecture of the system is more detailed,
allowing, e.g., to specify layers and slices, and to interactively inspect the
packages and classes contained in the specified components. Structure101

handles the component definition mainly relying on the existing packages
of the system, which can only be grouped graphically. Wildcard patterns
can be used to exclude unwanted items from the architecture by name, but
not to define components as in Sonargraph. Components can be organized
in a hierarchy, but there are no concepts similar to Sonargraph’s layers and
slices.

As for the support for architecture evaluation and discovery, without the
specification of the reference architecture, the two tools have different cha-
racteristics. Structure101 allowed us to discover more relevant architectural
issues on Ant, even without the definition of its architecture. In particular,

3.5 conclusions 63

the Cohesive Cluster grouping method used in the LSM view is particu-
larly effective in highlighting different architectural aggregates, without any
prior knowledge. For example, it allowed to discover an architectural viola-
tion regarding database access, without the need of defining the reference
architecture of the system. Sonargraph, instead, provides the detection of
Cyclic Dependency, but for any other evaluation it fully depends on the de-
finition of the reference architecture of the system. For these reasons, it was
argued that Structure101 provides better support in the case of unknown
architecture.

rq2 Do the suggested restructuring actions effectively help in the simplification of
the system?

In both the tools, the reconstructing actions chosen effectively helped in the
simplification of the system, in proportion to the needed effort. Both tools
do not provide suggestions regarding the priority of the actions to take. So-
nargraph allows the engineer to assign a level of priority to each selected
refactoring action. The action plan produced by Structure101 is ordered ac-
cording to the sequence of operations selected in the tool. Sonargraph sorts
the action plan items first by priority and then according to the sequence of
operations selected in the tool. In both tools, there is no automatic sugges-
tion of the most effective actions to undertake. Moreover, there is no way to
trigger automatic refactoring of the code starting from an action plan.

rq3 Do the provided Technical Debt measures reflect the effort spent in restructu-
ring the system?

In both the tools, the provided measures, i.e., the Structural Debt Index and
Tangle%/Fat%, in Sonargraph and Structure101 respectively, reflected the
effort spent during the refactoring actions on the two systems. The two mea-
sures have different scales, but they are proportionally tied to the structural
problems of the analyzed systems. However, in both tools it is not possible
to reliably estimate the effort needed to execute the action plans.

3.5.3 Third Study of Section 3.4

In Section 3.4, our experimentation is described on the removal of some
architectural problems, as those represented by AS and AP. Then, the impact
of the refactoring of these problems on four systems has been evaluated on
some quality issues through the computation of metrics and Quality Indexes.

The aim of the study was to answer the following research questions:

rq1 Which is the impact of the refactoring of architectural problems, as architectu-
ral smells or antipatterns, on different Quality Indexes?

Some of the Indexes provided by the tools through the refactoring steps,
as described before, in particular QDI and SoC Indexes were improved by
removing Tangles of S101, SA4J and SQ were improved by removing all the

3.5 conclusions 64

AS of InF. Moreover, it was difficult to solve together tangleness and fatness,
in order to improve all the Quality Indexes, that solving fatness could instead
increase the QDI of InF.

AS refactoring do not affect the SQALE Index that remains constant at the
highest value A, before and after removing the AS in the systems. Stability
Index of SA4J remains constant too, except for one system. Hence, these
two indexes are not related and not affected by the refactoring of AS and
Tangles. The two indexes could be excluded in order to evaluate some kind
of architectural debt.

rq2 Can be identified architectural problems that have a higher impact on the Qua-
lity Indexes?

The removal of Fat items led to a higher impact on the QDI of InF. This
was observed immediately when the removal Fat classes and methods was
attempted. The extraction of classes was attempted to solve a Fat class, but
the extracted classes could be Fat classes too and affected by one or more
smells. Ignoring this aspect could led to the introduction of new code smells
with a negative impact on the QDI.

Hence, the importance to find a compromise on removing AS, Tangle and
Fat issues, by taking into account the risk of introducing code smells emer-
ged in this study. It is very important to make the right refactoring choices,
and understand if it is better to remove fatness and improve SoC Index of
S101 or viceversa improve the QDI of InF and not the fatness.

In conclusion, S101 was very useful to remove AS, as Tangles, and inFu-
sion if it needed to remove not only AS, but also code smells, since the tool
is able to detect 21 code smells. Since AS can be considered more critical
than code smells, one can focus first the attention on their removal. The AS

refactoring could led obviously to the introduction of other problems, but
different code smells could be also removed. In this direction, some works
have analyzed the possible correlations existing among code smells and AS

[121]. Whether these correlations are known and exploited, they could led
to some benefits in identifying the best refactoring strategies.

I will address this topic on code smells and architectural smells correlati-
ons in Chapter 6.2.

4
A R C H I T E C T U R A L S M E L L D E T E C T I O N T H R O U G H
A R C A N

Arcan is a tool developed for architectural smells (AS) detection for Java pro-
ject. The detection is focused on architectural smells based on dependency
issues, since components highly coupled and with a high number of depen-
dencies are hard to maintain and hence can be considered more critical. This
kind of AS can violate the modularization principle, that advocates the cre-
ation of cohesive and loosely coupled abstractions through techniques such
as localization and decomposition. The detection of dependency-based AS

could establish to what extent different dependency measures or indexes
(obtained through the AS detection) could generate different maintenance
costs. Arcan detects 6 different architectural smells using both architectural
and historical data of projects. The historical data are useful to evaluate the
evolution of architectural smells during their life-time. This Chapter is com-
posed by three main sections: the explanation of the architecture of the tool
is described in Section 4.1, the architectural smells detected by Arcan are
described in Section 4.2 and the conclusions of this Chapter are described in
Section 4.3.

4.1 architecture of arcan

The Arcan architecture core consists of four components (see Figure 4.1),
structured in a layered architecture style: a user interface built with Java FX
(Presentation Layer), a main processing unit with all the logic components
(Domain Layer) and a graph database accessed through a graph computing
framework (Persistence Layer). The tool is written in Java 8. As shown in
Figure 4.1, Apache Tinkerpop1, the framework which interfaces the Graph
Database, is used for two reasons: to easily build and access the dependency
graph which represents the analyzed project and to allow the exploitation
of different graph database backends. This means that all the graph ele-
ments, e.g., nodes, are Tinkerpop elements. Every read or write operation
that regards the database is filtered by the framework. Hence, the queries
are written in Gremlin-Java, the variant of the Gremlin2 query language that
allows to write graph traversals within the native Java environment. Tinker-
pop deals with the translation of the dependency graph into specific bac-
kend’s graphs and hides the underneath database. In the current version of
Arcan, the graph generated through Tinkerpop can be stored 1) in-memory
or 2) using a Neo4j3 graph database; other backends can be added in the
future. Neo4j was selected because it offers an intuitive graphic interface

1 http://tinkerpop.apache.org/

2 http://tinkerpop.apache.org/gremlin.html

3 http://neo4j.com/

http://tinkerpop.apache.org/
http://tinkerpop.apache.org/gremlin.html
http://neo4j.com/

4.1 architecture of arcan 66

Java FX User Interface

Tinkerpop Framework

Graph Database

Main Processing Unit

Presentation
Layer

Persistence
Layer

Domain
Layer

System Reconstructor Graph Manager

Metrics Engine Architectural Smell Engine

Figure 4.1: Arcan Architecture

which allows the exploration (using Cypher4 queries) and visualization of
the dependency graph built by Arcan. The graph can be browsed to under-
stand the structure of the system and different algorithms can be applied
on it to extrapolate more detailed information. After the execution of these
algorithms, new nodes and edges are added to the graph as “smell” nodes,
which indicate the presence of an architectural smell in the system.

In the following paragraph it is described how the components of Arcan
belonging to the Domain Layer (Figure 4.1) interact for the detection of the
architectural smells without exploiting the history data.

1) The System Reconstructor reads the compiled Java files, which can be
submitted as a folder of .class files or a folder of .jar files. Arcan only
retrieves classes and packages which are included in the input, without
extending the analysis to external components. Hence, to make Arcan
analyze a complete project, it is necessary to have every component
as input. The information contained in the compiled file is extracted
thanks to the Apache Byte Code Engineering Library (BCEL5). This
library offers a class named JavaClass to represent the data structures,
constant pool, fields, methods and commands contained in a typical
Java .class file.

2) The Graph Manager is the component dedicated to build the depen-
dency graph. From the JavaClass object extracted by the System Re-
constructor, it is possible to know the system classes, packages and
references which link to them. These elements are all included in the
dependency graph through Tinkerpop. This component also manages
the initialization of the database and writes the dependency graph in
it.

4 https://neo4j.com/developer/cypher/

5 http://commons.apache.org/proper/commons-bcel, Apache BCEL 6.0

https://neo4j.com/developer/cypher/
http://commons.apache.org/proper/commons-bcel

4.1 architecture of arcan 67

85037b8: merge 1666, 1668, 1669

e88a53f: Quartz 2.1.0 release.

9f9c652: Remove holdover from kjh. . .

a827ee2: merge 2410,2411

230931d: merge 2406

c7b411c: 4.0.4-rc

a9c3927: Tag quartz-2.2.1 from 2.2.1-rc. . .

3857667: a few more tweaks/simplifications. . .

54cdf2b: remove tabs from files. . .

Figure 4.2: Example of Git history log

3) The Metrics Engine computes the R. Martin’s dependency metrics [109],
used in the detection of the architectural smells. Moreover, this engine
is entrusted with computing typical cohesion and coupling metrics
at the class level, such as Fan In, Fan Out, CBO and LCOM [38]. To
compute these metrics, this component accesses the dependency graph
and the results are stored as attributes in the nodes representing the
classes or packages that the metrics refer to.

4) The Architectural Smell Engine contains the logic for both architectural
smell detection and filtering of false positive instances. Every detection
algorithm extracts a subgraph from the whole dependency graph and
works on it depending on the elements which can be affected by the
anomaly: classes or packages. When a smell is detected, a new node of
type “smell” (called “supernode”) is created and linked to the nodes
involved in the detection. This makes easier to filter the results in a
second step, when necessary.

The detection workflow of architectural smells using the historical data is
slightly different from the previous one, since it is based on Java file instead
to JavaClass and it takes in input the Git6 log, as showed in Figure 4.2. Git
was chosen as starting version control system since old projects are moving
to Git [136] and new projects are starting using it7.

1) The System Reconstructor reads the Git log and extracts data about mo-
difications made to Java files by commit. Packages are extracted from
the Java file package definition in the head of the file.

2) The Graph Manager is the component dedicated to build the depen-
dency graph. From the Commit and the JavaFile extracted by the
System Reconstructor, it is possible to know the system packages and
references linked to them. Commits sequences will be linked together

6 https://git-scm.com/, git - a free and open source distributed version control system
7 Github own more then 68 millions of projects using Git as version control system

https://git-scm.com/

4.2 architectural smells 68

as in a time series of events where the oldest event is the starting point
of the time series, e.g., the first commit 54cdf2b will be linked to the
second commit 3857667 and so on, as shown in Figure 4.2.

3) The Metrics Engine counts the number of times where a change among
files in a commit was detected. To detect the smell, it counts the num-
ber of changes done among all Java files, and selects the set of files
which are most frequently changed together and do not belong to the
same package as instances of the smell.

4) The Architectural Smell Engine contains the logic for historical architec-
tural smell detection and filtering of false positive instances by evalu-
ating the filters defined for the AS. Every detection algorithm extracts
a subgraph from the whole dependency graph and works on it depen-
ding on the elements which can be affected by the anomaly: classes
or packages. When a smell is detected, a new node of type “smell”
(called “supernode”) is created and linked to the nodes involved in the
detection. This makes easier to filter the results in a second step, when
necessary.

4.2 architectural smells

As previously introduced, Arcan detects 6 architectural smells that may be
causing instability issues, where instability refers to the predisposition of
objects to change [109]. The instability is computed as the ratio between effe-
rent dependencies over the total number of dependencies, where the efferent
dependencies are the number of classes inside the package that depend upon
classes outside the package. In the following, a subsystem (component) is
a set of packages and classes which identifies an independent unit of the
system responsible for a certain functionality. Following in this section, the
complete explanation of each architectural smell is given, specifying: the
definition of the architectural smell, the granularity of the architectural smell
(e.g. if affect classes, package), the violated design principle, the description of
the algorithm used for the detection of the architectural smell and eventually
a filter defined in order to enhance detection of the architectural smells and
reduce the number of false positives in the results.

4.2.1 Cyclic Dependency (CD)

Definition: A Cyclic Dependency refers to a subsystem (component) that
is involved in a chain of relations that breaks the desirable acyclic na-
ture of a subsystem’s dependency structure. The subsystems involved
in a dependency cycle can be hardly released, maintained or reused in
isolation [108].

Granularity: Detected on classes and packages.

Violated Design Principle: Acyclic Dependencies Principle [109].

4.2 architectural smells 69

Detection: To accomplish the detection, the tool relies on a Depth First
Search (DFS) algorithm [142] through the following steps: 1) Extracting
the subgraph relative to the requested granularity level (class or package);
2) Launching the DFS algorithm on the subgraph.

Shapes: For what concerns this smell and enrich its detection, it is use-
ful to refine the detected cycles according to their shape [2] (shown in
Figure 4.3). Rules are established to identify each shape. Some of them
are formulas which set the relationship between the number of nodes
and edges; others are constraints at graph level, i.e., patterns that no-
des and edges have to follow to make up a certain kind of shape.

Filters: a possible false positive occur when the instance of the smell is
related to the design pattern: Factory Method, as outlined in [19].

Figure 4.3: Cycles shapes [2]

4.2.2 Unstable Dependency (UD)

Definition: Unstable Dependency describes a subsystem (component) that
depends on other subsystems that are less stable than itself, according
to the Instability metric value [109]. This may cause a ripple effect of
changes in the system [108].

Granularity: Detected on packages.

Violated Design Principle: Stable Dependencies Principle [109]

Detection: The steps to identify this smell are three: 1) obtaining from
the graph all the dependencies between packages; 2) computing the
Instability metric for every package of the system; 3) for every package,
checking if it is afferent to a less stable package.

Filters: A filter is defined to remove false positive instances. Since a
package is considered affected by this smell only if it depends on anot-
her package less stable than itself, it was interesting to examine the de-
pendencies which actually cause the smell. Considering “Bad Depen-
dency” a dependency that points to a less stable package, a formula is
applied to establish the “Degree of Unstable Dependency” (DoUD)[19]:

DoUD =
BadDependencies

TotalDependencies
(4.1)

4.2 architectural smells 70

A package with a small number of bad dependencies may not be a
smell, and this formula helps to filter misleading results. The Degree of
Unstable Dependency under which a package is no more a smell can be
considered as a threshold of the filter. The filter threshold establishing
the minimum level needed to consider a package affected by the smell
(DoUD) was set at 30%, since this value highlights the largest share
of correct UD instances, according to a manual validation I performed
while exploring different thresholds over several projects. The different
values of bad dependencies can be used also to identify the UD more
critical respect to other. This kind of “Severity Evaluation” is exploited
in Chapter 7.

4.2.3 Hub-Like Dependency (HL)

Definition: Hub-Like Dependency arises when an abstraction has (out-
going and ingoing) dependencies with a large number of other ab-
stractions [149].

Granularity: Detected on classes and packages.

Violated Design Principle: “High cohesion and low coupling" is the basis
for effective modularization. Meyer’s “few interfaces" rule for modula-
rity says that “every module should communicate with as few others
as possible." [113].

Detection: The steps to identify this smell are the following: 1) finding
all nodes of type class; 2) for all of them, calculating the ingoing and
outgoing dependencies; 3) calculating the median of the number of
ingoing and outgoing dependencies of all the classes of the system;
4) checking if the number of ingoing and outgoing dependencies of a
class is respectively greater than the ingoing median and outgoing one
(i.e., the median helps to normalize the values and exclude small HL);
5) checking if the difference between ingoing and outgoing dependen-
cies is less than a quarter of the total number of dependencies of the
class; if so, the class could be a HL.

The last step defines that the difference between ingoing and outgoing
dependencies must be small to consider dependencies as “balanced”,
as shown in Figure 4.4. After exploring different settings, in the algo-
rithm this quantity was set at 1/4 of the sum of ingoing and outgoing
dependencies.

The same detection process is applied at the package granularity level.

Filters: HL are highly used classes and packages of the project. Assu-
ming it is not know if those classes are used from other projects (since
Arcan analyzes one system at a time), whether the class uses external
classes of the project, e.g., classes of the package java.util.*, and
these are the majority of the total outgoing dependencies related to
a system library, then it should *not* be considered a Hub-Like class.

4.2 architectural smells 71

In fact, classes of this form are rather simple, because they most li-
kely use default functionalities (e.g, lists). Conversely, classes that are
frequently used and implement the main functionalities of the system
exhibit the opposite pattern. Moreover, a false positive HL is detected
in classes where it is implemented a Singleton design pattern or where
nested (hidden) classes occur, as outlined in [19].

Figure 4.4: Hub-Like Dependency smell example (on classes)

4.2.4 Specification-Implementation Violation (SIV)

Definition: Specification-Implementation Violation is able to point out ar-
chitectural violations, since it captures whether the intended archi-
tecture is different from its actual implementation. As shown in Fi-
gure 4.5, Classes and Packages are grouped by components (C) and
the components are linked by constraints edges according to the archi-
tecture specification. The detection consists in checking the definition
of the intended architecture, represented with rules and constraints in
the dependency graph.

Granularity: Component level.

Violated Design Principle: this smell violate 1) the original, intended
architecture of a system or 2) general software modularity principles
(Perry and Wolf [130]).

Detection: this architectural smell needs that components and constraints
given and manually defined to Arcan. SIV is detected through the fol-
lowing steps : 1) definition and creation of components nodes; 2) link
of the classes and packages belonging to a component; 3) link of the
components using the “constraint” edge 4) check if constraints among
two or more components are violated. Figure 4.5 shows an example of
SIV smell where the class C2 violates the constraints among the com-
ponents CO1 and CO2 since it depends on the class C1.

Filters: filters are not defined for this architectural smell.

4.2 architectural smells 72

Figure 4.5: Specific-Implementation Violation example

4.2.5 Multiple Architectural Smell (MAS)

Definition: Multiple Architectural Smell identifies a subsystem (compo-
nent) that is affected by more than one architectural smell and provides
the number of the architectural smells involved.

Granularity: Detected on classes and packages.

Detection: the architectural smells detection of the other AS must be per-
formed before MAS smell detection, for obvious reasons. The detection
of this smell is performed through the following steps: 1) Arcan gets
all the AS of the project; 2) for all AS retrieves all the classes or packages
involved in at least two AS.

4.2.6 Implicit Cross Package Dependency (ICPD)

Definition: Implicit Cross Package Dependency is a history based archi-
tectural smell defined to compute the degree of co-changes occurring
among files belonging to different packages detected by analyzing the
change history. This smell has been introduced and studied also by
Kouroshfar et al. [76] and Mo et al. [114], but the detection of the smell
is done in a different way: in this case the detection is based on the
graph dependency model, in their case on the Design Structure Matrix
(DSM). The Implicit Cross Package Dependency smell captures hidden
dependencies among files belonging to different packages. Hidden
dependencies are co-change relations that can be found only in the
history of the project. Files changed frequently together with hidden
dependencies lead to a lack of modularity.

Granularity: Detected on files.

Violated Design Principle: Stability Principle [23], Baldwin et al. [23] said
that the design rules have to be stable, that is, neither error-prone nor
change-prone. Moreover, If two packages are truly independent, then
they should only depend on design rules, but not on each other. More

4.2 architectural smells 73

commit commit commit commit

Java 1 Java 2

ICPD
Smell

Package
1

Package
2

has Coupled Modified

b
e

lo
n

gs
To

b
e

lo
n

gsTo

IsICPDPkgInIsICPDPkgIn

h
as

M
o

d
if

ie
d h

asM
o

d
ifie

d

commitnext next next next

Figure 4.6: Implicit Cross Package Dependency example

importantly, independent packages should be able to be changed, or
even replaced, without influencing each other, as long as the design
rules remain unchanged.

Detection: The detection is done through the analysis of the graph re-
presentation of the history of the project development. The history of
the development is stored in the version control system. As outlined
before, projects using Git as version control system are the only ana-
lyzable with Arcan. To detect the smell, the number of changes (by
commit) done among all Java files are used to select the set of files
which are most frequently changed together and do not belong to the
same package, as instances of the ICPD smell. The detection is per-
formed through the following steps: 1) all the commits are ordered in
temporal order, from the oldest to the most recent; 2) a commit node is
created for all commits retrieved. Java files modified in that commit are
retrieved. If Java files are not modified in the commit, the algorithm
jumps to the next commit; 3) creates nodes of all Java files modified by
the commit. Otherwise, if they are already present, the Java files will
be linked to the new commit. 4) the Java files mostly modified together
but not belonging to the same package are an ICPD smell.

Figure 4.6 shows an example of Implicit Cross Package Dependency
where two Java files are changed together in five commits. Java 1

belongs to the package Package 1, while Java 2 belongs to the package
Package 2. I defined the following four node types:

– commit: represents a Git commit and it is related to all the modi-
fied Java files using the edge hasModified.

– java: Java file representation node. It can be related to another
Java file using an edge of type hasCoupledModified, if these two fi-
les are modified together (co-changed) in at least a commit. A Java
file is linked to a package node with an edge of type belongsTo.

– package: node indicating a package.

4.3 conclusions 74

– smell: represents the architectural smell Implicit Cross Package
Dependency. It is related to two Java files and two packages,
using four edges. isICPDin and isICPDout refer to Java files and
isICPDPkgin and isICPDPkgout refer to packages.

Filters: Two measures are defined to avoid some false positives cases,
called Strength and Support, defined as follows:

– Strength is the ratio of commits where two files are co-changed
together over the total changes of the single file. To consider two
files affected by ICPD smell, the Strength value must be higher
than a defined threshold.

– Support is the number of co-changes of two files. To consider two
files related to ICPD smell, Support must be higher than a defined
threshold.

I performed a study (described in Section 5.1.4) to determine how the
thresholds values of Strength and Support affect the detection. The
instances of Implicit Cross Package Dependencies with different com-
binations of Strength and Support values have been detected. Strength
has been varied between 0.5 and 1 with steps of 0.1, and Support has
been between 2 and 10 with steps of 1. Strength and Support have
been selected respectively as 5 and 0.6 according on the evaluation
performed in the study.

4.3 conclusions

In this Chapter I introduce Arcan tool, its architecture and the 6 detectable
architectural smells. Arcan aids the detection and the removal of architectu-
ral smells, hence it is useful to support software developers and designers
during the development, maintenance and evolution of Java application.

The tool relies on graphs to represent the extracted information, the depen-
dency graph. The application of graph databases makes the graph reusable
for further analyses, including the experimentation of new algorithms, and
the implementation of new detectors. Once a Java project has been analy-
zed by Arcan, a new graph database is created containing the structural
dependencies of the system. Thanks to graph computing and connected
big data processing technology [158], it is then possible to run AS detection
algorithms on this graph to extract information about the analyzed project.
The applied graph computing technology allows the exploitation of different
graph database backends, while relying with a flexible API. This represents
a recent trend in the literature [43].

Many tools have been developed for code smells detection but only few
tools are currently available for architectural smells detection, as described
it Section 2.2. Arcan detects two new architectural smells: Multiple Archi-
tectural Smell and Specification-Implementation Violation. The detection of
the other architectural smells is enhanced w.r.t. previous approaches. In
particular, Hub-Like dependency is also detected at package level, Cyclic

4.3 conclusions 75

dependency smell is detected in according to different the cyclic shapes [53,
93] and Unstable dependency exploits a validated metric to avoid false po-
sitives. Moreover, Arcan allows to perform history-based analysis to detect
ICPD smell having as input the Git log of the project. The detection of ICPD
relies on the dependency graph, as differently made in other approach [114].
Finally, the dependency graph provided by Arcan is useful to identify the
possible refactoring opportunities of an architectural smell and the metrics
used in the detection techniques of the architectural smells can be exploited
to identify the most critical ones (as explained in Chapter 7).

The detection of the architectural smells has been validated, as explained
in Chapter 5, and filters has been proposed to reduce the false positive in-
stances of AS.

On this study regarding the Arcan development I co-supervised the ba-
chelor thesis of Ilaria Pigazzini and two papers have been published [17,
19].

5
E VA L U AT I O N A N D VA L I D AT I O N O F A R C A N R E S U LT S

This Chapter describes the evaluations and the validations of the Arcan tool
presented in Chapter 4 and it outlines: a first evaluation of Arcan results on
different open source projects in Section 5.1, the validation on two industrial
projects 5.2 and a mixed-method study of architectural smell validation in
Section 5.3.

5.1 initial evaluation of arcan results

This study outlines the results retrieved from the analysis on seven open
source projects, listed in Table 5.1 for three AS: Cyclic Dependency, Hub-
Like and Unstable Dependency. The Implicit Cross Package Dependency smell
has been validated in a different way since it is the only AS whose detection
is based on the history of the project’ development.

After every analysis Arcan writes the results in six csv files. The execution
of both Unstable Dependency and Hub-Like smell detectors generates one
file, while for Cyclic Dependency two files are generated. The last files in
the results pool are the ones containing the computed Martin metrics [109]
for packages and classes. These data are obtained by simply applying the
algorithms derived from the definitions of the three architectural smells des-
cribed in the previous chapter.

Moreover, we have analyzed the differences in the detection results obtai-
ned by Arcan with respect to other two tools, inFusion [67] and Hotspot [114]:
inFusion [67] for the detection of Unstable Dependency and Hotspot for the
detection of Cyclic Dependency. The results have been manually checked by
three evaluators (PostDoc, PhD and MsC students).

Hence, the aim of the comparison of Arcan results with those of the other
two tools was done only to better check and improve the results of Arcan,
that led to the introduction of some Filters. This study do not aim to validate

Table 5.1: Analyzed Projects

Lines of Code Num of Packages Num of Classes

Project Version (LOC) (NOP) (NOC)

Derby 10.9.1.0 651118 217 3010

Jedit 4.3.2 109515 38 1017

Junit 4.10 6580 28 171

Maven 3.0.5 65685 143 837

Quartz 1.8.6 24522 39 455

Spring 3.0.5 329358 598 4615

Struts 2.2.1 143196 258 2231

5.1 initial evaluation of arcan results 77

Table 5.2: Unstable Dependency Results

Affected Packages

Project Arcan inFusion

Derby 35 5

Jedit 14 2

Junit 11 0

Maven 69 1

Quartz 8 1

Spring 107 5

Struts 43 7

the results of the tool in terms of accuracy, also because there is no reference
data or established evaluation criteria in the literature to be applied.

5.1.1 Unstable Dependency Smell Results

The output file of this smell consists in a table showing the packages affected
by the smell, the packages which cause the smell and their respective Insta-
bility. Table 5.2 displays the results of Unstable Dependency’s detection on
the seven projects, starting from the definition of the smell given before.

Table 5.3 instead shows the results retrieved from the analysis of Apache
Quartz, which was manually analyzed and inspired the proposal of a Filter.
Quartz is chosen as an example of medium size project. The first column
contains the packages which Arcan considers affected by the Unstable De-
pendency smell; the second and the third columns compare the detector’s
results with the InFusion tool’s ones; the fourth column shows the results
of the application of the Filter described in Section 4.2.2, using a threshold
(“bad” dependency ratio) of 30%; the last column shows the new results af-
ter the filtering process. Arcan results agree with InFusion’s ones on a single
package, org.quartz.utils, the only one with every 100% of bad dependency.
In this example, the Filter threshold was set at 30%, since it highlights the
largest share of correct UD instances, according to the manual validation
performed. Filters are explored with different thresholds. Figure 5.1 shows
the percentage of packages detected as UD in all the projects, when varying
the threshold from 10% to 100%. As we can see in Figure 5.1, the number of
detected packages is almost stable with thresholds ≥ 50%.

In conclusion, from Table 5.3 we can observe that Arcan detects a larger
number of UD with respect to inFusion, since inFusion detected only one
Unstable Dependency on org.quartz.utils.counter package.

5.1 initial evaluation of arcan results 78

Table 5.3: Quartz Unstable Dependency Results

Package Arcan inFusion Bad dep.% Filtered

org.quartz.core yes no <30% no

org.quartz.utils.counter.sampled yes no 35% yes

org.quartz.ee.jta yes no 32% yes

org.quartz.impl yes no <30% no

org.quartz.utils yes yes 100% yes

org.quartz.impl.jdbcjobstore.oracle yes no <30% no

org.quartz.utils.counter yes no 83% yes

org.quartz yes no 60% yes

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100

%
 P

ac
ka

ge
s

d
et

ec
te

d
 a

s
U

D

% Threshold

Derby Jedit Junit Maven Quartz Spring Struts

Figure 5.1: Filtered Unstable Dependency Results

5.1.2 Hub-Like Results

The detection of this smell produces a file containing the list of the detected
HL classes. The results retrieved from the analyzed projects are displayed
in Table 5.4. For this smell, it is not provided a comparison with other tools,
since it is not known of any tool detecting it.

No Filters are needed for this smell. In fact the detection algorithm not
only considers classes with a large amount of dependencies in general, but
also classes with a balanced number of ingoing and outgoing ones; these are

Table 5.4: Hub-Like Results

Derby Jedit Junit Maven Quartz Spring Struts

1 7 1 3 0 2 1

5.1 initial evaluation of arcan results 79

Figure 5.2: Example of Junit Hub-Like class

Table 5.5: Cyclic Dependency Results

Project Couples Couples
not-duplicated

Hotspot

Derby 5520 736 92

Jedit 552 131 42

Junit 110 70 22

Maven 4036 749 32

Spring 0 0 4

Struts 2160 558 54

the two characteristics which make them HLs. See Figure 5.2 for a graphical
example of Hub-Like smell, obtained from the graph database.

While performing our study on the Hub-Like architectural smell, it was
evident that there are two possible interpretations of this smell, depending
on whether all classes with a reference from/to the HL are internal to the
project or not. In the first case, the HL is defined until now, as an architectu-
ral issue. In the second case, for instance if the HL has dependencies equally
divided in internal ingoing and external outgoing ones, it could be seen as
a feature of the architecture instead of an issue. This happens since the HL
class could have been chosen as a controlled exit point to logically divide
the internal project from the external libraries. It is not excluded a third
case where an HL with a mixture of internal and external ingoing/outgoing
dependencies could be a problem for of its lack of architectural logic.

5.1 initial evaluation of arcan results 80

Table 5.6: Cyclic Dependency Results

Packages p
a
c
k
a
g
e
1

p
a
c
k
a
g
e
2

p
a
c
k
a
g
e
3

cycle1 1 1 0

cycle2 1 0 1

(a) CD results list

Packages p
a
c
k
a
g
e
1

p
a
c
k
a
g
e
2

package1 5 3

package2 3 6

(b) CD results matrix of package

5.1.3 Cyclic Dependency Results

To better manage the results of Cyclic Dependency (CD) detection, two diffe-
rent files offer two points of view of this smell. The first one contains a table
with cycles as rows and class/packages as columns (see Table 5.7b): in this
way the focus is on the cycles and the elements (packages/classes) which
make it up. The second file consists in a matrix with the same elements on
rows and columns and with cells filled with counters (see Table 5.7a). These
counters refer to the number of times a couple of elements were found in
the same cycle. For instance, if two packages are present together in three
different cycles, the cell corresponding to the respective row and column
will contain the number 3, as shown in Table 5.7b among the package1 and
package2.

The tool detects cycles relying on the DFS algorithm (see Section 4.2.1),
retrieving cycles of different sizes, where often bigger ones contain smaller
ones. A proposal of results refinement could be to consider only the bigger
ones and discard the others, to refine the results and obtain clearer informa-
tion. Detecting cycles having size ≥ 2 implies that more (and less obvious)
cycles will be detected than considering size = 2. Table 5.5 contains the
number of couples of packages found in cycles retrieved from the second
output (the one in matrix form) of the CD algorithm: column “couples” con-
tains all couples that were found together in the same cycle, and considers
their repetition caused by their presence in more than one cycle; column
“couples not-duplicated” shows the number of couples in cycles too, but
counting each one only once. The last column reports Hotspot Detector [72,
114] results, which considers only cycles having size = 2, i.e., couples. The
differences in the tools’ results are justified by their choice of the size of the
cycle to detect.

In conclusion, from Table 5.5 we can observe that Arcan detects a larger
number of CD (i.e. Couples not-duplicated) with respect to HotSpot, since
Hotspot detects only cycles having size = 2.

5.1.4 Implicit Cross Package Dependency Results

The previous validations were performed on architectural smells not rela-
ted to the development history, i.e., the AS consider a single version of the

5.1 initial evaluation of arcan results 81

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

0
10
20
30
40
50
60
70
80
90

100

Ordered Months

co
m

m
it

s
an

d
ja

va
fil

es

Commit by month

Java files modified

Figure 5.3: Commit of Tomcat by month and number of modified Java files

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

0
5

10
15
20
25
30
35
40
45
50
55
60
65

Ordered Months

IC
PD

Figure 5.4: Max ICPD of Tomcat by month

project. Arcan detects only an AS considering the history of the project’s
development, the Implicit Cross Package Dependency (ICPD) smell.

The ICPD validation is done through the evaluation of the evolution of
the smell in two open source projects, in order to study the metrics used for
the computation of the smell: Strength and Support defined in the previous
chapter. As an example, it is shown in Figure 5.4-5.6 the trends of the Implicit
Cross Package Dependency smell in two systems: JGit and Tomcat. It is evident
that the architectural smell is highly present in both the systems, but with
different trends.

Figure 5.3-5.4 shows the number of commits and the evolution of the ICPD
instances in Tomcat on a monthly basis. The number of ICPD instances is cle-
arly higher in the last third of the development software history, with large
differences between subsequent months. However, it was evident through
the analysis done that such a high number of files changed together was
due to actions not related to the software maintenance or development. For

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

0
50

100
150
200
250
300
350
400
450

Ordered Months

co
m

m
it

s
an

d
ja

va
fil

es

Commit by month

Java files modified

Figure 5.5: Commit of JGit by month and number of modified Java files

5.1 initial evaluation of arcan results 82

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

0
5

10
15
20
25
30
35
40
45
50
55
60
65

Ordered Months

IC
PD

Figure 5.6: Max ICPD of JGit by month

2 3 4 5 6 7 8 9 10
0

200

400

Support

IC
PD

Strength 0.5
Strength 0.6
Strength 0.7
Strength 0.8
Strength 0.9

Figure 5.7: ICPD trend changes for Support and Strength in Tomcat

example, one commit generating the smell is related to the change of the soft-
ware distribution licence: developers changed all source code files in batch,
by injecting or replacing a comment in the header of the file. This large file
co-change increased the Support and Strength measures over their thresholds,
generating the smell.

Figure 5.5-5.6 shows the same data for JGit. Despite the presence of spikes
in the graphs, there is an increasing trend until the 70th month and a decrea-
sing trend starts after this point. From these data, it is observable that ICPD
is not influenced by commit activity, since many time-spans with high com-
mit activity do not result in an increase of ICPD instances. Moreover, while
the main trend is to increase the number of ICPD instances, they can also be
removed over time, with spikes in the graphs witnessing peculiar situation,
e.g., very large commits due to different non-development related reasons.
An ICPD instance is removed over time by changing its files separately in
different commits. In this way, the Strength characterizing the instance re-
turns under the threshold and the smell is removed. This is the symptom of
what happens if a developer fixes the implicit dependency: the detector will
not notice the fix until the involved files start evolving independently.

