
SCUOLA DI DOTTORATO 
UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA 

 

 

 

Dipartimento di / Department of 

Dipartimento di Biotecnologie e Bioscienze/School of Microbiology 

 
 

Dottorato di Ricerca in/PhD program SCIENZE DELLA VITA/Microbiology   

 

Ciclo/Cycle XXIX 

 
 

 

Elucidation of weak organic acid resistance mechanisms in 

non-Saccharomyces yeast 

A case study of Zygosaccharomyces parabailii and Kluyveromyces marxianus 

 

 

Cognome / Surname     Kuanyshev      Nome / Name   Nurzhan             

Matricola / Registration number      788751       
 

 

 

Tutore / Tutor:     Prof. Paola Branduardi       

Cotutore / Co-tutor:    Dr. John P. Morrissey     

(se presente / if there is one) 
 

Coordinatore / Coordinator:    Prof. Marco Vanoni       

 

ANNO ACCADEMICO / ACADEMIC YEAR    2016-2017 



 

 

 

 

 

 

“WORD THIRTY-TWO 

… You should love learning for its own sake and strive for it. If you value knowledge as a supreme 

blessing, each new truth you uncover will bring peace and satisfaction to your soul. Memorize well 

what is new to you, and you will feel the desire-for new quests, and a love of knowledge will be born in 

your heart. Then your memory will absorb whatever you have seen and heard…” 

 

 

From The Book of Words (Kazakh: қара сөздері, Qara sözderi) by Abai Qunanbaiuly, a Kazakh poet, 

composer and philosopher 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

The efficient implementation of biorefineries to produce bio-based chemicals and fuels 

requires sustainable source of feedstock and robust microbial factories. Among others, 

lignocellulose and whey, which are residual wastes deriving from wood/agriculture and dairy 

industries, represent cheap, sugar-enriched feedstocks. The conversion of lignocellulose and 

whey into the desired products using microbial cell factories is a promising option to replace 

the fossil based petrochemical refinery. Different bacteria, algae and yeasts are currently used 

as microbial hosts, and their number is predicted to increase over next years. Minimum 

nutritional requirements and robustness have made yeasts a class of microbial hosts widely 

employed in industrial biotechnology, exploiting their natural abilities as well as genetically 

acquired pathways for production of natural and recombinant products, including bulk 

chemicals such as organic acids. However, efficient and economically viable production of 

organic acids has to face problems related to low productivity/titer and toxicity of the final 

product. Therefore, the exploration of yeast biodiversity to exploit unique native features and 

the understanding of mechanisms to endure harsh conditions are essential to develop ultra-

efficient and robust industrial yeast with novel properties.   

The aim of the research thesis is to evaluate the mechanism of weak acid stress response in the 

non-Saccharomyces yeasts Zygosaccharomyces parabailii and Kluyveromyces marxianus. To 

better understand the weak acid stress response of Z. parabailii, we summarized recent finding 

on the species. Knowing the relevant scientific reports, the next study was focused on the 

effect of lactic acid stress on Z. parabailii.  This organic acid can be used as monomer for the 

production of biodegradable bioplastic polymers, such as poly lactic acid (PLA). The study 

revealed that cells are able to tolerate 40g/l of lactic acid without inducing a lag phase of 

growth and exhibit a negligible percentage of dead cells. More importantly, during lactic acid 

exposure, we observed structural modifications at the level of cell wall and membrane. These 

findings confirmed the peculiar ability of Z. parabailii to adapt to weak organic acids via 

remodeling of cellular components.  

The lack of a complete genome assembly and annotation encouraged us to perform a genome 

sequencing and genome study of our Z. parabailii strain. The results revealed that Z. 

parabailii is undergoing fertility restoration after interspecies hybridization event, which may 

shed a light to the process of whole genome duplication. The availability of Z. parabailii 



complete genome information allowed us to perform the first RNA-sequencing analysis on the 

species exposed to lactic acid stress. The results showed upregulation of mitochondrial and 

oxidative stress genes, and downregulation of a subset of cell wall genes, in addition to other 

specific regulation related to redox balance and ion homeostasis. Remarkably, several 

differentially regulated genes differ significantly from the S. cerevisiae counterpart or, in some 

cases, even seem not to have a homologue.  

Increased interest of K. marxianus application in industrial biotechnology led us to study its 

multidrug resistance transporters during acetic and lactic acid stress, the first being a 

contaminant related to the use o lignocellulose as feedstocks, while the second as final product 

of interest, as mentioned above. The results showed a strain-specific response to weak organic 

acid stress, and a possible involvement of KmPDR12 in acetic and lactic acid stress resistance, 

opening potential for future discoveries and novel studies. 

Overall, this work contributes to the vast array of studies that are shedding light on yeasts 

biodiversity, both as a way for understanding their natural potential and as an instrument for 

tailoring novel cell factories. 

 

Keywords: Zygosaccharomyces parabailii, Kluyveromyces marxianus, FTIR, RNA-seq, 

biorefinery, acetic acid, lactic acid, hybrid, fertility restoration, PDR12 

 

 

 

 

 

 

 

 

 

 



Riassunto 

Al fine di rendere efficiente la produzione di biomolecole e biocarburanti tramite le 

bioraffinerie, è necessario avere a disposizione materie prime rinnovabili e cell factory 

microbiche robuste. Fra le diverse opzioni, la lignocellulosa e il siero di latte, sottoprodotti delle 

industrie forestali, agricole e casearie, rappresentano materie prime economiche e ricche di 

zuccheri. La conversione della lignocellulosa e del siero di latte nei prodotti desiderati tramite 

cell factory microbiche è un’opzione interessante per la sostituzione delle raffinerie 

petrolchimiche. Diversi batteri, alghe e lieviti sono già utilizzati come cell factory, ma è previsto 

che il loro numero aumenti nei prossimi anni. Scarse richieste nutrizionali e robustezza sono 

caratteristiche che hanno reso i lieviti una classe di microrganismi largamente utilizzata nelle 

biotecnologie industriali. Ciò è stato possibile grazie allo sfruttamento delle loro qualità naturali 

e all’ingegnerizzazione di pathway metabolici per la produzione di prodotti naturali o 

ricombinanti, tra i quali molecole come gli acidi organici. Per essere competitiva e sostenibile 

la produzione di acidi organici deve affrontare problematiche connesse alla bassa 

produttività/produzione e alla tossicità del prodotto finale. Di conseguenza, lo studio della 

biodiversità dei lieviti al fine di far emergere particolari caratteristiche naturali e l’analisi dei 

meccanismi di resistenza a condizioni estreme sono essenziali per lo sviluppo di lieviti 

industriali ultra-efficienti e robusti e identificabili per proprietà innovative. 

Lo scopo della tesi di ricerca è stato quello di valutare i meccanismi di risposta allo stress indotto 

da acidi deboli nei lieviti non-Saccaromiceti Zygosaccharomyces parabailii e Kluyveromyces 

marxianus. Per capire al meglio la risposta nei confronti dello stress indotto da acidi deboli di 

Z. parabailii, abbiamo innanzi tutto ricapitolato tutti le recenti scoperte riguardo questa specie. 

Una volta venuti a conoscenza delle scoperte scientifiche più rilevanti, ci siamo focalizzati 

sull’effetto indotto da acido lattico nei confronti del ceppo di Z. parabailii utilizzato nel nostro 

laboratorio. Lo studio ha rivelato che le cellule sono in grado di sopportare fino a 40g/L di acido 

lattico senza mostrare una fase lag nelle cinetiche di crescita, ed una percentuale irrisoria di 

cellule morte. Ma ancor più importante è da sottolineare il fatto che durante l’esposizione 

all’acido lattico abbiamo osservato modificazioni strutturali a livello della parete e della 

membrana cellulare. Questi risultati hanno confermato la peculiare abilità di Z. parabailii di 

adattarsi agli acidi deboli tramite il rimodellamento di alcune componenti cellulari. 



La mancanza di un genoma di riferimento completo ci ha spinto a compiere il lavoro di 

sequenziamento, assemblaggio ed annotazione: questo lavoro, oltre a permetterci di evidenziare 

la natura ibrida del ceppo di Z. parabailii considerato, ha aperto la possibilità di ulteriori studi. 

I risultati hanno rivelato che Z. parabailii sta subendo un ripristino della fertilità, a seguito 

dell’evento di ibridazione interspecie, cosa che potrebbe chiarire il processo di duplicazione 

dell’intero genoma avvenuta in S. cerevisiae ed altri lieviti appartenenti al medesimo clade. 

Avere a disposizione le informazioni riguardo il genoma completo di Z. parabailii ci ha 

permesso di portare a termine la prima analisi di sequenziamento dell’RNA sulla specie, quando 

esposta allo stress da acido lattico. I risultati hanno mostrato l’up-regolazione di geni 

mitocondriali e connessi allo stress ossidativo, e la down-regolazione di una serie di geni 

codificanti per determinanti della parete cellulare, in aggiunta alle regolazioni specifiche 

riguardanti il bilanciamento redox e l’omeostasi di ioni, tra cui il Ferro. È degno di nota il fatto 

che molti geni sono regolati differentemente rispetto alla controparte di S. cerevisiae, o 

addirittura non sembrano possedere un omologo nel lievito di riferimento. 

L’interesse sempre crescente nei confronti delle applicazioni di K. marxianus nelle 

biotecnologie industriali ci ha portato allo studio dei suoi trasportatori multidrug resistance 

durante lo stress indotto da acido acetico e acido lattico. I risultati mostrano una risposta 

specifica agli acidi organici e un putativo coinvolgimento di KmPDR12 nella resistenza 

all’acido acetico e all’acido lattico, aprendo le porte a future scoperte e studi innovativi. 

 

Parole chiave: Zygosaccharomyces parabailii, Kluyveromyces marxianus, FTIR, RNA-seq, 

bioraffineria, acido acetico, acido lattico, ibrido, ripristino della fertilità, PDR12 
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INTRODUCTION 

Environmental context of microbial cell factories 

Environmental concerns and the economic landscape around the world are driving society and 

industry to renewable, ecologically friendly and economically viable sources of fuel and 

chemicals. Science and technology are bringing new solutions to address the demands of the 

modern world to develop alternative sources of energy. These solutions include renewable 

energy such as solar and wind, as well as the replacement of petroleum as a source of fuel. This 

also fits into a larger goal of developing a more sustainable economy that is not reliant on fossil 

resources as a source of fuel energy, or of precursors for the chemical industry. A key goal is 

the development of an economy based on sustainable feedstocks and zero carbon emissions. 

 

This goal underpins the concept of the biorefinery as utilization of renewable biomass, waste 

products, recycling of secondary products and valorization of co-products to produce fuel, 

power and value-added chemicals (Cherubini, 2010). A biorefinery is similar in concept to a 

petroleum refinery, which converts crude oil to different value-added chemicals and fuels.  The 

main drawbacks of petroleum refineries are non-sustainability of the resource (crude oil) and 

contribution to global increase of greenhouse gases emission, as a result perturbing the Earth’s 

climate and environment (Solomon et al., 2007). In this context, biorefineries are seen as a 

potential alternative to completely substitute petroleum-based refineries (Clark and Deswarte, 

2014) (Fig. 1). 
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Figure 1 Biorefinery concept diagram. Adopted from Clark et al., 2006 

 

The biorefinery concept embraces a wide range of technologies ranging from biomass 

pretreatment to final product transportation. The technologies that are jointly applied to 

efficiently convert biomass into valuable products can be divided into four groups: 

1. Thermochemical processes: The aim of thermochemical process is to convert biomass 

into energy and chemical products by gasification and pyrolysis. Gasification is biomass 

treatment at high temperature (above 700°C) with low oxygen levels to produce syngas. 

Pyrolysis is biomass treatment at intermediate temperature (300-600°C) without oxygen to 

produce pyrolytic oil (or bio-oil), solid charcoal and light gases like syngas. Both products can 

be directly used as a stationary biofuel or as precursors to produce other fuels (Spath and Dayton, 

2003, Bridgwater and Peacocke, 2000).  

2. Mechanical/physical processes: The aim of a mechanical process is to reduce the size 

and separate the components of the biomass, without changing the state and composition of it. 

This process is usually performed before biomass utilization to reduce the size of biomass within 

specific ranges for an efficient subsequent processing (Sun and Cheng, 2002). 

3. Chemical processes: The aim of chemical processes is to change the chemical 

composition and structure of biomass by hydrolysis. Hydrolysis uses acids, bases and enzymes 

CO
2
 CO

2
 

wastes 
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to depolymerize polysaccharides into monomers (cellulose into glucose) for subsequent 

processing of the monomers into valuable products (Sun and Cheng, 2002).  

4. Biochemical processes: Biochemical processes involve application of fermentation via 

microbial cell factories to convert fermentable substrate into desired product. The process occurs 

at low temperature and slower rate in comparison to thermochemical processing (Hamelinck et 

al., 2005). 

 

One of the key instruments of the biochemical processes is development and usage of efficient, 

robust, versatile microbial cell factories with innate or engineered metabolism, capable of 

converting bio-based substrates into desirable products. Thus, the production microorganism 

should have minimum nutritional requirements, fast growth, high yield and productivity, and be 

safe and amenable for genetic manipulation. In addition, the microorganism should have high 

tolerance to inhibitors present in raw material and to the final product (Gustavsson and Lee, 

2016).   

 

Being a model organism for fundamental research, it is not surprising that the bacterium 

Escherichia coli has been extensively used as a platform organism in various industrial 

productions (Kung et al., 2012, Du et al., 2011). The knowledge gathered in decades of research 

allowed the industry to engineer and exploit E. coli as a microbial cell factory for production of 

various chemicals including pharmaceuticals, biofuels and amino acids (Chen et al., 2013). 

Nonetheless, this bacterium possesses innate disadvantages like low tolerance to organic acids, 

low pH, furan derivatives and phenolic compounds. In addition, low osmotic tolerance in high 

sugar medium may hinder overall fermentation ability of the bacteria (Liu and Khosla, 2010). 

Although, these limitations are not a serious problem when growing on synthetic medium to 

produce high value products for biopharma, they greatly restrict the applications of E. coli in 

industrial biotechnology. This creates the need to develop alternative hosts to serve as cell 

factories. In this regard, yeasts, especially the yeast Saccharomyces cerevisiae, have provided a 

useful option in conditions where their natural resilience to low pH and a variety of toxic 

compounds can be exploited. 

S. cerevisiae is considered as the first domesticated microorganism, which have been used for 

thousands of years in wine making, bakery and brewing. The most prominent feature of S. 

cerevisiae is an ability to ferment glucose into ethanol and carbon dioxide, even in the presence 



4 
 

of oxygen. This phenomenon is called the Crabtree effect, which works by repressing respiration 

and prioritizing fermentative utilization of fermentative carbon source (glucose, sucrose and etc) 

(Piskur et al., 2006). Since S. cerevisiae have been used for a long time in food applications, it 

has become a eukaryotic model organism for basic research and have been extensively studied 

and characterized. Moreover, S. cerevisiae is recognized as generally regarded as safe (GRAS) 

by the American Food and Drug Administration (FDA). S. cerevisiae meets all the requirements 

for efficient, robust and versatile microbial cell factories. Therefore, the yeast has become the 

main cell factory for production of chemicals from biomass. The advances in molecular biology, 

led to extensive investigation to expand the application of S. cerevisiae. In the last decades, 

many works were published reporting engineered yeast strains capable of producing a wide 

range of chemicals starting from bioethanol (Lu et al., 2012, Wallace-Salinas et al., 2014), 

organic acids (Ito et al., 2014, Raab et al., 2010, Porro et al., 1995) to pharmaceutical 

compounds such as antimalarial precursors and opioids (Ro et al., 2006, Galanie et al., 2015). 

Moreover, S. cerevisiae was engineered to ferment pentose and arabinose, which it naturally 

unable to consume (Cai et al., 2012, Matsushika et al., 2009). The development of advanced 

molecular tools together with robust fermentation techniques will further expand the microbial 

cell factory capabilities of S. cerevisiae.  

Indeed, S. cerevisiae is a popular organism used as cell factory, however yeast biodiversity can 

be a copious source for cell factory applications and inspirations. The use of yeast hosts, other 

than S. cerevisiae, that have natural traits such as utilization of new carbon sources and improved 

stress tolerance are being explored to be used as novel cell factories. 

Kluyveromyces marxianus belongs to Saccharomycotina subphylum and is therefore 

phylogenetically related to S. cerevisiae (Llorente et al., 2000). Its respiro-fermentative 

metabolism, along with some unique traits, led to many studies to exploit K. marxianus for 

bioethanol production from lignocellulosic (Goshima et al., 2013) and whey biomass 

(Guimaraes et al., 2010).  The yeast has several important features that are highly desirable for 

industrial applications, such as an ability to utilize various substrates including C5-C6 sugars, 

thermotolerance (up to 52 Co), fast growth in comparison to S. cerevisiae, and ability to grow at 

pH below 3 (Lane and Morrissey, 2010). Moreover, several strains of K. marxianus have 

obtained GRAS status similarly to S. cerevisiae, which makes it particularly interesting from an 

industrial point of view.  The yeast already has been proposed for production of various value-

added chemicals including bioethanol, flavor and fragrance molecules, solvent ethyl acetate 
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(Morrissey et al., 2015, Radecka et al., 2015, Loser et al., 2015). However, the wide genetic 

diversity of K. marxianus species, together with limited research on its physiology, biochemistry 

and genetics, create difficulties to fully exploit its potential as microbial cell factory (Lane et 

al., 2011, Rocha et al., 2011, Fonseca et al., 2008). 

Zygosaccharomyces bailii is notoriously known as one the most aggressive food spoilage yeasts, 

with an ability to thrive in acidic environment (Stratford et al., 2013). Z. bailii has a remarkable 

tolerance to weak organic acids (WOA), in particular to acetic, sorbic, benzoic and propionic 

acids, in addition to high osmotic and ethanol tolerance (Martorell et al., 2007). These traits, 

including fermentative behavior in aerobic and anaerobic conditions (with specific nutritional 

requirements), make Z. bailii an attractive candidate for microbial cell factories. Several studies 

in the last decades were dedicated to engineer the yeast for industrially relevant chemical 

production. Z. bailii has been studied for production of L-ascorbic acid (vitamin C) (Sauer et 

al., 2004, Branduardi et al., 2004). Recently, the potential of Z. bailii to produce bioethanol has 

been reported (Paixao et al., 2013). Despite the importance of the yeast for industrial and 

fundamental microbiology, accurate identification of Z. bailii and related strains is problematic. 

The phylogenetic relationships of many industrial isolates formerly known as Z. bailii have been 

re-evaluated, and significant differences in rRNA gene sequences were found.  These led to the 

proposal that there are two novel species closely related to Z. bailii, namely Zygosaccharomyces 

parabailii and Zygosaccharomyces pseudobailii (Suh et al., 2013). Indeed, further genome 

sequencing projects of commonly-used strains confirmed that in fact ISA1307 and ATCC60483 

are interspecies hybrids of Z. bailii and closely related species rather than pure strains (Mira et 

al., 2014, Ortiz-Merino et al., 2017). Regardless of molecular differences between Z. bailii 

sensu lato species, physiological traits are undistinguishable.  

 

 

 Yeast cell factories for production of organic acids 

Global climate change and non-sustainability of oil reserves are the major motivations to 

develop non-petrochemical alternative for bulk chemicals or bio-based products. These products 

are wholly or partially derived from renewable materials of biological origin. Most of the bio-

based products are derived from plant material, which helps to reduce CO2 emission and offers 

other advantages such as lower toxicity and recyclability, thus contributing to the bioeconomy.  

Among them the organic acids represent a class of interesting chemicals that can be produced 
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via microbial fermentation to fulfill the role as a platform chemical for production of more 

complex products (Sauer et al., 2008, Becker et al., 2015, Becker and Wittmann, 2015, Chen 

and Nielsen, 2016). The US department of Energy has identified top 10 organic acids with 

multiple functional groups that can be produced from plant biomass (Werpy and Petersen, 

2004). Currently, the organic acids market is small and associated with food applications. 

However, global endorsement of green technologies, including biorefineries, is growing, 

therefore one can envision the future market potential of microbial produced organic acids, with 

transition to it from food applications to building blocks for wide range of chemical 

commodities (i.e. plastics, polymers, resins) (Chen and Nielsen, 2016). For example, organic 

acids with hydroxyl or carboxyl groups can be used as building blocks for polyesters, while 

dicarboxylic acids can be used for polyamide production (Becker et al., 2015). As the field that 

investigates microbial acid production is moving fast, the industrial scale production of succinic 

and lactic acid has been reached by different companies (Table 1).  

 

Product 
Annual 

production 
(t/a) 

Main microbial 
host 

Main feedstock Main established business 

Lactic acid ~400 000 
LAB 

Yeast 

Beet sugar, corn sugar, 
wheat, cane, 
carbohydrates 

NatureWorks (USA), 
Galactic (Belgium), Purac 
(The Netherlands)  

3-hydroxy 
propionic acid 

~3 700 E. coli NA 

OPXbio (USA), Dow 
chemicals (USA), Perstorp 
(France) 

Succinic acid ~37 000 

E. coli 
Yeast (S. 
cerevisiae C. 
krusei) 
Basfia 
succiniciprodcens 

Glycerol, sugar, 
sorghum, corn, starch 

Succinity (Germany), 
Myriant (USA), BioAmber 
(Canada), Reverdia (The 
Netherlands) 

Glycolic acid Pilot scale E. coli Glycerol, carbohydrates 
Metabolic Explore/ 
Roquette (France) 

Itaconic acid ~40 000 
Aspergillus 
terreus 

Molasses, starch, 
glucose, glycerol, xylose 

~30 suppliers 

 

Table 1. Industrial production of organic acids from biomass feedstocks (Becker et al., 2015, Wittmann 

and Becker 2015) 
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The increased interest for succinic acid as a building block for various products such as 

butanediol, maleic anhydrate and nylon type polymers, has driven the development of succinic 

fermentation process for large scale production. Since succinic acid is an intermediate of 

tricarboxylic acid cycle, the rational strategy to develop a producing strain relies on elimination 

of by-product formation and amplification of anaplerotic flux toward reductive TCA cycle 

(Cheng et al., 2013, Raab et al., 2010). Several bacterial hosts have been developed for succinic 

acid production including Basfia succiniciproducens and E. coli, which are currently in the 

process of commercialization (Table 1). Having advantages of growth in low pH and stress 

tolerance, yeasts production hosts have received considerable interest as they can be more cost 

effective when dealing with downstream processing and purity of the product. DSM/Roquette 

constructed an efficient S. cerevisiae strain that capable to produce 100 gL-1 of succinic acid at 

pH 3. Moreover, Bioamber has changed from the E. coli platform to the yeast Candida krusei 

for low pH fermentation (Jansen and van Gulik, 2014).        

Lactic acid has been traditionally used in the food, pharmaceutical and cosmetic industries. 

Lactic acid is also a desirable microbial cell factory product of  high importance for sustainable 

production of bioplastics. In addition lactic acid can be an inhibitory compound present in whey 

biomass (Christensen et al., 2011). The main source of lactic acid remains microbial 

fermentation, and the global annual production is estimated at 400 000 tons (Choi et al., 2015). 

Lactic acid is typically produced by lactic acid bacterial (LAB) fermentation at neutral pH 

buffered with chemicals, usually CaCO3 (Datta and Henry, 2006). The main desired final 

product of the fermentation is optically pure protonated lactic acid, whereas LAB fermentation 

generates considerable amounts of lactate salts and gypsum, as well as other impurities derived 

from complex medium required for the bacteria. This increases a purification cost of the final 

product, in addition to raw substrate costs (Fitzpatrick et al., 2003).  

S. cerevisiae is the most attractive candidate for production of lactic acid in its free form, 

resulting in less operational costs related to fermentation and downstream purification. Although 

S. cerevisiae is not a natural producer of lactic acid, it can be engineered to this aim by the 

heterologous expression of lactate dehydrogenase (LDH), which can efficiently convert 

pyruvate to lactic acid using NADH as a cofactor. In S. cerevisiae, pyruvate is generally 

channeled into ethanol production via pyruvate decarboxylation (PDC gene), creating a 

competing reaction for LDH (Fig. 2). Dequin and Barre pioneered in mixed ethanol/lactic acid 

fermentation in S. cerevisiae expressing L-LDH gene from Lactobacillus casei in 1994 (Dequin 
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and Barre, 1994). Yet, the final titer and yield of the product was low due to ethanol fermentation 

and not optimized production process. Therefore, the next intuitive strategy to increase the final 

yield and purity of the product was to rewire the metabolism towards lactic acid production by 

reducing the competing reactions like ethanol and later glycerol formation and by optimizing 

the production process. The strategy was implemented by many groups throughout the world 

with good rate of success (Sauer et al., 2010). Further improvement via manipulation of 

intracellular redox enabled S. cerevisiae to produce 117 gL-1 of L-lactic acid in fed batch mode 

with pH controlled at 3.5 (Lee et al., 2015). Several studies showed that K. marxianus expressing 

LDH either via genome integration or plasmid could produce lactic acid up to 25gL-1 (Lee et 

al., 2017, Pecota et al., 2007). Although, the final titer is still low in comparison to S. cerevisiae 

and conditions are not optimized for industrial purposes, these examples clearly demonstrate a 

potential of the yeast. The first proof on concept study on Z. bailii lactic acid production was 

implemented by heterologous expression of bovine lactate dehydrogenase (Branduardi et al., 

2004). Although the final titer was very low, it shows that in combination with exceptional low 

pH and weak organic acid (WOA)  tolerance, Z. bailii should not be overlooked as a potential 

WOA production host. The production of lactic acid has been already commercialized by 

different companies using different strategies and fermentation processes, however there is 

always a room for further production improvement. Therefore, it is important to explore novel 

microbial hosts with innate advantageous traits, which can be further studied to either improve 

the trait or transfer it to existing hosts.  
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Figure 2 Schematic overview of lactic acid production from glucose in yeast. The glucose is 

metabolized via glycolysis into pyruvate. The pyruvate is channeled to PDC reaction leading to ethanol 

or to LDH leading to lactic acid. Only small portion of pyruvate goes to TCA cycle due to the Crabtree 

effect. In order to increase production of lactic acid, competitive ethanol production should be abolished. 

 

 

Weak acid stress response in yeast 

Although some organic acids are successfully produced in yeast, the intrinsic toxicity of weak 

organic acids (WOA) is a factor limiting development of ultra-efficient, high-yielding strains. 

Indeed, the toxicity of WOA is exploited as a preservation strategy, with the addition of WOA 

such as benzoate, citrate and sorbate to certain foods. Initial work on how yeasts responded with 

WOA was centered on the food industry, but latterly there has been a move towards industrial 

biotechnology because of cell factory applications. This has also led to a shift in balance from 

food-preservation acids such as citrate, towards more industrially-relevant ones like lactate and 

acetate. Whereas, lactic acid tolerance in S. cerevisiae is mainly considered in the context of 
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developing high yield production strains, acetic acid has wider importance because it is present 

at inhibitory concentrations in lignocellulosic hydrosylates.  

 

 

Lignocellulosic biomass for biochemical production 

Complete replacement of petroleum-based chemical production requires usage of considerable 

portions of renewable biomass. Currently, most of the biobased chemical production relies on 

sources like starch and sugar, arising ethical concerns about the food used as chemical raw 

material and the cost effectiveness of such substrates. Therefore, the key aspect of biorefineries 

is to explore the potential of cheap non-edible feedstocks such as lignocellulosic biomass. 

Lignocellulosic material is cheap, ubiquitous and rich in sugars. Moreover, as it does not 

compete with food production, its use contributes to environmental sustainability (Sun and 

Cheng, 2002). However, lignocellulosic biomass is a sturdy material, consisting of cellulose, 

hemicellulose and lignin and their relative percentage depends on the plant material used. To 

release the main components, lignocellulose needs to be pretreated and hydrolyzed. The 

pretreatment procedure decreases cellulose crystallinity and increase porosity, which enables 

easier hydrolysis of the sugar polymers. Steam explosion is the most commonly used way of 

lignocellulosic biomass pretreatment. This method relies on high pressure steam treatment with 

subsequent sudden reduction of the pressure, which makes the material undergo explosive 

decomposition (Agbor et al., 2011). After pretreatment, the released polymers are hydrolyzed 

into free monomer molecules via enzymatic hydrolysis or acid hydrolysis. Depending on the 

pretreatment and hydrolysis methods used, sugars can be further degraded into inhibitory furans, 

hydroxymethylfurfural, furfural and weak organic acids (Limayem and Ricke, 2012). Acetic 

acid is the most abundant inhibitory weak acid, which mainly released from acetyl groups on 

the hemicellulose polymer (Almeida et al., 2007, Jonsson and Martin, 2016). The elevated 

concentration of acetic acid can be detrimental to overall fermentation, in addition to the 

remaining inhibitory compounds. Therefore, understanding the weak acid resistance mechanism 

is important to develop a robust microbial host, which can use lignocellulosic biomass to 

produce bulk chemicals like WOAs.  
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Effects of weak organic acids on yeast 

At pH below pKa, WOA will predominantly exist in the protonated form (RCOOH) (Fig. 3).  

The protonated form of the acid readily diffuses across the plasma membrane. At near neutral 

cytosolic pH, WOA dissociates to a proton and respective anion (H+ and RCOO-) (Fig. 3). Being 

charged molecules, the proton and WOA anion cannot leave the cell interior, causing cytosol 

acidification and anion dependent toxicity (Piper et al., 2001). The acidification results in 

general decline of metabolism and enzyme activity, while anion accumulation may exert toxicity 

depending on the structure (Piper, 1999, Holyoak et al., 1999). For example, acetic acid stress 

generates reactive oxygen species (ROS), damaging cellular functions and resulting in ROS-

mediated apoptosis (Giannattasio et al., 2005). Lactic acid affects iron availability in the 

medium and cell membrane composition (Narendranath et al., 2001, Stratford and Eklund, 

2003). 
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Figure 3 Simplified overview of weak organic acid toxicity mechanism. The illustration shows the 

major toxic effect exerted by the weak organic acids. The loop “in and out” describes the ability of weak 

acid to re-diffuse into the cell after it was extruded via proton and counteranion pumps.   

 

 

Yeast response to weak organic acids 

Most of the knowledge on weak organic acid response comes from S. cerevisiae studies. The 

yeast implements a multi-faceted response to WOAs that includes expression of transporters to 

extrude protons and the toxic counterions, remodeling of cell membrane and wall to restrict 

WOA diffusion, and activation of anti-oxidant systems to counter intracellular damage.  

The immediate response of the yeast cell to the WOA stress is a maintenance of intracellular pH 

homeostasis by proton extrusion out of cytosol (Piper et al., 2001). The H+-ATPase and the V-

ATPase are the main ATP dependent proton pumps of the cell which are activated during 

intracellular acidification (Martinez-Munoz and Kane, 2008). The proton extrusion is 

energetically expensive and consumes most of the ATP generated in the cell (Serrano, 1983, 

Serrano, 1991), resulting in growth rate reduction (Holyoak et al., 1996).  

