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Chapter 1

Abstract

Everything should be as simple as it

can be but not simpler.

Albert Einstein

Systems complexity may be partitioned, but it’s a con-

served quantity: sometimes it arises because of a poor under-

standing of a subject, and then, luckily, thanks to a theoretical

breakthrough or a bright original idea, it can be reduced, and

this is an advancing step towards a true understanding. But

supposing that we decide to employ a robust and trustwor-

thy theoretical backbone, which we trust completely, then we

face the study of a physical system working on measurement

devices and on a clever experimental design, together with a

smart data analysis procedure, in order to unveil the charac-
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teristics that we care about. A choice of the right apparatus,

investing great effort in its precise development or in advanced

data analysis techniques, can move complexity from the sys-

tem itself to other parts of the experimental procedure: it’s

like devoting time and effort to understand the right mathe-

matical framework when working out a problem or, in general,

taking care of practising with the right tool for the job, even

if it seems very difficult to handle at first. It all pays off.

This apparently vague approach is actually extremely impor-

tant, remembering that we face the ubiquitous presence of

what I would define as a boundary trade-off : a line which de-

fines the boundaries of our world resolution. The most famous

example resides in the fundamental laws of quantum mechan-

ics, e.g. ∆x∆p ≥ h̄
2 , which states that it’s possible to push

further on position resolution only giving up some knowledge

about momentum.

This idea is readily translated into the study of microscopic

biological samples, in particular the ones that I’ve been study-

ing: it’s not a unbreakable, fundamental law, but should be

better approached as a challenge, a barrier to be broken. The

situation is very easy to understand: if we want to study phe-

nomena that occur at cellular level (or beyond), without killing

or damaging a biological sample, then light microscopy is the

way to go, and the most useful, readily understandable thing

6



that we can extract from a biological object is an image. Ob-

taining high resolution images requires effort, high precision

instrumentation and, as anyone would expect, time: the bet-

ter the image, the slower the acquisition process. Fighting

against this trade-off is a constant challenge, especially in the

field of light microscopy, and in the last years extremely clever

ideas and concepts have been demonstrated in order to achieve

very high resolution, but often at the expense of time acquisi-

tion or sample heavy manipulation.1 The solution I followed

in my work is to employ Light Sheet Fluorescence Microscopy

(LSFM)2 technique (also known as Selective-Plane Illumina-

tion Microscopy, SPIM) and a fast-acquisition, high efficiency

camera, in order to achieve the minimum spatio-temporal res-

olution required (microns in space, 4ms in time). Acting on

illumination profile, it is in fact possible to engineer a sheet

of light to select just a thin (µm size) slice of the sample, so

that fluorescence signals coming from just that plane can be

measured in a 90◦ collection geometry: I just moved a lit-

tle bit of complexity on the excitation/collection apparatus.

The CCD camera employed is in fact an EMCCD (see Chap-

ter 2.3) fabricated with a very advanced technology, capable

of extremely high efficiency detection (quantum efficiency up

to 95%), thus allowing very fast acquisition speeds. The last

step was to fabricate samples and sample holder specifically
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designed to work with SPIM geometry, to achieve high trans-

parency. Much work has been devoted to the study and ma-

nipulation of cross-correlation based algorithms, employed to

retrieve flow parameters: this technique, as explained in Chap-

ter 2, is extremely powerful. At this step it’s sufficient to say

that it is based on noise analysis, thus capable of excellent per-

formances even in the most intricate biological situation I tried

to investigate. My goal was to perform space and time map-

ping of blood flow in biological samples (Zebrafish embryos),

being able to collect wide images (hundreds of microns), but

still resolving them at a µm level; moreover hemodynamics

is a fast process, that requires very high frequency sampling

(tens to hundreds of Hz) in order to be resolved. The general

biological motivation is that the progression of a wide num-

ber of diseases is affected directly by the blood circulation (an

important example is cancer and its metastases3), so that I

want to devise an test methods to quantitatively map blood

flow in different conditions, both for diagnosis and study of

pathologies evolution (e.g. the inflammatory response results

in a strengthened immune presence in certain regions, also re-

vealed by increased blood flow).

The description of theoretical and practical aspects of my

setup is the core of Chapter 2: at first, I will describe Single
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Plane Illumination Microscopy, focusing on a Physical Optics

description of illumination and detection profiles. Then I will

describe the practical implementation of two microscopes, one

for in-vitro and one for in-vivo testing, showing an experi-

mental evaluation of useful parameter derived in the previous

section. The second part of the chapter is dedicated to the

analysis of Cross-Correlation methods, providing both a solid

presentation of all the techniques employed for image analy-

sis, and also serving as an introduction for chapter 6, where

an extension of these methods will be presented.

Finally I will cover basic fluid dynamics to introduce a simple

lumped circuit model (useful, at first approximation, to de-

scribe microfluidics networks) deriving the fundamental equa-

tion (Poiseuille flow in square channels) employed to describe

in-vitro flows.

Chapter 3 will describe material and methods, in particu-

lar it will deal with PDMS (Polydimethylsiloxane) based mi-

crostructures, liposomes fabrication, and Zebrafish embryos

description. It is intended as a comprehensive overview of ev-

ery system or sample employed, each one described form a

perspective that tries to highlight the characteristics that are

most important for my studies.

In Chapter 4 I will summarize the results of the study of both

in-vitro and in-vivo time-varying flows. here I show a a first
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powerful application of temporal cross-correlation techniques

coupled with large field of view images, which allows high res-

olution (both in time and space) mapping of flows.

In Chapter 5 I will present related investigations, based on Im-

age spatio-temporal correlations, in which I focused on in-vivo

hemodynamics, in particular mapping blood flow in branched

vessels in zebrafish embryos.

Chapter 6 focuses on the most recent part of my work, that is

to explore a way to break the ”plane restriction” that seems

to be intrinsically present when employing SPIM based mi-

croscopy. I will show that correlative methods can be extended

allowing to retrieve 3D flow information, without any change

in the hardware, as happens, for example, in optical tomogra-

phy or micro-PIV. These studies are te subject of an article,

under revision.

Finally Chapter 7 is dedicated to conclusions and future

outlook.
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Chapter 2

Theorethical

background

It doesn’t matter how beautiful your

theory is, it doesn’t matter how smart

you are. If it doesn’t agree with

experiment, it’s wrong.

Feynman

Under the name Image Correlation Spectroscopy4 resides

a number of techniques that have in common the fact of taking

a raw video of the data (3D matrix of data entries) as input to

extract quantitative informations about sample dynamics, ex-

ploiting the properties of correlation functions. The accessible
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informations are closely related to the spatial and temporal

resolutions of the acquisition system. In this thesis I am in-

terested in spatiotemporal scales of the order of hundreds of

ms and of tens of microns, respectively. I chose to employ a

fast recording EMCCD camera (Cascade II, Photometrics) to-

gether with a Selective Plane Illumination Microscopy setup

(SPIM from now on), that perfectly matched my needs, being

capable of providing, in the best configuration, a resolution

of {4 ms and 1 µm
pixel}. SPIM (also referred to Light Sheet

Fluorescence Microscopy, LSFM, when coupled with fluores-

cence detection) will be described extensively in this chapter.

Here I will just mention two features that made it the best

choice for flow mapping studies. It allows the recording of

large field of view (FOV) images (limited only by objective

choice and camera chip) without any temporal delay (there is

no scanning or sample movement involved). Moreover it pos-

sesses intrinsic optical sectioning, allowing to select a thin slice

of sample (few µm thick, depending on the actual apparatus

employed, see following discussion for details), reducing out-

of-focus artefacts and photodamage. In this way the recorded

data contain, as it is easy to see, a huge amount of information,

and are perfect to be analysed with correlative methods, that

are capable of highlight transport phenomena even at large

time and spatial scales (theoretically every single pixel of the
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FOV can be useful), at the highest resolutions available.

In this chapter I’ll start presenting a detailed theoretical de-

scription of LSFM, focusing on the analysis of excitation and

detection profiles, to understand, within the framework of

Physical Optics, the behaviour of optical fields at relevant

planes inside the apparatus; then I will briefly describe the

practical implementation of two setups, one specifically de-

signed for in-vitro measurements, the other for in-vivo ex-

periments, built around a custom made immersion chamber.5

I will then present an overview of fluorescence based cross-

correlation methods,6 focusing on the two versions employed

here (temporal and spatio-temporal image correlations); fi-

nally, I will describe microfluidic models that I have adopted

to represent both in-vivo and in-vitro microfluidic systems.

2.1 SPIM

Selective Plane Illumination Microscopy can be thought as

an alternative to confocal microscopy,7 since it is capable of

obtaining optical sectioning over all the available field of view,

without any mechanical movement or laser scanning process.

Besides, it helps reducing photodamage,8 since the in-focus

plane is the only one actually illuminated by excitation light:
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this is particularly helpful when dealing with live samples,

when phototoxicity may be an issue. I aim here to draw a

very intuitive scheme of the implementation of the SPIM ap-

paratus (the first is an almost exact 3D reconstruction of the

employed setup, while the second shows the optical path in a

more rigorous way), that will serve as a reference during my

theoretical analysis:

Figure 2.1: 3D scheme of SPIM setup.
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Figure 2.2: 2D schematic of the setup.

A laser source excitation profile is magnified to uniformly

illuminate a rectangular slit: then a cylindrical lens coupled

with the excitation objective generates a sheet-like profile, op-

tically sectioning the sample. The detection configuration is

a classical objective - tube lens couple (i.e. as in wide field

microscopy), in a 90◦ geometry with respect to excitation: it

creates a magnified image of the illuminated sample slice on a

pixelated detector.
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2.2 Physical Optics description

The real core of SPIM resides in the excitation geometry, so

let’s start from the following schematic representing 2D pro-

jections of the excitation optical path:

Figure 2.3: Ray-tracing the excitation path. Top: (x,y) section.

Bottom: (z,y) section. Optical path: ŷ

During all the following description I will maintain the

same frame of reference: excitation beam propagation is in

the ŷ direction, and consequently the planes that I will de-
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scribe are x̂, ẑ planes. This choice allows the usual notation in

detection, where (being all rotated 90◦) ẑ will be the optical

path axis, with the usual x̂, ŷ transverse planes.

Excitation laser profile is expanded by two lenses in a tele-

scopic configuration (tag ”expander”), in order to match the

cylindrical lens pupil: to understand the light field distribu-

tion behaviour, this beam expander can be neglected, since

geometrical optics is perfectly enough to describe it’s role.

The core part consists in a rectangular slit, followed by a

cyl indrical lens: the slit is just a rectangular binary stop that

I will model with the function

rect
(z
a

)
rect

(x
b

)
=

1 if |z| ≤ a
2 and |x| ≤

b
2

0 otherwise
(2.1)
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Figure 2.4: rect function example

This equation is separable in the {z, x} coordinates, and

this is a great advantage since the cylindrical lens behaves in

a fundamentally different way along ẑ or x̂ directions: it acts

as a classical lens along the x̂ direction, with fcyl focal length

(50mm in this case) while it leaves unaffected the beam on the

ẑ direction. This is apparent looking at figure 2.3: the top row

represents the {x̂, ŷ} projection, where the lager dimension of

the slit is not acting as an actual stop, and where the cylin-

drical lens is focusing the beam in the back aperture of the
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excitation objective (slit plane 0 is conjugated with plane 1);

the bottom shows the {ẑ, ŷ} projection, where the slit is the

limiting device and the cylindrical lens is not doing any actual

work, leaving the unaltered slit profile reach the objective lens

back aperture.

To evaluate the complete excitation beam profile I will de-

scribe separately the ẑ and x̂ directions, propagating the field

distributions towards the objective focus. Then following Mc-

Cutchen9 and, more closely, Mertz,7 I will investigate the com-

plete 3D excitation profile, applying a frequency domain defo-

cus.

2.2.1 ẑ profile

Figure 2.5 serves as schematic representation to show the prop-

agation geometry adopted to describe the field along the z

direction:
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Figure 2.5: Profile schematics along the ẑ direction.

As said before, the cylindrical lens can be neglected, and

since the propagating beam remains collimated, we are left

with an effective 2-f system. Employing the notation explained

in the Appendix, it’s readily found that the profile at the ob-

jective focal plane is:

u1(z) =
a e2iλfo

(iλfo)
3
2

U0 (a ξ) |ξ= z
λfo

(2.2)

Where U0 is the Fourier Transform of the incoming field

distribution u0 at the objective front focal plane:

U0(z) = a sinc

(
a

λfo
z

)
(2.3)
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Since fluorescence is an incoherent phenomenon in which

only the intensity of the field plays an actual role, I will use the

following normalized model, neglecting the first phase terms:

|u1(z)|2 ∝
∣∣∣∣U0

(
a z

λfo

)∣∣∣∣2 = sinc2

(
a

λf0
z

)
(2.4)

This equation shows with great clarity that the slit variable

width (a) is the key parameter that controls the thickness of

the excitation light sheet (excluding of course the change in

any optical component like laser source or objective lens). To

get an handle of things, let’s plug in eq. 2.4 typical values:

for a ' 1.2mm, λ = 488nm and fo = 8mm then the sinc

function has a shape:

Figure 2.6: In-focus ideal excitation profile
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with the first zero happening at z ' 10µm (see section 2.3

for an experimental measurements). Experimentally all the

precautions have been taken to obtain optically transparent

samples and microfluidic channels (see Chapter 4) so that the

excitation profile is minimally perturbed traversing the sam-

ple. A possible improvement could be employing an adaptive

optics system to correct for artefacts, reaching higher axial

resolution10 or to use double counter-propagating excitation

beams.

2.2.2 x̂ profile

Again, let’s look at an illustrative schematic:

Figure 2.7: x̂ excitation

In this case the cylindrical lens, conjugated with the ob-

jective back aperture, bends the incoming beam to accomplish
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uniform illumination over the detection field of view.

Let’s look closely to the optical fields at the highlighted planes

ui: 
u0(x) = rect

(
x
b

)
u1(x) = b e

2kifcyl

(λfcyl)
3
2
U0(b ξ)|ξ= x

λfcyl

u2(x) = e2ikfo

(λfo)
3
2
U1(ξ)|ξ= x

λfo

(2.5)

As done in the previous section, carrying out calculations

and finally simplifying with a normalized model, neglecting

the first phase terms:

u2(x) =
e2ik(fcyl+fo)

λ4f
3
2
o f

1
2
cyl

rect

(
fcyl
bfo

x

)
(2.6)

|u2(x)|2 ∝ rect2
(
fcyl
bfo

x

)
(2.7)

The last formula clearly shows how the choice of cylin-

drical lens and objective focal lengths, together with the slit

larger dimension, limits the excitation beam extension in the

{x̂, ŷ} plane (i.e. the SPIM plane). Inserting the values that

describe the SPIM arrangement employed for in-vitro mea-

surements (fcyl = 50mm, b ' 8mm, and f0 = 8mm) eq. 2.7

gives a rect function with total width of 1.28mm: this doubles
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the maximum FOV available (∼ 500 × 500µm), fulfilling the

request of uniform illumination in the focal plane.

2.2.3 3-D extended excitation

Once obtained the in-focus excitation profiles, it is possible to

introduce a small defocus to investigate the field distribution

along the optical axis.7,11 This defocus is nothing more than a

free-space Fresnel propagator (see Appendix for details), and

it is best carried out in the spatial-frequency domain. Starting

from the excitation profile just obtained (u(x, z)) the fist step

consists in evaluating its frequency spectrum:

Ui(ξ, ζ) = FT{u(x, z)} (2.8)

In this way, convolution with the free space Fresnel prop-

agator becomes a multiplication:

U(ξ, ζ; y) = U(ξ, ζ) eiky q∗(ξ, ζ;λy) (2.9)

And the distribution around the objective focal point can

then be expressed with a 2D inverse transform:

u(x, y; z) = IFT{U(ξ, ζ; y)}(x, z; y) (2.10)

I wrote a Python code to simulate the extended excitation

profile. Here I present the most important result (based on the
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parameter employed in the previous paragraphs) that I think

are helpful to visualize the formulas.

Figure 2.8: x̂ in focus excitation

Figure 2.9: ẑ in focus excitation
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Figure 2.8 and 2.9 represent the field distribution in the

objective focal plane: as expected (in order to obtain planar

illumination) we’ve got an uniform profile along x̂, while there

is a very peaked function along ẑ, that defines the thickness

of the excited sample slice. Moving then along the propaga-

tion axis, we can inspect how the applied defocus changes the

excitation profile by plotting {x̂, ẑ} slices at different depths

(figure 2.8) and finally extended {ŷ, x̂} and {ŷ, ẑ} profiles.

Figure 2.10: 3D excitation profile - {x̂, ẑ} planes
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Figure 2.11: 3D excitation profile - {ŷ, x̂} and {ŷ, ẑ} planes

2.2.4 Detection PSF

The collection geometry is a classical objective-tube lens cou-

ple: it’s best characterized with the detection Point Spread

Function (PSF), which will critically depend on the objective

numerical aperture.

PSF can be also called impulse response function, and this

name probably better reveals the principal characteristic of

this classical imaging arrangement: the apparatus is a lin-

ear shift-invariant system, that creates a magnified image of a

sample slice, transferring a portion of its spectrum. This low-
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pass filtering is due to the finite extent of the objective pupil,

that defines a coherent transfer function (CTF): it acts as a

cookie-cutter (always being in paraxial approximation) on a

portion of the object spectrum.9

The pupil function in this case can be modelled as a circ

function, defined as:

circ
( r
D

)
=


1 if r < D

2

1
2 if r = D

2

0 otherwise

(2.11)

where D indicates the aperture diameter.

Figure 2.12: circ function

Following Tyo,12 let’s find out the expressions for Coherent
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Transfer Function, then, after an Inverse Hankel Transform,13

Coherent Spread Function (CSF): this is equivalent of describ-

ing the filtering operation from frequency to spatial domain.

Finally, since fluorescence is an incoherent phenomenon, the

square modulus of CTF gives the PSF: after all, its convolution

with the object describes the image formation.

CTF (ρ) = circ

(
λ ρ

NA

)
(2.12)

CSF (r) =
NA2

λ2
somb

(
NA

λ
r

)
(2.13)

PSF (r) =

∣∣∣∣NA

λ

∣∣∣∣4 ∣∣∣∣somb(NA

λ
r

)∣∣∣∣2 (2.14)

Here NA = nsin(θ) indicated the objective Numerical Aper-

ture. In this particular case it’s possible to analytically eval-

uate in a fairy simple way an expression also for the PSF ax-

ial profile,7,14 following steps similar to those discussed previ-

ously about the excitation profile. Starting from the Coherent

Transfer Function, let’s apply a defocus z in the axial direc-

tion:

CTF (ρ; z) = CTF (ρ) · eikz q∗ (ρ;λz) (2.15)
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Then perform an Hankel Transform to evaluate the extended

Coherent Transfer Function:

CSF (r; z) =

∫ +∞

−∞
CTF (ρ) eikz q∗ (ρ;λz) J0(2πrρ) ρ dρ

(2.16)

where J0 is the Bessel function, zero order, first kind. Then,

restricting the discussion to retrieve the profile along the op-

tical axis:

CSF (0; z) =

∫ +∞

−∞
CTF (ρ) eikz q∗ (ρ;λz) ρ dρ

= eikz
∫ NA

2λ

0
e−πiλzρ

2
ρdρ

=
eikz

2πiλz

(
1− e−πiz

NA2

2λ

) (2.17)

And finally, taking the square modulus:

PSF (0; z) =

(
4λ2

√
πNA2

)2

sinc2

(
πzNA2

4λ

)
(2.18)

It’s then apparent that being able to control both wave-

length and Numerical Aperture would allow to manipulate the

desired detection resolution. In real applications it’s usually

the excitation profile (sheet thickness) that sets the boundaries

of the actual sample slice that can be imaged, but it will be

clear in Chapter 6 how it is anyway possible to obtain informa-

tion about 3D flow fields (trackers leaving/entering the exci-
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tation plane) studying the evolution of spatio-temporal cross-

correlation functions, which will be introduced in section 2.4.

Figure 2.13: Simulation of 3-D detection PSF - 100µm per step. All

Python codes are available, see Appendix

2.3 Setup realization of SPIM

I have implemented two SPIM setups: the first dedicated to

in-vitro measurements, the second for in-vivo studies.
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2.3.1 In-vitro setup

in figure 2.14 I show the actual setup that I assembled for

in-vitro measurements, as already depicted in figure 2.2:

Figure 2.14: SPIM setup for in-vitro measurements.

Laser source is an argon-krypton (Melles Griot), from which

both a 488 nm and 514 nm excitation wavelengths can be se-

lected. Following the numbers in the figure, let’s review the

optical path components:

1. beam-expander(1:4): two lenses (focal lengths of 10mm

and 40mm respectively) in a telescopic configuration, in
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order to expand the incoming laser beam;

2. variable rectangular slit: the aperture stop described by

eq. 2.1: in this configuration, it creates a thin horizontal

aperture, in order to obtain a uniform horizontal sheet

of light on the sample;

3. cylindrical lens, positioned at a distance of 50mm (which

corresponds to its focal length) both from the objective

and the slit;

4. excitation objective: Olympus, 4X, 0.1 NA;

5. detection objective: Olympus, 20X, water immersion,

0.95 NA;

6. tube lens, focal length 150mm;

7. EMCCD detector (Cascade II Photometrics).
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Pixelated detector

The detector is extremely important, because it heavily im-

pacts on both spatial and temporal resolutions. While high

pixel number allows a large FOV, pixel size is directly related

to spatial resolution, but it’s useful (in particular when select-

ing an appropriate detector) to think about the whole setup:

since the system PSF must work together with pixels dimen-

sion, it’s no use to simply think about decreasing as much

as possible pixels area.15 The reason resides in the Nyquist

Theorem, that can be stated as: a continuous function can be

completely represented by a set of equally spaced samples, if the

samples occur at more than twice the frequency of the highest

frequency component of the function. Thus, comparing Abbe

limit with pixel size e, and fulfilling Nyquist requirement, then:

e < 0.3
λ

NA
M (2.19)

where M is the magnification.

In this case the camera employed is an EMCCD (Cascade

II Photometrics), with an active area of 512x512 pixels (16

µm side), so that, in fact, it’s only the pixels size that sets the

highest spatial resolution theoretically achievable. This small

detail will gain importance in Chapter 6: there I will explain

how to deal with this restriction, in particular when deriving
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an expression for the theoretical spatio-temporal correlation

model.

Besides this slight loss of spatial resolution (anyway more than

sufficient for imaging all the desired features in investigated

samples) the most important characteristic of the detector re-

sides in its sampling speed and in its great sensitivity, coupled

with an efficient signal-to-noise
(
S
N

)
ratio.

Figure 2.15: Cascade II - Photometrics

EMCCD stays for Electron Multiplying Charge Couple De-

vice and it is actually an evolution of CCD camera, basically

with the same detection technology: a semiconductor sub-

strate is separated by a thin layer of isolating material (usually

SiO) from an array of conductive plates, which create a series

of potential wells: exposure to light generates (via photoelec-
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tric effect) charges stored in this wells, and then a relative

scaling of potentials within a clock cycle allows to move the

electrons towards the bottom pixels line.

Figure 2.16: Schematic of CCD pixels

The last line is sequentially emptied and read by the ADC

(Analog to Digital Converter), that sends an electric signal to

a computer, composing an image. There are two main draw-

backs when employing CCDs: the first one is noise, and the

second is dead time between acquisitions.

The primary source of uncertainty is thermal noise, that can

be reduced with various cooling systems, from air cooling (try-

ing to maintain a device at Tamb) to the employment of Peltier

cells (reaching −70◦C).

For what concerns dead time, there are currently two kinds

of solutions available, both based on employing only half the

CCD chip to collect an image, while the other half is reserved

only for data transfer: the first arrangement considers the chip

composed by many couples of lines, one for registering and one
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for data transfer (line transfer architecture), while the other

one divides the whole chip in two separate regions, one recep-

tive and one blind (frame transfer).

EMCCD employs both frame transfer geometry and Peltier

cooling cells, being, just with these two characteristics, a great

device, capable of reaching a maximum acquisition speed of
4ms
image when employing a 20 pixels line subregion. The other

great improvement resides in the reduction of the second ma-

jor source of noise, that happens in the ADC conversion, the

readout noise. In the EMCCD configuration, electrons don’t

have to travel towards the bottom line of the chip for digi-

tal conversion, but they move horizontally towards an addi-

tional line, passing, for every step, from low voltage to an

extremely high voltage. In this way, by impact ionization, a

number of electron-hole couple is created, proportional to the

number of electrons present in a well (from here the name

electron multyplying). The result is an increased number of

electrons, before the digital conversion, while readout noise is

unaltered, giving a huge S
N increase.

sCMOS cameras

A valid alternative to EMCCD cameras is represented by de-

vices fabricated with a completely different architecture, based
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on complementary metal-oxide semiconductors (CMOS). CMOS

detectors consist of arrays of integrated transistor devices, each

acting as a photodetector coupled with an amplifier. Usually

the transistor gate voltage is regulated by a photodiode: at the

beginning of each exposure the gate voltage is set to a baseline

value and decreased when light, impinging on the photodiode,

creates a leak current. The resistance across the transistor is

then evaluated, obtaining a measure of light intensity.