Figures 5.7-5.8 show the number of Implicit Cross Package Dependency
with different configurations of Support and Strength on the last version of
both systems. There are not architectural smells of this type with Strength
equal to 1 in both systems. It is evident that Support fixed at 3 reduces
significantly the number of architectural smells detected in both systems.
Architectural smells in JGit are not present with Strength equal/greater than
0.8 and Support greater than 2. Through manual inspection of the results con-

5.2 architectural smells validation : an industrial case study 83

2 3 4 5 6 7 8 9 10
0

50

100

Support

IC
PD

Strength 0.5
Strength 0.6
Strength 0.7
Strength 0.8
Strength 0.9

Figure 5.8: ICPD trend changes for Support and Strength in JGit

sidering Strength greater than 0.6 and Support greater than 2, it was possible
to filter out the false positives related to the first commit, a short sequence
of similar commit and the files changed together but never modified again.

5.2 architectural smells validation : an industrial case study

Section 5.1 shows the results of Arcan in different open source projects. This
section describes an evaluation of Arcan results performed by external tool
developers to check if the architectural smells detected by Arcan are really
perceived as problems and to get from them an overall usefulness evaluation
of the tool.

The following two projects have been analyzed:
1) DICER1: a continuous architecting tool for data-intensive applications

(DIAs) that allows to quickly put together a model of a data-intensive ap-
plication using known DIA middleware such as Apache Spark, Apache Ha-
doop MapReduce and Apache Storm.

2) Tower4Clouds2: a flexible, self-adaptable and auto-configurable monito-
ring infrastructure engineered for multi-cloud applications. Tower includes
multiple data-collectors that allow monitoring, collecting and sifting from
multiple data sources by means of a rule-based approach.

The evaluation was carried out by direct observation of Arcan results. In
particular, for each project under study, 3 professional software designers
experienced with the projects discussed (separately) the Arcan evaluation-
sheets line-by-line, quickly checking the code and/or via available documen-
tation and deliverables to confirm/refute Arcan findings. These practitio-
ners reported on: (a) whether Arcan actually uncovered known or unknown
architecture issues; (b) whether the issues were actually issues; (c) whether
refactoring was needed or planned following Arcan results. Reports were
captured using in-line comments directly on Arcan result plots – this data is
freely available online3 to encourage verifiability.

Size metrics for the projects are shown in Table 5.7. The total number of
AS in the projects and the evaluation of Arcan detection performances is

1 https://github.com/dice-project/DICER

2 http://deib-polimi.github.io/tower4clouds/docs/overview.html

3 http://tinyurl.com/zpquemg

https://github.com/dice-project/DICER
http://deib-polimi.github.io/tower4clouds/docs/overview.html
http://tinyurl.com/zpquemg

5.2 architectural smells validation : an industrial case study 84

Table 5.7: Analyzed Projects

Projects DICER Tower4Clouds

Version 0.1.0 0.3.1

Packages(NOP) 549 373

Classes(NOC) 13204 8820

Analyzed Component it.polimi.dice.dicer it.polimi

Packages(NOP) 9 7

Classes(NOC) 36 111

Table 5.8: Architectural Smells in the Analyzed Component

DICER Tower4Clouds

Total Architectural Smells 5 9

True Positive 3 6

False Positive 0 0

False Negative 2 3

True Negative 0 0

Precision(%) 100 100

Recall(%) 60 66

F-measure(%) 75 79,52

Table 5.9: Detected Architectural Smells by Arcan

DICER Tower4Clouds

Cyclic Dependency (class) 636 439

Cyclic Dependency (package) 83 38

Unstable Dependency 305 123

Hub Like Dependency 1 3

Totals 1025 603

5.3 architectural smells validation : a mixed-method study 85

reported Table 5.8. Standard Information Retrieval performance metrics are
reported, i.e., confusion matrix elements and derivatives, like precision and
recall.

The tool obtained a precision of 100%, since Arcan found only correct
instances of architectural smells but developers reported 5 more architectural
smells which are False Negatives. False Negatives were related to external
components out of the scope of the analysis of the tool.

As can be seen from Table 5.7, the developers focused their attention on
a component of the projects, and not on the AS found in the entire projects:
this is caused by the high number of the detected AS. In particular, for the
CD smell Arcan found 636 occurrences in DICER and 439 in Tower4Clouds
(see Table 5.9). As a consequence, using followups and feedback from the
evaluation we decided to define a Severity Index for the CD smell; the pur-
pose of the index is to assist in the identification of the most critical smells to
be analyzed and then removed first. The Severity Index counts the number of
vertices involved in a cycle and the weight (number of occurrences) of every
edge which forms the cycle, then orders the instances of Cyclic Dependency
descending by the number of vertices in the cycle and the maximum num-
ber of times the cycle occurs. This index is better defined and used in the
computation of the Architectural Debt Index described in Chapter 7.

Important hints were gotten from this evaluation on how to improve Ar-
can results to remove possible false positive instances: (a) the detected false
positives for Hub Like Dependency smell reflect abstract classes, interfaces
and classes which implement the Singleton design pattern; (b) the Cyclic
Dependency smell false positives reflect classes which implement Factory
Method design pattern and nested (hidden) classes.

5.3 architectural smells validation : a mixed-method study

Arcan was initially experimented on several open source projects [17] (see
Section 5.1), then a more careful qualitative evaluation of Arcan results was
performed through external tool developers [19] on two industrial projects
described in Section 5.2.

The goal of the study described in this section done in collaboration with a
colleague of the Politecnico of Milano [135], is to analyze the ability of Arcan
to completely, and correctly detect architectural smells through a quantitative
evaluation approach based on understanding to what degree Arcan detects
architectural smells previously identified in an independently-coded dataset
[22]. The mixed-methods connotation of this part of the study rests on the
deliberate choice to use a human-coded dataset to assess the quantitative
discoveries operated by Arcan, using an assessment score (i.e., Krippendorff
Alpha [79]) typically aimed at content analysis in qualitative research.

The mixed-methods connotation of this part of the study rests on the de-
liberate choice to use a human-coded dataset to assess the quantitative dis-
coveries operated by Arcan, using an assessment score (i.e., Krippendorff
Alpha) typically aimed at content analysis in qualitative research. More de-
tails on this feature of the study are outlined below.

5.3 architectural smells validation : a mixed-method study 86

The study aims at addressing the following research questions:

RQ1 “Is Arcan exhaustive in architectural smells detection?” - in other
words, this research question addresses the completeness of the Ar-
can tool with respect to its ability to detect all instances of architectural
smells in a given, independently pre-coded dataset.

RQ2 “Is Arcan correct in its architectural smells detection?” - in other
words, this research question addresses the correctness of Arcan de-
tection with respect to its ability to detect the right architectural smell
in the right class (or package), with respect to a given, independently
pre-coded dataset.

Answering both research questions positively would essentially amount
to stating that the tool detection feature is correct and complete.

5.3.1 Study Variables and Data Extraction

Both research questions 1 and 2 assume that an independently-coded evalu-
ation dataset can be used, featuring projects with architectural issues made
explicit by an independent party.

However, for the sake of generalisation, the dataset in question, needs to
reflect a series of controllable variables, in order to offer a reliable evaluation.
In this case, it is necessary to control the following variables to obtain a
viable dataset:

• Project Size - The presence of certain architectural smells could be hig-
her in projects with certain size; for this reason was chosen to consider
equally both small/medium (200 KSLOC - 500 KSLOC) and large (>
501 KSLOC) projects.

• Team Size - The presence of certain organisational dynamics could lead
to the emergence of specific architectural smells; we aimed at assessing
the validity of Arcan in several team circumstances wherefore techni-
cal debt detection makes sense. In this respect, team sizes was control-
led across the dataset, to warrant a sufficient coverage of small (<25

participants), medium (20-30 participants) and large (>35 participants)
communities.

• Project Popularity - Popular projects tend to be subject of continuous
releases and continuous refactoring to code; these circumstances may
therefore increase the number of architectural smells across the sample
such that Arcan correctness in detection may be compromised. In this
respect, for what concerns project popularity was controlled that a suf-
ficiently different number of stargazers are present for the projects of
the dataset.

• Project Type - Very complex products and projects may tend to be
more error-prone at the architectural level than simpler projects; these

5.3 architectural smells validation : a mixed-method study 87

circumstances may compromise the ability of Arcan to detect architec-
tural smells where code or architectural complexity may compromise
project features rather than code size. In this respect it was controlled
that the projects in the sample are equally distributed across 5 catego-
ries: (1) middleware; (2) software application; (3) development library;
(4) application framework; (5) scheduling system.

To address the above data requirements, the literature and open datasets
available were investigated from several communities (e.g., MSR, ICSME to
name a few). The choice fell on the dataset made available by Asadollah et
al. in [22], where the authors analyse over 150+ releases evenly arranged
across 5 open-source projects, namely: Apache Hadoop, Apache ZooKeeper,
Apache Oozie, Apache Accumulo, and Apache Spark. The projects are sum-
marised in Table 5.10 - the table shows the projects’ demographics gathered
from https://www.openhub.net, in particular, rows address the controllable
variables of the study described previously, while the columns name the
specific project.

Table 5.10: Projects demographic data of the dataset

Apache Projects

Accumulo Oozie Hadoop Spark ZooKeeper

Releases 11 6 76 6 20

Size 367.854 194.599 2.434.336 1.207.823 144.322

Popularity 24 1 117 50 22

Team Size 94 29 210 1552 18

Type (3) (5) (1) (2) (4)

Activity High Moderate Very High Very High Very Low

Project Type: (1) Middleware; (2) Software Application; (3) Development

Library; (4) Application Framework; (5) Scheduling System.

Apache Hadoop is the biggest project, the most popular one and its de-
veloper team has a very high work activity respect to the other projects of
the dataset. Apache Spark has the biggest team size of the dataset with
1552 developers. Apache Ozzie is the less popular of the dataset, but it has
a medium team size with a moderate development activity. Apache Accu-
mulo is a medium project size with a large community. Apache Zookeeper
is the smallest project of the dataset and it has a small and very low active
development team.

For each release of the 5 projects, the authors dig in JIRA4 issue-tracking
information and provide a list of issues and buggy-classes per release, ma-
nually mapping every issue to a concurrency bug [22].

In this study, the same dataset was reused in part 5 (all the compile-
available versions), as follows.

4 an issue management platform allowing users to manage their issues throughout their entire
life cycle

5 openly available online: https://goo.gl/wcdD16

https://www.openhub.net
https://goo.gl/wcdD16

5.3 architectural smells validation : a mixed-method study 88

First, every release found on the dataset were cloned. Second, Arcan was
runned to detect architectural smells over the release. Finally, the human
coding of architecture issues available in Asadollah et al [22] were compared
with the architectural smell detection provided by Arcan in order to disco-
ver possible overlaps, according to a mapping of every concurrency bug to
an architectural smell, as outlined in Table 5.11. The table provides the des-
cription of each concurrency bug (first column) mapped to an architectural
smell (second column) and the rationale of this mapping (third column).

Table 5.11: Mapping between Concurrency Bugs and Architectural Smells

Bug AS Rationale

Data-race occurs when at least two threads access the same data
and at least one of them write the data [166]. It occurs when con-
current threads perform conflicting accesses by trying to update
the same memory location or shared variable [1, 61].

CD

Jannesari et Al. show empiri-
cally that data races correspond
to cyclic dependency scenarios
across the architecture [68].

Deadlock is a condition in a system where a process cannot
proceed because it needs to obtain a resource held by another
process but it itself is holding a resource that the other process
needs [26]. More generally, it occurs when two or more threads
attempts to access shared resources held by other threads, and
none of the threads can give them up [56, 61]. During deadlock,
all involved threads are in a waiting state.

UD

The Microsoft Development
Handbook identifies recurrent
deadlock scenarios as being
clearly connected to UD, a
scenario which replicates pretty
much in an identical manner
for Livelocking6.

Livelock happens when a thread is waiting for a resource that
will never become available while the CPU is busy releasing
and acquiring the shared resource. It is similar to deadlock
except that the state of the process involved in the livelock con-
stantly changes and is frequently executing without making pro-
gress [36].

UD

See rationale of Deadlock

Starvation is a condition in which a process indefinitely delayed
because other processes are always given preference [148]. Star-
vation typically occurs when high priority threads are monopo-
lising the CPU resources. During starvation, at least one of the
involved threads remains in the ready queue.

any

Architect Michael Barr et Al.
explain7 that Starvation is con-
nected to any condition where-
fore the architectural structure
does not warrant for proper de-
adlock and racing freedom.

Suspension-based locking or Blocking suspension occurs when
a calling thread waits for an unacceptably long time in a queue
to acquire a lock for accessing a shared resource [92]. HL

Empirical practice has shown
this mapping recurrently,
a most renown case is the
Linux Kernel Suspend and
“Hibernate-Resume" Blocking8.

Order violation is defined as the violation of the desired order
between at least two memory accesses [69]. It occurs when the
expected order of interleavings does not appear [129]. If a pro-
gram fails to enforce the programmers intended order of execu-
tion then an order violation bug could happen [97].

UD

Mair and Herold [103] provide
an extensive discussion of this
mapping.

Atomicity violation refers to the situation when the execution
of two code blocks (sequences of statements protected by lock,
transaction) in one thread is concurrently overlapping with the
execution of one or more code blocks of other threads such a
way that the result is inconsistent with any execution where the
blocks of the first thread are executed without being overlapping
with any other code block.

HL

Lu et Al. [96] discuss this map-
ping offering several resolution
techniques and design patterns
aimed at addressing the issue.

5.3 architectural smells validation : a mixed-method study 89

5.3.2 Data Extracted to Answer the Research Questions

First, to answer the first research question, namely: “Is Arcan exhaustive in
architectural smells detection?" Arcan was evaluated to check if it returned
as “smelly", all the classes hand-coded as “smelly" by the human colleagues
[22].

Second, to answer the second research question, namely: “Is Arcan cor-
rect in its architectural smells detection?" the agreement between the hand-
coding of architectural smells and the Arcan detection results has been evalu-
ated. To systematically evaluate it, the Krippendorff’s Alpha coefficient [79],
a widely known inter-rater agreement measure, has been adopted. More
in particular, by computing a Krippendorff’s Alpha score between an inde-
pendently coded dataset of issues with Arcan architectural smells, the score
average around 0.82 well beyond the standard reference score of α > 0.800.

5.3.3 Empirical Study Results

rq1 . is arcan exhaustive in architectural smells detection?
In response to this RQ, Arcan is exhaustive in architectural smells detection,
since a total architectural smells match was obtained with architecture issues
from the independent, hand-coded dataset. All the architecture issues found
in the dataset mapped to an architectural smell, according to Table 5.11, have
been detected by Arcan. This mapping has been found independently from
the controlled variables defined in Section 5.3.1.

rq2 . is arcan correct in its architectural smells detection?
In response to this RQ, Arcan is correct in its architectural smells detection,
since its prediction overlaps almost completely with the prediction of the
human colleagues. As previously stated, Krippendorff’s alpha test was used
to evaluate the overlap between the two predictions.

Table 5.12 reports Krippendorff’s alpha test results performed on all the
projects for the mapping between architectural smells and architecture is-
sues from the independently-coded dataset. The median of the tests showed
that there is a strong significance with value of 0.842, among architectural
smells and architecture issues. The architecture issues less present in the
dataset, e.g., Suspension, Livelock, Atomicity Violation Starvation as shown
in Figure 5.9, performed the best test results reported at Table 5.12. UD
smell scored the best match with Livelock and it performed results grater
than 0.88 by all projects. Similarly, MAS smell had a strong significance test
values with Starvation bug by all projects. Moreover, HL smell performed
good results with values near or above 0.8 for Suspension and Atomicity Vi-
olation bugs by all projects. Data Race and Order Violation are performing
worst in 4 projects of 5 and Deadlock is the only one with values smaller but

6 https://technet.microsoft.com/en-us/library/ms177433(v=sql.105).aspx

7 https://barrgroup.com/Embedded-Systems/How-To/Top-Ten-Nasty-Firmware-Bugs

8 https://01.org/blogs/rzhang/2015/best-practice-debug-linux-suspend/hibernate-issues

https://technet.microsoft.com/en-us/library/ms177433(v=sql.105).aspx
https://barrgroup.com/Embedded-Systems/How-To/Top-Ten-Nasty-Firmware-Bugs
https://01.org/blogs/rzhang/2015/best-practice-debug-linux-suspend/hibernate-issues

5.3 architectural smells validation : a mixed-method study 90

Table 5.12: Krippendorff’s Alpha test results for mapping of Bug and AS

Apache Projects

AS Bug Accumulo Hadoop Oozie Spark ZooKeeper

CD Datarace 0.430 0.368 0.419 1.000 0.368

HL
Atomicity Violation 1.000 0.730 0.875 1.000 0.730

Suspension 0.648 0.842 0.875 0.777 0.842

MAS Starvation 1.000 0.959 0.875 1.000 0.959

UD
Deadlock 0.783 0.695 0.763 0.777 0.695

Livelock 1.000 0.882 1.000 1.000 0.882

Order Violation 0.886 0.662 0.763 0.594 0.662

Legenda: Values grater or equal to 0.8 are highlighted in bold

Data race
47%

Suspension
13%

Order Violation
14% Deadlock

15%

Atomicity
Violation

6%

Starvation
4%

Livelock
1%

Other

Figure 5.9: Architecture Issues in the Dataset, a pie chart.

near to 0.8. These worst results are obtained on the most frequent Architec-
ture Issues (Data Race and Order Violation), as shown at Figure 5.9.

5.3.4 Threats to Validity

Based on the taxonomy in [161], there are four potential validity threat areas,
namely: external, construct, internal, and conclusion validity.

“External Validity” concerns the applicability of the results in a more ge-
neral context. By means of an externally-coded dataset which was prepared
previously to the study and in a totally independent fashion, we aimed ex-
plicitly to strengthen external validity of this study.

The aim of this dataset usage was to control variables that could warrant
a higher external validity, as the variables that were controlled in the several
options available for dataset reuse. Although a number of variables remain
uncontrolled (e.g., programming language, code structure complexity, PL

5.4 conclusions 91

type, etc.) due to tool or other limitations, I’m confident to have streng-
thened the external validity of the current release of Arcan to its highest
possible as part of the last evaluation reported in this section.

“Construct Validity” and “Internal Validity” concern the generalizability of
the constructs under study, as well as the methods used to study and ana-
lyze data (e.g. the types of bias involved). The methods adopted to evaluate
the solution do not suffer from generalization issues since the evaluation
methods essentially re-use established content analysis techniques and inter-
rater agreement indexes previously known and widely-used in the literature.
Given that the comparison operated in the context of this study relates to
the use of independent human observers, we chose to use a simple Krip-
pendorff’s Alpha coefficient evaluation. We used a library implemented in
R called irr9. More complex inter-rater agreement evaluators exist, e.g., Co-
hen Kappa and similar. In the future the more advanced techniques will be
applied to further assess the validity of the research solution.

“Conclusion Validity” concerns the degree to which the conclusions are
reasonable based on the data. The conclusions are based on the manual
inspection of the inter-rater reliability scores between a human predictor
triangulated independently and in a completely un-related study and the
prediction of the research solution. This interpretation is reasonably valid
since it is limited to assessing whether the overlap successfully addresses
the research questions.

Replication Package

To allow for verifiability of the results, an extensive replication package is
provided, containing:

(a) the version of Arcan that was used for the purpose of this study, as
well as instructions to setup and run the tool10; (b) the original dataset from
Asadollah et Al. 11;(c) The data extracted by Arcan12; (d) the mapping and
overlap between Arcan detections and dataset, with inter-rater reliability cal-
culations13.
A replication of this study is planned to strengthen the general validity of
the conclusions perhaps over a more extensive dataset based solely on quan-
titative mining-software-repositories analysis.

5.4 conclusions

This chapter outlined three different evaluations of Arcan:

• The evaluation of Arcan results on 7 open source projects and a pre-
liminary comparison with the results of other two tools (e,g, inFu-

9 https://cran.r-project.org/package=irr

10 https://goo.gl/DhwHPq

11 https://goo.gl/DFg5f5

12 https://goo.gl/Jw51ND

13 https://goo.gl/TLiYpw

https://cran.r-project.org/package=irr
https://goo.gl/DhwHPq
https://goo.gl/DFg5f5
https://goo.gl/Jw51ND
https://goo.gl/TLiYpw

5.4 conclusions 92

sion, Hotspot). The work has been published at ICSME 2016 [17],
(Section 5.1).

• The evaluation of Arcan results carried out with real-life software deve-
lopers in a industrial case study. Two different projects were analyzed
by Arcan and a precision of 100% was observed, since Arcan found
only correct instances of architectural smells. The work has been pu-
blished at ICSA 2017 [19], (Section 5.2).

• The evaluation of the tool results through extensive mixed-methods
research, that shows that the tool is precise, since it detects 100% of the
architecture smells effectively present in the analyzed source code, and
is reliable, since it detects the correct architecture smell in over 84% of
the cases. This work has been submitted at the Journal of System and
Software [135] (Section 5.3).

Moreover, another validation of Arcan results has been recently done in
Sweden, in collaboration with the University of Gothenburg and some local
companies. The results collected in this extended study through the software
developers feedback will be evaluated to check if the architectural smells
detected by Arcan are really perceived as problems and to get another overall
usefulness evaluation of the tool.

6
E M P I R I C A L A N A LY S I S W I T H A R C A N

This chapter describes some empirical analysis done through Arcan: the
work on AS prediction and evolution considering also code changes in Sec-
tion 6.1 and the evaluation of different architectural smells and their correla-
tion with code smells in Section 6.2 in collaboration with the Free University
of Bozen-Bolzano (Italy).

6.1 architectural smell prediction and evolution

Architecture evaluation and quality assessment are important in order to
identify problems that can lead to a progressive architecture degradation or
erosion [102]. A prominent example of this kind of problems is given by
architectural smells.

The identification of architectural smells is important, but it could be even
more important to predict them before they actually appear. Moreover, if
good predictors for the presence of architectural smells are found, then their
causes could be better understood and their creation could be prevented.

A prediction approach needs to take into account different features (pre-
dictors) in the software history of the projects, which may include, among
others, the presence of architectural smells, the number of involved deve-
lopers, and the number of changes done in the project. If we consider the
presence of architectural smells, we can observe that during the evolution
of a project some architectural smells could be removed, some remain, or
new ones can be introduced. Those that remain could be more critical to re-
move, as they can grow in size and complexity, or can co-evolve with other
architectural smells during the evolution of the project.

The prediction of architectural smells can help software engineers during
the typical development and maintenance activities and also during a con-
tinuous architecting process, through a constant exploration of some cha-
racteristics, such as the presence of architectural smells. This exploration
can be implemented as a recommender system, warning against the risk of
incurring an architectural smell.

In this study Arcan is used for AS detection on four open source projects.
For each project, almost all the revisions found on their respective version
control repository were considered.

The historical data on each revision of the projects is used, with the aim to
predict the presence of architectural smells in future versions of the projects.
The data collected are related to:

• three architectural smells detected without analyzing the history of the
project: Unstable Dependency, Cyclic Dependency, Hub-like Dependency
smells;

6.1 architectural smell prediction and evolution 94

• one architectural smell where the detection is based on the history of
the project: Implicit Cross Package Dependency smell;

• the number of developers which worked on the project;

• the number of changes at package level in terms of added or deleted
parts of code.

With this objective, four different supervised learning models with the
performance measures were applied in a repeated cross-validation setting .

Through this study, I aim to answer the following Research Questions
(RQ):

• RQ1 Can we use the presence of architectural smells in the project’s
history to predict the presence of architectural smells in the future?

• RQ2 Can we use the number of the developers involved in a project
or/and the number of changes done at package level in a project to
predict the presence of architectural smells in the future?

• RQ3 Can we use all the data on changes, developers and architectural
smells to predict architectural smells?

• RQ4 How does the number of architectural smells evolve in the project
history? Which architectural smell tend to increase/decrease?

The answer to research question RQ1 explains whether there is a relation
between the presence of architectural smells in past versions of the software
and the future versions. If the relation can be understood by learning mo-
dels with high performance, the models can be used to suggest parts of a
project where architectural smells are going to be created, allowing architects
to prevent this. Moreover, if machine learning models can exploit this infor-
mation to make predictions, this means that some patterns in the presence
of architectural smells exist, and are able to explain the presence of architec-
tural smells in the future. This can be an important information, leading to
future research dedicated to understandingthe co-evolution of architectural
smells, i.e., the way they appear and influence each other along the history
of a software project.

The answer to research question RQ2 aims to assess if the number of the
developers involved in a project has an impact on the presence of architectu-
ral smells. The same evaluation has been done with respect to the number
of changes computed by Git. If none of these two factors has an impact, the
study will consider whether both the factors (information on the number of
developers and the number of changes) in combination can act as predictors.
Moreover, the answer to research question RQ3 will also analyze if the three
factors in combination (information on the number of architectural smells,
number of developers and number of changes) can act as predictors. The in-
tention is to provide machine learning models and techniques based on the
three factors to predict earlier if the project will be prone to be affected by
new smells in the future according to how the project has been developed.

6.1 architectural smell prediction and evolution 95

The answer to research question RQ4 analyze whether the number of ar-
chitectural smells tends to increase or decrease over the project history. Mo-
reover, the evolution of smells is studied to understand if they display some
regularities in their evolution, e.g., if the number of their instances mostly
increases or decreases over time. Knowing that an architectural smell tends
to increase can help to focus the attention of developers on this smell and
potentially plan possible refactoring actions to remove the smell.

6.1.1 Definition and setup of the case study

The case study aims is understanding if the architectural smells existing in
the history of a project and the number of developers and number of changes
can be used to predict the presence of architectural smells in future versions.
In the following, I provide a description of the analyzed projects, how the in-
formation about the detected AS in the projects evolution are modelled, the
machine learning algorithms applied, and the procedure applied to evaluate
the learning performances.

6.1.1.1 Selected projects

Four projects are chosen from Github1: JGit, JUnit, Commons-Math and
Apache Tomcat. The first three are libraries and the last is an application
server. These projects are chosen since they are written in Java and have
more than 5 years long activity, at least 2K commits, at least 20 major releases
and a number of contributors higher than 10.

For JGit, all versions available in the master branch are considered, for a
total of 83 versions (4840 commits in 8 years) and 138 contributors.

For JUnit, all versions available in the master branch are considered, for a
total of 20 versions (2187 commits in 17 years) and 138 contributors.

For Commons-Math, all versions from the master branch are considered,
for a total of 65 versions (6286 commits and 15 years) and 26 contributors.

For Tomcat, all versions from the project inception are considered (version
4, then named version 6) , up to the end of the development of version 7,
actually analyzing two full major releases (v6 and v7), for a total of 127

versions (6853 commits in 6 years) and 13 contributors.

6.1.1.2 Predictors and class labels

In this study, AS evolution, number of developers and changes are used to
predict the four AS. Since all AS are defined at package level, but they are
not all defined at class level, it was chosen to work at package level, hence
each data point in the dataset will refer to a package. In particular, since the
detected AS rely on many versions of a project, a data point is given for each
(version, package) combination. For each data point, AS are represented as
follows:

1 https://github.com/

https://github.com/

6.1 architectural smell prediction and evolution 96

• CD (Cyclic Dependency): binary feature, with value 1 if the package
is involved in a cyclic dependency in that version, 0 otherwise;

– tiny, star, chain, circle, clique: binary features, with va-
lue 1 if the package is involved in a cyclic dependency of the
respective type in that version, 0 otherwise;

The same representation is used for the other three AS, i.e., UD (Unstable

Dependency), HL (Hub-Like Dependency) and ICPD (Implicit Cross Pac-

kage Dependency).
To predict AS, other data on the development history is considered, as the

authors of the commits and some metrics on file changes extracted from the
version control system (Git):

• Author name: the name (or nickname) used by the author to submit the
commit,

• Author email: to identify exactly the author;

• Number of files changed: number of files changed in the commit for any
type (Java files excluded), e.g., configuration file, read-me file;

• Number of Java files changed: number of Java files changed in the com-
mit;

• Addition-changes: number of lines added in all the changed files (Java
files excluded);

• Deleting-changes: number of lines removed in all the changed files (Java
files excluded);

• Addition-changes in Java files: number of lines added in Java files;

• Deleting-changes on Java files: number of lines removed in Java files.

All the above features are used as predictors in the machine learning mo-
dels, while AS features are used only as class labels, i.e., the target of the
predictions. More precisely, predictors are used in past versions to predict
labels in the next version.

6.1.1.3 Representing architectural smells in history

To be able to predict AS in future versions using the AS detected in past
versions, a suitable representation is needed, enabling the application of
prediction models on these data.

Lags are chosen as method to represent past data, i.e., past data are associ-
ated to current data by adding features to the same data point to represent
both current data and the value of the predictors in the past at different ti-
mes. For example, when dealing with project packages, for each package
in each version there will be some features representing AS. In order to use
the past 12 versions (“lags”) to predict the presence of AS in the next ver-
sion, the AS features of (package, version - 1), (package, version - 2), . . . ,

6.1 architectural smell prediction and evolution 97

(package, version - 12) will be added to each row (package, version). In this
way, every data point contains AS information about the current version and
the 12 previous versions of the same package. Since this procedure is app-
lied to all available versions, lags create a “sliding window” where for each
version the information regarding a fixed amount of past versions is repre-
sented also. In the training phase, learning models use lagged information
to model the current information. In the test phase, when using the models
to predict new AS, they will use as input the current and lagged data. This
representation is common when dealing with multivariate time series and
has the advantage that, after this pre-processing phase, where lags are crea-
ted, the remaining part of the experiment can be carried out as a standard
supervised learning task.

The study started from a representation of the AS and development infor-
mation (changes and developers) on each version (commit) of the analyzed
project. Then, three variants of the dataset are generated aggregating by
month. In the first one, the data associated to AS are used, in the second
one the data on AS, number of changes and number of developers (deve-
lopment data), and in the third one only development data on changes and
developers. These representations have different properties. First, by aggre-
gating data by month synthesize information is possible and look at a large
timespan, i.e., more information in the past to predict further information in
the future. Second, the size of the datasets was reduced and hence the time
needed to perform the analysis was reduced by a large extent. Third, whet-
her the different sources of data (AS, changes and developers) had different
relevance in the AS prediction could be understood.

6.1.1.4 Machine learning models

The following machine learning models were selected for the experiment,
using R implementations:

• Naïve Bayes2 (NB): Computes the conditional a-posteriori probabilities
of a categorical class variable given independent predictor variables
using the Bayes rule.

• Decision Trees3 (C5.0): Decision tree learning uses a decision tree as a
predictive model which maps observations about an item (represented
in the branches) to conclusions about the item’s target value (represen-
ted in the leaves).

• Random Forests4 (RF): A random forest is a classifier consisting of a
collection of tree-structured classifiers h(x, Θk), k = 1, ... where Θk are
independent identically distributed random vectors and each tree casts
a unit vote for the most popular class at input x [91].

2 https://cran.r-project.org/package=klaR

3 https://cran.r-project.org/package=C50

4 https://cran.r-project.org/package=randomForest

https://cran.r-project.org/package=klaR
https://cran.r-project.org/package=C50
https://cran.r-project.org/package=randomForest

6.1 architectural smell prediction and evolution 98

• Support Vector Machines5 (SVMs, also support vector networks [41])
are supervised learning models with associated learning algorithms
that analyze data used for classification and regression analysis. We
tested two particular types provided by the R package: svmRadial and
svmLinear.

6.1.1.5 Performance estimation

For the estimation of the performance of the models, a standard repeated
k-fold cross validation procedure was applied, with 10 repetitions and 10

folds. Therefore, each model is evaluated 100 times on different portions of
the dataset.

The caret6 R package was used to perform all pre-processing, learning
and performance evaluation tasks.

The computed performance indexes are the usual indexes found in ma-
chine learning and information retrieval in the case of supervised learning:
Accuracy and F-Measure. These indexes are considered as ’positive’ if the
AS is present on a package, i.e., its respective feature is 1. Two pre-processing
transformations are applied to the dataset before using it for learning. First,
features with variance near to zero are removed (using the nearZeroVar()

function in caret), mostly addressing columns having only one constant
value. Then SMOTE [31] sampling is applied to balance the positive and
negative class. Both operations are carried out with the default settings of
the caret package.

To support an informed comparison of the different machine learning mo-
dels performances, we apply the Wilcoxon signed rank test [62] to the F-
Measure values obtained on the 10 folds of the cross validation procedure.
Only performances of different models on the same dataset (system and
pre-processing setup) are compared. Since all the models of each group are
compared, a p-value correction is applied, using Holm’s method [63]. In the
discussion, the test results7 are used to understand if the difference in the
average F1 is significant, i.e., if the models’ performances are distinguishable.
The considered significance is α < 0.05.

6.1.2 Results

In this section, the results obtained through this case study are discussed
and explained, and the machine learning models are analyzed to understand
which features have more influence on the prediction performances.