To avoid toxic counterion accumulation, yeast activates multidrug resistance transporters. The 

expression of the transporters is WOA-specific and regulated by the War1p and Haa1p 

transcription factors. The War1p regulon is essential for induction of PDR12, a member of the 

ATP binding cassette transporter family (Kren et al., 2003). War1p acts through a cis-acting 

weak acid responsive element (WARE) present in PDR12 promoter region. The induction of 

PDR12 following sorbic and benzoic acids stress is rapid, resulting in high levels of Pdr12p in 

the cell membrane comparable to Pma1p, the most abundant plasma membrane protein (Piper 

et al., 2001, Kren et al., 2003). However, PDR12 is not responsive to acetic and formic acids 

(Hatzixanthis et al., 2003), but in this case its deletion increase strain robustness (Nygard et al., 

2014). In line with these results, other studies demonstrated that Pdr12p is responsible for active 

extrusion of longer chain organic acids such as propionate, sorbate and benzoate (Holyoak et 

al., 1999, Piper et al., 1998), and not shorter organic acids like acetate and formate (Nygard et 

al., 2014).    

 

Haa1p, known to be a major gene responsible for regulation of acetic acid responsive genes, is 

implicated also in lactic acid response (Mira et al., 2010a, Abbott et al., 2008). Among the 

regulated genes, Haa1p is directly responsible for the induction of TPO2 and TPO3 genes, both 
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encoding for H+ antiporters belonging to the major facilitator superfamily (Fernandes et al., 

2005). Previously thought to be involved in polyamine transport, Tpo2p and Tpo3p are 

responsible for weak acid anion extrusion, mainly acetic, propionic and benzoic acids (Mira et 

al., 2010b). Haa1p has been considered as an interesting target for the rational engineering of S. 

cerevisiae to improve certain stress responses. For example, Tanake et al., showed that 

constitutive expression of HAA1 in S. cerevisiae resulted in enhanced acetic acid tolerance and 

decrease of intracellular acetic acid concentration (Tanaka et al., 2012). 

 

Although the efficiency of weak acid efflux system in yeast is adequate for transient stress, long 

term weak acid stress may lead to futile “in and out loop” scenarios as shown in figure 3. 

Therefore, yeast modifies the cell membrane and/or cell wall and morphology to reduce overall 

diffusion of WOAs. The studies conducted on S. cerevisiae demonstrated that modulation of a 

membrane fluidity by changing phospholipids and ergosterol content to a certain extent may 

lead to a decrease of cell membrane permeability (Lindberg et al., 2013, Berterame et al., 2016, 

Xia and Yuan, 2009). Along with cell membrane, S. cerevisiae also remodels its cell wall; 

Simoes et al., showed an important role of the Spi1p GPI-anchored cell wall protein in weak 

acid resistance. In particular, the authors suggest that expression of SPI1 decreases the cell wall 

porosity, thus preventing weak acid access to the cell membrane (Simoes et al., 2006). Yet, 

another way for long term adaptation to weak organic stress can be related to a morphology 

change. For example, formation of multicellular clusters can decrease weak acid diffusion rate 

into individual cells (Fletcher et al., 2017, Oud et al., 2013, Lei et al., 2007). In general, the 

modification of cell wall and/or membrane and morphology provides stress adaptation in a weak 

acid specific way.   

 

While WOA efflux and diffusion reduction are essential part of the defense, yeast has to deal 

with damage done by permeated WOAs. The yeast exposed to the acids, has to increase the pool 

of ATP via mitochondrial respiration (Mira et al., 2010c) to empower the efflux system, which 

increases oxidative stress caused by ROS accumulation. In addition, certain counteranions can 

contribute to ROS accumulation. For example, hydroxyl radicals are formed via the Fenton 

reaction when cells exposed to lactic acid (Ali et al., 2000). In order to decrease ROS levels, S. 

cerevisiae employs several antioxidant mechanisms starting from catalase and superoxide 

dismutase activation as a natural vanguard defense, ending with increasing in ROS scavenger 
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compounds and precursors like glutathione (an abundant non-enzymatic antioxidant in yeast) as 

reviewed in (Farrugia and Balzan, 2012). Knowing the importance of ROS detoxification during 

WOA stress,  Branduardi et al., demonstrated that introduction of the L-ascorbic acid (a natural 

antioxidant compound) biosynthesis pathway into S. cerevisiae improved resistance of cells to 

oxidative and WOA stress (Branduardi et al., 2007). 

 

 

Yeast biodiversity for lactic acid production 

Giving the wide diversity of yeasts, traditional baker’s yeast’s position as the main work-horse 

for biotechnology can be challenged with emerging non-Saccharomyces yeasts. Non-

saccharomyces yeasts are evolved to flourish in specific natural habitats, possessing beneficial 

native traits which baker’s yeast lack. In addition, understanding the unique feature of non-

saccharomyces yeasts can be used as a source of inspiration for rational engineering of S. 

cerevisiae.  

 

Summary of research aims and outcomes 

1. Assess the relevance and potential of Z. bailii for biotechnology. 

Z. bailii has been studied for decades by food scientists and microbiologists since the yeast is 

involved in food spoilage problems. Only in last decades it started to get attention from 

biotechnologists as an interesting species for industrial applications. Therefore, Chapter 1 of 

my thesis provides a summary of Z. bailii research from both food science and biotechnology 

perspective. It aims to give a reader clear overview of recent findings related to the Z. bailii.   

2. Determine the physiological effects of lactic acid on the yeast Z. bailii 

Since our long-term plan is to exploit Z. bailii for lactic acid production, we first need to 

understand how the acid can influence fermentation performance, and more importantly stress 

response. Hence, Chapter 2 examines Z. bailii performance and viability in the presence of sub-

inhibitory levels of lactic acid. Moreover, using FTIR (Fourier transform infrared spectroscopy), 

we studied the impact of lactic acid on cells at a macromolecular level. The information gathered 

is important to understand lactic acid-induced changes in Z. bailii.  

3. Analysis of the genome sequence and structure of Z. bailii 

Despite the relevance of the species, the science community still lack a complete genome 

assembly of Z. bailii. Currently, the public database only has little genome sequence data of Z. 
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bailii (Galeote et al., 2013, Mira et al., 2014, Palma et al., 2017), and none of them can provide 

full genomic information about the genome organization and possible evolution. Thus, a 

complete genome sequencing of our strain was imperative to get further insight into the species. 

Chapter 3 is dedicated to the genome and evolution of the strain. The study revealed that our 

strain is in fact a hybrid, thus to be named Z. parabailii as indicated for a different strain in (Suh 

et al., 2013). Moreover, the study demonstrated how hybridization affected the mating switch, 

possibly explaining the full genome duplication event occurred in the lineage leading to S. 

cerevisiae (Wolfe, 2015). 

4. Assess the genome-wide response to lactic acid stress in Z. bailii 

Knowing both physio-morphological response and complete genome assembly, we proceeded 

with a transcriptomics study of lactic acid-treated Z. parabailii cells isolated from the previous 

study. We performed RNA sequencing analysis to get an insight to the molecular responses of 

lactic acid stress, and to possibly correlate the observation to the physio-morphological data. 

The study discussed in Chapter 4 represents the first RNA sequencing of Z. parabailii. We 

combined different RNA-seq analysis methods to optimize an entire analysis and got interesting 

results regarding the transcriptome. The RNA-seq study can provide a basis for future research 

on Z. bailii sensu lato as a microbial cell factory. 

5. Explore the potential synergies in organic acid response pathways in the alternative 

cell factory yeast K. marxianus 

Commercially competitive properties of K. marxianus have resulted in a wide range of industrial 

applications. Whether being utilized by the food or the pharmaceutical industry, K. marxianus 

performance, similar to other yeasts, is often dependent on process environment conditions. 

Little information is available on the environmental stress resistance pathways in K. marxianus 

and what mechanism changes account for strain-to-strain variations in response to stress. 

Therefore, Chapter 5 is dedicated to study the K. marxianus response to weak organic acid 

stress (acetic acid and lactic acid) which is commonly encountered during industrial 

fermentations for diverse applications. We focused our attention on the response mediated by 

multidrug resistance transporters during the weak organic acid stress and its relatedness to the 

model yeast S. cerevisiae. 
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Abstract 

Zygosaccharomyces bailii is a non-Saccharomyces budding yeast known as one of the most 

aggressive food spoilage microorganism, often isolated as contaminant during wine 

fermentation, as well as from many acidic, high sugar and canned foods. The spoilage ability 

relies on the yeast’s unique feature to tolerate the most common preservatives such as sulfite, 

dimethyl dicarbonate, acetic acid, and sorbic acid. Therefore, many studies focused on the 

description of this peculiar tolerance with the aim of developing preventative measures against 

Z. bailii food spoilage. These studies demonstrated the involvement of diverse molecular and 

physiological mechanisms in the yeast resistance, comprising detoxification of preservatives, 

adaptation of the cytoplasmic pH and modulation of the cell wall/membrane composition. At 

the same time, the described traits unveiled Z. bailii as a novel potential workhorse for industrial 

bioprocesses. Here we present the yeast Z. bailii starting from important aspects of its 

robustness, and concluding with the exploitation of its potential in biotechnology. Overall, the 

article describes Z. bailii from different perspectives, converging in presenting it as one of the 

interesting species of the Saccharomycotina subphylum.      

 

Keywords Zygosaccharomyces bailii, Weak Organic Acids, genetic engineering, food spoilage 

yeast, industrial bioprocesses 
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Introduction 

Food scientists and biotechnologists have extensively studied Z. bailii over the last decades. 

This yeast has been described on the one hand as a foe to be eradicated due to its spoilage ability 

and on the other hand as a prospective friend boasting unique traits to be exploited. Regardless 

what was the final aim of the study scientists admired Z. bailii for its capability to thrive in a 

number of harsh human-made environments (i.e. canned food, wine, mustard sauce, to cite few). 

For this reason, additional studies comprising both perspectives can be effective at unraveling 

its secrets, which can be used not only for developing novel preventative measures against food 

contaminations, but also to inspire novel tailoring of cell factories engaged in microbial-based 

biotransformations, as industrial processes very often impose several constraints that limit cell 

potential. In this review, we recapitulate the major findings related to Z. bailii in respect to food 

microbiology and biotechnology.   

 

The spoilage yeast Z. bailii: a foe for food industry 

The process of food quality deterioration, leading to changes in nutritional and organoleptic 

properties, is called food spoilage (Doyle, 2007). Growth and metabolic activities of 

microorganisms, including bacteria, molds and yeasts, are among the main factors responsible 

for food spoilage. The yeast group named Zygosaccharomyces, introduced as a genus at the 

beginning of the 20th century and belonging to the phylum Hemiascomycetes, comprises several 

of the most challenging and notorious spoilage yeasts. The name of the genus derives from the 

dumbbell-shaped ascus that contains smooth ascospores (Van der Walt and Johanssen, 1975). 

The genus comprises twelve yeast species: Z. bisporus, Z. kombuchaensis, Z. lentus, Z. 

gambellarensis, Z. machadoi, Z. rouxii, Z. sapae, Z. siamensis, Z. mellis, Z. parabailii, Z. 

pseudobailii, and Z. bailii (Kurtzman and Robnett, 2003, James and Stratford, 2011); (Rosa and 

Lachance, 2005, Saksinchai et al., 2012, Torriani et al., 2011, Solieri et al., 2008, Suh et al., 

2013).  

Z. bailii can colonize acidic foods such as soft drinks, fruit juices, dairy products and dressing, 

causing significant economic losses in food industry (Martorell et al., 2007, Stratford, 2006, 

Fleet, 2007). In addition to acidic food, Z. bailii can contaminate wine must during the 

fermentation, although its activity on grape-juice has been also reported to be beneficial for 

vinification (Domizio et al., 2011, Romano et al., 2003, Romano and Suzzi, 1993). Indeed, the 

yeast is extremely tolerant to many conditions that are usually detrimental for cell growth such 



25 
 

as high osmotic pressure, high ethanol concentration, low pH values, and the presence of weak 

organic acids and/or various food preservatives (sulfite - SO2, dimethyl dicarbonate - DMDC) 

(Martorell et al., 2007, Stratford et al., 2013) (Table 1). For example, Z. bailii’s weak organic 

acid tolerance varies between 375 to 550 mM for acetic acid and between 4.55 to 9.45 mM for 

sorbic acid, depending on the strain (Stratford et al., 2013): these concentrations exceed the 

legally-permitted for use as preservatives (Anon, 1995). Z. bailii osmotolerance is well 

exemplified by different experiments: for example, Martorell and co-authors (Martorell et al., 

2007) reported that the yeast is able to grow in media containing up to 72% of glucose (w/v). 

The marked osmotolerance and the high fermentation capacity worsen the effects of spoilage, 

since the CO2 generated during alcoholic fermentation was reported to be responsible of the 

explosion of canned and bottled foods (Stratford, 2006). Furthermore, despite the fact that it is 

widely accepted that Z. bailii is more sensitive to ethanol than Saccharomyces cerevisiae 

(Kalathenos et al., 1995), there are examples of growth in media containing 20% of ethanol 

(Thomas and Davenport, 1985), indicating that the tolerance varies significantly among strains. 

In respect to wine contamination, it has been also reported that Z. bailii is able to counteract 

important SO2 concentrations (> 3mg/L) through broad cellular response including sulfur 

extrusion, acetaldehyde production and limitation of cellular wall/membrane permeability to 

harmful substances (Stratford et al., 1987, Park and Bakalinsky, 2000, Pilkington and Rose, 

1988, Thomas and Davenport, 1985). In addition to strain-dependent tolerance, an inoculum 

effect has been also described: concentrations around 200 mg/L of DMDC usually do not 

significantly affect Z. bailii growth, but if the size of the inoculum is small, cells can be sensitive 

to a concentration of the preservative as low as 25 mg/L (Martorell et al., 2007, Costa et al., 

2008).   
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Table 1. Physiology and different stress condition/compounds resistance threshold values (MIC – 

maximum inhibition concentration). 

  

Yeast Optimum 

growth 

temperature 

range (Co) 

MIC of 

glucose 

(M) 

 MIC of 

Sulfur 

Dioxide 

(mg/L) 

MIC of 

Dimethyl 

decarbonate 

(mg/L) 

MIC of 

Ethanol 

(%, 

w/v) 

MIC of 

Acetic 

acid 

(mM) 

MIC of 

Sorbic 

acid 

(mM) 

Z. bailii 25-304 4.252 322,5 25-2002, 3 18-205 375-

5502,5 

4.55-

9.452,5 

 

1Stratford et al., 2013 
2Martorell et al., 2007 
3Costa et al., 2008 
4James and Stratford 2011 
5Thomas and Davenport, 1985 

 

The management of production procedures including processing technologies, formulation of 

processed foods, the use of antimicrobial compounds (reviewed in (Doyle, 2007)) represents the 

main weapon to counteract spoilage. Microbial spoilage modeling can be effectively used for 

spoilage prevention (Doyle, 2007) and examples of modeling of spoilage involving Z. bailii 

were described in literature (Braun and Sutherland, 2004, Quintas et al., 2005). However, 

microorganisms have the extraordinary ability to adapt to challenging environments, a quality 

that is generally difficult to include in the current in silico description. In addition, in the case 

of spoilage microorganisms, the description of the model has to take into account that these 

microbes can become effective even starting from extremely low concentrations. Z. bailii is not 

an exception. Indeed, it has been shown that a single viable cell in a 10 liters volume of 

beverages was enough to trigger an undesired spoilage event (James and Stratford, 2003). For 

this reason, the comprehension and the description of the molecular mechanisms that account 

for spoilage activity become compelling for the development of novel preservation strategies 

and Z. bailii is not an exception.  

As mentioned above, high fermentation performance is one of the main traits that allow Z. bailii 

to thrive in high sugar substrate causing spoilage problems during food production processes.  
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Sugar metabolism in Z. bailii 

The main characteristics of Z. bailii that pose severe contamination problems in high sugar 

concentration food are the fructophilic metabolism and the tolerance for high osmotic 

environments. Fructophilic yeasts are largely diffused in several ecological niches – for example 

in honeycomb, grape and grape juice – and Z. bailii is one of the few that have been 

characterized (Zott et al., 2008). 

Z. bailii transports fructose by a high-capacity and low-affinity facilitator, whereas a low 

capacity and high-affinity nonspecific hexose sugar transporter drives glucose uptake (Sousa-

Dias et al., 1996, Pina et al., 2004). Furthermore, fructose can effect a moderate inactivation of 

the glucose transporter and can compete with glucose for the same transport system (Sousa-Dias 

et al., 1996). The gene encoding for Z. bailii fructose transporter, FFZ1 (Fructose Facilitator 

Zygosaccharomyces), was characterized by the functional complementation when expressed in 

S. cerevisiae hxt null mutant, where it conferred the ability to grow on fructose (Pina et al., 

2004). This and earlier works (Fuhrmann et al., 1992) support the hypothesis that different 

molecular mechanisms are accountable for fructose and other hexose transport. Ffz1 protein has 

a predicted size of 616 amino acids arranged in twelve membrane spanning domains 

characteristic of membrane transporters. The predicted amino acid sequence of the Ffz1 protein 

shares low identity with the sequences of S. cerevisiae glucose transporters. Ffz1 is 

phylogenetically distant also from other sugar transporters, such as Fsy1 and Frt1 that have been 

described as two H+-fructose symporter of S. pastorianus and K. lactis, respectively (Pina et al., 

2004). Yet, it is phylogenetically close to the Ffz1 fructose transporters described in Z. rouxii 

(Leandro et al., 2011), therefore constituting a novel sugar transporter family mediating hexose 

transport via facilitated diffusion. Overall, these observations suggest that Zygosaccharomyces 

evolved as a clade with FFZ genes constituting one of the specific traits (Cabral et al., 2015) 

that contribute to the peculiar physiology, metabolism and spoilage activity of this group of 

yeasts.  

A clear example of the peculiar spoilage nature of Z. bailii linked to fructose transport can be 

observed considering wine fermentation. Galeote et al. described in different S. cerevisiae wine 

yeast strains the presence of a 17kb genetic cluster that originated from Z. bailii (Galeote et al., 

2013). Interestingly, the cluster comprises FFZ1 and FSY1 genes and several transporters with 

high similarity to the S. cerevisiae HXT gene family, indicating the occurrence of at least one 
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event of horizontal gene transfer, possibly captured by niche competition between Z. bailii and 

wine strains.  

Besides utilizing common hexose sugar monomers Arez, et al., (2014) demonstrated that Z. 

bailii is able to use sucrose as carbon source thanks to the production of an invertase, the enzyme 

catalyzing the hydrolysis of sucrose into glucose and fructose. The authors further demonstrated 

that glucose and sucrose were weak inducers of the gene encoding for the invertase, while the 

Jerusalem artichoke pulp triggered the highest invertase activity (Arez et al., 2014), opening the 

possibility of describing the typical cascade of a two-component regulated system. It is 

important to mention that sucrose fermentation, which is described as delayed in the absence or 

in the case of poor invertase activity (Thomas and Davenport, 1985), can be favored at low pH, 

since this condition promotes the hydrolysis of the disaccharide.  

Like S. cerevisiae, Z. bailii is a Crabtree positive yeast (Leyva et al., 1999): at high sugar 

concentration it redirects part of the carbon metabolism toward ethanol production in aerobic 

condition. In Z. bailii the Crabtree effect is closely related to the carbon source provided: in the 

presence of fructose, aerobic ethanol production is more pronounced than in glucose, possibly 

sustained by the higher fructose-phosphorylating activity (Merico et al., 2003). This well 

correlates with the different capacity of fructose and glucose transport systems. Nevertheless, 

Merico et al., 2003 observed a lower fructose fermentation capacity of Z. bailii (0.83 mol-1) in 

comparison to glucose fermenting S. cerevisiae (1.6 mol-1) cells (Gombert et al., 2001). The 

authors concluded that in Z. bailii the pyruvate dehydrogenase bypass redirects more efficiently 

pyruvate towards the oxidative than the fermentative pathway.  

Finally, depending on the composition of the growth substrate, Z. bailii can proliferate under 

oxygen-restrictive condition. Specifically, in synthetic media supplemented with ergosterol and 

Tween 80, Z. bailii exhibits extremely slow growth, while S. cerevisiae proliferates efficiently. 

However, in complex media Z. bailii grows rapidly, suggesting specific nutrient requirement 

for supporting the anaerobic growth (Rodrigues et al., 2001). This observation is consistent with 

the spoilage ability of Z. bailii detected in hermetically sealed products such as canned fruits, 

juices, etc. There are not significant differences with S. cerevisiae sugar catabolism, except for 

the distinct fructophilic ability due to FFZ gene products and to efficient pyruvate 

dehydrogenase bypass. Yet, this does not fully explain how Z. bailii readily colonizes acidic 

food products otherwise hostile to other microorganism including S. cerevisiae.  
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Weak Organic Acids (WOAs) tolerance of Z. bailii from a S. cerevisiae 

perspective 

Z. bailii displays the remarkable ability to tolerate high concentrations of organic acids, among 

which acetic acid in the range of 375-550 mM (Stratford et al., 2013), whereas for the less 

tolerant S. cerevisiae the minimum inhibitory concentration is 80-150 mM (Martorell et al., 

2007, Mira et al., 2010a, Mira et al., 2010b). However, most of the information concerning 

WOAs toxicity and tolerance/adaptation are investigated in the model yeast S. cerevisiae (Mira 

et al., 2010a, Mira et al., 2010b).  

Here we start recapitulating some general concepts, together with the main findings and the 

current vision of the mechanisms involved in WOAs response in the bakers’ yeast, as the basis 

to compare what was revealed in Z. bailii.  

The common growth inhibition effect of WOAs derives from their structure and chemical 

properties. In aqueous solution, a WOA exists in a pH-dependent equilibrium between the 

uncharged acidic and charged anionic form; when the external pH is below the pKa of the WOA, 

the undissociated form of the acid (RCOOH) predominates, and permeate the cellular plasma 

membrane mainly by simple diffusion. Once inside the cell, the near-neutral cytosolic pH (Valli 

et al., 2005) leads to the dissociation of the acid in protons (H+) and the counteranion (RCOO-

). The two charged species, being unable to diffuse back across the membrane bilayer, 

accumulate inside the cell (Brul and Coote, 1999, Lambert and Stratford, 1999). Acidification 

due to protons release can influence different metabolic functions by perturbing the ionization 

state of amino acid side chains: this affects protein activity (Krebs et al., 1983, Bracey et al., 

1998, Orij et al., 2011) and the plasma membrane electrochemical gradient. The counteranion 

accumulation, besides the generation of high turgor pressure, can lead to free radical production 

triggering oxidative stress, protein aggregation, lipid peroxidation and the inhibition of 

membrane trafficking (reviewed by (Piper et al., 2001, Teixeira et al., 2007)) (Figure 1).  
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Figure 1  Schematic illustration of the major adaptive responses to weak organic acid stress in Z. bailii, 

as derived by the current state of the art. Cell wall and membrane dynamic remodeling act to decrease 

weak acid diffusion into the cell. Detoxification of weak acid by catabolic pathways insensitive to 

catabolite repression, as via TCA cycle. Reduction of pHi can contribute to the limitation of weak organic 

acid accumulation. 

 

S. cerevisiae cells respond to WOAs exposure by the activation of protection systems that are 

committed to restore the cellular homeostasis. The plasma membrane H+-ATPase Pma1 and 

vacuolar H+-ATPase (V-ATPase) contributes in maintaining the optimum intracellular pH by 

proton extrusion and sequestering (de Kok et al., 2012, Kane, 2006). Nevertheless, those 

proteins alone would be ineffective in the absence of movement charge that compensates the 

ion homeostasis. The extrusion of the counteranion (RCOO-) is mediated by the plasma 

membrane Multi Drug Resistance (MDR) transporters (Holyoak et al., 1999, Piper et al., 1998). 

The combined action of proton and counteranion extrusion is energy demanding, resulting in 

the reduction of biomass yield during acidic stress (reviewed by (Piper et al., 2001)). In the last 

decade, many studies focused on understanding how cells can avoid or reduce the futile cycle 

of diffusional entry and active extrusion of WOAs. Indeed, once extruded from the cell, in the 

acidic environment protons and anions associate again and diffuse back across the membrane, 

resulting in a pointless and energy consuming process (Piper et al., 2001). Therefore, the 
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limitation of passive diffusion by the modulation of cell wall composition and membrane 

fluidity is recognized as fundamental processes for the adaptation to WOA stress (Mira et al., 

2010b, Klose et al., 2012, Simoes et al., 2006) (Figure 1).  

In the last two decades, the extreme WOAs tolerance of Z. bailii was also intensively explored 

and characterized at molecular level, giving emphasis to metabolic rewiring, proteomic response 

and lipid surface remodeling (Rodrigues et al., 2012, Guerreiro et al., 2012, Lindberg et al., 

2013). Although some initial studies suggested that S. cerevisiae and Z. bailii share similar 

preservative tolerance mechanisms, for example via cellular export system (Warth, 1989), it was 

then clear that superimposing the S. cerevisiae model might lead to underestimation of the 

unique evolution of the Z. bailii. As an example, no Pdr12-like activity was detected in Z. bailii 

during acidic stress (Papadimitriou et al., 2007): this is in contrast with the widely accepted 

mechanism described in S. cerevisiae, where the Pdr12 extrusion pump is strongly induced upon 

WOAa exposure (reviewed in (Piper et al., 2001)). 

The first Z. bailii gene appointed for WOAs resistance was ZbYME2, which has been proposed 

to provide benzoic and sorbic acid resistance through acid degradation (Mollapour and Piper, 

2001b). The protein encoded by this gene has a high degree of similarity with the N-terminal 

domain of the S. cerevisiae larger mitochondrial protein Yme2p/Rna12p. By the heterologous 

expression of ZbYME2 gene, S. cerevisiae tolerance to benzoate and sorbate becomes 

comparable to Z. bailii, yet the counteranion degradation remains dubious. Interestingly, the S. 

cerevisiae counterpart ScYme2 do not provide the ability to degrade sorbate and benzoate, but 

is involved in free radicals detoxification produced by the respiratory chain (Mollapour and 

Piper, 2001b). This function was also hypothesized for ZbYme2 and opened the pending 

question whether the enzyme lost the catabolic activity in S. cerevisiae, determining its lower 

tolerance to acidic environments, or gained a novel function in Z. bailii for adaptation to harsh 

conditions. 

Another feature that distinguishes Z. bailii from S. cerevisiae and other yeasts is the absence of 

glucose repression, mainly named as catabolite repression (Ronne, 1995). The absence of such 

regulation allows Z. bailii to co-metabolize glucose and acetate (Sousa et al., 1998). The 

involvement of a specific membrane transporter for acetic acid (Sousa et al., 1996) and the 

presence of a high metabolic flux through the acetyl-CoA-synthetase, encoded by the ZbACS2 

gene, allow a fast acetic acid consumption even in the presence of glucose, thus maintaining the 

cytosolic concentration of this acid below the toxic levels, and generating additional energy for 
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cellular maintenance (Rodrigues et al., 2012). Moreover, the effectiveness of ZbACS2 is 

demonstrated by the increase of S. cerevisiae tolerance to acid when this gene is heterologously 

expressed (Rodrigues et al., 2004). Noticeably, despite ScACS2 has a high degree of similarity 

with ZbACS2 (Rodrigues et al., 2004), the ScACS2 is not involved in acetate catabolism in S. 

cerevisiae (Van den Berg and Steensman, 1995). A metabolic study conducted on Z. bailii cells 

cultivated with labeled substrates confirmed the co-consumption of acetate and glucose 

(Rodrigues et al., 2012): glucose is mainly channeled into the glycolytic pathway, while acetate 

provides acetyl-CoA as precursor for protein (through the tricarboxylic acid cycle) and lipid 

synthesis. This metabolic reshaping is in agreement with proteomic data obtained by Guerreiro 

and collaborators (Guerreiro et al., 2012). Although acetyl-CoA synthase mediates acetic acid 

metabolism in Z. bailii, this protein was not over-represented during growth on glucose-acetic 

acid medium. Nevertheless, several proteins involved in the TCA cycle (mitochondrial malate 

dehydrogenase – Mdh1, aconitase – Aco1, mitochondrial isocitrate dehydogenase – Idh2, citrate 

synthase – Cit1, dihydolipoamide dehydrogenase – Lpd1) were found over-represented in this 

condition. This response is consistent with the necessity to oxidize the acetyl-CoA, and might 

also indicate that ZbACS2 is constitutively expressed. The higher levels of the Z. bailii 

mitochondrial ATP synthase subunits, Atp1 and Atp2, in glucose-acetic acid growing cells 

suggests an increase of oxidative phosphorylation due to the increase of the TCA flux and to the 

concomitant production of reduced cofactors.  

The growth of Z. bailii in a non-fermentable carbon source like acetic acid (in the absence of 

glucose) is similar to the growth on ethanol. Up-regulation of enolase – Eno1, triose phosphate 

isomerase – Tpi1, 3-phosphoglycerate kinase – Pgk1 and fructose1,2 biphosphate aldolase – 

Fba1 (a key regulator of gluconeogenesis), are consistent with the increase of gluconeogenic 

flux for the biosynthesis of anabolic precursors (Guerreiro et al., 2012). Moreover, an increase 

of the transaldolase Tal1 signal, an enzyme of the pentose phosphate pathway, is coherent with 

a requirement for redox balance maintenance and the production of anabolic metabolites for 

nucleotides, proteins and fatty acid biosynthesis. Finally, Z. bailii growth on acetic acid seems 

dependent on the glutamate node, as suggested by the increase of the enzymes glutamate 

dehydrogenase – Gdh1, and of the mitochondrial and cytosolic isocitrate dehydrogenases - Idh2 

and Idp2, respectively (Guerreiro et al., 2012).  

The same study showed higher levels of proteins involved in stress response and adaptation 

when Z. bailii cells were exposed to acetic acid. In particular, they found the mitochondrial 
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manganese superoxide dismutase – Sod2 and the mitochondrial porin – Omp2, which are known 

for their protection against oxidative stress (Pereira et al., 2007), but also the dihydrossiacetone 

kinase – Dak2 and the phosphomannomutase – Sec53. Dak2 up-regulation might be involved 

in protection mechanisms evoked to reduce the toxicity of dihydroxyacetone during oxidative 

stress and in the maintenance of the ATP balance, since a similar mechanism was proposed in 

S. cerevisiae (Gasch et al., 2000, Norberck and Blomberg, 1997, Boy-Marcotte et al., 1999, 

Molin et al., 2003). 

As mentioned before, in S. cerevisiae the cell wall reorganization in response to WOAs is an 

important protection mechanism to counteract acidic injury by limiting the permeability of 

undissociated acid within the cells (Simoes et al., 2006, Mira et al., 2010b). The same defense 

mechanism might occur in Z. bailii. Recent studies on Z. bailii using Fourier Transformed 

Infrared micro-spectroscopy (FTIR) showed lactic acid dependent changes in the signals of 

bands corresponding to glucans and mannans, an indication of cell wall reorganization 

(Kuanyshev et al., 2016).  

