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Abstract In the present work, we analyze the hp version of virtual element methods
for the 2D Poisson problem. We prove exponential convergence of the energy error
employing sequences of polygonal meshes geometrically refined, thus extending the
classical choices for the decomposition in the hp finite element framework to very
general decomposition of the domain. A new stabilization for the discrete bilinear
form with explicit bounds in h and p is introduced. Numerical experiments validate
the theoretical results. We also exhibit a numerical comparison between hp virtual
elements and hp finite elements.

Mathematics Subject Classification 65N12 · 65N15 · 65N30 · 65N50

1 Introduction

The virtual element method (VEM) is a very recent generalization of the finite element
method (FEM), see [10]. VEM utilizespolygonal/polyhedral meshes in lieu of the
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classical triangular/tetrahedral and quadrilateral/hexaedralmeshes. This automatically
includes nonconvex elements, hanging nodes (enabling natural handling of interface
problems with nonmatching grids), easy construction of adaptive meshes and efficient
approximations of geometric data features.

Among the properties of VEM, in addition to the employment of polytopal meshes,
we recall the possibility of handling approximation spaces of arbitrary Ck global
regularity [19,25] and approximation spaces that satisfy exactly the divergence-free
constraint [3,18].

The main idea of VEM consists in enriching the classical polynomial space with
other functions, whose explicit knowledge is not needed for the construction of the
method (this explains the name virtual).

We point out that the literature concerning methods based on polytopal meshes
is not restricted to the VEM. A (very short and incomplete) list of other polytopal-
based methods follows: hybrid high order methods [31], mimetic finite difference
[16,24], hybrid discontinuousGalerkinmethods [30], polygonal finite elementmethod
[36,43,48], polygonal discontinuous Galerkin methods [27], BEM-based finite ele-
ment methods [46].

Although VEM is a very recent technology, the associated bibliography is
widespread. We here limit ourselves in citing [3,10,12,13,18–21,25,26,28,33,34,
44,45,51] and refer to [15] for a more complete overview of the literature.

In all these works, the convergence of VEM approximations has been achieved by
increasing the number of mesh elements while keeping the degree of local approxi-
mation fixed. In other words and according to the existing terminology, these methods
utilize the h-version of VEM. An alternative avenue to construct convergent approx-
imations is the p-version of VEM which is based on increasing the degree of local
approximations while keeping the underlying mesh fixed. A combination of both
methodologies is termed the hp-version of VEM.

The recent work [14] provides a mathematical ground for the p-version of VEM
for the two-dimensional Poisson problem. In particular, it includes the a priori conver-
gence theory for the p- and hp-version of VEM on quasiuniform polygonal meshes
and for uniform distributions of local degrees of approximation. An exponential con-
vergence has been established for analytic solutions, see [14, Theorem 5.2], and
convergence at algebraic rates for solutions having finite Sobolev regularity, see [14,
Theorems 4.1, 5.1].

The objectives of the present paper are the following. First, we generalize the results
in [14] and in particular the definition of H1 conforming VEM to the case with varying
local degree of accuracy from element to element. Such construction fits very naturally
in the framework of VEM without additional complications. Furthermore, we extend
thehp-VEMapproach to nonquasiuniformapproximations andprove their exponential
convergence for nonsmooth solutions having typical corner singularities, see [5,6].

Similarly to the hp-version of FEM (see [47] and the references therein) the approx-
imation is based on geometrically refined meshes with appropriate (linearly varying)
local degree of accuracy. In order to derive the proofs, we introduce a new stabiliza-
tion for the method, which turns out to be more suitable for the p and hp version of
VEM. Importantly, explicit bounds of the new stabilizing term with respect to the H1

seminorm in terms of the local degree of accuracy are shown. This proof requires a
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particular inverse estimate on polynomials, presented in the “Appendix”. To the best
of the authors knowledge, such an inverse estimate has been never published before.

We highlight that new tools for the approximation by means of functions in the
VE space are presented. Such tools permits to avoid additional assumptions on the
polygonal decomposition of the computational domain.

The structure of the paper is the following. After presenting the model problem
and the VEM in Sects. 2 and 3 respectively, we deal with explicit bounds in terms
of the degree of accuracy of a new stabilization term in Sect. 4. In Sect. 5 we show
the approximation results and the main theorem of the paper, namely the exponential
convergence of the energy error in terms of the dimension of the virtual space, while
in Sect. 6 we validate the theoretical results with numerical tests, including a set
of experiments on the comparison between hp FEM and hp VEM. Finally, in the
“Appendix”, we discuss a hp polynomial inverse estimates on polygons needed for
proving the stability bounds of Sect. 4.

2 Model problem

In this section, we discuss the functional space setting and the model problem under
consideration.