Table 6.1 reports computed F-measure and Accuracy metrics of all the
models experimented on the four projects: the values higher or equal to 0.6
are highlighted in bold. The table reports prediction performances of five
models for the next-month setup: the preceding 12 lags are used to predict
the next one, e.g., the feature of the last 12 month are used to predict the

5 https://cran.r-project.org/package=kernlab

6 https://cran.r-project.org/package=caret

7 https://goo.gl/x9u5mZ

https://cran.r-project.org/package=kernlab
https://cran.r-project.org/package=caret
https://goo.gl/x9u5mZ

6.1 architectural smell prediction and evolution 99

Table 6.1: F-measure and Accuracy results of machine learning models
AS C-D AS-C-D

C5.0 NB RF SL SR C5.0 NB RF SL SR C5.0 NB RF SL SR
A

cc
ur

ac
y

C
om

m
on

s-
M

at
h CD .995 .981 .995 .858 .823 .834 .828 .849 .858 .832 .995 .944 .995 .833 .823

CD-chain .837 .624 .831 .765 .732 .614 .530 .635 .765 .719 .844 .592 .856 .752 .732
CD-clique .945 .764 .942 .928 .920 .866 .523 .855 .928 .930 .958 .577 .954 .909 .920
CD-star .897 .610 .894 .922 .922 .898 .427 .877 .922 .922 .937 .452 .921 .912 .922
CD-tiny .845 .666 .846 .665 .676 .681 .618 .700 .665 .649 .854 .635 .841 .692 .677
UD .669 .504 .597 .571 .699 .651 .672 .663 .571 .627 .639 .674 .642 .800 .699
ICPD .711 .768 .712 .887 .862 .847 .869 .883 .887 .862 .845 .875 .873 .857 .862

JG
it

CD .996 .986 .996 1 1 .774 .482 .860 1 .977 .995 .956 .994 1 .965
CD-chain .833 .665 .846 1 .993 .679 .658 .683 1 .902 .813 .659 .818 1 .856
CD-circle .765 .630 .782 1 .995 .573 .496 .566 1 .914 .753 .506 .761 1 .871
CD-clique .953 .799 .955 1 .997 .798 .846 .790 1 .923 .918 .847 .917 1 .894
CD-star .785 .646 .800 1 .994 .665 .638 .662 1 .886 .782 .643 .779 1 .842
HL .684 .747 .753 1 .985 .826 .880 .810 1 .957 .836 .882 .821 1 .955
UD .585 .638 .732 1 .990 .828 .851 .831 1 .942 .840 .855 .843 1 .922
ICPD .671 .590 .710 1 .981 .802 .808 .809 1 .891 .787 .807 .803 1 .852

JU
ni

t

CD .998 .896 .999 1 .958 .924 .671 .907 1 .958 .998 .820 .999 1 .919
CD-chain .998 .899 .998 1 .847 .616 .551 .636 1 .847 .999 .836 .998 1 .752
CD-star .994 .753 .993 1 .903 .792 .679 .804 1 .903 .995 .720 .995 1 .863
CD-tiny .997 .884 .997 1 .857 .665 .504 .649 1 .857 .997 .855 .997 1 .786
UD .939 .587 .937 1 .823 .709 .671 .742 1 .823 .957 .575 .959 1 .758
ICPD .997 .959 .997 1 .874 .992 .917 .991 1 .874 .998 .942 .999 1 .792

To
m

ca
t CD .999 .977 .999 1 .999 .791 .280 .762 1 .952 .999 .899 .997 1 .955

CD-chain .996 .913 .997 1 .998 .718 .475 .723 1 .940 .996 .832 .996 1 .917
CD-clique .996 .793 .996 1 .999 .787 .856 .820 1 .973 .996 .927 .996 1 .939
CD-star .989 .760 .986 1 .995 .753 .518 .726 1 .940 .992 .581 .990 1 .914
ICPD .750 .620 .723 1 .996 .808 .883 .827 1 .951 .834 .884 .836 1 .936

AS C-D AS-C-D
C5.0 NB RF SL SR C5.0 NB RF SL SR C5.0 NB RF SL SR

F-
m

ea
su

re

C
om

m
on

s-
M

at
h CD .997 .989 .997 .537 .421 .902 .906 .912 .537 .449 .997 .966 .997 .453 .421

CD-chain .788 .643 .783 .804 .776 .490 .479 .479 .804 .766 .810 .494 .823 .793 .777
CD-clique .767 .384 .762 .960 .956 .387 .213 .310 .960 .961 .795 .239 .782 .950 .956
CD-star .553 .269 .557 .958 .958 .314 .180 .325 .958 .958 .610 .187 .550 .953 .958
CD-tiny .816 .694 .815 .706 .716 .631 .360 .641 .706 .692 .835 .388 .825 .730 .717
UD .039 .419 .221 .685 .779 .391 .217 .368 .685 .726 .348 .216 .342 .853 .779
ICPD .235 .211 .255 .938 .924 .176 .076 .178 .938 .924 .258 .070 .267 .921 .924

JG
it

CD .998 .992 .998 1 1 .870 .615 .924 1 .987 .997 .975 .997 1 .981
CD-chain .757 .437 .775 1 .990 .442 .028 .444 1 .826 .728 .028 .741 1 .732
CD-circle .756 .713 .769 1 .994 .508 .640 .505 1 .900 .751 .648 .752 1 .845
CD-clique .849 .500 .855 1 .990 .316 .011 .369 1 .663 .749 .012 .751 1 .479

CD-star .683 .443 .726 1 .992 .411 .070 .437 1 .816 .685 .094 .692 1 .725
HL .175 .211 .121 1 .827 .147 .172 .151 1 .489 .230 .178 .220 1 .248

UD .233 .255 .132 1 .959 .340 .160 .302 1 .671 .386 .176 .334 1 .529

ICPD .252 .305 .232 1 .950 .499 .225 .506 1 .622 .491 .220 .506 1 .427

JU
ni

t

CD .998 .871 .999 1 .977 .957 .777 .946 1 .977 .998 .753 .999 1 .956
CD-chain .998 .884 .998 1 .875 .663 .375 .678 1 .875 .999 .804 .998 1 .812
CD-star .995 .793 .993 1 .622 .370 .285 .351 1 .622 .996 .753 .996 1 .369

CD-tiny .997 .893 .997 1 .724 .403 .537 .537 1 .724 .998 .869 .997 1 .519

UD .943 .715 .941 1 .524 .351 .416 .332 1 .524 .960 .697 .962 1 .207

ICPD .996 .954 .997 1 .898 .993 .922 .992 1 .898 .998 .933 .998 1 .844

To
m

ca
t CD .999 .986 .999 1 .999 .876 .261 .849 1 .972 .999 .937 .998 1 .973

CD-chain .997 .933 .998 1 .999 .790 .432 .794 1 .957 .997 .867 .997 1 .941
CD-clique .982 .409 .982 1 .995 .139 .096 .138 1 .834 .977 .567 .979 1 .559

CD-star .98 .666 .976 1 .990 .497 .479 .544 1 .882 .985 .513 .983 1 .820
ICPD .292 .269 .289 1 .978 .268 .031 .195 1 .668 .383 .034 .337 1 .541

Legend: Architectural Smell (AS); Changes and Developers only (C-D); Architectural
Smell, Changes and Developers data (AS-C-D); SVM linear (SL); SVM Radial (SR);

Decision Tree (C5.0); Naïve Bayes (NB); Random Forest (RF)

In bold are highlighted values equals or greater to 0.6

AS in the next month. The models used are the decision tree (C5.0), Naïve
Bayes (NB), Random Forest (RF), Support Vector Machine Linear (SL) and
Support Vector Machine Radial (SR).

The first column of the table reports the different AS, where for CD smell
we have considered all the different shapes and the sum of all the CD (CD

6.1 architectural smell prediction and evolution 100

row), the second column reports AS prediction using only AS data (AS) to
answer RQ1, the third column reports AS prediction using only Changes
and Developers data (C-D) to answer RQ2 and the forth column reports the
AS prediction using AS, Changes and Developers data (AS-C-D) to answer
RQ2.1.

The reported performances are high with very few exceptions. The hig-
hest performances are obtained in the prediction of Cyclic Dependencies
(CD) smell and its shapes. In fact, only CD has comparable detection perfor-
mances in both AS and AS-C-D setups. This result could also be influenced
by the class imbalance: accuracy values for NB predictions are much lower
than the others (and higher than F-Measure) for all the projects. This me-
ans that where class imbalance is higher, classifiers chose the largest class
(absence of AS). As for the classifiers, the best ones are SVM Linear and
SVM Radial: this conclusion is supported by the Wilcox test conducted and
explained in Section 6.1.1.5. The test shows that p-values of SL and SR mo-
dels are significant (p-values between 0 and 0.03), with respect to all models
using C-D data and AS-C-D data; this is true for the majority of the test on
AS data too. C5.0 and Random Forests are also good, and have comparable
performances among each other.

Rules computed by the JRip algorithm available in Weka are analyzed
and are accessed through R using the RWeka8 package, because I experien-
ced that the rules extracted by JRip are more understandable than the ones
reported by C5.0, while the latter can have higher prediction performances.
the rules were used to investigate which conditions can lead to the creation
of architectural smells. the training dataset is simplified, representing only
the presence or absence of architectural smells in lagged data (0 absence and
1 presence).

the main high-level rule discovered is that the presence (or absence) of an
architectural smell in the past is confirmed in the future. This can be justified
by the fact that, for their granularity, architectural smells are large and can
have a slow evolution.

6.1.2.1 Results on architectural smells prediction (RQ1)

We analyzed if we can use the presence of architectural smells in the history
of the projects to predict the presence of AS in the future.

As shown in Table 6.1, SVM models performed well using this data, hence
AS evolution could be used for the prediction of AS in the future. We col-
lected and reported the most important rules extracted using this type of
data. Table 6.1 shows that the presence of Cyclic Dependencies indicates a
possible presence in the future of this architectural smell, and this holds also
for the absence: If the cycle is not present in the history it will not be present
in the future. This is true for all the systems and for all the shape types of
Cyclic Dependencies.

8 https://cran.r-project.org/package=RWeka

https://cran.r-project.org/package=RWeka

6.1 architectural smell prediction and evolution 101

For example, the following rule is extracted from the analysis of JGit (with
97.6% correctly classified instances):

(CD1 = 0)⇒ CD = 0 (6.1)

Table 6.2: Prediction performance rule of CD Smell

Instances classified by

(CD1 = 0)⇒ CD = 0 Total number

Project Right Wrong Right(%) of instances

Commons Math 516 14 97.4% 3288

JGit 332 8 97.6% 2989

JUnit 690 20 97.2% 6057

Tomcat 791 0 100% 5306

While the rule does not indicate the way CD is introduced or removed, it
shows that the absence of CD in the last month indicates its absence in the
future.

What is found in JGit is confirmed also for all the other projects and for all
the shapes of CD. Table 6.2 shows the rule performance for all projects, and
it also indicates the number of total instances of CD per project. Tomcat is
the only project where the rule is always true, but the other projects achieved
good results with correct classification percentage over 97%. Since the rule
does not describe a condition that leads to the introduction (or removal) of
the CD AS, this rule as a witness of the sparsity of the phenomenon. It also
has some practical implications: since the introduction of CD is rare, paying
attention in the early phases of the construction of a system or module could
decrease the possibility of incurring CD during evolution. Obviously, since
the rule does not have 100% confidence on all projects, developers have to
proactively avoid the introduction of CD, but the event has low chances to
happen. As future work, it will be interesting to analyze the reasons why
this AS has been introduced in the analyzed projects, i.e., the cases where
the rule fails. Moreover, I found that if in two points in the past there is no
Chains or Tiny CD smell, then in the future a Star shaped CD smell will be
introduced.

For what concerns Hub-Like smell, Unstable Dependency and Implicit
Cross Package Dependency smell, their rules were not extracted or not sig-
nificantly relevant.

6.1.2.2 Results on architectural smells prediction (RQ2 and RQ3)

The analysis investigates if the number of the developers involved in a pro-
ject or/and the number of changes done at package level in the project can
be used to predict the presence of architectural smells in the future versi-
ons of the project (according to RQ2). No significant results were obtained
by individually considering as indicator first the developers involved and

6.1 architectural smell prediction and evolution 102

then the number of changes. When considering both of them as shown in
Table 6.1, SVMs models gave the best results, even if it was not possible to
extract any interesting rules. Instead, prediction rules were obtained using
together data on changes, developers and architectural smells as predictors
(according to RQ3).

Table 6.3: Prediction rules leading to addition of UD Smell

Month window

Id Parameter 12 11 10 9 8 7 6 5 4 3 2 1 (R/W)

1

CD-tiny = 0 JUnit

CD-chain ≥ 1
70/24

JFC ≥ 1 ≥ 1 ≥ 1

2

CD-tiny = 0 JUnit

CD-chain ≥ 1
48/18

JFC ≥ 1 ≥ 1 ≥ 1

3

CD-tiny = 0 JUnit

CD ≥ 1
36/6

JFC ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1

4

CD-tiny = 0 JUnit

CD ≥ 1
144/71

JFC ≥ 1 ≥ 1

5

A-C ≥ 1 JGit

D-CJF = 0 = 0
25/6

FC ≥ 1

6

A-C ≥ 1 JGit

D-CJF = 0
39/15FC ≥ 1

D-C = 0

7

A-C ≥ 1 JGit

D-CJF = 0

18/5

FC ≥ 1 ≥ 1

D-C ≥ 1 = 0

Legend: Java File Changed (JFC); Files Changed (FC); Deleting-Changes (D-C); Addition-Changes
(A-C); Right/Wrong Classified item (R/W);Deleting-Changes in Java File (D-CJF)

Tables 6.3 and 6.4 show respectively the 7 prediction rules of UD smell and
the 6 prediction rules of ICPD smell. A rule is identified by an id (column 1)
and it is composed by some parameters joined by logical AND (column 2).
A time-window of 12 lags, i.e., 12 months before are given to the machine
learning algorithm. If a value is important for the rule, it is reported in
the proper n-month column, otherwise the column is left empty. The last
column reports the performances of the analyzed project by showing the
number of Right and Wrong (R/W) instances classified by the rule and the
name of the analyzed project.

As shown in Table 6.3 for UD smell prediction, rules (1-4) are valid only
for JUnit and rules (5-7) are valid only for JGit. All the rules regarding JUnit

6.1 architectural smell prediction and evolution 103

indicate that an UD smell is introduced if there is no instance of CD-tiny
in one of the last quarter months. This happens in conjunction with the
other parameters: in particular, rule 1 and rule 2 indicate that one or more
CD-chain smells should be present twelve months before; moreover, one or
more Java files should be changed in the last three months as in rule 1 or
one year before as in rule 2. Regarding rule 3 and rule 4, Table 6.3 tells us
that Java file changes made in a period of 5 months or a shorter period of 2

months with the presence of one or more CD smell in the past six months
can lead to the introduction of an UD smell.

Rules (5-7) show that a new UD smell can be introduced if in the past
there were not deleting changes to Java files but addition changes and file
changes to other files (not Java). However, rules (5-7) are valid only for JGit
and in few other cases.

Table 6.4: Prediction rules leading to addition of ICPD Smell

Month window

Id Parameter 12 11 10 9 8 7 6 5 4 3 2 1 (R/W)

1

D-CJF ≥ 1 ≥ 1 JGit

D-C ≥ 1

CD = 0
45/1

FC ≥ 1

2

D-CJF ≥ 1 ≥ 1 ≥ 1 JGit

D-C ≥ 1
219/102FC ≥ 1

3

D-CJF ≥ 1 ≥ 1 ≥ 1 JGit

A-C ≥ 1
113/55

A-CJF ≥ 1

4

CD-Chain = 0 = 0 Tomcat

FC ≥ 1 ≥ 1
38/15A-C ≥ 1

D-C ≥ 1

5

CD-Chain = 0 = 0 Tomcat

FC ≥ 1 ≥ 1
36/17

CD = 0

6

CD-Chain = 0 = 0 Tomcat

FC ≥ 1
18/4A-C ≥ 1

D-C = 0 ≥ 1

Legend: Deleting-Changes in Java File (D-CJF); Deleting-Changes (D-C);

Number of Files Changed (FC); Addition-Changes (A-C);

Addition-Changes in Java File (A-CJF)

Table 6.4 shows the rules valid for the ICPD smell. Deleting changes
made in Java file are important for the introduction of an ICPD smell, since
deleting changes are involved in all the rules reported in Table 6.4. Deleting
changes in other files are also significant for the introduction of ICPD as

6.1 architectural smell prediction and evolution 104

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
·104

Ordered Months

Su
m

of
A

S

CD ICPD

HL UD

Figure 6.1: Evolution of architectural smells of Commons-Math by month

shown in rules (1-2) which show the importance of modifying one or more
files in the same rules. Rule 3 shows the relevance of additional changes
both in Java file and in a general file. Rule 1 shows that CD smell, 7 month
before should be zero. Moreover, Tomcat rules showed that CD-chain should
be zero in at least two points in the past, as shown in rules (4-6).

CD smell rule indicates that if there is no CD smell in the past month
there will none in the next month. This rule is still valid with similar perfor-
mances in all projects and the rule was shown also using the AS dataset, as
previously explained in RQ1 answer in Section 6.1.2.1.

Concerning the prediction of the other AS, changes data are good indica-
tors for the insertion of new shapes of CD smells in the project. In fact, we
noticed that adding lines to a Java file without removing them for a long
period could lead to a new shape of CD, in particular: chain and circle.

HL smell did not reveal any hidden rule with other architectural smell,
i.e., there is no type of rule which concerns the introduction or removal of
HL smell.

Finally, as described before, changes and architectural smell data are good
predictors of AS, in contrast with developers data which are not useful to
predict AS.

6.1.2.3 Results on architectural smells evolution (RQ4)

The evolution of the number of the AS detected in the history of the analy-
zed projects is analyzed to observe if AS tend to increase or decrease. If a
specific instance of an AS remains or is removed is not considered, but their
overall number. Figures 6.1-6.4 show the evolution of the four AS for each
project. The majority of smells shown that are of type CD and ICPD during
the evolution of all projects. Hub-Like smells are usually the most rarely
detected.

These figures visually indicate the presence of a correlation among archi-
tectural smells quantity during the evolution of the projects, i.e., architectu-
ral smells increase and decrease together. The correlation is more evident in
Figure 6.2 where there are peaks of the plot aligned over different architec-
tural smells, but it is evident also in the other projects.

The evolution of architectural smells in Commons-Math is shown in Fi-
gure 6.1, and an increasing trend of ICPD is shown for the first period of

6.1 architectural smell prediction and evolution 105

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90

0

0.2

0.4

0.6

0.8

1
·104

Ordered Months

Su
m

of
A

S

CD ICPD

HL UD

Figure 6.2: Evolution of architectural smells of JGit by month

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160

0

1

2

3

4

5

6

·104

Ordered Months

Su
m

of
A

S

CD ICPD

HL UD

Figure 6.3: Evolution of architectural smells of JUnit by month

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

0
0.5

1
1.5

2
2.5

3
3.5

4
·104

Ordered Months

Su
m

of
A

S

CD ICPD

HL UD

Figure 6.4: Evolution of architectural smells of Tomcat by month

6.1 architectural smell prediction and evolution 106

20 months, and a substantial growth trend for all the architectural smells
during the entire considered period.

Figure 6.2, related to JGit project, shows that CD is much more present
than the other types of architectural smells and there is a higher number of
UD w.r.t. ICPD and HL.

Figure 6.3 shows architectural smells evolution in JUnit and an ICPD pre-
valence is shown with the highest value of 60K instances of this smell with
respect to the other projects and the other smells. In fact, the other types
of architectural smells are less than 1K instances and less than the other
projects since JUnit is the smallest analyzed project. However, this project
presents a lot of ICPD smells because developers modify more than one file
per commit: this was revealed thanks to a manual check on a sample of
commits. The interpretation of this result is that JUnit is a project develo-
ped basically by its original creators who know exactly how the project is
structured. They do commit by changing a lot of files since their deep know-
ledge of the project allows them to easily spot and fix problems also among
unrelated files.

Tomcat architectural smells evolution is shown in Figure 6.4. ICPD smells
are increasing over time and become the most detected smell after the 45th
month, while the CD smells are the most detected ones until the 45th month.

6.1.3 Threats to validity

Threats to construct validity of this study may arise from the representative-
ness of the applied measures. This analysis exploited datasets where data
points have been aggregated. In fact, we considered data representing the
projects’ characteristics on a monthly basis, but the raw extracted data refers
to single commits. During the application of standard aggregation appro-
aches, i.e., aggregating measures representing counts using the sum and
aggregating ratios using their mean, the aggregation may have biased the
dataset composition. In fact, since original data refers to single commits,
it is not directly tied to a time interval (such as hours, days, and weeks).
By aggregating the measures taken at irregular time intervals, distortions or
"masking effects" may occur, e.g., when the same portion of code has been
modified many times between two points of interests (months in this case),
they are counted differently than the way they would have been count if
the state of the repository was observed on a monthly basis. These issues
are mitigated by choosing aggregation strategies keeping (as much as pos-
sible) the original meaning of each measure. Moreover, the study rely on a
tool (Arcan) to extract dependency metrics and detect architectural smells
in the analyzed projects. The tool could be subjected to a systematic bias in
the detection, even if a validation of Arcan results has been performed [19].
Anyway, since the output of the tool is being predicted in the future, this
systematic bias, if existing, has been incorporated into the learning models.
Before using the data extracted by the tool to perform the experiment, the
output was carefully checked, on many different projects, to optimize the
settings of the detection rules and to verify the correctness of the tool output

6.1 architectural smell prediction and evolution 107

according to the defined rules. The reproducibility of the experiment is gua-
ranteed by the fact that the tool is freely available and can be applied to any
compiled Java project. The reproducibility package of this study is available
at this link9.

Threats to external validity may arise from the the number of projects used
in the experiment. The results obtained on the four projects may not be
replicable on other systems, in particular if they do not rely on the same
technology or belong to different domains. Another factor that may change
the analysis, and any empirical study working on the evolution of software
systems, is the set of practices applied by the team developing the analyzed
projects. Still, machine learning can be a viable solution to apply customized
prediction models which adapt on a project specific features, by relying on
past data.

6.1.4 Conclusions

In this study, machine learning techniques are applied to predict architectu-
ral smells based on historical smell information. The evolution of the AS is
analyzed based on historical information. My aim was to understand if the
evolution of the presence of architectural smells in a project, and data rela-
ted to the number of changes and the number of developers can be used to
predict the existence of AS in the future. The ability of predicting AS can be
used, for example, to understand if some parts of the project are subject to a
risk of having one or more smells, enabling developers to prevent them. In
the following, findings were summarized through the answers to the posed
RQs.

With respect to RQ1: Can we use the presence of architectural smells in history
to predict the presence of AS in the future? From the results obtained in the four
analyzed projects, the prediction performances are high or very high. So,
the answer to the RQ1 is yes, historical architectural smell information can
be used to predict the presence of AS in the future. In particular, we found
that Cyclic Dependency (CD) AS is a good predictor of CD smells. Hence,
developers/maintainers have to pay particular attention to this AS and try
to remove it, as soon as the AS is introduced and detected.

With respect to RQ2: Can we use the number of the developers involved in a
project or/and the number of changes done at package level in the project to predict
the presence of architectural smells in the future versions of the project?, The ans-
wer is Yes according to changes and No according to developers, since the
rules detected by the models have not considered developers data and only
SVM models get good F-measure values in average.

With respect to RQ3: Can we use all the data on changes, developers and archi-
tectural smells to predict architectural smells? As the second column of Table 6.1
shows, these indicators gave good Accuracy values. The changes on Java and
not Java files, together with presence/absence of particular shapes of CD
smell, indicate the presence of future UD smell; ICPD smell is announced by

9 https://goo.gl/MxHKGa

6.2 code smells and architectural smells correlations 108

deleting/adding changes on both Java and not Java files, in conjunction with
the absence of CD smell in the previous months. These results are shown in
Tables 6.3-6.4 respectively. Changes are good indicators of insertion of new
shapes of CD smells, in particular CD-chain and CD-circle smells. HL smell
did not reveal any interesting rule. These results assessed that changes data
and AS data are good predictors, in contrast with developers data.

With respect to RQ4: How does the number of architectural smells evolve in the
project history? Which architectural smell tend to increase/decrease? The architec-
tural smells are visually correlated and generally increase over time. There
is a majority of CD smells and ICPD smells. ICPD smells usually have a
different evolution compared to the other AS, but they have an increasing
trend too. More ICPD instances were detected in the smallest project, JUnit;
in fact, they are related not only to the size of the project but mainly to how
the projects are developed. From the results on the detection of the ICPD AS,
it is shown that the smell is present in all the four projects throughout their
history and can have large variations according to the development style.
Some false positives were detected and were related to some large batches
of changes not directly related to development, e.g., changes in the software
licence header of many files.

On this study a paper has been submitted to ICSME 2018 Conference [137].

6.2 code smells and architectural smells correlations

Several works claim that architectural smells lead to architectural erosion
and architectural issues are the greatest source of technical debt [47], hence
they have to be considered as one of the primary source of investigation to
face and mitigate the architecture degradation problem [118].

Several works, as outlined in Section 2.3.1 investigated inter-relations bet-
ween code smells, if a code smell lead to another code smell, or if some code
smells tend to go together. Currently, few studies analyzing correlations be-
tween code smells and architectural smells have been published. Among
them, one work [102] identified correlation between code smells and archi-
tectural smells, while another work [101] claims that they are not correlated,
but in any case, no extended empirical evaluations have been carried out
and no code smell stands out as the best indicator of harmfulness respect to
architecture degradation.

The goal of this study is to understand if architectural smells can be deri-
ved from a combination of code smells, or by a category of code smells[105].
For this purpose, we designed and conducted a large empirical study ana-
lyzing correlations on four architectural smells and 19 code smells and six
categories of code smells on 111 Java project from the Qualitas Corpus repo-
sitory [154].

The result of this work will support researchers and practitioners in un-
derstanding if they should detect both architectural smells and code smells
or if code smells detection alone is enough to highlight the same anomalies
that could be highlighted by the architectural smell. Results show that ar-

6.2 code smells and architectural smells correlations 109

chitectural smells cannot be derived from code smells, and that in most of
cases, code smells infect different classes than these infected by architectural
smells, not only hindering different problems but also considering different
candidate classes for refactoring.

6.2.1 Background

In this Section, we present the code smells together with their proposed
classification and the architectural smells detected in this work.

6.2.1.1 Code Smells

In this work, we consider code smells detected by SonqaQube 10 using the
”Antipatterns-CodeSmell” plugin 11. All the code smells, except Duplicated
Code are detected by the ”Antipatterns-CodeSmell” plugin while Duplica-
ted Code is detected natively by SonarQube. Here is the list of code smells
considered in this work:

• Anti Singleton (ASG): A class that is providing mutable class variables,
which exhibit the properties of global variables [74].

• Base Class Knows Derived Class (BCKD): A base class has knowledge
about its derived class [116].

• Base Class Should Be Abstract (BCSA): An inheritance tree contains roots
that are not abstract - only the leaves should be concrete [116].

• Blob (BL): Procedural-style design results in one object with numerous
responsibilities more uniformly and responsibilities and most other
objects holding only data [33].

• Class Data Should Be Private (DsP): A class that publicly exposes its
variables [151].

• Complex Class (CC): A class with high MCCabe’s cyclomatic complex-
ity [107].

• Duplicated Code (DC): A class or method that contains an identical piece
of code of another class of method. Please, note that we only consider
internal project duplication and we do not consider cross-project du-
plications.

• Functional Decomposition (FD): Non object oriented design (possibly
from legacy) is coded in object oriented language and notation [33].

• Large Class (LC): A class with too many lines of code, methods or vari-
ables [48].

10 SonarQube https://www.sonarqube.org/
11 SonarQube https://github.com/davidetaibi/sonarqube-anti-patterns-code-smells

6.2 code smells and architectural smells correlations 110

• Lazy Class (LzC): A class that is doing very little work and only increa-
ses architectural complexity [48].

• Long Method (LM): A method with too many lines of code [48].

• Long Parameter List (LPL): A method having too many parameters [48].

• Many Field Attributes But Not Complex (MFnC): A class that is not com-
plex but has many public fields [116].

• Message Chains (MC): A chain of methods that ask for one object, which
asks for another one, which asks for yet another and so on [48].

• Refused Parent Bequest (RPB): Subclass is using only a few features of
the parent class [48].

• Spaghetti Code (SC): An ad hoc software structure makes it difficult to
extend and optimize code [33].

• Speculative Generality (SG): Hooks and special cases in code, that handle
things, which are not required, but are speculated to be required so-
meday [48].

• Swiss Army Knife (SAK): Over-design of interfaces results in objects
with numerous methods that attempt to anticipate every possible need.
This leads to designs that are difficult to comprehend, utilize, and de-
bug, as well as implementation dependencies [33].

• Tradition Breaker (TB): An inherited class provides a large set of new
services that are unrelated to those provided by the base class [107].

6.2.1.2 Categories of code smells

The categories of code smells we have considered are based on the classi-
fication proposed by Mäntylä and Lassenius cited[105], where the smells
are classified according to some of the common concepts that the smells in-
side one category share. Below we provide the description of each category
with the included smells among those which we are able to detect with the
Antipatterns-CodeSmell tool. Moreover, we outline the new smells that we
included in the categories, if any.

• The Bloaters (Bloat.): Objects that has grown too much and can become
hard to manage. This group includes the code smells Blob, Long Method,
Large Class, and Long Parameter List. We included: Complex Class and
Swiss Army Knyfe.

• The Dispensables (Disp.): Unnecessary code fragments that should be re-
moved. It includes the Code Smells Lazy Class, Duplicated Code andSpeculative
Generality. We included: Many Field Attributes But Not Complex and
Duplicate Code.

6.2 code smells and architectural smells correlations 111

• The Encapsulators (Enc.): Objects that presents high coupling (this ca-
tegory is also called Couplers). This group includes the code smells
Message Chain.

• The Object-Orientation Abusers (OOA): Classes that does not comply
with the object-oriented design. For example, a Switch Statement,
even if applicable in procedural programming, is highly deprecated
in object-oriented programming. This group includes the code smells
Antisingleton, Refused Parent Bequest. We included: Base Class Knows
Derived Class, Base Class Should Be Abstract, Class Data Should Be Private
and Tradition Breaker.

• The Change Preventers: This group includes smells that hinder further
changes in the source code. This group includes a set of code smells
such as Divergent Change, Shotgun Surgery, Parallel Inheritance Hierar-
chies, not detected by the Antipatterns-CodeSmell tool. We included:
Spaghetti Code.

Moreover, other code smells detected by the Antipatterns-CodeSmell tool
could be grouped together in a new category:

• The Object-Oriented Avoiders This category is in contrast to The Object-
Orientation Abusers, since code smells belonging to this category are
not applying (intentionally or not) any Object-oriented practice. We
included the code smell Functional Decomposition.

Since three categories (The Change Preventers, The Encapsulators, The Object-
Orientation Avoiders are based only on one code smell, we do not analyze
them independently since they will provide the same results of the same
code smell belonging to them. Therefore, in the remainder of this work we
consider three categories of code smells: The Bloaters, The Dispensables and
The Object Orientation Abusers.

In Table 6.5 we propose a summary of the new revisited classification of
the smells with all the categories we have considered and the smells included
in each category. In the table in italic we outline the new smells we have
introduced in the categories of Mantylia according to our evaluation and the
new category that we have defined.

6.2.1.3 Architectural Smells

The considered architectural smells of the study are the ones detected by
Arcan (see Section 4):

• Unstable Dependency (UD)

• Hub-Like Dependency (HD)

• Cyclic Dependency (CD)

• Multiple Architectural Smell (MAS).

6.2 code smells and architectural smells correlations 112

Table 6.5: Code Smells Taxonomy

Category Name Code Smells

The Bloaters

Blob

Large Class

Long Method

Long Parameter List

Complex Class

Swiss Army Knife

The Change Preventers Spaghetti Code

The Dispensables

Lazy Class

Speculative Generality

Many Field Attributes But Not Complex

Duplicate Code

The Encapsulators Message Chain

The Object-Orientation Abusers

Antisingleton

Refused Parent Bequest

Base Class Knows Derived Class

Base Class Should Be Abstract

Class Data Should Be Private

Tradition Breaker

The Object-Orientation Avoiders Functional Decomposition

We decided to consider these AS in the study, since they represent relevant
problems related to dependency issues that lead to architectural degrada-
tion.

In the following section the case study design is described following the
guideline proposed by Runeson [138].

6.2.2 Case Study Design

The goal of this work is to understand if architectural smells can be consi-
dered derivable and obtainable from code smells or if they are independent
from them. For this purpose, we conducted a case study to investigate the
interdependency between architectural smells and code smells analyzing 111

open source Java projects.
In this section, we present research questions, metrics and hypotheses

for the case study. Based on them, we outline the study context, the data
collection and the data analysis.

Based on our goal, we derived the following Research Questions (RQs):

RQ1 : Is the presence of an architectural smell independent from the pre-
sence of code smells?

RQ1.1 : Is the presence of a Multiple Architectural Smell (MAS) indepen-
dent from the presence of code smells?

6.2 code smells and architectural smells correlations 113

RQ2: Is the presence of an architectural smell independent from the presence
of a category of code smells?

RQ2.1 : Is the presence of a Multiple Architectural Smell independent
from the presence of a category of code smells?

With our RQs, we aim to understand if a single architectural smell (RQ1)
or the multiple Architectural Smell (RQ1.1) can be calculated from code
smells - or from a category that groups code smells as described in Section
6.2.3 (RQ2 and RQ2.1).

Based on the aforementioned RQs, we defined the following hypotheses.

hypothesis 1 : The presence of an architectural smell is independent from
the presence of code smells.

hypothesis 2 : The presence of a Multiple Architectural Smell is indepen-
dent from the presence of code smells.

hypothesis 3 : The presence of an architectural smell is independent from
the presence of a category of code smells.

hypothesis 4 : The presence of a Multiple Architectural Smell is indepen-
dent from the presence of a category of code smells.

6.2.2.1 Study Context

The selected projects are contained in the Qualitas Corpus collection of soft-
ware systems [156]. In particular, we used the compiled version of the Qua-
litas Corpus [154]. 111 Java projects are available and already compiled with
more of 18 millions of LOCs, 16 thousands of package and 200 thousands
classes analyzed. The dataset includes projects from different contexts such
as IDEs, SDKs, Databases, 3D/graphics/media, diagram/visualization li-
braries and tools, games, middlewares, parsers/generators/make tools, pro-
gramming language compilers, testing libraries and tools, other tools that
do not belong to the previous categories. More information on the projects
context and types can be found in [156]

6.2.3 Data Collection

The architectural smells are detected on 111 Java projects and code smells in
103 Java projects of the Qualitas Corpus [156], as depicted in Figure 6.5.

Architectural smells have been detected from these projects using the Ar-
can [19] tool, while the analysis of code smells has been carried out with
SonarQube using the "Antipatterns-CodeSmell" plugin. The results of this
step are the list of architectural smells and code smells present in each pro-
ject analyzed. The raw data are available in the replication package [152].

6.2 code smells and architectural smells correlations 114

Architectural

code-smell extraction

Correlation analysis

Code-smells
extraction

 111 Java projects

(Qualitas Corpus)

111 projects

103 projects

Figure 6.5: Data Collection Process

Code smell detection data

The SonarQube "Antipatterns-CodeSmell" plugin is a code smell detection
tool that integrates DECOR (Defect dEtection for CORrection) [116] into So-
narQube, detecting the 19 code smells reported in Section 6.2.1.1. DECOR
can be applied on any object-oriented language, however, the SonarQube
Plugin is only configured to detect code smells in Java. Moreover, Sonar-
Qube also calculates several other static code metrics such as the number of
lines of code, cyclomatic complexity, but also reports code violations.

It is important to notice that in SonarQube (up to the current 6.5 version)
the term ”Code Smells” is used to report coding style violations (also known
as Issues in SonarQube) such as brackets closed on the wrong line, or redun-
dant throws declarations. To avoid misunderstandings with coding style vi-
olations, the SonarQube "Antipatterns-CodeSmell" plugin tags all the code
smells of Section 6.2.1.1 as "Antipatterns/CodeSmells". As for the detection
accuracy, we rely on DECOR as detection tool since it ensures 100% recall for
the detection of code smells [116]. Moreover, since the the definition of code
smells is based on several metrics and thresholds, we rely on the standard
metrics proposed by Moha et al [116] so as to ensure a precision average of
80%.

The code smells detection on the Qualitas Corpus dataset has been carried
out on a Linux virtual machine with 4 cores and 16GB of RAM. The first
103 projects have been analyzed in 35 days while, because time constraint,
we skipped the analysis of the remaining 9 projects such as Eclipse and
JBoss, that would have taken more than three months. The reason of this
dramatic increase of analysis time is due to the project structure. These nine
projects are composed of several sub-projects with sizes similar to the other
103 project already analyzed. Therefore, in this work we only consider the
results of the 103 projects listed in Appendix A.1.

6.2.3.1 Architectural smells detection data

All the architectural smells have bee detected wihth Arcan. The detection
techniques of the AS and the validation of the tool results are described in
previous Chapters 4 and 5. In these works, the results of the tool have been

6.2 code smells and architectural smells correlations 115

validated on 10 open source systems and on two industrial projects obtaining
a high precision value of 100% in the results. Moreover, the results of Arcan
have been validated through a mixed method research. This last evaluation
shows that the tool is precise – since it detects 100% of the architecture smells
effectively present in the analyzed source code – and is reliable – since it
detects the correct architecture smells in over 84% of the cases [135].

The architectural smells detection has been performed by using a Win-
dows machine with 4 cores and 24 GB of RAM. The entire Qualitas Corpus
dataset has been analyzed using Arcan in less than 24 hours.

6.2.4 Data Analysis

In this section, we describe the procedure we followed to analyze the col-
lected data in order to answer our research questions.

We analyzed the classes infected both by an architectural smell and one or
more code smells at class and package levels.

Architectural smells involve more than one Java class, while the 19 code
smells considered in this work, involve only one class. Therefore, for each
architectural smell, we could have one or more code smell infecting the same
set of classes. In the analysis we calculated correlations only between code
smells infecting the same classes (and packages) infected also by architectu-
ral smells.

As example, classes A, B and C can be infected by a Cyclic Dependency
while classes A and C can be infected by God Class and class D infected by
Speculative Generality. In this case, we calculate correlation only for the
architectural smell Cyclic Dependency and the code smell God Class, since
they are affecting the same set of classes, while we do not consider the code
smell Speculative Generality, since it infects a class that is not also infected
by Cyclic Dependency.

Before answering our RQs, we analyzed the distribution of the code smells
and architectural smells in our data-set. We performed a descriptive analysis
of the collected data analyzing the number of code smells and architectural
smells per project and per package.