Modern scientific CMOS (sCMOS) cameras can achieve higher

resolution and framerate than EMCCD cameras, but at the

present time still sensitivity performances favour EMCCD de-

vices. As en example, one of the best sCMOS on the mar-

ket (Hamamatsu ORCA-Flash 4.0 V3) has 82% quantum ef-

ficiency (peak @560nm) with an effective readout noise of

1.6 e− rms, capable of achieving 100framessec at full 2048x2048

resolution, while one of the best EMCCD detectors (Photo-

metrics Evolve 512 Delta) has 96% quantum efficiency (peak

@550nm), with effective readout noise < 1e− rms, and can

achieve 67framsesec at full 512x512 resolution.
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Calibration: sheet thickness measurement

Figure 2.17: Measurement of sheet thickness for air SPIM setup and

fitting example

A first system calibration step consists in the evaluation of

sheet thickness, which sets the practical sheet thickness. Cal-

ibration data were collected by means of a mirror positioned

instead of the sample, and mounted at 45◦ with respect to the

excitation propagation direction ŷ, so that it was possible to

register excitation profiles along the full field of view.
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Figure 2.18: Maximum projection of light sheet thickness collection.
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Figure 2.19: Fitting calibration data, with normalized intensities.

I wrote a Python program for fitting multiple peaks with

a Gaussian model, applied in this case to retrieve a value for

FWHM,16 resulting: 11.2±1.5µm. This value is in agreement

with the previously reported theoretical estimation of 10µm.
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2.3.2 In-vivo setup

Figure 2.20: In-vivo SPIM setup

In this case the source is an Argon laser: as for the previous

setup, both 488nm and 514nm excitation wavelengths can be

selected. Following the numbers in figure 2.20:
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1. beam expander (1:2): two lenses (focal lengths of 25mm

and 50mm respectively) in a telescopic configuration, in

order to expand the incoming laser beam;

2. variable rectangular slit, again as described by eq. 2.1:

in this configuration, it creates a thin vertical aperture,

in order to obtain a uniform vertical sheet of light on the

sample;

3. cylindrical lens, positioned at a distance of 50mm (which

corresponds to its focal length) from the slit, and conju-

gated with the following lens;

4. beam reducer (2:1): two lenses (focal lengths of 50 mm

and 25mm respectively) in a telescopic configuration, the

exact opposite of the previous one, in order to reduce the

incoming laser beam, to fill the objective back aperture;

5. excitation objective: Olympus, water dipping, 10X, 0.3

NA;

6. sample stage;

7. detection objective: Olympus, water dipping, 20X, 0.5

NA;

8. tube lens, focal length 150mm;
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9. EMCCD detector (Cascade II Photometrics).

Immersion chamber

In order to study live zebrafish embryos in the best environ-

ment, while conserving an optimal index matching, an immer-

sion chamber was designed5 and 3D printed (PLA): plastic

o-rings assured the perfect fitting of both excitation and de-

tection objectives, while the (rotating) sample holder allows

full manipulation and free slice selection.

Figure 2.21: Immersion Chamber, CAD schematic
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Calibration: sheet thickness measurement

As done in the previous section, it’s possible to measure the

light sheet thickness with a tilted mirror instead of the ac-

tual sample. Following exactly the same procedure, over all

the available field of view, an then fitting with a Gaussian

model, the retrieved value resulted in FWHM = 17.8±1.4µm.

This value is clearly larger than the one reached in the first

described setup, but this is purposely done for experimental

reasons: it is in fact found that, in order to obtain a more uni-

form sectioning in biological samples (where in particular index

matching is a challenge and a primary source of aberrations),

we must face a trade-off between sheet thickness (creating a

wider slit aperture) and illumination uniformity. A great so-

lution, already proposed by Dean Wilding et al.,10 consists in

the employment of a spatial light modulator (instead of a pas-

sive slit), which would allow to use adaptive optics algorithms

to achieve active beam manipulation and an overall improved

excitation efficiency.
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2.4 Image Correlation Spectroscopy - ICS

Image Correlation Spectroscopy revolves around the study of

the evolution of similarities residing in signals coming from

a 3D image stacks and linking them to quantifiable physical

processes, such as diffusion, directional flow, chemical reac-

tions, or tracers’ photo-dynamics. I think that the most in-

teresting fact, in this case, is that this technique is applied to

study fluctuations in fluorescence intensities, that is to analyse

something that, when commonly seen from an imaging point

of view, is usually discarded as noise, and, at the very least,

is considered a problem to be solved. Actually it has been

extensively demonstrated that intensity fluctuations carry all

the information needed to precisely characterize drift motions,

that is our goal. It substantially helps the investigation of

moving objects, since, by working on fluctuations, it naturally

gets rid of the impact of any still, undesired background. In

order to understand the two principal implementation of this

method that I have been employing in my work, I want here

to review the basics: it was all born from the work of Magde

et al.6 in 1972, with the developed Fluorescence Correlation

Spectroscopy.
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2.4.1 Standard FCS theory

The idea is to record a temporal series of fluorescence inten-

sity fluctuations inside a tiny (µL) focal volume and use it an

input inside the correlation machinery: it is in this case called

”autocorrelation” since only one signal is employed. The term

cross-correlation is reserved instead to analysing similarities

between two spatially separated signals.

The paradigm of correlation function is:

G(τ) =
〈δI(t) δI(t+ τ)〉t

〈I〉2
(2.20)

where δI(t) = I(t) − 〈I(t)〉t is the temporal fluctuation of

fluorescence intensity. Intuitively, any perturbation, any evo-

lution from a perfect spatio-temporal infinitely uniform state,

will cause a loss of self-similarity in I(t), i.e., as it will be shown

shortly, G(τ) is bound to decay with growing lag-time τ .

In order to get a precise insight into the physical/chemical pro-

cesses involved in the evolution of the studied system, model

fit functions can be obtained.17–19 In this work, I am mainly

interested in variations in fluorophore concentration, gener-

ated by Brownian or drift motions. In this case, it’s possible

to rewrite eq. 2.20 as:
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G(τ) =

∫
|W (~q)|2 P̂ (~q, τ)d~q

|W (0)|2 〈C〉
(2.21)

where

• W (~q) is the Fourier Transform of the Molecular Detec-

tion Efficiency function (MDE);

• P̂ (~q, τ) is the Fourier Transform of the concentration cor-

relation function P (~r, t);

• 〈C〉 is the average fluorophore concentration.

For the time-scales accessible to the SPIM setups, where

reside the interesting dynamics that I want to investigate, the

primary sources of time-evolution are Brownian diffusion and

deterministic drift. We can therefore refer to Fick’s law that

gives a differential equation for the probability function P (~r,

that is the probability to find a particle in ~r at t when it was

in ~r = 0 at time t = 0:20

d

dt
P (~r, t) = D∇2P (~r, t)− ~vdrift∇ · P (~r, t) (2.22)

with D = kT
6πηR diffusion coefficient and vdrift = drift

speed. It’s best to solve this equation with a spatial Fourier

Transform:
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d

dt
P̂ (~q, t) = Dq2P̂ (~q, t)− i~q ~vdriftP̂ (~q, t) (2.23)

P̂ (~q, t) = 〈C〉 e−Dq2t−i~q ~vdriftt (2.24)

Finally, for this theoretical treatment, we can approximate

the MDE as 3D Gaussian,19 so that:

W (~r) = I0 e
−2x

2+y2

ω2
0 e

−2
(
z
z0

)2

(2.25)

ω0 being the beam waist and z0 Rayleigh range. Then from

equation 2.20 we obtain the complete expression:



G(τ) = G(0)Gdiff (τ)Gdrift(τ)

G(0) = γ
〈N〉 , γ = 0.35 for 3D gaussian MDE

Gdiff (τ) = 1
1+ τ

τD

1√
1+ τ

τD

(
λ
πω0

)2

Gdrift(τ) = exp

[
−
(

τ
τdrift

)2
1

1+ τ
τD

]
(2.26)

where:

• 〈N〉 is the average number of fluorescent particles inside

the investigation volume, and it can be also expressed as

VexcC. C is the number concentration, while (for the 3D

Gaussian) Vexc =
(
∫
W (~r)d3~r)

2∫
W 2(~r)d3~r

= πω2
0z0 ' 10 − 100fL;
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• τD =
ω2

0
4D is the decay time of the diffusion component;

• τdrift = ω0
vdrift

decay time of the drift component.

Figure 2.22: Simulation of G(τ) for growing values of τdrift, ranging

from 5 to 12 ms.

Three main observations may be highlighted here:

1. G(τ) intensity strongly depends on concentration, so that,

in order to have a high fluctuation signal G(0), easily

recorded by a CCD or CMOS camera (that is, higher

than the dark noise) we need to work in a concentra-

tion range of 10-100 nanomolar: in fact for excitation

volumes of the order of 100 fL we obtain 〈N〉 ' 6− 60;
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2. at first glance G(0) seems to reach infinity for an ex-

tremely low particle number. Actually evaluating 2.20

for zero lag-time gives:

G(0) =
〈δI(0)2〉
〈I(0)〉2

Expressing intensity signal as a sum of fluorescence F

and background B, under the hypothesis of fluorescence

being proportional to particle number (〈F 〉2 = α 〈N〉2),

it’s clearly found that:

G(0) =
〈δ(F+B)2〉
〈F+B〉2 = α〈N〉2

α〈N〉2+〈B〉2
γ
〈N〉

In this way it’s apparent how the signal will never reach

infinity:

〈N〉 → ∞ ⇒ G(0) ' γ
〈N〉

〈N〉 → 0 ⇒ G(0) ' α
〈B2〉γ 〈N〉
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Figure 2.23: Simulation of zero lag-time correlation for different

values of fluorescent molecules concentration.

3. it’s apparent from figure 2.22 that, despite from a sin-

gle fit should be theoretically possible to retrieve both

τD and τdrift, this is very difficult, since the shape of G

changes only slightly with the presence of ~vdrift, and of-

ten, if only Brownian diffusion is supposed, information

about any drift velocity is lost. To overcome this major

difficulty, and also to take advantage of the large FOV of

the images collected with SPIM, I employed (in particu-

lar for the work presented in Chapter 4) an evolution of

this method, called spatially resolved FCS (sFCS).
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2.4.2 sFCS

This is a spatially resolved variant of FCS, in which two vol-

umes, separated by a distance ~S along the flow direction, are

selected inside the sample and cross-correlated. The result is

a peak function that allows a clear separation between the im-

pacts of τD and τdrift, that is between diffusion and drift: the

first one is primarily responsible for the overall decay of the

function and for the broadening of the Gaussian peak (as it

will be soon described), while the second one will cause a dis-

placement of the peak along the lag-time axis. Following the

derivation of the last paragraph, the cross-correlation function

is:

G1,2(τ) =
〈I1(t) I2(t+ τ)〉
〈I1〉 〈I2〉

(2.27)

To dive inside the physical parameters that describe the

equation, it’s possible to follow again equation 2.20, taking

care of adding a spatial phase term, since the two signals are

spatially separated:

G(τ) =

∫
|W (~q)|2 e−i~q ~SR(~q, τ)d~q

|W (0)|2 〈C〉
(2.28)

This basically gives the same function as in (2.25), but, as

anticipated, with a Gaussian drift term, peaking at the average
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flight time required by fluorescent particles to travel ~S:



G1,2(τ) = G(0)Gdiff (τ)Gdrift(τ)

G(0) = 0.35
〈N〉

Gdiff (τ) = 1
1+ τ

τD

1√
1+ τ

τD

(
λ
πω0

)2

Gdrift(τ) = exp

[
−
(
~S−~v τ
ω0

)2
1

1+ τ
τD

]
(2.29)

Figure 2.24: In a microchannel filled with fluorescent trackers (red

particles) two investigation ROIs are chosen (usually squares of side

1 to 5 pixels) from which I1(τ) and I2(τ) are analysed.
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Figure 2.25: Simulation of G1,2(τ) for growing values of ~vdrift, rang-

ing from 10 to 50 µm
s . Other parameters are: τD = 30ms, wave-

length = 500 nm, ω0 = 2µm

Equation 2.29 can be greatly simplified, in particular for

the microfluidic structures and regimes that I employed. In

fact, a rapid calculation shows that the diffusion time constant

(supposing T = room temperature and fluorescent particles

mean radius R = 1µm) is of the order 30ms; when analysing

both in-vitro or in-vivo flows, usually we deal with velocities

that are around hundreds of µm
s , on distances of tens of mi-

crons. This means that, as explained also in Chapter 4, the

Gaussian peak is estimated at lag-times that allow the simpli-

fication:
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1

1 + τ
τD

' 1 (2.30)

So that, at first approximation:
G′1,2(τ) = G(0) G′drift(τ)

G(0) = 0.35
〈N〉

G′drift(τ) = exp

[
−
(
|~S−~v τ |
ω0

)2
] (2.31)

This equation is extremely clear about the core information

that I want to retrieve: the peak lag-time will immediately in-

form about the speed in the studied subregion of the sample.

A possible drawback is that the definition of the investigation

volumes (V1 and V2), from which fluorescence signals are ac-

quired, already supposes a prior (at least vague) knowledge

about the flow direction. Usually this is not a huge problem,

since a rapid inspection of the acquired image stacks is enough

to understand where I can correctly perform the analysis, ac-

cording to 2.31, doing it efficiently off-line. Moreover in order

to overcome this possible limitation (avoiding a somehow sub-

jective and time consuming volumes selection) Chapter 5 will

deal especially with a new evolution of the correlation tech-

niques proposed, that is Spatio-Temporal Cross-Correlation

Spectroscopy (STICS).
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2.4.3 STICS

This is a powerful technique that, although requiring wide

field images acquired at high speed (so being demanding in

terms of hardware and computer power), allows a complete

mapping of flow and diffusion phenomena in space (at first

instance in 2D, but see chapter 6 for a 3D evaluation). STICS

can be directly seen as a generalization of sFCS, as it can

be appreciated by inspecting the definitio of the generalized

spatio-temporal correlation function:

G(ξ, η, τ) =

〈
〈δI(x, y, t)〉x,y 〈δI(x+ ξ, y + η, t+ τ)〉x,y

〈I(x, y, t)〉x,y 〈I(x, y, t+ τ)〉x,y

〉
t

(2.32)

Following the same procedure described in the previous

section (I will get into a more detailed description in Chap-

ter 6), the 2D fit function that explicitly reveals the physical

parameters of interest is:18

G(ξ, η, τ) =
1

〈C〉πω2
0

1

1 + 4D
ω2

0

exp

− 1

ω2
0

|ξ − vxτ |2 + |η − vyτ |2

1 + 4D
ω2

0


(2.33)

ξ, η are the spatial-shifts, that is components of a rigid

displacement vector applied between image couples before su-
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perimposing (multiplying) them and integrating, and {vx, vy}
being components of the velocity field associated with a flow.

In case of multiple flows, as extensively described in Chapter

5, multiple exponential contributions are expected, each one

depending on a specific ~vflow, i.

In the most emblematic case, the investigated sample may

presents unknown (both in magnitude and direction) flows

(and eventually diffusion): under the assumption that both

spatial and temporal resolutions are high enough to sample

significant phenomena, a fast video recording with a SPIM

setup gives the perfect data sets to be analysed by STICS. All

the analysis can be performed off-line, following a well estab-

lished algorithm, that I have extensively tuned and improved

as described in Chapter 5:

1. ROI selection: subregions inside the sample are selected

and sequentially analysed. The aim is both to decrease

computational costs and to obtain a clearer, finer spatial

mapping, since in every region less velocity components

are expected, underlying simpler geometries.

2. Calculatoin of the temporal and spatial fluctuations cal-

culation: in order to subtract immobile fraction, high-

lighting signals coming from moving fluorescent objects,

and also to account for slow possible excitation inten-
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sity variations, fluctuations are computed, respectively

in space and time, following δI(x, y, t) = [I(x, y, t) −
〈I(x, y, t)〉t]− 〈I(x, y, t)〉x,y

3. Selection of the range of the lag-times: given a ROI max-

imum extension {M×N}, a lag-time τ choice will deter-

mine the velocity range that can be detected: there is an

ideal theoretical limit on the maximum speed detectable

by a spatial correlation, that is vmax =
√
M2+N2dp

2τ (with

dp pixel size). Moreover, as discussed in Chapter 5, usu-

ally a more conservative approach is kept, in order to

preserve high S
N .

4. Spatial cross-correlations are performed (in frequency

domain, to obtain fast computational speed) between

ROI couples spaced τ in time, then an average of the

results gives the 2D flow map (see figures 2.26 2.27)
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Figure 2.26: Schematic representation of ROI coupling and corre-

lation: one a lag-time τ has been chosen, it is rigidly translated

selection successive couples of regions, spanning all the temporal

window available. Spatial-correlation is performed between these

couples, finally averaging results.

For this work, employing low level libraries (e.g. numpy,

C based) and optimized vectorial operations was sufficient to

allow me to obtain high computational speeds (few tens of

seconds per map (50x50 pixels) in the slowest case). Of course

a future improvement would be to shift towards parallel GPU

programming, harvesting the power of modern graphics cards

(e.g. with OpenGl or CUDA libraries).
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Figure 2.27: Simulations of STICS maps: the bright peak informs

about a single velocity steady flow, and it travels in space as lag-time

increases: this is the spatial shifts that has to be applied between

each image couple in order to retrieve the maximum similarity, after

τ lag times.

Practical considerations Cross-correlation analysis is ca-

pable of bringing into evidence similarities between signals at

varying reciprocal offsets. The 1D cross-correlation function
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general mathematical model is:13

γf,g(x) =

∫ ∞
−∞

f(α) g∗(α− x)dα =

∫ ∞
−∞

g∗(β) f(β + x)dβ

The fastest computational performances are reached ex-

ploiting the extremely efficient Fast Fourier Transform algo-

rithm: in fact, the convolution theorem shows that correlation

and convolution are closely related:

γf,g(x) = f(x)⊗ g∗(−x) = F (ξ) ·G∗(ξ) (2.34)

where F and G are Fourier Transforms of f and g, respectively.

The last equality (holding for real-valued functions) shows

that convolution becomes a simple product in frequency space:

this procedure is extremely fast, and applies also to 2D signals

in STICS analysis. Furthermore exploiting ROI selection, it

can always be chosen a rectangular subregion of N2 × M2

pixels, heavily improving computational efficiency of FFT al-

gorithm.21
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2.5 Microfluidics

The last theoretical topic that I will briefly introduce here

is the well known description of microscale fluid mechanics:

experimental work will be focused on studying time-dependent

flows inside microchannels, which satisfies the Navies-Stokes

equation and can be also treated in analogy with a lumped-

circuit analysis.

Governing equations

Throughout all the discussion, the continuous hypothesis will

hold, that is I will follow Bruus22 definition of fluid: its macro-

scopic properties are the same as if the fluid were perfectly

continuous in structure instead of, as in reality, consisting of

molecules. In fact, although fluids are quantized on the length

scale of inter-molecular distances (of the order 0.3nm for li-

quids), here they appear continuous since we are dealing with

macroscopic length scales of the order 100 µm or more. In the

most general form, the equations of fluid motion stem from

considering a general volumetric property of interest and keep-

ing track of how it changes over time across a fluid volume

element. If Q is a general volumetric property of the fluid,

then:
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d

dt

∫
σ
Qdσ =−

∫
S
Q~v · n̂ ds+

+ any mechanism to produce/destroy Q

(2.35)

where:

• d
dt

∫
σ Qdσ is the time variation of Q inside a volume el-

ement dσ;

•
∫
S Q~v · n̂ ds represents its efflux (outflow).

There are three major applications of this production/conservation

model, connected to mass, momentum, and energy conserva-

tion.

Mass conservation With Q = ρ and under the hypoth-

esis that mass can’t be produced or destroyed inside the vo-

lume element:

d

dt

∫
σ
ρ dσ = −

∫
S
ρ~v · n̂ ds (2.36)

Momentum conservation When ~Q = ρ~v = linear mo-

mentum:

d

dt

∫
σ
ρ~v dσ = −

∫
S
ρ~v ~v · n̂ ds+

∫
σ

~f dσ +

∫
S

~T ds (2.37)

In this case two kinds of forces are modelled:
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• ~f(~x) = body force per unit volume, that is in general an

action across a distance;

• ~T (~x) = traction force per unit area.

In particular, ~T is directly related to the stress tensor,

defined as a linear transformation that associates the normal

to a surface element ds to the traction force on that element:

~T = ~τ · n̂. Being able to ignore the body force, we get the

compact expression:

d

dt

∫
σ
ρ~v dσ = −

∫
S

(ρ~v ~v − τ) · n̂ ds (2.38)

Energy conservation Considering Q = ρEt with Et =

specific total energy = e + 1
2~v~v, being e the internal energy,

then:

d

dt

∫
σ
ρEt dσ = −

∫
S
ρEt~v·n̂ ds+

∫
σ

~f ·~vdσ+

∫
S

~T ·~vds−
∫
S
~q n̂ds

(2.39)

Again, ignoring body forces and expanding ~T :

d

dt

∫
σ
ρEt dσ = −

∫
S
ρEt ~v·n̂ ds+

∫
S
~τ ·~v ·n̂ ds−

∫
S
~q n̂ ds (2.40)

As a last step, all the balance equations can be written in

an extremely compact way:

d

dt

∫
σ
Qdσ = −

∫
S

~F · n̂ ds1 (2.41)
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Q =


ρ

ρ~v

ρEt

, ~F =


ρ~v

ρ~v ~v − ~τ
(ρEt)~v − ~τ · ~v + ~q

 (2.42)

These equations express the fundamental relations from

which any microfluidic theory develops. The only thing left

to derive Navier-Stokes is to express the second equality in

differential form, and to further dive into the expression of the

stress tensor τ . First of all, applying Gauss theorem to (2.37),

we get to:

ρ
d

dt
~v + ρ~v · ∇~v = ∇ · ~τ (2.43)

Then considering a Newtonian fluid, τ assumes the expres-

sion:

τij = −pδij + σ′ij (2.44)

with p being the pressure and σ′ij being the viscous stress

tensor : it expresses the ith component of the friction force per

unit area acting on a surface element oriented with the surface

normal parallel to the jth unit vector ej . Its general expression

results to be:
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σ′ij = η

(
∂jvi + ∂ivj −

2

3
δij∂kvk

)
+ ζδij∂kvk (2.45)

where the coefficients η and ζ are denoted the viscosity and

second viscosity, respectively. In case of incompressible fluid,

∂kvk = 0, so that it greatly simplifies into:

σ′ij = η (∂jvi + ∂ivj) (2.46)

Considering a uniform viscosity, the divergence of the stress

tensor becomes:

∂jτij = −∂ip+ η∂j∂jvi (2.47)

Finally resulting in the usual Navier-Stokes equation:

ρ
d

dt
~v + ρ~v · ∇~v = −∇p+∇ · η∇~v (2.48)

Furthermore, if we have uniform viscosity:

ρ
d

dt
~v + ρ~v · ∇~v = −∇p+ η∇2~v (2.49)

This form of the Navier-Stokes equation is a core building

block for every description of flows in all in-vitro systems em-

ployed in this work. A rapid calculation of Reynolds number

and the application to particular microchannel geometry em-

ployed in this work, will help further simplifying the notation,

as I will show in the following.
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Notational observation The equations displayed here can

be cast in any coordinate system, and they should, in order to

solve a specific problem. There may be an element of ambigu-

ity in dot products like (~τ ·~v ·n̂) in equation 2.40, but this is not

a problem when those are resolved in terms of component,23

e.g.

~T · ~V = Tiε
i · εlV l = τijε

i(εjεk)nk · εlV l = τijn
jV i (2.50)

2.5.1 Reynolds number

The proper way to see if the non-linear term (~v · ∇~v) in Navier–Stokes

can be neglected is to make the equation dimensionless. This

can be accomplished by expressing all physical quantities in

units of the characteristic scales e.g.

~v = V0~u

in this way it seems natural to rewrite Navier-Stokes introduc-

ing the dimensionless Reynolds number:

Re [∂t~u+ (~u · ∇)~u] = −∇p+∇2~u (2.51)

Re ≡ ρ V0 L0

η
(2.52)

Clearly from Eq. (2.50) it’s apparent that for Re << 1 the

viscous term ∇2~v dominates, while when Re >> 1 the inertia
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term (v · ∇)~v dominates. The systems that I have studied in

all my thesis possess very low Reynolds numbers. Let’s, for

example, consider a typical situation where a fluid is flowing

with velocities of hundreds of µm
s in a square channel:

ρH2O [ g
cm3 ] ηH2O [mPa · s] V0 [µms ] L0 [µm]

1 0.89 102 102

Re ' 10−3

This shows that there is no need to worry about turbu-

lences inside our systems, and that it is justified to use the

assumption of Poiseuille flow, that I shall apply in order to

understand the shape of velocity profiles inside planes normal

to flow direction.

2.5.2 Poiseuille flow in rectangular channels

Usually I’ve employed a rectangular geometry for channels de-

sign: it’s easier to obtain both during design and fabrication

process, but another important reason, remembering SPIM ge-

ometry, consists in the fact that plane walls, perpendicular to

optical axes, reduce aberrations and artefacts in the imaging

process. I find it’s worth to dive a little deeper to get a more
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precise description of the distribution of the velocity field that

will be in particular measured in Chapter 4.

