
SCUOLA DI DOTTORATO
UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

Dipartimento di / Department of

 Informatica, Sistemistica e Comunicazione

Dottorato di Ricerca in / PhD program Informatica Ciclo / Cycle XXIX

Curriculum in (se presente / if it is)

Robust Point Clouds Registration

Cognome / Surname Fontana Nome / Name Simone

Matricola / Registration number 712638

Tutore / Tutor: dott. Giuseppe Vizzari

Cotutore / Co-tutor:  
(se presente / if there is one)

Supervisor: prof. Domenico G. Sorrenti  
(se presente / if there is one)

Coordinatore / Coordinator: prof. Stefania Bandini

ANNO ACCADEMICO / ACADEMIC YEAR 2015/2016

2

Robust Point Clouds Registration

Simone Fontana

August 2017

ii

Abstract

Point clouds registration is a very well studied problem, with many different
and efficient solutions. Nevertheless, the approaches in the literature rely
heavily on a good initialization and on a good set of parameters. These
approaches could be roughly divided into two categories: those based on fea-
tures and the so-called closest-point-based. The first category aims at align-
ing two point clouds by first detecting some salient points, the keypoints,
and calculating their descriptors so that they can be compared, in the same
way it is usually done with 2D images. On the other hand, the latter cate-
gory approximates correspondences by iteratively choosing the closest point,
without the need for any kind of feature. The most important algorithm
in this category is Iterative Closest Point (ICP). Most other algorithms are
variants of ICP, and so is one of the proposed approaches.

In this work we introduce two novel solutions to point clouds registration.

The first one is a variant of ICP, with a different data association policy,
derived from a probabilistic model. The experiments show that it is very
effective at aligning a sparse point cloud with a dense one, one of the issues
we faced in this work. On the other hand, it showed very good results also
on standard alignment problems, often better than those of other popular
state of the art algorithms. We show that, for the most common approaches,
the quality of the result is heavily dependent on some parameters that, thus,
need to be carefully calibrated before the algorithms could be used in real ap-
plications. Moreover, a new calibration is usually required when facing a new
scenario. For this reasons we propose this innovative technique, that aims,
besides at being capable of aligning two generic point clouds, independently
from their density, at being more robust w.r.t. wrong parameter sets.

The second technique we developed is a global point cloud registration
algorithm. ICP-like techniques requires, in order to converge to the right
solution, an initial estimate of the transformation between the two point
clouds. Without a proper initial guess, the algorithm would remain stuck in
a local minima. On the other hand, feature-based techniques do not require
any initial estimate but are not applicable to sparse point clouds, because

iii

iv

they do not contain enough information to extract meaningful descriptors.
The approach we developed combines the advantages of both approaches. It
is based on a soft-computing technique, Particle Swarm Optimization, that
is known for being able to escape from local optima. The combination of
the two new techniques is an algorithm capable of aligning any kind of point
cloud, without the need of any initial estimate of the transformation.

Contents

1 Introduction 1

2 Related Work 5
2.1 Point Clouds Registration . 5
2.2 Techniques for Point Clouds Registration 13
2.3 Dense-sparse registration . 17
2.4 Conclusions . 18

3 The Datasets 19
3.1 The Bremen Dataset . 19
3.2 The Hannover Dataset . 19
3.3 The Standford Bunny Dataset 21
3.4 The Linköping Dataset . 21
3.5 The Office and Corridor Datasets 22

4 Probabilistic Data Association 25
4.1 Overview . 25
4.2 Model Definition . 26
4.3 Point Clouds Registration as an EM Problem 29
4.4 Implementation . 31
4.5 Experimental Results . 34

5 Multi-iteration 43
5.1 Why Multiple Iterations? . 43
5.2 Termination criteria . 44
5.3 Experimental Results . 46

6 Parameters’ sensitivity 55
6.1 Maximum Distance . 55
6.2 Max Neighbors . 56
6.3 Sub-sampling . 61

v

vi CONTENTS

6.4 Conclusions . 71

7 Global Point Clouds Registration 73
7.1 Introduction . 73
7.2 Metrics . 74
7.3 Particle Swarm Optimization 87
7.4 Experimental Results . 93

8 Conclusions 105

Chapter 1

Introduction

A point cloud is simply a set of 3D points, i.e., a set of points in the space.
These points could be used to define the shape of a single object or to rep-
resent a big environment, such as a building. For this reason, point clouds
are heavily used in robotics. For example, they can be used as a map for a
localization system or they can be analysed to extract semantic information.

Point clouds are becoming increasingly popular nowadays. While in the
past the production of point clouds was reserved to very expensive robotic
platforms or measurement systems, today also cheaper alternatives exist.
The forefather of these cheaper sensors is the Microsoft Kinect, the first cheap
and easily available RGB-D sensor. RGB-D stands for RGB-Depth, that is,
the sensor is capable of producing together both a standard RGB image and
an aligned depth image. From the depth image, given the calibration data
of the sensor, we are able to produce a point cloud.

However, when dealing with point clouds, a very common problem arises.
Suppose that a robot needs to build a representation of an environment;
typically a single point cloud would not be enough, given the limited field
of view and usable range of the sensors. Therefore, the robot would have
to produce different point clouds from different points of view and then fuse
them together. The different point clouds, indeed, will have each its own
reference frame. Thus, there is no näıve way of aligning them, because no
global reference frame exists. This is the so-called point clouds registration
problem: we want to find the transformation that best aligns a point cloud
with another one, i.e., we want to express the coordinates of the points in
one point cloud w.r.t. to the reference system of the other one. Of course,
the two clouds must have some degree of overlap.

One simple solution is to use some kind of external sensor that returns the
displacement between the two poses where the clouds have been produced.
This could be accomplished, for example, using odometry measurements,

1

2 CHAPTER 1. INTRODUCTION

when using a wheeled robotic platform. As an alternative (or in addition) also
an inertial measurement unit could be used. However, usually these solutions
are not precise enough and, thus, have to be integrated with other techniques.
Moreover there are situations where no other measurement, besides the point
clouds, is available, e.g., when fusing two maps produced by two different
robots at different times.

Point clouds registration is a very well studied problem, with many differ-
ent and efficient solutions. The approaches in the literature could be roughly
divided into two main categories: those based on features, and the so-called
closest-point based solutions. The first category aims at aligning two point
clouds by first detecting some salient points, the keypoints, and calculat-
ing some kind of descriptors. The descriptors of the keypoints can then be
matched with those of another point cloud, so to find correspondences in a
way similar to what is done with feature matching for 2D images, e.g., in
mosaicing for building panorama images.

This class of techniques usually does not require any other information,
besides the point clouds. For this reason it is said to be capable of align-
ing point clouds globally: no matter the initial displacement, the algorithms
should be able to find a proper alignment. In practice, however, the results
usually are not really accurate. Therefore, feature-based registration is usu-
ally used to produce a rough alignment, that will be refined later using other
kinds of techniques.

On the contrary, closest-point based approaches do not have any explicit
feature matching step. They simply greedily approximate the correspon-
dences by iteratively associating to each point in a point cloud the closest
point in the other one. The most important algorithm in this category is It-
erative Closest Point (ICP). Most other algorithms are variants of ICP, and
so is also one of the approaches proposed in this work. Given its closest-point
based association policy, this class of algorithms is usually able to converge to
a meaningful solution only when the two point clouds are already quite close
to the final alignment: they need to be already roughly aligned. However,
given the appropriate initial conditions, ICP-like algorithms usually produce
very precise results. Therefore, the two categories are not mutually exclusive:
feature based registration could be used to produce a rough alignment that
then is refined using a variant of ICP.

Our approach is derived directly from a probabilistic model and is basi-
cally a substitute for ICP, with better performances in terms of quality of
the result and with less sensitivity to parameters. Notably, the result of our
technique is much more independent to a fine parameters’ tuning. One of the
problem of ICP and its variants is that they depend heavily on one or more
parameters. We will show that the results can be heavily affected by just

3

very small changes in these parameters. This is a very undesirable behaviour
for an algorithm that will be used on robotics platforms: if a parameter has
to be very finely tuned in order for the algorithm to work, it means that
it would have to be re-calibrated for every different scenario. Of course, if
a recalibration is needed even for small changes and, moreover, there is no
automatic way of doing this calibration, the robot cannot really be called
autonomous. On the contrary, a low sensibility to the parameters is a very
desirable behaviour and is what we achieved with the proposed algorithm.

The execution time of our proposal, w.r.t. ICP, increases greatly, so it is
not suitable for real-time applications. This is not a big problem, considering
that there are lot of applications where point clouds registration is performed
off-line.

Moreover, closest-point based algorithms usually need a good initial guess
in order to converge to the right solution. This initial guess could be provided
using some kind of feature-based technique, but this is not always possible.
For example, when dealing with sparse point clouds, i.e., clouds with very few
points per unit of volume, feature-based techniques usually are not useful.
This is due to the fact that 3D feature descriptors usually require the normal
of the surface on which the keypoint lies. Very sparse point clouds do not
represent a surface in a way enough informative. Practically, calculating the
normal to a point on a surface requires a set of neighbouring points lying on
the same surface. This neighbourhood, in a sparse point cloud, could easily
be empty! As it will be clear in the following chapters, one of the objective of
this work is to deal with any kind of point clouds. This includes registering
a very sparse point cloud with a standard dense point cloud.

In which situations could be useful to align a sparse point cloud with
a dense one? Suppose, for example, that a robot produced a map of an
environment with a sensor producing dense point clouds. Moreover, suppose
that this map is then used for the localization of another robot, using a
different kind of sensor, thus maybe producing sparser point clouds. This
kind of problem is an example of dense-sparse registration that state-of-the-
art algorithms often struggle to solve and that cannot take advantage of
feature-based registration. We will show how our probabilistic approach can
be successfully applied to this scenario too.

However, the proposed probabilistic approach, similarly to ICP, is still a
fine-registration technique. For this reason we developed also an algorithm
aimed at roughly aligning two point clouds, without any assumption on their
initial displacement or their densities and that, thus, does not use feature
descriptors. It can be applied literately ot any possible kind of point cloud,
as it requires only the coordinates of the points. This novel algorithm finds
the best alignment of two point clouds solving an optimization problem using

4 CHAPTER 1. INTRODUCTION

a soft-computing technique: Particle Swarm Optimization. We will see that
defining the best alignment is per-se a very hard challenge. Since the real
point associations between the two point clouds are unknown (and, actually,
could even not exist), defining a metric that quantifies the quality of an
alignment was not easy and required many experiments. Indeed, this metric
has to work globally, i.e., independently from the initial displacement of
the point clouds, the minimum value of the metric must correspond to the
best alignment. Moreover, also the shape of the function is important: if
the metric has many strong local minima, the optimization algorithm will
struggle to find the global minimum. This two requisites should hold for any
kind of point clouds. We show how our PSO-based algorithm is capable of
aligning two generic point clouds, without the need of any initial guess.

Chapter 2 is a summary of the state-of-the-art in point clouds registra-
tion, covering both feature-based registration and, more deeply, closest-point
based registration algorithms. Chapter 3 describes various datasets used to
perform the experiments presented in this work. Chapter 4 introduces our
probabilistic point clouds registration algorithm and shows its performances
on many kind of datasets. Chapter 5 expands the approach presented in
the preceding chapter, introducing an automatic termination criterion for
the algorithm. Chapter 6 analyses the proposed probabilistic approach and
the most common point clouds registration algorithms, showing their sensi-
tivity to various parameters. We show that our algorithm has a very low
parameters’ sensitivity. Chapter 7 describes our PSO-based global point
clouds registration algorithm and shows its very good performances on vari-
ous datasets.

Chapter 2

Related Work

2.1 Point Clouds Registration

What is a Point Cloud?

A point cloud is simply a set of points. However, since many different kind
of sensor can produce a point cloud, they can differ on what they contain,
besides 3D coordinates of the set of points.

A very popular class of sensors, capable of producing point clouds, are
the LiDARs. As a simplification, LiDARs are composed of an emitter, that
emits a laser ray, and a receiver, that receives the light emitted and reflected
by obstacles in the space. The distance of an object from the sensor can be
measured using the return time of the emitted light. In some cases, a point
cloud produced with a LiDAR, depending to the sensor used, could contain
also the intensity of the reflected light, besides the coordinates in the scene.

Another important class of sensors, capable of producing point clouds, are
the RGB-D sensors. A very popular members of this class is the Microsoft
Kinect, [1]. The peculiarity of this kind of sensors is that they can produce
both an RGB image and a depth image. Therefore, the produced point
clouds will contain also color (RGB) information, besides 3D points. While
there exist other RGB-D sensors, the two aforementioned have acquired high
importance recently, mainly because of their very low price, compared to
other sensors. Therefore, they made producing point clouds very easy and
cheap, and boosted the research in the field of point clouds processing and
3D reconstruction, [2].

Lastly, a point cloud can be produced also using a stereo pair or even
a single moving camera, using structure from motion or photogrammetry
techniques, [3].

The density of the point clouds is a crucial characteristic. With density

5

6 CHAPTER 2. RELATED WORK

Figure 2.1: A scheme of how a LiDAR works. Points more distant from the
sensor are less dense, even though their angular distance is the same.

we refer to the distance between closest points in a cloud. A point cloud
could be dense, when the points are very close, or sparse instead. These
characteristics make sense mainly when comparing two point cloud: we could
say, for example, that a point cloud is denser than another when it contains
more points per unit of volume. Moreover, it could happen that the density
of a point cloud is not constant, but decreases when moving farther from the
sensor. This is usually true, for example, for LiDAR sensors, that measure
points at a fixed angular resolution. Therefore, points more distant from the
sensor will be more spaced, Figure 2.1.

Dense point clouds are produced, for example, by a Kinect, that, in its
first version, has a field of view of 57◦ horizontally and 43◦ vertically, with a
maximum of 307200 measured points. As a comparison, a Velodyne VLP-16,
a LiDAR sensor, has an horizontal field of view of 360◦, and 30◦ vertically,
with 54000 measured points. Therefore, it has a much wider field of view,
but with less points and thus, the produced point clouds are less dense.
Figure 2.2 is an example of these differences.

There are situations where only a sparse point cloud can be obtained. For
example visual-inertial systems usually produce a map of features, each with
its own position in the space. Usually this set of features is not very dense,
with the density depending on the particular scene, the texture of the scene
and the feature detector used. Nevertheless, it can be treated as a sparse
point cloud, in order, for example, to fuse it with other point clouds. The

2.1. POINT CLOUDS REGISTRATION 7

Figure 2.2: Two point clouds: one very dense, produced with a Kinect 2, the
other, sparser, produced with a Velodyne VLP-16.

other point cloud could be another feature map from the same or a similar
sensor, or a completely different kind of point cloud, such as a dense point
cloud produced with an RGB-D sensor.

Sparse point clouds have some peculiarities. Most important, usually
calculating accurate surface descriptors is impossible. Surface descriptors
are used to locally describe the surfaces represented in a point cloud. Almost
all the descriptors in the literature use the Surface Normal, that is the normal
to the surface in the neighbourhood of a point, [4, 5, 6, 7, 8]. To calculate
it, the surface on which the point lies is approximated using the position
of a number of points in its neighbourhood. This is not usually possible in
a sparse point cloud, because the neighbourhood of a point often is simply
empty! That is we do not have enough points nearby to accurately describe
the surface. This is a very important drawback, because it makes registering
sparse point clouds much harder, since many global registration techniques
use some kind of feature descriptor.

What is Point Clouds Registration?

Suppose that we have two different point clouds that have at least a part in
common, i.e., they partially overlap. These two point clouds could have been
generated from the same moving sensor at different times, or they could have

8 CHAPTER 2. RELATED WORK

Figure 2.3: A detail from the Linkoping dataset, [13]. One of the point clouds
is heavily distorted and thus cannot be aligned perfectly.

been generated by different sensors. Their sparseness can consequently be
very different. Nevertheless, the setup used to produce them is not important
for our specific problem.