Firstly, we introduce the functional spaces that will be used throughout the paper.
Let � ∈ N and let D ⊆ R

2 be a given domain whose closure contains the origin, i.e.
0 ∈ D. We denote with L�(D) the Lebesgue space of �-summable functions and we
denote with H �(D) the Sobolev space of order � on the domain D, respectively; let
‖ · ‖�,D and | · |�,D be the Sobolev norm and seminorm, see [1]. Let H1

0 (D) = {u ∈
H1(D) : u|∂D = 0}.

Let now β ∈ (0, 1), Φβ(x) = |x|β , where | · | represents the Euclidean norm in R
2.

Given u : D → R, m, l ∈ N, m ≥ �, we set

|u|2
Hm,�

β (D)
:=

m∑

k=�

‖|Dku|Φβ+k−�‖20,D, (1)

where:

|Dku|2 =
∑

α∈N2, |α|=k

|Dαu|2.

We define the weighted Sobolev spaces

Hm,�
β (D) :=

{
u ∈ L2(D)

∣∣∣∣ ‖u‖Hm,�
β (D)

< ∞
}

, (2)

where the corresponding weighted Sobolev norm reads

‖u‖2
Hm,�

β (D)
:=
⎧
⎨

⎩
‖u‖2�−1,D + |u|2

Hm,�
β (D)

if � ≥ 1
∑m

k=0 ‖|Dku|Φβ+k‖20,D if � = 0
. (3)
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Having this, we recall the countably normed spaces (also known as Babuška spaces),
see [47] and the references therein:

B�
β(D) :=

{
u | u ∈ Hm,�

β (D), ∀m ≥ � and ‖|Dku|Φβ+k−�‖0,D
≤ cdk−�(k − �)!, ∀ k ≥ �

}
, (4)

where c ≥ 0 and d ≥ 1 are two constants depending on u and D. We point out that
space (4) is not empty since it contains functions of the form u = |x|α , for some
α > 0.

Definition (4) can be generalized to the case of functions with “multiple” singu-
larities at the vertices of a polygonal domain i.e. adding in definition (1) weights of
the form |x − x0|, x0 being a vertex of the polygon different from 0; see [47]. In
particular, defining NV (D) and {Ai (D)}NV (D)

i=1 the number and set of vertices of D

respectively, we denote the general spacewith Hm,�
β (D), whereβ = (β1, . . . , βNV (D))

and � = (�1(β1), . . . , �NV (ω)(βNV (D))) are the vectors associatedwith the singularities
at the vertices of ω. The associated weight function reads:

Φβ(x) = Π
NV (D)
i=1 ri (x)βi , ri (x) = min(1, |x − Ai (D)|).

Secondly, we introduce the model problem. Let Ω be a open simply connected
polygonal domain. Let f ∈ L2(Ω) be given.We consider the two dimensional Poisson
problem:

− Δu = f in Ω, u = 0 on ∂Ω (5)

and its weak formulation:

find u ∈ V := H1
0 (Ω) such that a(u, v) = ( f, v)0,Ω, ∀ v ∈ V, (6)

where (·, ·)0,Ω is the L2 scalar product on Ω and a(·, ·) = (∇·,∇·)0,Ω . The Lax–
Milgram lemma guarantees the existence of a unique weak solution u ∈ V .

We recall a regularity result for the solution of problem (6). Let NV and {Ai }NV
i=1

be the number and the set of vertices of Ω respectively; let ωi be the (internal) angle
associated with vertex Ai , i = 1, . . . , NV . To each Ai , we associate the set of the
so-called singular exponents for Poisson problem with Dirichlet condition (see also
[47, formula (4.2.2)]):

αi = π

ωi
∀ i = 1, . . . , NV . (7)

Then, the following holds:

Theorem 1 Following the notation of problem (6), let f ∈ H0,0
β (Ω), β ∈ [0, 1);

assume that the singular exponents αi defined in (7) satisfy:

1 − αi < βi < 1, if αi < 1, ∀ i = 1, . . . , NV .
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Then the solution of (6)belongs to H2,2
β (Ω) and the a propri estimate:

‖u‖H2,2
β

(Ω)
≤ c‖ f ‖H0,0

β
(Ω)

,

holds. Moreover, if f ∈ B0
β(Ω), then u ∈ B2

β(Ω).

Proof See [5,6]. ��
For the sake of simplicity, we assume in the rest of the paper that:

0 ∈ ∂Ω is the only vertex at which the solution u of problem (6) can be singular.

(8)

Finally, we point out that throughout the paper we write a ≈ b and a � bmeaning that
there exist c1, c2 and c3 positive constants independent of the discretization parameters,
such that c1 a ≤ b ≤ c2 a and a ≤ c3 b respectively; we also denote by P�(K )

and P�(E) the spaces of polynomials of degree � over a polygon K and an edge E
respectively.