The system under investigation will be a pressure-driven, steady-

state flow, at low Reynolds number, also known as Poiseuille

flow. Surprisingly enough, there is no analytical solution known

with this geometry, in spite of its high symmetry. Assuming

width larger than height (w > h), Navier-Stokes (in the low

Reynolds number case) and no-slip boundary conditions, in a

Cartesian reference frame, are:

[∂2
y + ∂2

z ]vx(y, z) =
−∆p

ηL
, for − w

2
< y <

w

2
, 0 < z < h

(2.53)

vx(y, z) = 0, for y = ±w
2
or z = 0, h (2.54)

Figure 2.28: Square channel geometry

First step to solve the equation is to expand in Fourier
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Series both left and right hand sides, along the (shorter) z

direction; to fulfil the boundary conditions, only terms pro-

portional to sin
(
nπ zh

)
are employed:

[∂2
y + ∂2

z ]vx(y, z) =
∞∑
n=1

[
f ′′n(y)− n2π2

h2
fn

]
sin
(
nπ

z

h

)
(2.55)

−∆p

ηL
=
−∆p

ηL

4

π

 ∞∑
n, odd

1

n
sin
(
nπ

z

h

) (2.56)

For all values of n, the n-th coefficient in the pressure term

Eq. (2.54) must equal the nth coefficient in the velocity term

Eq. (2.55):

fn(y) = 0 , for n even (2.57)

f ′′n(y)− n2π2

h2
fn =

−∆p

ηL

4

π

1

n
, for n odd (2.58)

The solution of the second order differential equation, that

also satisfies the boundary conditions, is then easily found:

fn(y) =
4h2

π3

∆p

ηL

1

n3

[
1−

cosh
(
nπ yh

)
cosh

(
nπ w

2h

)] (2.59)

Finally giving the velocity profile:
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vx(y, z) =
4h2

π3

∆p

ηL

∞∑
n,odd

1

n3

[
1−

cosh
(
nπ yh

)
cosh

(
nπ w

2h

)] sin(nπ z
h

)
(2.60)

This result allows a useful visualization of the velocity field

inside any rectangular channel employed in this work, and can

serve as an additional way to verify the correct analysis of

correlation methods.

Figure 2.29: Simulation (Python code) of the velocity in a rectangu-

lar channel, aspect-ratio = 1
2 . The section shows level curves for the

velocity, higher in the centre and decreasing in a x̂ and ŷ symmetric

way towards the boundaries.
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2.5.3 Lumped circuit analogy

A very interesting parallelism occurs between current electric

circuits and flow in microchannels: elements like resistances,

capacitances, or sources find their counterparts in microfluidics

and the same laws (e.g Ohm’s law) can be employed to model

simple networks. The following table summarizes the main

useful quantities, with their electronic counterparts:

Electronics Microfluidics

resistance R hydraulic resistance Rhyd = ηL
A2

capacitance C compliance Chyd = −dV
dp

voltage source ∆V pressure source ∆p

Ohm’s law ∆V = RI ∆p = RhydQ

These analogies can help describing, at first approxima-

tion, many in-vitro arrangements: for example, let’s consider

the microfluidic setup employed during the measurements de-

scribed later in Chapter 4.
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Figure 2.30: Circuital flow scheme

Flow is studied inside the glass microchannel (800µm sec-

tion) and the connections with pump and reservoir are made

with Teflon and plastic tubing, which, being elastic, contribute

with their compliance to create an equivalent RC circuit. The

overall effect can be clearly seen in Figure 2-C of Chapter 4

(reported here for convenience).

Figure 2.31: Multiple regimes and low-pass filter
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This is a synthetic {y − t} image, obtained by reporting

the same line (200µm) measured along the flow (ŷ direction)

as a function of time. This offers a simple way to qualitatively

analyse multiple flow components along the same direction

with speeds varying over time.

Particles trajectories inside the glass microchannel are shown

with bright red lines. The pump produces a square pressure

function between 2 regimes, i.e. theoretical abrupt transitions

between different trajectories: the experimental smooth transi-

tion highlighted with a green circle is then perfectly consistent

with the presence of hydraulic compliance and the overall low-

pass hydrauilic filter in the model. Besides, being a very fast

transition (the connection were specifically chosen the most

rigid possible), it will not actually affect the correct sampling

of multiple flow regimes.
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Chapter 3

Methods

It is the weight, not numbers of

experiments that is to be regarded.

Isaac Newton

3.1 PDMS microchannels

Nowadays it has become frequent to talk about Lab-on-a-Chip

systems, that is, as the name suggests, little (typical maximum

extension of centimetres) platforms designed to perform tests

and analysis in an extremely compact way: once loaded with a

sample, they should perform all their tasks without other ex-

ternal help, nonetheless giving easy access to all desired data

(e.g. fluorescence or other signals collected by embedded or

76



external detectors,24,25 or retrieval of products of chemical or

mechanical manipulations26,27). It’s just the equivalent of a

miniaturized, automated lab, carried on the palm of a hand.

For the in-vitro study of variable flow regimes, I fabricated

channels of few hundreds micrometers with complex geome-

tries, and I decided to achieve easy reproducibility and low

fabrication cost: the perfect solution was to employ PDMS

lithography and 3D printing technology.

Figure 3.1: PDMS chemical structure
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Figure 3.2: Sylgard 184 silicone elastomer consisting of 0.1 L curing

agent and 1 L base

PDMS (Polydimethylsiloxane) belongs to a group of poly-

meric organosilicon compounds, optically clear, inert, non-

toxic, and non-flammable:28 all these properties are perfect

when handling solutions of fluorescent beads, that should be

imaged with a SPIM microscope. Moreover PDMS is cheap

and employing a soft-lithography process based on 3D printed

templates results in a fast, low-cost, and high resolution (min-

imum feature of 20− 50µm) fabrication procedure.
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Figure 3.3: 3D printed template example, designed with

TinkercadTM

Fabrication process Molding templates are designed with

an open-source CAD software www.tinkercad.com: starting

with basic geometric structures (cubes, sphere or cylinders as

building blocks) I designed all the needed microchannels, with

dimensions ranging from 100µm to 800µm, printed on an aver-

age total area of 5 cm2. Templates are printed via stereolithog-

raphy (SLA), an additive manufacturing technology that con-

verts liquid resins into solid parts, layer by layer, by selectively

curing them using a UV laser in a process called photopoly-

merization.
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Figure 3.4: Schematic of SLA printer, from www.formlabs.com

Printing process has been performed with a Formlab Form2TM :

it’s a laser based printer with a 250mW precision laser guided

by custom-built galvanometers, capable of achieving a build

volume of 145×145×175 mm with a minimum layer thickness

of 25µm. Once a template has been produced, it is filled with

a 10:1 mixture of PDMS prepolymer and curing agent (figure

3.2), then put in a vacuum chamber for at least 20 minutes

(it’s a very viscous material and during mixing usually many

air bubbles are trapped inside): this allows to obtain a more
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resistant chip, as well as one with better optical clarity. In

order to further improve transparency on a side of the chip

(that is, on the optical window that should be used by SPIM

sheet of light excitation to reach the microchannels), I found

out that it is better to stick (with silicone grease) a microscopy

thin glass on the chosen side of the printed template: in this

way it’s easy to obtain an extremely smooth surface, avoid-

ing or minimizing unwanted artefacts in the SPIM excitation

path.

Figure 3.5: Left: 3D printed template filled with (already cured)

PDMS. Right: microchannels example.

The next step is heat curing: in order to harden the struc-
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ture, the mold is placed in oven for at least 2 hours at 70◦C

(temperature and time can depend on the actual volume em-

ployed). Then peeling off the PDMS structure results in trans-

parent microchannels structure, in which I pierce inlets and

outlets to connect flow pumps or reservoirs. The last, maybe

most crucial step, is bonding the PDMS with a microscopy

glass substrate, in order to obtain a perfect window for imag-

ing. I tried different bonding procedures, and the most effec-

tive resulted from employing a thin layer of polydimethylsilox-

ane prepolymer, spin-coated on a glass slide, transferred onto

the embossed area surfaces of the substrate,29 then put on a

new, clean glass slide (figure 3.6), finally heat curing for 30

minutes at 60◦C.

Figure 3.6: PDMS bonding procedure: a thin prepolymer layer is

spin-coated on a glass substrate, so that the transfer on PDMS mi-

crochannel structures allows adhesion on a new glass slide, leaving

open channels.
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3.2 Giant Unilamellar Vesicles - GUVs

Giant Unilamellar Vesicles are phospholipids vesicles (artifi-

cial liposomes) with average diameters of tens of µm, often

employed as a controllable system to study membranes prop-

erties or as drug carriers: the development of even larger vesi-

cles to retain cells inside is a promising approach in creating

cellular bioreactors that mimic cellular and tissue responses.30

I have employed GUVs in particular during the experiments

described in Chapter 4, with the main goal of moving towards

the analysis of extended physical bodies, beyond the approxi-

mation of fluorescent particles as material points.

This approach allows to move one step closer to in-vivo appli-

cations (since GUVs are mimicking the behaviour of cells) and

also to test correlation methods working with complex struc-

tures, opening a future line of study on flow induced mixing

in micro-containers.
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Figure 3.7: An image of GUVs acquired with a confocal microscope

(Leica)

Synthesis Guv synthesis has been carried out via electro-

formation.31 This process is easy to perform with basic equip-

ment, reliable, and allows production of high concentration

solutions of polydisperse lipososmes. The protocol is summa-

rized in the following:

• lipids employed are DOPC (1,2-dioleoyl-sn-glycero-3-phos-

phocholine) doped with 1 mol % of the fluorescent probe
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rhodamine (1,2-dipalmitoyl-sn-glycero-3-phosphoethano-

lamine-N-lissamine rhodamine B sulfonyl; Avanti Polar

Lipids);

• 20 µL of lipid solution (2mgml of lipids dissolved in chlo-

roform) is spread on each one of two indium thin oxide

(ITO) glass slides;

• slides are dried for 30 minutes under vacuum;

• coated surfaces are spaced by a teflon spacer (2mm):

this makes a closed chamber, filled with 200mM sucrose

solution;

• electric field applied in the chamber in two steps: 15

minutes at ∆V = 1.0V followed by 3.5−4hoursat∆V =

1.5V (10 Hz harmonic signal);

• the vesicles solution is removed from the chamber and

diluted in a 200mM sucrose solution to reduce vesicles

buoyancy.
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Figure 3.8: GUV synthesis chamber.
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3.3 Zebrafish embryos

After in-vitro validation, moving towards a biological sample

comes as a natural step: I pursued the the main goal of pre-

cisely mapping blood flow in both principal vessels and in pe-

ripheral capillaries. The best model organism for this task is

the Zebrafish (Danio Rerio): it is widely employed in devel-

opmental biology32(e.g. its hearth at 1 day post fertilization

(d.p.f.) has similar behaviour to human hearth after 3 weeks

gestation), and in the investigation of function and patholo-

gies of the cardiovascular system.33,34 There is also another

very important, practical reason that makes it extremely con-

venient: an image is worth more than a thousand words in this

case, see for example figure 3.9:
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Figure 3.9: Non-confocal transmitted light image (top) and confo-

cal fluorescence images acquired by detecting the signal of Green

Fluorescent Protein (GFP) expressed by the endothelial cells (cen-

ter, λexc = 488nm) and the signal of DsRed fluorescent protein

expressed by red blood cells (bottom, λexc = 561nm)

The figure shows two fluorescence images of a whole Ze-

brafish embryo obtained with a confocal microscope, and a

bright-field image, obtained with a transmission microscope:

the variety of Zebrafish employed is called Casper, because it

is a mutant which can’t express any pigmentation in the ep-

ithelial tissue. Also, it is transgenic in the red blood cells,
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which express the fluorophore DsRed (λexc = 561 nm), and in

the endothelial cells of blood vessels, which express a GFP

(λexc = 488 nm). This means, from a practical point of

view, that it’s easy both to select what a user desires to image

(changing excitation wavelength and detection filters, look at

figure 3.10) and to obtain, in every situation, a clearer signal,

without worrying about absorbing epithelial structures.

Figure 3.10: Excitation and emission spectra of employed dyes:

dashed blue = GFP excitation; dashed green = DsRed excita-

tion; filled green = GFP emission; filled yellow = DsRed emission.

(www.bdbiosciences.com)

Hemodynamics My main goal has been to map and char-

acterize hemodynamics inside the Zebrafish embryo. There are

two basic structures that I have been investigating and that

are easily identified in embryos form 3 to 5 d.p.f. (days post
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fertilization):

1. main vessels: Dorsal Aorta (DA) and the Posterior Car-

dinal Vein (PCV), fully formed at two d.p.f., with typi-

cal diameter around 20-30 µm: the cardiac contractions

promote the blood flow through the arterial vessel, which

turns 180◦ at its caudal end to empty into the cardinal

vein, then back to the heart;

2. intersomitic vessels: these are smaller vessels (their di-

ameter reduces to 10µm, almost equal in size with the

red blood cells (radius of ±4µm and a thickness of ±1−
2µm), developing between 2 and 3 d.p.f., that form through-

out the specimen length and interconnect to form the

Dorsal Longitudinal Anastomotic Vessels.

Blood flow inside DA is pulsed, with a systolic phase (higher

speed, given by hearth contraction) followed by a diastolic

phase. Chapter 4 deals precisely with the study of these flows,

defining a coherent framework in which quantitative measure-

ment of time varying and pulsed flows (both for in-vitro and

in-vivo systems) can be carried out.

Sample handling I employed the SPIM system described in

section 2.3 to study Zebrafish embryos: samples are put inside
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the observation chamber and with a 3D positioning system it

is possible to select the desired region of interest (ROI). In

order to keep the samples alive and in good health conditions,

I tested two main approaches: :

1. embryos were anaesthetized in 40 mg
l tricaine (Ethyl 3-

aminobenzene methansulfonate, Sigma-Aldrich, USA) and

then embedded in 1.5% low-melting agarose (Sigma Aldrich,

USA), inside a glass capillaary of 800µm internal diame-

ter;

2. samples were inserted in a small FEP (Fluorinated Ethy-

lene Propylene) tubing (internaldiameter 500µm), and

mechanically stopped inside, simply trapping a small air

bubble at the tip of the FEP channel (see figure 3.11). I

think that this method is way better, both because em-

bryos are not anaesthetized (allowing the study of less

perturbed biological conditions) and also because FEP

tubings are optically more transparent (they offer a bet-

ter index matching with water) than glass ones.
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Figure 3.11: Zebrafish embryo immobilized in FEP tubing - schemat-

ics.
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Chapter 4

Image

Cross-Correlation

Analysis of Time

Varying Flows

Luck is what happens when preparation

meets opportunity.

Seneca

Here I present the first article included in this thesis (pusb-

lished on Analytical Chemistry), focused on the study of time-

varying flows: it is primarily thought as an in-vitro study of
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model systems simulating hemodynamics. Both flow regimes

and sample conditions are extensively explored, in particular:

• different flow regimes (e.g. also investigating alternate

flow regimes, where direction of flow was periodically in-

verted), covering a wide range of velocities (from tens to

several hundreds of µm
s ), below and way beyond biolog-

ical conditions : this serves both as stress test and as

calibration of the setup and the methods;

• starting from fluorescent particles (rigid micro-spheres of

radii from 1 to 5 µm) and moving towards the application

to small organisms, the study also explores the impact of

more complex tracers, that is GUV (with radii ranging

from 5 to 60 µm) possessing internal degrees of freedom

and with dimensions comparable with cells;

• finally sFCS is applied to the study of the hemodynamics

of the Zebrafish embryos. In particular the systolic and

dyastolic phases in the principal artery were successfully

characterized.

This work shows that sFCS is a strong and reliable method,

especially when combined with Light Sheet microscopy, and

capable to tackle properly future extensive in-vivo studies.

The employment of extended tracers represents not only a
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useful test, but also the start of currently pursued new line

of work not included in this thesis, that is the study of the

complex mixing motions internally developing in unilamellar

vesicles under the action of an external flow.
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Abstract.		

In	 vivo	 studies	 of	 blood	 circulation	 pathologies	 have	 great	 medical	 relevance	 and	 need	

methods	for	the	characterization	of	time	varying	flows	at	high	spatial	and	time	resolution	in	

small	 animal	 models.	 We	 test	 here	 the	 efficacy	 of	 the	 combination	 of	 image	 correlation	

techniques	 and	 Single	 Plane	 Illumination	Microscopy	 (SPIM)	 in	 characterizing	 time	 varying	

flows	in-vitro	and	in-vivo.	As	indicated	by	numerical	simulations	and	by	in-vitro	experiments	

on	straight	capillaries,	the	complex	analytical	form	of	the	Cross-correlation	function	for	SPIM	

detection	can	be	simplified,	in	conditions	of	interest	for	hemodynamics,	to	a	superposition	of	

Gaussian	 components,	 easily	 amenable	 to	 the	 analysis	 of	 variable	 flows.	 The	 possibility	 to	

select	a	wide	field	of	view	with	a	good	spatial	resolution	along	the	collection	optical	axis	and	

to	compute	the	cross-correlation	between	regions	of	 interest	at	varying	distance	on	a	single	

time	stack	of	images,	allows	to	single	out	periodic	flow	components	from	spurious	peaks	on	

the	Cross-correlation	 functions	and	to	 infer	 the	duration	of	each	 flow	component.	We	apply	

this	 cross-correlation	 analysis	 to	 the	 blood	 flow	 in	 Zebrafish	 embryos	 at	 4	 days	 after	

fertilization,	 measuring	 the	 average	 speed	 and	 the	 duration	 of	 the	 systolic	 and	 diastolic	

phases.		
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INTRODUCTION.	

Space	and	time	mapping	of	blood	flow	is	essential	for	biomedical	research	and	for	diagnosis	of	

diseases	that	affect	directly	the	blood	circulation	system1	or	cause	an	impaired	blood	supply	

to	 organs.	 Even	 in	 extremely	 simplified	 animal	 models,	 such	 as	 Zebrafish	 embryos2	 and	

juvenile	 transparent	 fishes,3,4	 the	blood	circulation	presents	pulsatile,	occasionally	 irregular,	

flow	with	vessel	branching	that	requires	high	spatial	and	time	resolution	to	be	studied.	Blood	

flow	is	also	severely	affected	in	many	tumors	and	other	diseases5	such	as	hepatitis	B	and	plays	

an	active	role	in	the	immune	reaction	to	viruses.	6	All	these	examples	display	time	and	space	

complexity	and	could	be	 studied	only	by	a	wide	 field	non-invasive	 technique	with	 capillary	

size	 spatial	 resolution.	 Magnetic	 Resonance	 Imaging,7	 Optical	 Coherence	 Tomography,8	

Doppler	 Tomography,9	 and	 Ultrasound	 Imaging,1,10	 are	 suitable	 for	 whole	 body	 studies	 in	

small	 animal	models.	 However	 they	 do	 not	 offer	 the	 high	 spatial	 resolution	 that	 is	 instead	

possible	to	reach	by	means	of	multiphoton	optical	microscopy.11,12		

Fluorescence	Correlation	Spectroscopy	(FCS)	is	a	sensitive	and	non-invasive	technique	for	the	

study	of	 the	molecular	 and	 cellular	biology	dynamics	 in-vitro	 and	 in-vivo.13,14,15	 It	 has	been	

applied	to	the	measurement	of	the	diffusion	coefficient	of	fluorescent	molecules	down	to	pico-	

and	 nano-molar	 concentrations,16	 to	 the	 estimate	 of	 chemical	 kinetic	 constants17	 and	 to	

measure	 flow	 speeds	 in	 micro-channels.2	 The	 measurement	 of	 the	 Fluorescence	 Cross-

Correlation	 Functions	 (CCFs)	 of	 the	 signals	 from	 two	 volumes,	 also	 coupled	 to	 the	 use	 of	

pixelated	detectors	(EM-CCD),2,22	has	improved18-21	the	efficacy	of	FCS	for	the	study	of	flows.	

FCS	has	been	also	coupled	to	plane	illumination,	such	as	Total	Internal	Reflection	and	Single	

Plane	 Illumination	 Microscopy,22	 for	 the	 study	 of	 complex	 stationary	 flow	 fields.	 Different	

image	 correlation	 techniques14	 allow	 to	 study	 slow	 (spatiotemporal	 image	 correlation	

spectroscopy)23,24	 or	 fast	 molecular	 dynamics	 (raster	 image	 correlation	 spectroscopy).25	
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These	 techniques	 are	 however	 limited	 in	 time	 resolution	 since	 correlations	 should	 be	

computed	 over	 hundreds	 of	 frames	 due	 to	 the	 low	 fluctuations	 arising	 from	 the	molecular	

motion.26	 For	 flowing	 	 tracers	 with	 high	 contrast	 with	 respect	 to	 the	 background,	 this	

requirement	 can	 be	 relaxed	 as	 in	 the	 recently	 developed	 FLow	 Image	 Correlation	

Spectroscopy6	 technique.	 In	 this	 case	 the	 flow	 information	 is	 gained	 from	 a	 single	 raster	

scanned	image	and	the	time	resolutions	≅0.5-1	s	allows	to	follow	nonstationary	flow	regimes.	

Our	aim	is	to	develop	a	method	for	the	high	throughput	screening	of	time	dependent	flows	in	

vessels	over	a	wide	Field	Of	View	(FOV)	for	applications	in-vitro	and	in-vivo.	In	order	to	reach	

this	goal	we	need	a	wide	field	illumination	mode	coupled	to	a	parallel	detection	of	the	signals	

and	to	fast	data	analysis	methods	to	extract	the	flow	speeds.	We	employ	therefore	a	parallel	

imaging	approach	based	on	the	coupling	of	FCS	cross-correlation	methods	to	Selective	Plane	

Illumination	Microscopy	(SPIM)27	that	allows	us	to	fully	characterize	the	flow	regimes	off-line	

by	 correlative	 analysis	 on	 extended	 time	 stacks	 (120	 -	 180	 sec	 per	 stack)	 with	 high	 time	

resolution	(4	ms	per	frame)	and	over	wide	fields	(40x250	µm2).	The	large	FOV	(hundreds	of	

microns)	 allows	 us	 to	 map	 the	 flow	 profile	 in-vitro	 (100µm	 channel,	 see	 Supporting	

Information,	 SI8)	 and	 in-vivo	 (Zebrafish	 embryo).	 Finally,	we	 reduce	 the	 complexity	 of	 the	

image	analysis	by	deriving	a	simplified	description	of	the	cross-correlation	functions.	

We	developed	therefore	a	numerical	and	analytical	analysis	of	the	cross-correlation	function	

for	 the	SPIM	setup	and	describe	a	data	analysis	method	which	 is	 tested	thoroughly	on	rigid	

fluorescent	 micro-spheres	 and	 on	 labeled	 Giant	 Unilamellar	 Vesicles	 (GUV),	 a	 system	 that	

mimics	the	biological	cell.	In	these	in-vitro	experiments	the	programmed	values	of	speeds	are	

retrieved	 with	 high	 accuracy	 over	 a	 wide	 range	 of	 values.	 Finally	 we	 applied	 SPIM	 CCF	

measurements	to	characterize	in-vivo	the	artery	blood	flow	in	Zebrafish	embryos.		
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-	THEORY	

We	follow	the	fluorescence	signal	arising	from	tracers,	of	size	r	and	diffusion	coefficient	D,	in	a	

suspension.	The	tracer	dynamics	due	to	its	diffusion,	to	a	drift	or	even	to	chemical	reactions,	

produces	tiny	fluorescence	fluctuations	that	cannot	be	easily	measured.	The	auto-correlation	

method	brings	these	fluctuations	into	evidence	by	evaluating	the	self-similarity	of	the	signal	

in	time	averaged	over	a	long	observation	time.	From	the	time	evolution	of	two	signals,	 ( )tI1 ,	

( )tI2 ,	 collected	 from	 different	 Regions	 of	 Interests	 (ROIs)	 of	 the	 system	 we	 compute	 the	

Cross-Correlation	Function	CCF,	 =)()2,1( τG ( ) ( ) /21 t
tItI δτδ + ( ) ( )

tt
tItI 21 ( ) ( ) /21 t

tItI τ+= 	

( ) ( ) 121 −
tt

tItI .	The	dependence	of	 )()2,1( τG 	on	the	lag	time	τ	provides	the	time	of	flight	of	

the	tracers	between	the	two	ROIs	(ROI1	and	ROI2),	chosen	at	the	origin	and	at	 ( )zyx SSSS ,,=
!

,	

respectively.	 From	 this	 measurement	 and	 an	 appropriate	 model	 of	 the	 dynamics	 we	 can	

extract	 the	 flow	 speed	 ( )zyx vvvv ,,=! .	 Cross-correlation	 methods	 applied	 on	 discrete	

observation	volumes	or	on	a	set	of	ROIs	on	images	allow	to	map	the	flow	field.	The	analysis	of	

the	CCF	is	however	quite	involved	and	it	is	critically	affected	by	the	excitation	and	collection	

modes.	We	couple	here	CCF	methods	 to	a	single	plane	 illumination	setup	 in	which	 the	 light	

sheet	has	the	width	≅	6	μm	along	the	collection	optical	axis	and	a	Rayleigh	length	(extension	

perpendicular	to	the	collection	optical	axis)	zR		≅	460	μm	(see	SI2).	The	complexity	of	the	CCF	

analysis	in	this	setup	arises	primarily	from	the	need	to	integrate	the	signal	over	the	size	of	the	

(typically)	square	ROI	of	linear	size	a.	Our	major	effort	is	here	to	simplify	the	analysis	of	the	

CCFs	in	order	to	allow	a	fast	screening	of	the	flow	field	over	extended	regions	of	the	sample.	

The	 shape	 of	 the	 Cross-Correlation	 Function	 (CCF)	 measured	 on	 a	 SPIM	 setup	 has	 been	

derived	previously28,29	and	it	depends	on	the	flow	velocity	and	the	diffusion	coefficient	of	the	

tracer	 particles.	 In	 many	 in-vivo	 studies	 the	 tracer	 diffusion	 is	 masked	 by	 a	 number	 of	

additional	processes:	the	elasticity	of	the	vessels	(for	blood	circulation)	and	the	finite	size	of	
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the	 tracers	 (e.g.	 Red	 Blood	 Cells).2	 Here	we	 restrict	 ourselves	 to	 a	 situation	 in	which	 drag	

motions	 dominate	 the	 dynamics	 (diffusion	 coefficients	 ~0.1-0.01	 µm2/s,	 Peclet	 numbers	

~103-104)	and	determine	the	presence	of	well-defined	peaks	in	the	cross-correlation	function.	