These point clouds have each its own local reference frame, that is, their
points have coordinates expressed in two different reference frames, usually
with the origin on the position of the sensor at the time of the acquisition. If
we want to express all the coordinates in the same reference frame, we have
to solve the so-called Point Clouds Registration problem, i.e., we have to find
a transformation that aligns the first point cloud (usually called the source
point cloud), with the second (usually called the target point cloud). In this
work we will only deal with the problem of finding a rigid transformation
between two point clouds, that means find a rotation and a translation. Of
course using non-rigid transformations could lead to a more precise align-
ment, [9], but the problem would become much harder to solve and also
prone to over-fitting. The rigid transformation assumption is heavily used
in the literature, [10, 11, 12], because usually leads to good results, while
greatly simplifying the problem: if the two point clouds are not heavily dis-
torted, the result is usually good enough. In Figure 2.3 there is an example
of alignment that would benefit from the use of non-rigid transformations.
One of the point clouds, the one produced with a camera, is heavily distorted
and thus cannot be aligned perfectly.

Why is Point Clouds Registration important?

There are different situations in which Point Clouds Registration can be
useful.

Localization

While navigating thorough a known environment, that is, a mapped envi-
ronment, a robot needs to understand where it is with respect to the map.

2.1. POINT CLOUDS REGISTRATION 9

Figure 2.4: An example of Voxel map, from www.remotion4d.net

This is the problem of self-localization, often called just localization.

Suppose that the map is some kind of point cloud, or that it can be con-
verted into a point cloud; this is the case, for example, of octomaps, [14],
voxel maps (a kind of 3D grid map, Figure 2.4) or surface maps (Figure 2.5).
Moreover, suppose that the robot is equipped with a sensor capable of pro-
ducing point clouds. The sensor does not have to be the same used for
mapping and it could even produce a different kind of point cloud. For ex-
ample, consider the use of a sensor that produces dense point clouds used to
navigate through a previously mapped environment, mapped with a sensor
producing sparse point clouds. Independently from the setup and the sensors
used, at each time step we would have two point clouds: the map, and the
scene as currently seen by the robot. These two point clouds would have
each its own local reference frame. In order to understand where the robot
is w.r.t. the map, we could align the current point cloud with the map, that
is solving the localization problem as a point clouds registration problem.

Since most point clouds registration techniques are local optimization
algorithms, in order to solve the localization problem we need a rough initial
guess. Usually this is not a problem, since this guess is usually supplied
by some kind of odometry. Nevertheless, in Section 7.3 we will see how an
accurate registration can be obtained even in absence of any kind of initial
guess.

10 CHAPTER 2. RELATED WORK

Figure 2.5: An example of Digital Surface Map, from www.terrainmap.com

Figure 2.6 presents an example of localization using point clouds registra-
tion. Suppose we have a point cloud of a corridor produced with a LiDAR
and a robot equipped with a Kinect. By aligning the two point clouds we
can estimate the pose of the robot in the corridor.

Mapping

Suppose we want to create a map of an environment. Usually one point cloud
is not enough to represent a complex environment: the field of view and range
of the sensors are limited and, moreover, there can be obstructions that make
impossible to observe and then represent a whole environment from just a
single point of view. Fusing different point clouds, taken in different places,
is usually necessary. Thus, mapping can also be seen as an instance of a
point clouds registration problem.

Moreover, we could have two maps produced by two different robots that
we would like to merge. This is called multi-robot mapping and can be
done for different reasons: for example because the two robots mapped two
different parts of the environment (of course with some degree of overlap,
otherwise the registration would not be possible), or because they used two
different sensors with different peculiarities, like a visual-inertial system and
a LiDAR.

2.1. POINT CLOUDS REGISTRATION 11

Figure 2.6: An example of localization using point clouds registration.

3D Reconstruction

The problem of 3D reconstruction is very similar to the mapping problem,
but it has its own peculiarities. While with mapping usually we refer to the
process of building a representation of a potentially dynamic environment,
with 3D Reconstruction usually we refer to the process of building a 3D
representation of an object in some controlled setup (be it a very small object,
like a cup, or very large, like a whole building). The setup of the two processes
is usually very different. Mapping is usually performed by a robot, often in
a real open world. This poses several difficulties, like dealing with moving
objects or with a high level of uncertainty in the measures. On the other
hand, 3D reconstruction is often performed in more controlled conditions,
where there are no moving objects, where the best point of view can be freely
chosen, a great amount of measures can be gathered and the processing is
usually performed off-line.

Regardless of these differences, the same consideration made for the map-
ping problem apply also to 3D Reconstruction.

12 CHAPTER 2. RELATED WORK

(a) (b)

Figure 2.7: A schematic on how the odometry can be estimated using point
clouds registration.

Odometry

Odometry is the process of estimating the pose of a robot over the time,
by means of some sensor data. The difference between odometry and lo-
calization is that the first is usually a dead reckoning process. This means
that the pose is not estimated w.r.t. an absolute reference system, but w.r.t.
the pose of the robot at some previous time, usually measuring or calculat-
ing the displacement between the two poses. This has a very high impact
on the uncertainty of the pose estimate, because over time this uncertainty
will grow without any bound. Indeed, without some absolute measure, the
measurement errors accumulate over time without any bound.

Nevertheless odometry estimation is still a very important part of a
robotic system and is usually used as an input for many localization or map-
ping algorithms.

Many different kinds of odometry exist. The most common, by far, is
odometry based on measuring the distance covered by the wheels of the
robot (if available, of course). Another very popular alternative, for robots
without wheels or in addition to wheel odometry, is based on IMU (Intertial
Measurement Units).

What has Point Clouds Registration to do with odometry? Point Clouds
Registration can play an important role in Laser Odometry: estimating the
distance traveled by the robot by estimating the rototranslation between two
consecutive laser scans or point clouds, Figure 2.7. Actually this problem,
well known as scan-matching when referring to the data produced by single
scanning plane LIDARs, is a problem of point clouds registration! One very
important peculiarity of this application is that it needs to be strictly real-
time and it cannot be done off-line (like 3D Reconstruction, for example).

2.2. TECHNIQUES FOR POINT CLOUDS REGISTRATION 13

2.2 Techniques for Point Clouds Registration

Feature-based registration

One large category of point clouds registration techniques are those exploiting
some kind of geometric features, which are, basically, a representation of
salient points of the underlining surface.

3D features are used in a similar way to what is done with 2D features
extracted from images. First of all, salient points are detected in the point
cloud. With “salient” points we mean points that are easy recognizable: it is
the same concept behind corner extraction in computer vision. This kind of
points are usually called keypoints. A naive way of extracting keypoints is to
randomly select points or uniformly sub-sample the cloud. Of course these
methods give no guarantee that the chosen points will be easily detectable
in other point clouds, so other selection methods have been developed. Har-
ris3D, [15], is one of those and was directly inspired by the popular Harris
corner detector for 2D pictures, [16]. Other examples of keypoints detector,s
specifically designed for point clouds and not derived from computer vision
techniques, are the Intrinsic Shape Signature, [17], and NARF, [7]. A com-
plete review of 3D keypoints detector is beyond the scope of this work. For
an extensive review, see the work by Tombari et al., [18].

Once the keypoints have been detected, we need, for each one, a de-
scriptor, such that they can be matched in other point clouds. Examples of
descriptors are PFH, [19], and their faster variant FPFH, [20], or angular-
invariant features, [8]. Moreover, Sehgal et al. developed an approach, de-
rived from the computer vision world, for point clouds registration that uses
SIFT features extracted from a 2D image generated from the point cloud
[21]. These are just example of the many 3D descriptors available. For a
comparison of the various alternatives, see the work by Alexandre et al., [22].

One of the main limiting factors to the use of 3D descriptors is that almost
all require, in order to be computed, the normal to the surface on which the
keypoint lies. This is not a problem for most point clouds, but it makes
them not applicable to sparse point clouds. These kind of point clouds,
indeed, usually does not carry enough information to accurately represent
the underling surface. Therefore the normal to the surface cannot be reliably
extracted. This is the reason because we will not use features descriptors
in this work: we wanted to develop a technique as general as possible, that
could be applied to the registration of any kind of point cloud.

Once descriptors have been computed in both the source and the target
point clouds, they need to be matched. The easiest solution is to associate
each keypoint in a point cloud to the closest, in the space of the descriptors,

14 CHAPTER 2. RELATED WORK

in the other one. Of course the resulting set of associations will contain
many outliers, that need to be filtered out. A popular technique for outliers
rejection is RANSAC, [23]. A popular way to estimate the rototranslation
from a set of noisy associations is to solve a least squares problem, for example
using the SVD decomposition.

There are two main drawbacks to feature-based point clouds registration.
First of all, it is usually a slow process: both keypoints and descriptors extrac-
tion are computationally expensive. This makes the technique not suitable
for real-time applications. Secondly, and most important, the resulting align-
ment usually is not very accurate. For this reason feature-based registration
is usually used not per se, but to estimate an initial guess that will be refined
later on with other techniques (such as ICP).

Closest point-based registration

Iterative Closest Point

There is another relevant category of registration algorithms, whose most
important member is Iterative Closest Point (ICP). This category is based
on an approach completely different from feature-based registration. Instead
than looking for keypoints and calculating their descriptors, so that they can
be matched between the clouds, it greedily approximates the correspondences
simply by looking for the closest point.

ICP was originally developed independently by Besl and McKay [24],
Chen and Medioni [25], and Zhang [10]. Although its first introduction was
in 1991, it is still the de facto standard for point clouds registration. ICP
assumes that the two point clouds are already roughly aligned and aims at
finding the rigid transformation, i.e., a rototranslation, that best refines the
alignment. The aim of ICP is to align the source cloud with the target cloud
and, to do so, it repeats the following steps until convergence:

1. For each point xj in the source cloud finds the closest point yk in the
target cloud.

2. Finds the best values for R and T (rotation and translation) that min-
imize the sum of squared errors in Equation (2.1).

3. Transforms the source cloud using R and T.

∑
j

‖Rxj + T − yk‖2 (2.1)

2.2. TECHNIQUES FOR POINT CLOUDS REGISTRATION 15

The algorithm may end, e.g., after a predefined number of iterations, or
when the sum of the residuals defined by Equation 2.1 becomes smaller than
a certain threshold or when the difference of the rototranslations between
two consecutive steps becomes smaller than a threshold.

ICP is very effective at aligning two point clouds that are already roughly
aligned. Nevertheless, it needs an initial guess that has to be accurate enough,
because the optimization algorithm it uses is local. Thus, in case the initial
guess is very wrong, the algorithm could converge to the wrong solution or,
rarely, not converge at all.

Usually, the minimization problem that constitutes each ICP iteration is
solved in closed-form using the SVD decomposition. This is due to the fact
that the problem can be represented as the linear system in Equation (2.2),
where X is the matrix whose rows contain the points in the source point cloud
and Y the matrix containing the points in the target point cloud, ordered so
that the point in the i-th row of X corresponds to the i-th row of Y .

R ·X + T = Y (2.2)

Since the linear system in Equation (2.2) is overdetermined and almost surely
inconsistent, due to wrong data associations and noise in the point clouds,
simple algorithms (such as Gaussian elimination) for linear system solving
cannot be used. Instead, algorithms that provide a least squares solution
have to be used. The SVD decomposition is the most used in this field, but
other techniques exist. Instead than solving the problem in closed form, also
generic non-linear optimization algorithms could be used, such as Levenberg-
Marquard, [26, 27]. Although they are suited to the problem, the closed form
solution is much faster and thus is usually preferred.

Many different variants of ICP have been proposed; usually they aim at
speeding up the algorithm or at improving the quality of the result. For an
extensive review and comparison of ICP variants, see the work of Pomerlau
et al., [28]. In this work we will refer to the basic ICP algorithm (also called
Point-to-Point ICP) as implemented in the PCL library [29], because it is
still the most used version and it is easily available for comparisons.

Generalized ICP

A variant of ICP that is worth mentioning is Generalized ICP (G-ICP) [30].
G-ICP modifies the standard ICP algorithm by attaching a probabilistic
model to Equation (2.1), while keeping the other steps unchanged (including,
notably, the closest distance based data association). The main idea is that
there are two underlying set of points, X̂ and Ŷ , used to generate X and Y .

16 CHAPTER 2. RELATED WORK

Specifically:

xi ∼ N (x̂,ΣX
i)

yi ∼ N (ŷ,ΣY
i)

Therefore, points in the two point clouds to align, X and Y are assumed
to be drawn from independent Gaussians. The distance d

(T)
i between two

points xi and yi, once aligned with a rigid transformation T, is thus also
drawn from a Gaussian with mean and covariance given by:

d
(T)
i ∼ N (Tx̂i − ŷi,T · ΣX

i ·TT + ΣY
i) (2.3)

assuming that the points association problem has already been solved, so
that x̂i corresponds to ŷi.

It follows that, applying MLE, the best transformation T∗ can be com-
puted using

T∗ = arg max
T

∏
i

p(d
(T)
i) (2.4)

By simplifying the above, Equation (2.1) is modified into Equation (2.5),
where T is the rototranslation we want to estimate.∑

i

(Txi − yi)T · (ΣY
i + TΣX

i TT)−1 · (Txi − yi) (2.5)

By incorporating the covariances into the error function, G-ICP usually
leads to better results, but at the expense of computation time. Indeed,
Equation (2.5) cannot be expressed as a linear system and therefore has to be
solved using a generic non linear optimization algorithm, such as Levenberg-
Marquard. Given the good results usually obtained, G-ICP is one of the
algorithm we will compare our approach to.

Normal-Distribution Transform

Normal-Distribution Transform is a method for representing and aligning
point clouds, firstly introduced for 2D scans by Biber et al., [12], and then
extended also to 3D point clouds by Magnusson, [31]. Instead than looking
for point correspondences, it uses a completely different approach, using a
probabilistic representation for the point clouds.

First of all, a regular grid is fitted onto a point cloud. For each cell
that contains at least three points, the points inside it are represented with

2.3. DENSE-SPARSE REGISTRATION 17

a Gaussian distribution, with mean and covariance calculated accordingly.
Given the points xi..n in a cell, the mean and covariance of the Gaussian are

µ =
1

n

∑
i

xi

Σ =
1

n

∑
i

(xi − µ)(xi − µ)T

This distribution N (µ,Σ) represents, for each cell, the probability of find-
ing a point for each position inside that cell.

To align another cloud to the first one, first it is transformed using an
initial estimate for the rotation and translation. Each point in the second
point cloud, once transformed with an initial guess, will lie in a particular cell
of the first cloud. Therefore, for each of these points, a score is calculated,
evaluating the distribution of the cell it lies in. A new improved estimate for
the transformation is calculated trying to minimize the sum of all the scores,
then these steps are repeated until convergence. The score is calculated
according to Equation (2.6), where yi are the points in the second point
cloud, T is the current estimate of the roto-translation and µi and Σi are the
mean and covariance of the cell in which yi lies.

score(T) =
∑
i

e(
−(T·yi−µ)T ·Σ−1

i
·(T·yi−µ)

2
) (2.6)

Besides the differences regarding point correspondences, NDT and ICP
are also similar because both are iterative algorithms that start with a rough
initial guess for the transformation and try to improve it, by minimizing some
error metric. NDT too will be used as comparison algorithm in this work.

2.3 Dense-sparse registration

The algorithms described so far have been designed to align two point clouds,
without any reference to their density or to the difference of density between
them. This is probably due to the fact that, commonly, point clouds reg-
istration techniques are used to align point clouds coming from the same
sensor.

On the other hand, there are important situations where it would be useful
to align point clouds with different densities. For example when mapping an
environment with multiple robots, it could be useful to merge the maps in
a unique global map, in which all the robots could localize. Localizing in a
map produced with a sensor, for example a LiDAR, using a robot equipped

18 CHAPTER 2. RELATED WORK

with another kind of sensor, for example a Kinect, is another instance of
dense-sparse registration.

Eventually, also the problem of calibrating two different sensors on the
same robot can be reconducted to a dense-sparse registration problem.

The problem of aligning a sparse point cloud with a dense one is, to our
knowledge, little explored. Most of the works, indeed, tackle the problem of
aligning two generic point clouds, without any reference to their density or
to the density difference between the two. Although most of these techniques
could be used to solve our problem, they produce less-than-optimal results,
as we will show in the following sections.