We analyzed the frequency of occurrences of the code smells and architec-
tural smells in the 103 projects, considering:

• (CS+AS): Classes infected by Code Smells AND Architectural Smells;

• (CS): Classes infected only by Code Smells;

• (AS): Classes infected only by Architectural Smells;

• (HC): Healthy Classes - classes neither infected by code smells nor by
architectural smells.

Projects without code smells or architectural smells were not considered for
the analysis.

In order to answer our research questions, we applied the following ana-
lysis techniques:

6.2 code smells and architectural smells correlations 116

• We tested the data for the normality by means of the Shapiro-Wilk test.

• If the data was normally distributed, we calculated Pearson correlation
coefficient between code smells (or category of smells) and architectu-
ral smells (or Multiple Architectural Smell).

• If the collected data was not normally distributed, we calculated Ken-
dall rank correlation coefficient between code smells (or category of
smells) and architectural smells (or Multiple Architectural Smell).

We only considered correlation coefficient values with p-value smaller
than 0.05, as customary done in empirical software engineering.

6.2.5 Results

In this section, we first describe the data analyzed and then we answer
our research questions by reporting the results of the analysis described in
Section 6.2.4.

All the projects contain classes infected both by architectural smells and
code smells.

Considering the presence of code smells in the 103 projects, only 15 of the
19 code smells detectable by the SonarQube plugin were found. The 103 pro-
jects were not infected by Blob Class, Functional Decomposition, Base class
Knows Derived and Tradition Breaker. This impacted also the categories of
code smells containing the code smells not found in the projects since since
two categories (Change Preventers and Object Orientation Avoiders) were
based on two code smells not detected in the 111 projects. Therefore, the
results of the analysis only considered the remaining four categories of code
smells.

As for the architectural smells, Arcan detected them in 102 projects over
103 (Jasml contains no architectural smells). Therefore, we consider the set
of 102 projects for the analysis.

Table 6.6 shows the number of projects infected by code smells, categories
of code smells and architectural smells (Column #Inf.prj.), while the remai-
ning columns report descriptive statistics. Please, note that for reason of
completeness we also report data for the code smells categories based only
on one code smell. However, these categories will not be considered in the
next analysis so as to avoid duplications of the results.

Figure 6.6 shows the number of classes infected by code smells and archi-
tectural smells (CS+AS), classes infected only by code smells (CS), classes
infected only by architectural amells (AS) and healthy classes, classes wit-
hout smells (HC). Moreover, Figure 6.7 shows the distribution of the same
data per package.

As reported in Table A.1 (Appendix A.1), Complex Class, Long Method
and Long Parameter List were the most commonly detected code smells in
the projects.

As for the architectural smells, all the projects were infected by at least two
architectural smells. The analysis reported that 101 projects were infected by

6.2 code smells and architectural smells correlations 117

Cyclic Dependency, 100 were infected by Hub-Like Dependency, 95 were
infected by Unstable Dependency and 102 were infected by a Multiple Ar-
chitectural Smell.

Table A.1 (Appendix A.1), reports the details on the number of code smells
and architectural smells detected in each project.

0 2000 4000 6000 8000 10000 12000

jboss
azureus

springframework
lucene
hadoop
ireport
jruby

nakedobjects
derby

aspectj
rssowl

compiere
castor
struts

poi
weka

exoportal
tomcat

jchempaint
megamek
tapestry
jtopen

myfaces_core
argouml

jasperreports
jrefactory
findbugs

ant
columba

xalan
htmlunit
jmeter
jena

sandmark
jedit

fitlibraryforfitnesse
freecol

jhotdraw
freemind

xerces
jgroups
maven

ganttproject
mvnforum
jfreechart

aoi
c_jdbc

jext
pooka

wct
galleon
hsqldb
heritrix

pmd
roller
jung

openjms
jspwiki
velocity

log4j
itext

collections
proguard

james
checkstyle
jgraphpad

jgraph
colt

joggplayer
drawswf

antlr
displaytag

jsXe
quartz

ivatagroupware
quickserver

emma
jag

jgrapht
sunflow

marauroa
axion

cayenne
junit

informa
jmoney

picocontainer
cobertura

jpf
squirrel_sql

freecs
sablecc
webmail

quilt
oscache
javacc
trove

nekohtml
jFin_DateMath

jparse
fitjava
xmojo
jasml

Number	of	Packages
AS+CS CS AS Healthy	Packages

Figure 6.6: Number of packages infected by code smells or architectural smells

In Table 6.7, Table 6.8, Table 6.9 and Table 6.10 we report the results obtai-
ned analyzing the pairs AS-CS, while in Table 6.11 we present the results
for the pairs AS-code smells category. These Tables report the number of
infected projects for each pair (column ”#Inf. Prj.”), the number of infected
projects where the results are statistical significant and their percentage up

6.2 code smells and architectural smells correlations 118

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

collections
megamek
aspectj
ireport
azureus
argouml

weka
jena
aoi

compiere
freecs
freecol
pooka
jtopen
tomcat

jedit
hsqldb
junit

freemind
jhotdraw

xerces
fitjava
colt

xalan
mvnforum
jchempaint

galleon
rssowl
derby

jmoney
jag

jgraph
hadoop

jrefactory
myfaces_core
ganttproject

castor
c_jdbc
sablecc
javacc
jruby
jparse

quickserver
itext

findbugs
sandmark
sunflow

jasml
emma

jfreechart
jext
jsXe

jgroups
fitlibraryforfitnesse

squirrel_sql
ant

drawswf
htmlunit
lucene

picocontainer
jmeter
roller

marauroa
proguard

poi
wct

jboss
nakedobjects

cobertura
axion

columba
struts

jasperreports
quartz

cayenne
jspwiki

webmail
log4j

heritrix
openjms
informa

joggplayer
jgraphpad
exoportal

springframework
jung

displaytag
james

oscache
pmd

xmojo
quilt

nekohtml
tapestry
maven
jgrapht

jFin_DateMath
ivatagroupware

velocity
jpf

checkstyle
antlr
trove

Smells	per	package
AS+CS CS AS Healthy	Packages

Figure 6.7: Number of code smells and architectural smells per package

to the total number of infected projects (column”#Prj.(p<0.05)”). Moreover,
we also list the projects that reported a Kendall correlation higher than 0.5
(column”#Prj.(tau<0.5)”).

As example (Table 6.9), the pair composed by the architectural smell Unsta-
ble Dependency (UD) and the code smell Base Class Should be Abstract (BCSA)
is detected in 54 projects (column ”#Inf.prj”) and 30 of them (55% of pro-
jects) provide a significant statistical correlation with p-value <0.05 (column
”#Prj.(p-value<0.05”). However, only 2 projects have a correlation higher than
0.5 (Column ”#Prj. (tau >0.5)”) while the remaining ones (28 projects), not

6.2 code smells and architectural smells correlations 119

listed in the Table, reports a statistical significant result with a low correla-
tion (tau <0.5). Column ”Project” points out the two projects with correlation
higher than 0.5.

Table 6.6: Projects Infected by Code Smells, category of Code Smells or Architectural
Smells

Name
per Project

#Inf.prj. AVG Max Min StD

Code Smells

Complex Class 103 147.90 914 1 163.23

Duplicated Code 103 237.28 1830 0 357.67

Long Method 102 178.88 1,251 0 197.58

Long Parameter List 100 94.09 1,197 0 157.51

Antisingleton 92 31.96 7.34 0 81.86

Class Data should be Private 90 28.93 3.53 0 50.07

Lazy Class 86 26.96 210 0 43.65

Spaghetti Code 58 2.97 40 0 5.23

Baseclass Abstract 54 3.84 65 0 8.49

Refused Parent Bequest 42 6.38 139 0 19.33

Speculative Generality 36 2.68 35 0 5

Many Field Attr. not Complex 32 0.76 20 0 2.23

Swiss Army Knife 11 1.39 76 0 8.22

Message Chains 8 1.27 62 0 7.19

Large Class 5 0.07 2 0 0.32

Baseclass Knows Derived 0 - - - -

Blob Class 0 - - - -

Functional Decomposition 0 - - - -

Tradition Breaker 0 - - - -

Category of Code Smells

The Bloater 103 421.70 3,364 1 496.13

The Dispensables 102 264.24 1,849 0 379.22

The Obj.-Orientation Abusers 92 31.96 734 0 81.86

The Change Preventers 58 2.97 40 0 5.23

The Encapsulators 8 1.27 62 0 7.19

The Obj.-Orientation Avoiders 0 - - - -

Architectural Smells

Multiple Architectural Smell 102 6,148.02 162,531 0 22,176.7

Cyclic Dependency 101 6,122.24 162,357 0 22,162.1

Hub-Like Dependency 100 21.35 168 0 25.43

Unstable Dependency 95 4.43 15 0 3.16

6.2 code smells and architectural smells correlations 120

Table 6.7: Projects Infected by Cyclic Dependency architectural smell (CD) and code
smells (RQ1)

AS CS #Inf.prj
Prj.(p-value<0.05) Prj.(tau>0.5)

% # prj. name

CD

ASG 92 70 76 1 xmojo

BCSA 54 45 83 0 -

CC 102 92 90 1 freecs

DC 102 87 85 0 -

DsP 90 60 67 0 -

LC 5 1 20 0 -

LM 102 87 85 0 -

LPL 100 80 80 1 jparse

LzC 86 28 32 0 -

MFnC 32 10 31 0 -

MC 8 7 87 0 -

RPB 42 26 62 0 -

SC 58 40 69 1 xmojo

SG 36 22 61 0 -

SAK 11 6 54 0 -

6.2.6 Discussion

In this Section, we answer our Research Questions (RQs) based on the re-
sults obtained and described in Section 6.2.5 and we draw the main lessons
learned of this work.

RQ1:Is the presence of an architectural smell independent from the presence of code
smells?

The results for RQ1 are presented in Table 6.7, Table 6.8 and Table 6.9. We
analyzed 45 combinations (pairs CS-AS composed by 15 code smells and 3

architectural smells) for each of the 102 projects for a total of 4590 analysis.
We decided to not consider the combination (CD-LC, CD-MC, CD-SAK),

(HD-LC, HD-MC and HD-SAK) and (UD-LC, UD-MC and UD-SAK) for the
low number of infected projects (less than 12). We found statistical signifi-
cant results (p-value<0.05) for all the other combinations.

However, only 14 combinations in 9 projects show a correlation higher
than 0.5. Moreover, the same combination of code smell - architectural smell
is found in a maximum of two projects.

For the other 40 combinations we found low correlations (tau<0.5) in a
good number of projects (at least 32).

The results confirm our Hypothesis 1, since, based on the results of the 102

analyzed projects, we cannot identify dependencies between architectural
smells and code smells.

6.2 code smells and architectural smells correlations 121

Table 6.8: Projects Infected by Hub-like Dependency architectural smell (HD) and
code smells (RQ1)

AS CS #Inf.prj
Prj.(p-value<0.05) Prj.(tau>0.5)

% # prj. name

HD

ASG 92 80 89 1 jmoney

BCSA 54 50 92 2 checkstyle, jparse

CC 102 95 90 0 -

DC 102 91 89 0 -

DSP 90 80 89 2 checkstyle, jparse

LC 5 5 0 -

LM 102 94 0 -

LPL 100 93 0 -

LzC 86 78 0 -

MfNC 32 26 81 1 checkstyle

MC 8 7 0 -

RBP 42 37 88 1 checkstyle

SC 58 50 69 1 xmojo

SG 36 31 0 -

SAK 11 9 0 -

RQ1.1:Is the presence of a Multiple Architectural Smell independent from the pre-
sence of code smells?

The results for RQ1.1 are presented in Table 6.10. We analyzed 15 combinati-
ons (pairs CS-MAS composed by 15 code smells and a Multiple Architectural
Smell) for each of the 102 projects (1530 analysis).

We decided to not consider the combination (MAS-LC), (MAS-MC) and
(MAS-SAK) for the low number of infected projects (less than 12). We found
statistical significant results (p-value<0.05) for the remaining 13 combinati-
ons. However, only 2 combination in 2 different projects show a correlation
higher than 0.5. For the other 11 combinations we found low correlations
(tau<0.5) in a good number of projects (at least 32).

The results confirm our Hypothesis 2, since the presence of a Multiple
Architectural Smell does not depend from the presence of code smells in the
102 analyzed projects.

RQ2:Is the presence of an architectural smell independent from the presence of a
category of code smells?

In order to answer this RQ, we considered the three categories of code smells
reported in Section 6.2.1.2: The Bloaters (Bloat.), The Dispensables (Disp), and
The Object Orientation Abusers (OOA). In this case, we considered all the code
smells belonging to the same category as a single code smell.

The results obtained for RQ2 are shown in Table 6.11. We analyzed 9

combinations (pairs AS-CS composed by 3 category of code smells and 3

architectural smells) for each of the 102 projects (918 analysis).

6.2 code smells and architectural smells correlations 122

Table 6.9: Projects Infected by Unstable Dependency architectural smell (UD) and
code smells (RQ1)

AS CS #Inf.prj
Prj.(p-value<0.05) Prj.(tau>0.5)

% # prj. name

UD

ASG 92 60 65 1 nekohtml

BCSA 54 30 55 2 log4j, picocontainer

CC 102 92 90 0 -

DC 102 84 82 0 -

DsP 90 63 70 0 -

LC 5 4 80 0 -

LM 102 82 80 0 -

LPL 100 68 68 0 -

LzC 86 36 42 0 -

MFnC 32 9 28 0 -

MC 8 5 62 0 -

RBP 42 23 55 0 -

SC 58 30 52 1 oscache

SG 36 17 2 log4j, picocontainer

SAK 11 8 72 0 -

We found statistical significant results (p-value<0.05) for all the combina-
tions. However, only 2 combination with the same category of code smells
(OOA) show a correlation higher than 0.5 in 2 different projects Table 6.11.
For the other 7 combinations we found low correlations (tau<0.5) in a huge
number of projects (at least 92). Results are similar to the one reported
for the analysis of the non-grouped code smells (Table 6.7, Table 6.8 and
Table 6.9).

We can accept our Hypothesis 3, since the presence of an architectural
smell does not depend from the presence of a category of code smells. Even
if three projects are infected by the same category of code smells, we cannot
consider the results since the sample is too small.

RQ2.1:Is the presence of a Multiple Architectural Smell independent from the pre-
sence of a category of code smells?

In order to answer this RQ, we consider the same category of code smells
adopted in RQ2.

The results obtained for RQ2.1 are shown in Table 6.11. We analyzed
3 combinations (pairs category of CS-AS composed by 3 category of code
smells and 1 Multiple Architectural Smell) for each of the 102 projects (306

analysis). We found statistical significant results (p-value<0.05) for all the
combinations. However, only 1 combination shows a correlation higher than
0.5 only in 1 projects. For the other 3 combinations we found low correlations
(tau<0.5) in a huge number of projects (at least 98).

6.2 code smells and architectural smells correlations 123

Table 6.10: Projects Infected by Multiple Architectural Smell (MAS) and code smells
(RQ1.1)

AS CS #Inf.prj
Prj.(p-value<0.05) Prj.(tau>0.5)

% # prj. name

MAS

ASG 92 66 72 0 -

BCSA 54 32 60 0 -

CC 102 90 88 0 -

DC 102 64 63 0 -

DsP 90 56 62 0 -

LC 5 0 0 0 -

LM 102 83 81 0 -

LPL 100 80 80 1 jparse

LzC 86 33 38 0 -

MFnC 32 7 22 0 -

MC 8 7 87 0

RBP 42 21 50 0 -

SC 58 36 62 1 xmojo

SG 36 21 58 0 -

SAK 11 7 63 0 -

We can accepted the Hypothesis 4. The presence of a Multiple Architectu-
ral Smell does not depend from the presence of a category of code smells.

6.2.7 Lessons Learned

Lesson Learned 1: An architectural smell or multiple architectural smells do
not depend from code smells. As we can see from the analysis, in all cases,
for all the couples AS-CS, except MAS-LC (Multiple Architectural Smell-
Large Class), we found statistic significant results in all the projects. Howe-
ver, some code smells are more frequently infecting projects and therefore,
the results of the analysis are more reliable for them. Considering all the ana-
lysis (4590 for RQ1 and 1530 for RQ1.1) 58.8% of them provided statistical
significant results and only 0.03% of them have shown a correlation higher
than 0.5.

Lesson Learned 2: An architectural smell or multiple architectural smells do
not depend from categories of code smells. Also in this case, 78% of them
provided statistical significant results (918 for RQ2, and 306 for RQ 2.1) and
only 0.3% of them have shown a correlation higher than 0.5.

Therefore, the main lesson learned from the analysis of the RQs is that
architectural smells do not depend on code smells and therefore, the refac-
toring of code smells does not decrease the chances to remove architectural
smells. Moreover, also the removal of an architectural smell does not imply
the removal or the reduction of code smells.

6.2 code smells and architectural smells correlations 124

Table 6.11: Projects Infected by architectural smells (RQ2) or Multiple Architectural
Smells (RQ2.1) and by categories of code smells

AS CS cat. #Inf.prj
Prj.(p-value<0.05) Prj.(tau>0.5)

% # prj. name

CD
Bloat. 103 91 88 0 -

Disp. 102 74 72 0 -

OOA 98 73 75 0 -

HD
Bloat. 103 95 92 0 -

Disp. 102 90 88 0 -

OOA 92 87 94 1 jmoney

UD
Bloat. 102 87 85 0 -

Disp. 102 68 67 0 -

OAA 98 69 70 1 nekohtml

MAS
Bloat. 102 88 86 1 jparse

Disp. 102 68 67 0 -

OOA 98 66 67 0 -

6.2.8 Threads to Validity

In this Section, we introduce the threats to validity, following the structure
suggested by Yin [164] reporting construct validity, internal validity, exter-
nal validity, and reliability. Moreover, we also debate the different tactics
adopted to mitigate them.

Construct Validity concerns the identification of the measures adopted for
the concepts studied in this work. For this threat, the main issue is related
to the detection accuracy of the adopted tools. For this purpose, we relied
on existing detection tools already adopted in research works. As for the
code smells detection, we relied on DECOR rules. Please, consider that our
SonarQube "Antipatterns-CodeSmell" plugin adopts the exact rules defined
by Moha et al. [116]. We are aware that the results could be influenced by
the presence of false negatives and positives. For this reason, Moha et al.
reported for DECOR a precision higher than 60% and a recall of 100% on a
selected set of projects. Moreover, in our previous work [153], two authors
have independently manually validated a subset of smell instances reporting
a mean precision of 78%. The results of the validation analyzed in [153] are
also available in its replication package [152]).

The evaluation of Arcan detection performances in two industrial case
studies done through the feedbacks of the developers is described in [19],
where the authors report a precision of 100%, since Arcan found only correct
instances of architectural smells. The developers reported 5 more architec-
tural smells which were false negatives related to 180 external components
out of the scope of the analysis of the tool.

Moreover, the correctness of Arcan detection with respect to its ability to
detect the *right* architecture smell in the right class/package, with respect

6.2 code smells and architectural smells correlations 125

to a given, independently pre-coded dataset and the completeness of Ar-
can results with respect to its ability to detect *all* instances of architecture
smells with respect to the same dataset is reported in [135].

Based on the previous assumptions, the presence of false positives and
false negatives is mitigated by the large sample of analyzed projects and by
the very high precision and recall values of the two detection tools results.

Threats to Internal Validity concern factors that could have influenced the
results obtained.

In order to reduce this threat due to the context, we analyzed a set of
102 well-known Java projects included in the Qualitas Corpus dataset. This
dataset includes projects from different domains, of different sizes and with
different architectures.

Threats to External Validity concern the generalization of the results obtai-
ned. We cannot claim that our results fully represent any Java project. In
order to mitigate this issue, we considered a large set of projects with diffe-
rent characteristics.

Threats to Reliability refer to the correctness of the conclusion reached in
the study. We applied non-parametric tests and rank-based correlation met-
hods since software metrics do not have often normal distributions. We used
a standard R packages for performing all statistical analyses since it allows
simple replications of them and gives a good confidence on the quality of
the results.

6.2.9 Conclusions

In this study, we conducted a large-scale empirical study investigating the re-
lations between code smells and architectural smells and if code smells affect
the presence of architectural smells and vice versa. We detected code smells
and architectural smells on 102 Java projects of the Qualitas Corpus dataset
[156] by means of two smells detection tools, the SonarQube ”Antipatterns-
CodeSmells plugin” for code smells and Arcan for architectural smells.

We found empirical evidence on the independence between code smells
and architectural smells and therefore, we can suppose that the presence of
code smells does not imply the presence of architectural smells. Hence, for
a developers/maintainer the refactoring of code smells does not led to the
removal of architectural smells.

On this study a paper in collaboration with the Free University of Bozen-
Bolzano (Italy) has been submitted to IST Elsevier Journal [20].

7
P R O P O S A L O F A N E W A R C H I T E C T U R A L D E B T I N D E X

Many works have been proposed in the literature on managing technical
debt [89, 118, 157] and different forms of technical debt can be considered
at different levels, e.g., code, architecture, test, social, documentation and
technological.

As outlined and evaluated by Ernst et al. [47] architectural issues are the
greatest source of technical debt. Hence, it is important to understand how
to manage architectural concerns to avoid technical debt accumulation. In
this chapter, I focus my attention on a possible evaluation of architectural
debt [118].

7.1 discussion on the main tdi features

In this section, the most relevant features and differences found in the in-
dexes provided by the tools (described in Section 2.5) are discussed, with
the aim to understand what exactly each index takes into account, what the
value of the index represents, and its completeness w.r.t. the information
that can be exploited to estimate Technical Debt. With these aims, the follo-
wing questions were defined:

q1 How are the quality indexes the tools provide exactly computed? Which
features do they take into account?

q2 Which index does take more into account architectural issues and in
which way?

q3 Which are the features not provided or taken into account by the in-
dexes?

Tab. 7.1 (to answer Q1, Q2, Q3) shows the different categories of input
information used by the tools to compute their indexes. Tools may also sup-
port the extraction of some information that is not used to compute a TDI:
only the information used in the index computation were considered. For
example, past versions of SQ were able to detect some architectural issues,
but not used in the index computation, while it uses the wider range of code
level information. All the tools detect an architectural smell, Cyclic Depen-
dency. Only inFusion detects two more architectural smellsi, but the tool is
not available anymore.

In Tab. 7.2 (respect to Q1 and Q3), the information provided by the diffe-
rent TDIs are characterized, regarding both what the measures address and
how they represent it (output information). The table shows that indexes do
not always provide estimation of both the costs of correcting the system (Re-
solution cost, i.e., the TD principal) and of keeping it unchanged (Keeping

7.1 discussion on the main tdi features 127

Table 7.1: Input information of Technical Debt Indexes used by tools

Information category CAST IF SG SQ S101

Architectural Smells, e.g., [52, 93] yes yes yes no yes

Cyclic Dependency smell yes yes yes no yes

Other architectural smells no yes (2) no no no

Code Smells [48, 80] no yes no yes no

Architecture/Design Metrics, e.g., [109] yes no no no yes

Code Metrics, e.g., [38, 80] yes no no yes yes

Architectural Violationsα yes no yes no no

Coding Rule Violationsβ yes no no yes no

α: deviations from a reference architecture, i.e., unallowed dependencies
β: detected bad coding practices or excessive values of single metrics (some tools, e.g., SQ,
internally refer to the latter as “smells”)

Table 7.2: Output of Technical Debt Indexes provided by tools

CAST inFusion Sonargraph SonarQube Structure101

TDI name→ TDP QDI SDI SDC TD TDR SR XS

Resolution cost yes no no yes yes yes yes no

Keeping cost no yes yes no no no no yes

Unity Measure US$ - - US$ Time - Rank LOC

cost, i.e., the TD interest). These two aspects of TD are highly relevant du-
ring estimation, and this should be seen as an important improvement op-
portunity for tool vendors. A particular issue can be found in SonarQube,
which implements the SQALE method for TD estimation, where the costs of
keeping an issue are captured by the SQALE Business Impact Index (SBII).
This index is not available in the free version of SonarQube, while it may
exist in the commercial one. Anyway, the SonarQube classification of issues
using the Info–Blocker range can be seen as a non-quantitative suggestion of
the non-remediation costs.

A similar choice has been done in CAST, by using a three-value severity
(Low, Medium, High) to classify the detected problems. In both cases, the
severity of each issue/problem has been defined by the authors of the tool,
and can be customized by advanced users.

In Sonargraph, the SDI is computed as a score, proportional to the set
of issues considered in the index computation. This makes the Structural
Debt Index (SDI) proportional to the estimated quality of the system, i.e., an
estimation of Keeping costs. Structural Debt Cost (SDC) is the money cost
of fixing the system, i.e., a Resolution cost, but its value is computed linearly
from the SDI, making the distinction between them not very clear from this
point of view.

Finally, different indexes provide different kinds of estimation. Sonar-
Qube’s TD computes its value directly in terms of time needed to fix the

7.1 discussion on the main tdi features 128

reported issues. Then, it provides derived indexes with the aim of making
comparisons among different projects easier, since the absolute TD value
will be higher in larger projects, but its “density” should be kept under con-
trol. All the other indexes start instead from computing a score based on
the count or size/severity of the issues detected in the analyzed project. In
CAST and Sonargraph there is a mechanism that weights the effort associa-
ted to the computed score to express it in terms of time and costs. inFusion
and Structure101 do not provide this mechanism. inFusion expresses its in-
dex using an abstract number. A peculiarity of Structure101 is to express
its XS metric in terms of LOC affected by some detected issues. This choice
allows relating the XS value to the size of the system, and to have an idea of
how much the detected issues are widespread in the system.

All the Indexes share a common rationale, i.e., they start from the evalua-
tion of specific quality indicators, e.g., architectural violations, code smells,
and weight their relative severity, aggregating the outcome to provide an
overall evaluation of the entire project or of its different parts. Anyway (al-
ways w.r.t Q3), the association of resolution times to issues is arbitrary. Tools
allow customizing the effort associated to single issues (SQ) or to their scores
(SG, CAST), but these values are arbitrary and there is no established gui-
deline on how to set them. This is probably the reason why the other tools,
other than SQ, did not associate effort measures to their indexes, and prefer
to keep them as indexes to be used mainly when comparing the quality of a
system in different revisions.

Below, I propose the answers to the three questions:

q1 - The tool takes mainly into account metrics, smells, coding rules violati-
ons and architecture violations, as shown in Tab. 7.1. The estimations
they provide are different in terms of unity of measure (e.g., time, cost,
abstract numbers) and TD target (remediation costs and keeping costs),
as shown in Tab. 7.2.

q2 - Given the discussion on the indexes provided in Sec. 7.1, it is possible
to observe that: 1) Sonargraph, Structure101 and CAST use the largest
share of architectural information in their indexes but they are able to
detect only one AS; 2) SonarQube does not use architectural informa-
tion when computing its index.

q3 - First, no tool uses all the information that can be exploited, at both code
and architectural level, and no tool provides both Keeping and Reso-
lution costs. Hence, tools could try to fill the gaps in their estimation
models by re-using some knowledge exploited by other tools. Another
observation is that tools are conservative in their estimation features,
by relying only on static analysis and without exploiting historical in-
formation about the analyzed projects. In particular, most tools allow
showing the history of their analyses on different revisions of the same
project, but none of them uses the underlying changes in the software
itself to spot issues relevant to Technical Debt estimation. For example,
the detection of evolutionary coupling can be used to discover unseen
dependencies, as done through the ICPD smell detected by Arcan.

7.2 a new architectural debt index 129

In most cases, the available Indexes are not directly useful when eva-
luating a single project. The provided measures cannot be interpreted
with the aim to understand the overall quality of the analyzed project
on a global scale. As a consequence, these Indexes should in particular
be useful on a relative scale, in the case a single team evaluates an en-
tire portfolio of applications. In this case, the Index can be used, e.g.,
to rank new projects w.r.t. the old/existing ones.

Finally, as already observed different architectural smells are not taken
into account.

7.2 a new architectural debt index

As outlined before, the TDIs computed by different tools are often more fo-
cused on code issues than architectural ones. Many architectural problems
such as architectural smells are not considered; the same happens with the
relations (structural or statistical) existing among code and architectural pro-
blems. Moreover, different architectural smells can be identified only by
analyzing the development history of a project, and Technical Debt (TD)
indexes do not take into account this kind of information too.

The aim of the following sections is to answer the research questions des-
cribed below:

RQ1 How should a new index be formulated to better represent architectu-
ral debt?

RQ2 How can we estimate the severity of an architectural smell?

RQ3 How does the evolution of the new index behave though the analysis
of projects history? and how does it behave with respect to another
index?

The answer to research question RQ1 gives and motivates the definition of
a new index, called Architectural Debt Index (ADI) based only on the detection
of different architectural smells (AS) through the tool Arcan, described in
Chapter 4. The computation of the ADI is implemented in Arcan through
the detection of all the architectural smells of a given project.

The answer to research question RQ2 is given through a severity estima-
tion based on the the architectural smells detected by Arcan. The severity is
defined according to the detection algorithm of each architectural smells.

The answer to research question RQ3 reports the evaluation of ADI on a
large dataset of open source projects. Moreover, the evaluation of the ADI
on more than 100 versions of 10 projects is analyzed and it is compared with
the index implemented in another tool: SonarQube.

7.3 which index should be defined?

The aim of the ADI is to provide through a unique value an overall evalua-
tion of the quality of a project. It can be used to compare different projects,

7.3 which index should be defined? 130

evaluate their quality during their evolution and to identify weak spots in
a software system. The definition of a new index aims to give some hints
on how to improve projects through the evaluation and analysis of different
factors:

• which are the oldest AS which persist in the project? and the new ones?
through the evaluation of the history of a project it is possible to get
this data and perform empirical analysis to check if:

– the persistent smells are also the more critical ones;

– the new ones are the easiest to remove or not;

• which are the most critical AS which should be removed first? Since archi-
tectural smells point to possible problems in real projects leading to
a high evolution cost and a progressive architecture degradation (low
quality), it is important to establish which ones must be removed first.
Three priority levels can be considered for the smells to be removed:

1. high priority: remove first the more critical smells (cost-presence)
and easier to solve (cost-solving);

2. medium priority: remove the less critical smells and easy to solve;

3. low/no priority: remove the less critical smells or/and difficult to
solve.

I define Cost-presence (or keeping cost) as the cost of keeping the TD
in the project. I’ll propose to compute this cost through an evaluation
of a Severity Score included in the computation of the ADI index. The
Cost-solving (or remediation cost) is the cost (e.g., time, money, energy)
to solve or remove the TD and can be defined by taking into account
several aspects, such as the effort needed for the refactoring of an AS
which can be computed in different ways. Regarding the AS detected
through Arcan, we could consider:

– the number of dependency relations to be cut in order to remove
a Cyclic Dependency smell;

– the number of classes to be moved from a package to another one,
to remove Unstable Dependency smell;

– the number of classes/packages that a class/package affected by
Hub Like Dependency smell must be broken up into.

– the number of dependency relations to be cut in order to remove
a Specification-Implementation Violation smell;

– the number of files to be moved to a package, to remove Implicit
Cross Package Dependency smell;

This list is composed by the architectural smells detected by Arcan,
other features can be taken into account for other AS according to their
features.

7.4 an architectural debt index 131

7.4 an architectural debt index

This section is focused on the evaluation of the cost-presence of architectural
smell through the definition of a new index based only on the detection of
the AS currently identified through Arcan.

Architectural Smell

P
ro

fi
le

s Security

Performance

…

Architectural
Smells

1 2

ADI

3

ASIS

History

𝐴𝑆𝑦
ASIS

History

𝐴𝑆𝑥

•Severity

•PageRank
ASIS(𝐴𝑆𝑘)

•Increasing Trend

•Stable Trend

•Decreasing Trend
History(𝐴𝑆𝑘)

4Figure 7.1: ADI workflow

The workflow of the ADI computation for a project is shown in Figure 7.1
and it is composed by 4 main steps: 1) the detection of architectural smells,
2) the architectural smell severity estimation and the evaluation of the AS
according to their History, 3) the computation of the ADI of the project and
4) the ADI computation according to different quality index profiles.

The implementation of the last step belongs to a future development, but
the ADI-profile proposal is described below (Section 7.4.5).

The index computation takes into account the Number of AS in a project,
i.e., whether the number of AS grows, the Index increases (lower quality) for
the project.

The computation considers also the evaluation of the AS, considering:

• the Severity of an AS: assuming that some instances of AS are more
critical than others, the Index takes into account a Severity measure
defined according to each architectural smell type;

• the History of AS: the presence of an AS in the history of a project can
have a different impact on the index. For example if an AS involves an
increasing number of classes and packages in its evolution, it can be
considered more critical than other AS.

Moreover, different metrics are taken into account implicitly , i.e., the me-
trics used for the AS detection, in particular the Dependency metrics of Mar-
tin [109] (Instability, Fan In, Fan Out, Efferent and Afferent Coupling).

By considering these factors, the Architectural Debt Index (ADI) of a pro-
ject P is defined as follows:

ADI(P) =
n

∑
k=1

(
1

W
(ASIS(ASk) ∗ w(ASk)) ∗ History(ASk)

)
(7.1)

where:

• n: number of AS instances in a project P;

• ASk: k-instance of an architectural smell;

7.4 an architectural debt index 132

• W: the total number of dependencies involved in at least one AS for
all the AS in the project;

• ASIS(ASk): the Architectural Smell Impact Score (defined below);

• w(ASk): the Architectural Smell Weight, i.e., the number of dependen-
cies associated to the ASk;

• History(ASk): the score associated to the trend evolution of the ASk
(defined below);

The dependencies are the number of unique vertices (classes or packages)
of the subgraph directly affected by an architectural smell. In sections 7.4.1
and 7.4.3, the ASIS and the History functions are described respectively.

7.4.1 ASIS

The Architectural Smell Impact Score, ASIS, is based on both the estimation
of the severity of an AS and of the importance subsystem where the AS is
found. It is defined as the product of the SeverityScore associated to the ASk
smell and the PageRank value of the ASk, which estimates the importance of
the project subsystem affected by the ASk smell (defined below).

It is not possible to define a general formula for the Severity Score and
the PageRank computation suitable for all types of Architectural Smells. In
addition, since we are combining the two values linearly, we need to mitigate
potential non-linearities in their distribution, avoiding masking effects due
to extremely large or small values.

Hence, we decided to compute the quantiles of the two values on a large
dataset of projects, and use them to assign values to some thresholds we
define, such as: low, medium low, medium, medium high and high.

The SeverityScore and PageRank values used to compute ASIS are the
quantiles of the effective values computed on a selected dataset of 109 pro-
jects described in Section 7.4.1. The SeverityScore and PageRank, defined be-
low, will both assume values in range [0, ∞) mapped to integer values in
the range [0, 1] (low to high respectively), through the quantile(x) function
which is the quantile associated to x in the reference dataset.

Hence, the ASIS is defined as follows:

ASIS(ASk) = SeverityScore(ASk) ∗ PageRank(ASk) (7.2)

.
Since both SeverityScore() and PageRank() return values between 0 and 1,

ASIS represents a SeverityScore weighted by the “importance” (PageRank)
of the subsystem where it appears.

the severity score The SeverityScore(ASk) is a value defined for each
instance of AS according to each type of AS.

7.4 an architectural debt index 133

The SeverityScore for the five AS detected by Arcan, Unstable Depen-
dency(UD), Hub-like Dependency (HL), Cyclic Dependency (CD), Specifi-
cation Implementation Violation (SIV), Multiple Architecture Smell(MAS),
is defined as follows:

• If ASk is a UD, SeverityScore(ASk) is defined as:
quantile(NumberO f UnstableDependencies)

• If ASk is a CD, ∀ e ∈ edges(CD), SeverityScore(ASk) is defined as:
quantile(NumberO f elementsInCD ∗min(nocc(e)))
where the nocc(e) is the number of times the same type of edge among
two vertices (e.g., class or package) occurs.of the edge e.