3 Virtual element spaces with non uniformly distributed degree of
accuracy

In this section, we introduce a VEM for problem (6) with nonuniform local degree of
accuracy.

Let {Tn} be a sequence of polygonal decompositions of the domainΩ . The approxi-
mation have a “geometric layer” structure; hence, in the sequel, the integer n represents
the number of layers used for the corner singularity refinement as in [47]; see Sect. 5.1
for the precise definition of layers.

Let Vn be the set of vertices of Tn , Vb
n = {ν ∈ Vn | ν ∈ ∂Ω} be the subset

of boundary vertices, En be the set of edges E of Tn , Eb
n = {e ∈ En | e ⊆ ∂Ω}

be the subset of boundary edges. To each K ∈ Tn , we associate hK = diam(K ),
VK = {ν ∈ Vn | ν ∈ ∂K } and EK = {e ∈ En | e ⊆ ∂K }. We require the two
following basic assumptions on the regularity of the decomposition:

(D1) ∀K ∈ Tn , K is star-shaped with respect to a ball of radius greater than or equal
to hK γ , where γ is a positive constant independent of the decompositions; see
[23] for the definition of star-shapedness. We note that this condition can be
satisfied by possibly many balls. Henceforth, we fix for each K ∈ Tn a unique
ball B(K ).

(D2) ∀K ∈ Tn , ∀E ∈ EK , |E | ≥ hK γ̃ , where γ̃ is a positive constant independent
of the decompositions. Moreover, ∀K ∈ Tn , card(EK ) is uniformly bounded.

More technical assumptions on the mesh will be introduced in Sect. 5 for the con-
struction of proper geometric meshes.

Remark 1 Assuming that (D1) and (D2) hold true, then the following is also valid.
The subtriangulation T̃n(K ) of K obtained by joining the vertices of K to the center of
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the ball B(K ) introduced in assumption (D1) is made of triangles that are star-shaped
with respect to a ball of radius greater than or equal to γ1 hT , hT being the diameter of
T , ∀T ∈ T̃n(K ), and γ1 being a positive constant independent of the decompositions.

Given K ∈ Tn , let iK be the position of polygon K in the ordered sequence Tn . Let
p ∈ N

card(Tn). We associate to each K ∈ Tn the local degree of accuracy piK = (p)iK .
In order to simplify the notation, we write pK := piK .

Henceforth, we assume that Tn is a conforming decomposition into polygons of Ω ,
i.e. for all edges E ∈ E , either E belongs to two polygons if it is an internal edge or
it belongs to a single polygon if it is a boundary edge.

In the former case, itmust hold that there exist K1, K2 ∈ Tn such that E ∈ EK1∩EK2 ;
we associate to E the degree pE = max{pK1 , pK2}, that is we adopt the so-called
maximum rule; see Remark 2 for further comments. In the latter case, let K ∈ Tn be
the unique polygon in the decomposition such that E ∈ EK ; we associate to E the
degree pE = pK .

Let K ∈ Tn . We firstly define the space of piecewise continuous polynomials on
the boundary of K :

B(∂K ) :=
{
vn ∈ C0(∂K ) | vn|E ∈ PpE (E) for all E ∈ EK

}
. (9)

The local virtual space on K reads:

V (K ) :=
{
vn ∈ H1(K ) | Δvn ∈ PpK−2(K ) and vn ∈ B(∂K )

}
, (10)

with the convention P−1(K ) = 0 and where B(∂K ) is defined in (9).
Definition (10) and the maximum rule immediately imply that PpK (K ) ⊆ V (K ).
We associate with the local space the following set of degrees of freedom:

– the values at the vertices of K ;
– the values at pE − 1 internal nodes (e.g. Gauß–Lobatto nodes) for all E ∈ EK ;
– the scaled internal moments of the form:

1

|K |
∫

K
qαvn, (11)

where {qα}pK−2
|α|=0 is a properly chosen basis ofPpK−2(K ); seeRemark 5 for possible

explicit choices of the polynomial basis.

This is in fact a set of degrees of freedom for the local space (10); see [10]. If we set
dofi the i-th degree of freedom, i = 1, . . . , dim(V (K )), then we can define the local
virtual canonical basis {ϕ j , j = 1, . . . , dim(V (K ))} by:

dofi (ϕ j ) = δi, j ∀ i, j = 1, . . . , dim(V (K )). (12)

The global virtual space is obtained by matching the boundary degrees of freedom on
each edge, i.e.:

Vn :=
{
vn ∈ C0(Ω) | vn|K ∈ V (K ), ∀K ∈ Tn; vn|∂Ω = 0

}
. (13)
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We note that we can split the global continuous bilinear form a(·, ·), introduced
with the continuous problem (6), into a sum of local contributions as follows:

a(u, v) =
∑

K∈Tn
aK (u, v), where aK (u, v) = (∇u,∇v)0,K . (14)

Weobserve thatwe cannot compute the bilinear forma(·, ·) appliedonvirtual functions
since it is not possible in principle to know the values of such functions at any internal
points of each polygon. The same argument applies to the computation of the right-
hand side. For this reason, we must approximate both the stiffness matrix and the
right-hand side.