Yeast plasma membrane fluidity plays a crucial role in the adaptation to environmental stresses 

(Klose et al., 2012), including WOAs. It was demonstrated that in S. cerevisiae the presence of 

ethanol or butanol – perturbing cell surface organization - increase passive diffusion of acetic 

acid across the membrane, exacerbating the toxicity. Ethanol and other alkanols have also an 

inhibitory effect on active membrane facilitators, reducing their transport capacity (Casal et al., 

1998). This inhibitory effect was also reported for Z. bailii, but in this yeast ethanol up to 2.43 

M seems to play a protective role leading to the inhibition of active uptake of some organic acids 

and thus reducing its intracellular concentration (Sousa et al., 1996). This physiological 

mechanism can explain the occurrence of Z. bailii during wine fermentation, characterized by 

the abundant concentration of both ethanol and acetic acid.  

However, this observation might sound counterintuitive if we consider that the membrane 

integrity and the activity of the embedded/associated proteins are strictly correlated. It is 

unlikely that membrane damages do not influence protein structure/activity and vice versa, 

unless we do not imply some differences in Z. bailii that can justify the major robustness and its 

adaptation in harsh environments.   

As expected, Z. bailii strains exposed to various stressors show differences in the fatty acid 

composition. The first evidence reported in literature described that the long chain fatty acids 

(stearic, oleic and linoleic acids) increased in response to high ethanol concentration, whereas 
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the fatty acids with a shorted acyl chain (palmitic and palmitoleic acids) increased mainly at low 

temperatures (Baileras Couto and Huis in't Veld, 1995). Additional investigations generically 

suggested that differences in the cell surface structure might also account for higher acidic 

tolerance of Z. bailii compared to S. cerevisiae (Prudencio et al., 1998). Only recently, an 

accurate comparative study of the lipidome of S. cerevisiae and Z. bailii revealed the pronounced 

diversity occurring in the plasma membrane composition between the two yeasts (Lindberg et 

al., 2013). Specifically, Z. bailii adaptation to acetic acid correlated with quali- and quantitative 

significant changes in fatty acid composition: the authors described enrichment in the 

sphingolipids fraction at the expense of glycerophospholipids, leading to a reduced permeability 

of the membrane to the acid and reasonably to an improved support for the functionality of 

different membrane proteins (i.e. Pma1). On the contrary, only minor changes were observed in 

S. cerevisiae, suggesting a limited ability for lipid membrane adaptation toward the stress 

compared to Z. bailii (Lindberg et al., 2013). The results were supported by an in silico 

molecular dynamics simulation, further confirmed by in vivo experiments, of Z. bailii plasma 

membrane, suggesting that the difference in sphingolipid content can account for thicker and 

more dense membranes, limiting the diffusion of acetic acid (Lindahl et al., 2016).  

Other WOAs could also evoke additional and/or different changes: the above mentioned FTIR-

based study showed that the phosphatidylcholine content decreased under lactic acid treatment, 

once more suggesting a mechanism of adaptation through changes in membrane fluidity 

(Kuanyshev et al., 2016), and strengthening the active role of the Z. bailii lipidome dynamic 

adaptation in providing stress tolerance. 

Together with the preservative degradation ability and the diminished permeability, a reduced 

intracellular pH (pHi) could also contribute to the tolerance of Z. bailii to weak organic acids 

(Figure 1). It was recently demonstrated a recurrent heterogeneity in Z. bailii cellular population: 

a sub-population characterized by a lower pHi (0.4-0.8 pH units) is extremely resistant to a 

number of organic acids (Stratford et al., 2013), a behavior that was also observed by others 

(Arneborg et al., 2000, Dang et al., 2012). Stratford and coworkers (Stratford et al., 2013) 

calculated the increase in intracellular accumulation of sorbic acid (accumulation index) at 

different pHi (from 4.0 to 6.6) while fixing the extracellular pH (4.0 units). According with this 

calculation, cells with lower pHi accumulated less acid, with beneficial effects on metabolism 

and growth, and generating the observed resistant sub-population, which may survive hostile 

conditions.  
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Undeniably, Z. bailii represents industrially attractive yeast, whose robust phenotype can be 

exploited and/or transferred to known industrial microorganisms.  

 

Exploitation of Z. bailii: a potential friend for industrial biotechnology 

The ability to endure low pH and high WOAs concentration makes Z. bailii a promising platform 

to be applied in industrial bioprocesses (Branduardi et al., 2004, Sauer et al., 2004, Vigentini et 

al., 2005, Camattari et al., 2007, Piper et al., 2001).  

To investigate the potential of Z. bailii as cell factory, traditional yeast molecular tools, 

including a set of episomal plasmids based on ScARS and ScCEN sequences, have been 

developed, leading to the selection of transformants producing the desired products. A stable 

integration and multiple integration vectors, both based on LEU2 marker selection, were also 

successfully adapted for Z. bailii (Branduardi et al., 2004, Dato et al., 2010).  

Heterologous protein production was successfully carried out in Z. bailii obtaining better yields 

compared to S. cerevisiae (Branduardi et al., 2004, Vigentini et al., 2005). Proteins of different 

origins, dimensions and biochemical functions were expressed both at cytoplasmic and 

extracellular level. In comparison to S. cerevisiae, Z. bailii displays a better secretory capacity 

in defined media, which can be further improved by GAS1 gene deletion (Passolunghi et al., 

2010). From an industrial perspective, this is an advantageous feature, since protein secretion 

(that can simplify recovery and purification procedures and costs) is among the principal 

bottlenecks of heterologous productions.  

As in other non-Saccharomyces yeasts, the poor efficiency of homologous recombination (or 

the prevalence of the non-homologous end-joining recombination) makes the genome 

manipulations troublesome and limited (MacKenzie et al., 1987, Mollapour and Piper, 2001a). 

Indeed so far most of the investigations on Z. bailii were performed at the single gene level, and 

with limited availability of auxotrophic strains (Mollapour and Piper, 2001b, Dato et al., 2008, 

Passolunghi et al., 2010). The optimization of novel genome editing tools, such as the CRISPR-

Cas9 system, is essential to expand the potential of Z. bailii’s industrial application.  

Yeast-based fermentations for the production of organic acids starting from cheap carbon 

sources are well documented in literature (Ilmen et al., 2013, Koivistoinen et al., 2013, Valli et 

al., 2006, Xu et al., 2012, Zelle et al., 2008), often taking advantage from the ability of these 

cells to sustain adequate growth at stressful but desired conditions. Organic acids represent 

building-blocks for several products (polymers, cosmetics, and pharmaceutics) of industrial and 
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commercial interests. Their production by microbial fermentation is willing to represent a 

sustainable alternative to fossil oil-based processes (Sauer et al., 2008), but the production costs 

need to be maintained as low as possible to be competitive with the non-sustainable counterpart. 

If fermentation processes are run at low pH, the organic acid of interest is produced in the desired 

undissociated form, with a significant reduction of the overall costs. However, this generates a 

stressful environment for the microorganism. In this context, Z. bailii endowed with extreme 

tolerance to acidic environment represents the ideal candidate for organic acids production. The 

first attempts were done to produce lactic acid (Dato et al., 2010) and L-ascorbic acid (Sauer et 

al., 2004) in Z. bailii. Despite yield and productivity were low, the proof of concept was clearly 

obtained, and opened the room for further developments and improvements.  

As mentioned before, the viability of a bioprocess relies on the reduction of the overall costs, 

that for low-added value compounds almost equally distributes between downstream and 

substrate costs. Therefore, the use of residual or wasted biomass can play an important role for 

the viability of microbial bioconversion, named second-generation productions.  

Among abundant polysaccharides that can be a cheap source of sugars for bioethanol production 

there is inulin, which is present in a variety of plants (Chi et al., 2011). Inulin is hydrolyzed by 

microbial inulinase producing inulo-oligosaccharides, glucose and fructose, which can be 

further fermented to bioethanol (Kango and Jain, 2011). Paixao et al., isolated inulinase 

producing Z. bailii strains, which have an indubitable potential for industrial applications 

(Paixao et al., 2013). Second-generation bioethanol obtained from lignocellulose fermentation 

is by far the most sustainable source of bioenergy, due to the abundance of this substrate, and 

has the potential to displace fossil raw materials for energy and chemical feedstock (Laluce et 

al., 2012). Several yeasts (Saccharomyces and non-Saccharomyces) are employed for 

commercial production of bioethanol using sugars released from lignocellulosic hydrolysate 

such as glucose, xylose, arabinose (Margeot et al., 2009). However, acetic acid, formic acid, 

furan aldehydes and phenolic compounds (released from lignocellulosic hydrolysate) impose 

important limitations to microbial growth and therefore to ethanol yield (Almeida et al., 2007) 

that still need to be resolved. In addition, high ethanol concentrations are also harmful for yeast 

(Laluce et al., 2012). Z. bailii can represent a solution due to its superior ability to endure weak 

acid toxicity and harsh conditions, which is important for biofuels and bio-based chemicals 

production.  
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Conclusion  

The knowledge gathered about the yeast Z. bailii is extremely intriguing and deserves to be 

further developed and investigated. Understanding the peculiar physiology of Z. bailii may help 

to improve not only spoilage prevention measures, but also the knowledge about stress 

resistance capability in yeasts. Being a problem for food industry, Z. bailii may indicate how to 

develop new robust strains for biotechnology exploitation. More accurate genome annotations 

and genomics analysis will be helpful to improve well-known cell factories and further develop 

Z. bailii as a novel one. Interestingly, in the last years it appeared that among the best performing 

Z. bailii strains there are some hybrid strains, named Z. parabailii. Some of those genomes have 

been partially (Galeote et al., 2013, Mira et al., 2014) or completely (Ortiz-Merino et al in press) 

assembled and annotated, promising to leverage similar potential as for the hybrids of S. 

cerevisiae industrial strains (Krogerus et al., 2017, Steensels et al., 2014).  

Overall, the extensive researches devoted to unveil the basis of Z. bailii tolerance, as well as of 

other robust microbial strains, will contribute to improving the sustainability and viability of 

industrial bioprocesses. 
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Abstract 

The ability of Zygosacchromyces bailii to grow at low pH and in the presence of considerable 

amounts of weak organic acids, lethal condition for Saccharomyces cerevisiae, increased the 

interest in the biotechnological potential of the yeast. To understand the mechanism of tolerance 

and growth effect of weak acids on Z. bailii, we evaluated the physiological and macromolecular 

changes of the yeast exposed to sub lethal concentrations of lactic acid. Lactic acid represents 

one of the important commodity chemical which can be produced by microbial fermentation. 

We assessed physiological effect of lactic acid by bioreactor fermentation using synthetic media 

at low pH in the presence of lactic acid. Samples collected from bioreactors were stained with 

propidium iodide (PI) which revealed that, despite lactic acid negatively influence the growth 

rate, the number of PI positive cells is similar to that of the control. Moreover, we have 

performed Fourier Transform Infra-Red (FTIR) microspectroscopy analysis on intact cells of 

the the same samples. This technique has been never applied before to study Z. bailii under this 

condition. The analyses revealed lactic acid induced macromolecular changes in the overall 

cellular protein secondary structures, and alterations of cell wall and membrane physico-

chemical properties. 

 

 

Keywords: Zygosaccharomyces bailii, lactic acid, FTIR, bioreactor, fermentation 
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Introduction 

The yeast Zygosaccharomyces bailii is well-known to be responsible for major spoilage losses 

in the food and beverage industry (Fleet, 2007). This spoilage nature is explained by its 

remarkable ability to grow in harsh environments such as high osmotic pressure, low pH, low 

water activity, and high concentration of weak organic acids (Thomas and Davenport, 1985, 

James and Stradford, 2011). These same traits have drawn attention to Z. bailii as a potential 

cell factory for production of biomolecules (Branduardi et al., 2004, Sauer et al., 2004, Vigentini 

et al., 2005). Although initial studies focused on understanding tolerance to weak organic acids 

with a view to controlling the yeast in food spoilage, more recent work aims to dissect the 

mechanisms of tolerance to acids, such as acetic and lactic acids, to facilitate exploitation for 

biotechnological applications. Lactic acid is of particular relevance as it represents an important 

commodity chemical that can be produced by microbial fermentation as reviewed by (Sauer et 

al., 2010, Becker et al., 2015).  

Most of our understanding of the toxicity of weak organic acids to yeast cells, and the cellular 

response, comes from studies on the model yeast Saccharomyces cerevisiae. The lipophilic 

nature of most undissociated organic weak acids (Lambert and Stratford, 1999) allows them to 

diffuse across the semi-permeable cell membrane. The ratio of undissociated:dissociated acid, 

and hence degree of diffusion into the cell,  increases with decrease of external pH. Once inside 

of the cell where the cytoplasmic pH is close to neutral, the weak acid dissociates to a proton 

and respective anion. The presence of proton acidifies the internal pH causing inhibition of most 

metabolic processes, and the released anions may have additional toxicity causing programmed 

cell death (Ullah et al., 2012, Russell, 1992). Various multiple responses are detected in S. 

cerevisiae to tolerate weak acid toxicity. Most pronounced among them is activation of H+-

ATPases present in the plasma and vacuolar membranes to stabilize internal pH, cell wall and 

membrane remodeling to decrease fluidity, thus preventing/decreasing undissociated weak acid 

diffusion, alteration in central carbon metabolism to increase ATP pool, anion extrusion through 

MDR-MFS transporters. The mechanism of acetic acid toxicity, model organic acid for stress 

response studies, has been extensively studied in the yeast S. cerevisiae (Paiva et al., 2004, Mira 

et al., 2010, Nygard et al., 2014).  Remarkably, different weak acids may have different 

physiological and morphological responses (Stratford et al., 2013), differing also among diverse 

yeasts.   
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There have been several studies in Z. bailii, focused on acetic acid tolerance due to its common 

use as a weak acid preservative and ubiquitous inhibitor in industrial fermentation (Lindberg et 

al., 2013, Sousa et al., 1998, Guerreiro et al., 2012, Rodrigues et al., 2012). The reports suggest 

diverse weak acid toxicity responses of Z. bailii, during acetic acid exposure. Z. bailii is able to 

modulate cell membrane to decrease weak acid diffusion and acid uptake through active 

transport, allowing dose dependent uptake of acetic acid, thus preventing oversaturation of 

acetic acid in the cell and its high toxicity (Sousa et al., 1998, Lindberg et al., 2013, Rodrigues 

et al., 2012). In addition, Z. bailii can utilize acetic acid as an extra carbon source in the presence 

of glucose, suggesting that under certain conditions Z. bailii may even benefit from the presence 

of the acid. This simultaneous co-consumption of glucose and acetic acid is possible because Z. 

bailii acetyl-CoA synthetase is not subject to glucose repression (Guerreiro et al., 2012, 

Rodrigues et al., 2012). 

Being the product of interest in industrial fermentation and food acidulant, lactic acid represents 

great interest.  Lactic acid has generally a weak inhibitory effect in yeast, affecting internal cell 

pH, acidification, and ROS accumulation. However, low amount of lactic acid has beneficial 

effect due to its buffering capacity, but with increase of concentration the effect disappears 

(Dang et al., 2009, Nugroho et al., 2015). 

In this study we investigated the physiological and macromolecular responses of Z. bailii 

exposed to lactic acid stress at low aeration and pH. Bioreactor fermentation profile, propidium 

iodide staining and Fourier Transform Infrared (FTIR) microspectroscopy analysis were chosen 

to study the growth performance and the cellular response of Z. bailii to lactic acid at various 

time points. The study revealed substantial phenotypic response of Z. bailii to lactic acid, in 

particular the study shows that exposure to lactic acid inhibits the growth without affecting cell 

viability and induced macromolecular changes, which are mostly augmented by time.  

 

Materials and Methods 

Cell cultivation 

The Z. bailii strains ATCC36947, ATCC60483, ATCC8766 and ATCC for convenience named 

Zb1, Zb2, Zb3 and Zb4 were used. The S. cerevisiae laboratory CEN.PK113-7D (obtained from 

Kötter P, Institut fur Mikrobiologie der Johann Wolfgang Goethe Universitat, Frankfurt, 

Germany) and commercial alcohol yeast (Dry Ethanol Red®; Fermentis, Marcq-en-Baroeul, 

France) strains were used.  The cells were stored at -80°C in YPD glycerol stock. For liquid 
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cultivation, the cells were pre-grown on YPD plates (20 gL-1 peptone, 10 gL-1 yeast extract, 20 

gL-1 glucose, 20 gL-1 agar). Phosphate – citrate buffer at pH 3 was used for buffering the flask 

fermentation. All liquid cultures were grown on at 30°C on synthetic minimal Verduyn medium 

(Verduyn et al., 1992). Pre-culture for microaerobic bioreactor batch cultivation was prepared 

by transferring one full loop of cells from YPD plate to 20 mL Verduyn medium in 125 mL 

flask. The flasks were incubated at 160 rpm at 30°C overnight. The culture from first flask pre-

culture was re-inoculated into 50mL Verduyn medium in 250 mL flask at OD660nm 1.5 and let it 

grow for 4-5 hours until OD660nm 4. The inoculum for the bioreactor cultivation was harvested 

at 3000g for 3 min at 20°C and resuspended in 20 mL of sterile ddH2O, and aseptically added 

to the bioreactor. 

Microaerobic bioreactor cultivation 

Bioreactor experiment were performed in 2L volume bioreactors (BIOSTAT B, Sartorius AG, 

Germany) with operative volume of 1.5L. Zb2 was cultivated in 2x Verduyn medium containing 

40 gL-1 glucose with 40 gL-1 lactic acid or no lactic acid. The cells were grown to mid 

exponential phase and inoculated to the bioreactor, to final absorbance of OD660 0.1. The 

temperature was maintained at 30°C, pH at 3 by addition of 4M NaOH and the stirrer speed was 

setup to 400 rpm. The inlet gas flow was adjusted by two mass flow controllers 

(Bronkhornst®High Tech- EL-FLOW®Select). The mass flow was setup to mixture N2 and air 

with final concentration of inlet oxygen 5%.  The mixture was sparged at 0.75 vvm. Antifoam 

(Antifoam 204, Sigma Aldrich) was used for foaming control. A minimum of 3 independent 

cultivations were performed per each condition (Table 1). 

The concentration of produced CO2 was monitored by on-line gas analyzer (Omnitec). The gas 

analyzer was always calibrated 24 h before starting the cultivation using synthetic air containing 

defined concentration of CO2.  

Samples (20 mL) were collected regularly from the bioreactor in vials; 1 mL was used for 

OD660nm measurement, after appropriate dilution; 1 mL was centrifuged at 4°C, 14.000 rpm for 

5 min and supernatants were collected and stored at −20°C for later determination of 

extracellular metabolites concentrations.  
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Table 1 Bioreactor settings used in this study. The settings were modified to closely resemble 

industrial organic acid batch fermentation, where low pH and aeration is essential. 

 

Dry cell weight 

The dry weight of the cell mass was measured per each sampling by washing samples in ddH2O 

and pelleting the cells. The cell pellets were dried in vacuum concentrator using default mode 

(Concentrator 5301, Eppendorf, Germany) before measuring.   

Extracellular metabolite quantification 

Residual glucose, ethanol and lactic acid were determined via high-performance liquid 

chromatography (HPLC, Model 1100, Agilent Technologies) using Aminex HPX-87H ion 

exchange column 300 mm ×7.8 mm (Bio-Rad) thermostated at 45°C. The mobile phase was 5 

mM sulphuric acid with a flow of 0.5 mlmin-1. Lactic acid was detected with an UV-detector at 

210 nm. Glucose and ethanol were detected with a RI detector.  

Propidium iodide staining and flow cytometry 

For identification of dead/severely compromised cells, cells were washed three times (Tris-HCl 

50 mM, MgCl2 15 mM, pH 7.7) and resuspended in propidium iodide (PI, Sigma-Aldrich CO., 

St. Louis, MO, USA) solution 0.23 mM, incubated on ice for 20 min. Positive and negative 

controls were also prepared. In particular, positive control was prepared by killing cells by 

incubating in 70% ice cold ethanol for 20 mins. Samples were then analyzed using a 

CYTOMICS FC 500 flow cytometer (Beckman Coulter, Fullerton, CA, USA) equipped with an 

Argon laser (excitation wavelength 488 nm, laser power 20 mW). The fluorescence emission 

was measured through a 670 nm long pass filter (FL4 parameter) for PI signal. The sample flow 

 Control Lactic Acid 

Medium 
Verdyun, 40 gL-1 Glucose Verdyun, 40 gL-1 Glucose, 40 gL-1 Lactic acid 

pH 3, controlled with NaOH 3, controlled with NaOH 

Air flow rate, (vvm) 0,75 0,75 

Stirring speed, (rpm) 400 400 

Inlet oxygen, (%) Set to 5%, not controlled Set to 5%, not controlled 

Initial OD
660nm

 0,1 0,1 

Temperature, (°C) 30 30 
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rate during analysis did not exceed 600–700 cells/s. Threshold settings were adjusted so that the 

cell debris was excluded from the data acquisition; 25000 cells were measured for every sample. 

Data analysis was performed afterwards with Cyflogic 1.2.1 software (©Perttu Terho & ©CyFlo 

Ltd). 

FTIR microspectroscopy analysis 

The bioreactor cultivated intact cells of Z. bailii were collected at 18, 24 and  42 hours. The cells 

were washed three times in distilled water to eliminate medium contamination. Approximately 

3 μl of the cell suspensions were then deposited onto an IR transparent BaF2 support, and dried 

at room temperature for at least 30 minutes to eliminate the excess water. 

FTIR absorption spectra were acquired in transmission mode, between 4000 and 700 cm-1, by 

means of a Varian 610-IR infrared microscope coupled to the Varian 670-IR FTIR spectrometer 

(both from Varian Australia Pty Ltd), equipped with a mercury cadmium telluride (MCT) 

nitrogen-cooled detector. The variable microscope aperture was adjusted to ~ 100 μm × 100 μm. 

Measurements were performed at 2 cm-1 spectral resolution; 25 KHz scan speed, triangular 

apodization, and by the accumulation of 512 scan co-additions.  

Second-derivatives spectra were obtained following the Savitsky-Golay method (third-grade 

polynomial, 9 smoothing points), after a binomial 13 smoothing points of the measured spectra 

(Susi and Byler, 1986), using the GRAMS/32 software (Galactic Industries Corporation, USA). 

To verify the reproducibility and reliability of the spectral results, three independent 

preparations were analyzed and for each preparation at least ten spectra for sample were 

measured. 

Moreover, to better illustrate the discussed spectral variations, for each of the selected IR 

absorption bands we calculated the difference of the intensity (ΔI) between the lactic acid treated 

and untreated cells. To evaluate their statistical significance, we reported in Supplementary 

material, Figure S3, the average ΔIs from the performed independent experiments with their 

standard deviation.  
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Results and Discussion 

Establishing the suitable lactic acid concentration to investigate the effects on Z. bailii cells 

Four Z. bailii strains (see Materials and Methods) obtained from ATCC collection were tested 

by plate assay experiment using different combinations of weak acids at pH 3 on Verdyun 

minimal medium to identify the best strain to be further studied for lactic acid tolerance. In 

addition, laboratory and industrial S. cerevisiae strains were included for comparison. The cells 

were pre-grown on YPD media until exponential phase and drop plated at 10, 10-1, 10-2, 10-3 

dilution. No differences in yeast growth were observed in control plates without weak acid 

addition (data not shown). When evaluated for lactic acid tolerance (Figure 1A and 1B), other 

than Zb4 all strains were only minimal affected by 40 gL-1 of lactic acid. At 80 gL-1 lactic acid 

only Zb2 and Zb3 showed growth, and even those strains were strongly inhibited by this 

condition. Next, the effects of acetic acid and a combination of acetic acid and lactic acid were 

assessed (Figure 1C and 1D). At 5 gL-1 of acetic acid, growth of Z. bailii Zb4 and the two S. 

cerevisiae strains was completely inhibited, whereas Z. bailii strains Zb1, Zb2 and Zb3 were 

unaffected. No synergistic or additive inhibitory effects of 40 gL-1 lactic acid and 3 gL-1 acetic 

acid on any of the strain were observed (Figure 1, D). Being strains of the same species, Z. bailii 

show inconsistent phenotype toward various stresses as shown in Fig 1. Moreover, genetic 

heterogeneity of Z. bailii sensu lato strains may contribute to the phenotypic differences 

observed early (Suh et al., 2013). The full genome sequence of the strains used in this study, 

which may provide detailed information about the phenotype divergence of Z. bailii strains, is 

not yet available. Overall, these results highlight the superior weak acid tolerance relative to S. 

cerevisiae of Z. bailii strains to weak organic acids. Strain Zb2 showed high levels of tolerance 

and this particular strain was previously reported to be amenable to genetic manipulation (Dato 

et al., 2010, Passolunghi et al., 2010),  Zb2 was therefore chosen for subsequent detailed tests 

on the effects of lactic acid. Preliminary shake flask fermentations of Zb2 using Verduyn 

medium at pH 3 with different concentrations of lactic acid were carried out to assess sensitivity 

to the stressor in liquid medium (Supplementary material, Figure S1). Growth was not 

significantly impaired at 40 gL-1 lactic acid but was strongly reduced at 60 or 80 gL-1 lactic acid. 

Interestingly, growth was stimulated by 20 gL-1 lactic acid. This may be attributed to a buffering 

effect of the weak organic acid, which may mitigate acidification of the growth medium caused 

by yeast growth. At higher concentrations, the toxic effect of the acid would dominate over this 

mild buffering. In addition, we performed propidium iodide staining analysis to evaluate the 
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percentage of damaged cells under these test conditions (Supplementary material, Figure S2). 

In comparison to the control condition, there was only little difference in the percentage of PI 

positive cells at 18 and 22 hours (5-15%) for cultures grown with 20 gL-1 and 40 gL-1 lactic acid, 

indicating little cellular damage, whereas cells treated with 60 gL-1 and 80 gL-1 lactic acid show 

a high percentage of PI positive cells, which is a clear evidence these or higher concentrations 

significantly affect the cell viability. Based on these data, 40 gL-1 lactic acid was selected as the 

optimum sub-lethal lactic acid concentration for further tests. It should be noted that as the pKa 

of lactic acid is 3.86, according to Henderson-Hasselbalch equation the total concentration of 

undissociated lactic acid in the medium was approximately 34.5 gL-1.  

 

Figure 1 Spotting growth assay for weak acid tolerance screening of various Z. bailii and S. 

cerevisiae strains. Cells of the indicated Z. bailii and S. cerevisiae strains were cultivated until mid-

exponential phase and spotted to Verduyn minimum medium plate (2% glucose) at pH 3, added with 

different concentration of lactic and acetic acid. Cells were 10-fold serially diluted and incubated at 30°C 

for 2 days.  
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Table 2 Physiological data obtained from microaerobic batch fermentation. Zb2 cells were 

cultured in minimal medium using bioreactors. The results were calculated from at least three 

biological replicates, and are given as the means with corresponding standard deviation. 

 

 Control Lactic Acid 

Specific growth rate µ, h-1 0,19 ±0.012 0,14 ±0.017 

Biomass yield x/s (g g-1) 0,13 ±0,01 0,11 ±0,007 

Ethanol yield EtOH/s (g g-1)  0,41 ±0,05 0,4 ±0,07 

Specific glucose consumption rate  
(g g DCW-1h-1) 

1,38 ±0.05 1,15 ±0.07 

 

Effects of lactic acid on the growth and metabolic profiles of Z. bailii during microaerobic 

bioreactor fermentation 

Bioreactor cultivation, in addition of allowing a precise monitoring and control of fermentation 

parameters, better represents industrial conditions. Therefore, experiments to assess the effect 

of 40 gL-1 lactic acid on strain Zb2 were performed in a 2L bioreactor (see Material and Methods 

for growth conditions). Cells were inoculated from overnight cultures at OD 0.1 and growth, as 

monitored by the production of CO2, commenced after 5-8 hours of adaptation to the new 

environment (Figure 2). The similar lag phase, regardless of the presence/absence of lactic acid, 

suggests that a specific pre-adaption to lactic acid is not required. Nevertheless, it was noted 

that there was an effect on growth rate and yield (Figure 2), detailed with biomass and metabolite 

profiles in Figure 3.  Cells grown in presence of lactic acid (40 gL-1) exhibited a 25% reduction 

in growth rate (0.19h-1 ±0.012 vs 0.14h-1±0.017) and a 15% reduction in final biomass titer 

(5.833gL-1±0.16 vs 5.54gL-1±0.21). Also the specific glucose consumption rate decreased of 

13% reduction in lactic acid treated cells in comparison to control (1.38g gDCWˉ¹hˉ¹±0.05 vs 

1.15g gDCWˉ¹hˉ¹±0.07). The reduction in growth rate and yield under bioreactor conditions is 

consistent with the described effects of other organic acids in yeast and in part may be 

attributable to the energetic cost of maintaining pH homeostasis by pumping H+ ions from the 

cytoplasm using the plasma membrane ATPase, which requires energy for its activity in one 

proton per ATP rate (Stratford and Anslow, 1996, van der Rest et al., 1995). However, we 

should not exclude other intracellular effects of lactic acid, which may contribute to overall 

growth inhibition. Indeed, the reduction in the glucose consumption and growth rate can be else 
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ascribed to a general conservative response, including a decrease in protein synthesis and 

inhibition of glycolytic enzymes activity in yeast (Pearce et al., 2001). Despite the difference in 

biomass yield, the presence of lactic acid under our experimental setting did not influence 

ethanol fermentation. In other words, weak acid stressed cells prefer fermentative carbon 

utilization, which may be due to higher energy demand at O2 limitation and/or lactate induced 

oxidative stress which affect mitochondria (Table 2) (Sousa et al., 2012). After glucose 

depletion, the residual ethanol was slowly consumed, contributing to slight increase of biomass 

observed starting from 28 hours on, in both conditions.  

 

 

Figure 2 CO2 profile of the Z. bailii bioreactor batch fermentation. Cells were cultivated in 

bioreactor.  Gas samples were taken every 10 minutes. Dash line (control): Zb2 without lactic acid, solid 

line: Zb2 with 40 gL-1 lactic acid. Results are average values of three replicates.  

 

S. cerevisiae is able to consume lactic acid through mitochondrial L-lactate ferricytochrome c 

oxidoreductase (L-LCR) and D-lactate ferricytochrome c oxidoreductase (D-LCR) activities 

(Lodi and Ferrero, 1993), encoded by genes that are targets for glucose repression and highly 

depended on aeration. Comparable studies are not present in literature for Z. bailii. In our 

experimental setting, only a slight decrease of lactic acid concentration was detected (Figure 3), 
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possibly because of lactic acid influx into the cell, even when glucose was exhausted in the 

medium. At high aeration condition in bioreactor fermentation, Zb2 consumed lactic acid after 

glucose depletion (data not shown). In addition, we observed increase of OD, during flask 

fermentation at 80 and 160rpm, which may be stimulated by consumption of 20 gL-1 and 40 gL-

1 lactic acid after glucose depletion (Supplementary material, Figure S1). The consumption of 

lactic acid only under conditions of high aeration and glucose depletion suggests that 

comparable mechanisms are involved in Z. bailii and S. cerevisiae. During fermentation, control 

cultures used around 30 mL of NaOH base for pH maintenance, while cells grown with lactic 

acid barely used 1 mL NaOH. This confirms the indication deriving from the shake flask 

experiments (Supplementary material, Figure S1) of the lactic acid buffering effect. As with the 

shake flask experiment, growth is not promoted in media with 40 gL-1 lactic acid because of the 

more dominant inhibitory effects. Interestingly, no acetic acid accumulation was observed in 

both conditions at low aeration, which is very likely in agreement with previous reports 

describing Z. bailii for its ability to consume acetic acid even at presence of glucose and 

microaerobic condition (Sousa et al., 1998, Rodrigues et al., 2012).  
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Figure 3 Fermentation performance of Zb2 with and without lactic acid. Cells were cultivated in 

bioreactor using Verduyn minimum medium (40 gL-1glucose) under controlled condition (5% inlet 

oxygen, pH 3). Dash line (control): Zb2 without lactic acid. Solid line: Zb2 with 40 gL-1 lactic acid. A. 