• If ASk is a HL, SeverityScore(ASk) is defined as:
quantile(TotalNumberO f Dependencies)

• If ASk is a SIV, SeverityScore(ASk) is defined as:
quantile(Numbero f theViolation)

• If ASk is a MAS, SeverityScore(ASk) is defined as:
quantile(Numbero f architecturalsmellsdetected)

the pagerank PageRank(ASk) estimates whether the AS is located in
an important part of the project, where importance is defined by the value
of the PageRank algorithm executed on the dependency graph of the project
(to evaluate if many parts(subsystems) depend on the part where the AS is
involved). The PageRank, PR is modeled starting from the one implemented
by Google [32], as explained below:

PR(v) =
1− d

N
+ d

(
n

∑
k=1

PR(pk)

C(pk)

)
(7.3)

where:

• the vertex v is a node of the dependency graph associated to a project;

• PR(v) is the value of PageRank of the vertex v;

• N is the total number of AS in the project;

• Pk is a vertex with at least a link directed to v;

• n is the number of the pk vertexes;

• C(pk) is the number of links of vertex pk;

• d (damping factor) is a custom factor fixed at 0,85 (default value de-
fined by Google [32]). It can be changed according to the PageRank
value needed for every vertex and its minimum associated level of Pa-
geRank.

7.4 an architectural debt index 134

The PR value is computed only on vertices of the dependency graph of
both class and package types. PageRank value PR is used for all the types of
AS detected by Arcan, but the PageRank of an AS which involves multiple
classes and packages is considered differently, e.g, CD smell involves two or
more classes or packages. To compute the PageRank when an AS involves
more than one vertex, it is necessary to aggregate the data; a method to
aggregate multiple value could be take the maximum PR value of the group.

The PR of all the AS and the max of PR of AS involving multiple classes
or packages is computed as follows:

PageRank(ASk) =

{
quantile(maxn

j=1PR(vj)) If ASk is an AS among classes or packages

quantile(PR(v)) If ASk is an AS of a class or a package

where v is the vertex (class or package) affected by ASk, n is the number of
classes vj involved in an AS (among classes) or the number of packages vj
involved in an AS (among packages).

7.4.2 The ASIS evaluation

The distribution of the SeverityScore and PageRank is analyzed on a dataset
of 109 projects of the Qualitas Corpus [156]: the quantile values of the data-
set distribution are reported in Table 7.3, where the SeverityScore(ASk) and
PageRank(ASk) assume values between 0 and 1. UD, HL and CD smells
are considered in this analysis. However, ICPD and SIV smells are exclu-
ded since the ICPD is based on the history of a project and the SIV is out
of scope of this primary case study. The Table 7.3 reports also the metrics
used to compute the SeverityScore in according to Section 7.4.1: the number
of unstable dependencies for UD; the number of total dependencies for HL;
the number of vertices (i.e., number of classes of packages in according to
the granularity level) and the number of involved cycle for CD.

Table 7.4 reports the values of the Architectural Debt Index (ADI) in the
referenced dataset (without considering the factor related to the History of
the projects) and its quantification as a score value in a range among 1 and
5 through the function q(ADI(P)):

q(ADI(P)) =



1 If 0.00 ≤ quantile(ADI(P)) ≤ 0.20

2 If 0.20 < quantile(ADI(P)) ≤ 0.40

3 If 0.40 < quantile(ADI(P)) ≤ 0.60

4 If 0.60 < quantile(ADI(P)) ≤ 0.80

5 If 0.80 < quantile(ADI(P)) ≤ 1

(7.4)

where quantile(ADI(P)) is the quantile associated to the ADI computed for
the project P of the reference dataset, e.g, given a project with q(ADI(P)) of
5, its ADI is worst than a project with a q(ADI(P)) of 2. Moreover, Table 7.4
shows every single factor involved in the computation of the ADI: ΣASIS,
ΣASIS ∗ w, W and the number of the AS found in the projects for the UD,
CD and HL smells, both at package and class level.

7.4 an architectural debt index 135

From the data of Table 7.4 we can observe that projects with a high num-
ber of architectural smells have a higher q(ADI(P)), in fact Eclipse project
has q(ADI(P)) of 5 and 20915 architectural smells; Cayenne has 8 archi-
tectural smells and has q(ADI(P)) of 1. Moreover, we can see that two
projects with similar W (the number of dependency of the project) got diffe-
rent q(ADI(P)), such as Batik and Freecol got 3 and 5 respectively due to
the different number of architectural smells and the higher ASIS. Batik and
Findbugs have similar W and different q(ADI(P)) of 3 and 5 respectively,
because the number of architectural smells are similar but the ΣASIS ∗ w
is bigger for Findbugs than Batik. Hence, Findbugs has bigger and worst
architectural smells than Batik.

The JHotDraw and Tapestry projects have 389 and 398 architectural smells
respectively, but they have q(ADI(P)) value of 1 and 2 respectively. More-
over, these values are lower than for projects with less architectural smells
(e.g., JParse got the value 3 for q(ADI(P))), since the high number of archi-
tectural smells is mitigated mainly by the higher W.

Table 7.3: ADI’s components Quantile and value associated

Unstable Dep. Hub-Like Dep. Cyclic Dependency

Q
ua

nt
ile Package Class Class Package

PR SS N
U

D

PR SS TD PR SS N
O

C

N
O

V

PR SS N
O

C

N
O

V

0.00 1.08 1 1 4.35 1 21 0.78 1 1 2 1.84 1 1 2

0.05 2.85 2 1 9.08 1 33 0.90 35 1 2 8.62 28 1 2

0.10 3.85 3 1 11.54 1 39 0.96 72 1 2 12.97 74 1 2

0.15 4.77 5 1 15.44 1 44 1.05 113 1 2 17.61 132 1 2

0.20 5.63 6 1 18.24 1 52 1.16 162 1 2 22.71 197 1 3

0.25 6.71 8 1 22.38 1 59 1.32 218 1 2 28.53 254 1 3

0.30 7.81 10 1 25.93 1 66 1.53 283 1 2 34.82 305 1 4

0.35 8.94 12 1 30.04 2 69 1.82 354 1 2 42.11 354 1 4

0.40 10.38 14 1 34.53 2 74 2.20 435 1 2 51.55 435 1 5

0.45 12.14 17 1 37.71 2 81 2.84 527 1 3 62.94 542 1 5

0.50 13.69 20 2 46.65 2 85 3.97 632 1 3 75.38 679 1 6

0.55 15.83 24 2 51.08 3 92 5.66 747 1 4 90.00 861 1 7

0.60 18.46 28 2 56.68 3 96 8.59 889 1 5 106.77 989 1 8

0.65 22.85 33 2 64.48 3 102 14.32 1069 1 7 126.19 1159 1 9

0.70 26.70 39 3 75.57 3 108 23.62 1325 1 10 150.30 1428 1 11

0.75 32.64 46 3 82.23 4 117 35.32 1664 1 14 185.52 1744 1 12

0.80 41.35 57 4 93.06 4 129 51.64 2052 1 18 256.20 2216 1 15

0.85 51.60 75 5 114.51 5 139 79.75 2498 1 24 380.28 3416 1 19

0.90 72.29 95 6 137.18 5 165 139.14 3360 1 33 553.30 4366 1 27

0.95 117.32 128 9 167.26 7 194 263.39 4920 2 54 836.93 5751 2 49

1.00 1766.90 207 42 428.95 11 893 418.22 7231 93 102 1599.88 7214 36 79

PR: PageRank, SS: Severity Score, NOC: Number of Cycle, NOV: Number of vertices,

TD: Number of Total Dependency, NUD: number of unstable dependencies.

7.4 an architectural debt index 136

Table 7.4: Systems ADI computation and AS detection

Index Architectural Smells
UD CD HL Total

System ΣASIS ΣASIS ∗ w W ADI q(ADI) Pkg Cl Pkg Cl Pkg AS

ant-1.8.2 263.1 2353.5 564 4.173 5 26 730 190 4 6 956

antlr-3.4 37.7 318.5 255 1.249 4 8 120 8 4 0 140

aoi-2.8.1 517.8 7506.6 656 11.443 5 7 1007 30 4 2 1050

argouml-0.34 85.5 620.9 489 1.270 4 25 305 114 0 3 447

aspectj-1.6.9 1655.3 35149.6 1476 23.814 5 52 2882 135 6 2 3077

axion-1.0-M2 6.2 20.7 67 0.309 2 5 30 23 0 1 59

azureus-4.7.0.2 3548.5 130507.8 4504 28.976 5 168 5497 1741 3 3 7412

batik-1.7 162.3 895.8 1141 0.785 3 34 617 92 8 2 753

castor-1.3.3 84.0 613.4 706 0.869 3 58 289 139 1 8 495

cayenne-3.0.1 0.4 1.8 77 0.024 1 1 4 1 1 1 8

checkstyle-5.6 20.8 79.2 185 0.428 2 3 77 6 2 2 90

c_jdbc-2.0.2 85.8 519.1 526 0.987 3 35 236 129 3 4 407

cobertura-1.9.4.1 1.2 3.0 111 0.027 1 4 14 5 4 2 29

collections-3.2.1 15.0 49.0 287 0.171 1 5 122 21 4 0 152

colt-1.2.0 56.7 306.6 241 1.272 4 9 173 42 4 2 230

columba-1.0 62.9 727.6 459 1.585 4 60 163 187 1 4 415

compiere-330 403.0 4992.6 926 5.392 5 19 922 111 4 5 1061

derby-10.9.1.0 434.0 5252.5 1063 4.941 5 51 1087 153 1 3 1295

displaytag-1.2 6.4 18.1 66 0.275 2 5 30 13 1 0 49

drawswf-1.2.9 25.4 119.2 160 0.745 3 14 87 15 2 0 118

drjava-20100913 761.5 8672.7 1818 4.770 5 14 1818 76 9 3 1920

eclipse_SDK-3.7.1 6266.9 92813.4 18058 5.140 5 608 18040 2258 3 6 20915

emma-2.0.5312 8.9 27.5 141 0.195 1 8 56 19 3 0 86

exoportal-v1.0.2 18.5 55.1 239 0.230 2 49 107 40 0 0 196

findbugs-1.3.9 411.0 5864.4 1106 5.302 5 13 909 105 8 2 1037

fitjava-1.1 3.0 9.4 69 0.136 1 0 12 0 2 0 14

fitlibrary-20110301 109.4 1080.5 351 3.078 4 38 181 172 1 5 397

freecol-0.10.3 1611.9 31660.1 1169 27.083 5 20 2479 124 11 4 2638

freecs-1.3.20100406 42.7 374.4 155 2.415 4 6 99 22 4 0 131

freemind-0.9.0 347.3 2696.9 846 3.188 4 16 837 82 4 5 944

galleon-2.3.0 125.5 686.9 672 1.022 3 6 529 26 5 3 569

ganttproject-2.1.1 141.0 788.1 700 1.126 3 20 484 99 2 3 608

geotools-9.2 562.9 6518.7 2446 2.665 4 206 1433 808 1 5 2453

hadoop-1.1.2 330.0 3326.0 1743 1.908 4 48 1120 298 4 5 1475

heritrix-1.14.4 49.7 354.5 369 0.961 3 16 137 108 3 3 267

hibernate-4.2.0 625.6 11485.3 1408 8.157 5 124 1038 636 0 3 1801

hsqldb-2.0.0 354.4 7324.4 427 17.153 5 11 651 45 7 2 716

htmlunit-2.8 410.0 7226.4 613 11.789 5 7 765 53 2 0 827

informa-0.7.0-alpha2 1.2 2.7 113 0.024 1 3 19 4 3 0 29

iReport-3.7.5 767.7 8001.8 2560 3.126 4 44 2316 206 5 4 2575

itext-5.0.3 183.1 2171.1 368 5.900 5 6 373 20 5 1 405

ivatagr.w.-0.11.3 0.2 2.4 132 0.018 1 20 2 4 1 2 29

jag-6.1 40.0 105.0 185 0.567 2 7 158 19 1 0 185

james-2.2.0 1.8 5.3 164 0.032 1 6 42 6 1 2 57

jasperreports-3.7.4 130.5 982.2 730 1.345 4 21 362 87 5 2 477

javacc-5.0 3.8 10.4 89 0.117 1 2 19 0 3 1 25

jboss-5.1.0 143.5 1121.4 1291 0.869 3 93 639 119 5 4 860

jchempaint-3.0.1 98.3 651.5 488 1.335 4 37 171 215 2 3 428

jedit-4.3.2 524.0 7554.0 922 8.193 5 14 1161 48 7 1 1231

jena-2.6.3 267.1 3532.1 699 5.053 5 21 620 116 2 4 763

jext-5.0 102.1 686.6 459 1.496 4 13 300 24 4 2 343

jfreechart-1.0.13 10.3 162.6 418 0.389 2 15 60 36 5 4 120

jgraph-5.13.0.0 62.3 366.7 331 1.108 3 8 216 11 4 2 241

jgraphpad-5.10.0.2 11.4 43.0 242 0.178 1 4 80 3 4 0 91

jgrapht-0.8.1 1.2 3.7 74 0.050 1 6 14 11 1 0 32

jgroups-2.10.0 50.2 268.5 506 0.531 2 7 269 39 2 2 319

jhotdraw-7.5.1 34.1 130.2 683 0.191 1 22 325 43 4 4 398

jmeter-2.5.1 148.9 2117.0 513 4.127 4 35 207 274 3 4 523

Continued on next page

7.4 an architectural debt index 137

Table 7.4 – continued from previous page

Index Architectural Smells
UD CD HL Total

System ΣASIS ΣASIS ∗ w W ADI q(ADI) Pkg Cl Pkg Cl Pkg AS

jmoney-0.4.4 27.2 60.2 148 0.407 2 3 138 4 0 0 145

joggplayer-1.1.4s 12.1 30.4 209 0.146 1 3 96 2 3 0 104

jparse-0.96 9.6 43.1 58 0.743 3 1 30 2 1 0 34

jpf-1.5.1 0.9 2.2 72 0.030 1 2 18 2 1 0 23

jrat-1-beta1 19.2 100.3 176 0.570 3 19 69 46 1 2 137

jre-1.6.0 3136.1 81534.4 3997 20.399 5 145 5761 633 1 4 6544

jrefactory-2.9.19 129.4 1172.0 600 1.953 4 37 372 125 1 3 538

jruby-1.7.3 2586.6 128738.1 1904 67.615 5 46 3592 324 3 9 3974

jspwiki-2.8.4 87.4 711.7 313 2.274 4 17 181 78 4 2 282

jsXe-04_beta 32.8 135.0 286 0.472 2 7 145 8 6 0 166

jtopen-7.8 196.7 1790.9 618 2.898 4 3 613 4 1 0 621

jung-2.0.1 6.4 18.2 141 0.129 1 14 61 23 0 2 100

junit-4.10 6.4 20.3 122 0.167 1 11 45 22 1 1 80

log4j-2.0-beta 15.7 80.6 156 0.516 2 13 64 60 0 3 140

lucene-4.2.0 204.1 1150.6 1618 0.711 3 66 956 241 1 1 1265

marauroa-3.8.1 9.5 43.5 173 0.252 2 12 41 35 4 1 93

maven-3.0.5 19.5 205.1 180 1.139 3 27 28 102 0 6 163

megamek-0.35.18 551.8 7712.7 876 8.804 5 20 1106 72 3 1 1202

mvnforum-1.2.2-ga 60.3 376.9 349 1.080 3 26 201 56 1 2 286

myfaces_core-2.1.10 56.8 554.4 806 0.688 3 41 243 113 5 2 404

nakedobjects-4.0.0 111.9 758.3 766 0.990 3 99 369 279 0 2 749

nekohtml-1.9.14 0.5 1.1 43 0.027 1 2 5 2 1 0 10

netbeans-7.3 6898.9 49950.4 31592 1.581 4 1043 28865 2016 3 1 31928

openjms-0.7.7-beta-1 13.4 39.2 227 0.173 1 19 115 16 0 2 152

oscache-2.3 0.9 2.3 35 0.066 1 4 10 9 0 1 24

picocontainer-2.10.2 4.8 20.3 76 0.266 2 4 33 11 0 1 49

pmd-4.2.5 14.6 70.1 179 0.392 2 17 71 34 0 2 124

poi-3.6 195.1 1709.0 864 1.978 4 43 416 232 5 8 704

pooka-3.0-080505 437.7 6926.1 743 9.322 5 8 955 28 7 0 998

proguard-4.9 12.5 43.8 148 0.296 2 15 85 31 0 2 133

quartz-1.8.3 16.4 38.8 122 0.318 2 8 63 18 0 1 90

quickserver-1.4.7 18.1 55.6 137 0.406 2 6 95 14 0 1 116

quilt-0.6-a-5 4.6 13.8 31 0.447 2 3 25 2 0 0 30

roller-5.0.1 12.4 106.3 353 0.301 2 23 41 65 4 2 135

rssowl-2.0.5 834.5 10870.3 2116 5.137 5 51 2127 182 8 2 2370

sablecc-3.2 1.1 4.6 73 0.062 1 1 18 1 1 0 21

sandmark-3.4 52.2 227.1 394 0.576 3 23 238 22 2 0 285

spring-3.0.5 222.2 1472.0 1453 1.013 3 100 741 296 3 4 1144

squirrel_sql-3.1.2 23.3 52.6 116 0.453 2 2 106 2 0 0 110

struts-2.2.1 63.7 454.1 537 0.846 3 43 236 122 1 4 406

sunflow-0.07.2 50.6 364.4 146 2.496 4 7 115 38 1 2 163

tapestry-5.1.0.5 59.0 324.8 575 0.565 2 29 269 84 2 5 389

tomcat-7.0.2 107.7 646.0 796 0.812 3 35 452 92 4 1 584

trove-2.1.0 0.9 2.1 11 0.195 2 0 8 0 0 0 8

velocity-1.6.4 20.5 78.6 90 0.873 3 14 45 34 0 2 95

wct-1.5.2 18.9 168.9 268 0.630 3 35 81 69 1 3 189

webmail-0.7.10 6.2 44.1 109 0.405 2 7 20 6 3 1 37

weka-3-6-9 297.3 2109.3 1079 1.955 4 32 911 236 2 2 1183

xalan-2.7.1 423.8 4715.5 535 8.814 5 21 838 57 2 2 920

xerces-2.10.0 67.0 422.4 269 1.570 4 12 220 38 1 1 272

xmojo-5.0.0 0.1 0.1 5 0.022 1 1 2 0 0 0 3

7.4 an architectural debt index 138

7.4.3 History

The presence of an AS in the history of a project can have a different impact
on the index. Figure 7.2 shows an example of project evolution through a
graphical annotation. Version 1 (V1) is one version of a project, followed by
Version 2 (V2). V1 has two architectural smells, such as: AS1 and AS2. AS1

has been deleted from the V2 of the project. AS2 is equal to the AS3 smell
detected in V2. The comparison is made by comparing the subgraph (SG)
involved by the architectural smells.

Figure 7.2: Example of AS evolution

History(ASk) is defined as the weight assigned to the trend of each type
of smell as follows:

History(ASk) =


ζ If ASk has a Decreasing Trend

θ If ASk has an Increasing Trend

η If ASk has a Stable Trend

(7.5)

where the trends are evaluated as follows:

• Decreasing Trend: when the number of classes, files or packages invol-
ved in an AS is decreasing.

• Increasing Trend: when the number of classes, files or packages invol-
ved in an AS is increasing.

• Stable Trend: when the number of classes, files or packages involved
in an AS is stable.

and where ζ, η and θ will be fixed according to the validation of the Index.
The values are fixed as starting point at 0.5, 1 and 2 respectively.

7.4 an architectural debt index 139

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.1

0.2

0.3

0.4

0.5

0.6

ADI

In
de

xe
s

Ant

Antlr

Checkstyle

Emma

Hibernate

JGrapht

Junit

Nekohtml

PicoContainer

Quartz

Figure 7.3: Evolution of ADI by project

7.4.4 Architectural Debt Index evaluation

This section is dedicated to the description of the study performed on more
than 100 versions of 10 projects as outlined in Table 7.5.

Table 7.5: Projects selected for the ADI evolution evaluation

Project Versions Category

Ant 10 Tool

Antrl 10 Parser

Checkstyle 15 IDE

Emma 10 Testing

Hibernate 8 Database

JGrapht 7 Tool

Junit 8 Testing

Nekohtml 12 Parser

PicoContainer 12 Middleware

Quartz 12 Middleware

Figure 7.3 shows the evolution of the Architectural Debt Index (ADI) in
the several major releases per project. The majority of the projects have an
increasing trend (i.e. the projects are getting worst), since they did not take
in consideration the ADI as quality index, so their ADI is growing over time,
i.e., the ADI in the last version is higher than in the first version. Although,
Checkstyle shows a decreasing trend of ADI before a major release publica-
tion and after that an opposite trend.

7.4.4.1 Architectural Debt Indexes and SonarQube TDI: some remarks

A trend analysis is performed on the Technical Debt Index provided by So-
narQube and the Architectural Debt Index here defined. The evolution of
the ADI has been compared with Technical Debt Index (TDI) of SonarQube,
a well known index computed by SonarQube and explained in Section 2.5,
and Figure 7.6 shows the comparison of the two indexes by project. The
y-left-axe is referred to Technical Debt index and the y-right-axe is referred
to ADI, but the attention is focused on the trends of the indexes since their

7.4 an architectural debt index 140

1 2 3 4 5 6 7 8 9 10

8

8.5

9

9.5

10

10.5

11

Ant

In
de

xe
s

0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55

1 2 3 4 5 6 7 8 9 10

6

6.5

7

7.5

8

8.5

9

Antlr

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15

7

7.5

8

8.5

9

9.5

Checkstyle

0.2
0.22
0.24
0.26
0.28
0.3
0.32
0.34
0.36
0.38
0.4

1 2 3 4 5 6 7 8 9 10

5

5.2

5.4

5.6

5.8

6

Emma

In
de

xe
s

2.8 · 10−2
3 · 10−2
3.2 · 10−2
3.4 · 10−2
3.6 · 10−2
3.8 · 10−2
4 · 10−2
4.2 · 10−2

1 2 3 4 5 6 7 8

10
10.5

11
11.5

12
12.5

13

Hibernate

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7

5.5

6

6.5

7

JGrapht

0.22

0.24

0.26

0.28

0.3

0.32

1 2 3 4 5 6 7 8 9 10

8

8.5

9

9.5

10

Junit

In
de

xe
s

1.5 · 10−2

2 · 10−2

2.5 · 10−2

3 · 10−2

3.5 · 10−2

4 · 10−2

1 3 5 7 9 11

5.5

6

6.5

7

Nekohtml

5 · 10−3
5.5 · 10−3
6 · 10−3
6.5 · 10−3
7 · 10−3
7.5 · 10−3
8 · 10−3
8.5 · 10−3

1 3 5 7 9 11

5

5.5

6

6.5

7

7.5

8

PicoContainer

5 · 10−3

1 · 10−2

1.5 · 10−2

2 · 10−2

2.5 · 10−2

1 3 5 7 9 11

10
10.5

11
11.5

12
12.5

13

Quartz

In
de

xe
s

0.4

0.45

0.5

0.55

0.6

0.65
TDI

ADI

Table 7.6: Evolution of ADI and TDI Index by project

quantities/values have different scales. TDI and ADI are improved when it
has an decreasing trend.

As showed in Figure 7.6, the trend of TDI is stable in 4 projects of 10, i.e.,
TDI has the same value at the first and last version; on the other hand, ADI
has increasing trends for all projects. TDI is not improved in Ant, Junit and
PicoContainer, and also ADI is grown worse. Moreover, ADI and TDI has
same trend in Antrl and Emma projects, while ADI is getting slightly worst
and TDI increasing in Ant projects.

ADI was computed on 10 projects and more than 6 versions per project,
while TDI is widely used by the open-source community and computed
through Sonarqube since it is one freely available tool that consider the evo-
lution of the projects. The majority of the projects analyzed by using an im-
plementation of ADI had an increasing trend and a worst overall software
architecture quality, on the other hand the TDI had a stable or improved
quality in contrast to ADI trends. The incongruity discovered among ADI

7.4 an architectural debt index 141

and TDI is related to their characteristics: ADI is focused is focused on the
evaluation of a) the AS of the project and b) the AS evolution; TDI is focused
on the detection of a) code and b) object oriented violations.

7.4.5 Architectural Debt Index Profiles

The ADI index could be computed according to different quality attributes
(defined in ISO/IEC 25010:2011 [65]). Examples of quality attributes could
be:

• Performance efficiency: The performance relative to the amount of re-
sources used under stated conditions;

• Security: The degree of protection for information and data so that
unauthorized persons or systems cannot read or modify them and aut-
horized persons or systems are not denied access to them (e.g., Ambi-
guous Interface smell [52]);

• Reliability: The degree to which a system or component performs spe-
cified functions under specified conditions for a specified period of
time.

Different AS have been defined in the literature, and new ones can be defi-
ned. It could be interesting to identify some categories of AS that could have
an impact on a specific quality attribute. Obviously, the same AS may have
an impact on more quality attributes, hence the categories are not disjoint
with respect to the AS they group. For example, the Ambiguous Interface
smell defined by Garcia et al. [52] can be included in the security category
since it represent an interface that provides a single general entry point to
access into a component.

If categories are identified and associated with one or more AS, and if
a tool (e.g., Arcan) is able to detect these AS, it is possible also to define
different profiles for the Architectural Debt Index.

For example, if it is necessary to evaluate the ADI with respect to a profile,
e.g., Performance, the tool computes the index and provides an evaluation
considering only the AS belonging to the Performance category. Moreover,
a AS belonging to the Performance category could have as output for its
ASIS score a value between the range from 1 to 5 using the function q(), as
defined below:

q(ASISt
k) =



1 If 0.00 ≤ quantile(ASISt
k) ≤ 0.20

2 If 0.20 < quantile(ASISt
k) ≤ 0.40

3 If 0.40 < quantile(ASISt
k) ≤ 0.60

4 If 0.60 < quantile(ASISt
k) ≤ 0.80

5 If 0.80 < quantile(ASISt
k) ≤ 1

(7.6)

where quantile(ASISt
k) is the quantile associated to the ASISt

k computed for
the ASt

k of type t in the reference dataset, e.g., given an AS and its ASIS score

7.5 conclusion 142

with q() of 5: it should be highlighted in the output as very bad architectural
smell in the associated profile. The results obtained through the q() function
for all the architectural smells belonging to a category should be aggrega-
ted using the max operator, to obtain the highest value of the set, e.g., Asi
and ASj, belonging to the Performance profile, are architectural smells with
q(ASIS) of 5 and 2 respectively, the aggregated value for their profile is 5.

Moreover, both the discretization of the ASIS, the profile association and
ASIS value aggregation could help in the results inspection and refactoring
estimation effort. Another potential application of these different ways of
composing the ASIS lies in the definition of quality compliance levels. In
fact, the quality compliance level could be setup for each profile, or the
minumum quality for each profile can be set, by defining the maximum
ASIS level for all profiles. These factors can be combined with the global
ADI of the project to have finer-grained definition of the desired quality of
the overall project.

7.5 conclusion

In this chapter a new index oriented to the evaluation of architectural issues
as AS is proposed and integrated in the Arcan tool. Severity of all the archi-
tectural smells of Arcan are given and explained. A validation of ASIS with
Arcan has been performed on a dataset of 109 open source projects. The evo-
lution of the ADI and a comparison with SQ TD index has been performed
on 10 projects considering more than 100 versions on total.

In the following, answers are provided to the questions posed at the be-
ginning of this chapter.

with respect to rq1 : How should a new index be formulated to better repre-
sent the architectural debt? The defined index is composed by the summation
of the value of the ASIS for each AS times the weight of the AS over the
total number of dependency involved in an AS, times the trend estimated
of the index, called History. The ASIS estimates the cost-solving of an archi-
tectural smell through the computation of its SeverityScore and its PageRank,
as explained in Section 7.4.1. A proposal has also been described to com-
pute ADI on different profiles, based on the ISO/IEC 25010:2011 standard,
where the architectural smells are grouped according to the affected quality
attribute, as explained in Section 7.4.5. Moreover, the ADI can be used to
identify the most critical classes or packages in the projects, in this way the
developer/maintainer can easily identify and focus his attention on the most
critical classes or packages.

with respect to rq2 : How can we estimate the severity of an Architectural
Smell? It is possible through the definition and the detection of the archi-
tectural smells. For example, the SeverityScore of the Hub-Like Dependency
smell is given by the total number of dependencies among the class c (or the
package) affected by the HL smell and the classes (or packages) which call
or are called by c. This is strictly related to the cost-solving of the architec-

7.5 conclusion 143

tural smells. In the same way, the Severity Score for the other architectural
smells were defined in Section 7.4.1. The PageRank was identified as a smell-
agnostic way to weight the severity of an AS, since it indicates the most im-
portant and popular place in the dependency graph (i.e., the elements of the
dependency graph that are the hardest to refactor). With agnostic, we mean
that the PR uses the dependency graph and it is independent from the AS
type.

with respect to rq3 : How does the evolution of the new index behave
through the analysis of projects history? and how does it behave with respect to
another index? The majority of the projects have an increasing trends of ADI
showing that the internal architectural quality is getting worst over time, as
shown in Figure 7.3. Moreover, the TD index showed different trends respect
to the ADI highlighting weakness of available indexes on architectural qua-
lity evaluation. Although the ADI got worst the TDI was stable or getting
better in the majority of the projects. Moreover, the incongruity discovered
among ADI and TDI is related to their characteristics: ADI is focused on the
evaluation of a) the AS of the project and b) the AS evolution; TDI is focused
on the detection of a) code and b) object oriented violation.

In the future, the index will be evaluated on a large dataset of both open
source and industrial projects, with the aim to get the feedback of the de-
velopers. Hence, the weights assigned for example to the History could be
changed according to these validations.

On the study regarding the ADI evolution I co-supervised the bachelor
thesis of Matteo Marchesi and on the definition and implementation of the
ADI, I will submit a paper entitled “A new Architectural Debt Index” to the
next Technical Debt Conference 2018, Co-located with ICSE Conference.

8
A R C H I T E C T U R A L S M E L L S R E FA C T O R I N G : A
P R E L I M I N A RY S T U D Y

Refactoring has been largely studied in the literature in several directions
and by considering different features, techniques and its impact on different
quality issues [110, 111, 125]. Many works have been done in particular
on code refactoring, with often a focus on code smells refactoring, as for
example [25, 165].

As outlined by Zimmermann [167] given the success of code refactoring, it
is surprising that architecture refactoring has not received a great attention
yet. Architecture refactoring is required to maintain the structural quality of
any complex and evolving project and requires a significant amount of effort
and time compared to code refactorings [149].

Architecture refactorings helps architects to identify potential problems in
a software architecture and identify the refactorings steps to solve them. An
example of these problems is given by the architectural smells. Identify these
problems is not an easy task and hence the availability of tool that support
the architectural smells detection is particularly relevant for architecture re-
factoring. Hence in this context, architecture refactoring can be seen as a set
of architectural activities devoted to the removal of one or more architectural
smells. Moreover, through the refactoring of architectural smells, one could
expect an improvement of some quality issues. Establishing and evaluating
the benefits of refactoring, as also outlined by Ó Cinnéide et al [119], is cer-
tainly quite unclear and not an easy task, due to the intrinsic difficulties and
trade-off to be faced during the refactoring of the smells.

Removing an architectural smell is a task that could involve the choice
among different refactoring steps, and this choice can lead to a different
impact on the quality issues. Moreover, it could be very difficult to remove
them in some case, owing to too much conflicts to be solved. It would be
interesting to identify high-impact refactorings [30], that are the refactorings
with a strong impact on the quality of the project’s architecture.

In this chapter, the attention is focused on the detection of three different
architectural smells (AS) through Arcan [17] (Chapter 4). Cyclic Dependency
smell, Unstable Dependency and Hub-Like Dependency smells are detected.
The AS are detected and all removed on three open source projects of diffe-
rent size. Moreover, the effect of the refactoring of these smells is analyzed
on some quality metrics. In particular, some metrics and structural quality
indexes computed by two known commercial tools were considered. The
refactoring is performed by removing first all the AS of one type for all the
three different AS, then by removing all the AS found in the analyzed projects
according to the choices taken in the different refactoring scenario, that we
describe in details.

8.1 set up of the study 145

Through this experimentation, I aim to answer the following Research
Questions:

rq1 .1 How often can refactoring opportunities and/or recommendation be
easily identified for architectural smells?

rq1 .2 Can refactoring patterns be discovered that can help in the re-
moval of an architectural smell?

rq2 .1 Which is the impact of the refactoring of the architectural smells on
the considered quality metrics?

rq2 .2 Can architectural smells be identified with a higher impact (po-
sitive or negative) on the quality metrics?

The Chapter aims to outline and identify the major difficulties in the re-
factoring of the three architectural smells and their impact on some qua-
lity metrics through the answers to these RQs. In particular, the answers
to RQ1.(1-2) aim to analyze whether it is difficult or not the refactoring of
architectural smells, having previous experience in the refactoring of code
smells [13]. The analysis consists in finding and proposing some refacto-
ring recommendations for the considered architectural smells. Moreover,
through this study different insights about the features and difficulties of ar-
chitecture smells refactoring are outlined. The faced problem is related both
to the possibilities of identifying common refactoring steps to remove an AS

and to the possibilities of identifying the best sequence of AS to be refactored
in order to improve a project.

RQ2.1 aims to analyze the impact of the AS refactoring on quality issues,
to get some indication if their removal effectively improve software quality,
according to the considered metrics/quality indexes. The impact on soft-
ware quality metrics not used for the AS detection is outlined and analyzed.
Strictly related to the previous question, through the answer of RQ2.2 aims
to identify the AS which has a higher impact on the software quality metrics.
This information could be used to identify some prioritization on the more
critical smells to be removed first.

8.1 set up of the study

8.1.1 Analyzed Projects

Table 8.1 shows the size of the systems that we have considered in this study.
These projects are taken from the Qualitas Corpus [154] and are briefly des-
cribed below.

Commons-collections1 is a library developed by Apache Foundation. The
aim of this library is to provide powerful data structure in order to accelerate
the development of Java applications. It provides several data structures
implementation, such as Map, Set, List and many different implementation
of Iterators.

1 http://commons.apache.org/proper/commons-collections/

http://commons.apache.org/proper/commons-collections/

8.1 set up of the study 146

Table 8.1: Analyzed Projects

Project Version LOC Methods Classes Packages

Collection 3.2.1 63926 6658 273 12

Jag 6.1 28124 1434 121 16

Informa 0.7.0 29330 1614 150 14

Jag2 is a tool project developed by Finalist IT Group to create complete
J2EE applications. Jag allows to easily integrate different libraries and frame-
works in web application projects and offers solution to common problems
triggered by web application development.

Informa3 is a news aggregation library, commonly used to obtain news
from different channels and protocols, e.g., using ATOM, RSS, RDF. It could
be re-used in other projects, e.g., search engine and it could export data in
different way, such as, XML, Hibernate.

8.1.2 Data collection

To evaluate the impact of architectural smells refactoring we have considered
some structural quality indexes evaluated through Sonargraph and Struc-
ture101 tools. We decide to compute these indexes since, see Section 7.1, we
evaluated indexes provided by different tools and we found the ones com-
puted by the above tools particularly useful to assess architectural issues.
I have not considered in this study the ADI index which I defined in the
previous chapter, since the index has not been externally validated yet.

Sonargraph4 allows to compute a Structural Debt Index and two types of
metrics called Structural Erosion (Type Dependencies and Reference) des-
cribed below. Sonargraph’s Structural Debt [112] is quantified through two
measures (see Section 2.5): Structural Debt Index (SDI) and Structural Debt
Cost (SDC).

