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ABSTRACT: TCLUST is a model-based clustering methodology, which employs trim-
ming and restrictions for getting robust estimators. It is available in the tclust package
at the CRAN website and in the FSDA Matlab library. Extensions of TCLUST mod-
elling include clustering around linear subspaces, factor analyzers approaches and
fuzzy proposals. Further research has been focused in allowing more flexible models
for the components, based on the skew normal distribution. An important issue that
may appear within TCLUST is the dependence of the obtained solutions from the in-
put parameters. Therefore, a variety of tools have been developed to assist to the users
in choosing these parameters. Theoretical and robustness properties for the TCLUST
estimators have been proven, and many empirical evidences show the efficacy of the
proposed methodology, in a wide variety of situations.
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1 TCLUST methodology

TCLUST methodology is included in robust model-based clustering. The ro-
bustness of this approach is based on the joint application of trimming and
constraints. Here, we firstly introduce the basic release of the methodology,
tailored for samples drawn from a finite mixture of a known number of nor-
mal populations. Our approach allows for adopting different weights in the
clusters/mixtures components and different patterns for their scatters. It yields
a restricted maximum likelihood estimator, corresponding to the classification
likelihood of the mixture model, based on a (1�a) proportion of the obser-
vations. The selected observations are the ones with the highest contribution
to the likelihood. The associated trimming refers to the non-selected obser-
vations, to eliminate the influence of the observations lying far from the bulk
of the data, for all the components. The application of the scatter constraints,



along the estimation procedure, aims at avoiding all singularities in the like-
lihood, and to reduce the occurrence of spurious local maximizers. The con-
straints included in the basic version of TCLUST are expressed in terms of
the eigenvalue restrictions. They control the relative size of all eigenvalues
belonging to the components scatter matrices, by using a constant c, which is
a parameter related with the level of strength of the restrictions. Therefore, the
input parameters included in this basic version of the model are the number
of components k, the level of trimming a, corresponding to the percentage of
eliminated observations, and the constant c, related with the level of the restric-
tions. It has been proven that the optimization problem solved by the TCLUST
estimator is well-posed, therefore the estimator exists and it is consistent to the
solution of the corresponding theoretical optimization. The seminal paper of
TCLUST methodology is Garcı́a Escudero et al. (2008), where the main sta-
tistical properties of the methodology have been presented. Garcı́a Escudero
et al. (2014) extended this methodology to mixture model estimation. Robust-
ness properties of TCLUST methodology related to the influence function and
the breakdown point of the estimator can be found in Ruwet et al. (2012) and
Ruwet et al. (2013). The TCLUST algorithm is a classification EM algorithm,
which has been adapted for finding the maximum in the constrained parameter
space. To get it, at each M step an explicit function in 2kp+1 values has been
provided (p is the dimension of the multivariate observations). The derived al-
gorithm is a substantial improvement over the initial release, based on Dijkstra
algorithm. Details about it can be found at Fritz et al. (2012). TCLUST is
available in the CRAN website (in tclust package), and in the FSDA library of
Matlab. The packages has been presented in Fritz et al. (2012) and Riani et al.

(2012).

2 TCLUST extensions

An important branch of TCLUST methodology has been developed for esti-
mating clusters around linear subspaces. The joint application of trimming
and constraints, specifically adapted to the new framework, allows to get ro-
bust estimators. The first available proposals (Garcı́a-Escudero et al. , 2009,
2010, 2017) include clustering/mixture model approaches based on orthog-
onal/regression errors. As expected, this methodology works very well in
presence of noisy observations, and with concentrated contamination as well.
When the contamination is close to the model and located outside the support
of the explanatory variables, the estimation can be modified in a substantial
way by the ouliers, even if it is still protected against breaking down. To avoid



this undesirable effect, initial proposals included a second trimming step, ap-
plied on the surviving observations after the usual trimming. The second trim-
ming step has been added for eliminating the more distant observations, in
terms of the explanatory variables. Indeed, they are classically considered as
the most influential ones for linear estimation. Garcı́a-Escudero et al. (2017)
proposed the robustification of the mixtures of regression by employing the
cluster-weighted model. With this choice, a modelization for the explanatory
variables is provided, apart from the usual Gaussian assumption on the re-
gression errors. Therefore the cluster-weighted model allows to implement
simultaneously both versions of trimming. This approach avoids not only the
harmful influence of observations located far from the linear model, it also
eliminates the potentially more dangerous effects of observations having out-
lying values of the explanatory variables.

A second important extension of TCLUST is related to Flury’s paper (Flury,
1984), where the author motivated the utility of common principal components
by showing several applications in different areas, ranging from Biometry to
Industry. It corresponds to a constrained estimation of the eigenvectors of the
covariance matrices, to get the same set of eigenvectors for all the compo-
nents. This model is included in the collection of 14 parsimonious mixture
models proposed by Celeux & Govaert (1995). Browne & McNicholas (2014)
improved the classical available algorithm from Flury (1984) for the common
principal components model. Now, we have implemented a robust version,
based on trimming and constraints, for the estimation of the set of parsimo-
nious models. To get it, the algorithms were modified, in a very natural way, by
incorporating also constraints for the eigenvectors to the classical constraints
for the eigenvalues.

Successful proposals for robustifying mixture model estimation in high
dimensional settings, still based on trimming and restrictions, have also been
presented in the literature. Garcı́a-Escudero et al. (2016b) and Rivera-Garcı́a
et al. (2017) introduced robust methodologies for estimating mixtures of factor
analyzers and for clustering of functional data, respectively.

Further, fuzzy extensions of TCLUST methodology are available, whose
robustness is based on the joint implementation of trimming and constraints.
The seminal paper is Fritz et al. (2013) for clustering observations in a multi-
variate space. More recent proposals have been focused on clustering around
linear subspaces (Dotto et al. , 2016) and mixtures of factor analyzers (Garcı́a-
Escudero et al. , 2016b). In this fuzzy context, additional input parameters
should be incorporated in the modelization. They are related with the level
of fuzziness and the proportion of observations with hard assignment the user



wants to have in the obtained solution.
An important issue in all of the previously mentioned proposals is related

with the delicate choice of the input parameters. As expected, they have to be
provided by the user. Garcı́a-Escudero et al. (2011) proposed exploratory tools
for chosing the number of clusters and the level of trimming. To decrease the
dependence from the chosen level of trimming, Dotto et al. (2017) proposed a
reweighted approach. Garcı́a Escudero et al. (2015) and Cerioli et al. (2017)
analyzed the role of the restriction level c in the estimation. They provided
feasible strategies for facing this problem.

A remarkable extension to the TCLUST methodology has been focussed
on widening the choice and the features of the component models, to increase
its adaptability and to improve goodness of fit. Skew-symmetric models are
now available at the component level, in mixture model estimation. Most of
the recent research in this setting has been focussed in the skew-t distribu-
tion (Lee & McLachlan (2014) provides an in-depth review). This choice is
very popular because, additionally, it increases the resistance to the outliers for
mixture estimation, by accommodating them with its heavy tails. By applying
trimming, the properties of the skew-t become not so crucial when considering
model resistance to outliers. In this way, new approaches based on the “basic”
skew model, that is the skew normal, have been proposed by Garcı́a-Escudero,
Greselin, Mayo-Iscar (2016).
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