Optical density at 660nm B. Lactic acid concentration C. Ethanol production rate D. Glucose 

consumption rate. Results are average values of three replicates. Error bars represent standard deviation 

from three independent fermentations. 

 

The viability/integrity of cells recovered from bioreactors with and without lactic acid treatment 

was assessed using propidium iodide (PI) staining (Figure 4). There were no major differences 

in the percentage of PI positive cells between control and treatment conditions, confirming the 

data obtained in shake flasks (Supplementary material, Figure S1) and supporting the 

explanation that an increased energy burden rather than a toxic effect is responsible for the slight 

reduction in growth rate and yield seen in treated cultures (Figure 3). The minor differences in 

PI positivity measured at 12h were no  

 

Figure 4 Propidium Iodide (PI) staining of Zb2 cells during course of bioreactor fermentation. 

Cells were cultivated in bioreactor. Samples were taken at 0, 12, 18 and 42 hours and stained with PI. 

Damaged/dead cells, positive for the staining, were detected using flow cytometry. The columns 

represent percentage of damaged/dead cells measured by fluorescence emission at 670nm (FL3).  Black 

columns (control): Zb2 without lactic acid. Grey columns: Zb2 with 40 gL-1 lactic acid. Error bars 

represent standard deviation from at least three independent experiments. 
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longer apparent at 18 h. There was an increase in the percentage of damaged cells from ~12% 

to ~20% between 18 h and 42 h and this is likely to be due to glucose starvation and ethanol 

exposure.  

FTIR microspectroscopy analysis of Z. bailii reveals gradual macromolecular changes 

during exposure to lactic acid 

The results obtained from PI staining indicate that 40gL-1 lactic acid has no obvious cell 

damaging property on this strain, which may be a consequence of some cellular adaptation. 

To investigate possible effects of lactic acid on the composition and structure of the main cell 

molecules, we used Fourier transform infrared (FTIR) microspectroscopy, a non-invasive and 

label free technique that enables to obtain a unique molecular fingerprint of the sample under 

investigation within a single experiment (Ami et al., 2012). Intact Z. bailii cells were collected 

at 18, 24 and 42 hours after inoculation, respectively, corresponding to the early, late 

exponential, and the stationary phases of growth, and analyzed by FTIR microspectroscopy. As 

an example, in Figure 5 we reported the measured absorption spectrum of Z. bailii cells, grown 

in the absence of lactic acid, at 24 hours after the inoculation. As illustrated, the spectrum is due 

to the overlapping absorption of multiple components representing the different specific cellular 

macromolecules. Therefore, to better resolve the absorption bands, an essential prerequisite for 

the identification of peak positions and for their assignment to the different biomolecules, we 

analyzed the second derivative spectra (Susi and Byler, 1986). The amide I band (Figure 6a), 

between 1700 and 1600 cm-1, principally gives information on the whole cell protein secondary 

structures and aggregation (Tamm and Tatulian, 1997, Barth, 2007). In early exponential phase, 

there are no significant differences observed between the treated and untreated cells (see also 

Supplementary material, Figure S3). The spectra are dominated by a band at ~1657 cm-1, mainly 

due to alpha-helix and random-coil structures, and by a band at ~1638 cm-1, due to 

intramolecular native beta-sheets. Moreover, two minor absorptions at ~1692 cm-1 and ~1685 

cm-1 were present, respectively due to beta-sheet and beta-turn structures (Tamm and Tatulian, 

1997, Barth, 2007). As the cells entered later exponential and stationary phase there were only 

minor changes to the whole cell protein structure seen in the untreated cells. Indeed, in the late 

exponential phase we observed only the appearance of two well resolved absorptions at ~1690 

cm-1 and ~1680 cm-1, respectively assigned to beta-sheets and beta-turns. More pronounced 

changes were instead evident in the treated cells. In late exponential phase, we detected in 
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particular a minor but significant reduction in the intensity of the alpha helix/random coil and 

of the native beta-sheet absorptions, accompanied by the appearance of a weak shoulder around 

1627 cm-1, mostly due to intermolecular beta-sheets, typical of protein aggregates (Seshadri et 

al., 1999, Ami et al., 2003). Moreover, the upshift of the ~1690 cm-1 beta-sheet absorption to 

~1694 cm-1 again indicates the enrichment in proteins with intermolecular beta-sheets. These 

changes were even more evident in the stationary phase consistent with a progressive effect of 

the exposure to lactic (see also Supplementary material, Figure S3), and possibly ethanoloic 

stress on protein structure and folding. 

 

 

 

Figure 5 FTIR spectrum of Z. bailii intact cells. FTIR absorption spectrum of Z. bailii cells, grown in 

Verduyn minimum medium in the absence and in the presence of 40 g/L of lactic acid (LA). FTIR 

analysis was performed at 24 hours after the inoculation, corresponding to the late exponential phase of 

growth. The assignment of selected bands to the main biomolecules is reported. 
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Next we explored the IR response between 1500-1200 cm-1 (Figure 6b), mainly due to the 

deformation modes of the lipid hydrocarbon tails and head groups. In particular, the second 

derivative spectrum of the unchallenged cells is characterized by a component at ~ 1467 cm-1, 

due to the overlapping absorption of CH2 and CH3; moreover, the bands at ~ 1455 cm-1, 1438 

cm-1 and 1368 cm-1 are due to CH3, and the ~ 1416 cm-1 absorption to CH2 (Casal and Mantsch, 

1984, Arrondo and Goni, 1998, Natalello et al., 2013). In addition, two spectral components 

were present at ~ 1397 cm-1 and ~ 1387 cm-1, respectively mainly due to the CH3 bending 

vibration of the N(CH3)3 head group of phosphatidylcholine (PC) and to the CH3 deformation 

arising from ergosterol (Casal and Mantsch, 1984, Berterame et al., 2016). Finally, a broad band 

at ~1248 cm-1 was also observed, due to the PO2- stretching mode mainly of phospholipids and 

nucleic acids (Casal and Mantsch, 1984, Banyay et al., 2003). There were no major alterations 

of the lipid components in lactic acid – treated cells in the early exponential phase, but in the 

later exponential and stationary phases lactic acid induced in particular significant reduction in 

the intensity of the ~1400 cm-1 band (Supplementary material, Figure S3), marker of PC 

(Berterame et al., 2016). Notably, phosphatidylcholine - one of the most abundant membrane 

phospholipids - affects membrane fluidity (Nagle and Tristram-Nagle, 2000, Fajardo et al., 

2011). Therefore, the PC reduction observed in cells challenged with lactic acid might contribute 

to make the membrane more compact and, consequently, to counteract the lactic acid influx 

(Berterame et al., 2016). Moreover, in later growth, the PC reduction was accompanied by a 

slight increase of the ergosterol component at ~ 1387 cm-1, though this change was less evident 

in stationary phase.  
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Figure 6 Second derivatives of the FTIR absorption spectra of Z. bailii cells, in the absence and in 

the presence of lactic acid. Cells were grown in Verduyn minimum medium in the absence (control) 

and in the presence of 40 g/L of lactic acid (LA). FTIR analysis was performed at 18 hours, 24 hours and 

42 hours after the inoculation, corresponding to the i: early exponential phase; ii: mid exponential phase; 

iii: stationary phase of growth. a: amide I band; b: vibrational modes mainly due to lipid hydrocarbon 

tails and head groups, as well as to phosphate groups; c: stretching modes from lipid hydrocarbon tails; 

d: spectral range dominated by the absorption of the cell wall carbohydrates. In a, b, and d derivative 

spectra have been normalized to the tyrosine band at ~ 1516 cm-1, while in c spectra have been normalized 

at the CH3 band at ~ 2958 cm-1. 
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Next, we analyzed the spectral range between 3050-2800 cm-1 (Figure 6c) that is mainly due to 

the stretching vibrations of the lipid hydrocarbon tails (Casal and Mantsch, 1984, Arrondo and 

Goni, 1998). In particular, the spectrum of cells grown in absence of lactic acid is characterized 

by four well resolved bands due to the CH2 (at ~2921 cm-1 and 2851 cm-1) and CH3 (at ~2958 

cm−1 and 2872 cm−1) absorption. In addition, a low intensity band was detected at ~ 3007 cm-1, 

due to the olefinic =CH groups in acyl chains (Casal and Mantsch, 1984). Lactic acid treated 

cells displayed very similar spectral features to those detected in not exposed cells, suggesting 

that lipid acyl chain length and or/saturation degree were not significantly affected by the 

exposure to the stressing agent in the exponential phase of growth. In stationary phase cells 

exposed to lactic acid displayed a slightly lower intensity of the lipid hydrocarbon tail CH2 

bands (~ 2921 cm-1 and ~2851 cm-1) compared to cells grown in the absence of lactic acid, 

which could reflect a decrease of the acyl chain length on of lipids (Supplementary material, 

Figure S3) likely affecting membrane fluidity. 

We finally analyzed the complex range between 1200-900 cm-1 (Figure 6d), dominated by the 

absorption of carbohydrates, with additional overlapping contributions of phosphate groups 

mainly from phospholipids and nucleic acids (Casal and Mantsch, 1984, Kacurakova and 

Mathlouthi, 1996). The analysis of this spectral range can provide information on cell wall 

properties that involve in particular the yeast envelope carbohydrate composition (Galichet et 

al., 2001, Zimkus et al., 2013).The second derivative spectrum of Z. bailii cells not exposed to 

lactic acid is characterized in particular by the simultaneous presence of three absorptions at 

~1156 cm-1, ~1081 cm-1 and ~1022 cm-1, altogether marker of glycogen (Naumann, 2000). We 

should note that β(1-3) glucans, as well as absorbing at ~1103 cm-1, can have overlapping 

contributions with glycogen at ~1156 cm-1 and at ~1081 cm-1 (Galichet et al., 2001, Zimkus et 

al., 2013). The two bands at ~1042 cm-1 and ~966 cm-1 are mainly assigned to mannans (Galichet 

et al., 2001, Zimkus et al., 2013). Even in early exponential phase, these spectral features were 

partly found to change in cells challenged with lactic acid (Supplementary material, Figure S3), 

and in particular an important reduction of glycogen occurred. This result suggests that lactic 

acid treated cells have faster glycogen turnover, possibly due to energy demand required to 

maintain cell homeostasis (Francois and Parrou, 2001). By late exponential phase, in lactic acid-

treated cells there was a reduction in the intensity of the absorption mainly due to glycogen 

(~1156 cm-1, 1081 cm-1, 1022 cm-1). In addition, a slight reduction of the β 1→3 glucan 

absorption (~1156 cm-1, ~1103 cm-1, ~1081 cm-1) and of the β1→6 glucans at ~998 cm-1 was 
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also detected, suggesting that the exposure to the stressing agent induced a reorganization of the 

cell wall components. The changes were even more profound in the stationary phase 

(Supplementary material, Figure S3). Interestingly, glycogen was not detectable in either 

untreated or treated cells, but dramatic changes in the carbohydrate components of the cell wall 

were observed. Particularly, the ~ 998 cm-1 absorption due to β1→6 glucans downshifted to ~ 

993 cm-1, likely reflecting a modification of the carbohydrate interactions with the surrounding 

molecules of the cell wall. Furthermore, lactic acid-treated cells displayed a significant 

reduction in the intensity of the β1→3 and β1→6 glucan bands, and of the mannan band at 1046 

cm-1 (Zimkus et al., 2013) compared to cells in absence of lactic acid. The spectrum of cells 

grown in the absence of lactic acid was then characterized by a new band, not observed in the 

other phases of growth, at ~ 1028 cm-1 that can be assigned to β1→4 glucosidic bonds 

(Naumann, 2000). Interestingly, this component almost disappeared in cells challenged with 

lactic acid. These results indicate that lactic acid led to a dramatic rearrangement of the cell wall 

properties - mainly involving the carbohydrate components - that started in the early exponential 

phase and continued progressively to the stationary phase.  

Significant modification in cell membrane and wall composition of Z. bailii induced by lactic 

acid inform us about adaptive response of the cells toward the stress. Similar studies were also 

implemented in S. cerevisiae using different approaches. The results, however, displaying 

similar pattern still showed diverse outcome. In particular, lipodomics analysis of S. cerevisiae 

showed the modulation of cell membrane composition toward acetic acid stress, yet the process 

and degree of modulation was different in Z. bailii (Lindberg et al., 2013). The study of 

transcriptional changes in S. cerevisiae show a significant induction of SED1 gene, responsible 

for cell wall architecture modulation, during lactic acid stress (Kawahata et al., 2006). The 

reports suggest that SED1 encodes for cell wall protein which being overexpressed confers 

Zymulase resistance to the cells (Shimoi et al., 1998), which might reflect that the gene involved 

either in cell wall repair or thickening. Recently, FTIR study of S. cerevisiae exposed to lactic 

acid demostrated a lactic acid induced cell wall modifications, specifically slight decrease in 

signals of glucans and mannans (Berterame et al., 2016). In the case of current study, Z. bailii 

FTIR analysis clearly reveals a dramatic decrease in glucans and mannans. Being closely related 

to S. cerevisiae, Z. bailii growth niche increased and improved the weak acid stress resistance 

by enhancement not only catabolism of weak acid, but also the degree of cell and wall 

modifications which may play crucial role in extreme resistance of Z. bailii. 
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Summarizing the insights obtained from the FTIR analysis, the lactic acid treatment results in 

four major types of cellular changes. (1) An increase in the level of protein aggregation caused 

by lactic and ethanol stress, suggesting that it likely induces protein misfolding; (2) a reduction 

in glycogen, possibly caused by energy requirements for homeostasis; (3) modification of lipids, 

affecting in particular membrane fluidity; and (4) carbohydrate cell wall remodeling. Some of 

these alterations are consistent with other studies on organic/lactic acid stresses in Z. bailii or 

other yeasts. The reduction of PC and the simultaneous slight increase in ergosterol could 

account for a reduction of membrane fluidity (Fajardo et al., 2011) that in turn could lead to the 

observed increased resistance to lactic acid. Lipidomic profiling of Z. bailii under acetic acid 

stress reported a high basal level of sphingolipids (Lindberg et al., 2013). In our system, 

however, we didn’t detect by FTIR analysis important variations of the sphingolipid content 

induced by lactic acid treatment. In addition, the slight but significant decrease detected in lipid 

acyl chain length in the stationary phase of growth could also contribute to lower membrane 

fluidity.  

Interestingly, changes in cell wall properties induced by weak acids have previously been 

reported in S. cerevisiae, where exposure to weak acids induced the formation of a more rigid 

cell wall resistant to zymolyase digestion (Simoes et al., 2006). Although the mechanism of 

response may be different in Z. bailii, the common response of cell wall modifications suggests 

that this is an important tolerance mechanism in yeasts.  

In conclusion, the knowledge gathered during the study will help to better understand the weak 

acid tolerance of Z. bailii in the view of further ameliorating its biotechnological potential. 
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Supplementary materials 

 

Supplementary Figure 1 (S1) Flask fermentations using different lactic acid concentration and 

rpm. Cells were shake-flasks cultivated at 30°C using Verduyn minimum medium (40 gL-1glucose) with 

different lactic acid concentration, as indicated. A. Z. bailii flask fermentation under 80 rpm agitation. 

Open circle 0 gL-1 (control), open square 20 gL-1, open triangle 40 gL-1, open diamond 60 gL-1, asterisk 

80 gL-1. B. Z. bailii flask fermentation under 160 rpm agitation. Solid circle 0 gL-1 (control), solid square 

20 gL-1, solid triangle 40 gL-1, solid diamond 60 gL-1, asterisk 80 gL-1. 

 

 

Supplementary Figure 2 (S2) Propidium Iodide (PI) staining of Zb2 cells during preliminary flask 

fermentation. Cells were cultivated in Verduyn minimal medium. Samples were taken at 0, 18 and 22 

hours and stained with PI. Damaged/dead cells were detected using flow cytometry. The columns 

represent percentage of damaged/dead cells measured by fluorescence emission at 670nm (FL3). A. Z. 

bailii flask fermentation under 80 rpm of agitation. B. Z. bailii flask fermentation under 160 rpm of 

agitation. Different green-tone scale represents the increasing concentrations of lactic acid in the 

medium, gL-1 (0, 20, 40, 60, 80). 
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Supplementary Figure 3 (S3) Statistical analysis of FTIR data. For each of the selected IR absorption 

bands we calculated the difference of the intensity (ΔI) between the lactic acid treated and untreated 

cells. The average ΔIs from the performed independent experiments are reported with their standard 

deviation. For the β1→4 glucosidic band at 1028 cm-1, the ΔI calculated for the T18 and T24 hours - 

where the 1028 cm-1 is absent - has to be ascribed to the contribution of the tail of the the glycogen band 

at 1022 cm-1. Analogously, the ΔI calculated for the 1022 cm-1 band at T42. Intensities are taken from 

the second derivative spectra. 
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Abstract 

Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual 

and can replicate only mitotically. Whole-genome duplication has been proposed as a 

mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform 

meiosis and sporulate. Here, we show that this process occurred naturally during the evolution 

of Zygosaccharomyces parabailii, an interspecies hybrid that was formed by mating between 

two parents that differed by 7% in genome sequence and by many interchromosomal 

rearrangements. Surprisingly, Z. parabailii has a full sexual cycle and is genetically haploid. It 

goes through mating-type switching and auto-diploidization, followed by immediate 

sporulation. We identified the key evolutionary event that enabled Z. parabailii to regain 

fertility, which was breakage of one of the two homeologous copies of the mating-type (MAT) 

locus in the hybrid, resulting in a chromosomal rearrangement and irreparable damage to one 

MAT locus. This rearrangement was caused by HO endonuclease, which normally functions in 

mating-type switching. With one copy of MAT inactivated, the interspecies hybrid now behaves 

as a haploid. Our results provide the first demonstration that MAT locus damage is a naturally 

occurring evolutionary mechanism for whole-genome duplication and restoration of fertility to 

interspecies hybrids. The events that occurred in Z. parabailii strongly resemble those 

postulated to have occurred to cause ancient whole-genome duplication in an ancestor of 

Saccharomyces cerevisiae. 
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Author Summary 

It has recently been proposed that the whole-genome duplication (WGD) event that occurred 

during evolution of an ancestor of the yeast Saccharomyces cerevisiae was the result of a 

hybridization between two parental yeast species that were significantly divergent in DNA 

sequence, followed by a doubling of the genome content to restore the hybrid’s ability to make 

viable spores. However, the molecular details of how genome doubling could occur in a hybrid 

were unclear because most known interspecies hybrid yeasts have no sexual cycle. We show 

here that Zygosaccharomyces parabailii provides an almost exact precedent for the steps 

proposed to have occurred during the S. cerevisiae WGD. Two divergent haploid parental 

species, each with 8 chromosomes, mated to form a hybrid that was initially sterile but regained 

fertility when one copy of its mating-type locus became damaged by the mating-type switching 

apparatus. As a result of this damage, the Z. parabailii life cycle now consists of a 16-

chromosome haploid phase and a transient 32-chromosome diploid phase. Each pair of 

homeologous genes behaves as two independent Mendelian loci during meiosis. 
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Introduction 

A whole-genome duplication (WGD) occurred more than 100 million years ago in the common 

ancestor of six yeast genera in the ascomycete family Saccharomycetaceae, including 

Saccharomyces (Wolfe and Shields, 1997, Wolfe et al., 2015). Recent phylogenomic analysis 

has shown that the WGD was an allopolyploidization – that is, a hybridization between two 

different parental lineages (Marcet-Houben and Gabaldon, 2015). One of these parental lineages 

was most closely related to a clade (ZT) containing Zygosaccharomyces and Torulaspora, 

whereas the other was closer to a clade (KLE) containing Kluyveromyces, Lachancea and 

Eremothecium. The ZT and KLE clades are the two major groups of non-WGD species in family 

Saccharomycetaceae. The WGD had a profound effect on the genome, proteome, physiology 

and cell biology of the yeasts that are descended from it, but the genomes of these yeasts have 

changed substantially in the time since the WGD occurred, with extensive chromosomal 

rearrangement, deletion of duplicate gene copies, and sequence divergence between ohnologs 

(pairs of paralogous genes produced by the WGD). These changes have made it difficult to 

ascertain the molecular details of how the WGD occurred. Ancient hybridizations are rare in 

fungi, or at least difficult to detect (Campbell et al., 2016), but numerous relatively recent 

hybridizations have been identified using genomics, particularly in the ascomycete genera 

Saccharomyces (Hittinger, 2013, Wendland, 2014), Zygosaccharomyces (James et al., 2005, 

Gordon and Wolfe, 2008, Solieri et al., 2013b), Candida (Pryszcz et al., 2014, Pryszcz et al., 

2015, Schroder et al., 2016) and Millerozyma (Leh Louis et al., 2012). 

 

Marcet-Houben and Gabaldón (Marcet-Houben and Gabaldon, 2015) proposed two alternative 

hypotheses for the mechanism of interspecies hybridization that led to the ancient WGD in the 

Saccharomyces lineage. Hypothesis A was hybridization between diploid cells from the two 

parental species, perhaps by cell fusion. Hypothesis B was mating between haploid cells from 

the two parental species to produce an interspecies hybrid zygote, followed by genome doubling. 

Under both hypotheses, the product is a cell with two identical copies of each parental 

chromosome. These identical copies should be able to pair during meiosis, leading to viable 

spores. While there are no known examples of natural yeast hybrid species formed by diploid-

diploid fusion (hypothesis A), three examples have been discovered where hybrid species were 

apparently formed simply by mating between haploids of opposite mating types from different 

species (hypothesis B). These are Candida metapsilosis (Pryszcz et al., 2015), C. orthopsilosis 
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(Pryszcz et al., 2014, Schroder et al., 2016), and Zygosaccharomyces strain ATCC42981 

(Gordon and Wolfe, 2008, Bizzarri et al., 2016). These interspecies hybridizations occurred by 

mating between parents with 4-15% nucleotide sequence divergence between their genomes. 

However, none of these three hybrids can sporulate, which could be either because the 

homeologous chromosomes from the two parents are too divergent in sequence to pair up during 

meiosis, or because pairing occurs but evolutionary rearrangements (such as translocations) 

between the parental karyotypes result in DNA duplications or deficiencies after meiosis 

(Hunter et al., 1996, Delneri et al., 2003, Liti et al., 2006, Morales and Dujon, 2012). None of 

these three hybrids has undergone the genome doubling step envisaged in hypothesis B.  

 

Several groups (Marcet-Houben and Gabaldon, 2015, Scannell et al., 2006, Wolfe, 2015, 

Morales and Dujon, 2012) have proposed that genome doubling could occur quite simply by 

means of damage to one copy of the MAT locus in the interspecies hybrid, which could cause 

the hybrid cell to behave as a haploid, switch mating type, and hence auto-diploidize. This 

proposal mimics laboratory experiments carried out by Greig et al. (2002) in which hybrids 

between different species of Saccharomyces were constructed by mating. The hybrids were 

unable to segregate chromosomes properly and were sterile, but when one allele of the MAT 

locus was deleted they spontaneously auto-diploidized by mating-type switching and were then 

able to complete meiosis and produce spores with high viability. Each spore contained a full set 

of chromosomes from both parental species (2002). While genome doubling via MAT locus 

damage is an attractive hypothesis consistent with hypothesis B above (Marcet-Houben and 

Gabaldon, 2015), no examples of it occurring in nature have been described. We show here that 

Z. parabailii has gone through this process. 

 

There are 12 formally described species in the genus Zygosaccharomyces (Hulin and Wheals, 

2014). The most studied of these is Z. rouxii, originally found in soy sauce and miso paste 

(Ohnishi, 1963, Mori and Windisch, 1982). Others include Z. mellis frequently found in honey 

(James and Stratford, 2011), and Z. sapae from balsamic vinegar (Solieri et al., 2013a, Solieri 

et al., 2014). Species in the Z. bailii sensu lato clade (Z. bailii, Z. parabailii and Z. pseudobailii; 

(Suh et al., 2013)) are of economic importance because they are exceptionally resistant to 

osmotic stress and low pH. Their resistance to the weak organic acids commonly used as food 

preservatives makes them the most frequent spoilage agent of packaged foods with high sugar 
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content such as fruit juices and jams, or low pH such as mayonnaise (Thomas and Davenport, 

1985, Deak and Beuchat, 1996, Mollapour and Piper, 2001, Stratford et al., 2013, Palma et al., 

2015). These same characteristics make Zygosaccharomyces relevant to biotechnology since 

high stress tolerance and rapid growth are often desirable traits in microorganisms to be used as 

cell factories. The strain we analyze here, Z. parabailii ATCC60483, has previously been used 

for production of vitamin C (Sauer et al., 2004), lactic acid (Dato et al., 2010), and heterologous 

proteins (Vigentini et al., 2005). 

 

Despite the diversity of the genus, genome sequences have been published for only two non-

hybrid species of Zygosaccharomyces: the type strains of Z. rouxii (CBS732T; (Souciet et al., 

2009)) and Z. bailii (CLIB213T; (Galeote et al., 2013)). The genus also includes many 

interspecies hybrids with approximately twice the DNA content of pure species (20 Mb instead 

of 10 Mb; (James et al., 2005, Gordon and Wolfe, 2008, Mira et al., 2014, Bizzarri et al., 2016)). 

Mira et al. (Mira et al., 2014) sequenced the genome of Zygosaccharomyces strain ISA1307 and 

found that it is a hybrid between Z. bailii and an unidentified Zygosaccharomyces species. In 

2013, Suh et al. (Suh et al., 2013) proposed that some strains that were historically classified as 

Z. bailii should be reclassified as two new species, Z. parabailii and Z. pseudobailii, based on 

phylogenetic analysis of a small number of genes. The sequences of the RPB1 and RPB2 genes 

that they obtained from Z. parabailii and Z. pseudobailii contained multiple ambiguous bases, 

consistent with a hybrid nature (Mira et al., 2014). In the current study, we sequenced the 

genome of a second hybrid strain, ATCC60483. We show that ATCC60483 and ISA1307 are 

both Z. parabailii and are both descended from the same interspecies hybridization event. By 

sequencing ATCC60483 using Pacific Biosciences (PacBio) technology we obtained near-

complete sequences of every Z. parabailii chromosome, which enabled us to study aspects of 

chromosome evolution in this species that were not evident from the Illumina assembly of 

ISA1307 (Mira et al., 2014).  
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Results 

Z. parabailii ATCC60483 genome assembly by PacBio 

We first tried to sequence the Z. parabailii genome using Illumina technology, but even with 

high coverage we were unable to obtain long contigs. The data indicated that the genome was a 

hybrid, so instead we switched to PacBio technology which generates long sequence reads (6 

kb on average in our data). Our initial assembly had 22 nuclear scaffolds, which we refined into 

16 complete chromosome sequences with a cumulative size of 20.8 Mb by manually identifying 

overlaps between the ends of scaffolds, and by tracking centromere and telomere locations. We 

annotated genes using the YGAP pipeline, assisted by RNAseq data to identify introns. The 

nuclear genome has 10,087 protein-coding genes, almost twice as many as Z. bailii CLIB213T 

(Table 1). 

 

Table 1. Comparison of Z. bailii and Z. parabailii genome assemblies. 

Strain Species 

Genome 

size 

(Mb) 

Scaffolds 

Scaffold 

N50 

(Mb) 

Reference 
tRNA 

genesa  

Protein-

coding 

genes 

CLIB213T Z. bailii 10.2 27 0.9 
Galeote et al. 

(2013) 
161 5084 

ISA1307 Z. parabailii 21.2 154 0.2 Mira et al. (2014) 513 9925 

ATCC60483 Z. parabailii 20.8 16 1.3 This study 499 10087 

a We predicted the tRNA gene content of each genome assembly using tRNAscan-SE (Lowe and Eddy, 1997). 

 

Most of the chromosome sequences extend into telomeric repeats at the ends. The consensus 

sequence of the telomeres is TGTGGGTGGGG, which matches exactly the sequence of the template 

region of the two homeologous TLC1 genes for the RNA component of telomerase that are 

present in the genome. Chromosome sequences that do not extend into telomeres instead 

terminate at gene families that are amplified in subtelomeric regions, or contain genes that are 

at chromosome ends in the inferred Ancestral (pre-WGD) gene order for yeasts (Gordon et al., 
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2009) indicating that they are almost full-length, except for three chromosome ends that appear 

to have undergone break-induced replication (BIR) and homogenization with other chromosome 

ends.  

We identified one scaffold as the mitochondrial genome, which maps as a 30 kb circle 

containing orthologs of all S. cerevisiae mitochondrial genes. We also found a plasmid in the 2-

micron family (5427 bp), with 99% sequence identity to pSB2 which was first isolated (1987) 

from the type strain of Z. parabailii (NBRC1047 / ATCC56075). 

 

Z. parabailii ATCC60483 is an interspecies hybrid, with Z. bailii as one parent 

Visualization of the genome using a Circos plot (Zhang et al., 2013) shows that most of the 

genome is duplicated, indicating a polyploid origin (Fig. 1). However, although most genes have 

a homeolog, the chromosomes do not form simple collinear pairs. Instead, sections of each 

chromosome are collinear with sections of other chromosomes. 
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Figure 1 Circos plot of relationships among the Z. parabailii ATCC60483 chromosomes. In the outer 

arcs, purple and green coloring indicates A- and B-genes on the Watson and Crick strands of each 

chromosome. Arcs in the center of the diagram link homeologous (A:B) gene pairs. 
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Comparison to Z. bailii CLIB213T shows that, for each region of the Z. bailii genome there are 

two corresponding regions of the Z. parabailii genome: one almost identical in sequence, and 

one with approximately 93% sequence identity, which demonstrates a hybrid (allopolyploid) 

origin of Z. parabailii and suggests that Z. bailii was one of its parents. To analyze this 

relationship in detail, we estimated the parental origin of every Z. parabailii ATCC60483 gene 

based on the number of synonymous substitutions per synonymous site (KS) when compared to 

its closest Z. bailii homolog (Fig. 2A). This analysis revealed a bimodal distribution of KS values 

where 47.1% of the ATCC60483 genes are almost identical to CLIB213T genes (KS ≤ 0.05), and 

a further 42.5% are more divergent (0.05 < KS ≤ 0.25). 

 

 

 

 

Figure 2 (A) Histogram of the distribution of synonymous site divergence (KS) values for 10,087 Z. 

parabailii ATCC60483 genes compared to their closest Z. bailii CLIB213T homologs. (B) Pie chart 

showing the proportions of genes classified into each category. The two largest categories refer to A-

genes and B-genes that are in A:B pairs. N means genes for which no Z. bailii homolog was found or 

KS to Z. bailii exceeded 0.25. ‘As’ and ‘Bs’ indicate other A-genes and B-genes, as analyzed in panel 

C. (C) Breakdown of the numbers of genes assigned to the A- or B-subgenomes, that are not in A:B 

pairs. See S1 Data for category counts and KS values for each gene. 

