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Abstract – This paper considers the use of multi-objective 
genetic algorithms for solving a typical production chain 
problem, in which two consecutive production stages have 
to schedule their internal work while taking into account 
each other’s requirements. We focus on a multi-objective 
genetic algorithm recently proposed in the related 
literature, i.e. IGA (Intelligent Genetic Algorithm), 
comparing the solutions it yields with those obtained by two 
state-of-the-art genetic optimizers. A set of preliminary 
computational tests on the mentioned case study using 
industrial data indicate that IGA is a promising multi 
objective optimizer for typical supply chain planning and 
scheduling problems. 
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1 Introduction 
  A Supply Chain (SC) may be defined as a network of 
autonomous or semiautonomous business entities 
collectively responsible for procurement, manufacturing 
and distribution activities associated with one or more 
families of related products [6]. Obviously, the global SC 
performance depends on the performance of all SC 
partners. Hence, efficient SC management is increasingly 
recognized to have a significant impact on accomplishing 
effective SC operation. The SC management decisions can 
be broadly classified into three hierarchical levels: strategic 
(long-term), tactical (medium-term), and operational (short-
term and real-time), according to the time horizon of the 
decisions. Strategic level planning involves SC design, 
considering time horizons of a few years, and requires 
approximate and aggregate data. Tactical level planning 
basically refers to supply planning, which primarily 
includes the optimization of the flow of goods and services 
through a given SC network. Finally, operational level 
planning is short-range planning, which involves 
production scheduling at all plants on an hour-to-hour 
basis. 

Indeed, the setup or changeover costs minimization is one 
of the drivers in the modern production management,  and 
in the past decades there has been a significant research 
effort worldwide associated to it. This research presents 

three  main streams. The first pursues technical 
improvements of components and equipments of 
production systems. The second research line is devoted to 
integrate production planning and operations scheduling. In 
this context, setup minimization, production scheduling and 
lot-sizing are considered in the same mathematical models. 
This approaches may be not always adequate - e.g. for the 
computational complexity associated to integrated models, 
and for the structure and the organization of different 
production systems - to cope with practical management 
issues. At this aim, different decomposition techinques are 
considered in the literature. The last research stream 
focalizes on the problem to minimize the setup costs in the 
operational level planning assuming a scheduling and a 
sequencing point of view.   

  This paper considers a typical problem in SC 
management at the operational level: the setup coordination 
of processing operations. More precisely, such a problem 
arises in the coordination between two consecutive make-
to-order SC manufacturing stages (or the departments of a 
plant), in which parts are processed in given production 
batches, and each batch is characterized by two distinct 
attributes. Due to limited inter-stage buffering, the two 
production stages have to follow the same batch sequence. 
In the first stage, a setup occurs every time the first attribute 
of the new batch is different from the previous one. In the 
downstream stage, there is a setup when the second 
attribute of the new batch changes. The problem consists in 
finding a common batch sequence optimizing a set of 
global (or local) performance indices that assess the setup 
time cost. Hence, choosing the best sequence is a 
considerably complex optimization problem that exhibits 
multiple conflicting objectives. 

 Recent literature has shown that multi-objective 
optimization genetic algorithms may be successfully 
employed for solving supply chain planning and scheduling 
problems [15, 16]. In this direction, the paper considers the 
application of multi-objective genetic algorithms to the 
aforementioned problem of lot sequencing in the 
production industry. More precisely, we focus on the 
application of a new genetic algorithmic approach to a 
multi-criteria version of the problem, recently proposed by 
Koubaa and Hammadi [13]. This approach, known as 
Intelligent Genetic Algorithm (IGA), is based on 
autonomous agent chromosomes. We consider an industrial 



case study [1, 4] that presents different performance indices 
based on the number of setups of the involved stages of the 
SC and conduct a preliminary experimental campaign to 
test the IGA scheme. Two multi-objective versions of the 
setup coordination problem are used as test-bed to the novel 
genetic algorithm and the obtained results are compared to 
the solutions obtained by two state-of-the-art genetic 
optimizers [4, 16]. 

  The paper is organized as follows. Section 2 briefly 
discusses the application of genetic algorithm approaches to 
lot sequencing in the production industry. Moreover, 
Section 3 provides a concise description of the IGA 
scheme. Furthermore, the case study is illustrated in Section 
4, while Section 5 reports the computational experiments. 
Finally, Section 6 draws the conclusions. 