For example, although ICP was not designed to explicitly solve the dense-
sparse registration problem, it could be used anyway. Nevertheless, when
used in such situations, it has some disadvantages. In case the two point
clouds were produced using different kind of sensors, a problem, common
also to the standard registration problem, is worsened: a point in a point
cloud will never exactly correspond to another single point in the other. In-
stead, the hypothetical correspondent for a point could lie in between multi-
ple points of the other point clouds. This problem exists also for registration
problems between two point clouds coming from the same sensor, but is wors-
ened when the sensors are different because they will have different scanning
patterns. In this situation, for sure the standard point-to-point data associ-
ation will be sub-optimal. This is a big drawback and thus the algorithm we
propose in this work will also solve this issue by introducing a new kind of
data association.

On the other hand, as already noted, feature based registration techniques
could simply be inapplicable to very sparse point clouds, such those produced
with visual-inertial systems.

2.4 Conclusions

Point clouds registration have become really popular in recent years, partially
thanks to new sensors (mainly the Microsoft Kinect) that made producing
3D point clouds a cheap process, while in the past it was reserved to very
expensive sensors. A complete review of the field is beyond the scope of this
work. The selection of algorithms briefly presented here have been chosen
because they are the de-facto standards for point clouds registration and are
those widely used. For this reason they will be used to make comparisons
against the algorithms we propose in this work.

Chapter 3

The Datasets

We used many different datasets to test the performances of various point
clouds registration algorithms. Since they will be used later in many different
chapters, to avoid repetitions, this chapter summarizes and describes them.
These datasets have been chosen, among the many available, for a reason:
they cover many different use cases and situations. We wanted our algorithms
to be as general as possible and thus we had to test them in the whole
spectrum of possible situations. For this reason too, we decided to record
some novel datasets: for the specific use case of dense-sparse registration, we
could not find any suitable set of data.

3.1 The Bremen Dataset

The Bremen Dataset, [32], is composed of eleven 3D scans taken in the city
center of Bremen, in Germany. These were recorded with a Riegl VZ-400 laser
scanner and contain also thermal information from a Optris PI IR camera.
However, thermal information will not be used in this work. A ground truth,
produced using odometry and refined with 6D SLAM, is available.

The Bremen dataset is a very big and challenging dataset for global reg-
istration because the point clouds are severely misaligned, as can be seen in
Figure 3.1.

3.2 The Hannover Dataset

The Hannover Dataset, [33], is composed of almost one thousand 3D scans
recorded at the University Campus of Hannover. Like the previous one, also
this dataset represents an outdoor environment. However, it is much less
challenging because is much more structured and usually there is a great

19

20 CHAPTER 3. THE DATASETS

Figure 3.1: Two point clouds from the Bremen dataset. Before and after the
alignment using the ground truth.

3.3. THE STANDFORD BUNNY DATASET 21

Figure 3.2: Two point clouds from the Hannover dataset, before the align-
ment.

amount of overlap between the point clouds, see Figure 3.2. For this dataset
a ground truth provided by the odometry is available.

3.3 The Standford Bunny Dataset

The Standford Bunny Dataset is a very popular set of point clouds repre-
senting a bunny from different point of views, Figure 3.3. It was recorded
by the Standford University Computer Graphics Laboratory, [34, 32], us-
ing a Cyberware 3030 MS scanner. Since this dataset poses relatively few
challenges to modern point clouds registration algorithms, it was not used for
the comparisons, but only to test the termination criteria of our probabilistic
approach.

3.4 The Linköping Dataset

The Linköping Dataset, [13], contains data provided to us by the UASTech
Laboratory of the Linköping University, in the context of the SHERPA Euro-
pean project (http://www.sherpa-project.eu). The dataset has been acquired
with an aerial robot and represents a large rural area, with trees and some
buildings, Figure 3.4. It is composed of two point clouds: the first one is
relatively sparse (it is composed of 235486 points) and has been produced

22 CHAPTER 3. THE DATASETS

Figure 3.3: The Standford Bunny Dataset

with a LiDAR, while the second one is denser (506742 points) and has been
produced using photogrammetry with images from a camera.

Both sensors were mounted on the same robot, however, due to noise and
distortion in the cloud produced with the camera, the two point clouds cannot
be aligned perfectly applying a rigid transformation, Figure 4.3. Therefore,
this dataset represents a very challenging test bench.

For this dataset, we precisely aligned the two point clouds manually, in
order to have a ground truth to use to quantitatively compare the various
techniques.

3.5 The Office and Corridor Datasets

The Office and the Corridor datasets have been recorded by us, [13]. They
represent the typical office environment, with desks, chairs and computers.
They are each composed of two point clouds, one recorded with a Velodyne
VLP-16, the other with a Kinect 2.

These datasets are an example of sparse-dense registration. The Kinect 2
produces very dense, although noisy, point clouds and has a relatively narrow
field of view (43◦ vertically and 57◦ horizontally). The Velodyne VLP-16 is
a laser scanner that has sixteen scanning planes and an horizontal field of
view of 360◦. The produced point clouds are definitely less dense than those

3.5. THE OFFICE AND CORRIDOR DATASETS 23

Figure 3.4: The Linköping dataset.

Figure 3.5: A detail of the two point clouds from the Linköping dataset.
Notice the high amount of distortion in the cloud produced with the camera.

24 CHAPTER 3. THE DATASETS

(a) Office (b) Corridor

Figure 3.6: The point clouds from the Office and Corridor datasets. The
RGB-D point cloud has been produced with a Kinect 2, the other one with
a Velodyne VLP-16.

produced with a Kinect 2, but are also less affected by noise. Thus, the point
clouds produced with the VLP-16 are the sparse point clouds and represent
a wider view of the environment, while those produced by the Kinect 2 are
the dense point clouds and represent a more detailed and narrower view.
To better understand the difference in density, consider that, for the Office
dataset, although narrower, the cloud produced with the Kinect contains
215793 points. On the other hand those produced with the VLP-16 contains
only 26848 points.

For this datasets too the ground truth have been produced by manually
aligning the clouds.

Chapter 4

Point clouds registration with
probabilistic data association

4.1 Overview

In this chapter we present a novel approach for introducing robustness in a
point clouds registration algorithm. Although our approach was originally
motivated by the problem of aligning a dense point cloud with a sparse one, it
can also be used as a substitute of ICP for generic point clouds registration.
For this reason, in the following sections, we won’t make any reference to
sparse and dense clouds, but we will use the usual ICP notation (target and
source point clouds). Our main contribution is a new data association policy,
which we called Probabilistic Data Association, because it was derived by
applying statistical inference techniques on a fully probabilistic model. The
final result is an algorithm similar to ICP, but more robust w.r.t. noise and
outliers.

The main difference between our proposal and the standard ICP data
association policy is that ICP assigns to each point in the source point cloud
the closest one in the target point cloud. Instead, we associate to each point
in the source point cloud, a sets of points in the target point cloud. These
points can be chosen in two different ways: either we associate a certain fixed
number of closest points, or all the points under a certain distance. Also a
combination of both criteria is possible: we could associate the n closest
points only if they are closer than a threshold.

The associations are then weighted and used as error terms in a mini-
mization problem.

As already said, this choice was motivated by using inference on a prob-
abilistic model, however it has also an intuitive explanation. A point in the

25

26 CHAPTER 4. PROBABILISTIC DATA ASSOCIATION

Figure 4.1: A data association policy based on a single neighbour tries to
align the scanning line. On the other hand, the best alignment could have
the lines not aligned because they correspond to different points in the scene.

source point cloud won’t have an exact correspondence in the target. This
is due to several reasons: for example the two point clouds could have been
generated using different sensors with different scanning patterns or densi-
ties. Even if they were recorded using the same setup, the measured points
in a scene as seen from a point of view won’t necessary be the same measured
from another point of view. Figure 4.1 shows an example of this situation. A
data association policy based on a single neighbour tries to align the scanning
line. On the other hand, the best alignment could have the lines not aligned
because they correspond to different points in the scene. For this reasons,
it seems reasonable that the correspondence for a point will not be exactly
a point in another cloud, but it will lie somewhere in the middle of a set
of points. The weights of the associations represents exactly this intuition:
they say where in the set of points the correspondence lies.

4.2 Model Definition

Problem statement

Suppose that we have two point clouds taken from the same scene, X and Y ,
composed of points x1, ..., xn and y1, ..., ym. These may have been acquired
with different sensors (e.g., a camera and a laser scanner) or with the same
sensor at different times; they may also have very different densities, such

4.2. MODEL DEFINITION 27

as a dense, laser scanner-produced, point cloud and a sparse keypoints map.
Our approach is completely agnostic w.r.t. these characteristics. We want
to recover the rigid transformation between the two point clouds, i.e., the
roto-translation that best aligns X with Y . The limitation to only rigid
transformations has, of course, some effects on the quality of the result;
indeed it is a simplification often used in the literature and usually, as long
as the two point clouds are not heavily distorted, leads to good results.

For each point yk in Y , we may define

yk = Rxj + T (4.1)

where xj is the point in the point cloud X corresponding to point yk in
the point cloud Y and R and T are, respectively, the rotation and translation
that align X with Y . In practice, the true point associations are unknown
and Equation (4.1) is never exactly holding, because of noise. Uncertainty
due to sensor noise is often treated as a random variable, e.g., an additive
white Gaussian noise added to a deterministic value. We argue that associa-
tion ambiguity is also a source of uncertainty and therefore it should also be
treated as a random variable.

Probabilistic model

In order to reason about sensor noise and data association uncertainty simul-
taneously, we define a probabilistic model. Probabilistic models are attractive
because:

1. they are interpretable and extensible;

2. they allow well-behaving optimization criteria, i.e., the negative log-
likelihood;

A probabilistic model is defined by a series of statements about the distribu-
tion of the variables involved in the model. For example, we define:

p(yk|xj, ajk = 1) ∼ N (Rxj + T,Σ) (4.2)

where ajk = 1 if point xj corresponds to point yk. This means that, if
we were certain that point xj in X corresponds to point yk in Y , then yk
would follow a multi-variate normal distribution with mean Rxj + T and
covariance Σ. To complete the model we must place a prior distribution over
ajk. Suppose we have a set Ck of candidate points from X corresponding to
yk. Then, we may define

P (ajk) =

{
|Ck|−1 j ∈ Ck

0 j /∈ Ck

}
(4.3)

28 CHAPTER 4. PROBABILISTIC DATA ASSOCIATION

This means that, a priori, all the points in Ck are equally likely to be
associated to yk.

In practice we prefer a slightly more sophisticated model that could ac-
count for outliers produced by sensor noise. For this reason, instead of a
Gaussian, a t-distribution is more appropriate. This is due to the shape of
a t-distribution: depending on its degree of freedom, it gives a higher prob-
ability to the tails of the distribution. On the contrary, in a Gaussian, the
tails have an almost negligible probability. By giving a slightly higher proba-
bility to the tails we are able to implicitly take into account for outliers. We
redefine the model as follows:

p(yk|xj, ajk = 1) ∼ T (Rxj + T,Σ, ν) (4.4)

where T denotes the family of multi-variate t-distributions and ν repre-
sents its degree of freedoms. Equation (4.4) states that yk conditioned to
being the correspondent of xj is t-distributed. A t-distribution is a heavy-
tailed distribution and ν controls the weight of the tails. For ν → ∞ the
t-distribution reduces to a Gaussian. For finite ν it assigns a non-negligible
probability to the tails, thus implicitly taking into account for outliers, with-
out the need to pre-filter them or to treat them as a special case.

It is convenient to re-parametrize the model. Namely, the t-distribution
in Equation (4.4) is equivalent to

p(yk|xj, ajk = 1, wk) ∼ N (Rx+ T,
Σ

wk
) (4.5a)

wk ∼ Γ(
ν

2
,
ν

2
) (4.5b)

where Γ(a, b) denotes a Gamma distribution with shape a and rate b, [35].
The convolution of Equation (4.5a) and Equation (4.5b) produces Equa-
tion (4.4). The weight wk is an auxiliary variable that arises from the
parametrization.

It is known that a t-distribution can be characterized as a mixture of
Normal distributions with Gamma mixing weights, [36]. Suppose that there
exists a random variable A, with A ∼ N (0,Θ−1), thus with mean 0 and
variance Θ−1. Moreover, suppose that Θ follows a Gamma distribution with
both shape and rate equal to the same value α. Since it follows a Gamma
distribution, there is uncertainty on the variance and thus is more appropriate
to write that A|Θ ∼ N (0,Θ−1). The unconditioned distribution of A will
then follows a t-distribution with 2α degree of freedoms. In our case, α = ν

2
.

This particular parametrization is convenient because, if we knew ajk and
wk, then the negative log-likelihood would be a quadratic function of xj and
we could run a non-linear least-squares solver.

4.3. POINT CLOUDS REGISTRATION AS AN EM PROBLEM 29

4.3 Point Clouds Registration as an EM Prob-

lem

The model defined can be used to recover the rigid transformation between
the two point clouds using an optimization algorithm. It needs a rough
initial guess and it iteratively improves it, simultaneously estimating the
transformation and the point associations.

Expectation-maximization (EM), [37], is a procedure that can be used
to iteratively estimate the marginal log-likelihood of the data, given a set of
parameters. Each EM iteration consists of two steps: the E-step and the M-
step. The E-step effectively estimates the values of the hidden variables by
evaluating expectations, while the M-step updates the parameters in order to
decrease the expected negative log-likelihood. EM is well-suited for models
containing latent variables, such as ours. In our case the latent variables are
the auxiliary weights wk. The negative log-likelihood we want to minimize
with EM is given by

l(x) = − ln
m∑
k=1

n∑
j=1

∫
wk

p(yk|xCk , ajk, wk)p(ajk)p(wk)dwk (4.6)

where xCk is the set of all the points xj such that j ∈ Ck and p denotes
the probability density function implied by Equations (4.5a) and (4.5b).

Minimizing the negative log-likelihood directly is difficult due to non-
convexity. It is much easier to minimize a convex upper bound on Equa-
tion (4.6). Let qk be an arbitrary probability density function of ajk and wk.
Then, applying Jensen’s inequality, [38], leads to

l(x) ≤
m∑
k=1

bk(xCk , qk) (4.7)

where

bk(xCk , qk) = −
n∑
j=1

∫
wk

qk(ajk, wk)ln(p(yk|xCk , ajk, wk))dwk+

+
n∑
j=1

∫
wk

qk(ajk, wk)ln(
qk(ajk, wk)

p(ajk)p(wk)
)dwk (4.8)

The inequality in Equation (4.7) defines an upper bound on l(x). If qk(ajk, wk) =
p(ajk, wk|xCk , yk), then the bound becomes tight and the inequality becomes

30 CHAPTER 4. PROBABILISTIC DATA ASSOCIATION

an equality. If we evaluate the expectations in Equation (4.8) and retain only
the terms involving the points we obtain

bk(xCk , qk) =
1

2

∑
j∈Ck

ρjkr
2
k(xj) (4.9)

where
r2
k(xj) = ‖yk − (Rxj + T)‖2 (4.10)

is the squared Euclidean norm of the residual, and

ρjk =
∑
j

∫
wk

δ(ajk, j)wkq(ajk, wk)dwk (4.11)

is the residual weight. Hence for a fixed qk, bk is a quadratic-composite
function of the points’ positions in the source cloud. It is also a local function,
depending only on the candidate corresponding points for the k-th point in
the target cloud.

EM minimizes the upper bound coordinate-wise. The E-step minimizes
the bound with respect to q and computes the residual weights, hence it is
equivalent to a re-weighting step. The M-step updates the objective function
along a descent direction. Therefore, applying EM is equivalent to solving
an iteratively re-weighted, non-linear least-squares problem.

1. The E-step: For fixed xj, the minimum of bk occurs when

qk(ak, wk) = p(ajk, wk|xCk , yk) (4.12)

In other words, minimizing the upper bound with respect to qk is the
same as computing the joint posterior distribution over all the ajk and
wk , given xj. Due to conjugacy, the posterior has the same mathemat-
ical form as the prior, i.e., multinomial Gamma. Specifically,

P (ajk|xCk , yk) ∝ t(yk, Rxj + T,Σ, ν) (4.13a)

wk|ajk, xCk , yk ∼ G
(
ν + d

2
,
ν + r2

k(xj)

2

)
(4.13b)

where t is the density function of the multi-variate t-distribution, and
the proportionality sign implies a normalization constant such that∑

j∈Ck P (ajk|xCk , yk) = 1.

