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Abstract

Many existence and nonexistence results are known for nonnegative radial solutions u ∈
D1,2(RN ) ∩ L2(RN , |x|−α

dx) to the equation

−△u+ A

|x|αu = f (u) in R
N , N ≥ 3, A, α > 0,

with nonlinearites satisfying |f (u)| ≤ (const.)up−1 for some p > 2. Existence of nonradial
solutions, by contrast, is known only for N ≥ 4, α = 2, f (u) = u(N+2)/(N−2) and A
large enough. Here we show that the equation has multiple nonradial solutions as A →
+∞ for N ≥ 4, 2/(N − 1) < α < 2N − 2, α 6= 2, and nonlinearities satisfying suitable
assumptions. Our argument essentially relies on the compact embeddings between some
suitable functional spaces of symmetric functions, which yields the existence of nonnegative
solutions of mountain-pass type, and the separation of the corresponding mountain-pass
levels from the energy levels associated to radial solutions.
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1 Introduction and main result

This paper is concerned with the following semilinear elliptic problem:



















−△u+
A

|x|αu = f (u) in R
N , N ≥ 3

u ≥ 0 in R
N

u ∈ H1
α, u 6= 0

(P)
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where A,α > 0 are real constants, f : R → R is a continuous nonlinearity satisfying |f (s)| ≤
(const.) sp−1 for some p > 2 and all s ≥ 0, and H1

α := D1,2(RN )∩L2(RN , |x|−α dx) is the natural
energy space related to the equation. We will deal with problem (P) in the weak sense, that is,
speaking about solutions to (P) we will always mean weak solutions, i.e., functions u ∈ H1

α \{0}
such that u ≥ 0 almost everywhere in R

N and

∫

RN

∇u · ∇v dx+

∫

RN

A

|x|αuv dx =

∫

RN

f (u) v dx for all v ∈ H1
α. (1)

As is well known, problems like (P) are models for stationary states of reaction diffusion
equations in population dynamics (see e.g. [17]) and arise in many branches of mathematical
physics, such as nonlinear optics, plasma physics, condensed matter physics and cosmology
(see e.g. [11, 27]), where its nonnegative solutions lead to special solutions (solitary waves and
solitons) for several nonlinear field theories, like nonlinear Schrödinger (or Gross-Pitaevskii)
and Klein-Gordon equations. In this context, (P) is a prototype for problems exhibiting radial
potentials which are singular at the origin and/or vanishing at infinity (sometimes called the
zero mass case; see e.g. [8, 22]).

Though it can be considered of quite recent investigation, the study of problem (P) has
already some history, which probably started in [26] and continued in [5, 9, 15, 16, 24, 25] (see
[4] for a similar cylindrical problem). Currently, the problem of existence and nonexistence
of radial solutions is essentially solved in the pure-power case f (u) = up−1, where the results
obtained rest upon compatibility conditions between α and p. They can be summarized as
follows (for a chronological overview of these results see [5]): the problem has a radial solution
for (α, p) = (2, 2∗) ([26]) and for all the pairs (α, p) satisfying

{

0 < α < 2
2∗α < p < 2∗

or

{

2 < α < 2N − 2
2∗ < p < 2∗α

or

{

α ≥ 2N − 2
p > 2∗

, 2∗α := 2
2N − 2 + α

2N − 2− α
. (2)

([25]), while it has no solution if

{

0 < α < 2
p /∈ (2α, 2

∗)
or

{

α = 2
p 6= 2∗

or

{

2 < α < N
p /∈ (2∗, 2α)

or

{

α ≥ N
p ≤ 2∗

, 2α :=
2N

N − α

([9]) and no radial solution for both

{

0 < α < 2
2α < p ≤ 2∗α

and

{

2 < α < 2N − 2
2∗α ≤ p < 2α

([5] and [15] respectively). As usual, 2∗ := 2N/(N − 2) denotes the critical exponent for the
Sobolev embedding in dimension N ≥ 3. All these results are portrayed in the picture of the
αp-plane given in Fig.1, where nonexistence regions are shaded in gray (nonexistence of radial
solutions) and light gray (nonexistence of solutions at all, which includes both the lines p = 2∗
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Figure 1: Regions of nonexistence of solutions (light gray), and existence (white with p > 2)
and nonexistence (dark gray) of radial solutions.

and p = 2α except for the pair (α, p) = (2, 2∗)), whereas white color (of course above the line
p = 2) means existence of radial solutions. As to nonradial solutions, the only result available is
the one contained in [26, Theorem 0.5], where the author proves that problem (P) with N ≥ 4,
α = 2 and f (u) = u2

∗−1 has at least a nonradial solution for every A large enough. This brings
Catrina to say, in the introduction of his paper [15]: “Two questions still remain: whether one
can find non-radial solutions in the case when radial solutions do not exist, or in the case when
radial solutions exist”.

As concerns problem (P) with general nonlinearities satisfying a power growth condition
|f (u)| ≤ (const.) up−1 for some p > 2, the results of [25] also cover this case and ensures that,
under some rather standard additional assumptions on f (precisely (f1) and (f2) below), (P)
has a radial solution for all the pairs (α, p) satisfying (2) again. To be precise, the authors
only concern themselves with radial weak solutions in the sense of the dual space of the radial
subspace of H1

α (where the energy functional of the problem is well defined by the embeddings
they prove), but the symmetric criticality type results of [6] actually apply, yielding solutions in
the sense of our definition (1). No results are known in the literature about nonradial solutions.

This general lack of symmetry breaking results is the motivation of this paper, where we
prove that problem (P) has multiple nonradial solutions as A→ +∞ provided that N ≥ 4, α ∈
( 2
N−1 , 2N − 2) \ {2} and f belongs to a suitable class of nonlinearities satisfying a power growth
condition. We observe straight away that such a class of nonlinearities does not unfortunately
contain pure powers (which does not satisfy our assumption (fp1,p2), where p1 6= p2).

The main assumptions characterizing our class of nonlinearities are the following, where we
denote F (s) :=

∫ s
0 f (t) dt:

3



(fp1,p2) sup
s>0

|f (s)|
min{sp1−1, sp2−1} < +∞ for some 2 < p1 < 2∗ < p2

(f1) ∃θ > 2 such that θF (s) ≤ f (s) s for all s > 0

(f2) F (s) > 0 for all s > 0

(f3) the function f(s) /s is strictly increasing on (0,+∞)

(f4) ∃µ > 2 such that the function F (s) /sµ is decreasing on (0,+∞) .

For N ≥ 3, α ∈ (0, 2N − 2), α 6= 2, and 2 < p1 < 2∗ < p2, we define

ν := νN,α,p1,p2 :=











⌈

2min
{

N−1
α , N−2

2−α
2∗−p1
p1−2

}

− 2N
(

1
α − 1

2

)

⌉

− 1 if 0 < α < 2
⌈

2min
{

N−1
α , N−2

α−2
p2−2∗

p2−2

}⌉

− 1 if 2 < α < 2N − 2
(3)

where ⌈·⌉ denotes the ceiling function (i.e., ⌈x⌉ := min {n ∈ Z : n ≥ x}).
Our main result is the following theorem.