We	want	to	focus	on	systems	undergoing	laminar	flow	and	to	assess	to	what	extent	the	CCF	of	

the	collected	signal	can	be	approximated	by	a	simple	Gaussian	analytical	form	and	this	can	be	

used	for	the	analysis	of	flows	with	multiple	speed	regimes.	

For	SPIM	optics,	the	analytical	form	of	the	CCF	must	take	into	account	the	integration	of	the	

signal	over	the	(square)	ROI	on	the	pixelated	detector30	and	over	the	width	of	the	illumination	

sheet:	

	

( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
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( ) ( )
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⎪
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	 	 	 	 	 	 	 	 	 	 	 	 (1)	

In	Eq.	1	vk	=	vx	or	vy,	wxy	and	wz	are	 the	size	of	 the	Point	Spread	Function	 in	 the	collection	

path.		The	 ()Erf 	function	is	the	Error	Function.	Despite	the	complexity	of	the	analytical	form	

in	Eq.1,	 the	 correlation	 function	 ( ) ( )
t

tItIG 21
)2,1( )( δτδτ += for	 combined	 diffusive	 and	 drift	

motion	is	dominated2	by	the	presence	of	a	maximum	at	a	lag	time	 xyxy vS /
!

≅τ ,	where	 xyS
!
	are	

the	relative	position	of	ROI2	with	respect	to	ROI1	and	 xyv! 	is	the	flow	speed	on	the	illumination	

plane	 (formally	 given	 by zxy vvv !!! −= 	 ,	 assumed	 to	 be	 collinear	 with	 xyS
!
.	 If	 we	 additionally	
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choose	the	SPIM	plane	as	the	flow	plane	(or	we	assume	that	 zxy vv >> ),	we	can	approximate	

the	CCF	in	SPIM	collection	mode	with	a	much	simpler	2D	effective	model:	

( ) ( )
( )

( )

⎪
⎪
⎪
⎪
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In	Eq.2	τa	 is	 	 the	mean	diffusion	 time,	 )4/(2 Daeffa =τ ,	 that	 is	 related	 to	 the	 tracer’s	diffusion	

coefficient	and	the	effective	ROI	area,	 2222 rawa xyeff ++= ,	given	by	the	sum	of	 the	ROI	 linear	

size	(a),	the	optical	resolution	( xyw )	and	the	tracer	size	(r).	

	As	shown	in	the	Supporting	Information	(SI3)	the	underestimation	of	the	position	of	the	CCF	

maximum	obtained	by	employing	Eq.2	instead	of	Eq.1	is	less	than	3%	for	 xyv! 	≥	100	µm/s	in	

the	 range	0.1	≤	D	≤	10	µm2/s	 and	5	≤	 xyS
!

	 ≤	 60	µm.	 It	 rises	 to	20%	only	 for	 fast	 diffusing	

tracers	( smD /10 2µ≅ )	at	small	 xyS
!

≅	10	µm	and	very	 low	flow	speeds, xyv! 	≅	10	µm/s	(see	

Fig.S1-E1).		The	agreement	between	Eq.1	and	Eq.2	covers	also	the	effective	(e-1)	width,	δτeff,	

measured	on	the	simulated	CCFs	as	detailed	in	Eq.	S2.	The	effective	width	measured	on	the	

full	model	 SPIMeff ,δτ agrees	within	25	%	with	the	2D	model,	 Deff 2,δτ ,	for	 xyv! 	>	200	µm/s	in	the	

range	5	≤	 xyS
!

	≤	60	µm	and		0.1	≤	D	≤	10	µm2/s	(Fig.S1).	The	discrepancy	increases	to	75%	for	
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xyv! 	 =	 100	µm/s	 and	 fast	 diffusing	 species,	D=10	µm2/s	 (Fig.S1D),	 or	 for	 very	 low	 speeds,	

xyv! 	=	10	µm/s	(Fig.S1E).	Therefore	 in	 the	 limit	of	slow	diffusion	and	drift	velocities	 larger	

than	100	µm/s	 in	 the	SPIM	plane,	we	can	approximate	 the	 full	 analytical	 form	of	Eq.1	 by	a	

Gaussian	CCF	in	which	the	maximum	lag	time	scales	as	and	the	width	scales	as	
xy

eff
eff v

a
!≅δτ :	

	

xyxy vs !! /max ≅τ ( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
−= 2

2

)2,1( /
exp,;~

eff

xyxy
xy

vs
AvAG

δτ
τ

τ
!!

! 			 	 	 	 	

	 (3)	

	

We	 can	 then	 reduce	 the	 complexity	 of	 the	 analysis	 for	 flow	 regimes	 with	 N	 velocity	

components	by	employing	Eq.3,	generalized	to:	

( ) ( )∑
=

=
N

i
ixyi vAGG

1
,

)2,1()2,1( ,;~ ττ 		 	 	 	 	 	 (4)	

As	 we	 will	 prove	 in	 the	 experimental	 section	 this	 approach	 allows	 us	 to	 investigate	 time	

dependent	multicomponent	flows	with	speeds	as	high	as	|vxy|	≈	2000	µm/s	and	with	reduced	

computational	effort	with	respect	 to	the	data	analysis	based	on	the	 full	model	(Eq.1).	Apart	

from	the	processing	time	gain,	we	notice	that	the	higher	is	the	flow	speed	the	less	points	are	

available	on	 the	CCFs.	 In	 this	 case	 the	use	of	Eq.	1	as	 trial	 fitting	 function	 is	 critical,	unless	

higher	 frame	 rates	 are	 used.	 The	 maximum	 measurable	 speed	 depends	 (see	 SI,	 Eq.S1.3)	

linearly	on	 the	CCD	 frame	rate,	here	125	s-1,	 and	on	 the	size	of	 the	ROI.	The	 latter,	≅	6	µm,	

could	not	be	further	increased	since	it	should	match	the	size	of	the	cells	to	be	followed	in	the	

blood	flow.	The	frame	rate	can	instead	be	increased	at	the	expense	of	the	detected	signal	per	

pixel,	 thereby	 limiting	 its	 applicability	 to	 heavily	 stained	 cells.	 However,	 the	 range	 of	 the	

speeds	 that	 can	 be	 measured	 with	 our	 setup	 and	 its	 uncertainty	 ≅	 65	 µm/s	 (see	
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Supplementary	 Information	 SI1)	 are	 well	 suited	 to	 characterize	 the	 physiological	

hemodynamics	in	small	animal	models.31		

The	 EMCCD	 noise	 affects	 mainly	 the	 amplitude	 of	 the	 CCFs	 that	 scales	 as	

( ) ( )22)2,1( /10 SBG +≅=τ 	 ,	 where	 2B and	 2S are	 the	 averages	 of	 the	 	 squared	

background	and	signal	levels	respectively.	The	typical	values	are	 5.52 ≅B and	 652 ≅S ,	

for	the	experimental	conditions	and	the	samples	used	here.	The	correction	to	the	amplitude	of	

the	CCFs	is	typically	of	the	order	of	1%	or	less.		

- EXPERIMENTAL	SECTION.	

SPIM	setup.	The	SPIM	setup32	employs	an	Argon-Krypton	laser	(Melles	Griot),	expanded	1:4	

and	 focused	 into	 the	back	aperture	of	an	 illumination	objective	 (Olympus	4X,	0.1	N.A.)	by	a	

cylindrical	lens	(f	=	50mm).	The	illumination	objective	produces	a	light	sheet	in	the	(x,	y)	focal	

plane	of	the	detection	objective	(Olympus,	4X,	0.95	N.A.),	mounted	at	90°	with	respect	to	the	

illumination	objective	(see	Fig.	1).	The	fluorescence,	selected	by	a	band-pass	filter,	is	detected	

by	an	EMCCD	detector	(Cascade	II,	Photometrics,	USA).	The	maximum	acquisition	rate	was	4	

ms/frame,	on	reduced	regions	of	40x250	µm2.	

Fluidic	 setup.	 The	 piston	 (1mm	 diameter	 =	 2R)	 of	 a	 500	 µL	 Hamilton	 micro-	 syringe	 is	

coupled	to	a	linear	actuator	(Fig.1-c)	(M227-	C863	linear	actuator,	Phyisk	Instrumente,	D)	to	

generate	arbitrary	flow	regimes	as	sum	of	square	waves	(speed	resolution	50	nm/s).	At	the	

transition	between	different	speeds	we	set	the	actuator	to	stop	for	10	ms.		

The	input	velocities	model	is	based	on	a	composition	of	square	waves	(Fig.1)	corresponding	

to	either	two	or	more	velocity	values	( ixyv , )	in	the	same	flow	direction	(modulated	speed)	or	

two	 velocity	 values	 in	 two	 opposite	 direction	 of	 flow.	 The	 duration	 of	 the	 “on”	 state	 for	 a	

specific	 speed	 component	 is	 inversely	 proportional	 (Fig.1)	 to	 the	 speed	 value	 for	 each	
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component,	 ixy
on

i vDt ,
)( /= ,	 and	 corresponds	 to	 a	 constant	 volumetric	 flow	 rate	 or	 constant	

number	of	tracers	through	the	capillary	cross-section.		

The	microcapillaries	are	connected	 to	 the	glass	syringes	(employed	as	pump	and	reservoir)	

by	 silicone	 tubes	 (1x3	 mm).	 The	 square	 borosilicate	 glass	 microcapillaries	 have	 nominal	

internal	lateral	size	d	=	100	or	300	µm	(CM	Scientific	Ltd,	UK).	For	in-vitro	reference	studies	

we	used	a	mixture	of	fluorescent	rigid	microspheres	of	various	sizes	(maximum	diameter	=	1	

µm)	and	colors	(C14837,	Invitrogen,	NL).		

The	 computation	 of	 the	 maximum	 expected	 speed, (max)
capillaryV ,	 along	 the	 central	 axis	 of	 the	

capillary	 was	 done	 by	 assuming	 a	 constant	 volumetric	 rate,	 that	 implies	 a	 ratio	

22 // dRVV
syringecapillary

π= between	the	average	speeds	in	the	syringe	and	the	capillary.	Since	

the	 ratio	 between	 	 the	 maximum	 and	 the	 average	 speed	 in	 a	 square	 capillary	 is	

4
/

2
(max) π=

capillarycapillary VV 	 (see	 Supporting	 Information,	 SI8),	 the	 scaling	 factor	 between	 the	

actuator	average	speed	and	the	maximum	speed	in	the	capillaries	 is	
2

23
(max)

4
/

d
RVV

syringecapillary
π= .	

This	corresponds	to	a	scaling	factor	≅197	and	≅21.5	for	the	capillaries	with	inner	size	100	µm	

and	 300	 µm,	 respectively.	 The	 actuator	 	 nominal	 precision,	 50	 nm/s	 ,	 is	 taken	 here	 as	 an	

estimate	of	the	uncertainty	on	the	speeds	values.	

Giant	 Unilamellar	 Vesicles	 (GUV).	 The	 GUVs	 were	 prepared	 by	 the	 electro-formation	

method.33	We	used	DOPC	(1,2-dioleoyl-sn-glycero-3-phosphocholine)	doped	with	1	mol	%	of	

the	 fluorescent	 probe	 rhodamine	 (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-	

lissamine	rhodamine	B	sulfonyl;	Avanti	Polar	Lipids).	20µl	of	lipid	solution	(2	mg/ml	of	lipid	

dissolved	in	chloroform)	was	spread	on	an	indium	tin	oxide	(ITO)	covered	glass	slide	which	

was	then	dried	for	30	minutes	under	vacuum	to	remove	traces	of	the	organic	solvent.	The	two	

lipid	coated	surfaces	were	then	spaced	(one	facing	each	other)	by	a	teflon	spacer	(2mm	thick),	
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forming	a	closed	chamber	in	which	a	200	mM	glucose	solution	was	gently	introduced.	An	AC	

electric	field	was	applied	to	the	chamber	in	two	steps:	15	minutes	at	ΔV	=	1.0	V	followed	by	

3.5	–	4.0	hours	at	ΔV	=	1.5	V	(10	Hz	harmonic	signal).		The	vesicles	solution	was	then	gently	

removed	 from	 the	 chamber	 and	diluted	 in	 a	 200	mM	sucrose	 solution	 to	 reduce	buoyancy.	

The	 vesicles	 are	 spherical,	 tense	 and	 unilamellar,	 although	 some	 of	 them	 stuck	 together	 in	

clusters.	The	GUV	Z-average	hydrodynamic	radius		is	RH	≅	14	µm	(see	Supporting	Information,		

SI4).		

Zebrafish	 embryos.	 In-vivo	measurements	were	 done	 on	Zebrafish	 embryos	 (4	 days	 post	

fertilization,	 d.p.f.)	 of	 the	 transgenic	 line	 mitfaw2∕w2;	 roya9∕a9;	 Tg(kdrl∶EGFP)S843;	 Tg(gata1∶

dsRed)sd2,	 carrying	 green-labeled	 epithelium	 (EGFP)	 and	 red-labeled	 (dsRed)	 red	 blood	

cells.34	The	zebrafish	embryos	were	anesthetized35	with	tricaine	[40	mg∕L	tricaine	(Ethyl	3-

aminobenzene	 methansulfonate,	 Sigma-Aldrich	 Corporation,	 St.	 Louis,	 Missouri)]	 and	

positioned	 in	 a	 2-mm-diam	 fluorinated	 ethylene	 propylene	 tube	 (FT2X3,	 Adtech	 Polymer	

Engineering,	Frampton	Mansell,	UK)	with	1.5%	low	melting	point	agarose	and	then	immersed	

in	a	water	cell.36	

	

- RESULTS	AND	DISCUSSION	

We	first	collected	time	lapse	stacks	of	SPIM	images	of	fluorescent	probes	suspensions	flowing	

in	 borosilicate	 glass	 capillaries.	 We	 investigated	 steady,	 modulated	 and	 alternated	 flows	

(Fig.1C).	The	CCF	analysis	protocol	developed	on	these	samples	was	then	applied	to	 in	vivo	

imaging	of	the	blood	circulation	in	Zebrafish	embryos.		

Carpet	Images.	A	first	visual	analysis	of	the	flow	was	based	on	a	synthetic	x-t	image	(carpet	

image,	Fig.2)	 obtained	 by	 reporting	 the	 same	 line	 (250	𝜇m	x	 2	𝜇m	 in	 this	 case)	measured	

along	 the	 flow	 (x	 direction)	 as	 a	 function	 of	 time	 (500	 frames,	 see	 sketch	D	 in	Fig.2).	 This	
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offers	 a	 simple	 way	 to	 qualitatively	 analyze	 multiple	 flow	 components	 along	 the	 same	

direction	with	speeds	varying	in	time.	

Fig.2	 shows	 the	 trajectories	 of	 the	 tracers	 travelling	 along	 the	 selected	 line	 that	 appear	 as	

slanted	bright	 stripes	over	a	uniform	background.	Straight	bright	 lines	 indicate	 stretches	of	

uniform	motion	whose	speed	is	directly	related	to	their	slopes	in	the	carpet	image.	Modulated	

regimes	with	 speeds	 alternating	 between	 two	 values,	 v1	 and	 v2,	 in	 the	 same	 direction	 and	

orientation,	 result	 in	 carpet	 images	 (Fig.2A)	 in	 which	 the	 two	 sets	 of	 stripes	 appear	 with	

different	 slopes.	 Due	 to	 the	 compliance	 of	 tubing	 the	 actual	 flow	 orientation	 inverts,	 for	

alternating	regimes,	in	about	1s	during	which	the	bright	lines	are	parallel	to	the	carpet	time	

axis	(Fig.	2B).	An	example	of	this	transition	is	reported	in	Fig.2C,	where	the	compliance	of	the	

silicon	 tubing	 connections	 at	 high	 flow	 speed	 in	 a	 small	 cross-section	 capillary	 (300	 µm)	

results	 in	curved	bright	 lines.	The	carpet	 images	offer	 therefore	a	direct	visualization	of	 the	

complexity	 of	 the	 time	 evolution	 of	 the	 flow	 but	 are	 not	 easily	 amenable	 to	 an	 automatic	

computation	of	the	speed	values,	particularly	in	the	case	of	non-uniform	motion.			

Cross-correlation	 analysis	 in	 vitro.	We	 focus	 here	 on	 the	 case	 of	 a	 time	 varying	 uniaxial	

flow	in	which	the	velocity	amplitude	changes	between	two	or	three	values	and	may	invert	the	

direction	of	motion.	We	measured	the	speed	for	each	of	the	flow	components	by	computing	

the	CCFs	between	 two	ROIs	selected	on	 the	SPIM	wide	 field	 image.	The	ROI	size	was	of	 the	

order	of	the	tracer	object	in	order	to	detect	the	signal	fluctuations,	as	displayed	in	Fig.3A	for	

fluorescent	microbeads	 (≅	 1	µm	 in	 size)	 flowing	 along	 the	 central	 axis	 of	 a	 100	µm	micro-

capillary.	The	comparison	to	the	expected	speed	values	was	done	by	assuming	a	conversion	

factor	of	 197/(max) ≅
syringecapillary VV 	between	the	actuator	speed,	

syringe
V ,	and	the	speed	measured	

along	the	capillary	axis.	

Correlations	between	fluorescence	burst	are	evident	on	the	bare	fluorescence	trace:	see	 	for	

example	the	couples	of	bursts	at	time	≈2.6	s	and	time	≈ 3.25 s in Fig.3A. The signal histogram is 
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very similar for the two ROIs and the fraction that corresponds to the bursts is negligible (≅ 0.4% of 

values larger than ≈50 kcounts/4 ms, right inset of Fig.3A). Nevertheless the cross-correlation	

functions	of	these	signals	display	a	clear	correlation	peak,	as	plotted	in	Fig.3B	for	increasing	

distance	 between	 the	 pixels.	 Two	 Gaussian	 components	 are	 observed	 with	 constant	 width	

(Eq.3,	notice	the	logarithmic	scale	on	the	lag	time	axis), 2161, ±=effδτ ms	and	 8.072, ±=effδτ

ms,	independent	of	the	inter-pixel	distance.	The	ratio	of	the	peak	maximum	lag	times	for	the	

two	components	 is	also	constant	 005.027.0/ 1max,2max, ±=ττ ,	 and	 its	value	agrees	well	 (10%)	

with	the	ratio	of	the	maximum	speeds	set	by	the	actuator,	1450	±	5	µm/s	and	435	±	5	µm/s	

(ratio	 =	 005.0300.0
2,

1, ±≅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

xy

xy

v
v
!

!
).	 The	 ratio	 of	 the	 width	 of	 the	 two	 components,	

2.043.0/
1,2,

±=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

xy

eff

xy

eff

v
a

v
a

,	 is	 slightly	 larger	 than	 the	 speed	 ratio,	 though	 within	 the	

uncertainty	of	the	measurement. 

The	difference	of	the	amplitudes	of	the	two	components	of	the	CCFs	is	due	to	their	different	

sampling.	 Since	 the	duration	of	 each	phase	 is	proportional	 to	 ixyv ,/1 ! 	 the	number	of	 tracers	

sampled	 during	 each	 flow	phase	 is	 the	 same.	 The	 amplitude	 of	 the	 CCF	 components	 scales	

therefore	only	with	the	number	of	frames,	 if ,	which	are	needed	to	sample	each	tracer	flowing	

through	 the	 ROI	 (for	 smv ixy /400, µ=! 	 and	 ROI	 size	 6µm,	 4≅if ).	 Since	 this	 number	 is	

proportional	 again	 to	 ixyv ,/1 ! ,	 the	 ratio	 of	 the	 maximum	 amplitude	 of	 the	 Gaussian	

components	 scales	 as	 the	 inverse	 ratio	 of	 the	 corresponding	 speeds:	

005.0300.008.025.0
2,

1,

1

2 ±=≅±=
xy

xy

v
v

A
A

!

!
.		
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The	linear	fit	of	the	peak	lag	times,	 imax,τ ,	as	a	function	of	the	pixel-pixel	distance xys! 	(20µm	≤

xyS
!

≤	 120µm)	 provides	 a	 more	 accurate	 measurement	 of	 the	 speed	 for	 the	 various	

components	(see	Fig.3C).	We	measure	in	this	way	the	values	1426± 5 [!"
!
] and	403± 5 [!"

!
].	

The	good	agreement	with	the	nominal	values,	1450	±	5	µm/s	and	435	±	5	µm/s,	confirms	the	

good	 approximation	 of	 the	 SPIM	 CCF	 analytical	 with	 a	 simple	 Gaussian	 function.	 The	

systematic	error	arising	from	this	approximation,	which	is	at	most	10%	for		 mSxy µ20>
!

even	

for	speeds	as	low	as	200	µm/s,	decreases	rapidly	with	increasing	values	of	 xyS
!

	and		its	effect	

on	the	overall	linear	fit	is	therefore	negligible.		It	should	be	noticed	that	this	type	of	multiple	

analysis	over	extended	fields	of	view	is	made	possible	by	the	use	of	SPIM	that	provides	huge	

amount	of	data	in	parallel	at	high	frame	rates.		

Figure	3D	shows	the	effect	on	the	CCF	of	the	shape	of	the	ROIs.	Two	square	ROIs	composed	of	

a	3x3	pixels	and	two	ROIs	chosen	as	10	pixels	 lines	perpendicular	to	the	flow	direction,	are	

compared	to	the	case	of	two	single	pixel	ROIs.	By	increasing	the	size	of	the	ROI	from	one	pixel	

(Fig.3D,	 circles)	 to	 a	 3x3	 square	 ROI	 (Fig.3D,	 down	 triangles),	 the	 visibility	 (

( ) ( )[ ] ( ) ( )[ ]min
2,1

max
2,1

min
2,1

max
2,1 ~~/~~~ GGGGV +−= )	of	the	two	Gaussian	components	in	the	CCF	changes	from	

1~ ≅V 	to	 09.08.0~ ±=V 	for	the	two	cases,	respectively.	We	observe	 1~ ≅V and	a	slight	decrease	

of	 the	amplitude	of	 the	Gaussian	components	 for	 the	 case	of	 two	 linear	ROIs,	 that	does	not	

affect	the	accuracy	of	the	measurements	(Fig.3D,	up	triangles).	These	observations	agree	with	

the	simulations	of	 the	CCFs	 for	multiple	pixels	ROIs	reported	 in	 the	Supporting	 Information	

(SI9)	and	indicate	that,	though	single	pixels	ROIs	offer	the	best	visibility	of	multiple	peaks	in	

the	CCFs,	other	geometries	could	be	used	depending	on	the	flow	symmetry.		

The	CCF	analysis	offers	also	the	possibility	to	gain	direct	information	on	the	duration	of	each	

speed	 regime	 for	 pulsed	 flows.	 If	 we	 assume	 that	 the	 flow	 is	 periodic	with	 two	 (or	more)	
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regimes	with	speed	values	 1,xyv! 	and	 2,xyv! ,	we	can	compute	CCFs	on	fixed	time	windows	cut	

periodically	 along	 the	 data	 set	 (windowed-CCFs,	 see	 SI5).	 For	 pulsed	 regimes	 of	 known	

number	of	phases	we	can	retrieve	their	duration	within	≅	4%	(see	Fig.S5)	accuracy	by	finding	

the	window	 size	 that	 produce	 a	 CCF	 characterized	 by	 a	 single	 peak.	Details	 on	 this	 type	 of	

analysis	can	be	found	in	the	Supporting	Information	(SI5).	

More	 complex	 flow	 regimes	 can	also	be	 studied	by	SPIM	CCF,	 as	 in	 the	 case	of	pulsed	 flow	

regimes	with	three	or	more	values	of	speeds	or	in	alternating	regimes	(Fig.	4).	Also	in	the	case	

of	a	pulsed	regime	with	three	components	we	are	able,	by	exploiting	the	possibility	to	change	

the	 inter-pixels	distance	on	 the	acquired	 time	stack	of	data,	 to	 retrieve	all	 the	 speed	values	

with	an	excellent	accuracy,	<	5	%	(see	Fig.4A,B).	

	As	for	alternate	regimes,	the	two	speed	components	are	retrieved	separately	(Fig.4C,D)	from	

the	forward,	 ( )τ)2,1(G ,	and	backward,	 ( )τ)1,2(G ,	CCFs	computed	between	the	signals	collected	

from	two	square	ROIs	 (a	=	3x3	pixels	=	6x6	µm2)	set	along	 the	 flow	direction	at	 increasing	

distances.	 In	 this	 case	 the	 agreement	 between	 the	 experimental	 and	 the	 measured	 speed	

values	 is	 very	 good	 for	 the	 forward	 component	 (Table	 I,	 component	 1).	 For	 the	 backward	

component	we	measure	a	value	≅30%	lower	than	the	set	value.	However,	as	reported	at	the	

end	of	the	section	SI.8,	 the	observed	discrepancy	can	be	ascribed	to	the	depression	induced	

by	 capillary	 forces	 while	 retreating	 the	 piston	 backward.	 In	 fact,	 the	 accuracy	 in	 the	

measurement	of	the	flow	speed,	as	from	the	data	discussed	in	Fig.3,	 is	at	least	10%,	and	we	

expect	no	systematic	errors	in	the	evaluation	of	the	speed	due	to	our	simplified	CCF	analysis	

as	 can	 be	 gained	 from	 our	 numerical	 analysis	 reported	 in	 SI3.	 This	 observation	 is	 in	

agreement	with	previous	results2	obtained	by	conventional	dual	spot	analysis	of	the	flow	in	a	

capillary	 and	 account	 for	 the	 accuracy	 of	 the	 analysis	 method	 proposed	 here.	 We	 further	

notice	that	the	amplitude	and	the	width	of	the	CCFs	components	scale	as	the	corresponding	

speed	values	and	their	inverse,	respectively,	as	expected	from	Eq.3.		
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In	 the	previous	examples	we	have	assumed	 that	 the	 flow	was	occurring	 in	 the	 illumination	

sheet	 plane.	 If	 0≠zv 	 an	 additional	 Gaussian	 term	 ( )( )2
, /exp)( zSPIMzG τττ −∝ 	multiplies	 the	

CCF	 (we	assume	 0=zS ).	The	relaxation	 time	along	 the	z	direction,	 zzz vw /=τ ,	may	span	a	

wide	 range	depending	on	 the	 value	of	 zv 	 and	 it	 can	 fall	within	 the	 lag	 time	window	of	 the	

CCFs	reported	in	Figs.	3	and	4.	For	example	by	assuming	that	 1.0/ ≅vvz
! 	(the	flow	occurs	at	

about	 6	 degrees	 out	 of	 the	 sheet	 plane)	 and	 smv /1000µ≅! we	 estimate	 msz 60≅τ .	 The	

presence	 of	 this	 additional	 Gaussian	 component	 would	 skew	 the	 shape	 to	 the	 in-plane	

Gaussian	 components,	 )(, τSPIMxyG .	 Such	 deformation	 would	 produce	 an	 underestimation	 of	

the	corresponding	peak	lag	times,	which	we	expect	to	be	more	pronounced	for	short	ROI-ROI	

distances.	 This	would	 correspond	 to	 a	 non-linear	 dependence	 of	 the	 peak	 lag	 times	 on	 the	

ROI-ROI	 distances,	 a	 trend	 that	 it	 is	 not	 observed	 in	 our	 data	 (Fig.	 3C	 and	 Fig.	 4B,D)	

indicating	that	the	flow	is	indeed	occurring	in	the	plane	of	the	illumination	sheet.		