 

 

From this relationship, we infer that Z. parabailii ATCC60483 is an interspecies hybrid formed 

by a fusion of two parental cells, which we refer to as Parent A (purple) and Parent B (green). 

Parent A was a cell with a genome essentially identical to Z. bailii CLIB213T. Parent B was a 

cell of an unidentified Zygosaccharomyces species with approximately 93% overall genome 

sequence identity to Z. bailii, corresponding to a synonymous site divergence peak of KS = 0.16 
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(Fig. 2A). We refer to the two sets of DNA in Z. parabailii that were derived from Parents A 

and B as the A-subgenome and the B-subgenome respectively. We refer to the A- and B-copies 

of a gene as homeologs, and we use a suffix (‘_A’ or ‘_B’) in gene names to indicate which 

subgenome they come from. 

The genome contains ribosomal DNA (rDNA) loci inherited from each of its parents. Our 

assembly includes two complete rDNA units with 26S, 5.8S, 18S and 5S genes. Phylogenetic 

analysis of their internal transcribed spacer (ITS) sequences shows that the rDNA on 

chromosome 11 is derived from Z. bailii (Parent A), whereas the rDNA on chromosome 4 is 

derived from Parent B and contains an ITS variant seen only in other Z. parabailii strains (S1 

Figure). A third rDNA locus in our assembly (at one telomere of chromosome 15) is incomplete 

and does not extend into the ITS region. The rDNA unit on chromosome 4 is also telomeric, 

whereas the unit on chromosome 11 is located at an internal site 165 kb from the right end. None 

of the genes in the interval between this rDNA and the right telomere of chromosome 11 have 

orthologs in Z. bailii CLIB213T. 

Z. parabailii has 16 chromosomes. We identified its 16 centromeres bioinformatically, which 

correspond to two copies (A and B) of each of the 8 centromeres in the Ancestral pre-WGD 

yeast genome (Table 2) (Gordon et al., 2009, Gordon et al., 2011b). In contrast, Z. rouxii has 

only 7 chromosomes due to a telomere-to-telomere fusion between two chromosomes followed 

by loss of a centromere (Gordon et al., 2011b). The missing centromere in Z. rouxii is Ancestral 

centromere Anc_CEN2, which maps to Z. parabailii centromeres CEN4 and CEN11, located 

between the genes MET14 and VPS1. The Z. rouxii centromere must have been lost after it 

diverged from the Z. bailii/Z. parabailii lineage. Alignment of the Z. rouxii MET14-VPS1 

intergenic region with the Z. parabailii CEN4 and CEN11 regions shows that the CDE III motif 

of the point centromere has been deleted in Z. rouxii (S2 Figure). 
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Table 2 Z. parabailii ATCC60483 chromosomes and centromeres. 

 

bp 

Protein-coding 

genes 

tRNA 

genes 

Ancestral  

centromerea 

Z. rouxii  

centromere 

1 2,110,500 1010 62 Anc_CEN5 (B) Zr_CEN2 

2 2,005,801 1009 55 Anc_CEN6 (A) Zr_CEN3 

3 1,751,495 868 31 Anc_CEN4 (A) Zr_CEN7 

4 1,516,135 718 29 Anc_CEN2 (A) absentb 

5 1,443,312 709 44 Anc_CEN5 (A) Zr_CEN2 

6 1,315,104 614 22 Anc_CEN7 (B) Zr_CEN4 

7 1,283,838 638 29 Anc_CEN6 (B) Zr_CEN3 

8 1,249,162 634 28 Anc_CEN8 (B) Zr_CEN6 

9 1,240,939 579 43 Anc_CEN1 (B) Zr_CEN5 

10 1,189,704 576 28 Anc_CEN3 (A) Zr_CEN1 

11 1,115,933 522 16 Anc_CEN2 (B) absentb 

12 1,091,360 520 24 Anc_CEN4 (B) Zr_CEN7 

13 1,077,716 517 25 Anc_CEN3 (B) Zr_CEN1 

14 1,007,293 494 16 Anc_CEN7 (A) Zr_CEN4 

15 858,772 406 37 Anc_CEN1 (A) Zr_CEN5 

16 571,967 273 10 Anc_CEN8 (A) Zr_CEN6 

mtDNA 29,945 13 20 

  
Total (nuclear) 20,829,031 10087 499 

  
a Synteny correspondence between Z. parabailii centromeres and yeast Ancestral (pre-WGD) centromere 

locations (Gordon et al., 2011b). A and B indicate the subgenome assignments of the Z. parabailii 

centromeres. 

b Z. rouxii lost Anc_CEN2 in an evolutionary fusion of two chromosomes (Gordon et al., 2011b). 
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Z. parabailii inherited the mitochondrial genome of its Z. bailii parent. A complete 

mitochondrial genome sequence for Z. bailii is not available, but we identified 55 small mtDNA 

contigs in the CLIB213T assembly, which together account for most of the genome, and 

calculated an average of 96% sequence identity between these and ATCC60483 mtDNA. 

CLIB213T lacks two of the five mitochondrial introns that are present in ATCC60483: the 

omega intron of the large subunit mitochondrial rDNA, and intron 2 of COX1. Intra-species 

polymorphism for intron presence/absence, and comparable levels of intra-species mtDNA 

sequence diversity, have been reported in other yeast species (Wolters et al., 2015, Wu et al., 

2015). 

 

Pre-hybridization chromosomal rearrangements in Z. parabailii’s parents relative to 

Z. bailii  

When genes in the Circos plot are colored according to their parent of origin, it is striking that 

many Z. parabailii chromosomes are either almost completely ‘A’ (purple) or almost 

completely ‘B’ (green) (outer ring in Fig 1), even though the chromosomes do not form collinear 

pairs. This pattern can be seen in more detail in a dot matrix plot between Z. bailii and 

Z. parabailii (Fig 3). From this plot, it is evident that most of the A-subgenome is collinear with 

Z. bailii scaffolds, whereas the B-subgenome contains many rearrangements relative to Z. bailii. 

For example, Z. parabailii chromosome 1 is derived almost entirely from the B-subgenome but 

maps to about 12 different regions on the Z. bailii scaffolds. In contrast, Z. parabailii 

chromosome 3 is derived from the A-subgenome and is collinear with a single Z. bailii scaffold. 
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Figure 3 Dot-matrix plot between Z. bailii CLIB213T scaffolds (Galeote, et al., 2013) and Z. 

parabailii ATCC60483 chromosomes. Each dot is a protein-coding gene (purple: A-genes; green, B-

genes). Red triangles indicate chromosome ends that appear unpaired due to BIR. M and m indicate the 

active and broken MAT loci of Z. parabailii, respectively. 

 

In total, from Fig 3 we estimate that there are approximately 34 breakpoints in synteny between 

the Z. parabailii B-subgenome and Z. bailii, but no breakpoints between the A-subgenome and 

Z. bailii, when post-hybridization rearrangement events (described below) are excluded. This 

difference in the levels of rearrangement in the A- and B-subgenomes relative to Z. bailii 

indicates that the two subgenomes were not collinear at the time the hybrid was formed. 

Therefore, most of the rearrangements between the two subgenomes are rearrangements that 

existed between the two parental species prior to hybridization. The two parents both had 8 

chromosomes, but their karyotypes were quite different. Because each event of reciprocal 

translocation or inversion creates two synteny breakpoints (Sankoff, 1993), we estimate that 

about 17 events of chromosomal translocation or inversion occurred between the two parents in 

the time interval between when they last shared a common ancestor and when they hybridized. 

The situation in Z. parabailii (hybridization between parents differing by 17 rearrangements and 

7% sequence divergence) contrasts with that in the hybrid Millerozyma sorbitophila (only 1 

detectable rearrangement between the parents, despite 15% sequence divergence (Leh Louis et 

al., 2012)). 
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Post-hybridization recombination, loss of heterozygosity (LOH) and break-induced 

replication (BIR) 

Although the Z. parabailii genome largely contains unrearranged parental chromosomes, there 

have been two major types of rearrangement after hybridization. First, post-hybridization 

recombination between the subgenomes at homeologous sites has formed some chromosomes 

that are partly ‘A’ and partly ‘B’. Second, a process of homogenization has occurred at some 

places in which one subgenome overwrote the other, resulting in gene pairs that are A:A or B:B. 

This process is commonly called loss of heterozygosity (LOH) or gene conversion. Based on 

their KS distances from Z. bailii, the genome contains 4153 simple A:B homeologous gene pairs, 

300 A:A pairs and 84 B:B pairs. 

 

To examine the genomic locations of LOH and rearrangement events in more detail, we further 

classified genes using a scheme that takes account of their pairing status as well as their 

divergence from Z. bailii. Genes were defined as ‘A’ or ‘B’ as before, or ‘N’ if a KS distance 

from Z. bailii could not be calculated (Fig 2B,C). We then assigned each gene to one of 7 

categories such as “B-gene in an A:B pair” or “A-gene, unpaired”, and plotted the locations of 

genes in each category. The resulting map of the genome (Fig 4) allows LOH and recombination 

events to be visualized. N-genes (black in Fig 4) are seen to be mostly located near telomeres. 

Several points of recombination between the A- and B-subgenomes are apparent, such as in the 

middle of chromosome 4. LOH tends to occur in stretches that span multiple genes. For example, 

on chromosome 13, LOH has formed eight runs of consecutive A-genes in a chromosome that 

is otherwise ‘B’; these A-genes are members of A:A pairs. They were probably formed by 

homogenization (gene conversion without crossover), although they could also be the result of 

double crossovers followed by meiotic segregation of chromosomes. Patches of LOH are 

frequently seen adjacent to sites of recombination between the two subgenomes (Fig 4). Three 

large regions of apparently unpaired A-genes near the ends of chromosomes (1L, 5L and 9R; 

light blue in Fig 4) are probably artefacts caused by break-induced replication (BIR), which is 

a process that can make the ends of two chromosomes completely identical from an initiation 

point out to the telomere (Bosco and Haber, 1998). These regions have 2x sequence coverage 



85 
 

in our Illumina data, and we can identify the probable locations of an identical second copy of 

each of them at other chromosome ends (Fig 4). 

 

 

Figure 4 Subgenome and duplication status of each Z. parabailii gene. Each gene was classified into 

one of 7 categories and color-coded as shown in the legend. For each chromosome, seven rows were 

then drawn, showing the locations of genes in each category (the 7 rows appear in the same order from 

top to bottom as in the legend). R shows the locations of rDNA clusters. M and H indicate the locations 

of MAT and HML/HMR loci. Circles with arrows mark the three chromosome ends where our sequence 

is incomplete due to BIR; in each case the missing sequence is apparently identical to the end of another 

chromosome as shown. For example, we infer that at the right end of chromosome 14, our assembly 

artefactually lacks a second copy of the genes that are labeled as ‘A unique’ on the right end of 

chromosome 9. The high sequence identity of the chromosome 9 and 14 copies of this region caused 

them to co-assemble, and the co-assembled contig was arbitrarily assigned to chromosome 9. 

 

 

Rearrangement catalyzed by HO endonuclease, and degeneration of the ‘B’ MAT locus 

The Z. parabailii genome contains two MAT loci (one of which is broken) and four HML/HMR 

silent loci (Fig 5). In S. cerevisiae, mating-type switching is a DNA rearrangement process that 

occurs in haploid cells to change the genotype of the MAT locus (Haber, 2012). During 

switching, the active MAT locus is first cleaved by an endonuclease called HO, and its a- or α-
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specific DNA is removed by an exonuclease. The resulting double-strand DNA break at MAT 

is then repaired by copying the sequence of either the HMLα or HMRa locus. This process 

converts a MATa genotype to MATα, or vice versa. Repeated sequences, called Z and X, located 

beside MAT and the HM loci act as guides for the DNA strand exchanges that occur during this 

repair process. The HM loci are ‘silent’ storage sites for the a and α sequence information 

because genes at these loci are not transcribed due to chromatin modification; only MAT is 

transcribed (Haber, 2012). 

 

 

Figure 5 (A) Organization of MAT, HML and HMR loci in Z. parabailii ATCC60483. The genome 

contains six MAT-related regions, with one MAT, one HML and one HMR locus derived from each of 
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the A and B parents. Pink and green backgrounds indicate sequences from the A- and B-subgenomes, 

respectively. The MAT locus in the A-subgenome (position 294 kb on chromosome 7) is intact and 

expressed. The MAT locus of the B-subgenome has been broken into two parts by cleavage by HO 

endonuclease. All six copies of the X repeat region (654 bp) are identical in sequence, as are all six 

copies of the Z repeat region (266 bp). Gray triangles indicate the disruption of splicing of intron 2 in 

MATα2 and HMLα2 of the B-subgenome. Binding sites for primers A-F used for PCR amplification are 

indicated by gray arrows. (B) Sequences at the MAT locus breakpoint. Red, MATα1-derived sequences. 

The HO cleavage site (CGCAGCA, giving a 4-nucleotide 3’ overhang) is highlighted in gray. Blue, the 

GDA1-YEF1 intergenic region from the equivalent region of Z. bailii CLIB213T, and homologous 

sequences from the A-subgenome on Z. parabailii chromosomes 2 and 16. A 5-bp sequence (ACAAC) 

that became duplicated during the rearrangement is underlined. (C) Sequences of MATα2 intron 2 

(lowercase) from the A- and B-subgenomes. An AG-to-AC mutation (red) at the 3’ end of the intron 

moved the splice site by 2 bp in the B-subgenome, causing a frameshift and premature translation 

termination. The splice sites in both genes were identified from RNAseq data. 

 

We infer that the parents of Z. parabailii each contained a MAT locus and two silent loci (HMLα 

and HMRa), similar to S. cerevisiae and Z. rouxii haploids (Watanabe et al., 2013). Fig 5A 

shows that Z. parabailii has a MAT locus on chromosome 7, flanked by Z and X repeats and 

full-length copies of the genes SLA2 and DIC1, similar to the MAT loci of many other species 

(Gordon et al., 2011a, Watanabe et al., 2013). This MAT locus is derived from Parent A. 

Chromosome 7 also contains HMLα and HMRa loci (derived from Parent B) near its telomeres. 

However, the B-subgenome’s MAT locus is broken into two pieces. Most of it is on chromosome 

2, but its left part (the 3’ end of MATα1, the Z repeat and the neighboring gene SLA2) is on 

chromosome 16 (Fig 5A). Chromosomes 2 and 16 also each contain an HMLα or HMRa locus 

from the A-subgenome. 

Examination of the breakpoint in the B-subgenome’s MAT locus shows that the break was 

catalyzed by HO endonuclease, because it occurs precisely at the cleavage site for this enzyme 

(Fig 5B). In S. cerevisiae, HO has a long (~18 bp) recognition sequence that is unique in the 

genome, and it cleaves DNA at a site within this sequence leaving a 4-nucleotide 3’ overhang 

(Nickoloff et al., 1990). Although the recognition and cleavage sites of HO endonucleases in 

other species have not been investigated biochemically, they can be deduced because the core 

of the HO cleavage site (CGCAGCA) invariably forms the first nucleotides of the Z region in each 

species (Gordon et al., 2011a). Moreover, the HO cleavage site corresponds to an amino acid 

sequence motif (FAQQ) in the MATα1 protein that is strongly conserved among species. 

The two parts of the broken MAT locus are located beside the genes GDA1 and YEF1 (Fig 5A), 

which are neighbors in Z. bailii CLIB213T and in the Ancestral yeast genome (Galeote et al., 

2013, Gordon et al., 2009). Therefore, after HO endonuclease cleaved the ‘B’ MAT locus, the 

broken ends of the chromosome apparently interacted with the GDA1-YEF1 intergenic region 
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of the A-subgenome, causing a reciprocal translocation. This site is the only synteny breakpoint 

between the A-subgenome of Z. parabailii and the genome of Z. bailii (scaffold 9; Fig 3). 

Comparison of the DNA sequences at the site (Fig 5B) shows no microhomology between the 

two interacting sequences, and that DNA repair led to duplications of a 5-bp sequence (ACAAC) 

from the GDA1-YEF1 intergenic region and a 2-bp sequence (CA) from MATα1, suggestive of 

nonhomologous end-joining (NHEJ) as the repair mechanism. We hypothesize that this genomic 

rearrangement occurred during a failed attempt to switch mating types, which resulted in a 

reciprocal translocation instead of normal repair of MAT by HML or HMR. 

While the B-subgenome’s MATα1 gene is clearly broken, its MATα2 gene also appears to be 

nonfunctional. MATα2 has two introns, and our RNAseq data shows how both homeologs of 

this gene (ZPAR0G01480_A and ZPAR0B05090_B) are spliced. A point mutation at the 3’ end 

of intron 2 of the B-gene changed its AG splice acceptor site to AC, with the result that splicing 

now uses another AG site two nucleotides downstream (Fig 5C). This change results in a 

frameshift, truncating the B-copy of the α2 protein to 57 amino acid residues instead of 211 and 

presumably inactivating it. 

Surprisingly, the Z. parabailii genome does not contain any MATa1 (or HMRa1) gene. This 

gene codes for the a1 protein, which is one subunit of the heterodimeric a1-α2 transcriptional 

repressor that is formed in diploid (a/α) cells and which acts as a sensor of diploidy by repressing 

transcription of haploid functions such as mating, while permitting diploid functions such as 

meiosis (Johnson, 1995). The a1 gene is present in Z. rouxii and Z. sapae (Souciet et al., 2009, 

Watanabe et al., 2013, Solieri et al., 2014), but it is also absent from Z. bailii CLIB213T and 

must have been absent from Parent B. The Z. bailii CLIB213T MAT organization is not fully 

resolved (2013) but it contains a MAT locus with α1 and α2 genes on scaffold 14, and an HMR 

locus with only an a2 gene on scaffold 19. Evolutionary losses of MATa1 have previously been 

seen in some Candida species (Logue et al., 2005, Butler, 2010), but not in any species of family 

Saccharomycetaceae. In contrast, the gene for the other subunit of the heterodimer, MATα2, is 

present in all Zygosaccharomyces species and is probably maintained because it has a second 

role in repressing a-specific genes in this genus (Baker et al., 2012). Solieri and colleagues have 

reported evidence that a1-α2 is nonfunctional in a Zygosaccharomyces rouxii/pseudorouxii 

hybrid where its two subunits are derived from different species (Bizzarri et al., 2016). 
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Z. parabailii strains ATCC60483 and ISA1307 are descendants of the same interspecies 

hybridization event 

The two subgenomes apparent in the Illumina scaffolds of the Zygosaccharomyces hybrid strain 

ISA1307, previously sequenced by Mira et al. (2014), are both 99-100% identical in sequence 

to the A- or B-subgenomes of ATCC60483. Therefore ISA1307 is also a strain of Z. parabailii. 

Importantly, the ISA1307 genome sequence contains the same HO-catalyzed reciprocal 

translocation between MATα1 of the B-subgenome and the GDA1-YEF1 intergenic region of 

the A-subgenome (Fig 5A). Because this rearrangement is so unusual, and because it did not 

involve recombination between repeated sequences, it is highly unlikely to have occurred twice 

in parallel. The rearrangement is much more likely to have occurred only once, in a common 

ancestor of the two Z. parabailii strains after the hybrid was formed. It cannot pre-date the 

hybridization because it formed junctions between the A- and B-subgenomes, which originated 

from different parents. 

ATCC60483 and ISA1307 are independent isolates of Z. parabailii, both from industrial 

sources. ATCC60483 was isolated from citrus concentrate used for soft drinks manufacturing 

in the Netherlands (Put et al., 1976, Put and De Jong, 1982), and ISA1307 was a contaminant 

in a sparkling wine factory in Portugal (Malfeito-Ferreira et al., 1990, Malfeito-Ferreira et al., 

1997a, Malfeito-Ferreira et al., 1997b, Mira et al., 2014). We found several examples where the 

two strains differ in their patterns of LOH, which confirms that they have had some extent of 

independent evolution. All three large regions of BIR (on chromosomes 1, 5 and 9; Fig 4) are 

unique to ATCC60483. ISA1307 contains A:B homeolog pairs throughout these regions 

whereas ATCC60483 has only A-genes which we infer to be in A:A pairs. Other examples of 

differential LOH include a 4-kb region around homologs of the S. cerevisiae gene YLR049C 

that exists as B:B pairs in ATCC60483 but A:B pairs in ISA1307, and the gene KAR4 which is 

an A:B pair in ATCC60483 but only a B-gene (single contig) in ISA1307. Notably, the section 

of the RPB1 gene (also called RPO21) that Suh et al. (2013) used for taxonomic identification 

of Z. parabailii and Z. pseudobailii exists as an A:B pair in ATCC60483, but only as an A-gene 

in the ISA1307 genome. The absence of the B-copy of RPB1 made Mira et al. (2014) hesitant 

to conclude that ISA1307 is Z. parabailii. 
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Z. parabailii ATCC60483 is fertile and haploid 

Both ATCC60483 and the type strain of Z. parabailii ATCC56075T have previously been 

reported to be capable of forming ascospores (Put et al., 1976, Put and De Jong, 1982, Suh et 

al., 2013). We confirmed that our stock of ATCC60483 is able to sporulate (Fig 6A,B). On malt 

extract agar plates, we observed that sporulation occurs directly in zygotes formed by 

conjugation between two cells, resulting in asci in which the two former parental cell bodies 

typically contain two ascospores each. Such dumbbell-shaped (conjugated) asci, indicative of 

sporulation immediately after mating, are characteristic of the genus Zygosaccharomyces 

(James and Stratford, 2011) and have previously been described in other Z. bailii (sensu lato) 

strains (Kudrjawzew, 1960, Phaff et al., 1966, Barnett et al., 1983, Barnett et al., 2000, 

Kurtzman and James, 2006, James and Stratford, 2011). The presence of conjugating cells in a 

culture grown from a single strain indicates that ATCC60483 is functionally haploid (capable 

of mating), and that it is homothallic (capable of mating-type switching). Since the zygote 

proceeds immediately into sporulation without further vegetative cell divisions, the diploid state 

of Z. parabailii appears to be unstable. Although Suh et al. (2013) reported that asci of the type 

strain of Z. parabailii contain two spores, we consistently observed that asci occur in pairs of 

mated cells connected by a conjugation tube (Fig 6A,B), indicating that four spores are formed 

per meiosis. 
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Figure 6 (A,B) Ascospore formation in Z. parabailii ATCC60483. White arrows show conjugation 

tubes in dumbbell-shaped asci. Black arrows show budding vegetative cells. Scale bars, 10 μm. Cultures 

were grown on 5% malt extract agar for 6-10 days at 25°C. (C) Examples of PCR determination of MAT 

locus genotypes in tetrads. Pairs of PCR primers as shown in Fig 5A were used to amplify the MAT 

locus in colonies grown from spores after dissection of conjugated asci. PCR primer pairs AB and AE 

amplify the left side of the MAT locus including the Z region (AB, 1485 bp product from MATα; AE, 

2103 bp product from MATa). Primer pairs DC and DF amplify the right side of the MAT locus including 

the X region (DC, 2027 bp product from MATα; DF, 1882 bp product from MATa). PCR products were 
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sequenced to determine whether they originated from the A- or B-subgenome. (D) Summary of MAT 

genotypes in colonies grown from spores from 13 dissected tetrads. Magenta circles denote colonies with 

A-subgenome alleles (MATa_Α or MATα_A), and green circles denote colonies with B-subgenome 

alleles (MATa_B or MATα_B). Half-circles represent colonies that gave both MATa and MATα PCR 

products. 

 

We dissected tetrad asci from ATCC60483, grew colonies from the spores, and then used colony 

PCR to determine their genotype at the intact MAT locus on chromosome 7. Among 13 tetrads 

analyzed, nine showed a ratio of 2 MATa : 2 MATα colonies (Fig 6C,D). Τwo tetrads showed 

1:3 or 3:1 ratios, and the other two yielded both MATa and MATα PCR products from some 

single-spore colonies. The genotype of the ATCC60483 starting strain is MATα from the A-

subgenome (designated MATα_A), so the presence of MATa genotypes in colonies derived from 

spores made by this strain confirms that mating-type switching occurred at some point. We 

sequenced the PCR products and found that the A- and B-subgenome HMRa loci were both 

used as donors for mating-type switching: among the pure MATa colonies, 18 were MATa_A 

and 7 were MATa_B (Fig 6D). Quite surprisingly, four tetrads with 2a:2α segregation had one 

MATa_A and one MATa_B spore colony, which is inconsistent with simple meiotic segregation 

from an a/α diploid. Because all the spores contain a functional HO gene, the genotypes of these 

four tetrads (#1, #7, #19, #20) probably result from additional switches during the early growth 

of some colonies. Similarly, switching during early colony growth may explain the presence of 

MATα_B genotypes in tetrad #11, and the colonies with mixed a+α genotypes (in tetrads #11 

and #13), as well as the presence of faint PCR products corresponding to the alternative MAT 

genotype in some other colonies (Fig 6C). In S. cerevisiae, homothallic diploid (HO/HO 

MATa/MATα) strains show 2:2 segregation of MAT alleles in tetrads, but after spore germination 

the haploid cells can then switch mating types as often as once per cell division (Strathern and 

Herskowitz, 1979), leading to mating and colonies that contain mostly diploid cells (Herskowitz, 

1988); by contrast, most (but not all) of the Z. parabailii spore-derived colonies contained a 

single mating type (Fig 6C,D). 

 

We found that almost all the genes involved in mating and meiosis that Mira et al. (2014) 

reported to be missing from the Z. parabailii ISA1307 genome are in fact present in both 

ATCC60483 and ISA1307 (S1 Table). For example, we annotated A- and B-homeologs of 

IME1, UME6, DON1, SPO21, SPO74, REC104 and DIG1/DIG2 as well as MATa2, MATα1 and 

MATα2. We also identified genes for the α-factor and a-factor pheromones (MFα and MFa). 
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The MFα genes code for an unusually high number of copies (10–14) of a 13-residue peptide 

whose consensus sequence, AHLVRLSPGAAMF, is quite different from that of other yeasts 

including Z. rouxii (7/13 matches) and S. cerevisiae (4/13 matches) (Wolfe et al., 2015). 

Z. parabailii and Z. bailii do lack most of the ZMM group of genes, involved in crossover 

interference during recombination (Shinohara et al., 2008), even though these are present in Z. 

rouxii (S1 Table). Interestingly, identical sets of ZMM genes have been lost in 

Z. bailii/Z. parabailii relative to Z. rouxii, as were lost in most Lachancea species relative to 

L. kluyveri (Vakirlis et al., 2016): ZIP2, CST9 (ZIP3), SPO22 (ZIP4), MSH4, MSH5 and SPO16 

are absent, as well as MLH2 which is not known to be a ZMM gene, whereas ZIP1 is retained. 

A similar loss of ZMM genes has occurred in Eremothecium gossypii relative to E. cymbalariae 

(Wendland and Walther, 2011). 

 

Post-hybridization gene inactivations 

A small number of Z. parabailii ATCC60483 genes have ‘disabling’ mutations – frameshifts or 

premature stop codons that prevent translation of a normal protein product. The majority of 

these mutations are present in only one subgenome of ATCC60483 and are unique to this strain. 

For example, there is a 1-bp insert in the A-homeolog of the DNA repair gene MLH1, which is 

not present in the B-homeolog, nor in ISA1307 or CLIB213T. In a systematic search we found 

a total of 10 A-genes and 9 B-genes that were inactivated only in strain ATCC60483 (S2 Table). 

In each case the other homeolog was intact and the mutations, discovered in the PacBio 

assembly, were confirmed by our Illumina contigs of the ATCC60483 genome. 

We found a further eight disabling mutations that are shared between ATCC60483 and 

ISA1307. One of these is the AC to AG splice site mutation in the B-homeolog of MATα2 

described above (Fig 5C). Another is the HO endonuclease gene, whose A-homeolog contains 

an identical 1-bp deletion in both ATCC60483 and ISA1307, whereas the B-homeolog of HO 

is intact in both strains (S2 Table). It is perhaps surprising that the HO gene that degenerated is 

the A-homeolog, whereas the broken MAT locus is the B-homeolog, but the two endonucleases 

are likely to have had identical site specificities because the HO cleavage site is well conserved 

among species. The existence of these eight shared disabling mutations provides further support 

for the idea that the two strains of Z. parabailii are descended from the same hybrid ancestor, 

because these mutations may not be viable in the absence of the intact homeologous copies of 

these genes. Only one of them is present also in CLIB213T (S2 Table).  
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In-frame introns and other features of the genome 

We annotated 447 introns in the Z. parabailii ATCC60483 genome, most of which are 

confirmed by our RNAseq data. There are 428 intron-containing genes, including 19 that have 

two introns. We did not find any examples of intron presence/absence differences between 

homeologs. Interestingly, we found several genes with an in-frame intron – that is, an intron that 

is a multiple of 3 bp long and contains no stop codons, so that both the spliced and unspliced 

forms of the mRNA can be translated into proteins. Genes with in-frame introns are likely to 

undergo alternative splicing, making two forms of the protein with different functions. One of 

these loci is PTC7 (ZPAR0J04940_A and ZPAR0A06900_B). Both of the Z. parabailii 

homeologs contain a 69 bp in-frame intron within the ORF of the gene. It has previously been 

shown that alternative splicing of a similar in-frame intron in S. cerevisiae PTC7 leads to the 

translation of a mitochondrial protein isoform from the spliced mRNA, and a nuclear envelope 

protein isoform from the unspliced mRNA, and that the intronic region codes for a 

transmembrane domain of the protein (Juneau et al., 2009). Thus, the alternative splicing 

mechanism in PTC7 is conserved between Saccharomyces and Zygosaccharomyces. We also 

found in-frame introns in the Z. parabailii orthologs of S. cerevisiae NUP100, NCB2 and HEH2, 

identically in their A- and B-homeologs. None of these genes is known to be alternatively 

spliced in S. cerevisiae. In each of these examples, there are typical splice donor, branch and 

acceptor sequences within the long form of the ORF. 

Programmed ‘+1’ ribosomal frameshifting, a process whereby the ribosome skips forward by 

one nucleotide when translating an mRNA, is known to occur in three genes in S. cerevisiae: 

OAZ1, ABP140 and EST3 (Farabaugh et al., 2006), and we found that +1 frameshifting is also 

required to translate the Z. parabailii orthologs of these three genes, in both the A- and B-

homeologs. We also found two new loci that apparently undergo +1 frameshifting. Translation 

of both homeologs of BIR1 (ZPAR0O02690_A, ZPAR0I02720_B) requires a +1 frameshift at a 

sequence identical to the EST3 frameshifting site: CTT-A-GTT where the A is the skipped 

nucleotide. Translation of both homeologs of YJR112W-A (ZPAR0O02960_A, 

ZPAR0I02990_B) requires a +1 frameshift at a sequence identical to the ABP140 frameshifting 

site: CTT-A-GGC. 