2 Using genetic algorithms for setup 
coordination of operations 

  The setup coordination of processing operations is a 
typical problem in serial manufacturing systems or 
production chains [1]. More precisely, in such 
environments, often the lack of intermediate buffering 
between two consecutive stages imposes the coordination 
of their internal processing sequences. In this case, a 
considerably complex optimization problem with 
conflicting objectives arises, since each department aims at 
minimizing its own total cost (related to the attributes of the 
processing parts). Clearly, also a global index of 
performance, e.g. the sum of the costs of each department, 
must be accounted for in the optimization process. In 
particular cases, some efficient heuristic algorithms are 
available in the literature to solve similar sequencing 
problems considering only a single objective, e.g. the sum 
of all costs, or the maximum of the costs of each 
department [1, 2, 7, 14, 17], while the multi-objective case 
is a complex problem calling for innovative approaches [3, 
15, 16]. In particular, as for many manufacturing problems 
[5], the nature of the problem is particularly suitable for 
meta-heuristic approaches. 

  Genetic Algorithms (GAs) are a class of heuristic 
search techniques inspired by the principle of survival-of-
the-fittest in natural evolution and genetics. In single-
objective optimization problems, the search is guided by a 
scalar merit function expressing the fitness of the specific 
solution with respect to the objectives and the constraints of 
the problem. Recently, interesting and successful 
extensions of genetic methods to multi-objective 
optimization problems have been developed. In these 
Multi-Objective GAs (MOGAs) the search goals are not 
expressed or aggregated in a single scalar index of quality, 
but rather they are considered separately so that each 
particular solution is associated to a vector of fitness values 
expressing different objectives. The technical literature 
describes numerous efficient MOGAs for Pareto Set 

estimation [4, 8, 9, 10, 11, 12], and some comparative 
analyses are available [18]. 

 Recent literature has shown that multi-objective 
optimization genetic algorithms may be successfully 
employed for solving sequencing problems in production 
chains [4, 15, 16]. Among these, we consider notable 
NSGA-II and CLS-EA, both particularly suitable for 
applications in SC planning and scheduling.  

 The well-known MOGA proposed by Deb et al. [4] 
called NSGA-II uses the elitism concept and the non-
dominated sorting mechanism in the main algorithmic 
scheme. NSGA-II is designed to store the non-dominated 
solutions found at any given iteration. Since the number of 
non-dominated solutions may become excessively large in 
many optimization problems, it uses a special strategy to 
limit memory and computational requirements. This 
strategy is based on the concept of crowding index of a 
solution belonging to the known Pareto-front providing an 
higher chances to be stored to solutions belonging to less 
crowded areas of the front. For brevity, we omit the full 
description of the NSGA-II, which can be found in [4], 
while in [16] the algorithm is adapted to solve the class of 
problems considered in this paper.  

 In [16],  a variant of NSGA-II with combinatorial 
local search operators has been proposed. The peculiarity of 
this  algorithm, referred as Combinatorial Local Search 
Evolutonary Algorithm (CLS-EA), is the use of different 
simple local search functions based on three search rules, 
which aim to increase the progress rate of the non-
dominated solutions during the algorithm’s run. Another 
characteristic of CLS-EA is the use of a selection 
mechanism contrasting the occurrence of multiple identical 
solutions in the population, with the intent to increase the 
overall diversity of the populations. A more detailed 
description of the structure and the behaviour of this 
algorithm is provided in [16] and is here omitted for the 
sake of brevity. 

  In this context, a novel Intelligent Genetic Algorithm 
(IGA) [13], proposed by Koubaa and Hammadi, is based on 
the concept of autonomous agent chromosomes. This 
feature, together with the IGA characteristic of being a 
multi-objective evolutionary algorithm, suggest us to 
employ such a novel approach for setup coordination of 
operations in SC. The novel genetic algorithm may then be 
evaluated by comparison with the established algorithms 
NSGA-II and CLS-EA. The next section briefly describes 
the main characteristics of IGA. 

3 The intelligent genetic algorithm 
  The Intelligent Genetic Algorithm (IGA) recently 
proposed by Koubaa and Hammadi [13] is based on the 
novel concept of autonomous agent chromosomes. The key 



idea is to implement a realistic behavior of genetic entities 
and operators. In particular, the proposed multi-objective 
genetic algorithm tries to emulate the biological evolution 
concept in which the female cell (F-Cell) “chooses” the 
ideal candidate among all the male cells (M-Cell). Indeed, 
recent findings have demonstrated that this mechanism 
seems to be able to produce superior children according to 
some specific criterion (fitness). 

