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Abstract. We describe progress to date with the first major upgrade of the TOSCA
spectrometer since it first became operational over fifteen years ago. This major project to
boost the incident flux on the instrument by over an order of magnitude has been implemented
in the past couple of years and has involved the complete redesign of the primary spectrometer
to house a state-of-the-art, high-m neutron guide and associated chopper system. Engineering
design and subsequent installation and commissioning efforts have been supported by extensive
neutron-transport simulations and baseline studies of neutronic response in the context of the
ISIS TS1 Project. Looking further ahead, we also outline ongoing feasibility studies to upgrade
the secondary spectrometer, with a view to additional order-of-magnitude gains in neutronic
and scientific performance.

1. Overview
The TOSCA instrument at the ISIS Pulsed Neutron and Muon Source is an indirect-geometry
inelastic neutron spectrometer optimised for high-resolution vibrational spectroscopy in the
energy-transfer range 0–4000 cm−1 [1]. The instrument has been operational since the turn
of this century and has become the gold standard for broadband chemical spectroscopy with
neutrons [2–4]. As such, both TOSCA as well as its vibrant and growing science programme
have been the inspiration for recent and exciting developments in novel neutron instrumentation
across the globe. These include VISION at the SNS in the USA [5], LAGRANGE at the ILL in
France [6], and VESPA at the ESS in Sweden [7]. Key factors to the success of TOSCA have
been its high spectral resolution over a wide spectral range, its ease of use, as well as the full
integration of contemporary computational materials modelling into its science programme. At
present, its INS Database [8] contains over 700 entries, and these data continue to be mined by
a growing community worldwide, in addition to fresh and exciting science on the instrument
across materials chemistry, energy research and catalysis, to name a few areas of strength.

In 2013, an international panel of experts recognised the pressing need to boost the incident
flux on the instrument, in order to move beyond the state-of-the-art in key scientific areas such
as gas and charge storage [2, 3]. Following this exercise, extensive neutronic calculations have
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been performed to benchmark the existing instrument in the context of the ISIS TS1 Project,
as well as to provide a well-defined scientific and engineering specification. For further details,
see Refs. [9–12]. These efforts have been followed by the construction and installation of the
new guide over the past couple of years as well as by feasibility studies to upgrade the secondary
spectrometer, as reported below.

2. The Guide Upgrade
The original geometry of the TOSCA primary spectrometer relied on simple (passive) collimation
of the incident beam over a distance of 17 m. This configuration has served the instrument well
over the past two decades, yet at the same time it did not capitalise on advances in neutron-
guide technology for the effective delivery of neutron flux at the sample position. The first
step in this project involved extensive Monte-Carlo simulations using the McStas package [13]
to explore a suitable geometry for optimal neutron transport over a wide wavelength range
without compromising the spectroscopic capabilities of the instrument. From these simulations,
a tapered geometry with an increasing m-number over distance from the spallation target was
chosen. These simulations predicted an average gain in flux well above one order-of-magnitude
over the wavelength bandwidth of the instrument [2, 4, 10–12]. At the longest wavelengths
accessible on TOSCA, these calculations indicated that gain factors could approach two orders
of magnitude.

Figure 1. Left: Engineering design of the TOSCA guide following neutronics simulations.
The ISIS TS1 target area is located on the left of the figure, whereas the TOSCA secondary
spectrometer is depicted in yellow and green on the right-hand side. Right: Final stages of the
first phase of the installation, completed in November 2016.

Figure 1 shows a schematic diagram of the engineering design of the guide according to the
above specifications. Following manufacture by Swiss Neutronics over the period 2015-16, the
guide was installed on TOSCA during the second half of 2016. In a first installation phase, all
guide sections except the shutter insert inside the target monolith were installed, and this step
was followed by a brief and preliminary commissioning period during December 2016. These two
installation phases were required because of the radiation hazards associated with the handling of
beamline components in close proximity to the spallation target. The preliminary commissioning
tests that we have conducted during the first phase are very encouraging. The beam profile was
found to be homogeneous across the sample area and the observed gains were somewhat higher
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than expected from the neutronic simulations of the baseline scientific specification, particularly
at long wavelengths. The second and final phase of the installation schedule was completed in
the second half of February 2017 and has been followed by extensive commissioning tests on the
instrument, due for completion at the end of March 2017. A detailed analysis of gains and other
performance criteria is currently underway.