Theorem 1.1. Let N ≥ 4 and α ∈ (2/(N − 1), 2N − 2), α 6= 2. Let f : R → R be a continuous
function satisfying (f1)-(f4). Assume that (fp1,p2) holds with

p1 < p∗1 := 2
α2(N − 1)− 2α(N − 1) + 4N

α2(N − 1)− 2α(N + 1) + 4N
or p2 > p∗2 := 2

2N + 2− α

2N − 2− α
(4)

according as α ∈ (2/(N − 1), 2) or α ∈ (2, 2N − 2). Then there exists A∗ > 0 such that for
every A > A∗ problem (P) has both a radial solution and ν different nonradial solutions.

Some comments on Theorem 1.1 are in order. First of all, under the assumptions of the
theorem, ν is positive (see Lemma 5.2 below), so that at least one nonradial solution actually
exists. On the other hand, it is easy to check that, for every fixed N and α, the behaviour of ν
as a function of p1 and p2 is the one portrayed in Figs. (2a) and (2b), whence one sees that the
number ν of nonradial solutions may assume every natural value (as N → ∞).

As to assumptions (4) and (fp1,p2), it is worth observing that α ∈ (0, 2) implies 2 < p∗1 < 2∗,
while 2 < α < 2N − 2 implies p∗2 > 2∗, so that (4) and (fp1,p2) are consistent with each other.
Assumption (fp1,p2) is the so-called double-power growth condition and seems to be typical in
nonlinear problems with potentials vanishing at infinity (see e.g. [2, 3, 6–8,12–14,18,19,22]). It
obviously implies the single-power growth condition |f (s)| ≤ (const.) sp−1 for all p ∈ [p1, p2] and
s ≥ 0, but it is actually more stringent than that, since it requires p1 6= p2. We finally observe
that (fp1,p2) still remains true if one raises p1 and lowers p2, but this decreases ν (see Figs. (2a)
and (2b)) and therefore it is convenient to apply Theorem 1.1 with p1 as small as possible p2 as
large as possible (which is also consistent with assumption (4)).
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(a) ν as a function of p1 ∈ (2, p∗1) for N ≥ 3 and
α ∈ (0, 2) fixed.

p2

ν

2α
*p2

*

2N-2

α

-1

1

2

(b) ν as a function of p2 > p∗2 for N ≥ 3 and
α ∈ (2, 2N − 2) fixed.

The plan of the paper is the following. In Section 2 we define the variational setting and
introduce the argument we will use in the proof of Theorem 1.1, which will be completed in
Section 5. Observe that we cannot use the technique used in [26], where the homogeneity of
the nonlinearity is exploited and a nonradial solution is obtained as a global minimizer of the
Sobolev-type quotient associated to the problem. Our argument, instead, essentially relies on
the following two main elements: (i) the compact embeddings between some suitable functional
spaces of symmetric functions, which yields the existence of ν different solutions of mountain-
pass type; (ii) the separation of the corresponding mountain-pass levels from the energy levels
associated to radial solutions. Sections 3 and 4 are devoted to the estimation of these levels
in order to separate them. As a conclusion, we get ν nonradial solutions on which the energy
functional of the equation has a lower value than the energy levels of radial solutions.

We end this introductory section by giving some examples of nonlinearities to which Theorem
1.1 applies and collecting some notations we use throughout the paper.

Example 1.2. Let N ≥ 4 and α ∈ (2/(N − 1), 2N − 2), α 6= 2, and let 2 < p1 < 2∗ < p2
be such that (4) holds. The most obvious nonlinearity to which Theorem 1.1 applies is f (s) =
min{|s|p1−1 , |s|p2−1}, which satisfies (f1) and (f4) for θ = p1 and any µ > p2. Other simple
examples are

f (s) =
|s|p2−1

1 + |s|p2−p1
, f (s) =

d

ds

( |s|p2
1 + |s|p2−p1

)

,

both of which satisfy (f1) with θ = p1. In the latter case, (f4) clearly holds for any µ > p2. We
leave to the reader to check that (f4) also holds in the former case, for µ large enough.

Notations.

• σd denotes the (d− 1)-dimensional measure of the unit sphere of Rd.
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• C∞
c (Ω) is the space of the infinitely differentiable real functions with compact support in the

open set Ω ⊆ R
d.

• D1,2(RN ) = {u ∈ L2∗(RN ) : ∇u ∈ L2(RN )} is the usual Sobolev space, which identifies with
the completion of C∞

c (RN ) with respect to the norm of the gradient.

2 Preliminaries

Let N ≥ 3 and A,α > 0. Let f : R → R be a continuous function satisfying (fp1,p2), (f1), (f2). In
this section we define the functional setting and introduce the argument we will use in proving
Theorem 1.1.

As already mentioned in the introduction, we define the Hilbert space

H1
α :=

{

u ∈ D1,2(RN ) :

∫

RN

u2

|x|αdx <∞
}

,

which we endow with the following scalar product and related norm:

(u, v)A :=

∫

RN

(

∇u · ∇v + A

|x|αuv
)

dx, ‖u‖2A :=

∫

RN

(

|∇u|2 + A

|x|αu
2

)

dx.

Here and in the rest of the paper, D1,2(RN ) = {u ∈ L2∗(RN ) : ∇u ∈ L2(RN )} is the usual
Sobolev space, which identifies with the completion of C∞

c (RN ) with respect to the norm of the
gradient. Of course, the embedding H1

α →֒ D1,2(RN ) is continuous.
Given any integer K such that 1 ≤ K ≤ N − 1, we write every x ∈ R

N as x = (y, z) ∈
R
K × R

N−K and in the space H1
α we consider the following closed subspaces of symmetric

functions:

Hr := {u ∈ H : u (x) = u (|x|)} and HK := {u ∈ H : u (x) = u (y, z) = u (|y| , |z|)} .

Of course u (y, z) = u (|y| , |z|) naturally means that u (y, z) = u (S1y, S2z) for all isometries S1
and S2 of RK and R

N−K respectively. Similarly for u (x) = u (|x|). Note that Hr ⊂ HK for
every K, since |x|2 = |y|2+ |z|2. The next lemma better clarifies the relation between the spaces
HK and Hr.

Lemma 2.1. Let 1 ≤ K1 < K2 ≤ N − 1. Then HK1 ∩HK2 = Hr.