Structural Erosion - Type Dependencies on project level: this metric calculates
for the entire project the number of type dependencies that must be cut in
order to remove all package cycles in the project (this is not always the exact
minimum number, but a heuristic-based guess).

Structural Erosion - Reference on project level: this metric is equal to the
previous one, but it considers the number of references to be removed.

While Structure101
5, shows a Structural over-Complexity (SoC) view to es-

timate the percentage of the project involved in architectural issues and it
displays two measures: %Tangle and %Fat (see Section 2.5).

2 http://jag.sourceforge.net/

3 http://commons.apache.org/proper/commons-collections/

4 https://www.hello2morrow.com/products/sonargraph

5 https://structure101.com/

http://jag.sourceforge.net/
http://commons.apache.org/proper/commons-collections/
https://www.hello2morrow.com/products/sonargraph
https://structure101.com/

8.2 architectural smells refactoring results 147

We outline that we decided to not consider metrics, as LCOM, CBO, FAN-
IN, FAN-OUT [38], and dependency metrics as Distance from the main se-
quence, Instability, Abstractness, Afferent and Efferent Coupling [109], since
these metrics have been used to detect the AS through Arcan, and an impact
on these metrics can be obviously expected.

8.2 architectural smells refactoring results

In this refactoring study through the analysis of the three projects described
in Section 8.1, we followed the steps described below. We use the word base
to identify the project before any kind of refactoring step:

1. we detected through Arcan the three types of AS (UD, CD and HL) on
the three projects;

2. we removed all the AS of one type from all the projects, in the cases
where we could not remove all of them we motivated the reason; we
did the same for all the three types of AS (UD, CD and HL), starting
for each AS from the base, as following:

• base→ (UD refactoring)→ UD-Refactored Version

• base→ (CD refactoring)→ CD-Refactored Version

• base→ (HL refactoring)→ HL-Refactored Version

3. we checked the impact of the refactoring on the number of AS found in
the three projects, in order to check if by removing the AS of one type,
we removed also other types of AS;

4. we removed all the three types of AS, or part of them, in the three
projects. To decide the order of the AS to be removed first, we took into
account the AS that at step 3 lead to the removal of the higher number
of AS;

5. we checked the impact of the refactoring on some quality indexes va-
lues;

6. after the refactoring of the smells, both at step 2 and step 4, we tested
the projects according to their software test suite in order to check if
the refactoring steps did not introduce functionality problems.

In Table 8.2 we report the number of AS detected and removed in each
project. In the Base line we outline the number of AS detected before the
refactoring, and in the other lines the number of AS after refactoring. For
example, the HL line for the Jag project corresponds to the refactoring of the
HL, and we see that the number of UD remain the same (16), the number of
CD at class level increases (from 8 to 9), the number of CD at package level
remains the same (3) and the number of HL go to 0. We also outline that for
the CD smell at class and package level, we show also the number of classes
and packages involved (i.e. 9/87: 9 CD at class level respect to 87 classes
involved in at least a CD).

8.2 architectural smells refactoring results 148

Table 8.2: Overall architectural smells in the analyzed systems before and after the
refactoring steps

UD CD HL

Refactoring Package Cycle / Class Cycle / Package Class

Jag

Base 16 8 / 81 3 / 12 1

CD 16 7 / 77 3 / 12 1

HL 16 9 / 87 3 / 12 0

UD 7 8 / 81 2 / 6 1

All AS 7 7 / 66 3 / 12 0

Common-collections

Base 16 16 / 53 1 / 8 1

CD 16 2 / 7 1 / 8 1

HL 16 11 / 39 1 / 8 0

UD 14 10 / 35 1 / 8 1

All AS 14 4 / 15 1 / 8 0

Informa

Base 0 2 / 6 1 / 3 3

CD 0 0 / 0 1 / 3 3

HL 0 2 / 6 1 / 4 0

UD – – / – – / – –

All AS 0 0 / 0 1 / 3 0

8.2 architectural smells refactoring results 149

8.2.1 Refactoring Results of the Hub-Like Dependency (HL) smell

According to Table 8.2 we see that we found 1 HL in Jag and Common
Collection projects and 3 in Informa. We removed all the Hub-Like from the
three projects.

We have not found false positive instances. However, we figured out
which are the conditions where a Hub-Like could be a false positive in-
stance. Hub-Likes are highly used classes of the project. We don’t know
if those classes are used from other projects, since here we analyzed one
project at time. However, we know if the class uses external classes of the
project, e.g., classes of the package java.util.*. If the class has the majority
of outgoing dependencies related to a project library, it should not be consi-
dered a Hub-Like. Classes of this kind are simple, because they use default
functionalities (e.g., list), but are frequently used and implement the main
functionalities of the project.

By removing this type of AS in Informa, the number of CD smells at
package level remain the same, instead the number of CD at class level in-
creases by one because we broke a chain cycle in two cycles by delegating
responsibility to other classes. However, we experienced that the Tiny Cycle
Dependency smells (see Figure 1) were participating to make Hub-Like big-
ger, increasing both Fan-In and Fan-Out. If the classes of these Tiny Cycle
Dependencies are anonymous or nested, they should not be considered at
all or be weighted less in the computation of the Fan-In and Fan-Out metrics
used for the detection of this smell.

To remove the HL smell we usually applied these refactoring steps:

• Extract super class: we moved fields and high frequently used methods
to a super class, in order to reduce the size of in-coming and out-going
dependency.

• Move method: we looked for opportunities to move methods to other
classes or to move the logic itself.

The main problem for the refactoring of Hub-Like is not related to the
study of out-going dependencies (Fan-Out) or in-going dependencies (Fan-
In), but the main problem is to understand the causes of the architectural
smell, e.g., the nature of the dependencies for the affected classes.

8.2.2 Refactoring Results of the Unstable Dependency (UD) smell

According to Table 8.2 we found 16 UD in Jag and Commons-collections,
none in Informa.

We removed 9 UD from Jag and 2 from Common-collections. In order to
remove the architectural smell it was necessary to move misplaced classes
from its package to the sub-package where they are used.

We have not removed all the UD instances since in some cases the packa-
ges considered as UD were only dependent of main packages, such as package
where all the others subordinate packages are placed. We noticed some false

8.2 architectural smells refactoring results 150

positive instances in the cases of packages with UD having a medium value
for the Instability metric (i.e. near to 0.5), since these packages were rela-
ted to packages slightly more unstable. The Instability metric is used in the
detection of the smell.

By removing this type of AS, we removed also 6 CD at class level in
Common-collections and 1 CD at package level in Jag. The other smells
remain the same.

To remove the UD smell we usually applied these refactoring steps:

• Move class: we searched for those classes which were using resources
of the package with Unstable Dependency. If one class is used by other
classes in the package, we had to move the related classes to the same
package to remove the architectural smell.

• Merge packages: we removed packages that were left with only few
classes (i.e. less than 5) and we merged them with the package with
the Unstable Dependency.

8.2.3 Refactoring Results of the Cyclic Dependency (CD) smell

According to Table 8.2 we see that we found 8, 16 and 2 CD at class level
and 3, 1 and 1 CD at package level respectively for Jag, Common Collection
and Informa projects.

We have not removed all the CD instances since in some cases cycles were
a right consequence of a correct construction and the involvement of design
patterns.

Cyclic Dependency smells related to GUI are usually related also to the
Model View Controller pattern, but they have to considered as false positive
instances. We noticed that Cyclic Dependencies were in classes using the
GUI library provided by Java which requires the generation of anonymous
classes instances. We removed cycles generated in this way where it was
possible because the anonymous classes were not using resources of the
creator class and we moved the logic of the called method to the anonymous
classes. Moreover, the method body called by the anonymous classes was
sometimes empty, so we removed all these methods.

Moreover, we found that CD is frequently related to Factory Method de-
sign pattern, and it is hard to remove CD involving this kind of design
pattern.

By removing this type of AS, the number of UD and HL smells remain the
same. To remove the CD smell we usually applied these refactoring steps:

• Move method: method moved from the declaring class to the using
class. If the method is wrong-placed and create a Cyclic Dependency,
we need to replace them to correct class. This is usually the same class
where it is called the method.

• Extract super class: Class with too many responsibilities should be
redesigned and a super class is usually created with the common used

8.2 architectural smells refactoring results 151

methods and fields of the class. This represents also an opportunity to
improve readability of the code and its maintainability.

• Move class: Nested classes that are used also from outside the class,
should be extracted as class stand alone. This is important to avoid
duplicated nested classes in the project and improve in this way reusa-
bility.

Package cycles involve a large number of classes of the project in gene-
ral. It was unmanageable to remove package cycles in the analyzed projects.
For example, Informa package cycle involves 66 classes over three packages,
showing that the cycle among these three packages have a strong relation
among each other.

8.2.4 Refactoring Results of all the three AS

At this step, we tried to remove all the types of AS found in the three analy-
zed projects, according to step 4 described at the beginning of Section 8.2.

We defined the Best Impact Refactoring Architectural Smell sequence (BI-
RAS sequence) according to Table 8.2. The BIRAS sequence prioritize the
refactoring action which reduced more architectural smells in the project, as
following:

• Jag:

– UD→ CD→ HL

• Commons-collection:

– UD→ HL→ CD

• Informa:

– HL→ CD

We achieved the goal to reduce the amount of architectural smells in any
project. Informa was the project with the lower number of architectural
smells. We obtained the best results by removing 5 architectural smells (2
CD at class level and 3 HL) and we left only one CD at package level.

Common-collections was the project with the highest number of architec-
tural smells. We removed more cycles in Commons-collection because they
were related to a low number of classes. We had more problems with Jag
because it was affected by a greater number of classes and packages in cy-
cles than the others projects. For example, JagGenerator is a lead class of
Jag that uses and controls many other classes. We had several problems to
manage the refactoring of this class also because it was involved in several
architectural smells.

The number of Unstable Dependency was not modified by the refactoring
of Hub Like and Cyclic Dependency in any project. Indeed, Unstable Depen-
dency is constant at zero for Informa and it was stable to the value reached
after the refactoring of the other projects. Moreover, the number of package
cycle is not modified by any refactoring actions in any project.

8.3 discussion 152

8.2.5 Impact of Refactoring on Quality indexes

We checked the impact of the AS refactoring on the metrics/quality indexes
introduced in Section 8.1.2.

Table 8.3 reports the values of the metrics computed by Structure 101,
related to the percentage of the project involved in a Tangle and exceeding
the Fat metrics, for the base version of the projects and the final version after
refactoring.

Tangle and Fat metric percentages slightly increased for Jag and Commons
Collections, while Informa has a stable percentage of Tangle and a decreased
percentage of Fat metric.

Table 8.3: Structure 101 - Structural over-complexity index components

Jag Commons Collections Informa

Refactoring %Tangle %Fat %Tangle %Fat %Tangle %Fat

Base 90,909 20,960 50,251 92,000 1,508 83,920

Final 92,462 21,610 50,754 92,960 1,508 78,992

Sonargraph indexes presented at plots in Figures 8.1a-8.1b-8.1c show dif-
ferent results. The impact of refactoring on Informa measured by this in-
dexes shows decreasing values so the final version of this project has been
improved from the base version according to Sonargraph indexes. Com-
mons Collections and Informa show different results. Commons Collections
has stable results between base and final version. While, Jag has increasing
indexes values in the final (refactored) version.

8.3 discussion

8.3.1 Hints on how to refactor the AS

We used all the feature of Arcan in order to understand and solve all the
architectural smells discovered by the tool. The output files of Arcan were
useful for us for a quick evaluation of the results, but we exploited the graph
database to obtain more details about the AS. The graph database was par-
ticularly useful to inspect the dependency graph in order to understand the
architectural smells dependency with affected packages or classes. For ex-
ample, we inspected outgoing and ingoing dependency of Hub Like smell
to discover refactoring opportunities, such as delegating some functionality
to classes most related with the class affected by the Hub Like in order to
reduce Fan In and Fan Out metrics.

8.3 discussion 153

1787

1533

800

1787

1561

739

0 1000 2000

Collection

Jag

Informa

CD Base

1787

1533

800

1800

1538

0

0 1000 2000

Collection

Jag

Informa

UD Base

1787

1533

800

1787

1566

800

0 1000 2000

Collection

Jag

Informa

HL base

1787

1533

800

1787

1710

739

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Collection

Jag

Informa

Final Base

257

663

360

257

661

349

0 200 400 600 800

Collection

Jag

Informa

CD Base

257

663

360

260

698

0

0 200 400 600 800

Collection

Jag

Informa

HL Base

257

663

360

257

666

360

0 200 400 600 800

Collection

Jag

Informa

UD Base

257

663

360

257

700

349

0 100 200 300 400 500 600 700 800

Collection

Jag

Informa

Final Base

(a) Structural Debt Index

1787

1533

800

1787

1561

739

0 1000 2000

Collection

Jag

Informa

CD Base

1787

1533

800

1800

1538

0

0 1000 2000

Collection

Jag

Informa

UD Base

1787

1533

800

1787

1566

800

0 1000 2000

Collection

Jag

Informa

HL base

1787

1533

800

1787

1710

739

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Collection

Jag

Informa

Final Base

257

663

360

257

661

349

0 200 400 600 800

Collection

Jag

Informa

CD Base

257

663

360

260

698

0

0 200 400 600 800

Collection

Jag

Informa

HL Base

257

663

360

257

666

360

0 200 400 600 800

Collection

Jag

Informa

UD Base

257

663

360

257

700

349

0 100 200 300 400 500 600 700 800

Collection

Jag

Informa

Final Base

(b) Structural Erosion Reference

153

87

44

153

90

39

0 50 100 150 200

Collection

Jag

Informa

CD Base

153

87

44

154

84

0

0 50 100 150 200

Collection

Jag

Informa

HL Base

153

87

44

153

90

44

0 100 200

Collection

Jag

Informa

UD Base

153

87

44

153

101

39

0 20 40 60 80 100 120 140 160 180

Collection

Jag

Informa

Final Base

(c) Structural Erosion Type Dependency

Figure 8.1: Sonargraph indexes

8.3.2 Hints on how to improve the AS detection through Arcan

During this experimentation we found different cases of false positive instan-
ces, and these can be seen as hints on how to improve the AS detection of
Arcan. In particular we found the following false positive instances:

• The detected false positives for Hub Like Dependency smell reflect ab-
stract classes, interfaces and in some cases classes which implement the
Singleton design pattern [50], since by design are expected to be reused
in several parts in the project. However, as explained in Section 8.2.1, if
the class uses only external resources like java.utils.List, it should
not be considered a HL smell because it is using java standard library.

• The Cyclic Dependency smell false positives reflect classes which im-
plement Factory Method and Model View Controller design pattern
and nested (hidden) classes, as explained in section 8.2.3. Moreover,
we can find that some AS have not to be removed, e.g., some cycles
seem to not be breakable because of their semantics, as also outlined
by Laval et al. [82], since engineers can organize classes in multiple

8.4 threats to validity 154

small packages instead of one big, where package cycles in this re-
organization are not critical for the modularity of the application.

• The Unstable Dependency false positives are packages which are de-
pendent to slightly more unstable packages. We could implement
some filters to exclude these false positives.

8.3.3 Hints on which AS remove first

According to the experimentation described in this work and one done with
the developers of two projects related to the validation of Arcan results in
terms of precision and recall measures [19], we decided to define the Severity
of architectural smells, see Section 7.4.1. The Severity will allow to prioritize
the more critical AS smells, allowing to save effort during the refactoring
process.

Moreover, during refactoring we can focus the attention on the classes
or packages involved in multiple AS. It could be useful to consider first
these ones, since they are certainly more critical and by removing an AS we
probably could remove other related AS, where for related we mean those
AS present together. For example, Hub Like smell is frequently related to
Cyclic Dependency and Unstable Dependency could be related to Cyclic
Dependency between Package.

8.4 threats to validity

In this section, we discuss the threats to the validity of this study.

8.4.1 Threats to Internal Validity

Threats to internal validity may arise from two main sources: the detection
of architectural smells and the refactoring choices.

For architectural smell detection, we apply Arcan, see Chapter 4, and cur-
rently able to detect different architectural smells. Basing our analysis on the
output of a tool may bias our results in different ways: 1) the tool may not
support the detection of all architectural smells, and 2) the tool may suffer
from a detection error, missing some actual architectural smell instances. In
the first case, we may work on mostly non-relevant architectural smells (be-
cause the relevant ones are not supported by the tool), while in the second
case we may miss relevant architectural smells in our refactoring. Architectu-
ral smell detection is a recent an active research area; different architectural
smell definitions have been proposed, but many of them are not currently
detectable by any tool, and very few tools are available in general, as largely
outlined in this thesis. In our tool, we support some of the most known ar-
chitectural smells, which we consider among the most relevant. In this way,
we mitigate threat 1: while some interesting architectural smells may not
be supported by Arcan, the currently supported ones are among the most
important we are aware of. As for threat 2, we conducted a review of Arcan

8.5 conclusions remarks 155

results with external developers, including the maintainers of the analyzed
projects, with very good results [19]. This mitigates threat 2.

The other main threat to the internal validity of our work is the application
of refactoring to the detected smells. In our work, refactoring decisions are
made by the developer inspecting Arcan results. This may lead to subjecti-
vity in the choice of the refactoring to be applied and in the way of applying
it. For this reason, together with on Ms Student and a Post Doc fellow, I in-
dependently inspected Arcan results, choosing a refactoring for the detected
smells. Then, when choices were different, they discussed their choices to
reach an agreement case by case. The execution of each refactoring has been
performed by my self, and reviewed by the other two to avoid incorrect or
clearly sub-optimal choices. In this way, we mitigated the risk that our refac-
torings may be improved by other developers, or may not be representative
of the choices made by other developers.

8.4.2 Threats to External Validity

Threats to external validity are related to the ability to generalize the obtai-
ned results. We performed our analysis of a restricted set of Java projects.
Therefore, we cannot claim that our results can be generalized outside the
scope of these projects or our development team. In addition, our results do
not point to a clear effect of architectural smell refactoring on architectural
measures. Additional analyses (and/or replication) should be performed
independently to confirm our results.

8.4.3 Threats to Conclusion Validity

Threats to conclusion validity are related to factors that lead us to take the
wrong conclusion while looking at our results. The architectural measures
we applied to compare the state of the projects before and after the refacto-
ring have been extracted by established commercial tools, which define their
measure publicly. This ensures both good quality in the extraction of the
measures and their verifiability. On our side, when applying the tools to the
projects, we checked the tools settings before applying them, to avoid distor-
ting the obtained measures through an incorrect application of the tools. In
our results, we found that these measures do not uniformly or significantly
reflect the changes we made to the projects. In our opinion, this should not
be attributed to measurement errors, but to the fact that the measures do not
reflect the kind of changes we made to the projects.

8.5 conclusions remarks

In this work through our experimentation, we provided some insights about
the characteristics of architecture smells, their removal and their impact on
some quality metrics/indexes. Insights that could be useful for future inves-
tigations and development of AS detection and refactoring tools.

8.5 conclusions remarks 156

We can observe that it’s not easy to remove the AS, this task is certainly
more complex than code smell refactoring. Moreover, it’s not easy to eva-
luate the impact of refactoring. We considered the impact of refactoring on
the value of some quality metrics/indexes computed by well known tools
and we analyzed the different scenario that we had to face. Our aims with
respect to this point, was to observe if the AS refactoring is reflected also in
the improvements of some quality indexes values. From our results this was
not observed. Effectively evaluating the benefits of AS refactoring requires
further research and refactoring in general, not focused only AS, has been
recently considered an open issue by other authors [119].

We provide below the answers to our research questions in this context:

rq1 .1 How often can refactoring opportunities and/or recommendation be easily
identified for architectural smells? From Table 8.2, we can see that we
could always remove HL instances, while we never removed package
cycles. Removal was possible instead for most class cycle (except for
Jag). For UD, only less than a half of the instances have been refactored.
Summarizing, refactoring opportunity easy depend a lot on the type
of the AS, and on its size: wider AS, like package cycles are much more
difficult to control, and therefore to refactor.

rq1 .2 Can we discover some refactoring patterns that can help in the removal
of an architectural smell? In Sections 8.2.1, 8.2.2, 8.2.3 we identified a
series of refactoring steps that can be recurrently applied to each kind
of AS to remove it. Most steps involve moving program elements to
a different container (class or package), to redistribute dependencies,
but in specific cases splitting classes is a viable solution to distribute
homogeneous dependencies sets.

rq2 .1 Can refactoring patterns be discovered that can help in the removal of an
architectural smell? We considered metrics extracted by two tools, i.e.,
Structure 101 and Sonargraph. By comparing the values of the extrac-
ted metrics, we could not find recurrent changes in one or more me-
trics for the same kind of refactoring. Instead, all Sonargraph metrics
change in the same way on the same project and the same refactoring
set, with the only exception of UD in Jag. Structure 101 metrics got
slightly worse after refactoring. Both Sonargraph and Structure 101

metrics changed very lightly in response to our refactoring operations,
meaning that they probably consider aspects of the architecture that
are not affected by architectural smells.

rq2 .2 Can architectural smells be identified with a higher impact (positive or ne-
gative) on the quality metrics? No, it was not possible to observe a single
set of refactorings having a significantly large effect on the values of
the considered metrics. In any case, we have to observe that we defined
and applied the Best Impact Refactoring Architectural Smell sequence
(BIRAS sequence) described in Section 8.2.4.

9
C O N C L U S I O N S A N D F U T U R E D E V E L O P M E N T S

In this thesis I discussed the need of identify and evaluate the architectural
erosion of software applications through the support of architectural smells
detected by Arcan. Moreover, I studied the architectural smells evolution,
their prediction and the possible correlations between architectural smells
and code smells. A new architectural debt index is proposed in order to
estimate this architectural erosion.

9.1 conclusions

In summary the contributions of this research are the following:

• Architectural smell detection through Arcan (Chapter 4) – I developed Ar-
can, a tool of architectural smells detection on Java projects. The tool
relies on the dependency graph to represent the extracted informa-
tion. I defined the techniques to detect six architectural smells, where
one architectural smell is detected using the historical development
data. Arcan detects two new architectural smells: Multiple Architec-
tural Smell and Specification-Implementation Violation. The detection
of the other architectural smells is enhanced w.r.t. previous approa-
ches. The dependency graph provided by Arcan is useful to identify
the possible refactoring opportunities of an architectural smell and the
metrics used in the detection techniques of the architectural smells can
be exploited to identify the most critical ones (i.e, architectural smells
severity as explained in Chapter 7.

• Evaluation and validation of Arcan results (Chapter 5)

– Initial evaluation of Arcan results (Section 5.1) – The first evaluation
of Arcan results was performed on 7 open source projects and a
preliminary comparison with the results of other two tools [17].

– Architectural smells validation: an industrial case study (Section 5.2) –
The second evaluation of Arcan results carried out with real-life
software developers in a industrial case study [19]. Two different
projects were analyzed by Arcan and a precision of 100% was ob-
served, since Arcan found only correct instances of architectural
smells.

– Architectural smells validation: a mixed method approach (Section 5.3) –
The evaluation of the tool results through extensive mixed-methods
research, that shows that the tool is precise, since it detects 100% of
the architecture smells effectively present in the analyzed source
code, and is reliable, since it detects the correct architecture smell
in over 84% of the cases (submitted [135]).

9.2 future developments 158

• Empirical analysis (Chapter 6) –

– Architectural smell prediction and evolution (Chapter 6.1) – I applied
machine learning techniques to predict architectural smells based
on historical smell information and I studied the evolution of the
architectural smells[137]. I discovered that historical architectural
smells and changes done at package level can be used to predict
the presence of architectural smells in the future. The architectu-
ral smells are visually correlated and generally increase over time.

– Are architectural smell independent from code smells? (Chapter 6.2) – I
conducted a large-scale empirical study investigating the relations
between code smells and architectural smells and if code smells
affect the presence of architectural smells and vice versa. I found
empirical evidence on the independence between code smells and
architectural smells and therefore, I can suppose that the presence
of code smells does not imply the presence of architectural smells,
(submitted [20]).

• Proposal of a new architectural debt index (Chapter 7) – a new index (ADI)
oriented to the evaluation of architectural issues as AS has been propo-
sed. I evaluated and integrated the ADI in Arcan through the defini-
tion of the severity of architectural smells (e.g., SeverityScore).

• Architectural smell refactoring (Chapter 8) – I presented a preliminary
study conducted on selected projects applying refactoring actions in
order to remove the detected architectural smells. I detected refacto-
ring steps applicable on all types of considered architectural smells.

In conclusion, the main findings of the thesis are related to the implemen-
tation of new techniques for architectural smells detection through the Arcan
tool. I have discovered and proved the independence of code smells from
architectural smells, highlighting the importance of the architectural smells
detection since they could point out problems not discovered through code
smells. I proposed a new architectural debt index focused on architectural
smells detection, their severity (SeverityScore) and their impact on the sy-
stem (PageRank). The index can be used to compare projects, their evolution
and to estimate the cost keeping of the debt. Moreover, the importance of
the architectural debt index (ADI) is related also to architectural smells refac-
toring, since it is not easy to estimate the cost to remove architectural smells,
this cost could be evaluated by considering the architectural smells severity
computed through the ADI index.

9.2 future developments

• Architectural smells detection – Arcan currently detect six AS, it would
be interesting to detect other architectural smells, also not strictly re-
lated to dependency issues, and further investigate and validate the
two new architectural smells defined in Chapter 4 (e.g., Specification-
Implementation Violation and Multiple Architectural Smells). In the

9.2 future developments 159

future, further releases of the tool are planned to: (a) extend program-
ming language support; (b) improve the visual representation of Arcan
results.

• Architectural smell prediction and evolution – In future developments, I
would like to extend this study by analyzing more projects, also in ot-
her domains, and to extend the analysis to a larger set of lag settings,
to have a more precise view of the prediction performances further
in time. I are particularly interested in understanding and studying
the co-evolution of architectural smells. This is particularly useful to
better understand the AS and their evolution, but also their removal.
Moreover, I would like to extend the study according to the prediction
of changes through AS in history, to check if the presence of architec-
tural smells in the projects evolution can be used to predict software
changes. Another direction of investigation is related to a deep study
on architectural smell false positives identification and the way to fil-
ter them, as this has been done for code smells [6]. For example, by
studying the evolution of some AS, it would be possible to distinguish
between the AS that exist by design (good code) from those that occur-
red by accident (bad code) [159]. It could be also interesting to analyse
if a specific smell that tends to be present in the history of a project
is also more critical with respect to the ones already removed. Moreo-
ver, the analysis of architectural smells correlations can be exploited to
identify the architectural smells that tend to go together and that can
be considered for this reason more critical with respect to the isolated
smell.

• Architectural smells correlations with code smells Future works include the
replication of the study considering different projects, as commercial
or industrial projects, and the historical evolution of the projects. More-
over, other code smells other than these detected by the tools I adopted
could have different relationships with architectural smells. Therefore,
I believe there is the need of more empirical investigations in this dom-
ain, so as to understand (a) if the presence of other code smells implies
the presence of one or more architectural smells, (b) if the indepen-
dence between architectural smells and code smells is still true also by
considering other architectural smells not currently detected by Arcan
or by other available tools, (c) if the results obtained are valid for other
projects, as the industrial ones. Moreover, as outlined by Kouroshfar
et al [76] to improve the accuracy of bug prediction, one should also
take the software architecture of the system into consideration. Hence
I would like to study in the next future the possible correlations exis-
ting between architectural smells and bugs and also the possible cor-
relations existing with different issues, e.g., issues detected through
SonarQube.

• Architectural Debt Index – In the future works I would like to investigate
the history index function on several projects and validate the ADI

9.2 future developments 160

in industrial projects. I would like to implements the ADI profiles
functionality and exploit feedback of developers and practitioners on
the usefulness of the index.

• Architectural smells refactoring – In future works I would like to apply
the same methodology (see Chapter 8) on real world systems (indus-
trial) and use professional developers to try to apply the refactoring
steps or at least to evaluate the best choice both for the architectural
smells to be solved first and the refactoring to apply. I aim to extend
the experimentation by analyzing more projects through Arcan and
remove the AS according to the insights described in the Chapter 8).
Moreover, I aim to develop a recommending system of refactoring (Re-
factoring Advisor [14]) as a plugin of Arcan considering the work done
by Caracciolo et al. [34] in Smalltalk. The plugin will be devote to the
suggestion of the refactoring steps to remove the architectural smells,
since their refactoring could be in many cases a very complex task. In
this context, the aim is also to identify the most critical ones exploiting
the Severity Index previously defined in order to provide some refac-
toring effort estimations and to define and implement other possible
filters to remove false positive instances [6].

In this context, I would like to work also on an automated refacto-
ring scheduling approach, considering the possible conflicts and de-
pendency relationships as described by Moghadam et al. [115] and
their contribution in the improvement of specific metrics or quality in-
dexes more focused on the evaluation of architectural issues.

B I B L I O G R A P H Y

[1] Shameem Akhter and Jason Roberts. Multi-core programming. Vol. 33.
Intel press Hillsboro, 2006.

[2] Hussain A. Al-Mutawa, Jens Dietrich, Stephen Marsland, and Cather-
ine McCartin. “On the Shape of Circular Dependencies in Java Pro-
grams.” In: Proc. 23rd Australian Software Engineering Conference (AS-
WEC 2014). Sydney, Australia: IEEE, Apr. 2014, pp. 48–57. doi: 10.
1109/ASWEC.2014.15.

[3] A. Amirat, A. Bouchouk, M. O. Yeslem, and N. Gasmallah. “Refac-
tor Software architecture using graph transformation approach.” In:
Second International Conference on the Innovative Computing Technology
(INTECH 2012). 2012, pp. 117–122. doi: 10.1109/INTECH.2012.6457781.

[4] M. Aniche, G. Bavota, C. Treude, A. V. Deursen, and M. A. Gerosa.
“A Validated Set of Smells in Model-View-Controller Architectures.”
In: 2016 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME). 2016, pp. 233–243. doi: 10.1109/ICSME.2016.12.

[5] Francesca Arcelli Fontana, Vincenzo Ferme, and Stefano Spinelli. “In-
vestigating the impact of code smells debt on quality code evalua-
tion.” In: 2012 Third International Workshop on Managing Technical Debt
(MTD). 2012, pp. 15–22. doi: 10.1109/MTD.2012.6225993.

[6] Francesca Arcelli Fontana, Vincenzo Ferme, and Marco Zanoni. “Fil-
tering Code Smells Detection Results.” In: Proceedings of the 37th In-
ternational Conference on Software Engineering (ICSE 2015). Poster track.
Florence, Italy: IEEE, May 2015.

[7] Francesca Arcelli Fontana, Vincenzo Ferme, and Marco Zanoni. “To-
wards Assessing Software Architecture Quality by Exploiting Code
Smell Relations.” In: Proceedings of the 2nd IEEE/ACM International
Workshop on Software Architecture and Metrics (SAM 2015). Florence,
Italy, May 2015, pp. 1–7. doi: 10.1109/SAM.2015.8.

[8] Francesca Arcelli Fontana and Stefano Maggioni. “Metrics and Anti-
patterns for Software Quality Evaluation.” In: Proceedings of the 34th
IEEE Software Engineering Workshop (SEW 2011). Limerick, Ireland:
IEEE, June 2011, pp. 48–56. doi: 10.1109/SEW.2011.13.

[9] Francesca Arcelli Fontana, Riccardo Roveda, and Marco Zanoni. “Dis-
cover knowledge on FLOSS projects through RepoFinder.” In: Procee-
dings of the International Conference on Knowledge Discovery and Informa-
tion Retrieval (KDIR 2014). Rome, Italy: INSTICC Press, 2014, pp. 485–
491. doi: 10.5220/0005156704850491.

https://doi.org/10.1109/ASWEC.2014.15
https://doi.org/10.1109/ASWEC.2014.15
https://doi.org/10.1109/INTECH.2012.6457781
https://doi.org/10.1109/ICSME.2016.12
https://doi.org/10.1109/MTD.2012.6225993
https://doi.org/10.1109/SAM.2015.8
https://doi.org/10.1109/SEW.2011.13
https://doi.org/10.5220/0005156704850491

bibliography 162

[10] Francesca Arcelli Fontana, Riccardo Roveda, and Marco Zanoni. “Techni-
cal Debt Indexes Provided by Tools: A Preliminary Discussion.” In:
2016 IEEE 8th International Workshop on Managing Technical Debt (MTD).
2016, pp. 28–31. doi: 10.1109/MTD.2016.11.

[11] Francesca Arcelli Fontana, Riccardo Roveda, and Marco Zanoni. “Tool
support for evaluating architectural debt of an existing system: An ex-
perience report.” In: Proceedings of the 31st ACM/SIGAPP Symposium
on Applied Computing (SAC 2016). to appear. Pisa, Italy: ACM, Apr.
2016.

[12] Francesca Arcelli Fontana and Stefano Spinelli. “Impact of Refacto-
ring on Quality Code Evaluation.” In: Proceedings of the 4th Workshop
on Refactoring Tools. WRT ’11. Waikiki, Honolulu, USA: ACM, 2011,
pp. 37–40. isbn: 978-1-4503-0579-2. doi: 10.1145/1984732.1984741.
url: http://doi.acm.org/10.1145/1984732.1984741.

[13] Francesca Arcelli Fontana and Stefano Spinelli. “Impact of refactoring
on quality code evaluation.” In: Proc. 4th Workshop on Refactoring Tools
(WRT ’11). Waikiki, Honolulu, USA: ACM, 2011, pp. 37–40. isbn: 978-
1-4503-0579-2. doi: 10.1145/1984732.1984741.

[14] Francesca Arcelli Fontana, Francesco Zanoni, and Marco Zanoni. “DCRA:
a refactoring suggestion tool of Java code clones.” In: submitted to the
29th IEEE International Conference on Software Maintenance. Submitted,
waiting for review. IEEE, 2013, p. 10.

[15] Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and Ric-
cardo Roveda. “Towards a Prioritization of Code Debt: A Code Smell
Intensity Index.” In: Proc. Seventh Int’l Workshop on Managing Techni-
cal Debt (MTD 2015). In conjunction with ICSME 2015. Bremen, Ger-
many: IEEE, Oct. 2015, pp. 16–24. doi: 10.1109/MTD.2015.7332620.

[16] Francesca Arcelli Fontana, Riccardo Roveda, Marco Zanoni, Claudia
Raibulet, and R. Capilla. “An Experience Report on Detecting and Re-
pairing Software Architecture Erosion.” In: 2016 13th Working IEEE/I-
FIP Conference on Software Architecture (WICSA). 2016, pp. 21–30. doi:
10.1109/WICSA.2016.37.

[17] Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, and Marco
Zanoni. “Automatic Detection of Instability Architectural Smells.”
In: Proceedings of the 32nd International Conference on Software Main-
tenance and Evolution (ICSME 2016). ERA Track. Raleigh, North Caro-
lina, USA: IEEE, Oct. 2016.

[18] Francesca Arcelli Fontana, Riccardo Roveda, Stefano Vittori, Andrea
Metelli, Stefano Saldarini, and Francesco Mazzei. “On evaluating the
impact of the refactoring of architectural problems on software qua-
lity.” In: Proceedings of the Scientific Workshop Proceedings of XP2016,
Edinburgh, Scotland, UK, May 24, 2016. 2016, p. 21. doi: 10 . 1145 /

2962695.2962716. url: http://doi.acm.org/10.1145/2962695.
2962716.

https://doi.org/10.1109/MTD.2016.11
https://doi.org/10.1145/1984732.1984741
http://doi.acm.org/10.1145/1984732.1984741
https://doi.org/10.1145/1984732.1984741
https://doi.org/10.1109/MTD.2015.7332620
https://doi.org/10.1109/WICSA.2016.37
https://doi.org/10.1145/2962695.2962716
https://doi.org/10.1145/2962695.2962716
http://doi.acm.org/10.1145/2962695.2962716
http://doi.acm.org/10.1145/2962695.2962716

bibliography 163

[19] Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, Damian
Andrew Tamburri, Marco Zanoni, and Elisabetta Di Nitto. “Arcan:
A Tool for Architectural Smells Detection.” In: Int’l Conf. Software
Architecture (ICSA 2017) Workshops. Gothenburg, Sweden, Apr. 2017,
pp. 282–285. doi: 10.1109/ICSAW.2017.16.