3. A New Secondary Spectrometer
TOSCA uses the (002) Bragg reflection from Highly Oriented Pyrolytic Graphite (HOPG) to
effect final-energy selection. At present, each analyser bank on TOSCA consists of a flat square
of area ∼144 cm2, sitting at an average distance of 31 cm from the sample position. Its surface
normal is placed at an angle of 45◦ relative to the scattered beam, leading to a final energy of ca.
28 cm−1. A beryllium filter equipped with cadmium foils is placed between the HOPG analyser
and the detectors to suppress higher-order HOPG reflections. This filter is cooled to ca. 30 K to
improve the rejection of neutrons with energies above ca. 40 cm−1. In its current incarnation,
the HOPG analyser and the beryllium filter are very close to each other. While being a compact
and practical solution requiring a relatively small HOPG analyser area, this feature also poses
severe constraints on the overall neutron-collection efficiency of the secondary spectrometer.

Figure 2. Curved HOPG analyser
(black), sample (red), and detector
array (blue).

Figure 3. Spatial intensity distribution of detected
neutrons from a parabolic HOPG analyser of total
area 960 cm2.

To circumvent these limitations, we have started assessing other potential geometries that
also build upon recent experience with similar instruments worldwide [5, 6]. Using the McStas
package [13], we have created a custom component where HOPG tiles are arranged on either
a spherical or parabolic surface of variable area. Figure 2 shows a three-dimensional view of
the resulting computer model of a curved HOPG analyser, and Fig. 3 reports a typical spatial
intensity distribution of detected neutrons. Preliminary Monte Carlo simulations and associated
geometric optimisations using McStas [13] and iFit [14] have been performed as a function of
analyser area and radius of curvature. These calculations show that an order-of-magnitude
increase in detected flux is well within reach, particularly via the use of a parabolic (as opposed
to spherical) analyser geometry. We have also found that the detected flux can be increased
by optimising parameters such as the mosaicity of the HOPG array without compromising
spectroscopic performance. In ideal circumstances, the surface of the curved HOPG analyser for
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a given detector bank could be increased as much as to occupy an angular span of 60◦, provided
that engineering constraints can allow for it. Calculations have already been performed for
three different sizes of doubly bent HOPG analysers of either spherical or parabolic shape. Our
largest-area analysers amount to ca. 1500 cm2, a similar size to the one used earlier by Smee et
al. at NIST to improve the performance of cold-neutron spectrometers [15, 16].

In a wider context, we note that the original conceptual design and subsequent scientific
specification of TOSCA (and its predecessor TFXA) decades ago were solely performed on
the basis of analytical calculations, a task that necessarily relied on a number of hard-to-test
assumptions at the time. This situation is particularly true for the trade-off between flux and
spectral resolution, as well as for the conditions required to attain an optimal match of the many
different contributions to the neutronic response that are associated with both the primary and
secondary spectrometers. The present work using modern neutron-transport codes, therefore,
offers the exciting prospect of assessing in quantitative and unprecedented detail the relative
importance of these parameters, including analyser shape and size, as well as time- and energy-
focusing conditions. We, therefore, anticipate that the lessons learnt from this work will also
have important implications for the optimal neutronic design of similar instrumentation in the
foreseeable future.
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[2] Rudić S, Ramirez-Cuesta AJ, Parker SF, Fernandez-Alonso F, Pinna RS, Gorini G, Salzmann GC, McLain

SE, and Skipper NT 2013 Rutherford Appleton Laboratory Technical Report RAL-TR-2013-015, Chilton.
WEB: epubs.stfc.ac.uk/work/11216706

[3] For a summary of the TOSCA International Review and its recommendations, see
www.isis.stfc.ac.uk/Pages/TOSCA-Instrument-Review.aspx

[4] Parker SF, Fernandez-Alonso F, Ramirez-Cuesta AJ, Tomkinson J, Rudić S, Pinna RS, Gorini G, and
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[9] Pinna RS, Rudić S, Capstick MJ, McPhail DJ, Pooley DE, Howells GD, Gorini G, Fernandez-Alonso F 2017

Nucl. Instr. Meth. Phys. Res. A 870 79.
[10] Pinna RS, Rudić S, Parker SF, Gorini G, and Fernandez-Alonso F 2015 EPJ Web of Conferences 83 03013.
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