Proof. The proof is essentially an adaptation of the one of [21, Lemma 3.3]. We will denote by
(y1, z1) the decomposition in R

K1 ×R
N−K1 of any x ∈ R

N , and by (y2, z2) its decomposition in
R
K2 × R

N−K2 . Let u ∈ HK1 ∩HK2 and for every s, t ≥ 0 define

ũ (s, t) := u (s, 0, ..., 0, t) .

6



Then we clearly have u (x) = ũ (|y1| , |z1|) = ũ (|y2| , |z2|) for every x = (y1, z1) = (y2, z2) ∈ R
N .

Let x = (y1, z1) ∈ R
K1 × R

N−K1 and x′ = (y′2, z
′
2) ∈ R

K2 × R
N−K2 be such that |x| = |x′|, i.e.,

|y1|2 + |z1|2 = |y′2|2 + |z′2|2. Suppose that |y1| ≤ |y′2| and define x′′ ∈ R
N by setting

x′′ :=

(

|y1| , 0, ..., 0,
√

|y′2|2 − |y1|2, 0..., 0,
∣

∣z′2
∣

∣ , 0, ..., 0

)

where the first block of zeros has K1−1 zeros, the second K2−K1−1, and the third N−K2−1.
Then

u
(

x′′
)

= ũ
(∣

∣y′′1
∣

∣ ,
∣

∣z′′1
∣

∣

)

= ũ

(

|y1| ,
√

|y′2|2 − |y1|2 + |z′2|2
)

= ũ (|y1| , |z1|)

and

u
(

x′′
)

= ũ
(∣

∣y′′2
∣

∣ ,
∣

∣z′′2
∣

∣

)

= ũ

(

√

|y1|2 + |y′2|2 − |y1|2,
∣

∣z′2
∣

∣

)

= ũ
(∣

∣y′2
∣

∣ ,
∣

∣z′2
∣

∣

)

,

which implies ũ (|y1| , |z1|) = ũ (|y′2| , |z′2|), i.e., u (x) = u (x′). If |y1| > |y′2| we repeat the
argument with x′′ defined by

x′′ :=

(

∣

∣y′2
∣

∣ , 0, ..., 0,

√

|y1|2 − |y′2|2, 0..., 0, |z1| , 0, ..., 0
)

(with the same lenghts of the blocks) and get the same result. Hence |x| = |x′| implies u (x) =
u (x′), i.e., u ∈ Hr.

We modify the function f by setting f (s) = 0 for all s < 0 and, with a slight abuse of
notation, we still denote by f the modified function. Then by (fp1,p2) there exist M1,M2 > 0
such that

|f (s)| ≤M1 min{|s|p1−1 , |s|p2−1} and |F (s)| ≤M2 min{|s|p1 , |s|p2} for all s ∈ R,

which yields in particular

|f (s)| ≤M1 |s|p−1 and |F (s)| ≤M2 |s|p for all p ∈ [p1, p2] and s ∈ R. (5)

By the continuous embeddings H1
α →֒ D1,2(RN ) →֒ L2∗(RN ), one checks (see for example [20])

that condition (5) with p = 2∗ implies that the energy functional associated to the equation of
(P), i.e.,

I (u) :=
1

2
‖u‖2A −

∫

RN

F (u) dx, (6)

is of class C1 on H1
α and has Fréchet derivative I ′ (u) at any u ∈ H1

α given by

I ′ (u) v = (u, v)A −
∫

RN

f (u) v dx for all v ∈ H1
α. (7)

7



This yields that critical points of I : H1
α → R satisfy (1). A standard argument shows that

such critical points are nonnegative (see the proof of Theorem 1.1 in Section 5) and therefore
we conclude that nonzero critical points of I are weak solutions to problem (P).

Accordingly, our argument in proving Theorem 1.1 will be essentially the following. The
existence of a critical point for the restriction I|Hr

readily follows from the results of [25]. By
exploiting the compact embeddings of [2] and the results of [8] about Nemytskĭı operators on
the sum of Lebesgue spaces, we will show in Section 5 that I|HK

has a nonzero critical point
uK for every 2 ≤ K ≤ N − 2. Thanks to the classical Palais’ Principle of Symmetric Criticality
[23], all these critical points are also critical points of I, and thus weak solutions to (P). Hence
Theorem 1.1 is proved is we show that uK /∈ Hr for every K, which also implies uK1 6= uK2 for
K1 6= K2 by Lemma 2.1. This will achieved by showing that the critical levels I (uK) are lower
than all the nonzero critical levels of I|Hr

. The starting points in proving this are the following
lemmas.

Lemma 2.2. For every u ∈ Hr\{0}, u ≥ 0, there exists tu > 0 such that I (tuu) = maxt≥0 I (tu).

Proof. Since u ≥ 0 and u 6= 0, we can fix δ > 0 such that the set
{

x ∈ R
N : u ≥ δ

}

has positive
measure. From assumptions (f1) and (f2), we deduce that there exists a constant C > 0 such
that F (s) ≥ Csθ for all s ≥ θ. Then for every t > 1 one has

∫

RN

F (tu) dx =

∫

{x∈RN :tu≥δ}
F (u) dx+

∫

{x∈RN :tu<δ}
F (u) dx ≥

∫

{x∈RN :tu≥δ}
F (u) dx

≥ Ctθ
∫

{x∈RN :tu≥δ}
uθdx ≥ Ctθ

∫

{x∈RN :u≥δ}
uθdx

and therefore

I (tu) ≤ 1

2
t2 ‖u‖2A − Ctθ

∫

{x∈RN :u≥δ}
uθdx→ −∞ as t→ +∞

since θ > 2. As I (0) = 0, this gives the result.

According to Lemma 2.2, define

mA := inf
u∈Hr\{0}, u≥0

max
t≥0

I (tu) .

Lemma 2.3. Assume (f3) and let u ∈ Hr \ {0}. If u is a critical point for I, then

I (u) ≥ mA.

Proof. As already observed, if u is a critical point for I then u is nonnegative. We now prove
that I (u) = maxt≥0 I (tu), which obviously yields the result. For t ≥ 0 define

g (t) := I (tu) =
1

2
t2 ‖u‖2A −

∫

RN

F (tu) dx.

8



As u is a critical point for I, we readily have that t = 1 is a critical point for g. Indeed,
g′ (t) = I ′ (tu)u and thus g′ (1) = I ′ (u)u = 0. We now show that, on the other hand, g has at
most one critical point in (0,+∞). We have g′ (t) = 0 if and only if I ′ (tu)u = 0, i.e.

I ′ (tu)u = t ‖u‖2A −
∫

RN

f (tu)u dx = 0.