In	moving	towards	the	application	to	small	organisms	in-vivo,	we	mimic	the	case	of	cells	used	

as	tracers	by	following	the	flow	of	GUVs	in	a	300	µm	capillary.	These	objects	have	the	size	of	

most	cells,	from	a	few	to	tens	of	micrometers,	are	polydisperse	in	size	(z_average	size	=	13	±	4	

µm	(see	Supporting	Information,	SI3)	and	are	deformable.	It	must	be	noted	that	(see	image	in	

Fig.5A)	 the	 GUVs	 are	 labeled	 on	 the	 lipid	 membrane	 and	 appear	 rarely	 as	 a	 uniform	

fluorescent	circle	due	to	in-homogenous	staining	of	the	membrane	(see	image	in	Fig.5A).	The	

data	 reported	as	an	example	 in	Fig.5	 correspond	 to	 the	 case	of	 a	 flow	with	 two	modulated	

components	for	which	the	CCFs	were	analyzed	as	a	sum	of	two	Gaussian	functions	(see	Eq.3).	

For	this	sample,	the	width	of	the	CCFs	components	is	affected	by	the	size	of	the	tracers	which	

is	larger	than	the	ROI	size	(see	image	in	Fig.5).	Accordingly,	we	were	able	to	retrieve	correctly	

the	flow	speeds	and	the	widths	from	the	fit	of	the	CCFs	to	the	simplified	Eq.3	(see	Table	I)	by	

assuming	an	effective	ROI	size	 ≅≅ raeff 14	µm,	which	 is	about	the	average	size	of	 the	GUVs	
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(see	Table	I	and	Supporting	Information,	SI4).	We	additionally	notice	that	the	existence	of	a	

Gaussian	component	in	a	single	CCF	is	not	a	direct	hint	for	a	real	flow	component.	In	fact	the	

component	 at	 lag	 time	 τmax	 ≈ 100	 µs	 (for	 xys! 	 =	 30	 µm;	 Fig.5A,	 vertical	 arrow)	 does	 not	

corresponds	to	a	real	flow	component	since	it	is	not	retrieved	for	other	values	of	 xys! 	(Fig.5B,	

filled	 triangle).	 The	 origin	 of	 this	 spurious	 component	 must	 be	 searched	 in	 the	 statistical	

properties	of	the	signal	composed	by	very	few	(≅1	bursts/s)	and	very	bright	(signal/noise	≅	

30)	bursts	(Fig.3A).	With	such	low	counting	it	is	possible	that	two	independent	tracers	pass	

through	the	two	ROIs	at	a	distance	in	time	that	happen	to	be	close	to	time	of	flight	between	

the	 ROIs.	 Such	 a	 single	 occurrence	 may	 have	 a	 substantial	 weight	 on	 the	 total	 CCF,	 and	

appears	as	an	additional	 (low	amplitude)	 component.	We	can	 single	out	 this	occurrence	by	

performing	 different	 measurements	 at	 increasing	 ROI-ROI	 distances,	 as	 done	 here	 or,	

alternatively,	compute	CCFs	on	subsets	of	the	original	data.		

Cross-correlation	analysis	in-vivo.	We	have	applied	wide	field	of	view	SPIM-CCF	analysis	to	

in	 vivo	 samples.	 Time	 lapse	 stacks	 of	 SPIM	 images	 of	 a	 Zebrafish	 embryo	 (4	 d.p.f.)	 were	

acquired	by	following	the	fluorescent	signal	from	red	blood	cells	expressing	DsRed.	

The	CCFs	computed	along	the	artery	(see	Fig.6)	show	a	single	wide	peak	with	a	substructure	

that	becomes	a	clear	double	peaked	 function	as	 the	distance	between	 the	ROIs	 (3x3	pixels)	

increases.	The	 two	speeds	correspond	 to	 the	 two	phases	of	 the	heart	pulsation,	 the	systolic	

and	diastolic	phases30	as	also	found	in	the	literature.	The	diastolic	and	systolic	speeds	are	in	

our	experiment	180	±	9	µm/s	and	330	±	15	µm/s,	respectively.	These	values	are	in	agreement	

with	previously	reported	ones.2,37	Again	in	this	case,	as	for	the	GUV	experiments,	the	width	of	

the	Gaussian	components	of	 the	CCFs	agrees	with	a	 tracer	size	of	about	10	µm,	close	to	 the	

size	of	the	red	blood	cells.2		
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The	amplitude	of	the	CCF	components	are	remarkably	different	(≈ 70%;	see	Table	I)	for	the	

diastolic	 and	 systolic	 phases.	 If	 we	 assume	 a	 rigid	 vessel,	 the	 amplitudes	 of	 the	 CCF	

components	is	related	to	the	vessel	section	A,	the	speed	of	the	tracers,	 xyv! ,	the	duration	Δt	of	

the	blood	pulsation	phase	and	the	average	number	of	frames	per	tracer	passage	through	the	

ROI	for	each	phase,	 if :	

( ) iixyiipeak tvAfG Δ∝ ,,
!τ 	 	 	 	 	 (5)	

However	 the	number	 of	 sampling	 frames	per	 tracer	 scales	 as	 ixyv ,/1 ! .	 Therefore	 the	 relative	

change	in	the	amplitude	of	the	CCF	components	for	the	systolic,	 ( )systG τ ,	and	diastolic,	 ( )diastG τ ,	

phases	should	be	related	only	to	the	ratio	of	the	corresponding	phase	durations:	

	

( ) ( ) ( )( )diastsystdiastsyst GGtt ττ // =ΔΔ 		 	 	 	 (6)	

	

The	ratio	 ( ) =ΔΔ diastsyst tt / 3	±	1	measured	here	(see	Table	I)	for	the	embryos	at	4	d.p.f.	implies		

that	the	duration	of	the	systolic	phase	is	three	times	larger	than	the	diastolic	one	in	embryos.	

A	 qualitative	 confirmation	 of	 this	 conclusion	 can	 be	 gained	 from	 the	 carpet	 image	 analysis	

(see	Supporting	Information,	SI6)	of	the	blood	dynamics	in	the	Zebrafish	embryo.	Two	phases	

are	clearly	visible	in	the	carpet	image	reported	in	Fig.S6.	Although	the	discrimination	of	the	

two	phases	 is	 not	 easy	 and	 cannot	 be	drawn	quantitatively	 on	 this	 plot,	 the	 systolic	 phase,	

characterized	by	less	steep	stripes	in	the	carpet	image,	lasts	at	least	1.5	times	more	than	the	

diastolic	one.		

	

- CONCLUSIONS	



18	
	

The	characterization	performed	on	model	systems	in-vitro	and	applied	to	animal	models	in-

vivo,	indicates	that	time	varying	multi-component	flows	in	capillaries	and	in	vessels	in	animal	

models	 can	 be	 reliably	 studied	 by	 image	 cross-correlation	 spectroscopy	 coupled	 to	 Single	

Plane	 Illumination	 Microscopy	 with	 a	 simplified	 analysis	 approach.	 The	 use	 of	 the	 simple	

Gaussian	 approximation	 of	 the	 CCFs	 does	 not	 limit	 the	 application	 of	 combined	 SPIM-CCF	

methods	to	the	fast	screening	of	complex	time	dependent	flows	in	microstructures	at	least	for	

high	Peclet	numbers.	The	method	tested	here	allows	to	accurately	determine	the	number	of	

flow	 components	 and	 their	 speed	 values	 by	 computing	 the	 CCFs	 at	 different	 inter-ROIs	

distances	 over	 an	 extended	 field	 of	 view.	 The	 sensitivity	 of	 the	 CCF	methods	 allows	 us	 to	

compute	the	CCF	over	reduced	stretches	of	times	and	to	retrieve	the	duration	of	each	speed	

phase	 for	 periodic	motions	 and	 the	 number	 of	 the	 flowing	 tracers	 in	 each	 phase.	We	 have	

applied	 these	 measurement	 and	 analysis	 protocols	 to	 the	 characterization	 heart	 pulsation	

(systolic	and	diastolic	phases)	in	Zebrafish	embryos.		
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TABLES.	

	

Table	I:	comparison	between	expected	values	and	best	fit	parameters	for	the	analysis	

of	the	CCFs	according	to	Eq.3.	

	 Three	components,	pulsed	(6x6	µm2	ROI,	Fig.4B,	microbeads)	

	 Velocity	[µm/s]	 Width	[ms]	 Amplitude	

	 Measured	 Expected		 Measured		 Expected		 	

1	 		273	±	1	 		268	±5	 28	±	1.5	 28§	 1	

2	 		854	±	8	 		860	±5	 8	±	1		 7§	 0.12	±	0.04	

3	 1462	±	4	 1450	±5	 5.6	±	1		 4.1§	 0.09	±	0.02	

	 Two	components,	alternate	(6x6	µm2	ROI,	Fig.4D,	microbeads)	

1	 296	±	5	 			300	±5	 35	±	3	 21±	2	 0.79±	0.07	

2	 205	±	8	 			300	±5	 46	±	4	 30±	2	 1	

	 Two	components,	pulsed	(2x2	µm2	ROI,	Fig.5,	GUV)	

	 Velocity	[µm/s]	 Width	[ms]	 Amplitude	

	 Measured	 Expected		 Measured		 Expected		 	

1	 182± 24	 215	±5	 76	±	4	 74*	 1	

2	 526± 4 	 	538	±5	 24	±	10	 25*	 0.16	±	0.07	

	 Zebrafish	embryos	(3x3	pixels	=	6x6	µm2	ROI,	Fig.6)	

	 Velocity	[µm/s]	 Width	[ms]	 Amplitude	

	 Measured	 	 Measured	 Expected		 ( )
( )syst

diast
G

G
τ

τ 	

1		 180	±	9	 --	 46	±	4	 55$	 1	

2	 330	±	15	 --	 35	±	3	 31$	 0.3	±	0.1	

Table	I.	Best	fit	parameters	obtained	from	the	fitting	of	the	experimental	CCFs	to	Eq.3.	
*:	w0	=	14	µm	is	assumed	in	this	theoretical	evaluation;	
§:	w0	=		6		µm	is	assumed	in	this	theoretical	evaluation;	
$:	w0	=	10	µm	is	assumed	in	this	theoretical	evaluation.	
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Figures.	

	

	
Figure	1.	Panel	A.	SPIM	setup.	The	expanded	laser	beam	(beam	expander,	L1	and	L2	lenses)	is		

focused	 at	 the	 entrance	 pupil	 of	 the	 objective	 (O1)	 by	 a	 cylindrical	 lens	 (CL).	 The	 light	 is	

collected	at	right	angle	by	a	second	objective	(O2)	and	focused	on	the	CCD	camera	by	the	tube	

lens	(TL).	Panel	B:	Schematics	of	the	excitation	profile	defining	the	sheet	width	wz	≅	6	µm	and	

the	Rayleigh	range,	zR	≃ 460µm,	which	 is	approximately	one	half	of	 the	maximum	extent	of	

the	FOV	(≈ 250µm)	of	the	CCD	chip.	Panel	C.	Typical	speed	profile	acted	on	the	microfluidic	

setup.	The	 three	cases	correspond	 to	 the	cases	of	a	 two	(black	solid	 line)	or	a	 three	speeds	

(red	dotted	line)	modulated	regime	and	of	an	alternate	(blue	dot-dashed	line)	flow	regime.		
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320	

	

Figure	2:		Carpet	images	for	pulsed	and	alternate	flow	regimes	for	fluorescent	microbeads	in	

a	300µm	capillary.	Panel	A.	pulsed	time	profile	with	speed	values	v1	≅	330	µm/s	and	v2	≅	

1450	µm/s.	Panel	B.	Alternate	time	profile,	v1	≅		-940		µm/s	(backward)		and	v2	≅	+1350	

µm/s	(forward).	Panel	C:	Blow-up	of	the	transition,	lasting	approximately	1	s	between	

positive	and	negative	velocity.	Panel	D:	carpet	image	building	up.	The	image	is	shown	in	gray	

embedded	in	the	laser	sheet	(green).	A	line	of	interest	is	chosen	along	the	blood	flow	in	a	

vessel	(in	red).	This	line	is	collected	for	increasing	times	(t1,	t2,	..tN)	and	used	to	synthesize	an	

y-t	carpet	image.	
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Figure	3:	Analysis	of	two	components	pulsed	flows:	rigid	fluorescent	microspheres	flowing	in	

a	 straight	 100µm	 glass	 square	 capillary.	 Panel	 A:	 excerpt	 of	 the	 time	 trace	 of	 the	 signal	

collected	 from	 to	2	 single	pixels	 along	 the	 flow	 (black	and	 red	 lines	 refer	 to	up-stream	and	

down-stream	pixel,	respectively).	The	speeds	were	v1	≈	1416	and	v2	≈	425	µm/s.	Left	 inset:	

full	 trace	 for	 the	 up-stream	 pixel.	 Right	 inset:	 histogram	 of	 the	 fluorescence	 signal	 (down-

stream	 pixel).	 Panel	 B:	 CCFs	 between	 two	 single	 pixels	 for	 increasing	 distances,	 xyS
!

=	 20	

(black	 circles),	 40	 (open	 red	 circles),	 60	 (green	 up	 triangles)	 and	 80	 µm	 (blue	 empty	 up	

triangles).	Panel	C:	peak	lag	time, maxτ ,	corresponding	to	the	CCF	maxima	as	a	function	of	the	

ROI-ROI	distance	 xyS
!

.	The	dashed	lines	are	the	best	linear	fit	( ixyixy Sv max,, /τ
!! = )	to	the	data	as	

measured	 in	 panel	 B.	 The	 best	 fit	 slopes	 (speed	 values)	 are	 34001 ±=v µm/s	 and	

1014102 ±=v µm/s.	Panel	D:	CCFs	computed	on	ROIs	with	different	shapes	and	sizes,	 single	

pixels	(black	circles),	3x3	rectangles	(blue	down	triangles)	and	lines	(red	up	triangles).	
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Figure	4.	Complex	time	regimes.	Panel	A:	CCFs	measured	for	the	case	of	a	three	components	

modulated	flow	(microbeads	in	a	300	µm	capillary,	single	pixel	ROIs).	Panel	B:	peak	lag	times	

of	 the	 components	 retrieved	 by	 best	 fitting	 to	Eq.3	 the	 CCFs	 reported	 in	 panel	 A.	 Panel	 C:	

forward,	 ( )τ)2,1(G 	 (black	 filled	 symbols)	 and	 backward,	 ( )τ)1,2(G 	 (red	 open	 symbols)	 CCFs	

computed	 for	micro-beads	undergoing	an	alternate	 flow	 in	a	100	µm	capillary	 ( xyS
!

=20µm,	

squares;	 xyS
!

=	60µm,	 circles).	Panel	D:	peak	 lag	 times	of	 the	 components	 retrieved	by	best	

fitting	the	measured	CCFs	to	Eq.3,	plotted	as	a	function	of	the	 xyS
!

	distance.	The	best	linear	fit	

(dashed	lines)	of	the	data	reported	in	panels	B	and	D	provide	the	flow	speeds.	
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Figure	5.	CCFs		measured	from	a	suspension	of	GUV	in	a	300	µm	capillary.		Panel	A:	example		

CCFs	measured	at	inter-pixel	distances	 xyS
!

	=	10(black	squares),	20	(red	open	circles)and	30	

µm	(blue	up	triangles).	The	solid	line	are	the	best	fit	to	Eq.	2	with	2	( xyS
!

=10,	30	µm)	or	3	(

xyS
!

=30µm,	see	vertical	arrow)	components.	The	image	shown	in	the	inset	is	the	fluorescence	

emission	 collected	 in	 SPIM	 configuration	 from	 a	GUV.	 The	 full	 field	 size	 is	 25	µm.	 Panel	 B:	

linear	trend	of	the	best	fit	peak	lag	times	as	a	function	of	the	inter-pixel	distance.	The	dashed	

line	are	the	best	fit	lines	to	the	data.	The	solid	symbol	refer	to	a	third	component	retrieved	by	

the	fit	at		 xyS
!

=30	µm.	 	
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Figure	 6.	 CCFs	 acquire	 on	 Zebrafish	 embryo	 arthery.	 Panel	 A	 reports	 the	 CCFs	 measured	

between	rectangular	ROIs	(3x3	pixels	=	6x6	µm2)	at	distances	 xyS
!

	=	20,	25	and	30	µm.	Panel	

B:	the	inset	image	shows	a	field	of	view	(linear	size	=	6	µm)	of	the	Zebrafish	embryo	with	an	

outline	of	the	ROIs	and	an	arrow	that	indicates	the	average	flow	direction.	The	symbols	in	the	

main	panel	B	are	 the	best	 fit	peak	 lag-times	of	 the	Gaussian	analysis	of	 the	CCFs.	The	 solid	

lines	 are	 the	best	 linear	 	 fit	 to	 the	data	 leading	 to	 the	 following	 speed	values:	 v1	=	180	±	 9	

µm/s		and	v2	=	330	±	15	µm/s.		

	

	

	



4.1 Spotlight

I want to highlight, as a closure, what I think are important

observations, that encompass more subtle points, not exten-

sively discussed in the article, but nonetheless crucial, in my

opinion, for the proper validation and efficacy of the method.

First of all, I want to point out how temporal resolution has

been extensively studied: it’s very important to be able both

to measure physiological regimes and to resolve closely spaced

velocities.

To this end, it’s possible, at first, to consider an upper limit

for speed detection, starting from the analysis of Whittaker-

Shannon theorem: the critical sampling interval is given by

half the inverse of the maximum frequency content of the sig-

nal. This value should match the CCD frequency band-width

that is approximately BW = 1
4ms = 250Hz.

In this way, first consider the Gaussian model for the cross-

correlation function:

G(τ) = Aexp

[
−

(τ − s
v )2

δτ2

]
(4.1)

with δτ =
a2
eff

v and effective ROI area defined as aeff = ω2
0 +

a2 + r2, given by the sum of optical resolution ω0, the pixel

size a, and tracer size r.35 Then by taking as band-width
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the 1
e2

width of the transformed signal, and considering mean

values of a = 6µm and r = 10 ω0 = 0.8µm, this results in the

following constraint:

vmax ≤
BW

2
aeff ≤ 1800 [

µm

s
] (4.2)

Once established an upper boundary for the useful appli-

cation of the method, it’s also important, as anticipated, to

understand the resolving power of this methods, that is: what

is the minimum separation between velocities that we can ex-

pect to measure?

To answer this in a fast and clever way, it’s better to shift

into frequency domain, expressing a function describing two

different regimes with it’s temporal Fourier Transform:

G(σ) = e
iσ s
v1 e−

σ2

4
δτ2

1 + e
iσ s
v2 e−

σ2

4
δτ2

2 (4.3)

It’s apparent the beating between two oscillatory compo-

nents, whose trend is:

cos

[
σ

2

(
s

v1
− s

v2

)]
(4.4)

These can be solved if the corresponding frequency lies

within the band width BW = 250 Hz of the detector. It’s a

fair assumption to describe closely spaced velocities as:

v1 = 〈v〉+ δv; v2 = 〈v〉 − δv (4.5)
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So that:

δv >
〈v〉

2 s BW
(4.6)

Employing the mean values s = 200µm, 〈v〉 = 500µms the

minimal regimes separation results to be:

δv > 2.5
µm

s
(4.7)

and it is way lower than the minimun separation expected

(or measured) in the biological model employed (Zebrafish em-

bryos).

At last, as briefly stated in the article, it’s worth to empha-

size that wide field images allow an interesting kind of visual-

ization, called carpet images. These are images synthesized by

flanking a line (that is the x-axis of the image) acquired on the

CCD along the flow over the acquisition time, that is the x-

axis in Figure 2 in the article. It’s easy to see how it’s possible

to identify at a glance different trajectories simply by looking

at the inclination of the bright lines: this allows a windowed

analysis, capable of highlighting the different regimes one by

one. As an example, I present in figure 4.1 data from a two

velocity regime, inside a square glass channel:
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Figure 4.1: Trajectories with different steepness describe different

regimes. The period of the pulsation is T = 6.5 s, so that the yellow

horizontal bars divide the two regimes with durations ∆t1 = 5s and

∆t2 = 1.5s. First and last bit are taken away, to get rid of fixed

delays that would just disturb the CCF computations.
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By applying a CCF analysis to each of the windowed sig-

nals, each single regime can be isolated and focused, greatly

improving S
N , as can be seen in figure 4.2:

Figure 4.2: CCF computed for single regimes (blue and red curves),

compared with the cumulative green plot, full time-signals were em-

ployed in the computation
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Chapter 5

Spatio-temporal Image

Correlation Analysis of

blood flow in Branched

Vessel Networks of

zebrafish embryos

An experiment is a question which

science poses to Nature and a

measurement is the recording of

Nature’s answer.
Max Planck
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I devoted much time to the improvement of data crunch-

ing methods and to the design of new ones, that could be

easily employed by an external user in order to map spatially

complex flow structures, in particular intersomitic vessels in

Zebrafish embryos. I had two concurrent goals in mind: both

to obtain fast and efficient algorithms for STICS, and also to

test them studying a relevant biological system. The result

of my work is represented by efficient algorithms that can ex-

trapolate all the needed information about blood flow (up to

a mapping resolution of 10 µm) in matter of few tens of sec-

onds: it can discriminate between multiple flow directions and

regimes, allowing the user only to work at high level, e.g. se-

lecting subregion and time interval. All the programs are open

source and available in an on-line repository (see Appendix).

Here is the article (published on JBO) that presents the rele-

vant achievements.
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Abstract.  
Ramification of the blood circulation is relevant in a number of physiological and pathological conditions. The 

oxygen exchange occurs largely in the capillary bed and the cancer progression is closely linked to the 

angiogenesis around the tumor mass. Optical microscopy has made impressive improvements in in-vivo imaging 

and dynamic studies based on correlation analysis of time stacks of images. Here we develop and test advanced 

methods that allow to map at the resolution of 10-20 micrometers the flow fields in branched vessel networks. 

The methods, based on the application of Spatio Temporal Image Correlation Spectroscopy and its extension to 

cross-correlation analysis are applied here to the case of early stage embryos of Zebrafish. 

 

Keywords: Image Correlation; hemodynamics; Single Plane Illumination Microscopy 

*: corresponding authors, Laura Sironi, Laura.sironi@mib.infn.it, Giuseppe Chirico, Giuseppe.chirico@unimib.it 

 

1. Introduction. 

Flow regulation of the physiological activity is a wide field of life sciences.1 Both in human 

beings and in artificial environments, three dimensional structures such as cellular aggregates 

leading to organelles or bacterial colonies are often immersed in an aqueous fluid in motion 

and subjected to hydrodynamic forces.2 The progression of a wide number of diseases is 

affected directly by the blood circulation. An important example is cancer3 and its metastases. 

Some diseases produce an impaired blood supply to organs.4,5 These different fields of research 

share a common feature. The fluid circulation presents pulsatile, occasionally irregular, flow 

with ramifications in evolution and it requires high spatial and time resolution to be studied.   

The focus of the field of angiogenesis research has in recent years shifted toward the analysis 

of network formation mechanisms, also connected to tissue engineering,6 as well as the study 
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of vessel maturation and remodeling processes.7 This has led to the discovery of vascular 

guidance and networking molecules as well as the identification of vessel maturation-

regulating molecules such as the angiopoietins (ANG) and the PDGFs.8 In this field, medical 

research is often exploiting small animal models such as Zebrafish embryos9 and juvenile 

transparent fishes,10,11 for pilot in-vivo studies. Besides, the advances of microfluidics are 

getting large influence on several fields of microbiology, providing new tools to investigate 

processes developing under flow, such as bacterial biofilm formation.12  

Our aim is therefore to devise methods to quantitatively map the flow field at the branching 

point along a vessel network. We describe and test an algorithm able to quantify in a user-

independent way the dominant flow in a branched network of sprouting vessels. In order to 

show real field applications, we apply these algorithms on the Zebrafish embryo model. Our 

method is based on the use of Spatio Temporal Image Correlation Spectroscopy (STICS) 

analysis coupled to Single Plane Illumination Microscopy (SPIM).13 Cross-correlation analysis 

was already applied on a dual or multi-spot level for the detailed analysis of the flow in straight 

microfluidic capillaries and to straight vessels in-vivo.9 STICS analysis was applied to wide 

field images of blood flow in vessels as a validation for intra-surgical applications.14 We extend 

here the original STICS algorithm13 to the cross-correlation over different fields of view chosen 

along the flow direction in order to increase the dynamic range for the measurement of the flow 

speed and use a multicomponent analysis of the correlation maps that allows us to exploit the 

amplitude of the correlation map to evaluate the flow fractionation at the branching points.  