In S. cerevisiae, the CUP1 locus confers resistance to copper toxicity by a gene amplification 

mechanism. CUP1 codes for a metallothionein, a tiny cysteine-rich copper-binding protein. The 
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reference S. cerevisiae genome sequence contains two identical copies of CUP1 duplicated in 

tandem, but under copper stress this locus can become amplified to contain up to 18 tandem 

copies of the gene (Karin et al., 1984, Zhao et al., 2014). There are at least five different types 

of CUP1 repeats in different S. cerevisiae strains, which must have originated independently 

from progenitors with a single CUP1 gene (Warringer et al., 2011, Zhao et al., 2014). In 

Z. parabailii we found a slightly different organization. At homeologous loci on chromosomes 

2 and 7, ATCC60483 has multiple identical copies of a 1454-bp repeating unit. Each unit 

contains two metallothionein genes, MT-58 and MT-47, coding for proteins of 58 and 47 

residues respectively. There is only 56% amino acid sequence identity between MT-58 and MT-

47 proteins. The chromosome 7 locus contains five copies of the repeating unit, and the 

chromosome 2 locus contains two copies, so ATCC60483 has 14 metallothionein genes in total. 

These loci are not syntenic with S. cerevisiae CUP1, but they are syntenic with metallothionein 

genes in Candida glabrata and Z. rouxii (Mehra et al., 1989, Byrne and Wolfe, 2005). 

 

Discussion 

Our results show that Z. parabailii is a hybrid species that was formed by fusion between two 

8-chromosome parental species, one of which was Z. bailii. The low sequence divergence of the 

ATCC60483 A-subgenome from the type strain of Z. bailii (the modal synonymous site 

divergence is less than 1%; Fig 2A), and the almost complete collinearity of these genomes (Fig 

3), indicate that the A-parent of Z. parabailii should be regarded as Z. bailii itself, and not 

merely a species closely related to Z. bailii. 

The unusual MAT locus structure of this hybrid raised questions about how it was formed and 

whether Z. parabailii currently has a full sexual cycle. At first glance the MATα/MATα hybrid 

genotype of ATCC60483 might suggest that Z. parabailii could not have been formed by 

mating. However, this genotype could also be the result of mating-type switching. We propose 

that the following steps occurred (Fig 7). Z. parabailii was formed by mating between strains 

of parent A (Z. bailii) and parent B, of opposite mating types. These parental genomes already 

differed by about 34 chromosomal rearrangement breakpoints, so the hybrid was unable to 

produce viable spores by meiosis. The hybrid also had no MATa1 gene, so it could not form the 

a1-α2 heterodimer that stabilizes the diploid state in S. cerevisiae (Herskowitz, 1988). One of 

the roles of the a1-α2 dimer in S. cerevisiae is to repress transcription of HO endonuclease, 

which is only required in haploid cells. We suggest that in the newly-formed Z. parabailii 
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hybrid, transcription of HO was not repressed. Continued expression of this gene resulted in 

genotype switching at the MAT loci (perhaps several consecutive switches between a and α), 

and eventually breakage of the B-subgenome MAT locus due to an illegitimate recombination 

with the GDA1-YEF1 intergenic region instead of HML or HMR. At some point after 

hybridization, the HO gene from the A-subgenome also degenerated by acquiring a frameshift 

mutation. 

 

Figure 7 Cartoon of key steps in the origin of the Z. parabailii genome. Chromosome regions (thick 

bars) are colored according to their location in Z. bailii (magenta outlines). The corresponding 

homeologous regions are scrambled in Parent B (green outlines). Circles represent centromeres. (i) 

Interspecies mating occurred between Parent A (Z. bailii) and Parent B. The genomes differed by about 

34 rearrangement breakpoints and 7% nucleotide sequence divergence. The resulting zygote was unable 

to form viable spores due to the non-collinearity of its chromosomes. (ii) Expression of HO endonuclease 

in the zygote, due to absence of a1-α2, resulted in cleavage of the B-copy of the MAT locus and ectopic 

recombination with the GDA1-YEF1 region of the A-subgenome, causing a reciprocal translocation. (iii) 

The resulting genome has only one functional MAT locus and behaves as a haploid. Recombinations and 

other exchanges between homeologous regions of the two subgenomes, such as those that exchanged the 

HML/HMR regions, occurred but are not shown here for simplicity. (iv) The current life cycle of Z. 

parabailii involves mating between 16-chromosome haploids to form 32-chromosome diploids, which 

immediately sporulate to regenerate 16-chromosome haploids. Z. parabailii is homothallic because it 

contains an intact HO gene, which allows interconversion between MATa and MATα haploids and hence 

auto-diploidization. 
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The breakage of the ‘B’ MAT locus can be inferred to have been one of the first rearrangement 

events that occurred after the hybridization, but also to have been recent. It must have been one 

of the first post-hybridization events, because the GDA1-YEF1 breakage that occurred 

simultaneously with it is the only point of non-collinearity between the A-subgenome and the 

Z. bailii genome (apart from sites of inter-homeolog recombination or homogenization; Fig 4). 

It must have been recent because the pseudogene fragments of the broken MAT locus have not 

yet accumulated any other mutations. There are no nucleotide differences in 2298 bp between 

the broken MATα_B locus on chromosome 2 and HMLα_B on chromosome 7. Together, these 

two observations suggest that the interspecies mating that formed Z. parabailii occurred less 

than 105 generations or 1000 years ago (Rolland and Dujon, 2011). Such a recent origin is 

consistent with the very low numbers of gene inactivations that have occurred since 

hybridization, with the fact that most of these are not shared between the two sequenced 

Z. parabailii strains (only 8 of 27 inactivating mutations are shared; S2 Table), and with the 

retention of rDNAs from both parents. We expect that, if the Z. parabailii lineage survives, it 

will accumulate extensive inactivations and deletions of redundant duplicated genes over the 

next few million years as seen in older WGDs. 

The net result of the evolutionary changes to the genome is that Z. parabailii now has 16 

chromosomes (all different in structure but containing homeologous regions), one active MAT 

locus, one active HO gene, and four silent HML/HMR loci. A genome with this structure 

resembles haploid S. cerevisiae (Wolfe and Shields, 1997) and is potentially capable of both 

mating-type switching and mating. We confirmed that both of these processes occur in 

ATCC60483. Z. parabailii has a life cycle in which 16-chromosome haploids mate to produce 

32-chromosome diploids (Fig 7), that sporulate immediately because the diploid state is 

unstable; there is no MATa1 gene and hence no a1-α2 heterodimer. Thus, Z. parabailii is an 

allopolyploid that regained fertility by genome doubling after interspecies mating, as a 

consequence of damage to one copy of its MAT locus. 

Two previous reports that Z. parabailii strains produce only mitotic spores (Rodrigues et al., 

2003, Mollapour and Piper, 2001) can be re-interpreted in view of the hybrid nature of the 

genome. Their experimental data are fully compatible with the meiotic sexual cycle we propose 

for Z. parabailii. Rodrigues et al. (2003) made a derivative of ISA1307 in which one copy of 

ACS2 was disrupted by the G418-resistance marker APT1 and the other copy was not. After 

sporulation of this strain, all 80 spores they tested were G418-resistant, and all 16 spores from 
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4 tetrads contained both an intact copy of ACS2 and an acs2::APT1 disruption, which led 

Rodrigues et al. (2003) to conclude that the spores were made by mitosis. However, this 

inheritance pattern is exactly the pattern expected if the two copies of ACS2 are homeologs 

(different Mendelian loci) rather than alleles of a single Mendelian locus, and if ISA1307 is a 

haploid that auto-diploidized before it sporulated. Thus their strain could be described as haploid 

acs2_a::APT1 ACS2_B, where the ACS2_A and ACS2_B loci have independent inheritance 

(they are on chromosomes 10 and 13 in our genome sequence). Similarly, Mollapour and Piper 

(Mollapour and Piper, 2001) disrupted one of the two copies of YME2 in strain NCYC1427 with 

a kanMX4 cassette, and found that all the spores produced by this strain retained both an intact 

YME2 and yme2::kanMX4. They concluded that the spores were vegetative, but again the result 

is consistent with meiotic spore production if the two YME2 loci have independent inheritance 

(they are on chromosomes 4 and 6), and if the disruption was made in a haploid strain that auto-

diploidized before sporulating. The sequence data in (Mollapour and Piper, 2001) allows 

NCYC1427 to be identified as Z. parabailii and not Z. bailii as originally described. 

Furthermore, in both ISA1307 (Rodrigues et al., 2003) and NCYC1427 (Mollapour and Piper, 

2001, James and Stratford, 2011), spores are formed in pairs of conjugated cells, similar to Fig 

6A. We conclude that ISA1307 and NCYC1427 have sexual cycles identical to the one we 

describe for ATCC60483. 

The evolutionary steps that formed Z. parabailii by interspecies mating, and restored its fertility 

by damage to one of its MAT loci, are essentially identical to one of the mechanisms (hypothesis 

B) proposed for the origin of the ancient WGD in the S. cerevisiae lineage (Marcet-Houben and 

Gabaldon, 2015, Scannell et al., 2006, Morales and Dujon, 2012, Wolfe, 2015). Our study 

therefore validates genome doubling after MAT locus damage as a real evolutionary process that 

occurs in natural interspecies hybrids, enabling them to resume mating and meiosis. The 

Z. parabailii hybridization was very recent, so any period of clonal reproduction that elapsed 

before fertility was restored must have been short, which is as expected because there is no 

selection to maintain meiosis genes during clonal growth (Morales and Dujon, 2012, Wolfe, 

2015). The possible role of MATa1 in the ancient WGD remains unclear. In 

Zygosaccharomyces, the absence of this gene makes zygotes proceed into sporulation. In the 

ancient WGD it is likely that a MATa1 gene was present in the initial zygote, in which case the 

zygote would have been stable until it sustained MAT locus damage, but this is not certain 

because the ZT parent might have lacked MATa1. The specific cause of damage to the MAT 
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locus in Z. parabailii was incorrect DNA repair after cleavage by the mating-type switching 

endonuclease HO. The HO gene is present in the ZT clade, but not in the KLE clade (Gordon et 

al., 2011a, Butler et al., 2004), which were the two parental lineages of the interspecies 

hybridization that led to the ancient WGD (Marcet-Houben and Gabaldon, 2015). Species that 

contain HO show evolutionary evidence of repeated deletions of DNA from beside their MAT 

loci, caused by accidents during mating-type switching (Gordon et al., 2011a). Indeed, the 

disappearance of the MATa2 gene from Saccharomycetaceae genomes, which occurred at 

approximately the same time as the WGD, must have been due to some sort of mutational 

damage to the MAT locus. Although HO-mediated damage can only occur in the small clade of 

yeasts that contain HO, other types of mutational damage to one copy of MAT are a plausible 

mechanism for fertility restoration in other fungal interspecies hybrids.  

 

Materials and Methods 

Strain and growth media 

The strain analyzed here originally came from the collection of Thomassen & Drijver-Verblifa 

NV in the Netherlands (Put et al., 1976, Put and De Jong, 1982) and was called ‘Saccharomyces 

bailii strain 242’ in those studies. It was isolated from citrus concentrate being used as raw 

material for soft drinks. It was later deposited at the American Type Cultures Collection as 

ATCC60483. Suh et al. (2013) identified it as Z. parabailii by molecular methods. 

PacBio DNA sequencing, assembly, and annotation 

ATCC60483 genomic DNA was prepared using the Blood & Cell Culture DNA Mini Kit 

(Qiagen), according to the manufacturer’s manual. To prevent fragmentation of the DNA, the 

sample was not vortexed. The final genomic DNA amount was 15 μg as determined by Qubit 

Fluorometer (Thermo Scientific). Pacific Biosciences sequencing was carried out by the 

Earlham Institute (Norwich, UK) using 8 SMRT cells, which generated 218x mean coverage 

for the nuclear scaffolds. We assembled the raw data using the computational facilities at the 

Irish Centre for High-End Computing (ICHEC), with the HGAP3 protocol of the SMRT 

Analysis suite version 2.3.0 (Chin et al., 2013). We initially obtained 22 nuclear scaffolds, 

which we reduced to 16 chromosomes by manually identifying overlaps between scaffolds. In 

parallel, we also obtained 198x Illumina read coverage of the genome (Genome Analyzer IIx; 

University of Milano-Bicocca, Department of Clinical Medicine), which we assembled 
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separately into contigs that were used to verify the status of rearrangement points and 

pseudogenes discussed in the text. 

The Z. parabailii chromosomes were annotated using an improved version of our YGAP 

automated pipeline (Proux-Wera et al., 2012), which uses information in the Yeast Gene Order 

Browser (Byrne and Wolfe, 2005) and the Ancestral (pre-Whole Genome Duplication) gene 

order (2009) to generate a synteny-based annotation. The automated annotation was curated 

using transcriptome data from ATCC60483 cultures grown in a bioreactor; Illumina RNAseq 

was generated at Parco Tecnologico Padano (Italy). We made a de novo transcriptome assembly 

using Trinity (Grabherr et al., 2011) and compared the transcripts against YGAP’s gene models 

using PASA (Haas et al., 2003) and by manual inspection of spliced mRNA reads. 

Chromosomes were numbered 1-16 from largest to smallest. Genes were given systematic 

names by YGAP such as ZPAR0D01210_B, where ZPAR indicates the species; 0 indicates the 

genome sequence version; D indicates chromosome 4; 01210 is a sequential gene number 

counter that increments by 10 for each protein-coding gene (genes that were added manually 

have numbers that end in 5 or other digits); and the suffix _B indicates that this gene is assigned 

to the B-subgenome as described below. NCBI nucleotide sequence database accession numbers 

are CP019490 – CP019505 (nuclear chromosomes), CP019506 (mitochondrial genome), and 

CP019507 (2-micron plasmid). 

The mitochondrial genome of Z. bailii CLIB213T was not reported with the rest of this strain’s 

genome (Galeote et al., 2013), and is highly fragmented in the assembly. We identified 

mitochondrial contigs in the original CLIB213T assembly by BLASTN using the ATCC60483 

mtDNA as a query, assembled these contigs into 55 larger contigs using the CAP3 assembler 

and SSPACE3 (Huang and Madan, 1999, Boetzer et al., 2011), and calculated a weighted 

average nucleotide identity of 96% from non-overlapping alignments totaling 23,197 bp. 

 

Gene assignments to the A- and B-subgenomes 

We assigned most genes in Z. parabailii ATCC60483 to either the A-subgenome (highly similar 

to the Z. bailii CLIB213T genome) or the B-subgenome (derived from the other parent in the 

hybridization), using their levels of synonymous nucleotide sequence divergence from 

CLIB213T genes. For this purpose, we used BLASTP (Altschul et al., 1990) to compare every 

annotated protein from ATCC60483 to the CLIB213T proteome and designated the best hit as a 

homolog. The corresponding ATCC60483 and CLIB213T DNA sequence pairs were then 
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aligned using CLUSTALW (Larkin et al., 2007) and their levels of sequence divergence were 

calculated using the yn00 program from the PAML suite (Yang, 2007). ATCC60483 genes were 

assigned to the A-subgenome if the level of synonymous divergence was KS ≤ 0.05, and to the 

B-subgenome if 0.05 < KS ≤ 0.25, and given an _A or _B suffix on the gene name accordingly. 

Genes for which KS > 0.25, or for which no Z. bailii homolog was identified, were given the 

suffix _N. To identify inactivated genes systematically, we searched the annotated A:B gene 

pairs for cases where one of the homeologs was less than 90% of the length of the other, and 

then examined these cases manually (S1 Table). 

Note that our use of the labels ‘A’ and ‘B’ differs from the scheme used by Mira et al. (2014) 

for strain ISA1307. We designated each gene (homeolog) as either ‘A’ or ‘B’ based on its 

divergence from Z. bailii CLIB213T, with ‘A’ always indicating the Z. bailii-like homeolog. 

Some chromosomes therefore contain mixtures of ‘A’ and ‘B’ genes due to post-hybridization 

recombination or homogenization between the two subgenomes. In contrast, Mira et al. (2014) 

identified homeologous pairs of scaffolds in their assembly and arbitrarily designated one 

scaffold as ‘A’ and the other as ‘B’, so that each scaffold is homogeneous but there is no 

consistent relationship between the ‘A’ and ‘B’ labels and the parent-of-origin of a homeolog 

in their scheme. 

Tetrad dissection and MAT locus PCR amplification 

Cells were left for sporulation on malt extract (5%) agar for 5 days. A small loop of cells was 

washed in sterile distilled water, resuspended in a 1:20 dilution of Zymolyase 100T and 

incubated for 10 min at 30°C. The Zymolyase solution was removed by centrifugation and the 

pellet resuspended in distilled water (500 μl). A 10 μl drop was placed in the middle of a YPD 

plate, and dumbbell-shaped asci were dissected using a Singer Sporeplay dissection microscope. 

The YPD plate was incubated for 2 days at 30°C. Individual spore-derived colonies were used 

for MAT locus genotyping by colony PCR using Q5 polymerase high-fidelity 2x master mix 

(NEB) and annealing temperature 55°C. Sequences of PCR primers A-F are given in S3 Table. 

Primers E and F were designed to bind equally to the HMR regions of the A- and B-subgenomes. 

Primers A-D are specific for the A-subgenome. 

 

 

 

 



102 
 

Acknowledgments 

We thank John Morrissey and Francesca Doonan for encouragement and support, Simon Wong 

at ICHEC for help with genome assembly, Laura Dato for initial work on Illumina genome 

sequencing, Isabel Sá-Correia for strain ISA1307, Virginie Galeote for CLIB213 data, and 

Geraldine Butler for comments on the manuscript. 

 

 

 

 

 

 

 



103 
 

Supplementary Material

 

Suplementary Figure 1 (S1) Phylogenetic tree of internal transcribed spacer (ITS) regions of 

rDNA. Chr4 and Chr11 are the ITS sequences from the chromosome 4 and 11 rDNA units in the Z. 

parabailii ATCC60483 genome. All other sequences are from Suh et al. (Suh et al., 2013) for strains 

of Z. parabailii (Zpar), Z. bailii (Zbai), and Z. pseudobailii (Zpse). Letters a-n are ITS variant 

designations (Suh et al., 2013). The tree was constructed by PhyML in the Seaview package using 

default parameters. 
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Supplementary Figure 2 (S2) Sequence alignment of the VPS1-MET14 intergenic regions from Z. 

rouxii and Z. parabailii. The Z. parabailii regions contain CEN4 and CEN11 whereas the Z. rouxii 

region is not a centromere. Putative CDE I and CDE III motifs are boxed. 
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Supplementary Table 1 Z. parabailii ATCC60483 orthologs of S. cerevisiae genes involved in 

mating or meiosis. https://doi.org/10.1371/journal.pbio.2002128.s003 

 

Supplementary Table 2 Homeolog pairs in which one gene is damaged and the other is intact, in 

ATCC60483. https://doi.org/10.1371/journal.pbio.2002128.s004 

 

Supplementary Table 3 PCR primer sequences used for MAT locus genotyping. 

https://doi.org/10.1371/journal.pbio.2002128.s005 

 

 

Data S1. Excel spreadsheet containing, in separate sheets, the underlying numerical data for Figure 

panels 2A, 2B and 2C. https://doi.org/10.1371/journal.pbio.2002128.s006 
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Abstract  

Lactic acid has a wide range of applications starting from its undissociated form and its 

production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid 

yeast Zygosaccharomyces parabailii has a great potential to be exploited as a novel host for 

lactic acid production, due to high organic acid tolerance at low pH, a remarkable 

osmotolerance, and a fermentative metabolism with a fast growth rate. Here we used RNA-seq 

to analyze Z. parabailii’s transcriptional response to lactic acid exposure, and we explore the 

biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies 

of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in 

expression to a significantly greater extent than in control conditions, indicating that stress 

tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid 

induces downregulation of genes related to cell wall and plasma membrane functions possibly 

altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox 

processes were upregulated, suggesting an important role for respiratory functions and 

oxidative stress defense. We found differences in the expression profiles of genes putatively 

regulated by Haa1 and Aft1/2, previously described as lactic acid-responsive in 

Saccharomyces cerevisiae. Furthermore, formate dehydrogenase (FDH) genes form a lactic 

acid-responsive gene family that has been specifically amplified in Z. parabailii as compared 

to other closely related species. Our study provides a starting point for engineering Z. 

parabailii as a host for lactic acid production. 
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Importance 

Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial 

conditions. The molecular mechanisms of tolerance can be studied by analyzing differential 

gene expression in conditions of interest, and relating gene expression patterns to protein 

functions. However, hybrid organisms present a challenge to the standard use of mRNA 

sequencing (RNA-seq) to study transcriptional responses to stress, because their genomes 

contain two similar copies of almost every gene. Here we used stringent mapping methods and 

a high-quality genome sequence to study the transcriptional response to lactic acid stress in 

Zygosaccharomyces parabailii ATCC60483, a natural interspecies hybrid yeast that contains 

two complete subgenomes that are approximately 7% divergent in sequence. Beyond the 

insights we gained into lactic acid tolerance in this study, the methods we developed will be 

broadly applicable to other yeast hybrid strains. 

 

Introduction 

Species belonging to the Zygosaccharomyces bailii sensu lato clade have a remarkable 

resilience against stress induced by weak acids, some of which are widely used as food 

preservatives and/or are versatile chemical platforms (Martorell et al., 2007, Stratford et al., 

2013). Therefore, on the one hand these yeasts represent a challenging problem in the food 

industry because they are often found as contaminants in production pipelines for wine, high 

sugar products, and canned foods. On the other hand, they are promising cell factories for 

biotechnological applications involving organic acids that can be produced by microbial 

fermentation (Kuanyshev et al., 2017, Becker et al., 2015) or released by lignocellulosic 

pretreatment of biomass (Limayem and Ricke, 2012). 

 

Lactic acid is one of the useful organic acids that can be produced by yeasts as a microbial 

factory. This compound has a wide range of industrial applications including food 

preservation, additives and pharmaceuticals (Castillo Martinez et al., 2013), and potential to 

be used for bioplastic production from a renewable source (Sauer et al., 2010). Natural 

fermentation by lactic acid bacteria has long been the main source of industrial lactic acid 

production (Datta and Henry, 2006). Nevertheless, the latter approach has low cost 

effectiveness due to complex nutritional requirements and low final product purity (Fitzpatrick 

et al., 2003), together with the need to convert lactate to lactic acid, whereas engineered yeast 
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platforms cultivated at pH well below the pKa of lactic acid (3.78) have already shown 

promising potential (Sauer et al., 2010, Chen and Nielsen, 2016). The production of several 

weak organic acids, including lactic acid, has reached the industrial scale (Becker et al., 2015) 

but there is still room for further production improvement by enhancing production host 

robustness and/or exploiting novel microbial hosts. Therefore, understanding the mechanism 

of weak acid tolerance in non-Saccharomyces yeasts such as Zygosaccharomyces is important 

for the future development of ultra-efficient production platforms. 

 

The mechanisms of weak acid stress tolerance and response have been studied extensively in 

the model yeast S. cerevisiae (Giannattasio et al., 2013, Mira et al., 2010, Piper et al., 2001, 

Berterame et al., 2016, Martani et al., 2015). However, this knowledge is far from complete 

and cannot be applied easily to non-Saccharomyces species. Previous research on tolerance to 

weak organic acids revealed the capability of Z. bailii sensu lato to catabolize acetic and 

benzoic acids even in the presence of glucose (Rodrigues et al., 2012, Mollapour and Piper, 

2001). In addition, different Z. bailii strains display specific adaptation traits such as the 

ability to modulate their cell wall and membrane composition in order to decrease the influx of 

weak acids (Lindberg et al., 2013, Kuanyshev et al., 2016).  

 

Importantly, the Z. bailii sensu lato clade is characterized by substantial genetic diversity. 

Some strains that were previously considered to be ‘Z. bailii’ were reclassified in 2013 into 

two new species called Z. parabailii and Z. pseudobailii (Suh et al., 2013). The name ‘Z. bailii 

sensu lato’ is used to refer to the species complex that includes these two new species as well 

as other strains that were not reclassified (Z. bailii sensu stricto). The widely studied strains 

CLIB213T and IST302 are Z. bailii sensu stricto (Galeote et al., 2013, Palma et al., 2017b). 

The strains ATCC60483 (used in this study) and ISA1307 are Z. parabailii, which is a hybrid 

that was formed naturally by mating between Z. bailii sensu stricto and an unidentified 

Zygosaccharomyces species (Mira et al., 2014, Ortiz-Merino et al., 2017). Z. parabailii 

genomes contain two copies of almost every gene, differing by 7% in nucleotide sequence on 

average (Ortiz-Merino et al., 2017). These genes are referred as homeologs given they are 

derived from different organisms and to distinguish them from paralogs which are originated 

from one particular organism (Glover et al., 2016). 
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We are exploring the possibility of using Z. bailii sensu lato species as alternative yeast hosts 

for lactic acid production. We focused on Z. parabailii strain ATCC60483 because our 

previous work demonstrated its high tolerance to lactic acid at low pH, characterized by 

growth without any detectable lag phase or acid consumption (Kuanyshev et al., 2016), under 

microaerobic conditions. These natural characteristics are promising in terms of possible 

exploitation for organic acid production only if the molecular basis of its unusual tolerance to 

low pH, high inhibitor concentrations, and other traits of interest are clarified. As a 

preliminary step towards metabolic engineering, in this study we sought to investigate the 

molecular mechanisms of lactic acid tolerance in ATCC60483 by means of RNA-seq. In 

general, we found that the Z. parabailii transcriptome responds to lactic acid stress by 

inducing genes related to oxidative stress response and iron homeostasis in a different way 

than S. cerevisiae does. In addition, Z. parabailii modulates the transcription of genes related 

to the cell wall, in agreement with our previous data. 

 

 

Results  

Transcriptional profile of Z. parabailii homeolog pairs and duplicated genes in lactic acid 

stress 

Our previous study showed that lactic acid at a concentration of 40 g L-1 does not affect Z. 

parabailii ATCC60483 cell viability but exerts phenotypic and morphological changes 

(Kuanyshev et al., 2016). Our aim here was to study this tolerance response, by comparing the 

transcriptomes of cultures grown in the presence or absence of lactic acid (40 g L-1) at time 

points (18 h and 42 h) specifically chosen to ascertain comparable growth kinetics and exclude 

growth phase related bias (Fig. 1). After normalizing and filtering the raw RNA-seq read 

counts, we detected expression for >95% of the Z. parabailii genes in at least one condition, 

including 36 genes that were transcribed only in lactic acid and 31 that were transcribed only 

in control conditions (Table 1).  

 

We used stringent mapping of RNA-seq reads to the genome (see Methods), in order to 

capture expression differences between homeologous gene pairs even when they are highly 

similar in sequence. About 82% of the 10,072 genes in the Z. parabailii nuclear genome show 

the pattern characteristic of hybrid genomes, forming pairs of ‘A’ and ‘B’ homeologs, where 
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the A-gene came from one parent in the hybridization and the B-gene came from the other 

(Ortiz-Merino et al., 2017). Most of the remaining loci in the genome are also present in two 

copies, but are either A:A or B:B pairs due to loss of heterozygosity after hybridization (Ortiz-

Merino et al., 2017). We calculated the ratio of expression between each of 4136 A:B 

homeolog pairs as described in the methods section and the values are presented in Fig. 2. All 

but 21 pairs showed evidence of expression of both homeologs.  

 

Strikingly, the distribution of expression ratios is broader in lactic acid than in control 

conditions, at both time points. In other words, in the stress condition one of the two genes in 

each homeolog pair tends to become predominantly expressed. If we define unbalanced 

expression as an expression ratio that lies outside the range 0.4-0.6 (Fig. 2), the proportion of 

homeolog pairs with unbalanced expression is 13.8-18.7% in the control conditions but 

increases to 31-33.4% in lactic acid conditions. The difference in variance of expression ratios 

is statistically significant (Fligner-Killeen test; P value = 1.5e-98 at 18 h, and P value = 4.5e-

61 at 42 h). 

 

The distribution of expression ratios is approximately symmetrical (Fig. 2) indicating that in 

some homeolog pairs the A-gene is more highly expressed than the B-gene (ratios > 0.5) 

whereas in others the B-gene is higher (ratios < 0.5). The A-genes were derived from the 

parental species Z. bailii in the hybridization, and the B-genes were derived from the other 

parent (an unidentified Zygosaccharomyces species) (Ortiz-Merino et al., 2017). Thus, broadly 

speaking the cell responds to lactic acid stress by inducing greater divergence of expression 

between the genes in a homeolog pair, without a strong preference as to whether the A-gene or 

the B-gene is the higher-expressed one. However, statistical analysis indicates a weak bias 

towards A-genes, derived from the Z. bailii parent. All four distributions in Fig. 2 have slight 

but consistent negative skew values, indicating a trend towards higher expression of the A-

genes (Table 2). This difference is also illustrated by the larger numbers of loci for which the 

Reads Per Kilobase of transcript per Million mapped reads (RPKM) for the A-gene exceeds 

that of the B-gene, as opposed to the converse (Table 2, Ab and aB columns). A-genes 

showing higher RPKM values than B-genes are greater in lactic acid, this is significant at 18 h 

and borderline significant at 42 h (Table 2). In summary, Z. parabailii has a slight tendency to 

express its A-genes more highly than its B-genes, this tendency is maintained under lactic acid 
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stress, but the magnitude of this tendency is small compared to the grossly increased 

divergence of expression levels between homeologs that occurs in lactic acid stress. 

 

Our method of high-stringency mapping of RNA-seq reads to a high-quality genome sequence 

detected transcriptional profiles of homeologous gene pairs even with highly similar genes. 

Nevertheless, we needed to modify it to determine read counts for genes that occur in identical 

pairs (See Methods). Specifically, among the 402 genes that have no evidence of expression in 

the “full” count dataset, 42% are genes that were affected by loss of heterozygosity (genes in 

A:A pairs or B:B pairs). The modified method enabled us to measure the combined expression 

of 230 duplicated genes in Z. parabailii including the two orthologs of the S. cerevisiae major 

mitochondrial D-lactate dehydrogenase DLD1 (I04780_A and N05010_A) and the minor 

isoform DLD2 (B01190_N and G05430_N). Although we cannot investigate the expression of 

these identical gene pairs individually, their RPKM values are low when compared with all 

duplicated genes on lactic acid conditions (DLD1 combined=1317, DLD2 combined=710.5; 

mean RPKM on lactic acid at 18 h = 4028, mean RPKM on lactic acid at 42 h = 9230). 

Furthermore, DLD1 shows a statistically significant 2-fold expression decrease in lactic acid at 

both timepoints whereas DLD2 shows no significant expression changes (Data Set S4). These 

observations are consistent to the previously reported lack of lactic acid consumption of Z. 

parabailii (Kuanyshev et al., 2016). 

 

Upregulated genes are related to oxidation-reduction processes and ion transport in the 

mitochondria. 

The “full” set of counts (See Methods) for the 9,683 genes in the union set of expressed genes 

were then used for differential expression analysis, filtering the results for adjusted P value < 

0.05 and |log-fold change| ≥ 1 (Data Set S5). This analysis is completely independent from 

that for the abovementioned duplicated genes and identified a total of 227 genes upregulated 

in lactic acid, of which 117 are specific to 18 h and 83 to 42 h (Table 3). Similarly, a total of 

1019 downregulated genes were found, including 430 specific to 18 h and 431 to 42 h. We 

then performed a Gene Ontology (GO) term enrichment analysis to identify GO terms that 

were enriched at both time points in either the upregulated genes (Fig. 3A) or the 

downregulated genes (Fig. 3B). 
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When we refer to a S. cerevisiae gene in the following functional analysis, we refer to either 

one or both of its orthologs in a Z. parabailii homeolog pair. These genes are referred in our 

functional analysis if at least one of the members of a Z. parabailii homeolog pair was 

differentially expressed.  