  The proposed IGA implementation [13] starts by a 
randomly generated population of chromosomes, although 
seeding operations may also be considered. The main 
functions characterizing IGA are selection, crossover and 
mutation. The selection function acts as a classification of 
chromosomes in F-Cells and M-Cells. The classification 
takes into account the performance or fitness of genetic 
cells. The cells with better performance indices are 
considered as F-Cells. The other cells are classified as M-
Cells and are grouped in different sets. The crossover 
function is based on communications between M-Cells and 
F-Cells. F-Cells collect the requests of crossover from M-
Cells and accept only the best of them. The mutation 
function operates on the children generated in the previous 
phase. The algorithmic scheme is characterized by a high 
flexibility, in order to incorporate different genetic 
operators and fitness functions. In particular, F-Cells and 
M-Cells may pursue the optimization of different functions 
and the biological mechanism guides the evolution to solve 
tradeoffs between objectives. The proposed algorithm can 
be straightforwardly implemented in a multi-agent 
development environment and appears to be suitable for 
applications in multi-criteria and multi-decision makers 
situations as those arising in supply chain management [6]. 

4 The problem description 
 The models and instances considered in this paper 
arise in the industrial environment described by Agnetis et 
al. [1] and Meloni [14]. In particular, we focus on the 
coordination issues between two stages of a production 
chain. Assume that these stages or departments have to 
produce parts that are grouped in lots that may differ as 
regards two attributes, called hereinafter shape and color. 
In particular, in the first department parts are grouped 
according to their first characteristic, and in the subsequent 
department parts are grouped according to their second 
attribute. In both departments, a changeover occurs when 
the attribute of a new part changes with respect to the same 
characteristic of items in the other department. Indeed, if a 
part exhibits a different shape from the previously produced 
ones, the cutting machinery must be reconfigured. 
Similarly, when a new color is used, the painting station 
must be cleaned in order to remove the residuals of the 
previous color. In both cases, costs are incurred in terms of 
time and manpower. Other important issues make the 
sequencing problem an extremely difficult task, e.g. 
different costs, precedence constraints, etc. This paper 

addresses the problem in its basic version, i.e. assuming 
that all the setup operations in each department and across 
departments have the same cost, and changes of the 
processing sequence between the two stages are not 
allowed. Hence, the sequencing optimization is formulated 
as a multi-objective problem, in which a tradeoff between 
different indices of performance has to be solved. Each 
item to be produced is characterized by its own shape and 
color. All items having the same shape and color form a 
single batch. In the first (second) department, a changeover 
is paid when the new batch has a different shape (color) 
from the previous one. Otherwise, no changeover is 
incurred. Since the objective is to minimize the number of 
changeovers, the actual cardinality of each batch is of no 
interest. Each given sequence of the batches results in a 
cost of changeovers to be paid by each department. Thus, 
referring to the two departments, the objectives that should 
be simultaneously optimized are the following: 

(i) minimization of the total cost of 
changeovers; 

(ii) minimization of the maximum paid cost of 
changeover; 

(iii) minimization of the setups for the cutting 
department; 

(iv) minimization of the setups for the painting 
department. 

  While the first objective corresponds to the 
maximization of overall utility, the second one captures 
more realistically the need to balance the changeover costs 
between the two departments. Moreover, the last two 
objectives represent a frequent tradeoff involving 
successive working centers. 

  The problem is formulated in detail as follows. Let 
B={bk, k=1,…,|B|} be the problem input, i.e. a set of 
batches to be produced. The batches must be processed by 
two departments of the plant, called DS (cutting 
department) and DC (coloring department), respectively. 
Each batch is characterized by two attributes, say shape and 
color. Let S={si i=1,…,|S|} and C={cj, j=1,…,|C|} denote 
the sets of all possible shapes and colors respectively. 
Therefore, each batch bk∈B is defined by a pair bk=(si,cj), 
with si∈S and cj∈C. Moreover, if two batches bk1=(si,cj) and 
bk2=(sh,cn) are in B and bk1 is processed immediately after 
bk2, a changeover is paid in department DS (DC) if sh≠si 
(cn≠cj). Hence, the problem is to sequence the batches in a 
profitable way from the viewpoint of the number of 
changeovers. This means that we must find an ordering σ 
of the elements of B, considering the following situations. 

1) If two consecutive batches bk1=(si,cj) and 
bk2=(sh,ck) in σ have no attribute in common, both 
departments have to pay one changeover when 
switching from batch b1 to b2. We refer to this as a 
global changeover. 



2) On the other hand, if sh=si (cn=cj), only 
department DC (DS) pays a changeover. This 
situation is called local changeover. 