So, if 0 < t1 < t2 are critical points for g, one has

‖u‖2A =
1

t1

∫

RN

f (t1u) u dx =
1

t2

∫

RN

f (t2u)u dx,

which implies
∫

Eu

(

f (t2u)

t2u
− f (t1u)

t1u

)

u2dx = 0 (8)

where Eu :=
{

x ∈ R
N : u > 0

}

. Since the integrand in (8) is nonnegative by assumption (f3),
we have that f (t2u) / (t2u)−f (t1u) / (t1u) = 0 almost everywhere on Eu. Since Eu has positive
measure (because 0 6= u ≥ 0 ), this implies t1 = t2, again by assumption (f3). As a conclusion,
according to Lemma 2.2, we deduce that tu = 1 and the claim ensues.

Lemma 2.4. There exist R > 0 such that for every 1 ≤ K ≤ N − 1 one has

inf
u∈HK ,‖u‖A≤R

I (u) = 0 and inf
u∈HK ,‖u‖A=R

I (u) > 0. (9)

Proof. The claim readily follows from (5) with p = 2∗ and the continuous embeddings HK →֒
H1
α →֒ D1,2(RN ) →֒ L2∗(RN ), which imply that there exists a constant C > 0 such that

I (u) ≥ ‖u‖2A /2− C ‖u‖2∗A for all u ∈ HK.

In Section 4 we will see that I|HK
takes negative values by choosing a suitable uK ∈ HK

such that I (uK) < 0. This implies ‖uK‖A > R by (9) and therefore the functional I|HK
has a

mountain-pass geometry. In Section 5 we will see that it also satisfies the Palais-Smale condition
for 2 ≤ K ≤ N − 2, so that it admits a (nonnegative) critical point uK at the mountain-pass
level

cA,K := inf
γ∈Γ

max
t∈[0,1]

I (γ (t)) > 0 where Γ := {γ ∈ C ([0, 1] ;HK) : γ (0) = 0, γ (1) = uK} . (10)

With a view to obtaining the separation inequality cA,K < mA, Sections 3 and 4 are devoted to
estimating mA and cA,K .

9



3 Estimate of mA

Let N ≥ 3 and α,A > 0. Let f : R → R be a continuous function satisfying (fp1,p2), (f1), (f2).
This section is devoted to deriving the estimate of mA given in Proposition 3.2 below, which
relies on the following radial lemma (see also [6, Appendix] and [25, Lemmas 4 and 5] for similar
results).

Lemma 3.1. Every u ∈ Hr satisfies

|u (x)| ≤
√

2/σN

A1/4

‖u‖A
|x|

2N−2−α
4

almost everywhere in R
N

(recall that σN denotes the (N − 1)-dimensional measure of the unit sphere of RN).

Proof. Let u ∈ Hr and let ũ : (0,+∞) → R be continuous and such that u (x) = ũ (|x|) for
almost every x ∈ R

N . Set

v (r) := rN−1−α/2ũ (r)2 for all r > 0.

By [6, Lemma 27] we have that ũ ∈ W 1,1 ((a, b)) for every 0 < a < b < +∞, whence v ∈
W 1,1 ((a, b)) and

v (b)− v (a) =

∫ b

a
v′ (r) dr .

Moreover, for almost every r ∈ (a, b) one has

v′ (r) =
(

N − 1− α

2

)

rN−2−α/2ũ (r)2 + 2rN−1−α/2ũ (r) ũ′ (r) . (11)

If α < 2N − 2, this implies v′ (r) ≥ 2rN−1−α/2ũ (r) ũ′ (r) and therefore

v (a) ≤ v (b)−
∫ b

a
v′ (r) dr ≤ v (b)−

∫ b

a
2rN−1−α

2 ũ (r) ũ′ (r) dr (12)

≤ v (b) + 2

∫ b

a
rN−1−α

2 |ũ (r)|
∣

∣ũ′ (r)
∣

∣ dr = v (b) + 2

∫ b

a
r

N−1
2

∣

∣ũ′ (r)
∣

∣ r
N−1

2
−α

2 |ũ (r)| dr

≤ v (b) + 2

(∫ +∞

0
rN−1

∣

∣ũ′ (r)
∣

∣

2
dr

)1/2(∫ +∞

0
rN−1−α |ũ (r)|2 dr

)1/2

≤ v (b) +
2

σN
√
A

(∫

RN

|∇u|2 dx
)1/2(∫

RN

Au2

|x|α dx
)1/2

≤ 2

σN
√
A

‖u‖2A

If α ≥ 2N − 2, then (11) gives v′ (r) ≤ 2rN−1−α/2ũ (r) ũ′ (r) and thus we have

v (b) ≤ v (a) +

∫ b

a
2rN−1−α/2ũ (r) ũ′ (r) dr ≤ v (a) +

2

σN
√
A

‖u‖2A (13)

10



as before. Now observe that there exist 0 < an → 0 and bn → +∞ such that v (an) → 0 and
v (bn) → 0. Indeed, if l := lim infr→0+ v (r) > 0, then for every r smaller than some suitable
r0 > 0 one has |ũ (r)| ≥

√

l/2 r−(N−1−α/2)/2 and therefore one of the following contradictions
ensues:

∫

RN

u2

|x|α dx ≥ l

2

∫

Br0

1

|x|N−1+α/2
dx = +∞ if α ≥ 2

or
∫

RN

|u|2∗ dx ≥
(

l

2

)2∗/2 ∫

Br0

1

|x|
N−1−α/2

N−2
N
dx = +∞ if α ≤ 2.

Similary, if lim infr→+∞ v (r) > 0, one obtains
∫

RN
u2

|x|αdx = +∞ if α ≤ 2 and
∫

RN |u|2∗ dx = +∞
if α ≥ 2. Hence the claim follows by letting n → ∞ in (12) with a = r and b = bn, and in (13)
with a = an and b = r.

We can now prove our estimate for mA.

Proposition 3.2. Assume 0 < α < 2N − 2, α 6= 2, and let p = max{2∗α, p1} or p = min{2∗α, p2}
according as 0 < α < 2 or 2 < α < 2N − 2. Then there exists a constant C0 > 0 independent
from A such that

mA ≥ C0A
N−2
α−2

p−2∗

p−2 .

