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Market segmentation
via mixtures of constrained factor analyzers

Francesca Greselin and Salvatore Ingrassia

Abstract In this paper we introduce a procedure for the parameter estimation of
mixtures of factor analyzers, which maximizes the likelihood function in a con-
strained parameter space, to overcome the well known issue of singularities and to
reduce spurious maxima of the likelihood function. A Monte Carlo study of the per-
formance of the algorithm is provided. Finally the proposed approach is employed
to provide a market segmentation, to model a set of quantitative variables provided
by a telecom company, and related to the amount of services used by customers.

Key words: Market segmentation, Mixture of Factor Analyzers, Model-Based
Clustering, Constrained EM algorithm.

1 Introduction and motivation

Finite mixture distributions, dating back to the seminal works of Newcomb and
Pearson, have been receiving a growing interest in statistical modeling all along the
last century. Their central role is mainly due to their double nature: they combine
the flexibility of non-parametric models with the strong and useful mathematical
properties of parametric models. In such finite mixture models, it is assumed that a
sample of observations arises from a specified number of underlying populations of
unknown proportions and the purpose is to decompose the sample into its mixture
components.
Beyond these ”unconditional” approaches to finite mixtures of normal distribu-

tions, ”conditional” mixture models allow for the simultaneous probabilistic classi-
fication of observations and the estimation of regression models relating covariates
to the expectations of the dependent variable within latent classes. In more detail,
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these expectations are specified as linear functions of a set of explanatory variables.
A large number of mixture regression models has been developed (see Wedel and
DeSarbo, 1994, for a review, and also e.g. Wedel and Kamakura (2000), Wedel
and DeSarbo (2002)). This methodology is particularly employed in marketing re-
search, mainly due to the availability of categorical and ordinal data originated by
surveys.
On the other hand, when quantitative variables are available, the ”unconditional”

approach has been also extensively considered in the literature. Our paper aims at
providing a market segmentation, based on mixtures of gaussian factor analyzers,
to model a set of quantitative variables provided by a telecom company, and re-
lated to the amount of services used by customers. Along the lines of Ghahramani
and Hilton (1997) we assume that the data have been generated by a linear factor
model with latent variables modeled as Gaussian mixtures. Our purpose is to im-
prove the performances of the EM algorithm, giving practical recipes to overcome
some of its issues. It is well known that the EM algorithm generates a sequence
of estimates, starting from an initial guess, so that the corresponding sequence of
the log-likelihood values is not decreasing. However, the convergence toward the
MLE is not guaranteed, because the log-likelihood is unbounded and presents lo-
cal maxima. Following Ingrassia (2004), in this paper we introduce and implement
a procedure for the parameters estimation of mixtures of factor analyzers, which
maximizes the likelihood function in a constrained parameter space, having no sin-
gularities and a reduced number of spurious local maxima.
We have organized the rest of the paper as follows. In Section 2 we summarize

main ideas about Gaussian Mixtures of Factor Analyzer model; in Section 3 we give
basic notes on likelihood function and the AECM algorithm. Some well known con-
siderations (Hathaway, 1985) related to spurious maximizers and singularities in the
EM algorithm are recalled in Section 4, and motivate our proposal to introduce con-
straints on factor analyzers. Further, we give a detailed methodology to implement
such constraints. In Section 5 we show and discuss the improved performance of our
procedure via simulations, while in Section 6 an application to market Segmentation
is presented. Section 7 contains concluding notes.

2 The Gaussian Mixture of Factor analyzers

Within the Gaussian Mixture (GM) model-based approach to density estimation and
clustering, the density of the d-dimensional randomvariableX of interest is modeled
as a mixture of a number, say G, of multivariate normal densities in some unknown
proportions π1, . . .πG,

f (x;θ ) =
G

∑
g=1

πgφd(x;µg,Σ g) (1)

where φd(x;µ ,Σ ) denotes the d-variate normal density function with mean µ and
covariance matrix Σ . Here the vector θGM(d,G) of unknown parameters consists
of the (G− 1) mixing proportions πg, the G× d elements of the component means
µg, and the 12Gd(d+1) distinct elements of the component-covariancematrices Σg.
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Then, we postulate a finite mixture of linear sub-models for the distribution of the
full observation vector X, given the (unobservable) latent factors U

Xi= µg+ΛgUig+eig with probability πg (g= 1, . . . ,G) for i= 1, . . . ,n, (2)
whereΛ g is a d×q matrix of factor loadings, the factors U1g, . . . ,Ung areN (0,Iq)
distributed independently of the errors eig, which are independentlyN (0,Ψg) dis-
tributed, andΨg is a d× d diagonal matrix (g = 1, . . . ,G). We suppose that q < d,
which means that q latent factors are jointly explaining the d observable features of
the statistical units. Under these assumptions, the mixture of factor analyzers model
is given by (1), where the g-th component-covariancematrix Σg has the form

Σg =Λ gΛ ′g+Ψg (g = 1, . . . ,G).
The parameter vector θMGFA(d,q,G) now consists of the elements of the component
means µg, theΛg, and theΨg, along with the mixing proportions πg (g= 1, . . . ,G−
1). Note that, as q(q− 1)/2 constraints are needed for Λg to be uniquely defined,
the number of free parameters, for each component of the mixture, is reduced to
dq+ d− 1

2q(q− 1).