  Now consider a given sequence σ and let s(σ(q)) and 
c(σ(q)) respectively denote the shape and color of the q-th 
batch in σ. Moreover, given two consecutive batches 
bk1=(si,cj) and bk2=(sh,cn) in σ, select δsi,sh (δcj,cn) equal to 1 if 
sh≠si (cn≠cj) and 0 otherwise. For the given sequence σ we 
can therefore easily compute the number of changeovers 
incurred by each department, called NS(σ) and NC(σ) 
respectively, as follows: 
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 In our preliminary campaign of experiments, we 
consider two bi-objective optimization problems for the 
described case study. In the first problem (referred to as 
Case 1) the simultaneous objectives are: 

(i) minimize (NS(σ)+NC(σ)), i.e., 
minimization of the total cost of 
changeover; 

(ii) minimize max{NS(σ),NC(σ)}, i.e., 
minimization of the maximum paid cost of 
changeover. 

  In the second problem (Case 2), the objectives are: 
(iii) minimize NS(σ), i.e., minimization of the 

setups for the cutting department; 
(iv) minimize NC(σ), i.e., minimization of the 

setups for the painting department. 

5 The computational results 
  This section describes a preliminary performance 
comparison between IGA and two well-known multi-
objective genetic algorithms, namely NSGA-II and CLS-
EA. The comparison of Case 1 and Case 2 is based on the 
described multi-objective sequencing problem with 
reference to an industrial case study first introduced in [1] 
concerning the production process of a furniture 
manufacturer. The plant produces thirteen basic product 
models, each to be customized to meet the preferences 
expressed in the collected orders. 

  The focus is on the coordination between the cutting 
and the painting departments. Although thousands of 
different parts are produced every week, there are only four 
cutting modes (indicated as A, B, C, D) associated with the 
shape of the items, three thickness values (in mm), and 
three different material types (W is natural wood, PW is 
plywood and MDF indicates a special composite material 

called medium density fiber). This results in 36 different 
classes (cutting classes), so that items from the same class 
can be processed without machine setup in the cutting 
department. For technical reasons, only 32 of these classes 
are actually produced, as described in Table I. Similarly, in 
the painting department items can be classified according to 
their color and finishing (color classes). There are seven 
different colors and two types of finishing, yielding 14 
classes, reported in Table II. 

 

Table I:  Cutting classes. 

Cutting
class Shape Thickness Material Cutting 

class Shape Thickness Material

S1 A 18 W S17 B 40 MDF 

S2 A 18 PW S18 C 18 W 

S3 A 18 MDF S19 C 18 PW 

S4 A 32 W S20 C 32 W 

S5 A 32 PW S21 C 32 PW 

S6 A 32 MDF S22 C 32 MDF 

S7 A 40 W S23 C 40 W 

S8 A 40 PW S24 C 40 PW 

S9 A 40 MDF S25 D 18 W 

S10 B 18 W S26 D 18 PW 

S11 B 18 PW S27 D 18 MDF 

S12 B 18 MDF S28 D 32 W 

S13 B 32 W S29 D 32 PW 

S14 B 32 PW S30 D 32 MDF 

S15 B 40 W S31 D 40 W 

S16 B 40 PW S32 D 40 PW 

Table II:  Color classes. 

Color 
class Color Finishing Color 

class Color Finishing

C1 black natural C8 black polished 

C2 grey natural C9 grey polished 

C3 white natural C10 white polished 

C4 yellow natural C11 yellow polished 

C5 green natural C12 green polished 

C6 red natural C13 red polished 

C7 natural 
wood natural C14 natural 

wood polished 

Table III:  Number of batches in the considered instances. 

 INST. 1 INST. 2 INST. 3 INST. 4 INST. 5 

Batches 251 252 252 252 282 



Table IV:  Common settings of the considered algorithms. 

Population size 100 

Encoding scheme path representation 

Stopping criteria 900 s 

NS(σ) 

NC(σ) 

NS(σ)+NC(σ) 

Fitness functions 

max{ NS(σ), NC(σ)} 

 The common settings of the different considered 
algorithms are summarized in Table IV. The specific 
parameters for NSGA-II and CLS-EA are set to the 
suggested values proposed in the respective references, i.e. 
order-based crossover and two-point crossover, both with a 
crossover probability pc=0.8, and insertion mutation, both 
with a mutation probability pm=0.3. Moreover, the current 
version of IGA is equipped with a meta-ordering crossover 
operator and an inversion mutation operator. 

 The set of test problems consists of a sample of five 
(over 32) instances taken from Agnetis et al. [1] and 
contains data describing 5 different weekly production 
plans requiring different products. For each instance, the 
number of required production batches is indicated in Table 
III. 