 

The enriched GO term associated with the highest number of upregulated genes in our dataset 

is GO:0055114 for “oxidation-reduction process” (Fig. 3A, Data Set S6). This term is 

associated with 33 genes including homologs of the S. cerevisiae genes GOR1, AIM17, CCP1, 

MET13, SOD2, SOD1, GND1/2, and GRX1/2, some of which are also related to enriched 

mitochondrial terms (GO:0005758 for example). We also observed enrichment for genes in 

the glyoxylate cycle (GO:0006097) and the glyoxysome (GO:0009514) including homologs of 

ICL1 and IDP2. The upregulation of these genes along with FBP1 could indicate activation of 

the anaplerotic reactions, probably caused by oxygen limitation. ACH1 with CoA transferase 

activity, and Z. parabailii gene L05300_N predicted to have epoxide hydrolase activity, were 

upregulated at both time points and are presumably involved in enzymatic detoxification 

process.  

 

The siderophore transmembrane transport term (GO:0044718) was also found enriched in 

upregulated genes. Genes in this category are members of the MFS_1 family of transporters, 

potentially involved in iron retention and/or transport (genes A10040_B, B02380_A, 

G04250_B, I00120_N, I05800_A, O00120_N), and upregulated at 18 h. These genes are all 

classified as integral components of the membrane. Other genes specifically upregulated at 42 

h include FIT2, STL1 and K05040_N which shows no sequence homology to S. cerevisiae 

genes but is predicted to be a transmembrane transporter (see Methods).  

 

Downregulated genes are mainly related to components of the cell boundaries and 

protein translation. 

The GO term enrichment analysis for downregulated genes showed 63 genes related to 

ribosomal functions (GO:0003735), and 38 to cytoplasmic translation (GO:0002181) (Fig. 3B, 

Data Set S6). Most of those genes were downregulated at 42 h, implying a general decrease in 

protein synthesis. This response seems to correspond to a general mechanism observed also in 

other yeasts used as cell factories, e.g. S. cerevisiae under stress conditions (Simpson and 
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Ashe, 2012) and Komagataella phaffii (Pichia pastoris) used for heterologous protein 

production induced by methanol (Sauer et al., 2004) during stress, possibly related to 

resilience or energy maintenance. Some of these genes are also related to the enriched terms 

GO:0000932 and GO:0010494 for P-body and cytoplasmic stress granules known to be 

involved in mRNA translation and turnover during different stress conditions in S. cerevisiae 

(Decker and Parker, 2012). These categories are downregulated at 18 h in lactic acid treated 

cells. One of the components of stress granules that is also downregulated at 42 h encodes for 

a homolog of S. cerevisiae Pab1, the major polyA binding protein which has been 

demonstrated to promote the formation of stress granules (Swisher and Parker, 2010). A recent 

study conducted in S. cerevisiae reported that stress granules are not formed in lactic acid 

treated cells (Iwaki and Izawa, 2012) and a similar situation might be also true for Z. 

parabailii. 

 

Among the downregulated genes, we also identified many with functions that we summarize 

as being related to the boundaries of the cell, i.e. the cell wall and the plasma membrane. The 

GO terms in this group include the actin cortical patch (GO:0030479), cell cortex 

(GO:0005938), extracellular region (GO:0005576), fungal-type cell wall (GO:0009277), and 

structural constituents of the cell wall (GO:0005199) (Fig. 3B). Consistent with this, we 

noticed enrichment of the GO terms for glucan endo-1,3-beta-D-glucosidase activity 

(GO:0042973) and chitin binding (GO:0008061). These observations indicate that the cell 

wall is modulated upon lactic acid stress, in agreement with our previous findings (Kuanyshev 

et al., 2016). Other genes downregulated at 42 h predicted to be integral components of the 

membrane are H01670_B with unknown function, OPT1, and HBT1. We also found 

downregulation of CWP1, a cell wall protein homolog, and LDS2, which is involved in the 

assembly of the S. cerevisiae spore wall.  

 

Involvement of Haa1 and Aft1/Aft2 regulated genes in lactic acid stress response  

Previous studies on lactic acid stress response mechanisms in S. cerevisiae indicated an 

important role of the transcription factors Haa1, Aft1/Aft2 (Abbott et al., 2008, Kawahata et 

al., 2006). Therefore, we extracted all the S. cerevisiae genes reported to be targets of either 

Haa1 or Aft1/Aft2 in YEASTRACT (Teixeira et al., 2006), in addition to those identified as 

lactic acid-responsive (Abbott et al., 2008). We then tested whether the Z. parabailii orthologs 
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of these S. cerevisiae genes are differentially expressed in our dataset. In this case we ignored 

the log-fold change cut-off to enable detection of small but still significant changes. The 

results are shown in Data Set S7. 

 

We found differential expression of 42 orthologs of S. cerevisiae genes putatively controlled 

by Haa1 (Fig. 4A). These include the membrane-bound and major weak acid response genes 

YPC1/YDC1, TPO2/3, VPS62/TDA6, PDR16, and PDR12. This set also includes the 

transcription factors MSN4/2, COM2, and the transcription factor itself (HAA1/CUP2). 

Interestingly, we observed the major weak acid stress response genes, TPO2/TPO3 and 

SPS100/YGP1 as downregulated, although they are upregulated during lactic acid stress in S. 

cerevisiae (Abbott et al., 2008). Here we also found PFK27 with a response changing from 

upregulated at 18 h to downregulated at 42 h, and MTH1/STD1 going from downregulated at 

18 h to upregulated at 42 h. These changes in glucose-responsive genes could possibly reflect 

the diauxic shift.  

 

We performed a similar search strategy as above for genes putatively under the control of 

Aft1/Aft2 which in S. cerevisiae are related to iron utilization and homeostasis (Rutherford et 

al., 2003). Results are shown in Fig. 4B and Data Set S7. This revealed orthologs of 27 S. 

cerevisiae genes where 6 are downregulated at both time points: AFT1/AFT2 coding for the 

transcription factor itself, AKR1/AKR2 an integral component of the membrane with 

palmitoyltransferase activity, LEU2 involved in leucine biosynthesis, MRS3/MRS4 iron 

transporters, APE1 with metalloaminopeptidase activity, and AHP1, a thiol-specific 

peroxiredoxin. The rest of these genes are upregulated, at both timepoints: TIS11/CTH1 

involved in mRNA processing, CCC2 a Cu++-transporting P-type ATPase, UBC8 which 

negatively regulates gluconeogenesis, ECL1 that increases oxygen consumption and 

respiratory activity, SMF3 a putative divalent metal ion transporter, ARA2, a NAD-dependent 

arabinose dehydrogenase, FET3, a Ferro-O2-oxidoreductase, and PEP4, a vacuolar protease. 

Most of these upregulated genes are related to ion transport and redox functions, in agreement 

with our GO term enrichment analysis.  

 

 

 



121 
 

Multi-gene families significantly modulated upon lactic acid exposure 

We identified an unusual regulatory pattern in a family of genes related to S. cerevisiae FDH1, 

which codes for formate dehydrogenase. The Z. parabailii genome contains six genes in this 

family (I01900_B, O01850_A, P02220_N, H05680_N, N02280_N, and F04070_N) although 

formate dehydrogenase activity has not been demonstrated for any of them. All six FDH-like 

genes were highly upregulated at 18 h of lactic acid exposure, and the last two were also 

significantly downregulated at 42 h (Data Set S5). Formate dehydrogenases perform the 

NAD+ dependent oxidation of formate to carbon dioxide. The S. cerevisiae strain CEN.PK 

113-7D contains two FDH genes (FDH1 and FDH2), whereas only FDH1 is intact in the 

laboratory strain BY4741 because FDH2 is truncated (Overkamp et al., 2002). The function of 

FDH genes in S. cerevisiae is not well characterized, but these enzymes have been better 

studied in methylotrophic yeasts such as Komagataella phaffi where they are involved in the 

last step of the methanol dissimilation pathway (Tishkov and Popov, 2004).  

 

Interestingly, the phylogenetic distribution of FDH genes among sequenced yeast genomes is 

rather patchy (Tishkov and Popov, 2004) and indicative both of recent gene amplifications and 

of multiple gene losses. We searched for FDH homologs in the NCBI databases and 

constructed a phylogenetic tree (Fig. 5). Many yeast species lack FDH genes completely, 

containing only homologs of distantly related genes such as GOR1 (glyoxylate reductase). 

Nevertheless, the phylogenetic relationship among the FDH genes of the few species that do 

retain this gene agrees well with the expected relationship among these species (Fig. 5). This 

observation suggests that the patchy distribution of the gene is due to numerous losses of an 

ancestral FDH gene (for example, in the genera Torulaspora, Lachancea and Kluyveromyces), 

and not the result of horizontal gene transfer. There is essentially no conservation of synteny 

among the existing FDH genes, which shows that multiple species-specific gene duplications 

and gene relocations have occurred. Of the six Z. parabailii FDH-like genes, four are closely 

related and form a phylogenetic cluster with Saccharomyces species (Fig. 5). The other two 

form a cluster with the only FDH-like gene we identified in the genome of CLIB213T, a 

Z. bailii sensu stricto strain. The sister species Z. rouxii has four FDH-like genes that cluster 

together in the tree. Thus, amplifications of FDH-like genes by gene duplication have 

occurred separately in Z. parabailii and Z. rouxii, and in the former species they are highly 

induced by lactic acid. This difference in FDH gene copy number between Z. parabailii and 
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Z. bailii may be a contributory factor to the difference in their tolerance to lactic acid as our 

previous study showed that Z. parabailii ATCC60483 is more resilient to lactic acid than the 

Z. bailii sensu stricto strains ATCC8766 and ATCC58445T (synonymous with CLIB213T) 

(Kuanyshev et al., 2016). 

 

We searched systematically for other Z. parabailii genes assigned into multigene families, 

which have significant expression changes in lactic acid. This was done by searching for sets 

of 3 or more Z. parabailii genes that share the same Z. bailii ortholog. We examined a total of 

123 Z. parabailii genes in multigene families of this type, of which 22 are differentially 

expressed in at least one timepoint (classified as category 9 in Data Set S5). These 22 genes 

belong to 12 different multigene families significantly modulated in lactic acid. For example, 

F06230_N, N00190_A, and O04100_A are homologs of the FFZ2 transporters specific to 

Zygosaccharomyces species and able to transport both fructose and glucose when 

overexpressed in S. cerevisiae (Leandro et al., 2011, Cabral et al., 2015). In this family, 

F06230_N is upregulated in lactic acid at both time points whereas N00190_A is upregulated 

only at 18 h, and O04100_A did not show significant expression changes. Another interesting 

family is A10020_N, G00240_N, and P00180_N which are all significantly upregulated in 

lactic acid (when ignoring the log-fold change cut-off) and are homologous to the iron 

siderophore transporter FIT2 putatively under control of Aft1/2 (Fig. 4B, Data Set S7). This 

family also includes K00140_A and C00210_N for which we did not observe any evidence of 

expression. Furthermore, given that K00140_A is identical to the only FIT2 homolog 

annotated in Z. bailii strain CLIB213T (BN860_19394g1_1) and it is not differentially 

regulated, there might be certain functional relevance only for genes specific to Z. parabailii.  

 

Discussion  

We found that lactic acid stress induces robust and statistically significant divergent 

expression responses between the two genes in homeologous gene pairs in Z. parabailii. These 

differences need to be further explored when considering differentially expressed genes as 

engineering targets, but the overall stress response we saw amongst them is striking. 

Homeologous gene pairs are present in all hybrid (allopolyploid) organisms (Glover et al., 

2016). Most previous transcriptomic analyses including homeolog pairs have been carried out 

in plant species (Rapp et al., 2009, Yoo et al., 2013, Combes et al., 2015), although there are 
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examples with fungi (Cox et al., 2014) and yeasts (Tirosh et al., 2009, Wang et al., 2015). We 

are not aware of any previous studies that found a similar genome-wide increase in homeolog 

expression divergence under stress conditions. Our study differs from the previous work on 

yeast hybrids as we examined gene expression in a natural hybrid isolate whereas preceding 

studies analyzed synthetic hybrids (Tirosh et al., 2009, Wang et al., 2015). Furthermore we 

compared expression between homeolog pairs under two different growth conditions while 

previous comparisons where done against the parental genes (Tirosh et al., 2009, Wang et al., 

2015), even when using more than one condition (44).  

 

We observed upregulation of genes related to reactive oxygen species (ROS) detoxification 

which could be linked to the respiratory chain upregulation. Lactic acid stress has been 

reported to imbalance the prooxidant/antioxidant ratio (Piper, 1999), and trigger the 

accumulation of ROS via the Fenton reaction (Ali et al., 2000). Accordingly, overexpression 

of cytosolic catalase or introduction of the pathway for biosynthesis of L-ascorbic acid (a well-

known antioxidant) into S. cerevisiae improved resistance to oxidative and lactic acid stress 

(Abbott et al., 2009, Branduardi et al., 2007). Therefore, an increase in ROS detoxification 

can help to alleviate lactic acid stress. The upregulation of the FDH multigene family in Z. 

parabailii could be related to the ROS detoxification. One hypothesis for this involves ROS 

detoxification by ketoacids leading to formate accumulation, which consequently catabolized 

by Fdh to NADH and CO2 (Yokota et al., 1983). This mechanism was described in the 

bacterium Pseudomonas fluorescens as an anti-oxidative defence mechanism (Thomas et al., 

2016, Alhasawi et al., 2015) and we speculate that the multiple Fdh enzymes in Z. parabailii 

might serve a similar role. 

 

There are significant differences between the response to lactic acid that we observed in Z. 

parabailii and the responses previously reported in S. cerevisiae (Kawahata et al., 2006, 

Abbott et al., 2008). While many of these differences may reflect differences in the 

physiology of the two species, there were also differences in the experimental setup used. We 

used microaerobic conditions, whereas previous studies used anaerobic chemostat conditions 

(Abbott et al., 2008), and batch flask fermentation (Kawahata et al., 2006). Nevertheless, we 

also identified some similarities between the lactic acid responses in S. cerevisiae and Z. 

parabailii, involving iron homeostasis genes such as siderophore transporters and iron 
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transporters. It has been shown that high concentration of lactate ions in the growth medium 

chelates free iron reducing its availability for cellular functions (Abbott et al., 2008), and 

triggering a strong regulation of iron homeostasis in S. cerevisiae (Abbott et al., 2008, 

Kawahata et al., 2006).We observed a similar response to lactic acid stress in Z. parabailii. 

 

Z. parabailii cell wall modulation shows to be a response towards lactic acid stress. The cell 

wall is generally considered as a barrier for large molecules (Aguilar-Uscanga and Francois, 

2003, Lesage and Bussey, 2006). Nevertheless, studies on S. cerevisiae have reported 

regulation of genes coding for cell wall components (Simoes et al., 2006), or related to cell 

wall integrity (Rego et al., 2014) as a response to acetic acid or a low pH environment 

(Kapteyn et al., 2001). In Z. parabailii, downregulation of cell wall related genes can be 

linked to the decrease of cell wall mannoproteins and β 1→3 glucan levels observed in our 

previous FTIR analysis (Kuanyshev et al., 2016), and together with the peculiar plasma 

membrane composition (Lindberg et al., 2013) this can contribute to the superior lactic acid 

tolerance of this yeasts compared to the baker’s yeast.  

 

The expression of Haa1 regulated genes during the stress in Z, parabailii is rather different 

from S. cerevisiae. Haa1 is a transcriptional activator of genes responsive to acetic and lactic 

acid in S. cerevisiae (Abbott et al., 2008, Mira et al., 2010, Keller et al., 2001) and in Z. bailii 

(only in acetic acid) (Palma et al., 2017a, Palma et al., 2017b). It is intriguing to observe a 

different expression patterns for those genes in Z. parabailii during lactic acid stress and 

further studies are necessary to explain these observations.       

 

Our study is a pioneering approach to examining a hybrid yeast response to lactic acid stress. 

This was possible by the availability if a high quality genome reference (Ortiz-Merino et al., 

2017) which is often not the case for other hybrid organisms. It also required highly-stringent 

and tailored methods to study the expression of highly similar genes and even identical copies. 

With this we showed that homeolog gene pairs have different expression patterns when 

subjected to acid stress: this could reflect or override transcriptional control mechanisms 

inherited from the parental strains of this hybrid. This hybrid nature is one of a few differences 

we observed in comparison with the lactic acid response reported for S. cerevisiae and Z. 

bailii. Our observations still need experimental validation given that changes in transcript 
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levels are not always reflected in protein activities in vivo. Nevertheless, our observations for 

the duplicated homologs of DLD1 and DLD2 being lowly expressed, and even repressed, in 

lactic acid are consistent to the previously reported lack of lactic acid consumption of Z. 

parabailii (Kuanyshev et al., 2016) which is a key feature needed for a lactic acid producing 

host. Our study provides methods and data to facilitate the understanding of molecular 

responses during acid stress in this or other hybrid yeasts, which is important both for 

fundamental and applied science. 

 

Materials and Methods 

Cell growth, RNA extraction and sequencing 

Z. parabailii strain ATCC60483 was used for bioreactor fermentation. Cell aliquots, stored at -

80°C in YPD glycerol stock, were grown to mid exponential phase before being inoculated to 

the bioreactor at final absorbance of OD660 0.1. We used 2x Verduyn growth medium 

(Verduyn et al., 1992) at pH 3 containing 40 gL-1 glucose with 40 gL-1 lactic acid or no lactic 

acid (control condition) and the fermentations were performed in 2 L volume bioreactors 

(BIOSTAT B, Sartorius AG, Germany) with operative volume of 1.5 L. The temperature was 

maintained at 30°C, pH at 3 by the addition of 4 M NaOH and the stirrer speed was set to 400 

rpm. The inlet gas flow was adjusted by two mass flow controllers (Bronkhornst®High Tech- 

EL-FLOW®Select). The mass flow was set to obtain a mixture of N2 and air with final 

concentration of inlet oxygen of 5%. The mixture was sparged at 0.75 vvm. Antifoam 

(Antifoam 204, Sigma Aldrich) was used for foaming control. 

The samples for RNA sequencing were taken in triplicate at 18 h and 42 h from the bioreactor 

fermentation, corresponding to log phase and post diauxic shift, respectively (Kuanyshev et 

al., 2016). The total RNA was then extracted using Zymo Research Fungal/Bacterial RNA 

MiniPrep™ kit (Irvine, USA) and the quality of RNA samples were evaluated with Agilent 

Bioanalyzer. The RNA samples were sequenced using the Illumina HiSeq2000 platform with 

100 nt-long paired-end reads at Parco Tecnologico Padano (Lodi, Italy).  

 

RNA-seq analysis 

We used our recently published Z. parabailii ATCC60483 genome annotation as a reference 

(Ortiz-Merino et al., 2017). This consists of 10,072 nuclear and 13 mitochondrial protein-

coding obtained using an improved version of the Yeast Genome Annotation Pipeline (Proux-
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Wera et al., 2012) and includes additional metadata as an aid for functional interpretation. 

Briefly, because of its hybrid nature, the Z. parabailii genome contains two homeologous 

copies of most genes. We use suffixes _A and _B in gene names to indicate the two copies, 

where _A indicates gene copies that are virtually identical to their Z. bailii sensu stricto 

orthologs, and _B indicates copies that are more divergent (5-25% synonymous sequence 

divergence). A few genes have the suffix _N because they could not be assigned to either of 

these two groups. 

 

Some extra information was added to the original annotation and is contained in Data Set S1. 

This includes functional domains and protein family memberships obtained by aligning all the 

Z. parabailii ATCC60483 amino acid sequences against the PFAM database (Finn et al., 

2014) using HMMER v. 3.0 (Finn et al., 2011). A genome-wide annotation of transmembrane 

proteins was also performed by comparing the Z. parabailii proteome against the TransportDB 

2.0 (Elbourne et al., 2017) database using BLAST v. 2.2.22(Altschul et al., 1990). The 

sequences were then filtered based on identity (>35 %) and coverage (>80%) and submitted to 

the TMHMM server v. 2.0 (Krogh et al., 2001) to determine a minimum of 2 potential 

transmembrane domains per sequence. Blast2GO (Gotz et al., 2008) was then used to generate 

a custom Gene Ontology (GO) annotation for Z. parabailii available in Data Set S2. 

 

The raw RNA-seq reads were mapped against the Z. parabailii ATCC60483 nuclear and 

mitochondrial genome (Ortiz-Merino et al., 2017) using bowtie v1.1.2 (Langmead, 2010) with 

the parameters -v 0 -k 10 --best -M 1. The parameter -v 0 gives high stringency by allowing no 

mismatches in the alignments discriminating between highly similar regions in the genome, 

and discarding reads with sequencing artefacts. The parameters -k 10 --best -M 1 report only 

the best possible alignment out of up to 10 alternatives and, in case there are two equivalent 

best hits, only one is reported at random. This reports so-called multi-mapping reads with the 

tag “XM:i:2” and a mapping quality (MAPQ) equal to 0.  

 

The mapped reads were subsequently counted using htseq-count v0.6.0 (Anders et al., 2015) 

using two different settings. In the first case htseq-count was used over the full set of Z. 

parabailii genes with default parameters and referred as “full” counts. This setting discards the 

alignments for multi-mapping reads as their quality is artificially set to the lowest possible 
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value. Therefore, a different htseq-count run was performed with the parameter -a 0 allowing 

for MAPQ >= 0. To avoid spurious low-quality alignments, this second run used only the 

alignments with the “XM:i:2” tag and a subset of 232 duplicated genes defined by showing 

full-length hits and 100% blastn (Altschul et al., 1990) nucleotide sequence identity with one 

or more different Z. parabailii genes. The counts from this second htseq-run over duplicated 

genes with multi-mapping reads and are referred as “duplicated” counts. The duplicated 

counts represent a homogeneized signal of two or more identical genes and potential different 

quality values which is not the case with the “full” counts. Therefore, the two sets of counts 

were analysed completely separate. All the analyses reported were done with the full counts 

unless stated otherwise. 

 

The read counts were split in 4 groups according to condition and time point, each group 

containing 3 libraries. One of the libraries for the control condition at 18 h contained few reads 

(5.9 million in total compared to the average of 30.5 million from the other libraries) and was 

excluded from further analyses. We therefore used the TMM method (Robinson and Oshlack, 

2010) implemented in edgeR v. 3.18.1 (McCarthy et al., 2012) to normalize the read counts 

and provide better comparability across our different sized samples. Counts per million (CPM) 

were then calculated from the normalized counts using edgeR v. 3.18.1 (McCarthy et al., 

2012) and the genes with less than 1 CPM in at least 3 samples from the same condition were 

considered to have no evidence of expression. We also calculated Reads Per Kilobase of 

transcript per Million mapped reads (RPKM) using edgeR v. 3.18.1 (McCarthy et al., 2012). 

This was done for the normalized and filtered sets of “full” counts for the 4139 homeolog 

pairs, and for the “duplicated” counts for the 232 duplicated genes. 

 

An expression ratio index was calculated for the 4139 A and B homeolog pairs as: Expression 

ratio = avg RPKMA / (avg RPKMA + avg RPKMB) where the subscripts A and B indicate the 

parental origin of the corresponding gene on the homeolog pair. This index ranges from 0 to 1 

where values of 0.5 mean there is no difference in the expression levels of the A gene as 

compared to its corresponding B homeolog. Averaged RPKM values for each homeolog on a 

pair are available in Data Set S3. We calculated descriptive statistics from the expression ratio 

for the different groups using the R package psych v. 1.7.5 (Revelle, 2017). Exact binomial 
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tests and Fligner-Killeen tests were performed using the R functions binom.test and fligner.test 

correspondingly. 

 

The normalized and filtered datasets were then Voom-transformed (Law et al., 2014) to 

consider the differences in count sizes (or sequencing depth) and the overall dataset 

variability. This was followed by differential expression analysis (DEA) with adjusted P value 

< 0.05 and |log-fold change| ≥ 1 for statistical significance (Data Set S4 for the “full” set; 

Data Set S5 for the “duplicated” set). Both the Voom transformation and the differential 

expression analysis were done using Limma v. 3.32.2 (Ritchie et al., 2015). The Z. parabailii 

GO annotation was then utilized for GO term enrichment analysis with the R package goseq v. 

1.28.0 (Young et al., 2010). This was performed for the 3 sets of differentially expressed 

genes found to be upregulated at 18 h, upregulated at 42 h and upregulated at both time points, 

in addition to the corresponding 3 sets of differentially expressed genes found as 

downregulated (Data Set S6). The output of goseq for the upregulated genes at both time 

points was visualized using UpsetR v. 1.3.3 (Conway et al., 2017) in the same way as for the 

downregulated genes.  

 

Nucleotide sequence accession numbers.  

The data discussed in this publication have been deposited in NCBI's Gene Expression 

Omnibus (Edgar et al., 2002) and are accessible through GEO Series accession number 

GSE104654 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104654). This 

includes the raw RNAseq fastq files,  counts for the “full” and “duplicated” sets (both raw and 

normalized), and RPKMs for the duplicated genes. 
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Category Control Lactic Acid Intersect Union 

No evidence of expression 438 433 402 469 

Expressed 9647 9652 9616 9683 

Specific 31 36 NA NA 

 

Table 1. General overview of the Z. parabailii transcriptional profile.  

 

 

Group Mean Median 
Standard 

deviation 
Skew Ab aB P value 

Unbalanced 

(%) 

C18 0.5 0.5 0.079 -0.045 2077 2059 0.396 13.8 

LA18 0.503 0.505 0.113 -0.009 2151 1985 0.005 31 

C42 0.501 0.501 0.089 -0.146 2088 2048 0.272 18.7 

LA42 0.5 0.503 0.115 -0.085 2119 2017 0.058 33.4 

 

Table 2. Expression ratio between homeolog gene pairs. P values obtained from one sided exact 

binomial test using confidence intervals of 95% for the gene pairs where the A member shows higher 

expression than the B member (Ab). C18: control at 18 h; LA18: lactic acid at 18 h; C42: control at 42 

h; LA42: lactic acid at 42 h 

 

 

Category 18hr specific 42hr specific Intersect Union 

Upregulated 117 83 27 227 

Downregulated 430 431 158 1019 

 

Table 3. Z. parabailii differential expression analysis. The upregulated and downregulated 

rows show the numbers of genes with an adjusted P value < 0.05 and a log-fold change ≥ 1, or 

log-fold change ≤ 1 respectively. Those sets of genes were further classified into 18 h specific 

and 42 h specific, where the intersect shows expression in both time points and the union 

shows the total. 
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Figure 1. Z. parabailii fermentation profile. Batch bioreactor fermentation was performed in 

Verduyn medium at pH 3 with addition of 40 gL-1 lactic acid (red lines) or without lactic acid (black 

lines). The samples for RNA sequencing were taken at 18 h and 42 h (indicated by arrows), 

corresponding to exponential phase and post diauxic shift. Solid lines represent glucose consumption 

rate while dash lines corresponding optical density values at 660nm.  
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Figure 2. Expression ratios in 4136 homeologous gene pairs. Expression ratio is defined as 

A/(A+B) where A and B are the RPKM values (reads per kilobase of mRNA per million 

transcripts) of the A- and B- homeologous genes, respectively, averaged among replicates. 

Histograms show the distribution of expression ratio values in (A) control conditions at 18 h; 

(B) lactic acid at 18 h; (C) control conditions at 42 h; (D) lactic acid at 42 h. 
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Figure 3 Enriched GO terms among differentially expressed genes. Bar plots show the numbers of 

differentially expressed genes associated with a GO term (dots) or with a group of GO terms (dots 

connected by vertical lines). Upregulated genes are shown in panel A and downregulated genes in 

panel B. For example, among the 33 upregulated genes with the term GO:0055114 for oxidation 

reduction process in panel A, 19 show only this term, and 2 also show the term GO:0001320 for 

age−dependent response to reactive oxygen species. The GO terms are ordered by ontology type (BP 

biological process, CC cellular component and MF molecular function) and by decreasing adjusted P 

value, always < 0.05 (values are in Table S3). 
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Figure 4 Log-fold changes for Z. parabailii genes putatively controlled by the Haa1 or the Aft1/2 

transcription factors. Genes under Haa1p control are shown in panel A and genes controlled by 

Aft1/2 are shown in panel B. Asterisks (*) are used to mark S. cerevisiae genes reported as lactic acid-

responsive by Abbot et al., whose Z. parabailii homologs display an opposite response profile (i.e. 
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upregulated in S. cerevisiae and downregulated in Z. parabailii). Positive log-fold change values in 

lactic acid vs control are coloured in red as a sign of upregulation whereas negative values are blue. 

The colour scale is shown at the bottom of the corresponding panel and all the changes shown have an 

adjusted P value < 0.05. 

 

 

 

 

 

Figure 5. PhyML phylogenetic tree of formate dehydrogenase aminoacid sequences across yeast 

species. Homologs to S. cerevisiae glyoxylate reductase were added as outgroup and are indicated with 

the GOR1 suffix. The Z. parabailii genes are shown with their corresponding gene codes whereas the 

Z. rouxii homologs are labelled with a code starting with ZYRO and the only one for Z. bailii has 

ZYBA as a prefix. Nodes show bootstrap coefficients with 100 replicates. 
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Abstract 

In present study, we investigated the effect of acetic and lactic acid on two different K. 

marxianus strains, CBS6556 and CBS397. The results revealed a strain-specific response 

toward these weak acids.  The expression of the MDR genes AQR1, TPO2 and PDR12 in 

response to both acids was assessed. The most notable finding was that PDR12 expression in 

CBS6556 was highly-induced in response to treatment with either acid although the strain is 

more sensitive than CBS397 to both acids. Further investigation revealed that there are two 

copies of PDR12 in most K. marxianus strains and these arose from a duplication event after 

the divergence of K. lactis and K. marxianus. There is only one copy in CBS6556, however, 

and this arose from a recombination between PDR12-1 and PDR12-2 in this strain. The 

hypothesis is proposed that this recombination has created a non-functional protein and the 

induced expression is a futile effort to combat the toxic effects of acetic and lactic acid. 

Molecular approaches to test the hypothesis are proposed.  
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Introduction 

The emerging tendency to switch from oil-based to bio-production of fuels and chemicals 

requires development of robust microbial hosts. Biotechnology has been exploiting bacterial 

hosts for production of various chemicals including pharmaceuticals, biofuels and amino acids 

(Chen, et al., 2013). However, the bacterial platform suffers from low tolerance to organic 

acids, acidic pH, furan derivatives and phenolic compounds. These limitations are not a 

serious problem when growing on synthetic medium to produce high value products for 

biopharma, but they greatly restrict the applications of bacterial hosts in industrial 

biotechnology. Therefore, the yeast Saccharomyces cerevisiae, which has been used for 

centuries in different fields, represents a major microbial platform for industrial 

biotechnology. Although S. cerevisiae remains the first-choice organism for bio-based 

production of bulk chemicals, modern biotechnology is exploring alternative non-

Saccharomyces yeasts, with native unique traits.  Among those yeasts, Kluyveromyces 

marxianus has great potential to substitute S. cerevisiae in production of value added 

compounds and chemicals (Lane and Morrissey, 2010).  