3 The likelihood function and the EM algorithm for MGFA

In this section we summarize the main steps of the EM algorithm for mixtures of
Factor analyzers, see e.g. McLachlan et al. (2003) for details.
Let xi (i= 1, . . . ,n) denotes the realization of Xi in (2). Then, the complete-data

likelihood function for a sample X
∼
of size n can be written as

Lc(θ ;X
∼
) =

n

∏
i=1

G

∏
g=1

[
φd

(
xi|ui;µg,Λ g,Ψg

)
φq(uig)πg

]zig . (3)

Due to the factor structure of the model, we consider the alternating expectation-
conditional maximization (AECM) algorithm, consisting of the iteration of two con-
ditional maximizations, until convergence. There is one E-step and one CM-step, al-
ternatively i) considering θ 1= {πg,µg, g= 1, . . . ,G}where the missing data are the
unobserved group labels Z

˜
= (z′1, . . . ,z′n) and ii) considering θ 2 = {(Λg,Ψg), g =

1, . . . ,G} where the missing data are the group labels Z and the unobserved latent
factors U= (U11, . . . ,UnG).
In the First Cycle, after updating the z(k+1)ig in the E-step, the M-step provides new
values for π (k+1)

g ,µ (k+1)
g ,n(k+1)g .

In the Second Cycle, after writing the complete data log-likelihood, some alge-
bras lead to the following estimate of {(Λg,Ψg), g= 1, . . . ,G}

Λ̂ g = S(k+1)g γ(k)
′

g [Θ (k)
g ]−1 Ψ̂ g = diag

{
S(k+1)g − Λ̂gγ(k)g S

(k+1)
g

}
,

where
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S(k+1)g = (1/n(k+1)g )
n

∑
i=1

z(k+1)ig (xi− µ(k+1)
g )(xi− µ(k+1)

g )′

γ(k)g =Λ (k)′
g (Λ (k)

g Λ (k)′
g +Ψ (k)

g )−1

Θ (k)
ig = Iq− γ(k)g Λ (k)

g + γ(k)g (xi− µg)(xi− µg)′γ(k)
′

g .

Hence the ML estimates Λ̂g and Ψ̂ g forΛ andΨ , given an initial random clustering
z(0), can be obtained iteratively, carrying out the following steps, for g= 1, . . . ,G:

1. Compute z(k+1)ig and consequently obtain π (k+1)
g , µ (k+1)

g , n(k+1)g and S(k+1)g ;
2. Set a starting value for Λg andΨg from S(k+1)g ;
3. Repeat the following steps, until convergence on Λ̂g and Ψ̂ g:

a. Compute γ+g =Λ
′

g(Λ gΛ
′

g+Ψg)−1 andΘ+
g = Iq− γgΛ g+ γgS

(k+1)
g γ

′

g;
b. Set γg← γ+g andΘ g←Θ+

g ;
c. Compute Λ+

g ← S(k+1)g γ
′

g(Θ
−1
g ) andΨ+

g ← diag
{
S(k+1)g −Λ+

g γgS
(k+1)
g

}
;

d. Set Λ g←Λ+
g andΨg←Ψ+

g ;

4 Likelihood maximization in constrained parametric spaces

Maximum likelihood estimation for normal mixture models have been shown to
be an ill-posed problem, because L (θ ) is unbounded on Θ . Moreover, the like-
lihood may present many local maxima and any small number of sample points,
grouped sufficiently close together or even lying roughly in a subspace, can give
raise to spurious maximizers. To overcome this issues, Hathaway (1985) proposed
a constrained maximum likelihood formulation for mixtures of univariate normal
distributions, suggesting a natural extension to the multivariate case. Let c ∈ (0,1],
then the following constraints

min
1≤h ̸= j≤k

λ (ΣhΣ
−1
j )≥ c (4)

on the eigenvalues λ of ΣhΣ−1j leads to properly defined, scale-equivariant, consis-
tent ML-estimators for the mixture-of-normal case, see Hennig (2004). It is easy to
show that a sufficient condition for (4) is