Proof. Let u ∈ Hr \ {0}. By Lemma 3.1, we have

∫

RN

|u|2∗α dx =

∫

RN

|u|2∗α−2 u2dx ≤ (2/σN )
(2∗α−2)/2

A(2∗α−2)/4
‖u‖2

∗

α−2
A

∫

RN

u2

|x|
2N−2−α

4
(2∗α−2)

dx

=
(2/σN )

2α
2N−2−α

A
α

2N−2−α

‖u‖2
∗

α−2
A

A

∫

RN

Au2

|x|α dx ≤ (2/σN )
2α

2N−2−α

A
2N−2

2N−2−α

‖u‖2
∗

α
A

since 2∗α − 2 = 4α/ (2N − 2− α). On the other hand, one has

∫

RN

|u|2∗ dx ≤ S2∗
N

(∫

RN

|∇u|2 dx
)2∗/2

≤ S2∗
N ‖u‖2∗A

where SN denotes the Sobolev constant in dimension N . Then, both for p = max{2∗α, p1} < 2∗

and p = min{2∗α, p2} > 2∗, we can argue by interpolation: there exists λ ∈ (0, 1) such that
p = λ2∗ + (1− λ) 2∗α and by Hölder inequality we get

∫

RN

|u|p dx =

∫

RN

|u|λ2∗+(1−λ)2∗α dx ≤
(∫

RN

|u|2∗ dx
)λ(∫

RN

|u|2∗α dx
)1−λ

≤ C
‖u‖pA

A
(2N−2)(1−λ)

2N−2−α

11



where C := Sλ2
∗

N (2/σN )
2α(1−λ)
2N−2−α only depends on N,α, p. Recalling condition (5), this implies

∣

∣

∣

∣

∫

RN

F (u) dx

∣

∣

∣

∣

≤M2

∫

RN

|u|p dx ≤M2C
‖u‖pA

A
(2N−2)(1−λ)

2N−2−α

and therefore

I (u) ≥ 1

2
‖u‖2A − a ‖u‖pA

where we set a = M2CA
−

(2N−2)(1−λ)
2N−2−α for brevity. Hence I (tu) ≥ 1

2t
2 ‖u‖2A − atp ‖u‖pA =: gu (t)

for every t ≥ 0. The function gu : [0,+∞) → R attains its maximum in tu := (ap)−1/(p−2)/ ‖u‖A
and, since

1− λ =
p− 2∗

2∗α − 2∗
=

(p− 2∗) (2N − 2− α) (N − 2)

4 (α− 2) (N − 1)
,

one computes

gu (tu) =

(

1

ap

)2/(p−2) (1

2
− 1

p

)

=
p− 2

2pp/(p−2)

(

1

a

)2/(p−2)

=
p− 2

2pp/(p−2)





A
(2N−2)(1−λ)

2N−2−α

M2C





2/(p−2)

=
p− 2

2pp/(p−2)

A
N−2
α−2

p−2∗

p−2

(M2C)
2

p−2

.

Hence

max
t≥0

I (tu) ≥ max
t≥0

gu (t) = gu (tu) = C0A
N−2
α−2

p−2∗

p−2

with obvious definition of C0. Since u ∈ Hr \ {0} is arbitrary, we conclude

mA = inf
u∈Hr\{0}, u≥0

max
t≥0

I (tu) ≥ inf
u∈Hr\{0}

max
t≥0

I (tu) ≥ C0A
N−2
α−2

p−2∗

p−2

and the proof is complete.

Remark 3.3. If p is as in Proposition 3.2, it is easy to check that

N − 2

α− 2

p− 2∗

p− 2
=











min
{

N−1
α , N−2

2−α
2∗−p1
p1−2

}

if 0 < α < 2

min
{

N−1
α , N−2

α−2
p2−2∗

p2−2

}

if 2 < α < 2N − 2.

12



4 Estimate of cA,K

Let N ≥ 3, 2 ≤ K ≤ N − 2 and α > 0, α 6= 2. Let f : R → R be a continuous function
satisfying (fp1,p2), (f1), (f2). In this section we define a suitable uK ∈ HK such that I (uK) < 0
and estimate the corresponding mountain-pass level (10).

In defining uK , we will use the following construction of positive HK functions, which is
inspired by [10]. Denote by φ : D → R

2 \ {0} the change to polar coordinates in R
2 \ {0},

namely φ (ρ, θ) = (ρ cos θ, ρ sin θ) for all (ρ, θ) ∈ D := (0,+∞)× [0, 2π). Define

E :=

(

1

4
,
3

4

)

×
(π

6
,
π

3

)

and take any ψ : R2 → R such that ψ ∈ C∞
c (E) and ψ > 0. For 0 < ε < 1 and (ρ, θ) ∈ R

2

define

ψε (ρ, θ) := ψ

(

ρ1/ε,
θ

ε

)

,

in such a way that ψε ∈ C∞
c (Eε) where

Eε :=

{

(ρ, θ) ∈ R
2 :

(

ρ1/ε,
θ

ε

)

∈ E

}

=

{

(ρ, θ) ∈ R
2 :

(

1

4

)ε

< ρ <

(

3

4

)ε

,
πε

6
< θ <

πε

3

}

.

Finally define

vε (y, z) := ψε
(

φ−1 (|y| , |z|)
)

for x = (y, z) ∈ (RK × R
N−K) \ {0} , vε (0) := 0.

Then vε ∈ C∞
c (Ωε) ∩HK , where Ωε :=

{

(y, z) ∈ R
K × R

N−K : (|y| , |z|) ∈ φ (Eε)
}

.
For future reference, we now compute the relevant integrals of vε. By means of spherical

coordinates in R
K and R

N−K one has

∫

RN

v2ε
|x|αdx =

∫

Ωε

ψε
(

φ−1 (|y| , |z|)
)2

|x|α dx = σKσN−K

∫

φ(Eε)

ψε
(

φ−1 (s, t)
)2

(s2 + t2)α/2
sK−1tN−K−1ds dt

= σKσN−K

∫

Eε

ψε (ρ, θ)
2

ρα−N+1
H (θ)dρ dθ = σKσN−K

∫

Eε

ψ
(

ρ1/ε, θ/ε
)2

ρα−N+1
H (θ)dρ dθ

where H (θ) := (cos θ )K−1 (sin θ)N−K−1, and by the change of variables

r = ρ1/ε, ϕ =
θ

ε

one obtains

∫

RN

v2ε
|x|α dx = σKσN−K

∫

E

ψ (r, ϕ)2

r(α−N+1)ε
H(εϕ)ε2rε−1dr dϕ

13



= σKσN−Kε
2

∫

E

ψ (r, ϕ)2

r(α−N)ε+1
H(εϕ)dr dϕ. (14)

Similarly (recall that F (0) = 0)

∫

RN

F (vε) dx =

∫

Ωε

F
(

ψε
(

φ−1 (|y| , |z|)
))

dx

= σKσN−K

∫

φ(Eε)
F
(

ψε
(

φ−1 (s, t)
))

sK−1tN−K−1ds dt

= σKσN−K

∫

Eε

F (ψε (ρ, θ)) ρ
N−1H (θ) dρ dθ

= σKσN−Kε
2

∫

E
F (ψ (r, ϕ)) rNε−1H (εϕ) dr dϕ (15)

and
∫

RN

|∇vε|2 dx =

∫

Ωε

∣

∣∇ψε
(

φ−1 (|y| , |z|)
)

· Jφ−1 (|y| , |z|)
∣

∣

2
dx =

= σKσN−K

∫

φ(Eε)

∣

∣∇ψε
(

φ−1 (s, t)
)

· Jφ−1 (s, t)
∣

∣

2
sK−1tN−K−1ds dt

= σKσN−K

∫

Eε

∣

∣

∣
∇ψε (ρ, θ) · J−1

φ (ρ, θ)
∣

∣

∣

2
ρN−1H (θ)dρ dθ

= σKσN−K

∫

Eε

(

∂ψε
∂ρ

(ρ, θ)2 +
1

ρ2
∂ψε
∂θ

(ρ, θ)2
)

ρN−1H (θ) dρ dθ

= σKσN−K

∫

Eε

1

ε2

(

ρ2/ε
∂ψ

∂r

(

ρ1/ε,
θ

ε

)2

+
∂ψ

∂ϕ

(

ρ1/ε,
θ

ε

)2
)

ρN−3H (θ) dρ dθ

= σKσN−K

∫

E

(

ψr (r, ϕ)
2 +

1

r2
ψϕ (r, ϕ)

2

)

r(N−2)ε+1H (εϕ) dr dϕ. (16)

where we denote ψr =
∂ψ
∂r and ψϕ = ∂ψ

∂ϕ for brevity.