Evaluating the expectation in Equation (4.11) yields

ρjk = P (ajk|XCk , yk)E[wk|xCk , yk, ajk] (4.14)

4.4. IMPLEMENTATION 31

where

E[wk|xCk , yk, ajk] =
ν + d

ν + r2
k(xj)

(4.15)

follows from the properties of the Gamma distribution.

2. The M-step: There are several different ways of updating the rota-
tion and translation in our model. A trust-region method such as
Levenberg-Marquardt, [39], solves a sequence of quadratic sub-problems
in the form

min
∆xj

∑
k,j∈Ck

ρjk ||yk − (Rxj + T)||2 (4.16)

The solution to a sub-problem is an update step which is applied to the
current estimate of the rotation and translation between the clouds.

4.4 Implementation

Essentially, our approach differs from ICP in the data association. In ICP
each point in the source point cloud is associated only with a point in the
target point cloud. On the other hand, the proposed algorithm associates
a point in the source point cloud with a set of points in the target cloud.
Moreover, the set of associations are not changed at every iteration, but
remain the same for the whole duration of the algorithm. What is changed,
instead, are the weights of the associations, that are updated during the
expectation phase of the EM algorithm. The two different data association
methods are depicted in Figure 4.2.

The candidate points to be associated may be found in different ways,
for example by nearest neighbours search or by feature matching. We found
that, for the problem of sparse-dense registration, and given a reasonable ini-
tial hypothesis on the transformation, the nearest neighbours search proved
to be good enough, while remaining very fast to compute. In contrast, fea-
ture extraction and matching is usually a slow process. Feature-based data
association is not an option for sparse-dense registration, since sparse point
clouds usually do not contain enough information to extract discriminative
geometric features. However, our approach can potentially accommodate
feature matching as prior information. For instance, in Equation (4.3), the
prior association probabilities can be scaled according to a non-negative fea-
ture similarity metric, thus assigning a higher prior probability to similar
(in the space of the descriptors) points. Moreover, feature matching could
even replace the closest points based data association entirely. Our algo-
rithm would remain mostly unchanged: it just needs some kind of distance,

32 CHAPTER 4. PROBABILISTIC DATA ASSOCIATION

(a) ICP Data Association (b) Probabilistic Data As-
sociation

Figure 4.2: The two different data association policies

it does not matter whether it is a distance in the euclidean space or in the
descriptors space.

Let us now suppose to proceed with the nearest neighbour policy. For each
point xj in the source point cloud, we look for the n nearest points, y0, ..., yn,
in the target point cloud. For each of these points yk, with 0 ≤ k ≤ n, we
define an error term given by

‖yk − (Rxj + T)‖2 (4.17)

Equation (4.17) represents the squared error between the point yk in the
target point cloud and the associated point xj from the source point cloud,
transformed using the current estimate of the rototranslation.

Our point cloud registration algorithm is composed of an optimization
problem, whose error terms are calculated according to Equation (4.17) and
that is then solved using a suitable method (such as Levenberg-Marquardt).
However, given a set of points associated to xj, not every corresponding error
terms should have the same weight. Intuitively, we want to give more impor-
tance to the associations that are in accordance with the current estimate of
the transformation and a lower importance to the others. Thus, using the
model described earlier, the weight of the error term ‖yk − (Rxj + T)‖2 is
given by

wkj ∝ e−
‖yk−(Rxj+T)‖2

2 (4.18)

where the proportionality implies a normalization among all the error
terms associated with xj, so that their weights represents a probability distri-

4.4. IMPLEMENTATION 33

Figure 4.3: Two point clouds from the Linköping dataset. The best achiev-
able alignment is represented: the high amount of noise and distortion (es-
pecially at the edges), makes the error in some parts very high.

bution. Equation (4.18) is derived from the EM algorithm, with an additive
Gaussian noise model.

The Gaussian in Equation (4.18) works well, provided there are no outliers
and all points in the source point cloud have a corresponding point in the
target point cloud. However, as already described, a t-distribution is a better
choice in presence of outliers, especially when there is lot of distortion in one
of point clouds. Distortion, indeed, make finding a very good alignment
impossible. Some parts of the clouds will be aligned correctly, while others
will not, even if the point correspondences have been estimated correctly.
This problem is exemplified by Figure 4.3, where two point clouds from the
Linköping dataset are depicted. Even though the best achievable alignment
is represented, the high amount of noise and distortion (especially at the
edges), makes the error in some parts very high.

Consequently, a more robust equation for the weights, basing on the t-
distribution, is given by

pkj ∝
(

1 +
‖ : −(Rxj + T)‖2

ν

)− ν+d
2

(4.19)

wkj = pkj
ν + d

ν + ‖yk − (Rxj + T)‖2
(4.20)

where ν is the degree of freedom of the t-distribution and d the dimension
of the error terms (in our case 3, since we are operating with points in the
3D space).

However, in order to calculate the weights, we need an estimate of the
rotation and translation, but these are estimated by solving the optimiza-
tion problem whose error terms are weighted with the weights we want to

34 CHAPTER 4. PROBABILISTIC DATA ASSOCIATION

calculate. Hence our problem cannot be formulated as a simple least-square
error problem, but it has to be reformulated as an Expectation-Maximization
problem. During the Expectation phase the latent variables, in our case the
weights, are estimated using the previous iteration estimate of the target vari-
ables (the rotation and translation), while during the Maximization phase,
the problem becomes a least-square error optimization problem, with the la-
tent variables assuming the values estimated during the Expectation phase.

4.5 Experimental Results

Since the proposed approach was designed primarily to deal with the problem
of registering a sparse point cloud with a dense one, the first set of exper-
iments we present is relative to this setup. However, since it proved to be
effective also for generic point clouds registration, we will present also other
kinds of experiments.

Dense-Sparse Registration Experiments

We tested the proposed approach and compared it against other techniques
in the context of dense-sparse registration. Here we will show results on
three pairs of point clouds, coming from the Linköping, Office and Corridor
datasets. Since the described approach, like the other we compare to, can
be used only for fine-registration (that is, it needs a rough initial guess), the
transformation between the two point clouds in the same dataset is relatively
small, Figure 4.4. Nevertheless, the datasets are very challenging because the
two point clouds present very different scanning patterns, different densities
and, in some cases, are affected by a large amount of noise and distortion.

Results

Since our objective was to compare our probabilistic approach to other point
clouds registration techniques, we used various algorithms on the same data
and compared the results. The techniques we compared are:

• Iterative Closest Point (ICP)

• Generalized Iterative Closest Point (G-ICP)

• Normal Distribution Trasform (NDT)

• The proposed “probabilistic” approach

4.5. EXPERIMENTAL RESULTS 35

(a) (b)

Figure 4.4: Two different views of the initial misalignment between the two
point clouds in the “office” dataset. Flat colours have been used for clarity.

These algorithms, other than our, have been chosen among the many
in the literature, because they are the de-facto standard for point clouds
registration and because they are publicly available for comparisons. Indeed,
we used the implementation available in the PCL Library, [29].

The metric used to compare the results is the mean distance between the
points in the source point clouds, as aligned by an algorithm, and the ground
truth. That is: ∑N

i=0 ||xi − gi||
N

(4.21)

Where xi is a point in the registered source point cloud, gi is the correspond-
ing point in the ground truth and N is the cardinality of the point clouds.
Since the source cloud and the ground truth are actually the same cloud
displaced, we know exact point correspondences. This is possible because
applying a roto-translation, using the PCL library, preserves the order of the
points. Given the metric, the smaller the value of Equation (4.21) the better
the result.

The results of our experiments are shown in Tables 4.1 to 4.3.

36 CHAPTER 4. PROBABILISTIC DATA ASSOCIATION

One problem with our proposal is that, since the point associations do not
change at every iteration, it is very sensible to the initial data association.
Essentially it is the equivalent of running a single iteration of ICP or G-ICP.
To choose the points in the target cloud to be associated to a particular
point in the source cloud, we simply look at those within a certain distance
(the radius parameter of the algorithm) or, in a way similar to ICP, to the k-
nearest neighbours. If among all the points in the target cloud associated to a
particular point in the source cloud the right data association is not present,
whenever this happens for a significant number of points, the algorithm will
not converge to the right solution. One way to avoid this problem consists in
applying our probabilistic algorithm several times, each time using as input
the solution of the previous run, and thus re-estimating the correspondences.
In this way, our technique becomes similar to ICP, where each iteration is a
run of our algorithm. In this case, the difference w.r.t. ICP is that, instead of
using a single nearest neighbour, we use a set of points, and each association
is weighted as described. In the tables this technique is described with the
phrase ”Multiple Runs”. When used in this way, the execution time of the
algorithm increases greatly. As an example, for the corridor dataset, on a
machine with an Intel i5-760 processor and 8 GB of RAM, the execution
times are:

• 7741ms for the “Multiple Runs” mode

• 252ms in single run mode

• 70ms for ICP

• 2140ms for G-ICP

• 1902ms for NDT

These times are purely indicative, since they depends strongly on the problem
that has to be solved and from the parameters used. The execution time,
indeed, increases with the number of neighbours used.

The experiments show that the proposed probabilistic approach is not
always better than the other point clouds registration techniques when used
with a single iteration. This is expected because of the limitations just ex-
plained. However it provides much better results than all the other techniques
when used in the “Multiple Runs” mode. Since this approach seemed very
promising, we further developed it.

On the Office dataset our approach performed, in Multiple Runs mode,
one order of magnitude better than ICP and NDT. It performed better than

4.5. EXPERIMENTAL RESULTS 37

G-ICP too, but in that case the difference is much smaller and probably
negligible.

On the Corridor dataset it still performed better than the other algo-
rithms tested, but with a smaller difference than for the Office dataset.
Where it really excelled is with the Linköping dataset, where the difference
w.r.t. ICP and NDT is very large. G-ICP, instead, still performs very well,
even though worse than our approach. This demonstrates that our intuition
on how to deal with noise and distortion was right. Indeed, our approach
performed the best especially in that situation.

During these experiments the number of iterations was fixed and the
parameters of the registration algorithm remained the same among the iter-
ations. These parameters are:

• the maximum number of neighbours for a point;

• the maximum distance for a point in the target cloud, in order to be
considered a neighbour of a point in the source cloud;

• the degree of freedom of the t-distribution and whether to use it instead
than a Gaussian;

• how each point clouds (source and target) is sub-sampled. Sub-sampling
is a very important step in point clouds registration. As we will show
in the following chapters, it can heavily affect the quality of the re-
sults if done in the wrong way and, sometimes, even if not performed.
Moreover, there is no reason that force us to keep the same level of
sub-sampling among the iterations. So it could be iteratively adjusted
in order to improve the quality of the result or the speed of convergence
(or maybe both).

The effect of these parameters on the quality of the result will be examined
in the following chapter. Since the results change considerably according to
the parameters used, the results in the tables are the best obtained, after
trying with different parameters set.

Standard Point Clouds Registration Experiments

Since our approach is suitable also for the resolution of standard point clouds
registration problems, we performed experiments also on two other datasets:
the Bremen and Hannover datasets.

The point clouds in the Bremen dataset are very misaligned, therefore
local registration techniques often struggle to find proper solutions. For this

38 CHAPTER 4. PROBABILISTIC DATA ASSOCIATION

Table 4.1: Tests with the Office dataset

Algorithm Residual Mean Distance

Probabilistic 0.386401
Prob. (multiple runs) 0.040809
ICP 0.553467
G-ICP 0.074794
NDT 0.783207

Table 4.2: Tests with the Corridor dataset

Algorithm Residual Mean Distance

Probabilistic 0.315502
Prob. (multiple runs) 0.073592
ICP 0.286967
G-ICP 0.100754
NDT 0.129964

Table 4.3: Tests with the Linköping dataset

Algorithm Residual Mean Distance

Probabilistic 1.842854
Prob. (multiple runs) 0.43761
ICP 1.680124
G-ICP 0.6527864
NDT 3.564592

4.5. EXPERIMENTAL RESULTS 39

Table 4.4: Tests with the Bremen dataset

Algorithm Residual Mean Distance

Probabilistic 12.9304
Prob. (multiple runs) 0.23375
ICP 0.316433
G-ICP 0.227441
NDT 0.263119

Table 4.5: Tests with the Hannover dataset

Algorithm Residual Mean Distance

Probabilistic 6.96368
Prob. (multiple runs) 0.115388
ICP 0.116849
G-ICP 0.162272
NDT 6.41092

reason we decided to take the ground truth of one point cloud and apply
to it a small translation and rotation, thus replicating the usual working
conditions of the tested algorithms, see Figure 4.5. The results are shown
in Table 4.4. All the algorithms, with the exception of the probabilistic
algorithm used in single run mode, were able to find very good solutions.
Differences in the error w.r.t. the ground truth are negligible, therefore the
solutions have to be considered equivalent. The result of the registration
with the Probabilistic approach is shown in Figure 4.5.

The results of the experiments on the Hannover dataset are shown in
Table 4.5. G-ICP, ICP and the Probabilistic approach in multiple runs mode
got very good results that are, considered the resolution of the point clouds,
equivalent. On the contrary, NDT and the Probabilistic approach used in
single run mode, could not perform a proper alignment. The result of the
registration with the Probabilistic approach is shown in Figure 4.6.

The tests on these two datasets show that multiple iterations of the Prob-
abilistic approach are able to obtain a proper alignment also with standard
point clouds registration problems, not only when there is a difference in
densities between the two point clouds. On the other hand, a single iteration
is often not enough to obtain a good result. For this reason the following
chapter will concentrate on finding some automatic termination criterion that
goes beyond the use of a fixed number of iterations.

40 CHAPTER 4. PROBABILISTIC DATA ASSOCIATION

Figure 4.5: The point clouds from the Bremen dataset, before and after the
registration with the Probabilistic approach.

4.5. EXPERIMENTAL RESULTS 41

Figure 4.6: The point clouds from the Hannover dataset, before and after
the registration with the Probabilistic approach.

42 CHAPTER 4. PROBABILISTIC DATA ASSOCIATION

Chapter 5

Multi-iteration Probabilistic
Point Clouds Registration

5.1 Why Multiple Iterations?

In case that the source and the target point clouds are very close, a single it-
eration of the proposed probabilistic point clouds registration algorithm may
be enough. However, in the typical real scenario, more iterations are nec-
essary. In order for the algorithm to converge, most of the correspondences
used to form the optimization problem needs to be right. Since we use a data
association policy based on the euclidean distance, this happens only if the
two point clouds are close enough. Two parameters control which and how
many points in the target point cloud are associated to a particular point
in the source point cloud: the maximum distance between neighbors and
the maximum number of neighbors. Setting these parameters to very high
values could help the algorithm to converge to a good solution even when
the starting poses of the two point clouds are not really close. However, this
trick will allow more outliers, i.e., wrong data associations, to get into the
optimization step. Even tough the probabilistic approach has the capability
to soft-filtering out outliers, thanks to the probabilistic weighting technique,
using too many points will lead to a huge optimization problem which would
be very slow to solve. Usually, a much more practical and fast solution is to
use low values for the maximum distance and the maximum number of neigh-
bors and use multiple iterations of the probabilistic approach, that implies
re-estimating the data associations, in the same way it is done, for example,
in ICP and G-ICP.

With this technique, our approach becomes composed of two nested loops.
The inner one solves an optimization problem using the Levenberg-Marquard

43

44 CHAPTER 5. MULTI-ITERATION

algorithm. The outer one moves the point cloud using the solution found in
the previous step, estimates the point correspondences and build the corre-
sponding optimization problem. This process is repeated until some conver-
gence criterion is met.

As we show in Section 4.5, the multi iteration version of our algorithm
provides good results, even compared to other state of the art algorithms. Of
course, in order to be of practical usefulness, such an algorithm needs some
kind of automatic termination criterion. It means that the algorithm should
decide by itself when it should stop.

5.2 Termination criteria

The most simple termination criterion is to use a fixed predefined number
of iterations. This solution is far from being optimal, since the number
of required iterations becomes a parameter of the algorithm. There is no
automatic way of estimating this parameter a-priori, so this solution is un-
practical and has to be discarded. Using a fixed value for this parameter
would probably mean using too many iterations in some cases and using too
few in others. On the other hand, using a very high value would greatly
increase the execution time, in many cases without improving the quality of
the result.