a≤ λig ≤ b, i= 1, . . . ,d; g= 1, . . . ,G (5)
where λig denotes the ith eigenvalue of Σg i.e. λig = λi(Σ g), and for a,b ∈ R+ such
that a/b≥ c, see Ingrassia (2004). Differently from (4), condition (5) can be easily
implemented in any optimization algorithm.
Applying the eigenvalue decomposition to the square d × d matrix Λ gΛ ′g we

can find Γ g and ∆g such that ΛgΛ ′g = Γ g∆gΓ ′g where Γ g is the orthonormal ma-
trix whose rows are the eigenvectors of ΛgΛ ′g and ∆g = diag(δ1g, . . . ,δdg) is the
diagonal matrix of the eigenvalues of Λ gΛ ′g, sorted in non increasing order, i.e.
δ1g ≥ δ2g ≥ . . . ≥ δqg ≥ 0, and δ(q+1)g = · · · = δdg = 0. Further, applying now the
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singular value decomposition to Λg, we get Λg = UgDgV′g, where Ug and Vg are
unitary matrices whose columns are respectively the left and right singular vectors
of Λg, Dg is a d× q rectangular matrix with the q singular values {d1g, . . . ,dqg} of
Λg on the diagonal. This yields

ΛgΛ ′g = (UgDgV′g)(VgD′gU′g) = UgDgD′gU′g (6)

and we get Γ g = Ug and ∆ g = DgD′g, that is diag(δ1g, . . . ,δqg) = diag(d21g, . . . ,d2qg).
We can now modify the EM algorithm in such a way that the eigenvalues of the
covariances Σ g (for g = 1, . . . ,G) are confined into suitable ranges. To this aim we
exploit the following inequalities

λmin(Λ gΛ ′g+Ψg)≥ λmin(ΛgΛ ′g)+λmin(Ψ g)≥ a
λmax(ΛgΛ ′g+Ψg)≤ λmax(Λ gΛ ′g)+λmax(Ψ g)≤ b

which enforce (5) when imposing the following constraints

d2ig+ψig ≥ a i= 1, . . . ,d (7)

dig ≤
√
b−Ψ ig i= 1, . . . ,q (8)

ψig ≤ b i= q+ 1, . . . ,d (9)

for g = 1, . . . ,G, where ψig denotes the i-th diagonal entry ofΨg. In particular, we
note that condition (7) reduces toΨig ≥ a for i= (q+ 1), . . . ,d.
It is important to remark that the resulting EM algorithm is monotone, once the

initial guess, say Σ 0g, satisfies the constraints. Further, as shown in the case of gaus-
sian mixtures in Ingrassia and Rocci (2007), the maximization of the complete log-
likelihood is guaranteed. From the other side, it is apparent that the above recipes re-
quire some a priori information on the covariance structure of the mixture, through-
out the bounds a and b.

5 Numerical studies

To show the performance of the constrained EM algorithm we present here a brief
numerical study. More simulations, also with real datasets, can be found in Greselin
and Ingrassia (2013). A sample of N = 150 data has been generated with weights
π = (0.3,0.4,0.3)′ according to the following parameters:

µ1 = (0,0,0,0,0,0)′ Ψ1 = diag(0.1,0.1,0.1,0.1,0.1,0.1)

µ2 = (5,5,5,5,5,5)′ Ψ2 = diag(0.4,0.4,0.4,0.4,0.4,0.4)

µ3 = (10,10,10,10,10,10)′ Ψ3 = diag(0.2,0.2,0.2,0.2,0.2,0.2)

Λ1 =

⎛

⎜⎜⎜⎜⎜⎝

0.50 1.00
1.00 0.45
0.05 −0.50
−0.60 0.50
0.50 0.10
1.00 −0.15

⎞

⎟⎟⎟⎟⎟⎠
Λ2 =

⎛

⎜⎜⎜⎜⎜⎝

0.10 0.20
0.20 0.50
1.00 −1.00
−0.20 0.50
1.00 0.70
1.20 −0.30

⎞

⎟⎟⎟⎟⎟⎠
Λ3 =

⎛

⎜⎜⎜⎜⎜⎝

0.10 0.20
0.20 0.00
1.00 0.00
−0.20 0.00
1.00 0.00
0.00 −1.30

⎞

⎟⎟⎟⎟⎟⎠
.
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We note that maxi,gλi(Σg) = 4.18 . The parameters provided by the EM algorithm,
when it is initialized from the true classification, will be considered as the point of
local maximum corresponding to the consistent estimator θ ∗. In the following, such
estimate will be referred to as the right maximum of the likelihood function. We run
a hundred times both the unconstrained and the constrained AECM algorithms (for
different values of the constraints a,b) using a common random initial clusterings,
and the algorithms run until convergence or they reach the fixed maximum num-
ber (150) of iterations. The stopping criterion is based on the Aitken acceleration
procedure.
The unconstrained algorithm attains the right solution in 24% of cases (see Figure