Lemma 4.1. The mapping wA := vA−1/2 ∈ HK , A > 1, is such that

lim
A→+∞

‖wA‖2A
∫

RN F (wA) dx
= +∞.

Proof. According to the previous computations, for ε = A−1/2 < 1 we have

‖vε‖2A
∫

RN F (vε) dx
=

∫

RN |∇vε|2 dx+A
∫

RN
v2ε
|x|α

dx
∫

RN F (vε) dx

14



=

∫

E

((

ψ2
r +

1
r2
ψ2
ϕ

)

r(N−2)ε+1 +Aε2ψ2r(N−α)ε−1
)

H(εϕ)dr dϕ

ε2
∫

E F (ψ) rNε−1H (εϕ) dr dϕ

= A

∫

E

((

ψ2
r +

1
r2
ψ2
ϕ

)

r(N−2)ε+1 + ψ2r(N−α)ε−1
)

H(εϕ)dr dϕ
∫

E F (ψ) rNε−1H (εϕ) dr dϕ
. (17)

In the integration set E one has επ/6 < εϕ < επ/3 and thus, for ε > 0 small enough (i.e. A > 1
large enough), we get that εϕ/2 < sin εϕ < εϕ and 1/2 < cos εϕ < 1. Hence there exist two
constants C1, C2 > 0 such that

C1ε
N−K−1 < H (εϕ) < C2ε

N−K−1.

Similarly, since 1/4 < r < 3/4 in E, all the terms r(N−2)ε+1, r(N−α)ε−1 and rNε−1 are bounded
and bounded away from zero by positive constants independent of ε ∈ (0, 1) (i.e. of A > 1), say
C3 and C4 respectively. Inserting into (17), this implies

‖vε‖2A
∫

RN F (vε) dx
≥ A

C1

∫

E

((

ψ2
r +

1
r2
ψ2
ϕ

)

r(N−2)ε+1 + ψ2r(N−α)ε−1
)

dr dϕ

C2

∫

E Fr
Nε−1dr dϕ

≥ A
C1C4

∫

E

(

ψ2
r +

1
r2
ψ2
ϕ + ψ2

)

dr dϕ

C2C3

∫

E F (ψ) dr dϕ
.

The last ratio is positive and independent of A, whence the claim follows.

According to Lemma 4.1, we fix A0 > 1 such that

‖wA‖2A
∫

RN F (wA) dx
> 1 for every A > A0. (18)

We now distinguish the cases 0 < α < 2 and α > 2.

Proposition 4.2. Assume (f4) and 0 < α < 2. Let A > A0 and define uK ∈ HK by setting

uK (x) := wA

(x

λ

)

with λ :=
‖wA‖2/αA

(∫

RN F (wA) dx
)1/α

.

Then I (uK) < 0 and the corresponding mountain-pass level (10) satisfies

cA,K ≤ C1A
K−1

2
+N( 1

α
− 1

2)

where the constant C1 > 0 does not depend on A.
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Proof. Since A > A0, one has λ > 1. Then an obvious change of variables yields

I (uK) =
λN−2

2

∫

RN

|∇wA|2 dx+
λN−α

2

∫

RN

A

|x|αw
2
Adx− λN

∫

RN

F (wA) dx

≤ λN−α

2

(∫

RN

|∇wA|2 dx+

∫

RN

A

|x|αw
2
Adx

)

− λN
∫

RN

F (wA) dx

=
λN

2

(

λ−α ‖wA‖2A − 2

∫

RN

F (wA) dx

)

= −λ
N

2

∫

RN

F (wA) dx < 0

where the last inequality follows from assumption (f2), since wA > 0 almost everywhere. In
order to estimate cA,K , consider the straight path γ (t) := tuK , t ∈ [0, 1]. Clearly cA,K ≤
maxt∈[0,1] I (γ (t)). Thanks to assumption (f4), which implies F (ts) ≥ tµF (s) for all s > 0 and
t ∈ [0, 1], we have

I (γ (t)) =
1

2
t2 ‖uK‖2A −

∫

RN

F (tuK) dx ≤ 1

2
t2 ‖uK‖2A − tµ

∫

RN

F (uK) dx =
1

2
t2a− tµb

where a := ‖uK‖2A and b :=
∫

RN F (uK) dx for brevity. The function g (t) := 1
2t

2a− tµb reaches

its maximum in t =
(

a
bµ

)1/(µ−2)
, so that we get

I (γ (t)) ≤ g

(

(

a

bµ

)1/(µ−2)
)

= a

(

a

bµ

)2/(µ−2) (1

2
− 1

µ

)

.

Hence, setting m := (1/µ)2/(µ−2) (1/2− 1/µ) for brevity and recalling that λ > 1, we obtain

cA,K ≤ m
‖uK‖2µ/(µ−2)

A
(∫

RN F (uK) dx
)2/(µ−2)

= m

(

λN−2
∫

RN |∇wA|2 dx+ λN−α
∫

RN A |x|−αw2
Adx

)µ/(µ−2)

(

λN
∫

RN F (wA) dx
)2/(µ−2)

≤ m
λµ(N−α)/(µ−2)

(

∫

RN |∇wA|2 dx+
∫

RN A |x|−α w2
Adx

)µ/(µ−2)

λ2N/(µ−2)
(∫

RN F (wA) dx
)2/(µ−2)

= mλ
µ(N−α)−2N

µ−2
‖wA‖2µ/(µ−2)

A
(∫

RN F (wA) dx
)2/(µ−2)

. (19)

Inserting the definition of λ into (19), we get

cA,K ≤ m
‖wA‖

2µ
µ−2

+ 2
α

µ(N−α)−2N
µ−2

A
(∫

RN F (wA) dx
) 2

µ−2
+ 1

α
µ(N−α)−2N

µ−2

= m
‖wA‖

2N
α
A

(∫

RN F (wA) dx
)

N−α
α

16



and therefore, using computations (14)-(16) with ε = A−1/2, we have

C1ε
N−K−1 < H (εϕ) < C2ε

N−K−1.

cA,K ≤ mσKσN−K

(∫

E

((

ψ2
r +

1
r2
ψ2
ϕ

)

r(N−2)ε+1 + ψ2r(N−α)ε−1
)

H (εϕ) dr dϕ
)

N
α

ε
2N−α

α
(∫

E F (ψ) rNε−1H (εϕ) dr dϕ
)

N−α
α

.