To develop an automatic termination criterion, we used the following
idea. Suppose we have a ground truth for our source point cloud, i.e., we
know the rototranslation between the reference frames of the source and
target point clouds. At the end of each iteration, we get an estimate of this
rototranslation. Thus, we can calculate the difference between our estimate
and the ground truth. Theoretically, this difference should decrease among
the steps of the outer loop of the algorithm, therefore the more the iterations,
the smaller the difference becomes. Practically at some point this difference
will cease to decrease, or, more precisely, it will start decreasing of a negligible
amount. This is the iteration to which we should stop, since it means that our
algorithm has converged to a solution. Note that it does not mean that it has
converged to the right solution, but, nevertheless, that is the best solution
we can get with that set of parameters. Obviously, in a real application, the
ground truth is not available, thus we have to find an alternative metric that
behaves in the same way, but uses the data we have.

Our first choice was to use, as an alternative, the Mean Squared Error
(MSE) with respect to the previous iteration. We take two point clouds:
one aligned with the current estimate of the transformation and the other
aligned with the result of the previous iteration. Since the two point clouds

5.2. TERMINATION CRITERIA 45

are actually the same cloud displaced, the point correspondences are known
and exact. Simply, the i − th point in the first point cloud corresponds to
the i − th point in the other, since applying a transformation preserves the
order of the points. Thus, given one point cloud at two consecutive iterations
of the algorithm X t and X t−1, with point xti being the corresponding point
of xt−1

i and N the dimension of the point cloud, we used Equation (5.1) to
calculate the Mean Squared Error (MSE).

MSE(X t, X t−1) =

∑N
i ||xti − x

t−1
i ||2

N
(5.1)

Therefore, we stop the algorithm when the MSE drops under a certain
relative threshold. With relative we mean that we are not using a fixed
absolute threshold, but we want to stop when, for example, the Mean Squared
Error at an iteration becomes smaller than a certain fraction of that at the
previous iteration. This means that we are stopping the algorithm when it
is not able to move (or it is moving of a negligible amount) the source point
cloud any more, thus it has converged. We use a relative threshold, instead
than an absolute, because it is much more flexible and does not have to be
tuned for each set of point clouds.

Another option is to use the so-called Cost Drop. During each outer
iteration of the multi-iteration version of our Probabilistic approach, an op-
timization problem is solved. Initially the problem we are going to optimize
will have a certain cost. The optimizer will, hopefully, reduce this cost to a
lower value. The difference between the initial cost of the optimization prob-
lem and the final cost is called Cost Drop. As an alternative to the mean
squared error, we could use the cost drop, for example stopping the outer loop
of our probabilistic algorithm, when the cost drop of the inner optimization
problem drops under a threshold. We want to avoid absolute thresholds,
since they need to be specifically tuned for each application. Instead, we
express this threshold with respect to the initial cost of the iteration: for
example we could stop when the cost drop is less than 1% of the initial cost
of the problem. This is what we used for our experiments and proved to be
a good threshold for obtaining accurate registrations.

Are these two metrics good for our purposes? Which one is the best?
First of all, a good termination criterion should behave, more or less, like the
difference w.r.t. the ground truth, that is the ideal metric taken as reference.
This criterion is satisfied by both our choices, as we will show in Section 5.3.

However, there is a big difference between the two alternatives. The
Mean Squared Error has to be specifically calculated after each iteration and
is relatively heavy to calculate, since the whole source point clouds has to be
traversed. This is not a computationally expensive operation per se, but, on

46 CHAPTER 5. MULTI-ITERATION

the other hand, the relative cost drop is very fast to compute. Indeed, while
solving an optimization problem we already calculate the absolute cost drop,
since it is used as termination criterion of the inner loop by the optimization
library. Thus, calculating the relative cost drop requires only few mathemat-
ical operations: it comes practically for free. For this reason we have chosen
to use the Cost Drop as termination criterion: it is very fast to compute and
is as good as the Mean Squared Error.

5.3 Experimental Results

To discover the best termination criterion we performed a set of experiments
on the Standford Bunny and Bremen datasets, [34, 32]. These experiments
have been performed only on two datasets to find a suitable termination
criterion. This criterion will the be used to perform all the other experiments
presented in this work and thus it has been tested also on the other datasets.

Besides the criteria described in the previous section, we tested also an-
other one: the number of successful steps of the optimization problem. Solv-
ing an optimization problem with Levenberg-Marquard is an iterative pro-
cess. Each step of this process can be successful, if the step managed to
reduce the cost of the problem, or, otherwise, unsuccessful. Since also this
quantity is very easy to calculate, we wanted to test if it could be used as
termination criterion somehow.

In Figure 5.2 we plotted various termination criteria while aligning two
point clouds from the Standford Bunny dataset. The transformation between
the two clouds was a rotation of 45◦ around the vertical axis, Figure 5.1. On
the x-axis we have the number of the iteration, while on the y-axis we find:
the number of successful steps of the ”inner” optimization problem, the initial
and final cost of the ”inner” optimization problem, the cost drop (i.e., the
difference between the two previous values), the Mean Squared Error w.r.t.
the previous iteration, the Mean Squared Error w.r.t. the ground truth
and the discrete derivatives of the last three variables. We plotted also the
discrete derivatives because they do a good job at showing when a variable
is not changing anymore: when the derivative becomes zero, the value of a
variable has stabilized.

We can see that both the cost drop and the MSE w.r.t. the previous
iteration have a very similar trend to the MSE w.r.t. the ground truth. Most
important, the three values stabilizes more or less at the same iteration. This
is particularly obvious if we compare the discrete derivatives: they become
almost zero more or less at the same time. Although the MSE w.r.t. to the
ground truth keeps decreasing for a few iterations after the other two values

5.3. EXPERIMENTAL RESULTS 47

Figure 5.1: Two point clouds from the Standford Bunny Dataset.

Figure 5.2: Plots of various termination criteria and their derivative for the
Standford Bunny dataset.

48 CHAPTER 5. MULTI-ITERATION

Figure 5.3: The same point cloud aligned with two different termination
criteria: a large number of iterations (green point cloud) and our termination
criterion based on the cost drop (pink point cloud).

stabilizes, its effect on the quality of the result is negligible. This becomes
obvious looking at Figure 5.3, where we have two point clouds, one aligned
using a predefined very large number of iteration, the second one using as
stopping criterion the cost drop. We can seen that they overlap practically
perfectly. The difference between the errors with respect to the ground truth
of the two alignments is less than one tenth of the resolution of the point
clouds, thus is definitely negligible.

The preliminary idea of using the number of successful steps as termina-
tion criterion revealed to be a mistake, since that value oscillates a lot and
appears to be not correlated to the MSE w.r.t. the ground truth. For these
reasons it was discarded. In Figures 5.6 and 5.7 we show the data we ob-
tained using the Bremen Dataset, to which we applied, respectively, a small
rotation, Figure 5.4, and a small translation, Figure 5.5. Also in these cases,
we can see that the cost drop stabilizes more or less when also the MSE

5.3. EXPERIMENTAL RESULTS 49

Figure 5.4: Two point clouds from the Bremen Dataset, to which we applied
a small rotation.

w.r.t. the previous iteration stabilizes and, anyway, when the cloud has al-
ready been moved to the right solution (successive adjustment are negligible
compared to the resolution of the point cloud).

The previous experiments collected data on successful alignments, but we
did experiments also with clouds that the algorithm was not able to align
properly. The reason behind this choice is that we wanted to discover whether
the termination criteria were able to stop the algorithm early enough, so that
computational time is not wasted.

The first unsuccessful alignment involved two point clouds from the Stand-
ford Bunny dataset, whose misalignment is a rotation of 90◦ around the ver-
tical axis, Figure 5.10. The second one uses the same point clouds, but with
a rotation of 180◦ around the vertical axis. In these case it can be seen that
the cost drop converges much earlier than the MSE w.r.t. the ground truth.
This behavior, indeed, is good, since it appeared only in unsuccessful align-
ments, during which, stopping earlier is an advantage (going further would
be only a waste of time).

50 CHAPTER 5. MULTI-ITERATION

Figure 5.5: Two point clouds from the Bremen Dataset, to which we applied
a small translation.

Figure 5.6: Termination criteria for the Bremen Dataset with a small rotation
applied.

5.3. EXPERIMENTAL RESULTS 51

Figure 5.7: Termination criteria for the Bremen Dataset with a small trans-
lation applied.

52 CHAPTER 5. MULTI-ITERATION

Figure 5.8: Termination criteria for two point clouds from the Bremen
Dataset. Initial misalignment of 90◦.

5.3. EXPERIMENTAL RESULTS 53

Figure 5.9: Termination criteria for two point clouds from the Bremen
Dataset. Initial misalignment of 180◦.

Figure 5.10: Two point clouds from the Standford Bunny dataset. Initial
misalignment of 90◦.

54 CHAPTER 5. MULTI-ITERATION

Figure 5.11: Two point clouds from the Standford Bunny dataset. Initial
misalignment of 180◦.

Chapter 6

Parameters’ sensitivity

Even though the current state-of-the-art approaches for point clouds registra-
tion work relatively well, we think that they have an important drawback:
they depend heavily on fine tuned parameters. We show that even small
changes in these parameters can affect negatively the quality of the result.
Although this problem is very understudied in the literature, we think that
its resolution is a critical step towards robots that are really autonomous:
a robot is not really autonomous if its behaviour depends on parameters
that have to be carefully tuned for each scenario, especially if no automatic
calibration procedure exists.

Since, to our knowledge, there exists no work that studies this problem
thoroughly, we decided to conduct a series of experiments to test the sen-
sitivity of the major state-of-the-art algorithms in the field of point clouds
registration. These experiments have been conducted using the same datasets
described earlier in this work. In this chapter NDT has not been used, since
it has a completely different set of parameters. On the other hand, the other
algorithms, including our, are all variants of ICP and thus possess parameters
that can be compared.

6.1 Maximum Distance

One of the most critical parameters, common to all ICP variants (including
the probabilistic approach proposed in this work) is the maximum distance
between neighbours. That is, associations whose points lie at a distance
greater than a threshold (the maximum distance), are discarded and not
used during the optimization process.

In Figure 6.1 we have the results of the experiments on the Hannover
datasets for ICP, G-ICP and the Probabilistic approach. The different val-

55

56 CHAPTER 6. PARAMETERS’ SENSITIVITY

ues of the maximum distance are on the x-axis, while on the y-axis we have
the corresponding mean error w.r.t. the ground truth, calculated as in Sec-
tion 4.5. As can be seen, there is a small range of values for which the three
algorithms perform equally well. However, they differ substantially in how
the performances decrease when the parameter is out of this range. Both
ICP and G-ICP have a big sudden drop in performances, like there was a
threshold value above which they do not provide a meaningful result. More-
over, there are some “random” values for which they provide an unexpected
bad result, such as for a maximum distance of 0.4 for G-ICP. The proba-
bilistic approach, on the other hand, performs often better than the other
two algorithms and its performances degrade in a much smoother way and
without unexpected bad results. This is a very desirable characteristic for
a point clouds registration algorithm, because often the best value for the
Maximum Distance is unknown. Therefore, it has to be guessed in some
way and is often overestimated. With ICP and G-ICP there is the risk that,
even choosing a value only a little bit wrong, the result changes substantially.
On the other hand, with the probabilistic approach a slightly mis-estimated
value for the maximum distance is not going to lead to a catastrophic result.

The situation is different with the Office Dataset, Figure 6.2. The three
algorithms perform well with proper values for the maximum distance pa-
rameter. While leaving the “optimal area”, ICP performs very badly with
sudden drops in performance. On the contrary the performances of the Prob-
abilistic approach degrade much more smoothly. G-ICP, instead, is the clear
winner of this experiment, since its performances are more or less constant
among the range of possible values for the maximum distance parameter.
Anyway, with G-ICP there are still some values that lead to unexpected bad
results, such as for a maximum distance of 3.5 or 3.6.

With the Linköping Dataset both G-ICP and the Probabilistic approach
perform equally well, revealing a very low sensibility to the maximum dis-
tance between associated points, Figure 6.3. ICP, instead, performs much
worse, but without the big threshold effect it shows with other datasets.

Lastly, with the Bremen Dataset, ICP and the Probabilistic approach
perform very similarly in terms of sensibility to the maximum distance pa-
rameter, Figure 6.4. G-ICP performs, as usual, very well, but with some bad
results randomly distributed.

6.2 Max Neighbors

Using the proposed Probabilistic approach, in addition to the maximum dis-
tance between correspondent points, also the maximum number of points

6.2. MAX NEIGHBORS 57

Figure 6.1: How different algorithms performs with different values of the
maximum distance parameter on the Hannover Dataset. On the y-axis we
have the mean error w.r.t. the ground truth.

58 CHAPTER 6. PARAMETERS’ SENSITIVITY

Figure 6.2: How different algorithms performs with different values of the
maximum distance parameter on the Office Dataset. On the y-axis we have
the mean error w.r.t. the ground truth.

6.2. MAX NEIGHBORS 59

Figure 6.3: How different algorithms performs with different values of the
maximum distance parameter on the Linköping Dataset. On the y-axis we
have the mean error w.r.t. the ground truth.

60 CHAPTER 6. PARAMETERS’ SENSITIVITY

Figure 6.4: How different algorithms performs with different values of the
maximum distance parameter on the Bremen Dataset. On the y-axis we
have the mean error w.r.t. the ground truth.

6.3. SUB-SAMPLING 61

associated to a single point in the source point cloud needs to be specified.
It is the parameter we called Max Neighbours and, of course, it makes sense
only for our algorithm, since in ICP and G-ICP the associations are always
one-to-one. We tested our approach on the various datasets, with differ-
ent limits for the maximum number of allowed neighbours. The maximum
distance between correspondences has been set to infinite, so that this pa-
rameter does not interfere with the tests excluding some correspondences.
In a real scenario, the correspondences used by the optimization step will be
limited by the max distance parameter, the maximum neighbours parameter
or a combination of both.

On the Office and Linköping datasets, Figures 6.5 and 6.6 the maximum
number of neighbours does not affect substantially the quality of the result.
This is a very valuable characteristic, since it means that the probabilistic
weights do a good job at soft-filtering the wrong correspondences. The same
considerations could apply also to the Hannover and Bremen datasets, Fig-
ures 6.7 and 6.8. On these datasets worse results are obtained only for very
low value of the parameter. In both cases the result stabilizes when the
maximum number of neighbours is over fifteen.

In conclusion, we could say that the maximum number of neighbours is
not critical parameter and thus does not need to be fine tuned.

6.3 Sub-sampling

In order to perform the experiments in this work, the point clouds were
always sub-sampled with a voxel grid. This means that a 3D grid is fitted
to the point cloud and that each point in a particular box is approximated
with the centroid of the box, Figures 6.9 and 6.10.

The 3D grid is composed of several cubes of the same size. The size of the
side of a cube is called leaf-size and is a measure of the level of sub-sampling
applied. The greater the leaf-size, the bigger will be the cubes of the 3D grid
and thus the more the cloud will be down-sampled. Sub-sampling is useful
for several reason. First of all it greatly reduces the execution time of the
algorithm. Usually a point cloud contains much more points than needed to
accurately perform a registration, i.e., it is too dense. Since the execution
time of all the tested algorithms is a function of the number of associations
used, reducing the number of points used is a way of reducing the compu-
tation time. Moreover sub-sampling could also be a way to reduce noise in
a point cloud. Since each voxel is approximated with its centroid, if a voxel
contains a few outliers caused, perhaps, by sensor noise, they would be easily
filtered out. Of course sub-sampling too much could eliminate important in-

62 CHAPTER 6. PARAMETERS’ SENSITIVITY

Figure 6.5: How the Probabilistic approach performs with different values
of the Max Neighbours parameter on the Linköping Dataset. On the y-axis
we have the mean error w.r.t. the ground truth, on the x-axis the maximum
number of neighbours

6.3. SUB-SAMPLING 63

Figure 6.6: How the Probabilistic approach performs with different values of
the Max Neighbours parameter on the Office Dataset. On the y-axis we have
the mean error w.r.t. the ground truth, on the x-axis the maximum number
of neighbours

64 CHAPTER 6. PARAMETERS’ SENSITIVITY

Figure 6.7: How the Probabilistic approach performs with different values
of the Max Neighbours parameter on the Hannover Dataset. On the y-axis
we have the mean error w.r.t. the ground truth, on the x-axis the maximum
number of neighbours

6.3. SUB-SAMPLING 65

Figure 6.8: How the Probabilistic approach performs with different values of
the Max Neighbours parameter on the Bremen Dataset. On the y-axis we
have the mean error w.r.t. the ground truth, on the x-axis the maximum
number of neighbours.