1).We set the bound a= 0.01 to protect from small eigenvalues in the estimated co-
variancematrices; conversely, as local maxima are quite often due to large estimated
eigenvalues, we consider different values for b, the upper bound. To compare how
a and b influences the performance of the constrained EM, different pairs of values
has been considered, and Table 1 shows the more interesting cases. Further results
are reported in Figure 1, where the boxplots of the distribution of the misclassifi-
cation errors show the poor performance of the unconstrained algorithm compared
to its constrained version. For all values of the upper bound b, the third quartile of
the misclassification error is steadily equal to 0. Indeed, for b= 6,10 and 15 we had
no misclassification error, and we observed very low values for it when b= 20 and
b = 25 (respectively 3 and 11 non null values, over 100 runs). Moreover, the ro-
bustness of the results with respect to the choice of the upper constraint is apparent.

Table 1 Percentage of convergence to the right maximum of the constrained EM algorithms for
a= 0.01 and some values of the upper constraint b

b +∞ 6 10 15 20 25
24% 100% 100% 100% 97% 89%

unconstrained b=6 b=10 b=15 b=20 b=25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 1 Boxplots of the misclassification error. From left to right, boxplots refer to the unconstrained
algorithm, then to the constrained algorithm, for a= 0.01 and b= 6,10,15,20,25.
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In Figure 2 we plot the classified data on the three factor spaces given by Ûi1, Ûi2
and Ûi3 under the true maximum of the likelihood function (first rows of plots),
while in the second row we give the classification obtained according to a spurious
maximum of the likelihood function: only the appropriate factor space allows for
the right classification, providing a strong motivation toward using latent variables.
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Fig. 2 Plot of the classified data on the three factor spaces, under the true maximum of the likeli-
hood function (upper row) and, conversely, under a spurious maximum (row below)

6 An application to market segmentation

In this section we deal with multivariate data provided by a telecom company, and
related to the amount of services used by customers. Our aim is to assess if cus-
tomers with the same traffic plan have the same behavior or subgroups with differ-
ent usage can be observed among them. We have a sample of 1449 customers and
we deal with quantitative variables about total traffic usage (over 6 mths: Aug12-
Jan13), like minutes of voice call, number of events of voice call, number of sent
SMS, number of events and amount of data downloaded from Internet. The data
are divided into ”traffic below the threshold of the plan” or ”out of it”, ”traffic On”
or ”Off net”, and so on, summing up to 45 variables. To select the more important
variables for the subsequent analysis, we adopted the random forest methodology,
in the classification setting. This pre-step selects 7 final variables (with a loss of
about 3.24% in terms of the Out-of-Box estimate of error rate, which increased
from 16.55% to 19.79%). They are the downloaded Kilobytes, the number of sent
SMS Off and On net, the duration of Voice calls to Fixed, to mobile Off and On net.
Our aim is to discover if the bimodal densities we observe in some of the univari-
ate data distributions of the variables is well interpreted by the mixture of gaussian
factor model, in such a way that a non-unique underlying behavior of customers
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can be confirmed to the market analysts. For the choice of the upper bound b, we
adopted a data driven method. Let X denote the matrix of the data, we run firstly the
constrained algorithm with b = +∞, then we re-run it with a grid of k = 10 values
from λ ∗ = λmax(Cov(X)) = 11.56587 till λ ∗/k stopping when we get a decrease in
the final likelihood. Iterating this approach, say a hundred times, we observe that the
algorithm provide a data-driven choice for b = 6.9395 (analogously for the lower
bound a). Now, we want to compare our results with the Mixture of Common Factor
Analyzers (MCFA) (McLachlan et al., 2003), which is the milestone in the literature
of mixture gaussian factors. Our estimation provides a mixture of two components
as the best solution, with proportions π1 = 0.754 and π2 = 0.246, reducing from
d = 7 to q = 4 dimensions the data, with BIC= lnL− k ln(n) = −22338.05. On
the other side, MCFA estimates a model with lower BIC=−25496.44, i.e. the con-
straints adopted by the latter model are too strong for the dataset at hand.

7 Concluding remarks

Mixtures of factor analyzers are commonly used when looking for a few latent fac-
tors able to describe the underlying structure of the data. In this paper we imple-
mented a methodology to maximize the likelihood function in a constrained param-
eter space, to overcome some issues of the EM algorithm. The performance of the
new estimation approach has been assessed by simulations: results show that the
problematic convergence of the EM, even more critical when dealing with factor
analyzers, can be greatly improved. Finally, in search of latent variables useful for
market segmentation, we provide an application to multivariate data provided by a
telecom company.
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