As in the proof of Lemma 4.1, we take four constants C1, ..., C4 > 0 independent of A such
that for every (r, ϕ) ∈ E one has C1ε

N−K−1 < H (εϕ) < C2ε
N−K−1 and the terms r(N−2)ε+1,

r(N−α)ε−1 and rNε−1 are bounded and bounded away from zero by C3 and C4 respectively.
Hence we conclude

cA,K ≤ mσKσN−K

(

C2C3

∫

E

((

ψ2
r +

1
r2
ψ2
ϕ

)

+ ψ2r
)

εN−K−1dr dϕ
)

N
α

ε
2N−α

α
(

C1C4

∫

E F (ψ) εN−K−1dr dϕ
)

N−α
α

= C
ε

(N−K−1)N
α

(∫

E

((

ψ2
r +

1
r2ψ

2
ϕ

)

+ ψ2r
)

dr dϕ
)

N
α

ε
(N−K+1)N−α

α
(∫

E F (ψ) dr dϕ
)

N−α
α

= CA
K−1

2
+N( 1

α
− 1

2)
(∫

E

((

ψ2
r +

1
r2
ψ2
ϕ

)

+ ψ2r
)

dr dϕ
)

N
α

(∫

E F (ψ) dr dϕ
)

N−α
α

with obvious definition of the constant C. As the last ratio does not depend on A, the conclusion
ensues.

Proposition 4.3. Assume (f4) and α > 2. Let A > A0 and define u ∈ HK by setting

uK (x) := wA

(x

λ

)

with λ :=
‖wA‖A

(∫

RN F (wA) dx
)1/2

.

Then I (uK) < 0 and the corresponding mountain-pass level (10) satisfies

cA,K ≤ C2A
K−1

2

where the constant C2 > 0 does not depend on A.

Proof. The proof is very similar to the one of Proposition 4.2, so we omit here some computa-
tional details. As α > 2, we have

I (uK) ≤ λN−2

2

(∫

RN

|∇wA|2 dx+

∫

RN

A

|x|αw
2
Adx

)

− λN
∫

RN

F (wA) dx

= −λ
N

2

∫

RN

F (wA) dx < 0
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and

max
t∈[0,1]

I (tuK) ≤ m
‖uK‖2µ/(µ−2)

A
(∫

RN F (uK) dx
)2/(µ−2)

= m

(

λN−2
∫

RN |∇wA|2 dx+ λN−α
∫

RN A |x|−αw2
Adx

)µ/(µ−2)

(

λN
∫

RN F (wA) dx
)2/(µ−2)

≤ m
λµ(N−2)/(µ−2)

(

∫

RN |∇wA|2 dx+
∫

RN A |x|−α w2
Adx

)µ/(µ−2)

λ2N/(µ−2)
(∫

RN F (wA) dx
)2/(µ−2)

= mλ
µ(N−2)−2N

µ−2
‖wA‖2µ/(µ−2)

A
(∫

RN F (wA) dx
)2/(µ−2)

.

Recalling the definition of cA,K and inserting the one of λ, we get

cA,K ≤ m
‖wA‖

2µ
µ−2

+
µ(N−2)−2N

µ−2

A
(∫

RN F (wA) dx
) 2

µ−2
+ 1

2
µ(N−2)−2N

µ−2

= m
‖wA‖NA

(∫

RN F (wA) dx
)

N−2
2

and therefore, using computations (14)-(16) with ε = A−1/2, we have

cA,K ≤ mσKσN−K

(∫

E

((

ψ2
r +

1
r2
ψ2
ϕ

)

r(N−2)ε+1 + ψ2r(N−α)ε−1
)

H (εϕ) dr dϕ
)

N
2

εN−2
(∫

E F (ψ) rNε−1H (εϕ) dr dϕ
)

N−2
2

≤ C

(∫

E

((

ψ2
r +

1
r2
ψ2
ϕ

)

+ ψ2r
)

εN−K−1dr dϕ
)

N
2

εN−2
(∫

E F (ψ) εN−K−1dr dϕ
)

N−2
2

= CA
K−1

2

(∫

E

((

ψ2
r +

1
r2
ψ2
ϕ

)

+ ψ2r
)

dr dϕ
)

N
2

(∫

E F (ψ) dr dϕ
)

N−2
2

where C > 0 is a suitable constant independent of A. This concludes the proof.

5 Proof of Theorem 1.1

This section is entirely devoted to the proof of Theorem 1.1, so we assume all the hypotheses of
the theorem. The proof will be achieved through some lemmas.

Let K be any integer such that 2 ≤ K ≤ N − 2. Assume A > AK (where AK is defined
by (18)) and consider the mountain-pass level cA,K defined by (10), with uK ∈ HK given by

18



Lemma 4.2 or 4.3 according as α ∈ (2/(N − 1), 2) or α ∈ (2, 2N − 2). We are going to show
that cA,K is a critical level for the energy functional I defined in (6). To do this, we will make
use of the sum space

Lp1 + Lp2 :=
{

u1 + u2 : u1 ∈ Lp1
(

R
N
)

, u2 ∈ Lp2
(

R
N
)}

.

We recall from [8] that such a space can be characterized as the set of measurable mappings
u : RN → R for which there exists a measurable set E ⊆ R

N such that u ∈ Lp1 (E)∩Lp2(RN \E)
([8, Proposition 2.3]). It is a Banach space with respect to the norm

‖u‖Lp1+Lp2 := inf
u1+u2=u

max
{

‖u1‖Lp1 (RN ) , ‖u2‖Lp2 (RN )

}

([8, Corollary 2.11]) and the continuous embedding Lp(RN ) →֒ Lp1+Lp2 holds for all p ∈ [p1, p2]
([8, Proposition 2.17]), in particular for p = 2∗. Moreover, for every u ∈ Lp1 + Lp2 and every
ϕ ∈ Lp

′

1(RN ) ∩ Lp′2(RN ) one has

∫

RN

|uϕ| dx ≤ ‖u‖Lp1+Lp2

(

‖ϕ‖
Lp′

1(RN )
+ ‖ϕ‖

Lp′
2(RN )

)

(20)

where p′i = pi/(pi − 1) is the Hölder conjugate exponent of pi ([8, Lemma 2.9]).

Lemma 5.1. cA,K is a critical level for the functional I|HK
.