[20] Francesca Arcelli Fontana, Riccardo Roveda, Valentina Leonarduzzi,
and Davide Taibi. “Are Architectural Smells Independent from Code
Smells? An Empirical Study.” In: Submitted to The Journal of Informa-
tion and Software Technology (IST) (2018).

[21] Roberta Arcoverde, Alessandro Garcia, and Eduardo Figueiredo. “Un-
derstanding the longevity of code smells: preliminary results of an ex-
planatory survey.” In: Fourth Workshop on Refactoring Tools 2011, WRT
’11, Waikiki, Honolulu, HI, USA, May 22, 2011. 2011, pp. 33–36. doi:
10.1145/1984732.1984740.

[22] Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, and Hans
Hansson. “Concurrency bugs in open source software: a case study.”
In: J. Internet Services and Applications 8.1 (2017), 4:1–4:15. doi: 10 .

1186/s13174-017-0055-2.

[23] Carliss Y. Baldwin and Kim B. Clark. Design Rules: The Power of Modu-
larity Volume 1. Cambridge, MA, USA: MIT Press, 1999. isbn: 0262024667.

[24] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison Wesley, 1998.

[25] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oli-
veto, and Fabio Palomba. “An Experimental Investigation on the In-
nate Relationship Between Quality and Refactoring.” In: J. Syst. Softw.
107.C (Sept. 2015), pp. 1–14. issn: 0164-1212. doi: 10.1016/j.jss.
2015.05.024. url: http://dx.doi.org/10.1016/j.jss.2015.05.024.

[26] Yogesh Bhatia and Sanjeev Verma. “Deadlocks in distributed sys-
tems.” In: International Journal of Research 1.9 (2014), pp. 1249–1252.

[27] David Binkley, Nicolas Gold, Mark Harman, Zheng Li, Kiarash Mahdavi,
and Joachim Wegener. “Dependence Anti Patterns.” In: Proceedings of
the 23rd IEEE/ACM International Conference on Automated Software Engi-
neering - Workshops. L’Aquila, Italy: IEEE, Sept. 2008, pp. 25–34. isbn:
978-1-4244-2776-5. doi: 10.1109/ASEW.2008.4686318.

[28] Bart Du Bois, Serge Demeyer, Jan Verelst, Tom Mens, and Marijn
Temmerman. “Does God Class Decomposition Affect Comprehensi-
bility?” In: IASTED Conf. on Software Engineering. 2006.

[29] Grady Booch. Object-Oriented Analysis and Design with Applications
(3rd Edition). Redwood City, CA, USA: Addison Wesley Longman Pu-
blishing Co., Inc., 2004. isbn: 020189551X.

[30] F. Bourquin and R. K. Keller. “High-impact Refactoring Based on Ar-
chitecture Violations.” In: 11th European Conference on Software Mainte-
nance and Reengineering (CSMR’07). 2007, pp. 149–158. doi: 10.1109/
CSMR.2007.25.

https://doi.org/10.1109/ICSAW.2017.16
https://doi.org/10.1145/1984732.1984740
https://doi.org/10.1186/s13174-017-0055-2
https://doi.org/10.1186/s13174-017-0055-2
https://doi.org/10.1016/j.jss.2015.05.024
https://doi.org/10.1016/j.jss.2015.05.024
http://dx.doi.org/10.1016/j.jss.2015.05.024
https://doi.org/10.1109/ASEW.2008.4686318
https://doi.org/10.1109/CSMR.2007.25
https://doi.org/10.1109/CSMR.2007.25

bibliography 164

[31] Kevin W. Bowyer, Nitesh V. Chawla, Lawrence O. Hall, and W. Phi-
lip Kegelmeyer. “SMOTE: Synthetic Minority Over-sampling Techni-
que.” In: CoRR abs/1106.1813 (2011).

[32] S. Brin and L. Page. “The Anatomy of a Large-Scale Hypertextual
Web Search Engine.” In: Seventh International World-Wide Web Confe-
rence (WWW 1998). 1998. url: http://ilpubs.stanford.edu:8090/
361/.

[33] William Brown, Raphael C. Malveau, Hays W. McCormick III, and
Thomas J. Mowbray. AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis. John Wiley, 1998, p. 336. isbn: 0-471-19713-0.

[34] Andrea Caracciolo, Bledar Aga, Mircea Lungu, and Oscar Nierstrasz.
“Marea: A Semi-Automatic Decision Support System for Breaking De-
pendency Cycles.” In: IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka, Ja-
pan, March 14-18, 2016 - Volume 1. 2016, pp. 482–492. doi: 10.1109/
SANER.2016.11. url: http://dx.doi.org/10.1109/SANER.2016.11.

[35] Oscar Chaparro, Gabriele Bavota, Andrian Marcus, and Massimiliano
Di Penta. “On the Impact of Refactoring Operations on Code Quality
Metrics.” In: Proceedings of the 2014 IEEE International Conference on
Software Maintenance and Evolution. ICSME ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 456–460. isbn: 978-1-4799-6146-7.
doi: 10.1109/ICSME.2014.73. url: http://dx.doi.org/10.1109/
ICSME.2014.73.

[36] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP:
portable shared memory parallel programming. Vol. 10. MIT press, 2008.

[37] Alexander Chatzigeorgiou and Anastasios Manakos. “Investigating
the Evolution of Bad Smells in Object-Oriented Code.” In: 2010 Se-
venth Int’l Conf. the Quality of Information and Communications Tech.
IEEE, 2010, pp. 106–115. isbn: 978-1-4244-8539-0. doi: 10.1109/QUATIC.
2010.16.

[38] Shyam R. Chidamber and Chris F. Kemerer. “A Metrics Suite for Ob-
ject Oriented Design.” In: IEEE Transactions on Software Engineering
20.6 (1994), pp. 476–493. doi: 10.1109/32.295895.

[39] Clarkware. JDepend. http://clarkware.com/software/JDepend.html.
2018.

[40] Peter Coad and Edward Yourdon. Object-oriented Design. Yourdon
Press, 1991. isbn: 0-13-630070-7.

[41] Corinna Cortes and Vladimir Vapnik. “Support-vector networks.” In:
Machine Learning 20.3 (1995), pp. 273–297. issn: 0885-6125. doi: 10.
1007/BF00994018.

[42] Ward Cunningham. “The WyCash portfolio management system.” In:
OOPS Messenger 4.2 (1993), pp. 29–30. doi: 10.1145/157710.157715.

http://ilpubs.stanford.edu:8090/361/
http://ilpubs.stanford.edu:8090/361/
https://doi.org/10.1109/SANER.2016.11
https://doi.org/10.1109/SANER.2016.11
http://dx.doi.org/10.1109/SANER.2016.11
https://doi.org/10.1109/ICSME.2014.73
http://dx.doi.org/10.1109/ICSME.2014.73
http://dx.doi.org/10.1109/ICSME.2014.73
https://doi.org/10.1109/QUATIC.2010.16
https://doi.org/10.1109/QUATIC.2010.16
https://doi.org/10.1109/32.295895
http://clarkware.com/software/JDepend.html
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1145/157710.157715

bibliography 165

[43] Robert Dąbrowski, Krzysztof Stencel, and Grzegorz Timoszuk. “Soft-
ware Is a Directed Multigraph.” In: Proc. 5th European Conf. Softw.
Arch. (ECSA 2011). Essen, Germany: Springer, Sept. 2011, pp. 360–
369. isbn: 978-3-642-23798-0. doi: 10.1007/978-3-642-23798-0_38.

[44] Ignatios Deligiannis, Martin Shepperd, Manos Roumeliotis, and Ioan-
nis Stamelos. “An empirical investigation of an object-oriented design
heuristic for maintainability.” In: Journal of Systems and Software 65.2
(2003), pp. 127 –139. issn: 0164-1212. doi: https://doi.org/10.1016/
S0164- 1212(02)00054- 7. url: http://www.sciencedirect.com/
science/article/pii/S0164121202000547.

[45] Jens Dietrich. “Upload Your Program, Share Your Model.” In: Procee-
dings of the 3rd Conference on Systems, Programming and Applications:
Software for Humanity (SPLASH ’12). Tucson, Arizona, USA: ACM,
Oct. 2012, pp. 21–22. isbn: 978-1-4503-1563-0. doi: 10.1145/2384716.
2384727.

[46] Jens Dietrich, Catherine McCartin, Ewan Tempero, and Syed M. Ali
Shah. “On the Existence of High-impact Refactoring Opportunities
in Programs.” In: Proceedings of the Thirty-fifth Australasian Computer
Science Conference - Volume 122. ACSC ’12. Melbourne, Australia: Au-
stralian Computer Society, Inc., 2012, pp. 37–48. isbn: 978-1-921770-
03-6. url: http://dl.acm.org/citation.cfm?id=2483654.2483659.

[47] Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and
Ian Gorton. “Measure It? Manage It? Ignore It? Software Practitio-
ners and Technical Debt.” In: Proc. of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ESEC/FSE 2015. Italy: ACM, 2015,
pp. 50–60. isbn: 978-1-4503-3675-8. doi: 10.1145/2786805.2786848.
url: http://doi.acm.org/10.1145/2786805.2786848.

[48] Martin Fowler. Refactoring: Improving the Design of Existing Code. Bos-
ton, MA, USA: Addison-Wesley, 1999.

[49] Martin Fowler. Patterns of Enterprise Application Architecture. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002. isbn:
0321127420. url: http://portal.acm.org/citation.cfm?id=579257.

[50] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: elements of reusable object-oriented software. Addison-
Wesley Professional, 1995.

[51] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Yuanfang
Cai. “Enhancing architectural recovery using concerns.” In: 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2011).
2011, pp. 552–555. doi: 10.1109/ASE.2011.6100123.

[52] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvi-
dovic. “Identifying Architectural Bad Smells.” In: CSMR 2009. Ger-
many: IEEE, 2009, pp. 255–258. doi: 10.1109/CSMR.2009.59.

https://doi.org/10.1007/978-3-642-23798-0_38
https://doi.org/https://doi.org/10.1016/S0164-1212(02)00054-7
https://doi.org/https://doi.org/10.1016/S0164-1212(02)00054-7
http://www.sciencedirect.com/science/article/pii/S0164121202000547
http://www.sciencedirect.com/science/article/pii/S0164121202000547
https://doi.org/10.1145/2384716.2384727
https://doi.org/10.1145/2384716.2384727
http://dl.acm.org/citation.cfm?id=2483654.2483659
https://doi.org/10.1145/2786805.2786848
http://doi.acm.org/10.1145/2786805.2786848
http://portal.acm.org/citation.cfm?id=579257
https://doi.org/10.1109/ASE.2011.6100123
https://doi.org/10.1109/CSMR.2009.59

bibliography 166

[53] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Med-
vidovic. “Toward a Catalogue of Architectural Bad Smells.” In: Pro-
ceedings of the 5th International Conference on the Quality of Software
Architectures (QoSA 2009). East Stroudsburg, PA, USA: Springer Ber-
lin Heidelberg, June 2009, pp. 146–162. isbn: 978-3-642-02351-4. doi:
10.1007/978-3-642-02351-4_10.

[54] Google, Inc. CodePro Analytix User Guide. https://developers.google.
com/java-dev-tools/codepro/doc/. 2018.

[55] Ian Gorton and Liming Zhu. “Tool support for just-in-time architec-
ture reconstruction and evaluation: an experience report.” In: Procee-
dings of the 27th International Conference on Software Engineering (ICSE
2005). St. Louis, USA: IEEE, May 2005, pp. 514–523. doi: 10.1109/
ICSE.2005.1553597.

[56] Darryl Gove. Multicore Application Programming: For Windows, Linux,
and Oracle Solaris. Addison-Wesley Professional, 2010.

[57] Jilles Van Gurp, Jan Bosch, and Sjaak Brinkkemper. “Design Ero-
sion in Evolving Software Products.” In: Proceedings of the Internatio-
nal Workshop on Evolution of Large-scale Industrial Software Applications
(ELISA). co-located with ICSM 2003. ESF RELEASE research network.
Amsterdam, The Netherlands, Sept. 2003, pp. 134–139.

[58] Jilles van Gurp and Jan Bosch. “Design erosion: problems and cau-
ses.” In: Journal of Systems and Software 61.2 (2002), pp. 105–119. doi:
10.1016/S0164-1212(01)00152-2.

[59] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. “Some Code Smells
Have a Significant but Small Effect on Faults.” In: ACM Trans. Softw.
Eng. Methodol. 23.4 (Sept. 2014), 33:1–33:39. issn: 1049-331X. doi: 10.
1145/2629648. url: http://doi.acm.org/10.1145/2629648.

[60] Headway Software Technologies. Structure101. http://structure101.
com/products/. 2018.

[61] Kennet Henningsson and Claes Wohlin. “Assuring fault classification
agreement-an empirical evaluation.” In: Empirical Software Engineer-
ing, 2004. ISESE’04. Proceedings. 2004 International Symposium on. IEEE.
2004, pp. 95–104.

[62] Myles Hollander and Douglas A. Wolfe. Nonparametric Statistical Met-
hods. 2nd ed. New York: John Wiley & Sons, Aug. 1999.

[63] Sture Holm. “A Simple Sequentially Rejective Multiple Test Proce-
dure.” In: Scandinavian Journal of Statistics 6.2 (1979), pp. 65–70. issn:
03036898, 14679469.

[64] IBM Alphaworks. SA4J — Structural Analysis for Java. 2018.

[65] ISO. Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SquaRE) – System and software quality mo-
dels. site. http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=35733. 2011.

https://doi.org/10.1007/978-3-642-02351-4_10
https://developers.google.com/java-dev-tools/codepro/doc/
https://developers.google.com/java-dev-tools/codepro/doc/
https://doi.org/10.1109/ICSE.2005.1553597
https://doi.org/10.1109/ICSE.2005.1553597
https://doi.org/10.1016/S0164-1212(01)00152-2
https://doi.org/10.1145/2629648
https://doi.org/10.1145/2629648
http://doi.acm.org/10.1145/2629648
http://structure101.com/products/
http://structure101.com/products/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733

bibliography 167

[66] ISO/IEC. ISO/IEC 25010 - Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models. 2010.

[67] Intooitus. inFusion. http://www.intooitus.com/products/infusion.
2015.

[68] Ali Jannesari, Kaibin Bao, Victor Pankratius, and Walter F. Tichy. “Hel-
grind+: An efficient dynamic race detector.” In: IPDPS. IEEE, 2009,
pp. 1–13. doi: 10.1109/IPDPS.2009.5160998.

[69] Deepal Jayasinghe and Pengcheng Xiong. “CORE: Visualization tool
for fault localization in concurrent programs.” In: Internet: http://www.
cc. gatech. edu/grads/i/ijayasin/resources/core_falcon. pdf (2010).

[70] JetBrains s.r.o. IntelliJ IDEA. https://www.jetbrains.com/idea/.
2018.

[71] Cory J. Kapser and Michael W. Godfrey. “"Cloning Considered Harm-
ful" Considered Harmful: Patterns of Cloning in Software.” In: Empi-
rical Softw. Engg. 13.6 (Dec. 2008), pp. 645–692. issn: 1382-3256. doi:
10.1007/s10664-008-9076-6. url: http://dx.doi.org/10.1007/
s10664-008-9076-6.

[72] R. Kazman, Yuanfang Cai, Ran Mo, Qiong Feng, Lu Xiao, S. Haziyev,
V. Fedak, and A. Shapochka. “A Case Study in Locating the Archi-
tectural Roots of Technical Debt.” In: Proceedings of the 37th IEEE In-
ternational Conference on Software Engineering (ICSE 2015). Vol. 2. 2015,
pp. 179–188. doi: 10.1109/ICSE.2015.146.

[73] Joshua Kerievsky. “Refactoring to Patterns.” In: Extreme Programming
and Agile Methods - XP/Agile Universe 2004, 4th Conference on Extreme
Programming and Agile Methods, Calgary, Canada, August 15-18, 2004,
Proceedings. Ed. by Carmen Zannier, Hakan Erdogmus, and Lowell
Lindstrom. Vol. 3134. Lecture Notes in Computer Science. Springer,
2004, p. 232. isbn: 3-540-22839-X. doi: 10.1007/978-3-540-27777-
4_54. url: http://dx.doi.org/10.1007/978-3-540-27777-4_54.

[74] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and
Giuliano Antoniol. “An Exploratory Study of the Impact of Anti-
patterns on Class Change- and Fault-proneness.” In: Empirical Softw.
Engg. 17.3 (June 2012), pp. 243–275. issn: 1382-3256. doi: 10.1007/
s10664-011-9171-y. url: http://dx.doi.org/10.1007/s10664-011-
9171-y.

[75] M. V. Kosti, A. Ampatzoglou, A. Chatzigeorgiou, G. Pallas, I. Stame-
los, and L. Angelis. “Technical Debt Principal Assessment Through
Structural Metrics.” In: 2017 43rd Euromicro Conference on Software En-
gineering and Advanced Applications (SEAA). 2017, pp. 329–333. doi:
10.1109/SEAA.2017.59.

http://www.intooitus.com/products/infusion
https://doi.org/10.1109/IPDPS.2009.5160998
https://www.jetbrains.com/idea/
https://doi.org/10.1007/s10664-008-9076-6
http://dx.doi.org/10.1007/s10664-008-9076-6
http://dx.doi.org/10.1007/s10664-008-9076-6
https://doi.org/10.1109/ICSE.2015.146
https://doi.org/10.1007/978-3-540-27777-4_54
https://doi.org/10.1007/978-3-540-27777-4_54
http://dx.doi.org/10.1007/978-3-540-27777-4_54
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1007/s10664-011-9171-y
http://dx.doi.org/10.1007/s10664-011-9171-y
http://dx.doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1109/SEAA.2017.59

bibliography 168

[76] Ehsan Kouroshfar, Mehdi Mirakhorli, Hamid Bagheri, Lu Xiao, Sam
Malek, and Yuanfang Cai. “A Study on the Role of Software Architec-
ture in the Evolution and Quality of Software.” In: Proc. 12th Working
Conf. Mining Software Repositories. MSR ’15. Florence, Italy: IEEE Press,
2015, pp. 246–257. isbn: 978-0-7695-5594-2.

[77] Heiko Koziolek, Dominik Domis, Thomas Goldschmidt, and Philipp
Vorst. “Measuring Architecture Sustainability.” In: IEEE Software 30.6
(2013). doi: 10.1109/MS.2013.101.

[78] G. Krasner and S. Pope. “A Description of the Model-View-Controller
User Interface Paradigm in the Smalltalk-80 System.” In: Journal of Ob-
ject Oriented Programming 1.3 (1988), pp. 26–49. url: http://citeseer.
ist.psu.edu/krasner88description.html.

[79] Klaus Krippendorff. Content Analysis: An Introduction to Its Methodo-
logy (second edition). Sage Publications, 2004.

[80] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice.
Springer-Verlag, 2006.

[81] Lattix, Inc. Lattix Architect and Lattix Analyst. http://lattix.com/
lattix-architect-and-lattix-analyst. 2018.

[82] Jannik Laval and Stéphane Ducasse. “Resolving cyclic dependencies
between packages with Enriched Dependency Structural Matrix.” In:
Software: Practice and Experience (Nov. 2012). url: https://hal.inria.
fr/hal-00748120.

[83] Duc Le and Nenad Medvidovic. “Architectural-based Speculative Ana-
lysis to Predict Bugs in a Software System.” In: Proc. 38th Int’l Conf.
Software Eng. Companion. ICSE ’16. Austin, Texas: ACM, 2016, pp. 807–
810. isbn: 978-1-4503-4205-6. doi: 10.1145/2889160.2889260.

[84] Duc Le, Daniel Link, Yixue Zhao, Arman Shahbazian, Chris Matt-
mann, and Nenad Medvidovic. “Toward a Classification Framework
for Software Architectural Smells.” In: Techincal Report csse.usc.edu
(2017). url: http://csse.usc.edu/TECHRPTS/2017/TR_decay_arch.
pdf.

[85] J.-L. Letouzey. “The SQALE method for evaluating Technical Debt.”
In: MTD 2012. 2012, pp. 31–36. doi: 10.1109/MTD.2012.6225997.

[86] J. Letouzey and M. Ilkiewicz. “Managing Technical Debt with the
SQALE Method.” In: IEEE Software 29.6 (2012), pp. 44–51. issn: 0740-
7459. doi: 10.1109/MS.2012.129.

[87] Jean-Louis Letouzey. “The SQALE Method for Evaluating Technical
Debt.” In: Proceedings of the Third International Workshop on Managing
Technical Debt. MTD ’12. Zurich, Switzerland: IEEE Press, 2012, pp. 31–
36. isbn: 978-1-4673-1749-8. url: http://dl.acm.org/citation.cfm?
id=2666036.2666042.

https://doi.org/10.1109/MS.2013.101
http://citeseer.ist.psu.edu/krasner88description.html
http://citeseer.ist.psu.edu/krasner88description.html
http://lattix.com/lattix-architect-and-lattix-analyst
http://lattix.com/lattix-architect-and-lattix-analyst
https://hal.inria.fr/hal-00748120
https://hal.inria.fr/hal-00748120
https://doi.org/10.1145/2889160.2889260
http://csse.usc.edu/TECHRPTS/2017/TR_decay_arch.pdf
http://csse.usc.edu/TECHRPTS/2017/TR_decay_arch.pdf
https://doi.org/10.1109/MTD.2012.6225997
https://doi.org/10.1109/MS.2012.129
http://dl.acm.org/citation.cfm?id=2666036.2666042
http://dl.acm.org/citation.cfm?id=2666036.2666042

bibliography 169

[88] Wei Li and Raed Shatnawi. “An Empirical Study of the Bad Smells
and Class Error Probability in the Post-release Object-oriented Sy-
stem Evolution.” In: J. Syst. Softw. 80.7 (July 2007), pp. 1120–1128.
issn: 0164-1212. doi: 10 . 1016 / j . jss . 2006 . 10 . 018. url: https :

//doi.org/10.1016/j.jss.2006.10.018.

[89] Zengyang Li, Paris Avgeriou, and Peng Liang. “A systematic map-
ping study on technical debt and its management.” In: Journal of Sy-
stems and Software 101 (2015), pp. 193–220. issn: 0164-1212. doi: 10.
1016/j.jss.2014.12.027.

[90] Zengyang Li, Peng Liang, Paris Avgeriou, Nicolas Guelfi, and Aposto-
los Ampatzoglou. “An Empirical Investigation of Modularity Metrics
for Indicating Architectural Technical Debt.” In: QoSA ’14. France:
ACM, 2014, pp. 119–128. isbn: 978-1-4503-2576-9. doi: 10.1145/2602576.
2602581.

[91] Andy Liaw and Matthew Wiener. “Classification and Regression by
randomForest.” In: R News 2.3 (2002), pp. 18–22. url: http://CRAN.R-
project.org/doc/Rnews/.

[92] Shiyao Lin, Andy Wellings, and Alan Burns. “Supporting lock-based
multiprocessor resource sharing protocols in real-time programming
languages.” In: Concurrency and Computation: Practice and Experience
25.16 (2013), pp. 2227–2251.

[93] Martin Lippert and Stephen Roock. Refactoring in Large Software Pro-
jects: Performing Complex Restructurings Successfully. Wiley, Apr. 2006,
p. 286. isbn: 978-0-470-85892-9.

[94] Hui Liu, Zhiyi Ma, Weizhong Shao, and Zhendong Niu. “Schedule
of Bad Smell Detection and Resolution: A New Way to Save Effort.”
In: IEEE Transactions on Software Engineering 38.1 (2012), pp. 220–235.
issn: 0098-5589. doi: 10.1109/TSE.2011.9.

[95] Angela Lozano and Michael Wermellinger. “Assessing the effect of
clones on changeability.” In: IEEE International Conference on Software
Maintenance. ICSM ’08. Washington, DC, USA: IEEE Computer So-
ciety, 2008, pp. 227–236. isbn: 978-1-4244-2613-3.

[96] S. Lu, J. Tucek, F. Qin, and Y. Zhou. “AVIO: Detecting Atomicity Vio-
lations via Access-Interleaving Invariants.” In: IEEE Micro 27.1 (2007),
pp. 26–35. issn: 0272-1732. doi: 10.1109/MM.2007.5.

[97] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. “Learning
from mistakes: a comprehensive study on real world concurrency
bug characteristics.” In: ACM Sigplan Notices. Vol. 43. 3. ACM. 2008,
pp. 329–339.

[98] Isela Macía Bertrán. “On the Detection of Architecturally-Relevant
Code Anomalies in Software Systems.” PhD thesis. Rio de Janeiro:
PUC-Rio, Departamento de Informática, 2013.

https://doi.org/10.1016/j.jss.2006.10.018
https://doi.org/10.1016/j.jss.2006.10.018
https://doi.org/10.1016/j.jss.2006.10.018
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1145/2602576.2602581
https://doi.org/10.1145/2602576.2602581
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1109/TSE.2011.9
https://doi.org/10.1109/MM.2007.5

bibliography 170

[99] Isela Macia Bertran, Roberta Arcoverde, Alessandro Garcia, Christina
Chavez, and Arndt von Staa. “On the Relevance of Code Anomalies
for Identifying Architecture Degradation Symptoms.” In: Proceedings
of the 16th European Conference on Software Maintenance and Reengineer-
ing (CSMR 2012). Szeged, Hungary, Mar. 2012. doi: 10.1109/CSMR.
2012.35.

[100] I. Macia, R. Arcoverde, E. Cirilo, A. Garcia, and A. von Staa. “Sup-
porting the identification of architecturally-relevant code anomalies.”
In: Proc. of the 28th IEEE Intern.Conf. on Soft. Maint.(ICSM 2012). Italy:
IEEE, 2012, pp. 662–665. doi: 10.1109/ICSM.2012.6405348.

[101] Isela Macia, Joshua Garcia, Daniel Popescu, Alessandro Garcia, Ne-
nad Medvidovic, and Arndt von Staa. “Are Automatically-detected
Code Anomalies Relevant to Architectural Modularity?: An Explora-
tory Analysis of Evolving Systems.” In: Proceedings of the 11th Annual
International Conference on Aspect-oriented Software Development (AOSD
’12). Potsdam, Germany: ACM, Mar. 2012, pp. 167–178. isbn: 978-1-
4503-1092-5. doi: 10.1145/2162049.2162069.

[102] Isela Macia, Roberta Arcoverde, Alessandro Garcia, Christina Chavez,
and Arndt von Staa. “On the Relevance of Code Anomalies for Identi-
fying Architecture Degradation Symptoms.” In: Proceedings of the 15th
European Conference on Software Maintenance and Reengineering (CSMR
2012). Szeged, Hungary: IEEE Computer Society, Mar. 2012, pp. 277–
286. doi: 10.1109/CSMR.2012.35.

[103] Matthias Mair and Sebastian Herold. “Towards Extensive Software
Architecture Erosion Repairs.” In: ECSA. Ed. by Khalil Drira. Vol. 7957.
Lecture Notes in Computer Science. Springer, 2013, pp. 299–306. isbn:
978-3-642-39030-2. doi: 10.1007/978-3-642-39031-9_25.

[104] Ruchika Malhotra and Megha Khanna. “An exploratory study for
software change prediction in object-oriented systems using hybridi-
zed techniques.” In: Automated Software Eng. (2016), pp. 1–45. issn:
1573-7535. doi: 10.1007/s10515-016-0203-0.

[105] M. Mantyla, J. Vanhanen, and C. Lassenius. “A taxonomy and an ini-
tial empirical study of bad smells in code.” In: Software Maintenance,
2003. ICSM 2003. Proceedings. International Conference on. 2003, pp. 381–
384. doi: 10.1109/ICSM.2003.1235447.

[106] R. Marinescu, G. Ganea, and I. Verebi. “InCode: Continuous Quality
Assessment and Improvement.” In: 2010 14th European Conference on
Software Maintenance and Reengineering. 2010, pp. 274–275. doi: 10 .

1109/CSMR.2010.44.

[107] Radu Marinescu. “Detection Strategies: Metrics-Based Rules for De-
tecting Design Flaws.” In: Proceedings of the 20th IEEE International
Conference on Software Maintenance. ICSM ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 350–359. isbn: 0-7695-2213-0. url:
http://dl.acm.org/citation.cfm?id=1018431.1021443.

https://doi.org/10.1109/CSMR.2012.35
https://doi.org/10.1109/CSMR.2012.35
https://doi.org/10.1109/ICSM.2012.6405348
https://doi.org/10.1145/2162049.2162069
https://doi.org/10.1109/CSMR.2012.35
https://doi.org/10.1007/978-3-642-39031-9_25
https://doi.org/10.1007/s10515-016-0203-0
https://doi.org/10.1109/ICSM.2003.1235447
https://doi.org/10.1109/CSMR.2010.44
https://doi.org/10.1109/CSMR.2010.44
http://dl.acm.org/citation.cfm?id=1018431.1021443

bibliography 171

[108] Radu Marinescu. “Assessing technical debt by identifying design flaws
in software systems.” In: IBM Journal of Research and Development 56.5
(2012), 9:1–9:13. issn: 0018-8646. doi: 10.1147/JRD.2012.2204512.

[109] Robert C. Martin. “Object Oriented Design Quality Metrics: An Ana-
lysis of dependencies.” In: ROAD 2.3 (1995).

[110] Tom Mens and Arie Van Deursen. Refactoring: Emerging Trends and
Open Problems. 2004. url: \url{http://www.swen.uwaterloo.ca/
~reface03/Papers/TomMens.pdf}.

[111] Tom Mens and Tom Tourwé. “A Survey of Software Refactoring.” In:
IEEE Trans. Software Eng. 30.2 (2004), pp. 126–139. doi: 10.1109/TSE.
2004.1265817. url: http://dx.doi.org/10.1109/TSE.2004.1265817.

[112] Metrics and Queries Documentation v.7.2. hello2morrow GmbH. 2011.

[113] Bertrand Meyer. Object-oriented Software Construction (2Nd Ed.) Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1997. isbn: 0-13-629155-4.

[114] Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. “Hotspot Pat-
terns: The Formal Definition and Automatic Detection of Architec-
ture Smells.” In: Proceedings of the 12th Working IEEE/IFIP Conference
on Software Architecture (WICSA 2015). Montreal, QC, Canada: IEEE,
May 2015, pp. 51–60. doi: 10.1109/WICSA.2015.12.

[115] Iman Hemati Moghadam and Mel Ó Cinnéide. “Resolving Conflict
and Dependency in Refactoring to a Desired Design.” In: e-Informatica
9.1 (2015), pp. 37–56. doi: 10.5277/e-Inf150103. url: http://dx.doi.
org/10.5277/e-Inf150103.

[116] Naouel Moha and Yann-Gael Guéhéneuc. “Decor: a tool for the de-
tection of design defects.” In: Proc. 22nd IEEE/ACM international con-
ference on Automated software engineering (ASE ’07). Atlanta, Georgia,
USA: ACM, 2007, pp. 527–528. isbn: 978-1-59593-882-4. doi: 10.1145/
1321631.1321727.

[117] Nachiappan Nagappan and Thomas Ball. “Using software dependen-
cies and churn metrics to predict field failures: An empirical case
study.” In: Proc. 1st Intern. Symp. on Empirical Software Eng. and Mea-
surement (ESEM 2007). Madrid, Spain: IEEE, Sept. 2007, pp. 364–373.
doi: 10.1109/ESEM.2007.13.

[118] R.L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas. “In Search
of a Metric for Managing Architectural Technical Debt.” In: Procee-
dings of the 2012 Joint Working IEEE/IFIP Conf. on Soft. Arch. (WICSA)
and European Conf. on Soft. Arch. (ECSA). Finland: IEEE, 2012, pp. 91–
100. doi: 10.1109/WICSA-ECSA.212.17.

[119] Mel Ó Cinnéide, Aiko Yamashita, and Steve Counsell. “Measuring
Refactoring Benefits: A Survey of the Evidence.” In: Proceedings of the
1st International Workshop on Software Refactoring. IWoR 2016. Singa-
pore, Singapore: ACM, 2016, pp. 9–12. isbn: 978-1-4503-4509-5. doi:
10.1145/2975945.2975948. url: http://doi.acm.org/10.1145/
2975945.2975948.

https://doi.org/10.1147/JRD.2012.2204512
\url{http://www.swen.uwaterloo.ca/~reface03/Papers/TomMens.pdf}
\url{http://www.swen.uwaterloo.ca/~reface03/Papers/TomMens.pdf}
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/WICSA.2015.12
https://doi.org/10.5277/e-Inf150103
http://dx.doi.org/10.5277/e-Inf150103
http://dx.doi.org/10.5277/e-Inf150103
https://doi.org/10.1145/1321631.1321727
https://doi.org/10.1145/1321631.1321727
https://doi.org/10.1109/ESEM.2007.13
https://doi.org/10.1109/WICSA-ECSA.212.17
https://doi.org/10.1145/2975945.2975948
http://doi.acm.org/10.1145/2975945.2975948
http://doi.acm.org/10.1145/2975945.2975948

bibliography 172

[120] Odysseus Software GmbH. STAN. http://stan4j.com/. 2018.

[121] W. Oizumi, A. Garcia, M. Ferreira, A. von Staa, and T.E. Colanzi.
“When Code-Anomaly Agglomerations Represent Architectural Pro-
blems? An Exploratory Study.” In: Software Engineering (SBES), 2014
Brazilian Symposium on. 2014, pp. 91–100. doi: 10.1109/SBES.2014.18.

[122] Willian Nalepa Oizumi, Alessandro F. Garcia, Leonardo da Silva Sousa,
Bruno Barbieri Pontes Cafeo, and Yixue Zhao. “Code anomalies flock
together: exploring code anomaly agglomerations for locating design
problems.” In: Proceedings of the 38th International Conference on Soft-
ware Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016. 2016,
pp. 440–451. doi: 10.1145/2884781.2884868. url: http://doi.acm.
org/10.1145/2884781.2884868.

[123] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka. “The evolution
and impact of code smells: A case study of two open source systems.”
In: 2009 3rd Int’l Symp. Empirical Software Eng. and Measurement. 2009,
pp. 390–400. doi: 10.1109/ESEM.2009.5314231.

[124] S.M. Olbrich, D.S. Cruzes, and Dag I K Sjoberg. “Are all code smells
harmful? A study of God Classes and Brain Classes in the evolution
of three open source systems.” In: IEEE International Conference on
Software Maintenance (ICSM 2010). 2010, p. 10. doi: 10.1109/ICSM.
2010.5609564.

[125] Ali Ouni, Marouane Kessentini, and Houari Sahraoui. “Chapter Four
- Multiobjective Optimization for Software Refactoring and Evolu-
tion.” In: Advances in Computers. Ed. by Ali Hurson. Vol. 94. Elsevier,
2014, pp. 103 –167. doi: http://dx.doi.org/10.1016/B978-0-12-
800161-5.00004-9.

[126] Tosin Daniel Oyetoyan, Jean-Rémy Falleri, Jens Dietrich, and Kamil
Jezek. “Circular dependencies and change-proneness: An empirical
study.” In: 22nd IEEE International Conference on Software Analysis, Evo-
lution, and Reengineering, SANER 2015, Montreal, QC, Canada, March
2-6, 2015. 2015, pp. 241–250. doi: 10.1109/SANER.2015.7081834. url:
http://dx.doi.org/10.1109/SANER.2015.7081834.