 

2. Experimental Section.  

2.1 SPIM Setup. The SPIM setup15,16 employs an argon−krypton laser (Melles Griot), expanded 

1:4 and focused into the back aperture of an illumination objective (Olympus 4×, 0.1 N.A.). 

The fluorescence emission is selected by a band-pass filter and is detected by an EMCCD 
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detector (Cascade II, Photometrics). The maximum acquisition rate was 4 ms/frame, on 

reduced regions of 40 × 250 μm2. 

2.2 Zebrafish Embryos. The measurements were done on embryos of Zebrafish (3 days post 

fertilization, d.p.f.). We used the transgenic line mitfaw2/w2; roya9/a9; Tg(kdrl:EGFP)S843; Tg- 

(gata1:dsRed)sd2, carrying green-labeled epithelium (EGFP) and red-labeled (dsRed) red blood 

cells.17 The zebrafish embryos were anesthetized18 with tricaine [40 mg/L tricaine (ethyl 3-

aminobenzene methansulfonate, Sigma-Aldrich Corporation, St. Louis, MO)] and positioned 

in a 2 mm-diameter fluorinated ethylene propylene tube (FT2X3, Adtech Polymer Engineering, 

Frampton Mansell, U.K.) and then immersed in a water cell.16,19 

2.3 STICS images analysis. The STICS images were computed on a time stack of M images 

 taken at M times spaced by δt ranging typically from 13 to 19 ms (corresponding 

to 74 to 52 frame per second of the EMCCD, the fastest rates compatible with the chosen field 

of view). We take the SPIM plane as the x-y plane. We assume that the flow velocity lies in 

this plane and is ( )
yx vvv ,=

r
. Each image has a size of X×Y pixels. The image auto-correlation 

function was computed on the fluctuation matrices, ( ) ( ) ( )
kkjj yxIyxIyxI ,,, −=δ , by the 

FFT algorithm: 

( ) [ ] [ ][ ] )/(;,
0

*1
kMIFFTIFFTFFTtkG

kM

j

kjj −= ∑
−

=
+

− δδδηξ    (1) 

 

Each image of the time stack was padded with zeros up to double its size before performing 

the FFT. 

On each correlation image, corresponding to the lagtime τ, we automatically selected the 

position (ξmax, ηmax) of the maximum by fitting the image to a 2D Gaussian profile. The 

amplitude of the STICS function was derived from the amplitude of the Gaussian fit function, 

subtracted for the possible background.  

{ }
MjjIS

,..0=
=
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Even though the morphological images are available, we do not want to presume any a-priori 

knowledge on the flow direction. We have then simply computed the STICS image on 

rectangular ROIs aligned with the axes of the image as it is acquired. In order to evaluate the 

components of the flow velocity in the SPIM plane, we follow the position of the STICS image 

with the lagtime over at least 5-10 lagtime points, up to a lagtime τfit. We have checked that 

the condition to recover the STICS amplitude is that the ROI size is at least SROI ≅ 2 vxy τfit. 

For a flow of the order 400 µm/s and τfit ≅ 40 ms, this corresponds to a size of 16 µm, or at 

least 20 pixels. This is our spatial limitation in the reconstruction of the field flow.  

 

3. Results and discussion.  

3.1 STICS allows to follow the flow along curved vessels. We want to devise methods to map 

the blood flow in tiny branched capillaries. The flow should be characterized in terms of 

direction and amplitude of the velocity, and we will need to evaluate the flow branching ratio 

at the ramifications along the network. The rationale of the methods that we are describing is 

to auto- and cross-correlate in space and time stacks of images acquired through a wide field 

Single Plane Illumination Microscope (SPIM). In general, we could also map the velocity field 

by tracking, and then averaging, many trajectories of individual red blood cells. This is not 

always feasible for example when the vessel morphology cannot already be singled out from 

the images (initial angiogenesis) or the heart pulsation affect the flow, such as in veins. Spatio-

Temporal Image Correlation Spectroscopy (STICS) offers the advantage to provide directly an 

average flow map in which the heart pulsation effect is averaged out. With STICS we obtain 

from a time stack of images a series of autocorrelation maps (Eq.1), G(ξ, η; τ), function of the 

lag time τ. For a uniform drift the map assumes the shape of a 2D quasi-Gaussian13,16 function 

whose maximum occurs at the position ( )maxmaxmax ,ηξ=r
r

, measured with respect to the origin 

of the autocorrelation map and it is a function of τ. We want to exploit here the possibility to 
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follow both the position and the amplitude of the auto-correlation map maximum as a measure 

of the flow velocity and of the relative amount of cells taking either of the arms of a branching 

point. We will then extend this concept to cross-correlation of different ROIs in the field of 

view.  

We first assess the problem to reconstruct the flow along a curved vessel independent of 

possible ramifications. We assume that flow is occurring mainly in the SPIM plane and 

analyze the time stacks of images according to the STICS algorithm on a Region of Interest 

(ROI, rectangular in shape) chosen in such a way to encompass a small (40 µm) tract of the 

vessel. We first evaluate at different positions along the putative vessel axis the STICS image 

at increasing lagtimes and fix the lagtime at the maximum value, τfit, for which the maximum 

( )maxmaxmax ,ηξ=r
r

 of the STICS image lies within the SITCS image by at least 5-6 pixels. The 

average velocity of the cells is obtained as ( )fitfitv τητξ /,/ maxmax −−=
r

.16,20,21 The speed is 

computed, by assuming non-constrained motion, as 
2

max

2

maxmax ηξ +=d . 

We need to find a compromise between the finesse of the spatial reconstruction of the flow, 

the computation time and the spatial resolution on the STICS image. The latter depends on 

the brightness of the tracers. In our hands, for red blood cells in living embryos the minimum 

displacement of the STICS maximum for which the corresponding velocity uncertainty is 

smaller than 15% is maxr
r

 ≅ 4 pixels (that is 3.2 µm in the sample plane). The lower the 

signal/noise, the larger the minimum value of maxr
r

 is and the coarser is the reconstructed flow 

map. 

Once the ROI size and the fitting lagtime have been chosen, the algorithm computes 

sequentially a set of STICS maps, updating at each step the investigation ROI with a rigid 

translation along the vector ( )maxmax ,ηξα=T
r

. The choice of small propagation factor α <1 

allows to oversample the flow map. We typically adopted α = 0.5. A flow line can be built 
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by assigning each flow velocity vector to the center of the corresponding ROI and by 

representing it with the Quiver python class.22 As can be seen from Fig. 1A, we can follow 

the blood flow on a wide field of view (750 × 750 µm2) with a good resolution, ≅ 5 - 10 µm 

(Fig.1C and Fig.1D). 

 

+  

Figure 1. Evaluation of the red blood cells flow in zebrafish embryo (3 dpf) vessels based on STICS maps from 

ROIs of [14 × 14] pixels (pixel size = 2.9 µm). All the flow analyses have been done with propagation factor α 

= 0.5. Panel A reports a wide field picture (256 × 256 pixels = 742 × 742 µm2) of the blood circulation in the 

abdomen of the embryo. The flow field is reported in four linear tracts of the vessel network as thin arrows 

whose length is proportional to the speed. At two branching points the dominant and marginal flow components 

are reported as green and red filled arrows, respectively. The panel B reports the STICS map for the vessel 

branching point marked by a dotted white box in panel A, at lag time τ = 311 ms. Panels C and D are zoomed 

images on one intersomitic vessel in which the trajectories computed from nine different starting points have 
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been reported together with the average flow curve (see text). Panel E reports the flow speed along the 

reconstructed average flow (green) line and the adjacent (blue) line reported in panel C. 

 

When approaching a branch in the vessel network, the STICS image assumes a double 

component character (see Fig.1B). At each step along the path (i.e. on each ROI) we evaluate 

the relative amplitude of the two peaks and displace the ROI along the direction that 

corresponds to the most relevant component (according to the maximum of each component 

detected in the STICS image). In this way, starting from two different points along the vessel 

network, we are able to evaluate the flow velocity even at the branching points (Fig.1A) and 

follow it along the individual arms (Fig.1C and Fig.1D). We observed a dependence of the 

resulting trajectory on the evolution parameter α. We have found that for values α ≅ 0.5 of 

the evolution parameter, the flow trajectories follow closely the vessel axis as can be 

measured from the morphological image (Fig.1A). There is still a dependence on the position 

of the starting point (the center of the first ROI of the sequence) along the putative cross-

section of the vessel, as can be judged from Fig.1C and Fig.1D (different discontinuous 

colored lines). However the trajectories coalesce on a common path that we have selected by 

averaging on each cross-section of the vessel (at steps of 20 µm) the points that correspond 

to the position of the individual flow lines. The resulting line, reported as a thick 

semitransparent green line in Fig.1B and Fig.1C, can be considered as the common flow path 

in the selected vessel. There is no appreciable dependence of the amplitude of the flow speed 

on the starting point of the trajectory, as can be judged from the plot of the flow speed along 

two flow lines reported in Fig.1E. This is to be expected since we are tracking here red blood 

cells that are approximately of the size of the capillary diameter. 

3.2 STICS allows to estimate flow branching ratios at the vessel ramifications. The 

application of the STICS algorithm on a ROI that encompasses a ramification of the vessel 
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network, such as in the black rectangle of Fig.2A, results in correlation images in which two 

components can be singled out (Fig.2B). These components can be ascribed to the cells that 

take either of the two branches. The rapidity of their displacement from the center of the 

correlation image, ( ))1(

max

)1(

max

)1(

max ,ηξ=r
r

 and ( ))2(

max

)2(

max

)2(

max ,ηξ=r
r

, as a function of the lag-times is 

the measure the flow direction and the flow speed for cells flowing in each arms. The direction 

of the velocity vector follows very well the morphology of the vessel ramification as can be 

judged from the superposition of the correlation images with the morphological images 

(Fig.2B). To this purpose, the correlation images reported in Fig.2B have been inverted by a 

central symmetry with respect to the center of the correlation space. 

 

 

Figure 2. Analysis of the flow ramification at branching points. Panel A: morphological image taken on a 

Zebrafish embryo (3 dpf) obtained as the standard deviation projection the time stack of images used for the 

STICS analysis. Panel B. STICS maps computed on the ROI selected in panel A (black rectangle) for increasing 
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lag-time, from 164 ms to 348 ms from left to right and from top to bottom (flow speed coded by a “jet” LUT; 

morphological images superimposed in light blue). Panel C. Linear fit of position of the maximum of the STICS 

images as a function of the lag-time. Open (blue) symbols refer to the prevalent component in each STICS image. 

Filled (green) symbols refer to the marginal component (visible for lag-times τ ≥ 170 ms). The linear fit to the 

data (dashed lines, same colour code) gives velocities v1 = 55 ± 1.5 µm/s  and v2 = 69 ± 3 µm/s for the prevalent 

and the marginal components respectively. Panel D reports the Gaussian fitting of the STICS map (lag time = 

348 ms) together with the profile plots along the ξ and η axes.  

 

In the correlation maps (Fig.2B) one peak was found to be always larger in magnitude 

irrespective of the lag-time. Moreover, the maximum projection image showed very similar 

signals on the two arms indicating that the emission of the individual red blood cells passing 

through the two arms is very similar. We assume therefore that the maximum amplitude of the 

two correlation components is proportional to the number of red blood cells flowing in one or 

the other ramification of the vessel branching. In the example discussed in Fig.2, the brightest 

component in the STICS map (Fig.2D) corresponds to the red blood cells flowing upwards, 

amounting to 66 ± 1 % of the overall amplitude. The marginal component represents cells 

flowing from left to right, amounting to 34 ± 1 % of the overall amplitude. The marginal 

component can be singled out with reasonable signal/noise ratio (10%) only for lag-times τ ≥ 

170 ms. Two values of the flow speed can be computed from the linear fit of the displacements 

of the maxima of each component as a function of the lag-time, as reported in Fig.2C: we 

measure v1 = 55 ± 1.5 µm/s and v2 = 69 ± 3 µm/s for the prevalent and the marginal components 

respectively. We find then that the marginal component is slightly faster than the prevalent 

one. This corresponds quite well to the observation that the left-right vessel arm is visibly larger 

(see Fig.2A) than the bottom-up arm and the fact that the vessels are approximately of the size 

of the red blood cells diameter. It must be noticed that the algorithm for the computation of the 

flow velocity used here is customized to the case of right-angle crossing between vessels as in 
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Fig.2A (box). Since the flow is constrained to occur along the vessel axis, the displacement of 

the maximum of the auto-correlation map may in general be not along a line passing through 

the centre of the map. In this case we should compute the flow speed along the vessel axis 

through the incremental algorithm δττδττ vrr
rrr

=−+ )()( maxmax . 

3.3 Spatio-temporal Cross-Correlation analysis enhance mapping features. The possibility to 

spatially map the flow relies on the choice of a small ROI on which we apply the spatio-

temporal correlation algorithm. The space resolution of the reconstructed flow depends on the 

size of the ROI (half its linear size = 0.5×SROI). However, a second key parameter for obtaining 

high precision flow speed estimations is the max tracer speed (K) inside the investigation ROI. 

If we assume that at least 5 lag-time points are needed to linearly fit the relation between the 

displacement maxr
r

 and the lagtime, K can be estimated from the ROI size (SROI) and the CCD 

frame rate (fps) as K = SROI × fps / 5. In the experiments reported in Fig.1 and Fig.2, fps = 74 

frames/s and SROI = 16 µm and we compute K ≅ 240 µm/s. If we had larger speed values, we 

should increase the ROI size loosing then in spatial resolution of the flow mapping. Moreover, 

if the flow is not aligned with the ROI axes we would need to increase the ROI size in both the 

ξ and η directions. This would increase substantially the computation time. 

In order to solve these issues, we propose to adopt an approach consisting in two-stage analysis: 

1- perform a first STICS on a ROI with small lag-time in order to evaluate the flow 

direction; 

2- rigidly translate the ROI of half the size of the original ROI in the flow direction 

detected at step 1, and perform a spatio-temporal cross-correlation between the original 

and the translated ROI (see Fig.3A).  
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Figure 3. Cross-correlation spatio-temporal analysis. Panel A reports the time average of the stack 

of images. The light and dark gray rectangular boxes are the original and translated ROI, 

respectively. The white arrow indicates the translation vector. Panel B reports three auto-

correlation images computed on the original ROI for lagtimes τ = 18.2 ms, 36.4 ms and 54.6 ms. 

The white arrow indicates in each STICS image the displacement vector ( )maxmaxmax ,ηξ=r
r

. Panel 

C shows the spatio-temporal cross-correlation maps between the original and translated ROIs for 

absolute lagtimes τ = 18.2 ms, 54.6 ms and 91 ms. The light green arrow indicates in each cross-

correlation image the relative displacement vector ( )'

max

'

max

'

max ,ηξ=r
r

. Panel D reports the plot of 

the displacement dmax =
2

max

2

max ηξ +  as a function of the absolute lagtime τ (blue colour), and 

d’max = ( ) ( )2'

max

2'

max ηξ +  as a function of the reduced lagtime, τ - τ0 (green colour, τ0 =18 ms). 

The dashed line is the best linear fit to the data and corresponds to the speed v = 380 ± 9 µm/s. 
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In this way we can increase the dynamic range of the speeds that can be detected. A flow speed 

almost 4 times larger than in Fig. 2 can be measured on the vessel reported in Fig.3A with 3% 

accuracy at 20 µm size resolution (SROI = 20 µm). At the same time, we are able to keep the 

computational costs at the same level of the original autocorrelation algorithm. The details of 

the algorithm can be gained by comparing Figs.3B (STICS correlation) to Fig.3C (STICCS, 

cross-correlation). We evaluate the flow velocity on the cross-correlation images by translating 

the correlation frame of reference (ξ,η)at the position (ξ0, η0) at which the cross-correlation 

peak is first detected and the lag-time τ axis to the corresponding lag time, τ0 (see Fig.3C). The 

two components of the flow velocity can then be evaluated as the inverse of slope of ξ - ξ0  and 

of η - η0 (the corresponding vector is reported as a white arrow in Fig.3C) as a function of τ - 

τ0. This estimate is in very close agreement with the one obtained on the autocorrelation 

images, as can be judged from Fig.3 D (open and filled symbols). 

 

4. Conclusions.  

We have devised and tested correlation and cross-correlation algorithms, specifically designed 

for single plane illumination microscopy, that allow to analyse blood flow in branched vessels. 

These involves the computation of the spatio-temporal correlation (STICS) and cross-

correlation (STICCS) images and the analysis of the resulting maps in terms of multiple 

components. From the relative amplitudes of different components of the STICS map we assign 

the prevalent flow direction at branching points and we are able to follow the flow at the 

ramification, also measuring the flow speed. The application of cross-correlation spatio-

temporal methods on two different ROIs on the stacks of images allow to enhance the dynamic 

range of the flow speed measurements and to map with 5 – 10 micrometers resolution the flow 

in extended vessel networks. An example of the resulting flow map reconstruction on two 

consecutive branching points can be seen in Fig.1A. These algorithms could be a great help in 
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analysing huge amount of data collected in-vivo in the field of developmental biology or in-

vitro in the setup of vascularized micro-incubators for tissue engineering.  
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5.1 Spotlight

The main goal of this chapter consists in the development of

variations of the conventional STICS analysis method, and to

the construction of a toolbox that should be at the same time

extremely solid and also user-friendly.

First of all, these methods require almost no a-priori knowl-

edge on the flow: the ROI and the timescale selection is the

only step that involves a user decision, and, per se, are very

easy to understand in a completely intuitive way. Moreover

STICS maps (despite their complex mathematical backbone)

are extremely clear and easy to read, both for qualitative and

quantitative analysis. In particular, looking at the case of

branched vessels, the power of the method shows itself in map-

ping, even in one single run (from a stack of a minimum of

300-400 frames), high resolution vectorial informations about

flow speeds at a ramification point. It informs also on the pref-

erential routes taken by red blood cells. All this is displayed

inside a single 2D image.

I dedicated special attention at developing fast algorithms, as

fast as I think could be designed without employing parallel

computing: introducing STICCS (and Figure 3 stressed ex-

actly this point) allows to measure higher speed values, which

would be otherwise unreachable, without employing a faster
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detector, or without encompassing a much wider ROI. The first

solution would greatly increase setup cost, the latter would re-

quire higher computational power, inevitably slowing down the

analysis. Instead, by introducing a spatial delay between two

ROIs, along the putative flow direction, allows the retrieval

of such flow speed with high accuracy, without any increase

in hardware requirements nor any sensitive slowing down in

the computational process. I am convinced that, from here,

the best course of action would be to invest time and effort

in translating all the algorithms to heavy parallel computing,

both exploiting the power of mutli-core CPU and modern GPU

cards.
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Chapter 6

3D extension: breaking

the wall

The good thing about science is that

it’s true whether or not you believe in

it.
Neil deGrasse Tyson

It’s fairly clear at this point that there is an intrinsic limi-

tation hidden in the methods proposed so far: the analysis is

restricted on a selected plane, and even if this can be more than

enough when studying microfluidic systems (acting on design

one can always engineer them to achieve planar or semi-planar

flow fields) it’s not often the best situation when investigat-
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ing a biological system, where interesting stuff is happening in

complex 3D geometries.

I’d like to point out that, in previously presented work, where

I studied hemodynamics in Zebrafish microvessels, I assumed

a priori almost planar geometries and this is completely jus-

tified in the specific case, since I took care to image in the

same light sheet both the major vessels, so that most of the

branching occur in the same (excited) sagittal plane (zfin.

org/zf_info/anatomy.html).

In this chapter I want to address directly 3D geometries of

flow. A common approach consists in employing scanning sys-

tems, in detection and/or excitation, in order to acquire 3D

image stacks: this is quite effective and many advances have

been recently achieved in order to improve both resolution and,

more importantly since this is the real challenge, acquisition

speed.36,37 This solution, even if it consists in true 3D inspec-

tion, results in costly hardware and it inherently slows down

acquisition process. Moreover it increases both operational (in

particular system alignment) and information complexity: it

gives 4D matrices of data, that require high computational

power for manipulation. The solution proposed here shows

that it’s possible to obtain information on 3D flow fields still

focusing on the time evolution of STICS data, taken in a classic

(2D) SPIM configuration. The main trick consists in directly
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deriving the spatio-temporal correlation fitting function under

the hypothesis of 3D arbitrary flow, and then simply looking

at the evolution of its shape and position with the lag-time,

marginalizing on a subspace, that is the 3D information (2D

space coordinates plus one time coordinate, the lag-time) con-

tained in a SPIM video acquisition. To this goal, I think it’s

useful to dive deeper into the theory presented in Chapter 2.4,

where STICS fitting function is presented for 2D diffusion and

drift. Let’s assume, for now, that investigation volume can be

approximated by a 3D Gaussian profile and that, as most gen-

eral case, both 3D diffusion and drift are present. The basic

correlation function can be described as:

G(∆, τ) = (W (x) ∗ δC(x, t)) ? (W (x) ∗ δC(x, t)) (6.1)

where:

• ”∗” indicates convolution, while ”?” defines a correlation

operation;

• W (x) = gaus

(
x√
π
2
ω

)
is a 3D Gaussian profile, with x

3D vector and ω = beam waist;

• δC(x, t) refers to fluorophores concentration fluctuations;

• ∆ and τ specify spatial and temporal delays, respec-

tively.
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Writing explicitly convolution and then correlation it’s readily

found that:

G(∆, τ) =

∫ ∞
−∞

W (x−α)δC(α, t)dα?

∫ ∞
−∞

W (x−β)δC(β, t)dβ

(6.2)

G(∆, τ) =

∫ ∞
−∞

dγ

∫ ∞
−∞

dt

∫ ∞
−∞

dα

∫ ∞
−∞

dβ

W (γ − α) δC(α, t)W ∗(γ −∆− β) δC∗(β, t− τ) (6.3)

G(∆, τ) =

∫ ∞
−∞

dγ

∫ ∞
−∞

dα

∫ ∞
−∞

dβ W (γ − α)W ∗(γ −∆− β)∫ ∞
−∞

dt δC(α, t) δC∗(β, t− τ)

(6.4)

The last equality serves as a guideline for performing succes-

sive integrations: first the time dependence is resolved follow-

ing almost exactly the same steps performed in standard FCS

derivation, that is solving Fick’s diffusion (+ drift) law to re-

cover an explicit expression for δC(x, t); then, inserting the

result in the complete expression and employing the fact that

Fourier derivation and integration are completely independent

linear operations, it’s straightforward to recover the final func-

tional form. Here I want to present the derivation in the most

compact way, I hope without losing clarity.
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For concentration fluctuations, referring to eq. 2.22 and 2.23:

δC(q, τ) = δC(q, 0)e(−4π2Dq2−2πivq)τ ≡ δC(q, 0)ef(q,τ) (6.5)

where, as always, q and v are vectorial quantities. In order

to insert this result in the general expression, back and forth

Fourier Transformations are applied and extracted from the

integral. Moreover recalling that, for an ideal solution, the

zero lag-time concentration correlation can be evaluated as

δC(x, 0) ? δC(y, 0) = 〈C〉 δ(x− y) (6.6)

this helps (along with the evaluation of Fourier Transforms

of investigation profiles) to contract almost all the integral

operations, so that it’s readily found:

G(∆, τ) =

∫ ∞
−∞

dγ

∫ ∞
−∞

dα

∫ ∞
−∞

dβ

∫ ∞
−∞

dq′

W (γ − α)W ∗(γ −∆− β)[
δC(q′, 0) ? δC(β, 0)

]
ef(q′,τ)e2πiαq′ (6.7)

G(∆, τ) =

∫ ∞
−∞

dγ

∫ ∞
−∞

dα

∫ ∞
−∞

dβ

∫ ∞
−∞

dq′
∫ ∞
−∞

dβ
′

W (γ − α)W ∗(γ −∆− β)

〈C〉 δ(β − β′) ef(q′,τ)e2πiαq′e−2πiβ
′
q (6.8)
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G(∆, τ) = 〈C〉
∫ ∞
−∞

dγ

∫ ∞
−∞

dα

∫ ∞
−∞

dβ

∫ ∞
−∞

dq′

W (γ − α)W ∗(γ −∆− β)

ef(q′,τ)e2πiαq′e−2πiβq (6.9)

G(∆, τ) = 〈C〉
∫ ∞
−∞

dγ

∫ ∞
−∞

dq′

W (q′)W ∗(q)ef(q,τ)e2πiq′γe−2πiqγe2πiq∆ (6.10)

G(∆, τ) = 〈C〉
∫ ∞
−∞

δ(q − q′) dq′

W (q′)W ∗(q)ef(q′,τ)e2πiq∆ (6.11)

G(∆, τ) = 〈C〉
∫ ∞
−∞
|Ŵ (q)|2ef(q,τ)e2πiq∆dq (6.12)

This is basically the same expression reported in eq. 2.20,

here fully derived in 3D (+ time), without normalization fac-

tors. With this tool in hand, it’s then just a matter of plug-

ging in the correct expression for W and carry on calculations

to obtain a full 3D fitting function. Expliciting the Fourier

Transform of the investigation profile, then:

Ŵ (q) =

√
π

2
ω gaus

(√
π

2
ωq

)
(6.13)

154



G(∆, τ) = 〈C〉
√
π

2
ω

∫ ∞
−∞

e−2π2iω2q2
e2πi∆ qe(−4π2Dq2−2πivq)τdq

(6.14)

To evaluate the integral, it’s sufficient to complete the

square in the integrand, to extract meaningful factors and ob-

tain a straightforward 3D Gaussian integral, resulting in:

G(∆, τ) = 〈C〉
√
π

2
ω

(
1√

ω2 + 4Dτ

)3

e
−(∆−vτ)2

ω2+4Dτ (6.15)

This final equation, even if under approximations that will

be soon further discussed, is perfect to understand how 3D

STICS behaves. Here it is a 3D plot, where 3 different lag-

times are merged together:
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Figure 6.1: Simulation of 3D STICS function, with D = .1 and v =

(5,0,1)µm

I choose specific parameters to highlight both diffusion and

drift contributions, to observe how the correlation functions

evolve in the most general case. Anyway, as already men-

tioned, this is rarely the case: in all the applications mentioned

in this work, drift and diffusion exist on really different time-

scales (usually there is a diffusion coefficient of the order of

.3µm
2

s while drift speeds have a magnitude of tens or hundreds

of µm
s ), so that widening of the correlation sphere is dramati-
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cally reduced in practice.