(a) (b)

Figure 6.9: A point cloud and its sub-sampled version. In (b) the points in
a squared have been replaced with their centroid.

66 CHAPTER 6. PARAMETERS’ SENSITIVITY

(a) (b)

Figure 6.10: (a) The Standford Bunny and (b) a subsampled version.

formation and decrease the performances of the registration algorithm. For
this reason finding an appropriate value for the leaf-size is a crucial step.

We tested the three algorithms on the datasets, recording the mean error
w.r.t. the ground truth with increasing values of leaf-size, keeping all the
other parameters unaltered.

With the Hannover dataset, Figure 6.14, both ICP and G-ICP got very
unpredictable results, with a small difference in the leaf-size making a huge
difference on the quality of the result. The Probabilistic approach, instead,
behaves much better, except for very high values of leaf-size.

On the Linköping dataset, Figure 6.12, both G-ICP and the Probabilistic
approach got very good results, showing an high degree of independence
from the leaf-size. This independence was not shown, instead, by ICP, that,
nevertheless, got bad results only for high values of leaf-size. We can conclude
that, on the Linköping dataset, all the three algorithms got good results.

On the Office dataset, Figure 6.13, the Probabilistic approach got uniform
results among the space of possible values of leaf-size. On the other hand,
the other approaches got very scattered plots, showing a high sensibility to
the value of the leaf-size parameter.

Lastly, on the Bremen dataset, Figure 6.14, as opposed to the other
datasets, ICP and G-ICP provided better results and less sensitivity to the

6.3. SUB-SAMPLING 67

Figure 6.11: How different algorithms performs with different values of leaf-
size on the Hannover Dataset. On the y-axis we have the mean error w.r.t.
the ground truth, on the x-axis the value of the leaf-size.

68 CHAPTER 6. PARAMETERS’ SENSITIVITY

Figure 6.12: How different algorithms performs with different values of leaf-
size on the Linköping Dataset. On the y-axis we have the mean error w.r.t.
the ground truth, on the x-axis the value of the leaf-size.

6.3. SUB-SAMPLING 69

Figure 6.13: How different algorithms performs with different values of leaf-
size on the Office Dataset. On the y-axis we have the mean error w.r.t. the
ground truth, on the x-axis the value of the leaf-size.

70 CHAPTER 6. PARAMETERS’ SENSITIVITY

Figure 6.14: How different algorithms performs with different values of leaf-
size on the Bremen Dataset. On the y-axis we have the mean error w.r.t.
the ground truth, on the x-axis the value of the leaf-size.

6.4. CONCLUSIONS 71

(a) (b)

Figure 6.15: How the data association changes with different levels of sub-
sampling. Semi-transparent points are transparent and have been replaced
with their centroid.

leaf-size parameter.

Regarding the Probabilistic approach and the size of the leaves of the
voxel filter, an important consideration must be done. Indeed, the effect of
this parameter cannot be completely separated from the effect of the other
two parameters, the maximum distance between associated points and the
maximum number of neighbours. Given a fixed number of neighbors, re-
ducing the resolution of the target point cloud, has the effect of associating
farther points to a particular point in the source point cloud. This happens
as long as the farther points are within the maximum distance threshold. In
Figure 6.15a we have a point in the source point cloud (coloured in blue),
associated to the three closest points in the target cloud (colored in red). In
Figure 6.15b the target point cloud has been sub-sampled: some points have
been removed (transparent points) and have been replaced with their cen-
troid. Since the max neighbours parameter remains constant, farther points
are associated to the point in the source point cloud.

6.4 Conclusions

We showed that the Probabilistic approach, in most cases, is less influenced
by a fine-tuning of the parameters than other state of the art approaches (ICP
and G-ICP). This is a very valuable characteristic in robotics applications,
where a fine tuning of the parameters could be impractical or even impossible.
These parameters, indeed, should be fine tuned in every new scenario limiting

72 CHAPTER 6. PARAMETERS’ SENSITIVITY

greatly the degree of autonomy of the robots on which they are used.

Chapter 7

Global Point Clouds
Registration

7.1 Introduction

State of the art point clouds registration algorithms, such as ICP (and its
variants) or NDT, suffer from a very important drawback: they use local
optimization algorithms. This implies that, in order for the algorithms to
converge to the right solution, the two point clouds should already be roughly
aligned. Otherwise, the algorithm would probably converge to a local mini-
mum instead than to the global one. Indeed, point clouds registration prob-
lems often have many sub-optimal local solutions, see Figure 7.1. This is a
well know problem that the research community has tried, and still is trying,
to tackle. One way to deal with this issue is to use some kind of features (see
Section 2.2), but as was explained, we want to avoid using geometric features,
in order to make our technique as general as possible. Indeed, calculating 3D
descriptors of salient points requires the normal to the surface on which the
point lies. However, the normal to a surface cannot be correctly estimated
when dealing with very sparse point clouds, because they could be locally
too sparse to represent the local surface in an informative way.

Instead, we used a completely different approach: rather than using math-
ematical optimization techniques (that could find only local minima), such
as Levenberg-Marquardt or the SVD decomposition (which are used, respec-
tively, in G-ICP and ICP), we opted for a soft computing optimization tech-
nique: Particle Swarm Optimization (PSO), [40]. While it is not guaranteed
to find the global optimum, it proved to be very good at escaping from local
minima, therefore it is particularly suitable to our application. Moreover, it
has been designed to work on continuous search spaces, such as our and is

73

74 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

Figure 7.1: A failure due to an algorithm converging to a local minimum.
The blue point clouds is the solution found, the red one is the right solution.
The minimum found by the algorithm is actually very good, nonetheless is
wrong. However, this pair of point clouds have many different possibly good
alignments and there is no way for an algorithm to discover the best one.
The problem is inherently ambiguous. For this reason the corridor dataset
was not used to perform the experiments in this chapter.

very easy to implement and adapt to specific problems.

7.2 Metrics

Before finding a solution to the global point clouds registration problem, we
must answer a fundamental question: how do we measure how well two point
clouds are aligned? Unfortunately, in many practical situations, there is no
exact answer to this question. If we would know the exact point associations,
i.e. which point in the source point cloud corresponds to a particular point
in the target point cloud, the correctness of the alignment could be easily
calculated, for example using the sum of the squared distances between asso-
ciated points. This is actually the method we used to calculate the distance
between a solution and the ground truth in the preceding chapters. In that
case it was possible because the cloud and the ground truth are actually the
same point cloud, only displaced in the space. Thus, simply the i− th point
in the point cloud corresponds to the i− th point in the ground truth.

Unfortunately, in a realistic situation, the associations are not known
and, without using some kind of feature, there is no way of estimating them.
Moreover, it could happen, and in some applications it hopefully will, that

7.2. METRICS 75

the target and source point clouds do not overlap perfectly, so that some
points could not have any associated point in the other cloud. Therefore, it
would be also necessary to know which parts of the clouds overlap and which
not. This information is not usually available either. Finally, exact point
associations often do not exists at all! Because of the functioning of some
sensors, it might happen that the correspondent of a particular point in a
cloud could lie between two or more points in the other cloud. Which point
should we use as correspondence?

These problems, of course, are common also to state-of-the-art (local)
point clouds registration algorithm. The most common solution, used for
example in ICP, is to use a greedy approximation of the “true”, unknown,
data association. For each point in the source point cloud, we take the closest
point in the target point cloud. With closest, as usual, we mean the point
with the smallest Euclidean distance. Thus, the sum of the squared distances
becomes our metric for evaluating the goodness of the alignment. Suppose
that we have two point clouds. X and Y , with point yi in Y being the
closest point to xi in X, the metric M used to evaluate the goodness of the
alignment given by the application of a rotation R and a translation T is
given by Equation (7.1).

M(R, T) =
N∑
i=0

(R · xi + T − yi)2 (7.1)

Where N is the cardinality of X and Y . This formulation implies that each
point in X has a correspondent in Y . In case this assumption was not true,
we would simply use only the points in X with a correspondent and discard
the others.

This metric has been extensively used by many other approaches and
behaves well when the two point clouds are already roughly aligned. We
want to discover whether it can be used also for global registration.

The first, and most important, issue is to check whether the minimum of
this metric corresponds also to the best alignment. In case this assumption
does not hold, no matter how good the optimization algorithm is, it will not
be able to consistently find the best solution.

The second issue to deal with is the “shape” of the function. Even though
the global minimum corresponds to the best alignment, there will probably
be many other local minima, perhaps corresponding to completely wrong
solutions. In Figure 7.1 we can see an example of this kind of failure due
to an algorithm converging to a local minimum. The blue point clouds is
the solution found, the red one is the right solution. The alignment found is
actually a good alignment, but is globally wrong. However, this pair of point

76 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

clouds have many different possibly good alignments and there is no way for
an algorithm to discover the best one. The problem is inherently ambiguous.
For this reason the corridor dataset was not used to perform the experiments
in this chapter.

We have to check how many global minima and, most important, how
good those minima are. Indeed, if there are many, very good, local minima,
the optimization algorithm is more likely to get stuck in a sub-optimal so-
lution. Most global optimization algorithm are, in fact, heuristic algorithms
that are not guaranteed to converge to the global minimum, [41]. Even
though they are usually able to escape from local optima, the greater the
number and, most important, the quality of the minima is, the higher the
probability to converge to a sub-optimal solution, that could be even very
wrong.

Since we want to estimate a rigid transformation in space, that is a roto-
translation, the space of possible solutions to our problem has six dimensions,
three for the translation and three for the rotation. For this reason, the metric
function cannot be plotted, making answering to the previous two questions
much harder. Nevertheless, we can reduce the dimensionality of the problem
to just two dimensions (for example two angles of rotations) and plot the
obtained “sub-function”. This plot can be used as necessary condition for
the two requisites: if the reduced plot does not satisfy the requirements, for
sure neither the complete function is going to satisfy them, since the studied
problem is a simplified form of the complete one.

Besides the sum of squared distances, we wanted to test also another
metric, so to find which one is the best. This metric is the median of the
set of squared distances, as in Equation (7.2), where N is the size of the
source point cloud and xn is the nth point in a cloud, given that the points
are ordered according to the distance from their correspondent in the other
cloud. The distances are calculated in the same way as in ICP: for each point
in a cloud, the closest point in the other cloud is taken as correspondent point
and their distance is calculated.

M(R, T) =

(R · xN+1
2

+ T − yN+1
2

)2 if N mod 2 = 1
(R·xN

2
+T−yN

2
)2+(R·xN

2 +1
+T−yN

2 +1
)2

2
otherwise

(7.2)

Moreover, for both metrics, we tested also a variant where we discard
from the computation all the correspondences whose distance is greater than
three times the median distance and less then one third of it. We called these
variants “robust” because they aim at removing outliers from the set.

7.2. METRICS 77

The reason behind this idea is that, if two point clouds are properly
aligned and thus the correspondences are correct, the distances between cor-
respondent points should all be more or less the same. Distances very dif-
ferent from the others are more likely to be related to outliers, i.e., wrong
correspondences that should be filtered out. The use of the median distance
in this way, rather than, for example, the average, is well studied in the liter-
ature, [42]. Moreover, we show that changing the factor to which we multiply
the median (in our case three), does not modify the result in a substantial
way.

For the tests we used some publicly available datasets, in conjunction
with data recorded by us. These are:

1. The Bremen Dataset, [32].

2. The Hannover Dataset, [33].

3. The Linköping Dataset, [13].

4. The Office Dataset, recorded by us, [13].

For each of these datasets we had a ground truth. Thus, we started
with a pair of perfectly aligned point clouds and progressively moved one
with respect to the other, while calculating the value of the various proposed
metrics.

In Figure 7.2 we can see the value of the median squared distance between
two overlapping point clouds taken from the Bremen Dataset. On the x-
axis we have the yaw between the two clouds, on the y-axis the pitch, both
between 0◦ and 360◦. We can see that this metric respects the first constraint,
i.e., the minimum value coincides with the best solution, that is when the
angles are either 0◦ or 360◦. Anyway, there is still an important issue: it
has many local minima that are very close, in value, to the global one, but
correspond to very wrong alignments. This is easily visible from the side
view in Figure 7.2b. This is a big problem for the optimization algorithm
that, although it has some abilities to escape from local minima, it will hardly
converge to the right solution with this great number of sub-optimal, yet very
close in value to the minimum, solutions. Moreover, it has to be considered
that we are plotting only a simplification of the real metric function; in reality
the situation can get only worse than what depicted.

The plot of the robust median squared distance, Figure 7.3, is very similar
to that of the bare median. The plot of the sum of squared errors has the same
problems of the latter, but with an extra drawback: the global minimum of
the function does not correspond to the best alignment, but is shifted of a

78 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

few degrees. This is particularly visible in the side view in Figure 7.3b. In
Figures 7.5 and 7.6 we can see the plots of the robust sum of squared errors
and its normalized version, where the sum is divided by the number of points
that have not been filtered out. The concept behind this metric is that we
want to reward the alignments that best aligns the greatest number of points
and give a lower score to those aligning very well only a few number of points.
This is the main danger of the robustified version, since because it does not
use the supposed outliers for calculating the score, it could give a very good
score to very wrong alignments that, nevertheless, align well a small number
of points (those not filtered out).

From the plot of the simplified experiments, there seem to be no real rea-
son to prefer one metric to the other. But the situation could get completely
different with the full 6-DOF error function. Indeed, we will see that, in
practice, the results can get really different depending on the metric used.

Of course the results shown cannot be generalized. There could exist a
pair of point clouds for which the proposed metrics behave very differently
from what is depicted in this work. For this reason we tried to test many
different cases, so to cover many different situations and setups.

For the Office Dataset, the differences between the metrics are very sub-
tle, at least for the 2-DOF simplification we are using. For this reason we
plotted together many metrics, to better show the subtle differences. In Fig-
ures 7.7 and 7.8 we plotted the three variants of the sum of squared errors
and the median based metrics together. Of course we had to normalize the
functions, since they have very different scales and, otherwise, could not be
plotted together in a meaningful way (for example the sum of squared er-
rors is for sure several order of magnitude greater than the median). As
can be seen, the metrics are very similar, once normalized. They all behave
relatively well, without a great number of local minima and with the global
minima in the right position. Again, from the plots there is no hint on which
metric to choose. In Figures 7.9 and 7.10 we plotted the metrics for the
Linköping dataset, to whom the same considerations of the Office dataset
can be applied.

Of course restricting our search space to only two angles is not the only
way to reduce the dimensionality of the problem. For example we could test
how the metrics perform when the two point clouds have been displaced by
a translation along two axis. This is what we did in Figures 7.11 and 7.12
for the Bremen Dataset, where we applied a translation on the x and y axis,
ranging from 0 to a dataset-based maximum (in the case of the Bremen
Dataset, 30 meters), with a step size also dependent from the dataset (1
meter in this case). Since the datasets have very different scales, testing on
the same range for each one, like we did for the angles, would not make any

7.2. METRICS 79

(a) (b)

Figure 7.2: Median Squared Distance, Bremen Dataset. The 3D graph of
how the median squared distance behaves varying the pitch and the yaw
between the two point clouds.

(a) (b)

Figure 7.3: Robust Median Squared Distance, Bremem Dataset. The 3D
graph of how the robust median distance behaves, varying the pitch and the
yaw between the two point clouds.

80 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

(a) (b)

Figure 7.4: Sum of Squared Distances, Bremen Dataset. The 3D graph of
how the sum of squared distances behaves, varying the pitch and the yaw
between the two point clouds

(a) (b)

Figure 7.5: Robust Sum of Squared Distances, Bremen Dataset. The 3D
graph of how the “robust” sum of squared distances behaves, varying the
pitch and the yaw between the two point clouds.

7.2. METRICS 81

(a) (b)

Figure 7.6: Normalized Robust Sum of Squared Distances, Bremen Dataset.
The 3D graph of how the normalized “robust” sum of squared distances
behaves, varying the pitch and the yaw between the two point clouds, for the
Bremen dataset.