K. marxianus is an emerging non-Saccharomyces yeast relevant for industrial applications. It 

possesses important traits such as thermotolerance (up to 52 Co), fast growth and ability to 

utilize various substrate including C5 sugars (xylose in particular) and lactose (Lane and 

Morrissey, 2010). In addition, a high secretory ability along with high biomass yield, 

compared to S. cerevisiae, makes it an excellent candidate for protein production (Gombert et 

al., 2016). The yeast already has been proposed for production of various value-added 

chemicals, such as flavour and fragrance molecules and the solvent ethyl acetate (Morrissey et 

al., 2015, Radecka et al., 2015, Loser et al., 2015). In addition, the respiro-fermentative 

metabolism led to many studies to exploit the yeast in bioethanol production from 

lignocellulosic (Goshima et al., 2013) and whey biomass (Guimaraes et al., 2010). There is 

now considerable interest in extending the applications of K. marxianus to other bio-based 

chemicals, but this will require better understanding of how the yeast performs in industrial 

settings. 
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Bio-based chemical production from renewable biomass has drawn the attention of scientists 

to address issues with excessive carbon emission and fossil resource usage. Several different 

renewable resources have been used as a substrate for microbial fermentation.  Lignocellulosic 

biomass represents a cheap, ubiquitous and renewable source, consisting of cellulose, 

hemicellulose and lignin. To release the free sugars (mainly glucose and xylose) for 

subsequent fermentation, lignocellulose needs to be pretreated and hydrolyzed (Jonsson et al., 

2013). Whey biomass, primarily consisting of lactose, is a major byproduct of the cheese and 

dairy industry. However, these feedstocks are not easily fermentable and contain several 

inhibitors, which can hamper the fermentation. For example, during lignocellulose 

pretreatment and hydrolysis, the process generates considerable amounts of fermentation 

inhibitors, including acetic acid (Jonsson et al., 2013). Whey may contain an excess of lactic 

acid, due to lactic acid bacteria contamination, which can be potentially harmful for the yeast 

(Christensen et al., 2011).  Thus, in different industrial fermentations, the presence of weak 

organic acids (WOA) like acetic or lactic acid may become a problem for K. marxianus 

performance. 

 

WOAs have been used as food preservatives for a long time, and their physiological effect on 

cell growth have been well studied.  The main mechanism of WOA toxicity derives from the 

ability of the protonated acid to diffuse into the cytosol, where, at near neutral pH, WOAs 

effectively dissociate, releasing a proton and respective anion (Piper et al., 2001). Since 

charged molecules cannot escape the cytosol, accumulation of protons decreases internal pH, 

while the (counter)anion exerts toxicity depending on its nature. For example, lactate anions 

increase reactive oxygen generation and affect cell membrane fatty acid composition (Ali et 

al., 2000, Narendranath et al., 2001), while acetate anions induce programmed cell death 

(Giannattasio et al., 2013).  

The weak organic acid response mechanism has been well studied in S. cerevisiae. To 

decrease the concentration of intracellular weak acids, the yeast activates different membrane 

transporters to extrude protons and anions. Exposure of yeast to inhibitory concentrations of 

acetic or lactic acid causes rapid acidification of the cytosol and induces the plasma membrane 

proton pumps H+-ATPase (Pma1p) and V-ATPase (Schuller et al., 2004, Mollapour et al., 

2004, Carmelo et al., 1997). The pumps exports protons at the cost of ATP to maintain the 
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optimum internal pH. Respective anions are removed via multi drug resistance (MDR) 

transporters, which are regulated by the Haa1p and War1p transcriptional factors. Haa1p is 

required for weak acid adaptation to relatively less-lipophilic weak acids like acetic, lactic and 

propionic acids (Fernandes et al., 2005, Abbott et al., 2008). The regulon is responsible for 

activation of a wide range of genes associated with acetic and lactic acid adaptation (Mira et 

al., 2010), among them MDR transporters TPO2/3 and AQR1, previously reported as direct 

Haa1p targets (Keller et al., 2001).  The expression of TPO2/3 is highly-induced upon acetic 

and lactic acid exposure, however deletion of the genes has no effect on lactic acid sensitivity, 

while rendering sensitivity to acetic acid. Yet, the haa1 null mutant exhibits a strong growth 

defect in the presence of inhibitory concentrations of either acid (Fernandes et al., 2005, 

Abbott et al., 2008). War1p solely controls expression of PDR12, which encodes Pdr12p, an 

ATP binding cassette transporter family implicated in weak organic acid tolerance. 

Transcription of PDR12 is strongly induced by sorbic and benzoic acids, but not by acetic and 

formic acids (Kren et al., 2003, Hatzixanthis et al., 2003). Pdr12p lowers the intracellular 

concentration of weak acids by active extrusion of anions out of the cell (Mollapour et al., 

2008). Although some of the earlier studies suggested an involvement of Pdr12p in acetic acid 

tolerance (Bauer et al., 2003), more recent studies demonstrated that PDR12 deletion did not 

affect acetic, lactic and formic acid sensitivity (Nygard et al., 2014).   

Exposure to weak organic acids are predicted to have similar toxic effects on different yeasts, 

however the response and adaptation to the stress can be yeast species-specific. Moreover, the 

reported wide genetic diversity of K. marxianus, together with limited research on its 

physiology, biochemistry and genetics, create difficulties to understand mechanisms of weak 

acid resistance (Rocha et al., 2011, Fonseca et al., 2008). Therefore, further research on the 

genetics and physiology of the weak acid response in K. marxianus is required to facilitate 

development of the yeast as an alternative bio-based production platform.  This study is an 

initial exploration of the involvement of major MDR transporters in acetic and lactic acid 

resistance in K. marxianus.   
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Materials and Methods 

Yeast strains   

The K. marxianus strains used in this study (CBS 397, CBS 6556) were obtained as 

lyophilized stocks from The Centraalbureau voor Schimmelcultures, Delft, The Netherlands. 

Strains were revived in yeast, peptone, glucose (YPD) media (1% yeast extract, 2% 

bactopeptone, 2% glucose) at 30ºC with agitation at 180 rpm. Yeast strains were routinely 

cultured at 30ºC in YP medium (1% yeast extract; 2% bactopeptone; 2% lactose).  

 

Drop plate assays and flask fermentation 

Serial dilutions of K. marxianus strains on YNB and 2 % glucose (YNB) agar plates were used 

to assess its tolerance to weak organic acids. For these assays, strains were grown in YNB 

medium shaking at 30ºC until mid-exponential phase and diluted to OD600 1 in fresh YNB 

medium. Serial dilutions down to 10-4 were prepared in 96 well microtitre plates and spotted 

aseptically onto YNB agar plates at pH3 using a 48 pin replicator. YNB agar plates were pH 

adjusted using 1M HCL and supplemented with increasing concentrations of acetic acid/lactic 

acid. Plates were incubated at 30ºC and growth inhibition was recorded after 48 h incubation. 

The flask fermentation was performed in 125mL shake flasks with YNB (2% glucose) at pH 3 

with or without weak acid. The cells were inoculated at mid exponential phase and OD600 0.1 

and grown at 30ºC and 180 RPM.   
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Table 1 Primer sequences used in this study 

Gene/Name Primer Primer sequence 

PDR12-1 
F 

R 

TCGTTCATGGATGCATTTCCC 

CACCAACTCACTGGTTTCACC 

PDR12-2 
F 

R 

TGCCAGGTTTCTGGAAGAGG 

GTTTGGCCTTCCGGAGGATT 

TPO2 
F 

R 

TGAGTTCCCTAGCCACCTGGA 

TCCACGGTGAACAAACCACCT 

AQR1 
F 

R 

TTTGGTCATCGTTGGGTTCG 

CCGTAGGCGCAATACCTTGG 

ACT1 
F 

R 

GGCTGAACGTGGTTACTCCT 

AGAAGCGGTTTGCATTTCTT 

PDR12_Copynumber 
F 

R 

TGGTCCGCTTTGCTAATATGCCA 

GATATGTCACCTGTGACTTCCACCAAC 

 

Gene expression analysis 

K. marxianus strains were grown in YNB to A600 of 1. Cells were then recovered by 

centrifugation and re-innucluated at A600 of 0.5 to YNB pH 3 and incubated for 1 hr. After 

initial incubation either acetic or lactic acid was added to the medium. The cells were collected 

at 0 min, 5 min, 15 min and 30 min and immediately frozen in liquid nitrogen. The total RNA 

was  extracted using Zymo Research Fungal/Bacterial RNA MiniPrep™ kit (Irvine, USA). 

RNA quantification was done by nanodrop spectrophotometry.  cDNA was synthesised from 

800 ng of RNA, using the ProtoScript First Strand cDNA Synthesis Kit (New England Biolabs 

Inc., MA, USA). cDNA samples were diluted by adding 30 μL of nuclease-free water, 

resulting in a final volume of 50 μL per cDNA sample. Aliquots were then diluted 1/10 and 

stored at – 
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20◦C. Real-time quantitative PCR (qPCR) was used to measure gene expression. cDNA 

samples were amplified by using LightCycler 480 SYBR Green I Master qPCR and ran in a 

LightCycler 

480 real-time PCR machine. Primers were designed to amplify the ACT1, AQR1, TPO2 and 

PDR12 (Table 1). Standard curves were performed to check for amplification efficiency with 

all primers showing >90% efficiency. Additionally, melting curves were carried out to check 

reaction specificity and to ensure that each primer pair produced a single amplicon. ACT1 

(coding for actin) were used as reference genes. To compare expression of the MDR genes 

during time course experiment, the data were normalised against ACT1 expression. Data were 

further calculated as 2−∆Ct as described by (Pfaffl, 2001).  
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Results 

The effect of acetic and lactic acid stress at low pH in K. marxianus   

Knowing the phenotypic diversity of K. marxianus, we chose to compare acetic and lactic acid 

tolerance in two different strains.  The comparison was made by a serial dilution on YNB 

plates plus the appropriate weak organic acid at pH 3 (Fig 1A). Because the pKa of acetic and 

lactic acids are 4.76 and 3.86 respectively, at pH 3 the acids are predominantly present in the 

toxic undissociated form. As shown in Fig. 1A, the cell growth at YNB pH 3 plate without 

acid is comparable and both strains show sensitivity to both acids. Addition of 20 gL-1 or 30 

gL-1 of lactic acid inhibits the growth of both strains, with CBS6556 being more sensitive. The 

presence of 1 gL-1 of acetic acid inhibits growth of CBS6556, while CBS397 shows similar 

growth as in the control condition. However, at 1.5 gL-1 of acetic acid both strains are strongly 

inhibited, with CBS6556 showing no growth at all. In summary, the drop plate assay showed 

that although both strains are sensitive to these WOA, CBS6556 is more sensitive than 

CBS397 to acetic and lactic acid. These patterns were largely replicated when the yeasts were 

grown in liquid medium at 30 gL-1 of lactic acid or 1 gL-1 of acetic acid (Fig 1B).  

  

Figure 1 A. Growth plate assay of CBS397 and CBS6556. The cells were cultivated until log-phase 

and spotted to YNB plates (2% glucose) at pH3 with different concentration of acetic acid and lactic 

acid. Cells were 10-fold serially diluted and incubated at 30 °C for 2 days. B. Growth curve of CBS397 

A 

B 
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and CBS6556. The cells were pre-cultured in YNB (2% glucose) until log phase and were inoculated at 

OD600 0.1 in YNB +/- weak acid at pH3 (control without weak acid). Closed circle, CBS397 control 

(no acid); closed square, CBS6556 control (no acid); closed triangle, CBS397 (+weak acid); closed 

inverted triangle, CBS6556 (+weak acid). 

 

Expression profile of MDR transporters during pulse exposure to acetic or lactic acid 

Multidrug resistance transporters are known to be weak acid tolerance determinants in the 

model yeast S. cerevisiae, therefore, we studied the expression level of major MDR 

transporters by pulse exposure to either 30 gL-1 lactic acid or 1 gL-1 acetic acid. We 

specifically wanted to investigate if the level of MDR transporter expression determines the 

sensitivity difference between the strains. The concentrations were empirically chosen for their 

ability to moderately inhibit the growth during flask fermentation (Fig. 1B).  To ensure that 

MDR genes response is due to a presence of the weak organic acid (as opposed to low pH), 

prior to the pulse shock, cells were inoculated at mid-exponential phase to YNB (2% glucose) 

at pH 3 and incubated for 1 hr at 30 °C. After the incubation, acetic or lactic acid were added, 

and triplicate samples for RTqPCR were collected at 0 min, 5 min, 15 min and 30 min. The 

level of expression of PDR12, TPO2 and AQR1 homologs of K. marxianus was assessed by 

RTqPCR using the ACT1 gene as a reference. CBS6556 and CBS397 have one copy of each 

gene, except for PDR12, which is duplicated in CBS397 (designated here as PDR12-1 and 

PDR12-2). The PDR12 duplication was confirmed with PCR (not shown). The RTqPCR 

analysis showed that while CBS6556 strongly induced PDR12 during acetic and lactic acid 

shock, the response of CBS397 was much less apparent (Fig 2A). In CBS 397, the induction 

by lactic acid of both copies of PDR12 was moderate in comparison to CBS6556, while acetic 

acid resulted in a gradual induction of PDR12-1 and little change in expression of PDR12-2 

(Fig. 2B). This result demonstrated a strain-specific response to both acids. The expression of 

AQR1 and TPO2 was also assessed. In CBS6556, both genes were induced to similar levels by 

both acids, though the response-time for AQR1 induction by lactic acid was delayed (Fig. 

S1A). Once again, the overall induced response of these genes was lower in CBS397 and there 

were also some specific differences between the effects of lactic acid and acetic acid (Fig. 

S1B). Most notably, neither AQR1 nor TPO2 were induced by lactic acid, whereas both genes 

were induced by acetic acid. In CBS397, the level of induction by acetic acid of AQR1 and 

TPO2 were in the order 2-3 fold, compared to >10 fold in CBS6556.  Summarising, the 
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expression profile showed that in CBS6556, all tested MDR transporters were upregulated in 

both acid conditions, with PDR12 having the highest level of expression. In contrast, the 

expression profile of MDR in CBS397 showed an intermediate response to acetic acid, but 

with PDR12 still having the highest level of expression.  

 

Figure 2 Relative expression profile of PDR12 in CBS397 and CBS6556 shock exposed to acetic 

acid and lactic acid. The cells were cultivated until mid-exponential phase and resuspended at OD660 

= 0.5 in fresh YNB medium (2% glucose) at pH3 (three biological replicates). The cells were incubated 

for 30mins prior addition of 1gL-1 acetic acid or 30gL-1 lactic acid (all adjusted to pH3). The samples 

for RNA extraction were taken at 0min, 5min,15min and 30min after addition of indicated acids. The 

synthesized cDNA was used for subsequent RTqPCR analysis. A. Expression profile of CBS6556 

PDR12 B. Expression profile of CBS397 PDR12-1 and PDR12-2 

 

Comparison of PDR12 sequences in K. marxianus strains 

 The expression results showed high expression of PDR12 in comparison to other MDR genes 

in both strains and condition. We therefore compared the nucleotide sequence identity of 

CBS6556 PDR12 to both the CBS397 PDR12-1 and PDR12-2 genes. We established that 

several other strains also carry a duplication of PDR12, therefore the PDR12 sequences from 
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K. marxianus NBRC 1777 and DMB were also included in the analysis. The phylogenetic tree 

of NBRC 1777, DMB, CBS6556 and CBS397 nucleotide sequences showed that both PDR12-

1 and PDR12-2 arose from an ancestral duplication event after the divergence of K. lactis and 

K. marxianus (Fig. 3). The CBS6556 PDR12 sequence clustered with PDR12-1 but was still 

more divergent than would be expected. More detailed comparison of CBS6556 PDR12 to 

CBS397 PDR12-1/PDR12-2, however, revealed that CBS6556 PDR12 is a recombined 

version of the gene, having N-terminal (5’) sequence identity to PDR12-1 and C-terminal (3’) 

to PDR12-2 (Fig. 4A). The recombination point took place in the middle of the ORF, between 

nucleotides 1887 and 1893 (Fig. 4B).  

 

Figure 3 Phylogenic tree of PDR12 sequences from S. cerevisiae, K. lactis and K. marxianus. 

Maximum-likelihood phylogenetic tree generated by comparing nucleotide sequences of PDR12 from 

K. marxianus, K. lactis and S. cerevisiae. 
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Figure 4 Genomic organisation at the PDR12 locus in K. marxianus. A. Schematic overview 

showing the PDR12 locus in K. marxianus strains. The recombination between PDR12-1 and PDR12-2 

that gave rise to CBS6556 PDR12 is shown. B. Multiple sequence alignment (MSA) of the PDR12 

nucleotide sequences. The CBS6556 PDR12 sequence showed in upper case and the dark shading in 

vertical columns highlights the nucleotides that distinguish PDR12-1 and PDR12-2. 

 

  

A 

N-terminal 

Recombination 

point 

C-terminal 

B 



155 
 

Discussion 

The aim of this study was to assess acetic and lactic acid tolerance in CBS6556 and CBS397 

and to evaluate MDR transporters expression level during the stress. Acetic and lactic acid are 

mainly encountered during industrial application and can affect the performance of the yeast 

during fermentation. Previous studies on K. marxianus demonstrated wide phenotypic 

diversity toward stressful condition between strains (Lane et al., 2011, Rocha et al., 2011, 

Fonseca et al., 2008).  In our study, we used CBS 6556 and CBS397, which are among the 

most studied in the field (Fonseca et al., 2008, Gombert et al., 2016, Jeong et al., 2012, 

Etschmann et al., 2003). The data collected allowed to confirm strain specific difference to the 

stress. Moreover, our study demonstrated strain-specific induction of the transporters. The 

expression profile of AQR1 and TPO2 is consistent with S. cerevisiae studies, where both 

strain showed induction during acetic acid stress (Fernandes et al., 2005). However, the 

presence of lactic acid induced expression of AQR1 and TPO2 only in CBS6556. We focused 

our attention on PDR12 since CBS397 has two copies of the gene and CBS6556 just one. In 

addition, the RTqPCR showed that PDR12 was responsive to both acetic and lactic acid, while 

in S. cerevisiae PDR12 is only responsive to moderately lipophilic weak organic acids (sorbic 

and benzoic acids) (Nygard et al., 2014, Holyoak et al., 1999). However, PDR12 induction 

was not uniform in K. marxianus strains. CBS397 gradually induced PDR12-1 during acetic 

acid shock, whereas PDR12-2 showed weak induction following exposure to both acetic and 

lactic acid. In contrast to CBS397, CBS6556 highly induced PDR12 at both conditions. 

Despite, the high induction, CBS6556 growth was strongly inhibited by presence of both 

acids.  

Detailed examination of the PDR12 sequence from both strains, revealed a divergence in the 

nucleotide sequence. The sequence showed that CBS6556 PDR12 is a recombined version of 

CBS397 PDR12-1 and PDR12-2, which probably affects the functionality of the transporter 

and stress resistance.  

 

Proposed role of Pdr12p in weak acid tolerance  

The rapid high level of induction of PDR12 (up to 100-fold increase) in CBS6556 in response 

to either lactic or acetic acid indicates that these acids directly induce expression via a 
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transcription factor binding to PDR12 promoter elements. In contrast, CBS397 PDR12-1, 

which shares the same promoter, shows a slower and more modest induction to acetic acid and 

a very small response to lactic acid. CBS397 PDR12-2 does not respond to acetic acid and has 

a rapid, but modest, induction in response to acetic acid. CBS397 is also more tolerant to both 

lactic acid and acetic acid than CBS6556. These observations lead us to present a hypothesis 

that Pdr12-1p and Pdr12-2p may have complementary roles in transporting acetate and lactate 

ions, respectively from the cell in CBS397, but the recombinant Pdr12p in CBS6556 can do 

neither due to structural issues. The very high induction in CBS6556 would be a consequence 

of a futile effort to induce expression of a detoxification system. This hypothesis can be tested 

by molecular means such as disruption of PDR12 genes in CBS397 or heterologous 

expression of PDR12, PDR12-1 and PDR12-2 genes in CBS6556. The fact that CBS397 is a 

diploid yeast and the limited molecular tools available for K. marxianus create challenges for 

these experiments. Nonetheless, construction of the required reagents is ongoing and the 

proposed role of Pdr12p will be tested. 
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Conclusion 

The ongoing need to substitute the majority of fossil derived chemicals and fuels with bio-

based products requires a biorefinery to be efficient and economically viable. Therefore, it is 

important to develop effective and robust microbial cell factories, which can be applied for 

lignocellulosic or other residual biomass fermentations and produce economically viable bio-

based products. Weak organic acids are among the interesting products obtained by microbial 

fermentation that have been already introduced to the market. The production of weak organic 

acids requires a robust microbial host able to cope with the high titer of the product, and in 

most cases at low pH, which favors the desired undissociated form of the product. Next 

generation hosts need to be robust also against inhibitors present in the lignocellulosic 

biomass. The availability of robust strains for organic acid production can therefore reduce 

process cost and contribute to the success of second generation industrial-scale production. 

For some of the organic acids on the market, natural producers are used (e.g. citric acid), but 

for others, in addition to natural producers, engineered hosts have been developed, matching 

specific industrial requirements to peculiar physiological traits. This is, for example, the case 

of lactic acid, where starting from the mid , scientists proposed substituting lactobacilli, the 

natural producers, with yeast, among which was Saccharomyces cerevisiae (Porro et al., 

1995). Yeast was preferred over bacteria because it can produce lactic acid at low pH and in 

microaerobic conditions. After intensive cycles of strain engineering and selection, superior 

lactic acid-producing strains of S. cerevisiae were generated (Porro et al., 1995, Pacheco et al., 

2012, Valli et al., 2006, Ishida et al., 2005, Bianchi et al., 2001).  

There is, however, always room for further improvement of producing strain by exploiting 

yeasts that naturally more robust and versatile than S. cerevisiae. Given the wide diversity of 

yeasts, it is clear that alternative ways to develop or to improve existing microbial hosts is to 

further explore non-Saccharomyces yeasts, as already proven with Kluyveromyces lactis 

(Bianchi et al., 2001), Candida utilis and Candida boidinii (Osawa et al., 2009, Ikushima et 

al., 2009). Furthermore, the company Cargill has developed yeast-based production of 

commercial lactic acid using an undisclosed yeast species. This positive result is paving the 

way for the development of additional alternative hosts.  

The present study investigates the potential of Z. parabailii and K. marxianus as microbial cell 

factories from a weak acid stress resistance perspective. Z. parabailii is a well-known food 
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spoilage yeast with a native ability to resist high concentrations of weak acids at low pH. K. 

marxianus is a thermotolerant, fast growing yeast with an innate ability to ferment pentose and 

hexose sugars. Both yeasts are relevant for biotechnology exploitation, therefore 

understanding the weak acid resistance will provide an opportunity for their efficient 

exploitation. 

Z. bailii sensu lato has been extensively studied in last decades by food scientists to 

understand the spoilage mechanism and develop preventative measures. In Chapter 1, we 

discussed the important findings on Z. bailii and its relatedness to biotechnology exploitation. 

We emphasized the studies done from food science moving then to perspectives for 

biotechnology. Chapter 1 clearly indicates the potential of Z. bailii as a promising host for 

various bio-based products, where resilience to low pH and weak organic acids is required. 

Knowing the potential of Z. bailii, in Chapter 2 we studied the lactic acid stress response of 

the yeast. Our study revealed that lactic acid does not cause an extended lag phase in growth 

and does not affect viability of the cells at a concentration that impairs growth in S. cerevisiae. 

These intriguing results were further expanded to understand the macromolecular changes 

induced by lactic acid, to depict possible unique response network. We observed that Z. bailii 

cells indeed respond to the lactic acid by reorganizing the composition of cell wall and cell 

membrane. These findings are important to understand the lactic acid tolerance in this species, 

although it would be desirable to narrow down the analysis to the level of the specific 

molecular changes. In addition, the lack of a completely annotated and assembled genome 

sequence of Z. bailii limited our study. Therefore, Chapter 3 was dedicated to the genomic 

study of the Z. bailii strain selected for our research using PacBio sequencing technology. The 

study revealed that this strain is in fact a hybrid Z. parabailii. This finding confirms, in 

agreement with previous studies, that Z. bailii sensu lato is highly divergent. Intriguingly, the 

genome study of Z. parabailii paved the way to understand and possibly to answer important 

fundamental questions related to the whole genome duplication event that occurred in other 

yeasts (Wolfe, 2015). The study provided a basis to hypothesize that Z. parabailii is 

undergoing a similar fate as it was with the lineage leading to S. cerevisiae. This case can be a 

perfect example of the tight connection existing between fundamental and applied science. 

Knowing the physio-morphological response to lactic acid and genomic data, in Chapter 4 we 

investigated the transcriptomic response of Z. parabailii to lactic acid. The study revealed that 

Z. parabailii to some extent has similarities and differences in transcriptomic response if 
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compared with previous studies performed in S. cerevisiae. The similarities include activation 

of iron transport related genes and of ROS detoxifying genes. Differences are related to the 

downregulation of cell wall genes and MDR transporter genes associated with weak organic 

acid tolerance. Moreover, we identified multifamily Z. parabailii specific genes that are 

responsive to lactic acid presence. The observation clearly indicates that Z. parabailii still has 

some secrets to be unveiled, and RNA-seq results can be a starting point to discover them.  

The last part of the study was dedicated to the other industrially relevant yeast selected – K. 

marxianus. The yeast is getting a lot of attention from biotechnology companies and scientists 

due to its unique combination of abilities. Our study was focused on understanding the weak 

acid stress response of MDR transporters. As for Z. bailii, strong strain variability is known 

(Lane et al., 2011), and our study confirmed that K. marxianus has strain-specific stress 

tolerance also in respect to organic acids. We focused our attention on lactic and acetic acid, in 

agreement with the general aim of the work.  

Our study revealed that the strain variability could be related to the copy number and sequence 

identity of the PDR12 gene, which encodes for one of the major membrane transporters 

responsible for counteracting acetic acid toxicity. Furthermore, we found that sequence 

difference in PDR12 of the two strains studied might affect the tolerance level to acetic and 

lactic acid. With the development of modern molecular tools, we can continue studying this 

observation by deleting the genes and inserting the gene from the tolerant strain to the weak 

one.  

Indeed, both Z. parabailii and K. marxianus represent interesting species due to industrial 

relevance and exploitation potential. This work was focused in getting insight into the weak 

acid resistance mechanisms in different yeast species to understand how biodiversity and 

habitat tailor intrinsic adaptation to this stress. This knowledge can be further improved and 

exploited to transfer the traits into chosen microbial cell factory strains.    

This work highlighted the importance of yeast biodiversity exploration. There are still yeasts 

with unique traits that should be studied and characterized. Therefore, we should not limit our 

interest only to the organism we know the best for industrial application, but expand and 

exploit nature’s diversity.   
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Referee 1.  Prof. Sauer 

 

Point 1:  

“The introduction goes very quickly to the single points of the individual works, 

without giving the whole picture. Biorefineries for example, comprise many more technologies 

than industrial microbiology. Functional concepts must inevitably combine physical, chemical 

and biological processes, in order to be efficient and competitive. This has not even been 

mentioned” 

AUTHOR: 

The following paragraphs were added to introduction section to address this point: 

 

“The technologies that are jointly applied to efficiently convert biomass into valuable products can 

be divided into four groups: 

1. Thermochemical processes: The aim of thermochemical process is to convert biomass into 

energy and chemical products by gasification and pyrolysis. Gasification is biomass treatment at 

high temperature (above 700°C) with low oxygen levels to produce syngas. Pyrolysis is biomass 

treatment at intermediate temperature (300-600°C) without oxygen to produce pyrolytic oil (or bio-

oil), solid charcoal and light gases like syngas. Both products can be directly used as a stationary 

biofuel or as precursors to produce other fuels (Spath and Dayton, 2003, Bridgwater and Peacocke, 

2000).  

2. Mechanical/physical processes: The aim of a mechanical process is to reduce the size and 

separate the components of the biomass, without changing the state and composition of it. This 

process is usually performed before biomass utilization to reduce the size of biomass within specific 

ranges for an efficient subsequent processing (Sun and Cheng, 2002). 

3. Chemical processes: The aim of chemical processes is to change the chemical composition 

and structure of biomass by hydrolysis. Hydrolysis uses acids, bases and enzymes to depolymerize 

polysaccharides into monomers (cellulose into glucose) for subsequent processing of the monomers 

into valuable products (Sun and Cheng, 2002).  

4. Biochemical processes: Biochemical processes involve application of fermentation via 

microbial cell factories to convert fermentable substrate into desired product. The process occurs 

at low temperature and slower rate in comparison to thermochemical processing (Hamelinck et al., 

2005).” 

 



 

Point 2: 

“Its relationship with Z. parabailii has been mentioned only in one sentence. Clearly, the starting idea 

was to work on Z. bailii, but analyzing the genome sequence it became clear that the strain was sth. 

else. This fact is interesting and allows many conclusions, but it requires explanation and 

contemplation of the PhD candidate, which is unfortunately absent” 

AUTHOR:  

The following paragraphs were added to introduction section to address this point: 

 

“Despite the importance of the yeast for industrial and fundamental microbiology, accurate 

identification of Z. bailii and related strains is problematic. The phylogenetic relationships of many 

industrial isolates formerly known as Z. bailii have been re-evaluated, and significant differences in 

rRNA gene sequences were found.  These led to the proposal that there are two novel species closely 

related to Z. bailii, namely Zygosaccharomyces parabailii and Zygosaccharomyces pseudobailii (Suh 

et al., 2013). Indeed, further genome sequencing projects of commonly-used strains confirmed that 

in fact ISA1307 and ATCC60483 are interspecies hybrids of Z. bailii and closely related species rather 

than pure strains (Mira et al., 2014, Ortiz-Merino et al., 2017). Regardless of molecular differences 

between Z. bailii sensu lato species, physiological traits are undistinguishable.” 

 

Point 3: 

“Of course this part of the work fits very well into the context of this thesis. However, the chapter 

stands isolated and Mr. Kuanyshev didn’t even try to connect it in any way – which is a pity” 

AUTHOR: 

The following paragraphs were added to conclusion section to address this point: 

 

“Indeed, both Z. parabailii and K. marxianus represent interesting species due to industrial 

relevance and exploitation potential. This work was focused in getting insight into weak acid 

resistance mechanism in different yeast species to understand how biodiversity and habitat tailor 

intrinsic adaptation to this stress. This knowledge can be further improved and exploited to transfer 

the traits into chosen microbial cell factory strains.” 

 

 



Referee 2 Prof. Villaverde 

 

Point 1: 

“As a minor issue for consideration, the author indicates in the publication list (page 7 of the MS), 

the references of three published papers on which the thesis is based. Two of these references 

are incomplete (paper 1 and paper 2), what should be amended for the final presentation as 

both have been already published.” 

 

AUTHOR: 

This point was duly addressed and references were modified accordingly 

 

 

Additional changes made by author: 

 

Chapter 4 has been revised and changed to final submission form to the journal. General concept 

and goal of the chapter are not changed.  
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