As last remark, it’s quite singular that the same idea can be

almost exactly applied in two so different contests: the theo-

retical, mathematical marginalization, working alongside with

the effective, practical optical sectioning of the sample. In the

following figures I performed a marginalization onto 2 differ-

ent z-planes, both when a vz is present and when, on the other

hand, there is only planar drift in {x̂, ŷ}-plane:

Figure 6.2: Marginalization of the 3D STICS function onto a plane

of 0µm spatial delay in the ẑ direction, both with and without a

ẑ-component of fluid velocity.
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Figure 6.3: Same as before, marginalization of the 3D STICS func-

tion onto a plane of 5µm spatial delay in the ẑ direction.

Two meaningful observations can be made:

1. in figure 6.2, it’s apparent that the effect of a veloc-

ity component that leaves the selected plane result in a

faster correlation decay: the presence of what could be

called a new decay channel speeds up similarity loss;

2. looking at 6.3, the difference is even clearer: only in

the presence of an out-of-plane velocity it’s possible to

observe a definite peak, informative of a drift motion.

These thoughts suggest that system simulations should

probably be an important tool, since comparison with theoret-
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ical data could, at the very least, reveal the possible presence

of a a priori discarded v-component outside the investigated

plane. On the other hand, when a sample clearly presents a

three-dimensional ~v field, this method can be readily applied

to a desired investigation plane, employing the simple SPIM

setup without any modification.

Approximation During the previous derivation I restricted

the math to resolve a fairly ideal situation, but this is rarely the

case. Supplementary of the following article explains the prob-

lem quite accurately and gives a precise derivation in the most

general case. Here it’s sufficient to highlight that the most

important differences regards illumination non-uniformity and

idealization of the acquisition system. The first one can be

easily included, acting on beam waist, making it different for

every direction: ω → ωx, ωy, ωz.

For what concerns detection, images are obviously collected

by a pixelated detector, which defines a last smoothing pro-

cess onto the PSF. More precisely: a 2D Gaussian profile is

smoothed out by a convolution with the pixel finite size a

(rect(xa ) rect(yb )). As mentioned before, this should be com-

pletely negligible if pixel size is small enough to allow a suffi-

cient sampling of the PSF peak (fulfilling Nyquist criterion),

but since often this is not the case, this operation results in
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a broadening of the effective PSF. Detailed derivations can be

found in the article supplementary material and as an exten-

sion of Krieger et al.35

Here is the article (currently under revision) that presents the

relevant achievements.
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ABSTRACT: Microfluidic devices reproducing 3D networks are particularly valuable for nanomedi-
cine applications such as tissue engineering and active cell sorting. There is however a gap in the possi-
bility to measure how the flow evolves in such 3D structures. We show here that it is possible to map 
3D flows in complex micro-channels networks by combining wide field illumination to image correla-
tion approaches. To this purpose we have derived the spatio-temporal image correlation analysis of time 
stacks of single plane illumination microscopy images. From the detailed analytical and numerical anal-
ysis of the resulting model we developed a fitting method that allows to measure, besides the in-plane 
velocity, the out-of-plane velocity component down to vz ≅ 65 µm/s. We have applied successfully this 
method to the 3D reconstruction of flows in micro-channel networks with planar and 3D ramifications. 
These different network architectures have been realized by exploiting the great prototyping ability of a 
3D printer, whose precision can reach few tens of micrometers, coupled to poly-di-methyl-siloxane soft 
printing lithography.

Microfluidics has a large impact in nanomedi-
cine: diagnostic devices1 for cell screening and 
separation2, methods for enhancing cell-tissue 
interactions3 or for cell growth in scaffolds for 
tissue engineering4, are only a few examples. 
The combination of microfluidics with molecu-
lar and cellular diagnostics reduces the sample 
volume and the waste of sample, maximizes the 
information and allows scalability for screening 
applications and batch sample processing. Mi-
crofluidics also allows to study the 3D cellular 
microenvironment in a controlled manner. The 
advantage of 3D platforms is well recognized 
and ranges from tumor in-vitro models4,1, to tis-
sue engineering or stem cells harvesting5-6. The-
se novel microfluidic techniques require the de-
velopment of analysis methods for flow field 
mapping in 3D and the possibility to test many 
different network designs. 

μPIV (Particle Image Velocimetry) in 2D and 
single particle tracking0a,0b have been extended 
to 3D via stereoscopy, defocusing and digital 
holography0a. Starting from a different ap-
proach, we couple concepts from image cross-
correlation microscopy to wide field Single 
Plane Illumination Microscopy (SPIM): we map 
3D flows by exploiting the amplitude de-
correlation measured on 2D time-stack of imag-
es. By working on the very same SPIM micro-
scope used for studying morphology of organ-
isms7,15 or of microchannels8,10, with no need to 
exploit aberrations or stereoscopy, we analyze 
the time-stacks by correlation methods9-10. Time 
autocorrelation methods have been widely ap-
plied to the study of the dynamics of biomole-
cules in-vitro11 and in cells12,13-14 and to finely 
map flows in microfluidic devices also coupled 
to PIV0c. µPIV maps 2D flows0d by exploiting 
cross-correlation between two subsequent imag-



 

es or within multiple exposure images. Cross-
correlation dual–spot approach has been also re-
cently applied to the study of in-plane blood 
flow15, and its generalization to multiple spots 
led to the so called Space Time Image Correla-
tion Spectroscopy (STICS).16 When a flow is 
present, the displacement of the position of 
maximum of the space-time correlation map 
from the center of the correlation space, pro-
vides a measure of the in-plane flow velocity. 
We measure here the out-of-plane motion by 
following the loss of the amplitude of the 
STICS map, due to objects passing through the 
illumination plane, without resorting to defocus 
or complex stereoscopy setups. 
We have exploited Material Jetting technolo-
gy17,18 to test our approach on a variety of 3D 
microfluidic designs. The advantage of using 
3D printers is twofold19. The unprecedented 
ability (1) to fabricate in three dimensions, cre-
ating complex geometries than cannot be pro-
duced at low cost through standard subtraction 
technologies and (2) the high resolution (few 
tens of micrometers in layer thickness) which is 
already at the limit of the molding fidelity of 
poly-di-methyl-siloxane (PDMS) soft lithogra-
phy. 3D printing technology can process many 
different materials, from photopolymers to met-
al powders, to biocompatible materials. It can 
be used for prototyping 3D structures for cellu-
lar culturing (tissue engineering) and in-vitro 
cell models, in alternative to more advanced 
techniques such as two-photon photo-
polymerization4. Moreover, the ability to rapid-
ly realize a model enables us to adopt a “trial 
and error” strategy. A simple micro-fluidic mi-
crochip can be printed in about 1 hour and then 
used to mold several PDMS replicas of the net-
work. We test that the surface roughness, due to 
the thickness of the individual deposited resin 
layer, induces no dramatic aberrations on the la-
ser sheet of the SPIM setup. The goal of our re-
port is therefore to develop an algorithm to map 
flow fields in 3D by exploiting STICS analysis 
of time stacks of SPIM images taken at different 
depths in the microchannel structures. SPIM 
methods have been applied to developmental 
biology on embryos,20-22 coupled to time corre-
lation methods to study biomolecular dynamics 
in cells on single23-24 and dual colors acquisi-

tions.25 We have recently used SPIM to charac-
terize time varying flows in micro-channels10. 
However, we are not aware of any attempt of its 
employ to characterize in 3D a flow field. We 
develop here the formalism for the STICS anal-
ysis SPIM images. From the analytical and nu-
merical study of the resulting correlation image 
we have derived and tested a fitting algorithm 
that allows us to measure the out-of-plane com-
ponent of the velocity from the decay of the cor-
relation amplitude as a function of the lagtime. 
The lower limit of out-of-plane velocity detec-
tion for our setup is vz ≅ 65 µm. The upper 
boundary is instead determined by the image 
sampling frequency and the thickness of the 
SPIM sheet. We believe that this method, ap-
plied here to the 3D mapping of the flow in mi-
cro-channels, could also be employed to analyze 
vessels in vivo. 

THEORY 

We implement a 3D analysis of the flow that 
exploits the time evolution of both the position 
and the amplitude of the maximum of the 
STICS cross-correlation image. We define the 
SPIM plane as the x-y plane and allow the flow 
speed

 
!v = vx ,vy ,vz( )  to have an out-of-plane com-

ponent vz ≠ 0. In order to compare the in-plane 
and out-of-plane components we also define 
vxy = vx

2 + vy
2 . The dual spot cross-correlation as 

implemented on a SPIM setup, is based on the 
analysis of the cross-correlation between two 
pixels or Regions of Interest (ROI) in the illu-
mination plane as a function of the lagtime9,15. 
As shown in detail in the Supporting Infor-
mation, section SI.1, the out-of-plane velocity 
component has an effect on the maximum lag-
time (Fig.S1A), on the amplitude (Fig.S1A in-
set) and on the width of the cross-correlation 
function (Fig.S1B). However, the effect can be 
partly mitigated by changing the spot-spot dis-
tance, suggesting that the experimental meas-
urement of all the velocity components should 
be performed on a multiple spot-spot distance 
basis. This is obviously possible once we have 
acquired a full time stack of images on the 
SPIM setup, and suggests us to develop a global 
spatio-temporal analysis.  



 

The spatio-temporal  cross correlation image 
(STICS image) is defined for a time stack of 
images:  
  

 C(ξ,η,τ ) =
δ I (x, y,t)δ I (x + ξ, y +η,t +τ ) x,y,t

I (x, y,t) x,y,t
2  (1) 

where (ξ, η) and τ are the spatial and time lags, 
respectively. In Eq.1 the time stack of images 
{I(x,y,t)} is acquired over a field of view of size 
X × Y (typically 200 µm × 600 µm) and for a 
maximum time T = M δt (M samplings with 
image sampling time = δt). The fluctuations are 
computed with respect to the time average on 
each pixel, δ I x, y,t( ) = I x, y,t( )− I x, y,t( )

t  . Follow-
ing the outline given by Krieger 2015 et al.9 as 
described in the Supporting Information (SI.2) 
for finite size of the tracers,26 we have derived 
the expression of the Gaussian-like shaped spa-
tio-temporal cross-correlation function C(ξ,η,τ). 
The maximum of the function (ξmax,ηmax) dis-
places from the center of the correlation space 
linearly with the lagtime according to the in-
plane flow velocity (SI.3): 
 
 ξmax

2 +ηmax
2 = τ vx

2 + vy
2 = τvxy             (2) 

and its position does not depend on the out-of-
plane speed component nor on the pixel size. 
The width of the correlation function peak can 
be measured from the second moment of the 
correlation function as derived in detail in Sec-
tion SI.3 and can be written as: 

 

ω 2 = π
2
M ω xy ,D,τ( )

aErf β( ) +
M ω xy ,D,τ( )

π
exp −β 2( )−1( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1− exp −β 2( )⎡⎣ ⎤⎦
(3) 

where D is the diffusion coefficient, xyω  is the 
radial beam waist, ( ) τωτω DDM xyxy 4,, 2 +=  and 

( )τωβ ,,/ DMa xy=  is a measure of the pixel size a 
in terms of the diffusion range. As detailed in 
the SI.3, a linear trend

		ω
2 ≅ constant + 4Dτ   is suffi-

cient to analyze the experimental data. 

Cross-correlation amplitude. The lagtime de-
pendence of the amplitude of the STICS image 
contains information on the in-plane diffusion 
and the out-of-plane drift. For vz = 0 the area of 

the ξ or η profile of the CCF should be constant 
and the amplitude should decrease slowly with 
time as the width increases due to Brownian 
motion. This occurs over lagtimes of the order 
of τ xy = ω xy

2 / 4D  ≅ 0.12 - 0.41 s (0.3 µm2/s ≤ D ≤ 
1.0 µm2/s) and it is approximately described by 
a slow hyperbolic decay (see Eq.S19 and Figs. 
S2 and S7): 

 Ci,max (τ )
i=x,y

≅ 1 + τ
τ xy

⎛

⎝⎜
⎞

⎠⎟

−1/2

             (4) 

as expected from the fluorescence correlation 
spectroscopy theory12 for a 1D Brownian mo-
tion. The dependence on the pixel size appears 
at the second order in the ratio β0 = a/ωxy (see 
Eq. S20), and is negligible unless for very low 
magnification.  
The out-of-plane motion contributes with a 
Gaussian term (see Eq.S12 and Eq.S22) and al-
together we can write the maximum of the 
STICS image as  

C ξmax,ηmax,τ( ) ∝ ω z

Mz

exp −
vzτ
Mz

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Erf β( ) +

exp −β 2( )−1( )
β π

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

   (5) 

where zω  is the sheet thickness and 
( ) zxyz vDMM τω ,,= . It is also useful to define 

zzvz vM /=τ  and τ z = ω z
2 / 4D .  

From the functional dependence reported in 
Eq.5 is also evident that we are sensitive only to 
the absolute value of the out-of-plane drift com-
ponent of the velocity. As detailed in SI.3, the 
contribution of the out-of-plane diffusion is 
negligible when compared to in-plane diffusion 
and to out-of-plane drift time. On the other 
hand, the amplitude of the STICS image is 
largely affected by the out-of-plane flow. In 
general, the lower is the diffusion coefficient D 
and the larger is the out-of-plane velocity, the 
easier is to single out the contribution of the 
out-of-plane drift. As an extreme case, for out-
of-plane drift velocities as small as vz ≅ 50 
µm/s, and large diffusion coefficient (τxy ≅ 
0.12s) the out-of-plane drift contribution to the 
STICS amplitude is only 5% when the in-plane 
diffusion contribution has already dropped at 
50%. Both contributions to the amplitude decay 
must then be accurately fitted to Eq.5 in order to 
correctly evaluate the out-of-plane drift compo-
nent. 



 

Limits on the out-of-plane velocity detection. 
The upper limit for the detection of the out-of-
plane drift velocity, vz, is determined by the im-
age sampling time, δτ. The maximum detectable 
speed is set by requiring that at least four sam-
pling points fall within vzτ2 , leading to the de-
tection limit vz ≤ 2 / 4( ) ω z /δτ( )  ≅ 320 – 220 µm/s 
for δτ = 13 - 19 ms and ωz ≅ 12µm, as em-
ployed here (see also SI.3 and SI.6). On the oth-
er hand, as vz decreases, τvz increases up to 
match the in-plane diffusion time τxy. The min-
imum measurable value of vz can then be found 
by requiring that the out-of-plane drift contribu-
tion to the amplitude has decreased of at least 
50% for a lagtime ≅ τxy, similarly to the in-plane 
diffusion component. For τxy ≅ 0.12 s (the worst 
case here) we find in this way a minimum de-
tectable value of vz ≥ (ln(2))0.5ωz / τxy ≅ 83 µm/s 
and vz ≥ 65 µm/s for the most typical value τxy  
= 0.15 s. 

EXPERIMENTAL SECTION 

 SPIM setup. The laser source of the SPIM 
setup27 was an air-cooled argon−krypton laser 
(Melles Griot, Carlsbad, CA) adapted from a 
confocal setup. The proper excitation wave-
length was selected by a band-pass filter. The 
beam was expanded 1:4 and focused into the 
back aperture of an illumination objective 
(Olympus 4×, 0.1 N.A.) by means of a cylindri-
cal plano-convex lens (fcyl = 50 mm). The fluo-
rescence emission was detected through a 20x, 
water immersion Olympus objective (XLUMP-
lanFl, 0.95 NA) mounted at right angle (along 
the z-direction) with respect to the illumination 
plane which lies in the laboratory horizontal 
plane (x-y plane). The emission was collected 
by an EMCCD detector (Cascade II, Photomet-
rics, USA) through a tube lens with an effective 
M=20 magnification on the final image. The 
typical acquisition rates were 13 - 19  ms/frame, 
on field of view of hundreds of micrometers in 
size, typically (Fig.S0A). 
Microfluidic Setups. The piston (1 mm diame-
ter) of a 500 µL Hamilton micro- syringe is 
coupled to a linear actuator (M227-C863 linear 
actuator, Phyisk Instrumente, D) to generate the 
flow (speed resolution 50 nm/s). Fluorescent or-
ange amine-modified polystyrene, latex beads, 1 

µm diameter, from Sigma (Sigma-Aldrich 
Chemical Co.) have been used as tracers. The 
aqueous solution of microbeads was sonicated 
for 30 minutes before use. The microbeads sus-
pension velocities were kept constant in time 
and varied according to the piston step rate. 
The microfluidic device was built by casting 
PDMS (Dow, Corning, USA) in 3D printed 
molds whose 3D sketches are shown in 
Fig.S0B,C,D. The final virtual model of the 
three molds was exported as STL (Standard Tri-
angulation Language) file and prototyped 
(Fig.S0E). 3D printing was performed through 
an Object 30 Pro (Object-Stratasys) based on 
Material Jetting technology, using a transparent 
photopolymer (Veroclear™). The printer fea-
tures a layer thickness of 16 µm and a in-plane 
resolution of 600x600 dpi, with an overall accu-
racy of 0.1mm. The PDMS was poured in the 
molds and after the polymerization the PDMS 
layer was peeled off and pressed on a glass slide 
(170 µm thickness) that becomes the fourth wall 
of the micro-channels, acting as the observation 
window and defining the x-y plane (the y direc-
tion is the structure symmetry axis). The sealing 
was ensured by thermal annealing for 60 
minutes at 180 degrees.  In order to reduce the 
excitation beam scattering, the PDMS thickness 
on the excitation side was reduced to a maxi-
mum of 2 mm and a glass slide was used as out-
er surface facing the excitation beam. In this 
way the entrance PDMS wall for the illumina-
tion plane was close to optical flatness. The mi-
crochannel shape and cross-sections were re-
produced with high fidelity from the mold as 
shown by fluorescence microscopy imaging of 
the channels filled with Rhodamine solutions 
(see Fig.S19, Section SI.7). The PDMS micro-
channels were connected to the glass syringes 
(employed as pump and reservoir) by silicone 
tubes (1 mm × 3 mm). 
Three geometries were built. An Y-shaped 
structure with a constant area square cross-
section was used to explore 2D flow patterns. In 
this way the average flow speed does not 
change far from Y-shaped junction (Fig.S0B). 
3D flow patterns were instead produced in two 
other structures: a straight microchannel with a 
telescopic variation of the cross-section 
(Fig.S0C) at three transition regions. At each of 
the transitions the cross-section area increases 
four times, from 200x200 µm2, to 400x400 µm2, 
to 800x800 µm2. The cross-section was not 
symmetrically expanded in the x-z plane and we 
expect that this asymmetry will induce a flow 
component in the z direction.  
In a second straight microchannel we built two 
separate but consecutive chambers each expand-



 

ing in either the x or z direction (Fig.S0D). In 
this structure we expect to observe out-of-plane 
motion (along the z direction) only for the 
chamber expanding in the z direction.  
STICS images analysis. The STICS images 
were computed on a time stack of M images 

{ }
MjjIS

,..0=
=  taken at M times spaced by δt rang-

ing typically from 13 to 19 ms (corresponding 
to 74 to 52 frame per second of the EMCCD, 
the fastest rates compatible with the chosen 
field of view). Each image has a size of X×Y 
pixels. The correlation function was computed 
by the FFT algorithm: 
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Each image of the time stack was padded with 
zeros up to double its size before performing the 
FFT and each correlation image was then nor-
malized for the lag-space. 
On each correlation image, corresponding to the 
lagtime τ, we automatically selected the posi-
tion (ξmax,ηmax) of the maximum by fitting the 
image to a 2D Gaussian profile (see Fig.S3, 
Section SI.4). The amplitude of the STICS func-
tion was derived from the amplitude of the 
Gaussian fit function, subtracted for the possible 
background. In order to evaluate the z compo-
nent of the flow velocity we need to follow the 
amplitude of the STICS image with the lagtime 
over at least 5-10 lagtime points, up to a lagtime 
τfit. Since we would like to map the flow as 
finely as possible we have computed the STICS 
image on rectangular ROIs elongated in the di-
rection of the flow in order to be able to follow 
the maximum of the STICS image in the whole 
lagtime range. We have checked that the condi-
tion to recover the STICS amplitude is that the 
ROI size is at least ≅ 2 vxy τfit. For a flow of the 
order 400 µm/s and τfit ≅ 40 ms, this corre-
sponds to a size of 16 µm, or at least 20 pixels 
(see Section SI.5)  
 
RESULTS AND DISCUSSION  

In-plane flow field mapping. We have first 
characterized the flow field in the Y-shaped 
structure (see Fig.1A, sketch). In this case, we 
do not expect any substantial out-of-plane com-
ponent and we focus on the study of the flow 
speed in the x, y plane. To this purpose we 
measure the position Pmax = ξmax,ηmax( )  of the max-
imum of the STICS correlation function as a 
function of the lagtime, τ. The flow speed in the 
x and y direction, vx and vy (see Fig.S4, S5), are 
then measured from the corresponding slopes of 

ξmax and ηmax. As shown in the section SI.3, the 
measurement of the in-plane velocity is poorly 
affected by the pixel size (< 4% for a ≤ 3.2µm) 
or by the out-of-plane speed (< 3% for vz ≤ 320 
µm/s) components (see Fig.S5). As an example, 
we selected two Fields of View, FOV1 in the 
secondary arm (Fig.1A, sketch) and FOV6 in 
the lower half of the junction (Fig.1B, sketch). 
On each of them a time stack of about 200 im-
ages was analyzed (>10 s acquisition time) and 
the STICS correlation function computed on a 
7×7 array of ROIs, fully covering the field of 
view. The average flow direction can be gained 
from the maximum projection of the collected 
time stacks. As can be judged from Fig.1C the 
direction of the flow is quite uniform on FOV1, 
which is far from the junction, and smoothly 
bent downwards in FOV6 (Fig.1D). This quali-
tative observation is fully consistent with the 
quantification reported in Fig.1A and Fig.1B. 
For the case of FOV1, the angle between the 
flow speed and the x axis is pretty constant 
when moving along the x and the y directions 
(Fig.1A, inset), θ = 25.5o ± 0.6o. The change in 
the |v| along the x axis can be ascribed to the 
sticky boundary conditions: due to the orienta-
tion of the image with respect to the flow, the 
origin of the x coordinate axis corresponds ap-
proximately with the channel axis. Similar re-
sults, but with reduced velocity values, are 
found for the motion along the y axis, due to the 
angle between the flow and the y-axis of the 
image. This picture is fully consistent with the 
microchannel structure as obtained by the 3D 
printer (θ = 25.6o, see Fig.S0B). The case of 
FOV6 is more complex. When studying the 
flow speed along the x axis we measure a negli-
gible vx component, slowly increasing in ampli-
tude at larger y values. This is in agreement 
with the projected image (Fig.1D) from which 
we can see that the flow is predominantly along 
the y axis unless at very high y values. For the 
data reported in Fig.1B (right panel, correspond-
ing to the central ROI n.3) an average value of 
the angle θ ≅ 6 ± 2 o along y-axis is measured. 
Along the x-axis the flow direction changes sig-
nificantly (Fig.1B, left panel, see white, black 
and gray symbols) as can be judged from the 
analysis of the 



 

 

Figure 1. Characterization of the in-plane 
flow field in the Y-shaped structure. Two rel-
evant FOVs were selected along a secondary 
arm (FOV n.1, panels A, C) and in the lower 
half of the Y-junction (FOV n. 6, panel B, D). 
On each of the two FOVs we computed the 
STICS correlation function on 49 square, equal-
ly-spaced ROIs (7x7 matrix). Panel A and B re-
port the vx (squares) and vy (circles) compo-
nents and the modulus |v| (triangles), as a func-
tion of the coordinate along the y or x direction. 
The insets in panel A reports the angle θ = 
arctan(vy/vx) of the flow speed with respect to 
the x direction. Along each of the axes we se-
lected the middle ROI (ROI = 3) for the analysis 
but for the left plot in panel B where the result 
of the analysis performed on three selected 
ROIs (0, 3, 6) are reported as white (θ = 2 ± 2o), 
black (8 ± 2o) and gray (14 ± 4o) squares, re-
spectively. Panels C and D report the maximum 
signal projection of the FOV n.1 (C) and FOV 
n.6 (D). Some of the ROIs on which the STICS 
images were computed are indicated as dotted 
squares on the images. The gray vectors super-
imposed to the images indicate the flow direc-
tion as measured from the θ angle. Frame rate 
74 fps, 512x512 images, time stacks slices = 
200. The images in the blow-ups of panels C 
and D, are the STICS correlation images for the 
lagtimes 300 ms (C) and 240 ms (D), respec-
tively. 

x-profile for 3 ROIs, at the edges and in the 
middle of the FOV. In this case we measure in-
deed a systematic change in the flow angle with 
respect to the x-axis, starting from θ ≅ 2o at one 
edge (ROI n.0) of the FOV6 down to 14o at the 

opposite edge (ROI n.6). We can conclude that 
the STICS analysis applied to time stacks of 
images collected in SPIM mode allows us to 
quantitatively and fully characterize complex 
spatial flow patterns in the SPIM plane. Since 
each sub-ROI can be ≅ 50 µm in size, the veloc-
ity fields can be mapped with tens of microme-
ters resolution. The effect of the number of 
frames on the evaluation of the 2D flow velocity 
is analyzed in the SI.5 section. 