(a) (b)

Figure 7.7: Metrics for the Office Dataset.

82 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

(a) (b)

Figure 7.8: Sum of Squared Errors variants for the Office Dataset.

(a) Metrics, Dataset (b)

Figure 7.9: Metrics for the Linköping Dataset.

7.2. METRICS 83

sense. We can see, from Figure 7.11 that there are not many differences
between the median and the sum of squared errors. The only relevant one
is that the median has a higher range, that is, the distance between the
minimum and the maximum is higher. This is a valuable difference because
it makes finding a globally optimal solution easier. The robust median, on
the other hand, has a “oscillating” behavior while approaching to the global
minimum. Thus it has to be avoided. Looking at Figure 7.12, we can see
that the robust sum of squared errors behaves exactly like the sum of squared
errors, while, on the other hand, the Normalized version behaves much more
like the median.

From these plots we could say that the median and the normalized sum
of squared errors seems to be more suitable to our task, but there is still no
clear winner.

The same considerations apply to Figures 7.13 to 7.16 showing the same
plots for the Linköping and Office datasets.

These plots make a good job at showing the shape of a function. But
the position of the global minimum is not always easily discernible. This is
particularly true when there are some very good local minima. Of course,
besides the plots, we also have the numeric vales and, thus, with a simple
search we were able to verify that the global minimum was almost always
in the right position. That is, in any combination of 0◦ and 360◦ for the
rotation and in 0, 0 for the translation. There were cases when the minimum
was not in the best position, but it was always very close to. This, indeed, is
not necessarily a problem, since the technique we want to develop here is not
a fine registration algorithm, but has its purpose in obtaining a rough initial
guess. Thus getting very close to the best position is a perfectly acceptable
result, since it will be improved later using a fine registration technique.
Moreover, it has to be noted that the ground truth of the datasets is not
always 100% correct. This is especially true for the Office and Linköping
Datasets, whose ground truth has been produced manually. A few degrees
of error, for example, is a perfectly plausible scenario in those cases.

For the robust version of the functions, we have chosen to discard all the
associations whose distance is above three times the median distance and
below one third of it. Thus, we will say that the robustness factor is 3.

Is it the only possible value? Is it the best value?
Our experiments show that the actual value is not of uttermost impor-

tance, since they all tend to behave similarly when approaching to a min-
imum, that is in the area we are most interested in. As an example, in
Figure 7.17 we have calculated the sum of squared errors with different ro-
bustness factors (ranging from two to six) for two point clouds from the
Bremen Dataset. To perform the tests, the source point clouds has been

84 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

(a) Metrics, Dataset (b)

Figure 7.10: Sum of Squared Errors variants for the Linköping Dataset.

(a) (b)

Figure 7.11: Metrics for the Bremen Dataset, translation.

7.2. METRICS 85

(a) (b)

Figure 7.12: Sum of Squared Errors variants for the Bremen Dataset, trans-
lation.

(a) (b)

Figure 7.13: Metrics for the Linköping Dataset, translation.

86 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

(a) (b)

Figure 7.14: Sum of Squared Errors variants for the Linköping Dataset,
translation.

(a) (b)

Figure 7.15: Metrics for the Office Dataset, translation.

7.3. PARTICLE SWARM OPTIMIZATION 87

rotated around a fixed axis of an angle of increasing value (from 0◦ to 360◦).
We can see that the different robustness factors differentiate mainly at the
center of the plot, corresponding to the maximum rotation. On the other
hand, near the minima, they overlap.

7.3 Particle Swarm Optimization

General Description

Particle Swarm Optimization (PSO) is a bio-inspired soft computing tech-
nique, [40], used to solve optimization problems of arbitrary dimensions,
without the need to compute any derivative. Even though there is no guar-
antee of its convergence to the global optimum (actually it could converge
even to a solution that is not even a local optimum), it has been shown of
having good properties of escaping from locally optimal solutions, given that
a good amount of particles and the right parameters are being used.

There exist many different variants of Particle Swarm Optimization. Here
we will describe only the algorithm we actually used for our experiments.

The main idea is that we have a set of particles exploring the space of the
possible solutions. Thus, the “position” of the particle represents a possible
solution of the optimization problem and it has a score that represents how
good the solution is. Each of these particles has a memory used to memorize
two kinds of best solution (with best meaning the one with the lowest/highest
score):

• The local best, that is the best solution found by the particle up to
that moment.

• The global best, that is the best solution found so far by the entire
swarm. This implies that each particle communicates with each other
particle. The way the particles communicate is called topology. The
fully connected topology is only one of the many possible, see Fig-
ure 7.18. For example, when dealing with problems with many local
minima, it is usually better to use a ring topology, [43]. With the
ring topology, each particle communicates only with two neighbouring
particles, Figure 7.19. In this way, when a new best is found by a par-
ticle, it is not propagated to the entire swarm in just one step, but its
propagation is much delayed so that the other particles are still free
to explore the space. Other kinds of topology are the wheel and Von
Neumann topologies, [44], but, since we did not use them, they will
not be described here.

88 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

PSO is an iterative algorithm. At each iteration each particle moves
toward a combination of its local best and the global best. In addition it has
also some inertia, so also the velocity at the previous iteration plays a role.

Formally, the velocity vt at time t is given by Equation (7.3), where
best(p) is the local best of particle p, gbest(p) is its global best, rand([0, 1])
is a random number uniformly generated in the interval [0, 1] and pt−1 is
the position of particle p at time t − 1. α and β are two parameters of
the algorithm that represents how much a particle should follow its previous
velocity (the inertia, in practice) or it should deflect toward the bests.

vt = α · vt−1 + β · rand([0, 1]) · (best(p)− pt−1)+

+ β · rand([0, 1]) · (gbest(p)− pt−1) (7.3)

The position at time t is simply given by Equation (7.4).

pt = pt−1 + vt (7.4)

It could happen that the result of Equation (7.4) brings a particle outside
of the feasible search space. To avoid this, many alternatives have been stud-
ied by the research community, [43], with results that often depend heavily on
the studied problem. In this work we decided that, whenever a particle ends
outside the search space, it is repositioned at the boundaries and its velocity
is reversed after having being damped by a random factor. In practice, the
particle bounces on the boundaries of the search space in a not completely
elastic way. Also the velocity of the particle has been limited, to avoid the
particles bouncing around too quickly, without exploring deeply the space.
These solutions, among the many tested, gave us the best results.

The initialization of the algorithm is another important step, since the
particles must have an initial velocity and position in order for the algorithm
to work. The initial position has been set to a random value uniformly
distributed in the search space, while the initial velocity has been simply set
to zero. This simple strategy has been proven to be efficient and effective,
[45].

The working of the algorithm is described by Algorithm 1.

Particle Swarm Optimization for Initial Guess Estima-
tion

In the previous section we have described the working of a general Particle
Swarm Optimization algorithm. In this section we will see how this general

7.3. PARTICLE SWARM OPTIMIZATION 89

(a) (b)

Figure 7.16: Sum of Squared Errors variants for the Office Dataset, transla-
tion.

Algorithm 1 Particle Swarm Optimization

for all p do
random init(p)

end for
for t = 1 to max iteration do

for all p do
update vpt
pt = pt−1 + vpt
if score(pt) < score(best(p)) then

best(p) = pt
end if
if score(pt) < gbest then
gbest = pt

end if
end for

end for
return gbest

90 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

Figure 7.17: The final value of the sum of squared errors for increasing
initial rotations, with different robustness factors. On the x-axis we have
the angle of the rotation (around a fixed axis), on the y-axis we have the
sum of squared errors. The values have been normalized in order to compare
different robustness factors on the same plot.

algorithm can be applied to the estimation of an initial guess for point clouds
registration.

First of all, we must define what a particle is or, more specifically, which
is the particle state for our specific problem. The unknowns we want to
estimate are two: the rotation and translation, each with three degrees of
freedom. Thus, the state will have six dimensions, three for the rotation
and three for the translation. Representing a translation is very straight-
forward: each value represents the translation on a particular axis (x,y,z).
As explained before, the search space has to be limited. For the translation
these boundaries have to be specifically set accordingly to the datasets, since
the scales could be very different. However, they do not need to be set to a
precise value, the range could be very big, they just need to exist. A general
solution is to set the boundaries on the three axis to the maximum feasible
translation. For our experiment, we set the upper bound of the translation
search space to maximum coordinates, on each axis, of the target cloud. We
applied the same procedure also to the lower bound, using the minimum. In
this way the algorithm does not need any manually specified parameter.

For the rotation the problem is a little trickier, since many different rep-

7.3. PARTICLE SWARM OPTIMIZATION 91

Figure 7.18: Swarm with fully connected topology.

Figure 7.19: Swarm with ring topology.

92 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

resentations exist. The most intuitive representation for a rotation in a 3D
space is the so-called Euler Angles representation. It is very intuitive be-
cause each angle represents a rotation around a particular axis, but, for our
application, they suffer of a very important drawback: the Gimbal lock.

For this reason, instead of Euler angles, we use the axis-angle representa-
tion, which represents an arbitrary 3D rotation with a rotation of an angle
θ around a given unit vector e. A vector in the space has three components,
but for our representation we consider only unit vectors, i.e. normalized vec-
tors. Since the norm of the vector has to be 1, we have only two degrees
of freedom, plus one from the angle, that is a total of three, as expected
since we want to represent a 3D rotation. The problem is: how we define
the range of every possible rotation? Using Euler angles the solution was
straightforward, since they are just rotation angles around an axis. For the
axis-angle representation instead, this translates to defining the range rep-
resenting every possible unit vector and every possible rotation angle. The
former is non-trivial using Cartesian coordinates. For this reason we decided
to switch to spherical coordinates for the definition of the unit vector. On a
sphere of unit radius (since we are considering only unit vectors), a vector is
identified by two angles: inclination θ and azimuth ϕ. Going from spherical
coordinates to Cartesian coordinates is very easy, see Equation (7.5).


x = r · sinθ · cosϕ
y = r · sinθ · sinϕ

z = r · cosθ

 (7.5)

So, with a unit vector in spherical coordinates and an angle, to represent
our arbitrary 3D rotation we need only three angles. With this system we
have the simplicity of the Euler angles but without the risk of Gimbal locks.
Like for the translation, we have to define the boundaries of our search space.
In the most general case, we do not have any prior information on it, so we
could search all the possible rotations. This is easily expressed allowing the
three angles to move between 0◦ and 360◦. This would not be so easy using
Cartesian coordinates and is the reason because we switched to spherical
coordinates.

As an alternative, we could have used quaternions to represent a rotation.
The quaternion representation is basically equivalent to the axis-angle repre-
sentation and, thus, it does not suffer of the Gimbal lock problem. However,
quaternions pose a very important problem for our application. We want a
range of rotations that contains every possible rotation in the space. How do
we express this range in terms of values of the components of the quaternion?
Even in the case we do not want to consider every possible rotation, but a

7.4. EXPERIMENTAL RESULTS 93

subset (say, for example that we have a guess coming from another sensor),
the problem is still there, only with a smaller range. With the axis-angle
representation we solved this issue switching to spherical coordinates.

To summarize, the state of our particles has six dimensions, three for the
rotation and three for the translation. To evaluate a particle, i.e., to calculate
its score, we use one of the function we described in Section 7.2. We will call
such a function, generically, M(X, Y). Given two point clouds X and Y and
being Rp and Tp the rotation and translation represented by the particle p,
the generic scoring step will use Equation (7.6).

score(p) = M(Rp ·X + Tp, Y) (7.6)

In practice the score is a measure of how well aligned are the two point
clouds, once the source has been transformed with the particle’s estimate of
the transformation.

These are all the customizations needed by the Particle Swarm Optimiza-
tion algorithm in order to be used for the estimation of an initial guess for
point clouds registration.

7.4 Experimental Results

We tested our approach with various datasets and using the different metrics
described earlier. In Table 7.1 we present the test of the various metrics
using two point clouds coming from the Bremen Dataset. The algorithm has
been run each time using exactly the same parameters, that is, 50 particles
and 1000 iterations of Particle Swarm Optimization. We have chosen a large
number of iterations because we wanted to test the limits of the algorithm
without caring, for the moment, for the execution times. Nevertheless, we
discovered that, when the algorithm is eventually going to converge to the
right solution, it does in a few iterations. Moreover, we used a high number
of particles and iterations to minimize the impact of the intrinsic randomness
of the algorithm on the results. In this way a good (or poor) result is less
likely to having been influenced by an unfortunate initialization (which is
random). In Table 7.1 MSE stands for Mean Squared Error and represents
the distance w.r.t. the ground truth. It has been calculated as described in
Section 4.2. Of course, the lower this value is, the better the result.

As can be seen, the metric we called Robust Normalized SSE provided
the best results. In fact, as can be seen from Figure 7.20, the source point
cloud (in blue) and its ground truth (in red), overlap almost perfectly. This
is way more than what is usually required as an initial guess. Although the

94 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

Table 7.1: The results of the experiments on the Bremen dataset, using
different metrics

Metric Metric Value MSE
SSE 1.444E + 11 115.918

Robust SSE 77284 124.293
Robust Normalized SSE 12.5224 2.50207

Median 2.58451 125,479
Robust Median 0.00623869 5,08459

MSE for the Robust Median is more or less twice of that of the Robust Nor-
malized SSE, in practice the two results are equivalent, since this algorithm
is not aimed at fine registration. Instead, it is enough to bring the source
cloud more or less around the proper alignment, since it will be refined later.
Since the picture of the alignment using the Robust Median metric is practi-
cally identical to that of the Robust Normalized SSE, it is not shown. Very
important, for the Robust Normalized SSE, the algorithm converged around
the right solution very early, more or less after only 20 iterations.

The other metrics, instead, provided very bad results. In fact, no one was
able to provide a meaningful solution, the alignments were all very wrong.
This happened because, for each of these metrics, the value of the chosen
solution was very close to the value of the right solution, albeit being very
distant in the search space. This characteristic makes the job of the opti-
mization algorithm very hard, as already discussed and makes the metric not
satisfy the requirements.

Since the Robust Normalized SSE proved to be the best metric, we tested
it also on all the other point clouds from the Bremen Dataset. The results
are shown in Figure 7.21. Most of the mean squared errors are very low,
with the exception of those corresponding to registration number 6 and 7.
These experiments have been performed trying to align a point clouds with
the previous one, i.e., scan 001 with scan 000, scan 002 with scan 001 and
so on. The poor results obtained in these cases is probably due to the small
overlap between some of the point clouds. A better strategy is to align a
point cloud with another, first roughly and then refining with some point
clouds registration algorithm, fuse the aligned point clouds and then align
the next one with the complete cloud obtained in the preceding step.

The results of the experiments on the Office Dataset are shown in Ta-
ble 7.2. In this case all the proposed metrics got very good results and were
able to properly align the two point clouds. The two point clouds, aligned
using the Robust Normalized SSE are shown in Figure 7.22. Only the SSE

7.4. EXPERIMENTAL RESULTS 95

Figure 7.20: Two clouds from the Bremen Dataset, aligned using the Robust
Normalized Sum of Squared Error metric. In green the target point cloud,
in blue the source cloud, in red the ground truth of the source cloud. As can
be seen, the source cloud and its ground truth overlap almost perfectly.

96 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

Figure 7.21: The Mean Squared Errors of the registrations of point clouds
from the Bremen Dataset. On the x-axis there are the different registrations,
on the y-axis the value of the metric.

metric got worse results, but still very good as initial guess, Figure 7.23.

The results for the Linköping Dataset are shown in Table 7.3. During
these experiments the point clouds have been heavily subsampled for speed
reasons. This should not affect the quality of the result too much, since we are
only seeking for a rough alignment during this step. The two clouds aligned
using the Normalized Robust SSE metric are shown in Figure 7.24. With this
dataset, the only metric not obtaining good results is, again, the bare Sum
of Squared Errors. In Figure 7.25 the two point clouds, aligned with this
metric, are shown. The result is completely wrong and not useful as rough
initial guess. On the other hand, the other metrics obtained very good results.

