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ABSTRACT: An authentic food is one that is what it claims to be. Consumers and
food processors need to be assured they receive exactly the specific product they pay
for. To ascertain varietal genuinity and distinguish doctored food, in this paper we
propose to employ a robust mixture estimation method. It has been shown to be a
valid tool for food authenticity studies, when applied to food data with unobserved
heterogeneity, to classify genuine wines and identify low proportions of observations
with different origins. Our methodology models the data as arising from a mixture of
Gaussian factors and employ a threshold on the multivariate density to bring apart the
less plausible data under the fitted model. Simulation results assess the effectiveness
of the proposed approach and yield very good misclassification rates when compared
to analogous methods.

KEYWORDS: Classification; Food authenticity studies; Model-based clustering; Wine;
Authenticity; Chemometrics; Robust estimation; Trimming.

1 Introduction

Wine has an economic value that is associated with a luxury product, and its
consumers demand reliable information. The present work provides an ap-
plication of robust estimation of mixtures of Gaussian Analyzers as a tool to
employ observed chemical features to classify red wines according to their au-
thentic variety, and to discriminate them from illegal adulteration. It is indeed
generally accepted that flavours and chemical compositions of wines are not
only related to genetic factors (grape variety) but also to environmental con-
ditions in vineyards (climate, soil composition and geology, microflora) and
to human practices. Throughout the growth and maturation of grape berries
metabolic changes occur, in such a way that at harvest time the berries contain
the major grapevine compounds conferring the wine organoleptic characteris-
tics (da Silva et al. , 2005).

In a probabilistic modeling approach for wine authentication, we assume
a probability distribution function for the measurements in wine samples, e.g.



log-proportions of anthocyanin or concentrations of any compound. When-
ever more than a variety could appear in the sample, we may adopt a density
in the form of a mixture. Afterwards, the probability that a wine sample comes
from a specific grape variety can be estimated from the model, and each wine
sample is assigned to the grape variety with higher probability, using the Bayes
rule. As the model arises from measurements belonging to authentic wines, we
expect that observations coming from different sources would be unplausible
under the estimated model. By selecting observations with the lowest contri-
butions to the overall likelihood, we are confident to discriminate the illegal
subsample. Instead of hypothesizing a component of the mixture to model a
few observations as forged data, using impartial trimming we are able to de-
tect such data without any strong assumption on their density. Our simulation
results confirm the effectiveness of this approach, when compared to analo-
gous methods, such as partition around medoids and non robust mixtures of
Gaussian and mixtures of patterned Gaussian factors.

2 Mixtures of Gaussian Factors Analyzers

In this section we briefly recall definition and features of the mixtures of Gaus-
sian Factor Analyzers (MFA). MFA are powerful tools for modeling unob-
served heterogeneity in a population, as they concurrently performs clustering
and local dimensionality reduction, within each cluster.

An MFA assumes that the observation X;, fori =1,...n, is given by

X, = Uy =+ AgUl'g + €jg (1)

with probability 7, for g =1,...,G, where A, are the p X d matrices of factor

loadings, U, Y (0,1;) are the factors, e, Y A(0,¥,) are the errors, and
W, are p x p diagonal matrices. Further, U;, and e;, are independent, for
i=1,...,nand g = 1,...G. Unconditionally, therefore, X; is a mixture of
G normal densities

G
[(Xi:0) = ) 1,0, (Xisu,, Z) 2)
g=1

where the g-th component-covariance matrix X, has the form X, = AgA;, +¥,.
When estimating MFA through the usual Maximum Likelihood approach,
two issues arise.
Firstly, departure from normality in the data (noise, contamination, out-
liers,...) may cause biased or misleading inference. Some initial attempts in



the literature to overcome this issue, propose to consider mixtures of ¢-factor
analyzers (McLachlan et al. , 2003). The heavier - than normal - tails of the
t-distribution allow to incorporate mild outliers, but the breakdown properties
of the estimators are not improved (Hennig, 2004).

The second issue is related to the unboundedness of the log-likelihood
function (Day, 1969), that causes estimation issues, even when ML estima-
tion is applied to artificial data drawn from a given finite mixture model,
i.e. without adding any kind of contamination. It favors the appearance of
non-interesting local maximizers (called spurious maximizers) and degener-
ate solutions. To overcome this second issue, Common/Isotropic noise ma-
trices/patterned covariances have been considered (Baek et al. , 2010), or a
mild constrained estimation (Greselin & Ingrassia, 2015). Here, we employ
model estimation, complemented with trimming and constrained estimation,
to provide robustness, to exclude singularities and to reduce spurious solu-
tions, along the lines of Garcia-Escudero et al. (2016).

2.1 Trimmed mixture log-likelihood
We fit a mixture of Gaussian factor components to a given dataset X, Xy, ..., X,
in R? by maximizing a trimmed mixture log-likelihood (Neykov et al. , 2007),
n G
Lyrim = ZC_,(X,)IOg [Z(I)P(Xi;:ug?‘/\g?\yg)ng] (3)
=1 g=1

=

where {(-) is a 0-1 trimming indicator function, that tells us whether observa-
tion x; is trimmed off or not. If {(x;)=0 x; is trimmed off, otherwise {(x;)=1.