The STICS amplitude measures the out-of-
plane flow velocity. We have investigated the 
possibility to employ STICS analysis on SPIM 
images to measure flows in 3D on two different 
microstructures in which the cross-section 
changes in the x and z direction or in the z di-
rection alone (the SPIM plane is parallel to the 
x-y plane). The first case is obtained by means 
of a telescopic straight structure opening up 
both in the x and z directions (Fig.S0C). We 
first studied the flow in the 800 µm cross-
section segment of this microchannel (Fig.S0C, 
region “a”). Here we expect pure 2D flow in the 
SPIM plane and the amplitude of the STICS 
correlation function should decay only as an ef-
fect of the diffusive motion. This is indeed the 
case as shown in Fig.2 (open symbols). The 
40% decrease measured at lagtimes ≅ 0.45s is 
compatible with the small diffusion coefficient 
of the tracers (D ≅ 0.4 µm2/s). The dashed line 
represents the best fit of these data to Eq.5 when 
setting vz = 0. The value of the diffusion coeffi-
cient is confirmed by the linear fit (ω2 ≅ con-
stant + 4Dτ) of the STICS peak width as a func-
tion of the lagtime (Fig.2, inset open squares) 
that provides the best fit value D = 0.42 ± 0.06 
µm2/s. In order to investigate the telescopic 
transition region, we have acquired a central 
plane in the transition region “b” (see Fig.S0C) 
between the 800 µm to 400 µm side cross-
sections. In the x direction the section widens 
from -200 µm ≤ x ≤ +200µm to -400 µm ≤ x ≤  
400 µm, symmetrically in the positive and nega-
tive directions, whereas along z direction it wid-
ens from 0 µm ≤ z ≤ 400 µm to 0 µm ≤ z≤ 800 
µm, since we are limited by the bottom glass 
slide. The STICS correlation function shows a 
marked decrease (up to 80%) of its amplitude 
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(filled symbols, Fig.2) whose fit to Eq.5 pro-
vides a value vz = 120 ± 3 µm/s for the out-of-
plane velocity component (Fig.2, solid line). 
The squared width, ω2, of the STICS function 
increases linearly with the lagtime similarly to 
the straight microchannel case (Fig.2, inset).  
This confirms that this parameter is not sensi-
tive to the flow speed. From a linear fit we ob-
tain D ≅ 0.4 ± 0.1 µm2/s , in very good agree-
ment with the expected value, D ≅ 0.4 µm2/s, 
for 1 µm size microbeads.  

In order to test the reliability of the measure-
ment of the out-of-plane component of the ve-
locity from the STICS amplitude decay, we 
have modified purposely the out-of-plane veloc-
ity component by rotating the SPIM plane 
around the x axis. The SPIM plane was set at 
the “b” region (Fig.S0C) 400µm - 800µm tele-
scopic transition (300 µm from the bottom glass 
slide). Time stacks of images were then ac-
quired at two different orientations of the SPIM 
plane,  θx = +9 ± 1o and θx = -9 ± 1o, obtained 
by rotating the cylindrical lens in the SPIM set-
up. An example of the effect of the orientation 
on the STICS amplitude is reported in Fig. 3, 
where the rotation of the SPIM plane with re-
spect to the flow velocity is also sketched. As 
the SPIM plane orientation departs from the 
flow direction, the out-of-plane component of 
the velocity increases and the decrease of the 
STICS amplitude as a function of the lagtime is 
more pronounced. This case corresponds to the 
best fit out-of-plane velocity vz(θx=0o) = 157 ± 
7 µm/s (filled symbols) and vz(θx=9o) = 193 ± 
17 µm/s (open symbols). The rotation angle of 
the SPIM plane can be estimated as 
θ x ≅ vz

rot − vz( ) / vxy and amounts to θx= 9 ± 4o, in good 
agreement with the expected 9 ± 1o. 

STICS amplitude-lagtime plot allows to 
map the out-of-plane flow in 3D. As a second 
test of the possibility to evaluate the detailed 
behavior of the out-of-plane velocity component 
of the flow we have acquired 12 time stacks 
(each consisting of 150 images, sampling time 
19.2 ms) at different heights covering a volume 
of approximately 819 µm x 410 µm x 120 µm, 
at the transition between the 800 µm to 400 µm 
cross-section side. 

 
Figure 2. STICS amplitude at the cross-

correlation maximum as a function of the 
lagtime τmax. The open and filled symbols refer 
respectively to the STICS amplitude computed 
on time stacks of images of microbeads flowing 
in the straight 800 µm section (section “a” in 
Fig.S0C) and at the 400 µm - 800 µm (section 
“b” in Fig.S0C) transition in the telescopic mi-
crochannel (height ≅ 160 µm from the glass 
slide). The solid lines are the best fit to the data 
according to Eq.5 with pixel size a = 0.8 µm (in 
the sample plane), PSF size  ωxy = 0.6 µm, 
SPIM sheet size ωz = 12 µm.  The best fit value 
of the diffusion coefficient is D = 0.22 ± 0.05 
µm2/s and vz = 0 (open symbols) and vz = 120 
+/- 3 µm/s (filled symbols). The inset shows the 
trend of the width, in µm2, of the correlation 
function as a function of the lagtime. The solid 
line is the best linear fit to ω2 ≅ constant + 
4Dτ,with best fit values D = 0.42 ± 0.06 µm2/s 
(open symbols) and D = 0.4 ± 0.1 µm2/s (filled 
symbols). 

 
The bottom of the reconstructed volume (x-y 
planes with lowest value of z) lies at about 160 
µm from the glass slide (see sketch in Fig.4A), 
which is taken as the origin of the z axis. The 
STICS correlation functions were computed for 
a maximum lagtime of 364 ms, therefore allow-
ing a reasonable statistical average. In order to 
map the flow we have computed the STICS cor-
relation image on ROIs 50x200 pixels (40 µm x 
160 µm)  in size. Given the average speed, 
mainly along the y axis (vy ≅ 150 µm/s)  the 
maximum of the STICS function displaces of 
about 54 µm along the y axis, well within the 



 

size of the ROI. We have displaced the ROIs in 
such a way to cover all the field of view without 
super-positions (Section SI.5 and SI.6). The first 
evidence is that the flow occurs out of the SPIM 
plane. The 3D reconstruction of the flow sam-
pled at four locations in the detected volume 
(Fig.4A), indicates that the flow occurs also in 
the z direction at the transition between the 
small to large cross-sections. At the same time, 
the speed modulus decreases since the volumet-
ric rate remains constant (Fig.4A, red to blue 
transition in color codes). The vz component 
slightly decreases along the flow (y) axis 
(Fig.4C): a smooth systematic decrease from vz 
≅ 300 µm/s at y≅0 µm to vz ≅ 200 µm/s at y ≅ 
200 µm can be singled out only for x ≅ 450 µm 
(Fig.4C, filled squares). The vz component has 
also a slight dependence on the distance from 
the bottom glass-slide (Fig.4B): the maximum 
value of vz (at x ≅ 380-430 µm) changes from vz 
≅ 350 ± 30 µm/s at z ≅ 30 µm to vz ≅ 400 ± 30 
µm/s at z ≅ 160 µm. 

 

Figure 3. STICS amplitude is sentistive to the 
out-of-plane velocity component. The data 
were collected from microbeads flowing at the 
400 µm - 800 µm telescopic transition in a tele-
scopic microchannel at the height ≅ 300 µm 
from the glass slide. The filled and open sym-
bols refer to the control case of the SPIM plane 
oriented parallel to the glass coverslide (θx =0o) 
and to the case of the SPIM plane rotated 
around the x axis of an angle θx = +9±1o. The 
average speed in the SPIM plane (measured at 
θx = 0o) is vxy = 225 ± 23 µm/s. The STICS am-
plitude decays are fit to Eq.5 with D=0.4 µm2/s, 

ωz = 12 µm, ωxy = 0.6 µm and a = 0.8 µm. The 
best fit relaxation times were τvz = 76 ± 3 ms 
(solid line, θx =0o) and τvz = 62 ± 6 ms (dashed 
line, θx=+9 o). A small amplitude relaxation 
with long relaxation τvz > 290 ± 100 ms was 
necessary to fit the longest relaxation times.  
The inset sketches the experimental orientation 
of the SPIM plane in the two configurations. 

The vy component (Fig.4D) has instead a clear 
parabolic behavior as a function of the x-
direction (perpendicular to the flow direction) 
with a maximum position that matches that of 
the vz maximum (Fig.4B). Moreover, the maxi-
mum amplitude of vy decreases as a function of 
the distance from the transition region (Fig.4D), 
as expected due to the increase of the micro-
channel cross-section. The x component of the 
velocity, vx, inverts its sign at positions close to 
the flow axis (x ≅ 400 µm) for all the y coordi-
nates values (Fig.4E). This is an indication of 
the fact that the flow opens up in the x direction 
when passing from the 400 µm to the 800 µm 
cross-sections. However, we also expect that the 
vx component is decreasing in amplitude when 
approaching the side walls of the microchannel, 
resulting in a maximum and minimum symmet-
rically located with respect to the flow axis. The 
roll-off behavior observed for vx at x ≅ 600 µm 
(and presumably at x ≅ 200 µm) in Fig.4E is an 
indication of such a trend. Since the vz compo-
nent (Fig.4B-C) does not show a clear depend-
ence upon the x and y directions,, we have built 
a capillary with a square cross-section (500µm x 
500µm) that undergoes a four-fold transition 
along the z axis (see Fig.S0D and the sketch in 
Fig.5A). In this case the flow opens up mainly 
along the z axis, resulting in a net decrease of 
the speed modulus (see Fig.5A for a 3D view). 



 

 

Figure 4. Flow analysis at the 400 µm - 800 
µm transition of the telescopic microchannel. 
Panel A sketches the microchannel (thick black 
lines) and delineates the 3D volume (thin line 
box, 12 time stacks 512x1024 pixels each, 150 
frames each) in which the flow is reconstructed 
from the analysis of the STICS maps (ROIs 
50x200 pixels in size, lagtime: 12 ms - 265 ms). 
The field is sampled at four regions (spheres). 
Panel B shows the trend of the vz component of 
the flow along the x axis. The data were aver-
aged on the z ranges 0-60 µm (open squares), 
60-120 µm (filled triangles) and 120-180 µm 
(open circles) and over the first three y positions 
y = 0, 16 and 32 µm. Panel C reports the vz 
component of the flow along the y axis for dif-
ferent position across the channel (averaged on 
the z range 0-180 µm); x = 215 µm (open cir-
cles), x = 455 µm (filled squares), x = 695 µm 

(open squares) and x = 815 µm (filled circles), 
together with linear fit to the data. Panels D, E 
show the vy (D) and vx (E) components of the 
velocity as a function of the x coordinate (a cor-
rection for the flow/CCD alignment,ϕ = 
+0.1rad, was applied, as in Fig.5D2). The data 
were averaged on the whole z range 0-180 µm. 
Symbols code: y = 0 µm (squares), y = 100 µm 
(circles) and y = 240 µm (triangles). The solid 
lines are best fit to a parabolic function (D) and 
cubic function (E) to the data, shown to guide 
the eye. 

Far from the transition downstream (y ≅250 µm, 
Fig.5B) or moving towards the top of the wider 
chamber (z ≅ 120 µm, Fig.5B) the speed de-
creases at values ≅ 150 ± 40 µm/s and 80 ± 35 
µm/s, respectively. By comparing these values 
to the maximum value measured before the 
transition, |v| = 300± 35 µm/s, we can estimate a 
decrease of the speed of about 3-4 times, as it is 
expected from the capillary geometry. It is 
noteworthy that this value is also close to the 
maximum speed measured on the x-z plane at y 
= 0 µm (Fig.5C). Due to the pronounced spatial 
dependence of the speed, the out-of-plane mo-
tion can be better estimated by computing the 
projection angle of the velocity onto the x-
plane, θ z ≅ vz / vxy . From the contour plots reported 
in Fig.5B we can estimate a maximum angle θ z  
≅ 70o. On the bottom of the channel the angle θ z  
is spatially non uniform, being higher closer to 
the channel transition and lowering to about 15o 
at y ≅ 200 µm from the transition. Increasing 
the distance from the bottom and measuring the 
velocity at one fifth (z≅80 µm) of the micro-
channel transition, the in-homogeneity pattern 
shifts to higher y values and we measure lower 
θ z values closer to the transition than at y ≅ 200 
µm. By increasing further the distance from the 
bottom, z ≅ 125 µm we find again an uniform 
distribution of θ z , with an average value θ z = 
60o ± 12o.  

|



 

 

Figure 5. Summary of the 3D analysis of the flow of microbeads at the junction between two recti-
linear capillaries with rectangular cross-section (z-x plane) and a four-fold increase of the height 
(z-axis) of the capillary. Panel A reports a sketch of the capillary and the flow lines sampled at four lo-
cations. Panel B reports the contour plots of the out-of-plane angle θz computed on four x-y planes. 
Panel C reports the contour plots of the speed modulus computed on four x-y planes. Panel D1: velocity 
along the y axis (the direction of the flow) as a function of the position along the perpendicular to the 
flow direction (x axis), measured at y=5 µm from the cross-section transition along the y axis. The sym-
bols refer to different positions on the z axis, 5-40 µm (circles), 50-90 µm (squares) and 100-120µm  
(up-triangles). The down-triangles correspond to the vy component measured at z = 120 µm. The filled 
down-triangles, almost superimposed to the open symbols, are data corrected for a -0.1 rad rotation of 
the plane). The position of the microchannel axis is x = 90 µm. The panel D2 shows the trend of the vx 
(open squares) as a function of the x coordinate at z = 120 µm. The filled symbols refer to the vx data 
corrected for a flow rotation in the x-y plane of about -0.1 rad. 

 

The amplitude of the velocity along the flow ax-
is, vy, is much less dependent on the x coordi-
nate in this case, as can be judged by comparing 
Fig.5D1 with Fig.4D. We detect a maximum in 
vy at x ≅ 100 µm only for the planes that are 
closer to the bottom glass slide (z ≅ 20µm, cir-
cles in Fig.5D1). Finally, we notice that the x 
component of the speed does not show an odd 
symmetry with respect to the capillary axis 
(Fig.5D2, open symbols), contrary to the sym-
metric telescopic transition (Fig. 4E). Indeed, 
the observed trend of vx as a function of x is due 
to a slight angular offset between the micro-

channel axis (or flow direction) and the axes of 
the CCD image. In fact by rotating the flow (
vx
rot = cosϕvx − sinϕvy ; vyrot = cosϕvy + sinϕvx ; ϕ = -0.1 rad) 

we obtain a uniform value vx ≅ 0 µm/s 
(Fig.5D2, filled squares). 

CONCLUSION 

We have coupled time resolved SPIM imaging 
to STICS analysis in order to accurately map in 
3D flow fields. We have derived the full corre-
lation STICS image for a SPIM setup and vali-
dated an algorithm to measure the flow velocity 
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in the three dimensions, identifying the STICS 
image amplitude as a good indicator of out-of-
plane drift velocity component. Our approach 
exploits the thickness of the SPIM sheet that in-
duces a loss of correlation amplitude due to the 
tracer objects exiting from the observation vol-
ume. The in-plane drift has no effect on the am-
plitude of the correlation image. The Brownian 
diffusion and the out-of-plane drift induce in-
stead a measurable decrease of the STICS im-
age amplitude measured at its maximum. By 
choosing a suitable thickness for the SPIM 
sheet, we are able to measure the out-of-plane 
velocity component in a wide range of values 
(50 µm/s ≤ vz ≤ 400 µm/s). 
We have tested the efficacy of the analysis by 
mapping the flow velocity in micro-channels 
built by PDMS molding in templates printed by 
a photopolymer based 3D printer.  
The test of our algorithm was performed on pla-
nar, branched or telescopic structures in one or 
two directions perpendicular to the flow. The 
possibility offered by the SPIM setup to slightly 
tilt the illumination sheet has allowed us to fur-
ther test the reliability of the proposed algo-
rithm. An automated analysis of time stacks of 
images of a field of view of 1024x512 pixels in 
terms of ROIs 40x40 pixels in size could be per-
formed, on a python code, in approximately 30 
minutes. 
SUPPORTING INFORMATION 

Cad sketches of the 3D printed microfluidic 
channels. Limitations of the dual spot analysis 
in a SPIM microscope. Derivation of the SPIM-
STICS correlation functions. Functional analy-
sis of the STICS-SPIM cross-correlation. Nu-
merical simulations of the STICS images. 
STICS analysis of multiple ROIs. Fluorescence 
microscopy imaging of the microchannels. 
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6.1 Robustness of the method

I hope that at this point it is quite convincing that all the

methods presented here work perfectly fine and allow to obtain

meaningful data even in complex biological samples. Nonethe-

less it is reasonable to raise a simple question: why all the

effort? Aren’t there easier or faster ways to recover the same

informations that you want, e.g. blood flow fields? Well the

answer is yes, there are other methods, but the one presented

here is the most effective. It’s useful to demonstrate this by

confronting it with the other gold standard commonly em-

ployed studying velocity fields, that is particle image velocime-

try38 (PIV).

In the most emblematic realization, it can be described as a

double-pulsed laser technique that generates images to mea-

sure instantaneous velocity distribution in a plane of flow,

based on image correlation. Briefly, a sample containing seed-

ing particles is illuminated and particles positions are recorded.

After a short delay, a second image can be collected, and,

in principle, each particle displacement could be employed to

measure velocity.

PIV algorithm is often simply referred to as particle tracking,

and it’s also indicative of the first reason why ICS methods are

better: trying to follow each single particle movement imposes
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restriction both density and homogeneity to avoid confusion.

In fact, mistaking a particle for another between two images

would generate spurious velocity vectors: there is a vast lit-

erature that deals with solving this issue.39,40 Instead, when

employing ICS methods presented here, these are issues that

don’t even come to mind: tracers can be small particles, GUV,

or red blood cells (as demonstrated in Chapter 4), and their

concentration has never represented a problem (everything run

remarkably smoothly even when approaching biological sam-

ples). The main reason is that there is no need to follow any

single particle movement, but it’s the overall behaviour inside

the analysed temporal window that builds up the final result.

The requirements that should be matched to obtain useful data

(as already discussed in 4.1 and 5.1) don’t impose any strong

restriction, since high resolution is maintained along a much

wider range of flow regimes than the ones expected in biolog-

ical samples. Moreover the method is extremely robust with

respect to S
N : once fluctuations are stronger than dark noise

oscillations, then spatio-temporal similarities between signals

arise naturally to create meaningful correlation plots: this is

easy to see just remembering that any point in every cross-

correlation based model employed is generated from an inte-

gral over a large temporal window.

For what concerns 3D extension, there are other solutions that
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stem from PIV planar analysis, but for now have been proved

only for macroscopic geometries. At last, it’s worth men-

tioning a recent interesting approach, that is 4D holographic

microscopy. Holography is a technique capable of retrieving

3D informations from a 2D image, thanks to interference be-

tween sample and a reference wave:41 interference fringes can,

in fact, encode three-dimensional information, and employing

back propagation algorithms allows to select a specific plane to

reconstruct, along the optical axis. It has been demonstrated42

that it’s possible to recover 3D positions of red blood cells for

each recorded frame, but this comes with a great computa-

tional effort (more than 1hr for single sample data analysis,

even employing top-end GPU units), and also abandons the

specificity given by fluorescence.
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Chapter 7

Conclusions

By all means let’s be open-minded, but

not so open-minded that our brains

drop out.

Richard Dawkins

The aim of this Thesis was to develop and test correla-

tion methods for flow mapping both in microfluidic structures

and in biological samples: strong requirements have been re-

liability, easy data manipulation, and high speed analysis. To

demonstrate this, core results are presented in the three arti-

cles:

• the first article shows how SPIM-based ICS methods

can be applied both to in-vitro and in-vivo samples,
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and focuses on time-series analysis: this can be consid-

ered a first step, since it’s 1D, and proves that tempo-

ral resolution is high enough to sample any expected

flow speed, being also extremely tolerant on trackers

shape/dimensions and on S
N ;

• the second article focuses on the algorithmic aspect of

the research, creating a comprehensive framework, easy

accessible, for performing spatio-temporal studies on bi-

ological samples, even in complex (branched vessels) ge-

ometries;

• the last article demonstrates a 3D extension of STICS

analysis: it is possible to retrieve out-of-plane informa-

tion even without costly setup modification, just by clever

inspection of correlation functions.

The first future development that comes to mind is, of

course, the application to biological samples of the last pre-

sented 3D extension. From there, two different paths could

open up in my opinion: the first one consists in developing

an actual 3D SPIM setup (probably introducing scanning gal-

vanometric mirrors) to retrieve real 3D data, being then able to

apply full three-dimensional spatio-temporal cross-correlation

methods to the sample; the second direction focuses on the
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study of the evolution of a specific pathology. Employing Ze-

brafish embryos as biological model, preliminary results show

that it is in fact possible to monitor both flow speed and ves-

sels elasticity: in particular, arterial walls thickening and loss

of elasticity could result in arteriosclerosis, that could be a

very serious disease. Drug testing both with a reliable bio-

logical model and with a strong, easy to use platform would

represent an effective, readily useful application.
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Chapter 8

Appendix

This chapter is intended as a reference for the notation and to

briefly describe the building blocks employed in all the deriva-

tions. Starting from Fresnel propagation integral, I will show

the basic functions and formulas that are employed in the text:

the aim is to settle a common ground, since it’s my experience

that often the same formulas are developed with a slightly dif-

ferent notation, which can confuse a little bit. I found that

following Gaskill13 and Bracewell43 is the best way to obtain

a synthetic and clear exposition of paraxial wave optics. Also,

at the end will be reported supplementary informations for the

articles presented in the text.
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Fresnel propagation

Propagation of optical fields, under the domain of scalar

diffraction theory (as employed here), can be described start-

ing from the Rayleigh-Sommerfield integral:

u2(x, y) =

+∞∫∫
−∞

u1(α, β)

(
1

kr12 − i

)
z12

λr2
12

eikr12 dα dβ (8.1)

where:

1. ui(x, y) is the spatial field distibution at plane i;

2. k = 2π
λ n ;

3. r12 is the vectorial distance travelled by a single point

source between the planes 1 and 2;

4. z12 is the distance between the two planes, projected

along the propagation direction ẑ;

This integral can be simply regarded as a rigorous mathe-

matical formulation of the Huygens principle, but it’s actually

pretty complicated to manipulate as it is, and often only com-

puted solutions are obtainable. In order to simplify the model

and get something more manageable, usually we put ourselves

in paraxial approximation, that is we restrict our description
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only to the propagation of fields near the optical axis, or, in

practice, for little x, y values. The limit precise quantitative

limits the should be respected are expressed as two Fresnel

conditions:

• |z12| >> L1 + L2, where Li is the maximum extent of

input and output signals;

• |z12|3 >> π(L1+L2)4

4λ

If these conditions are met, as are throughout the work done in

this thesis, then we can employ Fresnel formalism: propagation

of optical fields is obtained convolving the field distribution

with a propagation function, h12(x, y):

h12(x, y) = B12 q

(
x, y;

1

λz12

)
(8.2)

where

• B12 = eikz12

iλz12
;

• q
(
x, y; 1

λz12

)
= e

πix
2+y2

λz12 is the quadratic phase signal

function.

This is the core notation carried out in this work. The follow-

ing paragraphs will present examples of applications of these

concepts, like lens model, 2-f, and 4-f systems.
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Lens model

A lens can be simply described by its focal length, and there

is a very useful and easy model to account for a lens through an

optical path: via a multiplication with a (complex conjugate)

quadratic phase signal. The transmission function of a lens is

defined as:

tl = Bl pl(x, y) q∗(x, y;
1

λf
) (8.3)

where

• f = the effective focal length;

• Bl = optical thickness = physical thickness × refractive

index (assumed constant at first approximation);

• p(x, y) = aperture function that limits the extent of the

transmitted wave-field.

2-f system We can then consider a particular arrangement,

looking at the field propagation step-by-step.
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Figure 8.1: Schematic of a 2-f (single lens) system

The field u0(x, y) is propagated from the front focal plane

to the lens ()convolving with a suitable propagator), than the

lens impact is accounted for multiplying by the lens transmis-

sion function, and finally the result is again propagated to the

rear focal plane. The mathematical steps are reported below:

u−(x, y) = u0 ∗ ∗h0−(x, y) (8.4)

u+ = u− ·Bl pl(x, y) q∗
(
x, y;

1

λf

)
(8.5)

u1 =

{
[u0 ∗ ∗h0−] · q∗

(
x, y;

1

λf

)}
∗ ∗h+2 (8.6)

where ∗∗ indicates 2D convolution. Carrying out all calcula-
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tions leads to:

u1(x, y) =
e2ikf

iλf
U0(ξ, η)|ξ= x

λf
,η= y

λf
(8.7)

After all, since we are only interested in the intensity of our

field (we can record only the intensity with a CCD) we can

drop the constant terms in front of the integral and obtain a

scaled Fourier Transform:

u1 ∝ U0(ξ, η) = U0

(
x

λf
,
y

λf

)
(8.8)
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8.1 Python programs

The Python programs and mathematical libraries that I wrote

both for simulations and data analysis can be found in:

https://goo.gl/Vmhzgm
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