Table 7.2: The results of the experiments on the Office dataset, using different
metrics

Metric Metric Value MSE
SSE 199.028 0.222662

Robust SSE 9.4217 0.0408666
Robust Normalized SSE 0.012149 0.0661749

Median 0.0108989 0.0408433
Robust Median 8.00E-06 0.0669206

7.4. EXPERIMENTAL RESULTS 97

Figure 7.22: Two clouds from the Office Dataset, aligned using the Robust
Normalized Sum of Squared Error metric. The colors have the same meaning
as in Figure 7.20. The source cloud and its ground truth overlap almost
perfectly.

98 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

Figure 7.23: Two clouds from the Office Dataset, aligned using the Sum of
Squared Error metric. The colors have the same meaning as in Figure 7.20.
The result is worse than with other metrics, but still quite good as initial
guess.

7.4. EXPERIMENTAL RESULTS 99

Table 7.3: The results of the experiments on the Linköping Dataset, using
different metrics

Metric Metric Value MSE
SSE 173398 38.9075

Robust SSE 3.1554 2.84418
Robust Normalized SSE 2.00363 2.84418

Median 3.00307 2.18768
Robust Median 3.09373 0.00155527

Figure 7.24: Two clouds from the Linköping Dataset, aligned using the Ro-
bust Normalized Sum of Squared Error metric. The colors have the same
meaning as in Figure 7.20.

Although with the Robust Median we got an error several order of magnitude
lower than with the other metrics, this difference is almost negligible, given
the resolution and the precision of the point clouds, and considering that we
are testing a technique aimed at preliminary rough alignments.

The results for the Hannover datasets are shown in Table 7.4. The ex-
periments have been performed aligning two non consecutive point clouds,
to make the problem a little bit harder, reducing the overlap between the
clouds. Otherwise we could not show any substantial difference between the
various metrics. Nevertheless all the proposed metrics provided very good
results. Consider that the point clouds, before the registration, had been
sub-sampled with a voxel grid with leaves of size 1. Thus, an error w.r.t.
the ground truth of less than one is very good. In conclusion, the differences
between the metrics are, in this case, negligible.

Figure 7.25: Two clouds from the Linköping Dataset, aligned using the Sum
of Squared Error metric. The colors have the same meaning as in Figure 7.20.
Notice how the blu point cloud is not aligned with the red one, which is the
ground truth.

100 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

Table 7.4: The results of the experiments on the Hannover Dataset, using
different metrics

Metric Metric Value MSE
SSE 5088.82 1.08132

Robust SSE 521.855 0.443654
Robust Normalized SSE 0.23484 0.455157

Median 0.382769 0.186318
Robust Median 0.000354692 0.374115

Figure 7.26: The MSE w.r.t. the ground truth of the experiments on the
Hannover Datasets.

The Hannover Dataset is composed of 902 point clouds. We tried to align
each of these clouds with an adjacent one and calculated the Mean Squared
Error (MSE) w.r.t. the ground truth. The results are plotted in Figure 7.26.
The average MSE is 0.6653 and, as can be noted, most errors are very small,
with just a few outliers. Notice that there is a random component in the PSO
algorithm, so some randomly wrong results among so many registrations are
to be expected. Nevertheless, the average error is very very small.

3D Reconstruction and Localization

In order to prove that the combination of our approaches for global registra-
tion and refinement could be used on a robotic platform for both mapping

7.4. EXPERIMENTAL RESULTS 101

Figure 7.27: Some of the point clouds used to reconstruct the office.

and localization, we performed another experiment.

As first step, we collected a set of six point clouds in an office, Figure 7.27,
using an hand-held Velodyne VLP-16, and we aligned them. The registration
was performed incrementally: the second one was registered with the first
one and we fused them. Then, the third one was registered with the result
of the previous registration and so on.

During this alignment step we did not provide any initial guess to the reg-
istration algorithm. This process was performed using only our PSO-based
algorithm, no further refinement via ICP or other variants was necessary,
because the result was already good enough, Figure 7.28.

For this dataset no ground truth was available. The only feasible way to
have a ground truth would have been to produce it manually. However, we
were not able to produce one accurate enough. Indeed, with the algorithm
we got results that we were not able to improve manually, thus using such a
ground truth would have been meaningless. For this reason, only a qualitative
evaluation is possible for the evaluation of the results on this dataset.

Once we performed the 3D reconstruction, we basically got a 3D map of
the office. This map can be used for localization, with either point clouds

102 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

Figure 7.28: The full reconstruction of the office, performed using only our
PSO-based algorithm.

7.4. EXPERIMENTAL RESULTS 103

Figure 7.29: A point cloud produced with a Kinect and its registration in
the map produced with a LiDAR.

from the same kind of sensor used to produce it, or with a different one.
Since one of the topics covered in this work is dense-sparse registration,

we decided to use for this localization experiment a sensor producing very
dense point clouds. Therefore, as second step, we tried to localize a hand-
held Kinect, by aligning its point clouds with the full 3D map of the office. A
3D localization system, such as a VICON motion capture system, could have
been used to produce a ground truth for this set of experiments. However,
none of this kind of systems was available to us. Therefore, also for the
localization, only a qualitative evaluation in possible.

Between the collection of the data in the two steps (3D reconstruction and
localization), the position of some of the furnitures were changed (notably
the position of the chairs), and some objects were added (a bike in front of the
closet). This setup was meant to simulate a real environment, where usually
the map does not correspond perfectly to the working environment, because
there could be many movable objects. The results are shown in Figures 7.29
and 7.30. In this case too, no initial guess was given to the registration
algorithm. The registration was performed with the PSO-based algorithm
and then refined using our probabilistic point clouds registration algorithm.
Although no reliable ground truth was available, we can see that our regis-
tration pipeline was able to localize the Kinect into the room, without the
necessity of any other data.

104 CHAPTER 7. GLOBAL POINT CLOUDS REGISTRATION

Figure 7.30: A second point cloud produced with a Kinect and its registration
in the map produced with a LiDAR.

Chapter 8

Conclusions

We presented two novel algorithms for point clouds registration. The first
one, we called Probabilistic Point Clouds Registration, is a variant of ICP
with a different data association policy. It was derived applying statis-
tical inference to a probabilistic model. Starting from a model based on
a t-distribution, we derive, using Expectation-Maximization, an iteratively
reweighted least squares problem. The error terms of that problem are very
similar to those of ICP, with the difference that they are weighted in a way
that reflects their accordance with the current estimate of the transformation.
Practically, we give a high weight to the associations that are in accordance
with the current estimate of the rototranslation and a lower to the others.
This technique makes possible to implicitly deal with outliers, without the
need of any explicit filtering step. Moreover, instead of using a single closest
point association, we associate to each point in the source point cloud, a set
of closest points in the target point cloud. Each of this associations is then
weighted and their weights normalized.

Furthermore, we developed also a multi-iteration version of the Prob-
abilistic Point Clouds Registration algorithm. Each iteration is composed
of an iteratively reweighted least squares problem. In this way, an initial
estimate of the transformation between the two point clouds is iteratively
improved, until some convergence criterion is met, in a way analogous to
ICP.

We took particular attention to the design of a termination criterion that
could be used for any application, without the need to fine tune any param-
eter, in opposition to what happens for many other point clouds registration
algorithms. For this reason, we conducted a series of experiments that re-
sulted in a very general termination criterion.

We think that parameters’ sensitivity is a very important issue for state-
of-the-art point clouds registration algorithms. Therefore, we tested the sen-

105

106 CHAPTER 8. CONCLUSIONS

sitivity of popular point clouds registration algorithms, namely ICP, G-ICP,
along with our proposal. We show that the probabilistic point clouds reg-
istration algorithm shows a very low level of parameters’ sensitivity. This
is a very desirable behaviour, especially in robotics applications, because it
means that it can be used in many different situations without re-tuning the
parameters.

However, the Probabilistic Point Clouds Registration algorithm, much
like other fine-registration techniques in the literature, still requires an initial
guess in order to converge to a proper solution. Instead, we wanted a solution
that could align two point clouds, regardless of their initial alignment.

For this reason we developed a global point clouds registration algorithm,
aimed at finding a rough alignment, that could then be refined using other
techniques. Our proposal is based on a soft-computing algorithm: Particle
Swarm Optimization. Particular attention was given to the design of the
function to optimize. Since the associations between points are not known
a-priori, the perfect error function does not exists. Instead, we tested several
approximations of this ideal function to discover the best one. Specifically,
that function must satisfy two requisites:

1. The global minimum of the function must correspond to the best align-
ment.

2. The function must not have too many good local minima, otherwise
the optimization algorithm will struggle to find the global minimum.

We found a function that satisfy our requirements and tested it on many
different kinds of dataset. We show that the proposed algorithm is very
efficient at finding a global alignment that, often, does not even require to
be refined.

Bibliography

[1] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE multimedia,
vol. 19, no. 2, pp. 4–10, 2012.

[2] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with
microsoft kinect sensor: A review,” IEEE transactions on cybernetics,
vol. 43, no. 5, pp. 1318–1334, 2013.

[3] D. Forsyth and J. Ponce, Computer vision: a modern approach. Upper
Saddle River, NJ; London: Prentice Hall, 2011.

[4] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning point
cloud views using persistent feature histograms,” in Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference
on, pp. 3384–3391, IEEE, 2008.

[5] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpfh) for 3d registration,” in Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, pp. 3212–3217, IEEE, 2009.

[6] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recogni-
tion and pose using the viewpoint feature histogram,” in Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on, pp. 2155–2162, IEEE, 2010.

[7] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Narf: 3d
range image features for object recognition,” in Workshop on Defin-
ing and Solving Realistic Perception Problems in Personal Robotics at
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
vol. 44, 2010.

[8] J. Jiang, J. Cheng, and X. Chen, “Registration for 3-D point cloud using
angular-invariant feature,” Neurocomputing, vol. 72, pp. 3839–3844, Oct.
2009.

107

108 BIBLIOGRAPHY

[9] G. K. Tam, Z.-Q. Cheng, Y.-K. Lai, F. C. Langbein, Y. Liu, D. Marshall,
R. R. Martin, X.-F. Sun, and P. L. Rosin, “Registration of 3d point
clouds and meshes: a survey from rigid to nonrigid,” IEEE transactions
on visualization and computer graphics, vol. 19, no. 7, pp. 1199–1217,
2013.

[10] Z. Zhang, “Iterative point matching for registration of free-form curves
and surfaces,” International journal of computer vision, vol. 13, no. 2,
pp. 119–152, 1994.

[11] A. Segal, D. Haehnel, and S. Thrun, Generalized-ICP., vol. 2. 2009.

[12] P. Biber and W. Straßer, “The normal distributions transform: A new
approach to laser scan matching,” in Intelligent Robots and Systems,
2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Confer-
ence on, vol. 3, pp. 2743–2748, IEEE, 2003.

[13] G. Agamennoni, S. Fontana, R. Y. Siegwart, and D. G. Sorrenti, “Point
clouds registration with probabilistic data association,” in Intelligent
Robots and Systems (IROS), 2016 IEEE/RSJ International Conference
on, pp. 4092–4098, IEEE, 2016.

[14] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: An efficient probabilistic 3d mapping framework based on
octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.

[15] I. Sipiran and B. Bustos, “Harris 3d: a robust extension of the harris op-
erator for interest point detection on 3d meshes,” The Visual Computer,
vol. 27, no. 11, pp. 963–976, 2011.

[16] C. Harris and M. Stephens, “A combined corner and edge detector.,” in
Alvey vision conference, vol. 15, pp. 10–5244, Manchester, UK, 1988.

[17] Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3d object
recognition,” in Computer Vision Workshops (ICCV Workshops), 2009
IEEE 12th International Conference on, pp. 689–696, IEEE, 2009.

[18] F. Tombari, S. Salti, and L. Di Stefano, “Performance evaluation of 3d
keypoint detectors,” International Journal of Computer Vision, vol. 102,
no. 1-3, pp. 198–220, 2013.

[19] R. Rusu, N. Blodow, Z. Marton, and M. Beetz, “Aligning point
cloud views using persistent feature histograms,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2008. IROS 2008,
pp. 3384–3391, Sept. 2008.

BIBLIOGRAPHY 109

[20] R. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature Histograms
(FPFH) for 3d registration,” in IEEE International Conference on
Robotics and Automation, 2009. ICRA ’09, pp. 3212–3217, May 2009.

[21] A. Sehgal, D. Cernea, and M. Makaveeva, “Real-Time Scale Invariant
3d Range Point Cloud Registration,” in Image Analysis and Recogni-
tion (A. Campilho and M. Kamel, eds.), no. 6111 in Lecture Notes in
Computer Science, pp. 220–229, Springer Berlin Heidelberg, 2010.

[22] L. A. Alexandre, “3d descriptors for object and category recognition: a
comparative evaluation,” in Workshop on Color-Depth Camera Fusion
in Robotics at the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vilamoura, Portugal, vol. 1, p. 7, 2012.

[23] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[24] P. Besl and N. D. McKay, “A method for registration of 3-d shapes,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, vol. 14,
pp. 239–256, Feb 1992.

[25] Y. Chen and G. Medioni, “Object modeling by registration of multiple
range images,” in Robotics and Automation, 1991. Proceedings., 1991
IEEE International Conference on, pp. 2724–2729, IEEE, 1991.

[26] K. Levenberg, “A method for the solution of certain non-linear prob-
lems in least squares,” Quarterly of applied mathematics, vol. 2, no. 2,
pp. 164–168, 1944.

[27] D. W. Marquardt, “An algorithm for least-squares estimation of non-
linear parameters,” Journal of the society for Industrial and Applied
Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[28] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing ICP
variants on real-world data sets,” Autonomous Robots, vol. 34, pp. 133–
148, Apr. 2013.

[29] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),”
in International Conference on Robotics and Automation, (Shanghai,
China), 2011 2011.

110 BIBLIOGRAPHY

[30] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP.,” in Robotics:
Science and Systems, vol. 2, 2009.

[31] M. Magnusson, The Three-Dimensional Normal-Distributions Trans-
form: an Efficient Representation for Registration, Surface Analysis,
and Loop Detection. PhD thesis, Örebro University, 2009.

[32] D. Borrmann and A. Nüchter, “3d scans of the city center of bremen,
germany.” http://kos.informatik.uni-osnabrueck.de/3Dscans/.

[33] O. Wulf, “3d scans of the university campus of hannover.” http://kos.

informatik.uni-osnabrueck.de/3Dscans/.

[34] G. Turk, “The stanford bunny.” http://www.cc.gatech.edu/~turk/

bunny/bunny.html.

[35] S. Kotz and S. Nadarajah, Multivariate t-distributions and their appli-
cations. Cambridge University Press, 2004.

[36] W. Feller, An introduction to probability theory and its applications:
volume I, vol. 3. John Wiley & Sons New York, 1968.

[37] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the royal sta-
tistical society. Series B (methodological), pp. 1–38, 1977.

[38] J. L. W. V. Jensen, “Sur les fonctions convexes et les inégalités entre les
valeurs moyennes,” Acta mathematica, vol. 30, no. 1, pp. 175–193, 1906.

[39] J. J. Moré, “The levenberg-marquardt algorithm: implementation and
theory,” in Numerical analysis, pp. 105–116, Springer, 1978.

[40] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural
Networks, 1995. Proceedings., IEEE International Conference on, vol. 4,
pp. 1942–1948, IEEE, 1995.

[41] I. C. Trelea, “The particle swarm optimization algorithm: conver-
gence analysis and parameter selection,” Information processing letters,
vol. 85, no. 6, pp. 317–325, 2003.

[42] D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu, and S. Behnke, “Regis-
tration with the point cloud library: A modular framework for aligning
in 3-d,” IEEE Robotics & Automation Magazine, vol. 22, no. 4, pp. 110–
124, 2015.

BIBLIOGRAPHY 111

[43] D. Bratton and J. Kennedy, “Defining a standard for particle swarm op-
timization,” in Swarm Intelligence Symposium, 2007. SIS 2007. IEEE,
pp. 120–127, IEEE, 2007.

[44] Y. Del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez,
and R. G. Harley, “Particle swarm optimization: basic concepts, variants
and applications in power systems,” IEEE Transactions on evolutionary
computation, vol. 12, no. 2, pp. 171–195, 2008.

[45] A. Engelbrecht, “Particle swarm optimization: Velocity initialization,”
in Evolutionary Computation (CEC), 2012 IEEE Congress on, pp. 1–8,
IEEE, 2012.