A fixed fraction o of observations, the trimming level, is unassigned by
setting Y7 | {(x;) = [n(1 — a)], by selecting the less plausible observations
under the currently estimated model, at each step of the iterations that lead to
the final estimate. In the specific application on wine authenticity, they are
supposed to be originated by wine adulterations.

2.2 Constrained maximization
We adopt a constrained maximization of L. ,, to avoid its unboundedness,
by imposing Yy il < Cnoise Vhynm for 1 <1 7& m<pand 1 <g 7é h<G
where {Wg’[l}l:17_“’p are the diagonal element of the noise matrices ¥y, and
1 < Cppise < +oo, to avoid the |Zg\ — 0 case. This constraint can be seen as
an adaptation to MFA of those introduced in Ingrassia & Rocci (2007). We
will look for the ML estimators of W, under the given constraints, yielding a
well-defined maximization problem.

2.3 Specific implementation of the EM algorithm
The Alternating Expectation - Conditional Maximization (AECM) is an exten-



sion of the EM algorithm, needed by the factor structure of the model, which
employs different specifications of missing data at each stage. The idea is to
partition the vector of parameters 8 = (0/,05)’, in such a way that £, is easy
to be maximized for 6; given 0, and viceversa. The M-step is also replaced by
some computationally simpler conditional maximization (CM) steps.

1¥cycle : we set 8y = {7, u,,8 = 1,..., G}, here the missing data are the
unobserved group labels Z = (z},...,z,). After applying a step of Trimming,
by assigning to the observations with lowest likelihood a null value of the
“posterior probabilities”, we get one E-step, and one CM-step for obtaining
parameters in 0.

2"cycle : we set 0, = {Ag,We,g = 1,...,G}, here the missing data are
the group labels Z and the unobserved latent factors U = (Uyy,...,U,g). We
perform a Trimming step, then a E-step, and a constrained CM-step, i.e. a
conditional exact constrained maximization of A,,V,.

3 Simulation Study

The purpose of this simulation study is to show the effectiveness of estimating
a robust MFA on a set of observations drawn from two luxury wines, Barolo
and Grignolino, and to distinguish observations not belonging to such grapes.
We generate 200 observations from a MFA as in (2) where G = 3, p = 27
and d = 4. A first subset of 95 data are drawn with parameters u;,A;,¥;
corresponding to Barolo data, and the second subset of 95 observations are
drawn with u,, A2, ¥> corresponding to Grignolino data, estimated on the wine
dataset (available within the R package pgmm, McNicholas ef al. 2015). The
“contamination” is created by a further subset of 10 observations drawn with
Uz, Az, W3 from Barbera data. The problem of distinguishing adulterated ob-
servations from the real mixture components is addressed, together with the
algorithm performance in correctly classifying the authentic units. Hence we
will estimate a MFA with G =2, p =27, d = 4, and trimming level o0 = 0.05,
and we compare results with other popular methods: Partiton around medoids,
Gaussian mixtures estimated via Mclust, and Mixtures of patterned Gaussian
factors estimated by pgmm. To perform each of the B = 1000 estimations, al-
gorithms have been initialized following the indications of their respective au-
thors, say 10 random starts at each run of AECM; default setting for the “build
phase” of pam, as in Maechler et al. (2017); applying model-based hierarchi-
cal clustering as per default setting in Fraley et al. (2012) for Mclust, and 10
random starts at each run, as suggested in McNicholas & Murphy (2008) for

pgmm.



Table 1. Average misclassification errors (percent average values on 1000 runs)

Algorithm AECM  pam  Mclust pgmm
Misclassification error  0.0044  0.2885 0.0968 0.0054

Table 1 reports the average misclassification error: the AECM algorithm
reports a superb classification rate, with smaller variability of the simulated
distributions for the estimated quantities, as shown in Figure 1 for the first
component of the Barolo mean g [1] = 10.45 and variance X;[1,1] = 0.12. To
evaluate the algorithms performance we consider 3 clusters for pam, Mclust
and pgmm; whereas we consider 2 clusters for AECM, because in this ap-
proach the adulterated group should ideally be captured by the trimmed units.
Only in 275 and 34 simulations respectively a Barolo and a Grignolino obser-
vation were wrongly trimmed out: the adulterated group was greatly identified
through the trimming process.

Table 2. Bias and MSE (in parentheses) of the parameter estimators fi, and f‘,g

AECM  Mclust pam AECM Mclust pgmm
u;  -0.0001  -0.0038 0.0010 X; -0.0002 -0.0004  0.0150

(0.0030) (0.0181) (0.1053) (0.0004) (0.0018) (0.0040)
U, 0.0001 0.0709  -0.0115 %, -0.0161 -0.0128  0.0007

(0.0039) (0.1077) (0.1396) (0.0044) (0.0043) (0.0039)

Table 2 reports the average bias and MSE (in parenthesis) for the mixture
parameters (computed element-wise for every component).
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Figure 1. Boxplots of the simulated distributions of i [1], estimator for u[1] = 10.45
(left panel); X1[1,1], estimator for £,[1,1] = 0.12 (right panel).

The present first simulation results assess the effectiveness of adopting ro-
bust MFA as a tool for discriminating specific luxury wines from less expen-
sive ones. Further investigation and applications to real datasets are currently
ongoing.
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