[127] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia. “Mining Version Histories for Detecting Code Smells.”
In: IEEE Transactions on Software Engineering 41.5 (2015), pp. 462–489.
issn: 0098-5589. doi: 10.1109/TSE.2014.2372760.

[128] F. Palomba, M. Zanoni, F. A. Fontana, A. D. Lucia, and R. Oliveto.
“Smells Like Teen Spirit: Improving Bug Prediction Performance Using
the Intensity of Code Smells.” In: 2016 IEEE International Conference
Software Maintenance and Evolution (ICSME). 2016, pp. 244–255. doi:
10.1109/ICSME.2016.27.

[129] Sangmin Park, Richard W Vuduc, and Mary Jean Harrold. “Falcon:
fault localization in concurrent programs.” In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1.
ACM. 2010, pp. 245–254.

http://stan4j.com/
https://doi.org/10.1109/SBES.2014.18
https://doi.org/10.1145/2884781.2884868
http://doi.acm.org/10.1145/2884781.2884868
http://doi.acm.org/10.1145/2884781.2884868
https://doi.org/10.1109/ESEM.2009.5314231
https://doi.org/10.1109/ICSM.2010.5609564
https://doi.org/10.1109/ICSM.2010.5609564
https://doi.org/http://dx.doi.org/10.1016/B978-0-12-800161-5.00004-9
https://doi.org/http://dx.doi.org/10.1016/B978-0-12-800161-5.00004-9
https://doi.org/10.1109/SANER.2015.7081834
http://dx.doi.org/10.1109/SANER.2015.7081834
https://doi.org/10.1109/TSE.2014.2372760
https://doi.org/10.1109/ICSME.2016.27

bibliography 173

[130] Dewayne E. Perry and Alexander L. Wolf. “Foundations for the Study
of Software Architecture.” In: SIGSOFT Softw. Eng. Notes 17.4 (Oct.
1992), pp. 40–52. issn: 0163-5948. doi: 10.1145/141874.141884. url:
http://doi.acm.org/10.1145/141874.141884.

[131] Ralph Peters and Andy Zaidman. “Evaluating the Lifespan of Code
Smells using Software Repository Mining.” In: 2012 16th European
Conf. Softw. Maintenance and ReEng. IEEE, 2012, pp. 411–416. isbn: 978-
0-7695-4666-7. doi: 10.1109/CSMR.2012.79.

[132] Błażej Pietrzak and Bartosz Walter. “Leveraging Code Smell Detection
with Inter-smell Relations.” In: Extreme Programming and Agile Pro-
cesses in Software Engineering. Ed. by Pekka Abrahamsson, Michele
Marchesi, and Giancarlo Succi. Vol. 4044. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2006, pp. 75–84. isbn: 978-3-
540-35094-1. doi: 10.1007/11774129_8.

[133] Aoun Raza, Gunther Vogel, and Erhard Plödereder. “Bauhaus – A
Tool Suite for Program Analysis and Reverse Engineering.” In: Procee-
dings of the 11th Ada-Europe International Conference on Reliable Software
Technologies (Ada-Europe 2006). Porto, Portugal: Springer Berlin Hei-
delberg, June 2006, pp. 71–82. isbn: 978-3-540-34664-7. doi: 10.1007/
11767077_6.

[134] D. Romano, P. Raila, M. Pinzger, and F. Khomh. “Analyzing the Im-
pact of Antipatterns on Change-Proneness Using Fine-Grained Source
Code Changes.” In: Proc. 19th Working Conf. on Reverse Eng. (WCRE
2012). Kingston, Ontario, Canada: IEEE, Oct. 2012, pp. 437–446. doi:
10.1109/WCRE.2012.53.

[135] Riccardo Roveda, Francesca Arcelli Fontana, and Damian Andrew
Tamburri. “Automated detection and Evaluation of Architecture Smells:
a Mixed-Methods Study.” In: to be Submitted (2018).

[136] Riccardo Roveda, Francesca Arcelli Fontana, Claudia Raibulet, Marco
Zanoni, and Federico Rampazzo. “Does the Migration to GitHub Re-
late to Internal Software Quality?” In: Proceedings of the 12th Inter-
national Conference on Evaluation of Novel Approaches to Software En-
gineering. 2017, pp. 293–300. isbn: 978-989-758-250-9. doi: 10.5220/
0006367402930300.

[137] Riccardo Roveda, Francesca Arcelli Fontana, Ilaria Pigazzini, Marco
Zanoni, and Paris Avgeriou. “A Study on Architectural Smells Pre-
diction and Evolution.” In: Submitted to Research Track of 34th IEEE
International Conference on Software Maintenance and Evolution (ICSME
2018). IEEE, 2018.

[138] Per Runeson and Martin Höst. “Guidelines for Conducting and Re-
porting Case Study Research in Software Engineering.” In: Empiri-
cal Softw. Engg. 14.2 (Apr. 2009), pp. 131–164. issn: 1382-3256. doi:
10.1007/s10664-008-9102-8. url: http://dx.doi.org/10.1007/
s10664-008-9102-8.

https://doi.org/10.1145/141874.141884
http://doi.acm.org/10.1145/141874.141884
https://doi.org/10.1109/CSMR.2012.79
https://doi.org/10.1007/11774129_8
https://doi.org/10.1007/11767077_6
https://doi.org/10.1007/11767077_6
https://doi.org/10.1109/WCRE.2012.53
https://doi.org/10.5220/0006367402930300
https://doi.org/10.5220/0006367402930300
https://doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8

bibliography 174

[139] Ganesh Samarthyam, Girish Suryanarayana, and Tushar Sharma. “Re-
factoring for Software Architecture Smells.” In: Proceedings of the 1st
International Workshop on Software Refactoring. IWoR 2016. Singapore,
Singapore: ACM, 2016, pp. 1–4. isbn: 978-1-4503-4509-5. doi: 10.1145/
2975945.2975946. url: http://doi.acm.org/10.1145/2975945.
2975946.

[140] Jan Schumacher, Nico Zazworka, Forrest Shull, Carolyn Seaman, and
Michele Shaw. “Building Empirical Support for Automated Code
Smell Detection.” In: Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement. ESEM
’10. Bolzano-Bozen, Italy: ACM, 2010, 8:1–8:10. isbn: 978-1-4503-0039-
1. doi: 10.1145/1852786.1852797. url: http://doi.acm.org/10.
1145/1852786.1852797.

[141] Scientific Toolworks, Inc. Understand Your Code. https://scitools.
com/. 2018.

[142] Robert Sedgewick and Kevin Wayne. Algorithms 4thEd. Addison-Wesley,
2011. isbn: 978-0-321-57351-3.

[143] S. M. A. Shah, J. Dietrich, and C. McCartin. “Making Smart Moves
to Untangle Programs.” In: 2012 16th European Conference on Software
Maintenance and Reengineering. 2012, pp. 359–364. doi: 10.1109/CSMR.
2012.44.

[144] Lakshitha de Silva and Dharini Balasubramaniam. “Controlling soft-
ware architecture erosion: A survey.” In: Journal of Systems and Soft-
ware 85.1 (2012). doi: 10.1016/j.jss.2011.07.036.

[145] Dag I. K. Sjoberg, Aiko Yamashita, Bente Anda, Audris Mockus, and
Tore Dyba. “Quantifying the Effect of Code Smells on Maintenance
Effort.” In: IEEE Trans. Softw. Eng. 39.8 (2013), pp. 1144–1156. issn:
0098-5589. doi: 10.1109/TSE.2012.89. url: http://dx.doi.org/10.
1109/TSE.2012.89.

[146] SonarSource S.A. SonarQube. http://www.sonarqube.org/. 2018.

[147] Stal, Michael. Software architecture refactoring. Software Architecture
Refactoring, Siemens AG Corporate Technology. In Tutorial, in The
International Conference on Object Oriented Programming, Systems,
Languages and Applications (OOPSLA). http://stal.blogspot.in/
2007/01/architecture-refactoring.html. 2007.

[148] William Stallings. Operating Systems: Internals and Design Principles.
Pearson, 2012.

[149] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. Re-
factoring for Software Design Smells: Managing Technical Debt. 1st. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2014. isbn:
0128013974, 9780128013977.

https://doi.org/10.1145/2975945.2975946
https://doi.org/10.1145/2975945.2975946
http://doi.acm.org/10.1145/2975945.2975946
http://doi.acm.org/10.1145/2975945.2975946
https://doi.org/10.1145/1852786.1852797
http://doi.acm.org/10.1145/1852786.1852797
http://doi.acm.org/10.1145/1852786.1852797
https://scitools.com/
https://scitools.com/
https://doi.org/10.1109/CSMR.2012.44
https://doi.org/10.1109/CSMR.2012.44
https://doi.org/10.1016/j.jss.2011.07.036
https://doi.org/10.1109/TSE.2012.89
http://dx.doi.org/10.1109/TSE.2012.89
http://dx.doi.org/10.1109/TSE.2012.89
http://www.sonarqube.org/
http://stal.blogspot.in/2007/01/architecture-refactoring.html
http://stal.blogspot.in/2007/01/architecture-refactoring.html

bibliography 175

[150] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan.
“Predicting Bugs Using Antipatterns.” In: 2013 IEEE International Con-
ference on Software Maintenance. 2013, pp. 270–279. doi: 10.1109/ICSM.
2013.38.

[151] Seyyed Ehsan Salamati Taba, Foutse Khomh, Ying Zou, Ahmed E.
Hassan, and Meiyappan Nagappan. “Predicting Bugs Using Antipat-
terns.” In: Proceedings of the 2013 IEEE International Conference on Soft-
ware Maintenance. ICSM ’13. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 270–279. isbn: 978-0-7695-4981-1. doi: 10 . 1109 /

ICSM.2013.38. url: http://dx.doi.org/10.1109/ICSM.2013.38.

[152] Davide Taibi. Raw Data: Are Architectural Smells independent from Code
Smells? An empirical study. https://data.mendeley.com/datasets/
tnhk383zvz/. 2017. doi: http://dx.doi.org/10.17632/tnhk383zvz.
2.

[153] Davide Taibi, Andrea Janes, and Valentina Lenarduzzi. “How deve-
lopers perceive smells in source code: A replicated study.” In: Infor-
mation and Software Technology 92.Supplement C (2017), pp. 223 –235.
issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2017.08.
008. url: http://www.sciencedirect.com/science/article/pii/
S0950584916304128.

[154] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Mar-
kus Lumpe, Hayden Melton, and James Noble. “The Qualitas Corpus:
A Curated Collection of Java Code for Empirical Studies.” In: Proc.
17th Asia Pacific Software Engineering Conference (APSEC 2010). Sydney,
Australia: IEEE, 2010, pp. 336–345. doi: 10.1109/APSEC.2010.46.

[155] Ricardo Terra, Marco Tulio Valente, Krzysztof Czarnecki, and Roberto
S. Bigonha. “Recommending Refactorings to Reverse Software Archi-
tecture Erosion.” In: Proceedings of the 2012 16th European Conference on
Software Maintenance and Reengineering. CSMR ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 335–340. isbn: 978-0-7695-
4666-7. doi: 10.1109/CSMR.2012.40. url: http://dx.doi.org/
10.1109/CSMR.2012.40.

[156] Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and Ro-
berto S. Bigonha. “Qualitas.class Corpus: A Compiled Version of the
Qualitas Corpus.” In: Software Engineering Notes 38.5 (2013), pp. 1–4.

[157] Edith Tom, Aybüke Aurum, and Richard T. Vidgen. “An explora-
tion of technical debt.” In: Journal of Systems and Software 86.6 (2013),
pp. 1498–1516. doi: 10.1016/j.jss.2012.12.052.

[158] N. L. Tran, S. Skhiri, A. Lesuisse, and E. Zimányi. “AROM: Processing
big data with Data Flow Graphs and functional programming.” In:
4th IEEE International Conference on Cloud Computing Technology and
Science Proceedings. 2012, pp. 875–882. doi: 10.1109/CloudCom.2012.
6427487.

https://doi.org/10.1109/ICSM.2013.38
https://doi.org/10.1109/ICSM.2013.38
https://doi.org/10.1109/ICSM.2013.38
https://doi.org/10.1109/ICSM.2013.38
http://dx.doi.org/10.1109/ICSM.2013.38
https://data.mendeley.com/datasets/tnhk383zvz/
https://data.mendeley.com/datasets/tnhk383zvz/
https://doi.org/http://dx.doi.org/10.17632/tnhk383zvz.2
https://doi.org/http://dx.doi.org/10.17632/tnhk383zvz.2
https://doi.org/https://doi.org/10.1016/j.infsof.2017.08.008
https://doi.org/https://doi.org/10.1016/j.infsof.2017.08.008
http://www.sciencedirect.com/science/article/pii/S0950584916304128
http://www.sciencedirect.com/science/article/pii/S0950584916304128
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1109/CSMR.2012.40
http://dx.doi.org/10.1109/CSMR.2012.40
http://dx.doi.org/10.1109/CSMR.2012.40
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1109/CloudCom.2012.6427487
https://doi.org/10.1109/CloudCom.2012.6427487

bibliography 1

[159] S. Vaucher, F. Khomh, N. Moha, and Y. G. Gueheneuc. “Tracking
Design Smells: Lessons from a Study of God Classes.” In: 2009 16th
Working Conf. Reverse Eng. 2009, pp. 145–154. doi: 10.1109/WCRE.2009.
23.

[160] William C. Wake. Refactoring Workbook. 1st ed. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003. isbn: 0321109295.

[161] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bj-
öorn Regnell, and Anders Wesslén. Experimentation in software engi-
neering: an introduction. Norwell, MA, USA: Kluwer Academic Publis-
hers, 2000. isbn: 0-7923-8682-5.

[162] Lu Xiao, Yuanfang Cai, and Rick Kazman. “Titan: A Toolset That Con-
nects Software Architecture with Quality Analysis.” In: Proceedings
of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE 2014). Hong Kong, China: ACM, Nov. 2014,
pp. 763–766. isbn: 978-1-4503-3056-5. doi: 10.1145/2635868.2661677.

[163] Aiko Yamashita, Marco Zanoni, Francesca Arcelli Fontana, and Bar-
tosz Walter. “Inter-smell relations in industrial and open source sys-
tems: A replication and comparative analysis.” In: Proceedings of the
31st International Conference on Software Maintenance and Evolution (ICSME2015).
Bremen, Germany: IEEE, Sept. 2015, pp. 121–130. doi: 10.1109/ICSM.
2015.7332458.

[164] Robert K. Yin. Case Study Research: Design and Methods, 4th Edition
(Applied Social Research Methods, Vol. 5). 4th. SAGE Publications, Inc,
2009. isbn: 9781412960991.

[165] Norihiro Yoshida, Tsubasa Saika, Eunjong Choi, Ali Ouni, and Kat-
suro Inoue. “Revisiting the relationship between code smells and re-
factoring.” In: 24th IEEE International Conference on Program Compre-
hension, ICPC 2016, Austin, TX, USA, May 16-17, 2016. 2016, pp. 1–4.
doi: 10.1109/ICPC.2016.7503738. url: http://dx.doi.org/10.
1109/ICPC.2016.7503738.

[166] Noriaki Yoshiura and Wei Wei. “Static data race detection for java
programs with dynamic class loading.” In: International Conference
on Internet and Distributed Computing Systems. Cham: Springer Inter-
national Publishing, 2014, pp. 161–173. isbn: 978-3-319-11692-1. doi:
10.1007/978-3-319-11692-1_14.

[167] O. Zimmermann. “Architectural Refactoring: A Task-Centric View on
Software Evolution.” In: IEEE Software 32.2 (2015), pp. 26–29. issn:
0740-7459. doi: doi.ieeecomputersociety.org/10.1109/MS.2015.
37.

[168] hello2morrow. Sonargraph. https://www.hello2morrow.com/products/
sonargraph. 2018.

https://doi.org/10.1109/WCRE.2009.23
https://doi.org/10.1109/WCRE.2009.23
https://doi.org/10.1145/2635868.2661677
https://doi.org/10.1109/ICSM.2015.7332458
https://doi.org/10.1109/ICSM.2015.7332458
https://doi.org/10.1109/ICPC.2016.7503738
http://dx.doi.org/10.1109/ICPC.2016.7503738
http://dx.doi.org/10.1109/ICPC.2016.7503738
https://doi.org/10.1007/978-3-319-11692-1_14
https://doi.org/doi.ieeecomputersociety.org/10.1109/MS.2015.37
https://doi.org/doi.ieeecomputersociety.org/10.1109/MS.2015.37
https://www.hello2morrow.com/products/sonargraph
https://www.hello2morrow.com/products/sonargraph

A
A P P E N D I X

a.1 the analyzed projects

The Table A.1 is used in Section 6.2.

A
ppendix

3

Table A.1: Number of Architectural Smells, Group of Code smells and Code smells infecting the analyzed projects

Project
Architectural Smells Groups of Code Smells Code Smells

U
D

H
L

C
D

M
A

S

Bl
oa

t.

D
is

p.

En
c.

O
O

A

A
S

BC
SA

D
sP

C
C

D
C

LC Lz
C

LM LP
L

M
Fn

C

M
C

R
PB

SC SG

aoi 6 7 11110 11123 225 191 42 31 31 0 42 78 188 0 3 108 39 0 0 0 3 0

argouml 3 25 1833 1861 854 1344 62 17 17 3 61 333 1294 0 50 429 89 3 1 0 6 2

aspectj 8 52 48064 48124 974 1564 353 93 93 5 353 437 1501 0 63 352 183 2 0 6 10 2

axion 1 5 158 164 85 40 8 3 3 0 8 31 39 0 1 46 7 1 0 0 0 0

azureus 6 168 162357 162531 1193 704 173 139 139 65 111 428 494 0 210 462 303 0 62 139 19 25

cjdbc 7 35 1632 1674 365 136 21 54 54 0 21 140 132 0 4 165 60 0 0 0 6 0

castor 9 58 1510 1577 1511 1017 32 11 11 4 32 511 956 0 61 573 427 0 0 4 4 1

cayenne 2 1 12 15 1241 552 18 25 25 4 18 479 343 0 209 655 106 1 0 32 0 25

checkstyle 4 3 253 260 446 50 10 5 5 2 10 186 50 0 0 158 100 2 0 2 0 0

cobertura 6 4 38 48 78 49 26 3 3 2 26 30 48 0 1 31 17 0 0 0 0 0

collections 4 5 360 369 241 411 2 2 2 1 2 77 409 0 2 107 57 0 0 0 0 4

colt 6 9 885 900 85 109 6 22 22 1 6 17 95 0 14 50 18 0 0 2 5 0

columba 5 60 2294 2359 623 146 24 29 29 0 24 169 134 0 12 253 201 0 0 0 0 0

compiere 9 19 8282 8310 1351 1292 81 734 734 2 81 412 1265 2 27 516 415 6 0 1 5 1

derby 4 51 9648 9703 1455 739 163 98 98 11 163 542 581 0 158 604 303 6 0 9 16 6

displaytag 1 5 117 123 197 81 0 2 2 2 0 61 81 0 0 79 57 0 0 1 0 0

drawswf 2 14 364 380 102 57 7 12 12 10 7 40 55 0 2 53 9 0 0 10 0 1

emma 3 8 187 198 79 41 19 0 0 0 19 21 39 0 2 28 30 0 0 0 0 3

exoportal 0 49 370 419 998 269 44 77 77 11 44 263 228 0 41 357 377 1 0 8 7 3

findbugs 10 13 9111 9134 449 97 14 34 34 0 14 174 72 0 25 202 72 1 0 0 6 0

fitjava 2 0 32 34 32 77 31 15 15 1 31 9 75 0 2 15 8 0 0 0 0 1

fitlibraryforfitnesse 6 38 2436 2480 607 161 75 27 27 11 75 152 102 0 59 229 224 2 0 4 3 0

Continued on next page

A
ppendix

4

Table A.1 – continued from previous page

Project
Architectural Smells Groups of Code Smells Code Smells

U
D

H
L

C
D

M
A

S

Bl
oa

t.

D
is

p.

En
c.

O
O

A

A
SG

BC
SA

D
sP

C
C

D
C

LC Lz
C

LM LP
L

M
Fn

C

M
C

R
PB

SC SG

freecol 15 20 41088 41123 323 86 6 6 6 0 6 123 81 0 5 159 41 0 0 0 0 0

freecs 4 6 742 752 78 66 26 13 13 0 26 27 66 0 0 29 21 1 0 0 0 0

freemind 9 16 4350 4375 181 54 48 27 27 10 11 64 43 0 11 89 28 0 37 34 6 3

galleon 8 6 1788 1802 153 125 18 20 20 0 18 66 125 0 0 50 37 0 0 0 3 0

ganttproject 5 20 1852 1877 222 51 16 13 13 0 16 79 39 0 12 103 39 1 0 0 3 0

hadoop 9 48 6865 6922 994 789 46 103 103 11 46 326 753 0 36 550 117 1 0 10 11 6

heritrix 6 16 996 1018 261 63 20 37 37 0 20 89 61 0 2 138 34 0 0 0 1 0

hsqldb 9 11 10606 10626 257 193 44 42 42 3 44 112 162 1 31 109 35 0 0 1 8 0

htmlunit 2 7 10408 10417 357 118 0 0 0 0 0 176 117 0 1 178 3 0 0 0 0 0

informa 3 3 49 55 65 42 0 8 8 4 0 24 42 0 0 31 10 0 0 3 0 0

ireport 9 44 14344 14397 893 838 36 39 39 1 36 303 829 2 9 270 318 0 0 1 8 0

itext 6 6 3519 3531 215 89 18 17 17 0 18 113 63 1 26 73 28 0 0 0 3 0

ivatagroupware 3 20 14 37 105 25 2 1 1 0 2 38 19 0 6 44 23 0 0 0 0 0

jag 1 7 422 430 72 29 13 11 11 0 13 19 20 0 9 30 23 0 0 0 4 0

james 3 6 100 109 144 67 2 1 1 0 2 56 60 0 7 81 7 0 0 1 0 1

jasml 0 0 0 0 21 5 27 3 3 0 27 10 3 0 2 4 5 2 0 0 0 0

jasperreports 7 21 1829 1857 820 306 0 3 3 1 0 285 300 0 6 282 253 0 0 0 1 0

javacc 4 2 47 53 70 57 38 23 23 2 38 30 54 0 3 28 11 1 0 0 9 0

jboss 9 93 2658 2760 3364 1501 305 358 358 17 305 914 1330 0 171 1251 1197 2 0 11 40 3

jchempaint 5 37 1737 1779 914 823 38 44 44 4 38 386 693 0 130 426 102 0 0 1 8 0

jedit 8 14 11509 11531 257 138 47 22 22 1 47 104 89 0 49 131 20 2 0 1 0 0

jena 6 21 6257 6284 324 117 71 115 115 28 66 134 73 0 44 153 36 1 5 71 13 7

jext 6 13 1255 1274 277 153 27 16 16 1 27 124 150 0 3 123 29 1 0 1 2 0

Continued on next page

A
ppendix

5

Table A.1 – continued from previous page

Project
Architectural Smells Groups of Code Smells Code Smells

U
D

H
L

C
D

M
A

S

Bl
oa

t.

D
is

p.

En
c.

O
O

A

A
SG

BC
SA

D
sP

C
C

D
C

LC Lz
C

LM LP
L

M
Fn

C

M
C

R
PB

SC SG

jFin DateMath 0 2 0 2 48 20 3 3 3 0 3 19 18 0 2 25 4 0 0 0 0 0

jfreechart 9 15 245 269 440 331 5 29 29 0 5 134 326 0 5 214 92 0 0 0 1 0

jgraph 6 8 908 922 81 67 37 44 44 0 37 26 56 0 11 44 11 0 0 0 0 0

jgraphpad 4 4 186 194 166 35 21 32 32 0 21 56 35 0 0 64 46 0 0 1 3 1

jgrapht 1 6 58 65 96 19 8 2 2 0 8 33 16 0 3 58 5 0 0 0 0 0

jgroups 4 7 859 870 301 144 13 24 24 1 13 113 135 1 9 169 18 0 0 1 1 0

jhotdraw 8 22 827 857 356 274 9 8 8 4 9 140 241 0 33 146 70 0 0 0 0 0

jmeter 7 35 4464 4506 498 222 1 0 0 0 1 117 170 0 52 196 185 0 0 0 0 0

jmoney 0 3 302 305 34 14 0 4 4 1 0 10 7 0 7 14 10 0 0 0 0 0

joggplayer 3 3 212 218 122 18 13 16 16 1 13 41 16 0 2 44 37 0 0 0 5 0

jparse 1 1 122 124 41 21 7 3 3 1 1 14 21 0 0 15 12 0 6 0 1 0

jpf 1 2 42 45 35 8 0 4 4 0 0 11 7 0 1 19 5 0 0 0 0 0

jrefactory 4 37 2901 2942 805 309 33 23 23 29 27 260 309 0 0 310 233 2 6 74 6 5

jruby 12 46 147592 147650 636 208 68 45 45 9 68 304 179 0 29 272 58 2 0 4 9 6

jspwiki 6 17 1610 1633 317 61 9 26 26 0 9 80 60 0 1 139 98 0 0 0 0 0

jsXe 6 7 368 381 72 29 6 2 2 0 6 24 14 0 15 34 12 2 0 0 0 1

jtopen 1 3 3690 3694 982 748 10 50 50 0 10 461 655 0 93 311 209 1 0 0 6 0

jung 2 14 200 216 173 112 6 10 10 0 6 48 112 0 0 92 33 0 0 0 2 0

junit 2 11 183 196 79 49 3 3 3 7 3 15 46 0 3 35 29 0 0 17 1 6

log4j 3 13 411 427 190 91 3 11 11 2 3 61 89 0 2 107 22 0 0 0 2 1

lucene 2 66 3786 3854 608 364 44 26 26 3 44 190 353 0 11 284 134 0 0 0 2 4

marauroa 5 12 264 281 94 30 6 0 0 0 6 26 28 0 2 57 11 0 0 0 0 0

maven 6 27 691 724 331 99 1 0 0 5 1 115 80 0 19 149 67 0 0 5 0 1

Continued on next page

A
ppendix

6

Table A.1 – continued from previous page

Project
Architectural Smells Groups of Code Smells Code Smells

U
D

H
L

C
D

M
A

S

Bl
oa

t.

D
is

p.

En
c.

O
O

A

A
SG

BC
SA

D
sP

C
C

D
C

LC Lz
C

LM LP
L

M
Fn

C

M
C

R
PB

SC SG

megamek 4 20 11532 11556 581 1076 61 24 24 1 61 387 1076 0 0 182 7 5 0 1 6 0

mvnforum 3 26 1071 1100 331 294 10 18 18 1 10 118 240 0 54 128 85 0 0 1 2 0

myfaces core 7 41 1267 1315 924 1849 5 5 5 16 5 294 1830 0 19 299 331 0 0 53 0 35

nakedobjects 2 99 2578 2679 1082 322 44 34 34 0 44 398 223 0 99 557 127 0 0 0 2 1

nekohtml 1 2 15 18 13 15 0 1 1 0 0 6 6 0 9 7 0 0 0 0 0 0

openjms 2 19 301 322 230 60 0 3 3 0 0 64 46 0 14 127 39 0 0 0 0 0

oscache 1 4 45 50 63 8 5 9 9 0 5 16 8 0 0 25 22 0 0 0 1 0

picocontainer 1 4 129 134 53 11 0 0 0 1 0 21 7 0 4 32 0 0 0 18 0 1

pmd 2 17 310 329 379 77 18 5 5 4 18 120 52 0 25 167 92 0 0 2 0 2

poi 13 43 3491 3547 956 306 25 20 20 7 25 408 270 0 36 432 113 3 0 0 1 2

pooka 7 8 10070 10085 113 93 64 48 48 22 53 29 75 0 18 74 10 0 11 12 5 1

proguard 2 15 287 304 278 34 73 1 1 0 73 118 34 0 0 124 35 1 0 0 1 0

quartz 1 8 198 207 93 48 0 0 0 0 0 31 44 0 4 45 17 0 0 0 0 0

quickserver 1 6 288 295 89 57 13 9 9 0 13 29 57 0 0 38 22 0 0 0 1 0

quilt 0 3 70 73 48 10 7 6 6 0 7 8 10 0 0 23 17 0 0 0 0 0

roller 6 23 371 400 402 190 45 54 54 0 45 96 189 0 1 165 141 0 0 0 5 0

rssowl 10 51 17009 17070 254 192 37 39 39 0 37 95 111 0 81 110 29 20 0 0 2 0

sablecc 1 1 44 46 92 80 11 4 4 0 11 25 49 0 31 30 37 0 0 0 3 0

sandmark 2 23 760 785 403 185 76 37 37 14 76 149 168 0 17 185 69 0 0 24 2 2

springframework 7 100 3604 3711 2075 815 36 27 27 2 36 614 719 0 96 777 683 1 0 1 0 0

squirrelsql 0 2 231 233 19 1 0 0 0 0 0 6 0 0 1 12 1 0 0 0 0 0

struts 5 43 1241 1289 790 431 30 30 30 4 30 331 397 0 34 433 26 0 0 3 7 1

sunflow 3 7 850 860 94 33 4 0 0 0 4 35 33 0 0 37 22 0 0 0 0 0

Continued on next page

A
ppendix

7

Table A.1 – continued from previous page

Project
Architectural Smells Groups of Code Smells Code Smells

U
D

H
L

C
D

M
A

S

Bl
oa

t.

D
is

p.

En
c.

O
O

A

A
SG

BC
SA

D
sP

C
C

D
C

LC Lz
C

LM LP
L

M
Fn

C

M
C

R
PB

SC SG

tapestry 7 29 971 1007 745 49 5 5 5 0 5 245 49 0 0 395 105 0 0 0 0 0

tomcat 5 35 1891 1931 612 909 22 68 68 3 22 229 795 0 114 263 119 1 0 3 10 1

trove 0 0 17 17 22 8 0 0 0 0 0 8 5 0 3 9 5 0 0 0 0 0

velocity 2 14 287 303 172 53 11 4 4 0 11 64 52 0 1 92 15 1 0 0 0 0

wct 4 35 685 724 259 162 8 7 7 0 8 99 126 0 36 141 19 0 0 0 0 0

webmail 4 7 117 128 50 29 2 4 4 1 2 17 27 0 2 29 4 0 0 2 0 0

weka 4 32 5179 5215 654 639 56 85 85 0 56 206 578 0 61 334 114 0 0 0 4 0

xalan 4 21 8027 8052 567 439 33 7 7 10 33 223 313 0 126 228 115 1 0 8 1 5

xerces 2 12 1130 1144 367 439 31 13 13 5 31 116 409 0 30 104 146 1 0 0 2 0

xmojo 0 1 4 5 10 16 3 2 2 0 3 3 14 0 2 6 1 0 0 0 1 0

antlr 4 8 601 613 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

ant 5 13 2511 2529 551 152 11 3 3 24 8 135 102 0 50 213 203 0 3 74 1 3

	Dedication
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Main contributions of the thesis
	1.2 Research Questions
	1.3 Publications
	1.3.1 Published papers
	1.3.2 Submitted papers
	1.3.3 To be submitted papers
	1.3.4 Published papers not strictly related to the thesis

	2 Related Work
	2.1 Architectural smells definitions
	2.2 Architectural smells detection
	2.3 Code smells and architectural smells correlations
	2.3.1 Code smells correlations
	2.3.2 Code smells and architectural smell correlations

	2.4 Studies on software quality prediction and evolution
	2.4.1 Studies on software quality prediction
	2.4.2 Studies on software quality evolution

	2.5 Technical Debt Indexes
	2.5.1 CAST
	2.5.2 inFusion
	2.5.3 Sonargraph
	2.5.4 SonarQube
	2.5.5 Structure101

	2.6 Architectural smell refactoring

	3 Experience reports on the detection of architectural issues through different tools
	3.1 Tools for evaluating code and architectural issues
	3.2 Tool support for evaluating architectural debt
	3.2.1 Evaluating the results inspection of the tools
	3.2.2 Evaluating the extracted data by the tools

	3.3 Detecting and repairing software architecture erosion
	3.3.1 Detecting and Repairing Design Erosion with Sonargraph
	3.3.2 Detecting and Repairing Design Erosion with Structure101
	3.3.3 Discussion and Lessons Learned

	3.4 The impact evaluation of architectural problems refactoring
	3.4.1 Study Setup
	3.4.2 Results
	3.4.3 Observations on the results
	3.4.4 Threats of Validity

	3.5 Conclusions
	3.5.1 First Study of Section 3.2
	3.5.2 Second Study of Section 3.3
	3.5.3 Third Study of Section 3.4

	4 Architectural Smell Detection through Arcan
	4.1 Architecture of Arcan
	4.2 Architectural Smells
	4.2.1 Cyclic Dependency (CD)
	4.2.2 Unstable Dependency (UD)
	4.2.3 Hub-Like Dependency (HL)
	4.2.4 Specification-Implementation Violation (SIV)
	4.2.5 Multiple Architectural Smell (MAS)
	4.2.6 Implicit Cross Package Dependency (ICPD)

	4.3 Conclusions

	5 Evaluation and Validation of Arcan Results
	5.1 Initial evaluation of Arcan results
	5.1.1 Unstable Dependency Smell Results
	5.1.2 Hub-Like Results
	5.1.3 Cyclic Dependency Results
	5.1.4 Implicit Cross Package Dependency Results

	5.2 Architectural Smells Validation: An Industrial Case Study
	5.3 Architectural Smells Validation: A Mixed-Method Study
	5.3.1 Study Variables and Data Extraction
	5.3.2 Data Extracted to Answer the Research Questions
	5.3.3 Empirical Study Results
	5.3.4 Threats to Validity

	5.4 Conclusions

	6 Empirical Analysis with Arcan
	6.1 Architectural Smell Prediction and Evolution
	6.1.1 Definition and setup of the case study
	6.1.2 Results
	6.1.3 Threats to validity
	6.1.4 Conclusions

	6.2 Code smells and Architectural smells correlations
	6.2.1 Background
	6.2.2 Case Study Design
	6.2.3 Data Collection
	6.2.4 Data Analysis
	6.2.5 Results
	6.2.6 Discussion
	6.2.7 Lessons Learned
	6.2.8 Threads to Validity
	6.2.9 Conclusions

	7 Proposal of a new Architectural Debt Index
	7.1 Discussion on the main TDI features
	7.2 A new Architectural Debt Index
	7.3 Which Index should be defined?
	7.4 An Architectural Debt Index
	7.4.1 ASIS
	7.4.2 The ASIS evaluation
	7.4.3 History
	7.4.4 Architectural Debt Index evaluation
	7.4.5 Architectural Debt Index Profiles

	7.5 Conclusion

	8 Architectural Smells Refactoring: a Preliminary Study
	8.1 Set up of the Study
	8.1.1 Analyzed Projects
	8.1.2 Data collection

	8.2 Architectural Smells Refactoring Results
	8.2.1 Refactoring Results of the Hub-Like Dependency (HL) smell
	8.2.2 Refactoring Results of the Unstable Dependency (UD) smell
	8.2.3 Refactoring Results of the Cyclic Dependency (CD) smell
	8.2.4 Refactoring Results of all the three AS
	8.2.5 Impact of Refactoring on Quality indexes

	8.3 Discussion
	8.3.1 Hints on how to refactor the AS
	8.3.2 Hints on how to improve the AS detection through Arcan
	8.3.3 Hints on which AS remove first

	8.4 Threats to Validity
	8.4.1 Threats to Internal Validity
	8.4.2 Threats to External Validity
	8.4.3 Threats to Conclusion Validity

	8.5 Conclusions Remarks

	9 Conclusions and Future Developments
	9.1 Conclusions
	9.2 Future Developments

	 Bibliography
	A Appendix
	A.1 The analyzed projects