Proof. Thanks to Lemma 2.4 (note that I (uK) < 0 implies ‖uK‖A > R), the claim follows from
the Mountain Pass Theorem [1] if we show that I|HK

satisfies the Palais-Smale condition. Using
the compact embeddings of [2] and the results of [8] about Nemytskĭı operators on Lp1 + Lp2 ,
this is a standard proof but we still give some details for the sake of completeness. Let {un}
be a sequence in HK such that {I (un)} is bounded and I ′ (un) → 0 in the dual space of HK .
Then, recalling (6) and (7), we have

1

2
‖un‖2A −

∫

RN

F (un) dx = O (1) and ‖un‖2A −
∫

RN

f (un) undx = o (1) ‖un‖ ,

so that assumption (f1) implies

1

2
‖un‖2A +O (1) =

∫

RN

F (un) dx ≤ 1

θ

∫

RN

f (un) undx =
1

θ
‖un‖2A + o (1) ‖un‖ .

This yields that {‖un‖A} is bounded, since θ > 2. On the other hand, thanks to the fact that
p1 < 2∗ < p2, the space HK is compactly embedded into Lp1 + Lp2 , since so is the subspace of
D1,2(RN ) made up of the mappings with the same symmetries of HK (see [2, Theorem A.1]).
Hence there exists u ∈ HK such that, up to a subsequence, we have un ⇀ u in HK and
un → u in Lp1 + Lp2 . This implies that {f (un)} is bounded in both Lp

′

1(RN ) and Lp
′

2(RN ),
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since assumption (fp1,p2) ensures that the operator v 7→ f (v) is continuous from Lp1 + Lp2 into
Lp

′

1(RN ) ∩ Lp′2(RN ) (see [8, Corollary 3.7]). Then by (20) we get
∣

∣

∣

∣

∫

RN

f (un) (un − u) dx

∣

∣

∣

∣

≤
∫

RN

|f (un)| |un − u| dx

≤ ‖un − u‖Lp1+Lp2

(

‖f (un)‖Lp′1 (RN )
+ ‖f (un)‖Lp′2 (RN )

)

≤ (const.) ‖un − u‖Lp1+Lp2 = o (1)

and therefore

‖un − u‖2A = (un, un − u)A − (u, un − u)A

= I ′ (un) (un − u) +

∫

RN

f (un) (un − u) dx− (u, un − u)A = o (1) ,

where (u, un − u)A = o (1) since un ⇀ u in HK, and I
′ (un) (un − u) = o (1) because I ′ (un) → 0

in the dual space of HK and {un − u} is bounded in HK. This completes the proof.

The next lemma clarifies why our separation of cA,K and mA needs assumption (4) and the
lower bound α > 2

N−1 . Recall the definition (3) of ν = νN,α,p1,p2 .

Lemma 5.2. For every α ∈
(

2
N−1 , 2N − 2

)

, α 6= 2, we have ν ≥ 1.

Proof. Assume 2
N−1 < α < 2. Since α > 2

N−1 , we have

2
N − 1

α
− 2N

(

1

α
− 1

2

)

= N − 2

α
> 1.

On the other hand, by easy computations, condition

2
N − 2

2− α

2∗ − p1
p1 − 2

− 2N

(

1

α
− 1

2

)

> 1

turns out to be equivalent to the first inequality of assumption (4). This proves that

2min

{

N − 1

α
,
N − 2

2− α

2∗ − p1
p1 − 2

}

− 2N

(

1

α
− 1

2

)

> 1,

which means
⌈

2min

{

N − 1

α
,
N − 2

2− α

2∗ − p1
p1 − 2

}

− 2N

(

1

α
− 1

2

)⌉

≥ 2

and thus ν ≥ 1. Similarly, if 2 < α < 2N − 2 , we readily have 2(N − 1)/α > 1 and condition

2
N − 2

α− 2

p2 − 2∗

p2 − 2
> 1

turns out to be equivalent to the second inequality of (4). This proves again that ν ≥ 1.
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Proof of Theorem 1.1. On the one hand, the restriction I|Hr
has a critical point ur 6= 0 thanks

to the results of [25], since (fp1,p2) ensures that one can find p ∈ [p1, p2] such that |f (u)| ≤
(const.)up−1 (cf. (5)) and (2) holds. On the other hand, according to Lemma 5.2, there are
ν ≥ 1 integers K (precisely K = 2, ..., ν + 1) such that

K − 1

2
+N

(

1

α
− 1

2

)

< min

{

N − 1

α
,
N − 2

2− α

2∗ − p1
p1 − 2

}

if
2

N − 1
< α < 2

and
K − 1

2
< min

{

N − 1

α
,
N − 2

α− 2

p2 − 2∗

p2 − 2

}

if 2 < α < 2N − 2.

Let K be any of such integers. By Remark 3.3 and Propositions 3.2, 4.2 and 4.3, there exists
A∗ > AK such that

cA,K < mA for every A > A∗ . (21)

Then, by Lemma 5.1, there exists uK ∈ HK such that I (uK) = cA,K and I ′|HK
(uK) = 0, where

uK 6= 0 since cA,K > 0 and I (0) = 0. Both ur and uK are also critical points for the functional
I : H1

α → R, by the Palais’ Principle of Symmetric Criticality [23]. Moreover, it easy to check
that they are nonnegative: test I ′ (uK) with the negative part u−K ∈ H1

α of uK and use the fact

that f (s) = 0 for s < 0 to get I ′ (uK)u
−
K = −

∥

∥u−K
∥

∥

2

A
= 0; the same for ur. Therefore ur and

uK are weak solutions to problem (P). Finally uK is not radial, because otherwise Lemma 2.3
would imply cA,K = I (uK) ≥ mA, which is false by (21). This also implies uK1 6= uK2 for
K1 6= K2, thanks to Lemma 2.1.
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[14] Benci V., Micheletti A.M., Solutions in exterior domains of null mass nonlinear scalar
field equations, Adv. Nonlinear Stud. 6 (2006), 171-198.

[15] Catrina F., Nonexistence of positive radial solutions for a problem with singular potential,
Adv. Nonlinear Anal. 3 (2014), 1-13.

[16] Conti M., Crotti S., Pardo D., On the existence of positive solutions for a class of
singular elliptic equations, Adv. Differential Equations 3 (1998), 111-132.

[17] Fife P.C., Asymptotic states for equations of reaction and diffusion, Bull. Amer. Math.
Soc. 84 (1978), 693-728.

[18] Ghimenti M., Micheletti A.M., Existence of minimal nodal solutions for the nonlinear
Schrödinger equations with V (∞) = 0, Adv. Differential Equations 11 (2006), 1375-1396.

[19] Guida M., Rolando S., Nonlinear Schrödinger equations without compatibility conditions
on the potentials, J. Math. Anal. Appl. 439 (2016), 347-363.

22
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