  Each of the compared algorithms tries to solve the two 
cases described in Section 4 of the mentioned batch 
ordering problem. The three algorithms are tested on runs 
of 15 minutes length and is launched 3 times on each 
instance. The evaluation of the algorithms is based on a 
recently proposed comparative metric for MOGAs. The 
metric is the average coverage, defined in [18] as follows. 
Given two sets of solutions X', X" ⊆ X, the function C maps 
the ordered pair (X',X") in a number in [0,1] as follows: 

 C( ', ")
{ X"; X' : }

X X
{X"}

∈ ∃ ∈ =
=

a" a' a' a"f
, (3) 

where the notation  =  a bf indicates that a covers b, i.e. 

  =    or f ( ) f ( )⇔ =a b a b a bf f , (4) 

and a bf  indicates that a dominates b. In other words, a 
solution a is said to cover a solution b if and only if either a 
dominates b or a and b have the same fitness vector. 
Therefore, the overall coverage obtained with function C 
provides a clear indication of the relative quality of the 
compared solution sets. 

  Tables V to VIII report the relative coverage of the 
three algorithms. More precisely, in each of these tables a 

pair of algorithms is compared on the basis of function (3) 
and each row of the tables indicates which algorithm 
provides set X’. The first value in each cell indicates the 
coverage of the overall non-dominated solution sets 
obtained as the union of the three solutions sets (obtained in 
the three different runs) for each algorithm. The values in 
the brackets indicate the cardinality of the overall non-
dominated solution set. Tables V and VI clearly indicate 
that, while IGA and NSGA-II exhibit comparable 
performances in Case 1. In the same case, neither NSGA-II 
nor CLS-EA dominate the performance of IGA. 

Table V:  Relative coverage of algorithms IGA and NSGA-
II in Case 1. 

 INST. 1 INST. 2 INST. 3 INST. 4 INST. 5 

IGA 0 [13] 0 [10] 0 [12] 0 [10] 1 [12] 

NSGA II 0 [1] 0 [1] 0 [1] 0 [2] 0 [2] 

Table VI:  Relative coverage of algorithms IGA and CLS-
EA in Case 1. 

 INST. 1 INST. 2 INST. 3 INST. 4 INST. 5 

IGA 1 [13] 1 [10] 0 [12] 1 [10] 0 [12] 

CLS-EA 0 [1] 0 [1] 0 [2] 0 [1] 0 [2] 

Table VII:  Relative coverage of algorithms IGA and 
NSGA-II in Case 2. 

 INST. 1 INST. 2 INST. 3 INST. 4 INST. 5 

IGA 0.127 [18] 0.105 [22] 0.053 [14] 0.113 [14] 0.102 [25]

NSGA II 0.333 [134] 0.682 [133] 0.714 [133] 0.357 [142] 0.560 [157]

Table VIII:  Relative coverage of algorithms IGA and CLS-
EA in Case 2. 

 INST. 1 INST. 2 INST. 3 INST. 4 INST. 5 

IGA 0.098 [18] 0.090 [22] 0.016 [14] 0.033 [14] 0.068 [25]

CLS-EA 0.444 [61] 0.636 [78] 0.999 [61] 0.786 [61] 0.720 [73]

  However, the IGA algorithm exhibits lower 
performances in Case 2. In fact, for each test, the current 
version of the algorithm underperforms both NSGA-II and 
CLS-EA (see Tables VII and VIII). Note that the latter 
algorithm is equipped with problem-specific combinatorial 
local search procedures [16] that contribute to this results. 

6 Conclusions 
  The paper considers a well known sequencing 
problem arising in supply chains. An experimental 
campaign is conducted to test the behavior in such a field of 
a new genetic optimizer, called Intelligent Genetic 
Algorithm (IGA). The considered case study comprises two 



complex multi-objective problems, defined on a set of real-
world test instances, and a metric evaluating the algorithm. 
The obtained results show that in the first case IGA is able 
to perform at least at the same level (but in some cases 
better) than current state-of-the-art algorithms, in terms of 
quality of non-dominated obtained solutions. Hence, this 
first campaign of computational experiments indicates that 
the novel IGA approach is a promising multi-criteria 
evolutionary solver for typical problems of supply chain 
management. Future perspectives include the investigation 
of additional metrics to capture and compare different 
aspects of the behavior of the considered algorithms with 
additional tests as well as the application of the IGA 
scheme to some extension of the problem, e.g. to cope with 
different structures of setup costs and the cases in which 
production quantities and capacities have to be considered. 
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