Thus, the structure ofVEMapproximation is based on the two following ingredients
which are defined in what follows:

– a symmetric bilinear form an : Vn × Vn → R, which we decompose into a sum
of local symmetric bilinear forms aKn : V (K ) × V (K ) → R as follows:

an(vn, wn) =
∑

K∈Tn
aKn (vn, wn) ∀ vn, wn ∈ Vn; (15)

– a piecewise discontinuous polynomial fn ,which is piecewise of degree pK , and
the associated linear functional ( fn, ·)0,Ω .

The discrete bilinear form an(·, ·) and the discrete right-hand side fn are chosen in
such a way that the discrete counterpart of (6)

find un ∈ Vn such that an(un, vn) = ( fn, vn)0,Ω ∀ vn ∈ Vn (16)

is well-posed and it is possible to recover local hp-estimates analogous to those proved
in [14].

We start by discussing the construction of the discrete bilinear form. We require
that aKn in (15) satisfy the two following assumptions:

(A1) polynomial consistency: ∀K ∈ Tn , it must hold:

aK (q, vn) = aKn (q, vn) ∀ q ∈ PpK (K ), ∀ vn ∈ V (K ); (17)

(A2) local stability: ∀K ∈ Tn , it must hold

α∗(pK )|vn|21,K ≤ aKn (vn, vn) ≤ α∗(pK )|vn|21,K ∀ vn ∈ V (K ), (18)

where 0 < α∗(pK ) ≤ α∗(pK ) < +∞ are two constants which may depend
only on the local degree of accuracy pK .

On each K ∈ Tn , we can introduce a local energy projectorΠ∇,K
pK : V (K ) → PpK (K )

via
⎧
⎪⎨

⎪⎩

aK
(
q,Π∇,K

pK vn − vn

)
= 0 ∀ q ∈ PpK (K ), ∀ vn ∈ V (K ), (19a)

∫

K
Π∇,K

pK vn − vn = 0 ∀ vn ∈ V (K ). (19b)
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When no confusion occurs, we write Π∇
pK in lieu of Π

∇,K
pK .

Note that condition (19b) only fixes an additive constant of the projection and can
be modified if necessary, see [2,10]. Importantly, this local energy projector can be
computed by means of the degrees of freedom of space (10), see [10,12], without the
need of knowing explicitly functions in the virtual space.

In [10,12], it was also shown that a computable candidate for aKi
n may have the

following form:

aKn (vn, wn) = aK
(
Π∇

pK vn,Π
∇
pK wn

)

+SK
(
vn − Π∇

pK vn, wn − Π∇
pK wn

)
∀ vn, wn ∈ V (K ), (20)

where SK is any computable symmetric bilinear form on V (K ) such that:

c∗(pK )|vn|21,K � SK (vn, vn) � c∗(pK )|vn|21,K ∀ vn ∈ V (K ) with Π∇
pK vn = 0,

(21)

where 0 < c∗(pK ) ≤ c∗(pK ) < +∞ are two constants, which may depend on the
local degree of accuracy p. In [10] it was shown that (21) implies (18) with:

α∗(pK ) = min(1, c∗(pK )), α∗(pK ) = max(1, c∗(pK )) ∀ K ∈ Tn . (22)

Now, we introduce a computable discrete loading term fn . Let Sp,−1(Ω, Tn) be the
set of piecewise discontinuous polynomials over the decomposition Tn of degree pK
on each K ∈ Tn . For � ∈ N, let Π

0,K
� := Π0

� be the L2(K ) projector from the local
space (10) to P�(K ), the space of polynomials of degree � over K ; such a projector
can easily be computed whenever � ≤ pK − 2 by means of the internal degrees of
freedom of the space (10), see [12].

We define the discrete loading term as follows: fn ∈ Sp,−1(Ω, Tn) is such that

( fn, vn)0,Ω =
∑

K∈Tn
( fn, vn)0,K , where ( fn, vn)0,K

:=
∫

K
Π0

pK−2 f vn, ∀ vn ∈ Vn . (23)

A deeper analysis on the discrete loading term can be found in [2] and [11].
We remark that in this paper we do not consider the case of approximation with

pK = 1 in order to avoid technical discussions on the right-hand side.

Remark 2 We point out that in the definition of the local virtual space (10), we fixed
the degree of the edge to be the maximum of the degree of the two adjacent poly-
gons (maximum-rule). One could also fix such an edge degree to be the minimum
of the degree of the neighbouring polygons (minimum-rule). The first choice leads
to PpK (K ) ⊆ V (K ); therefore, it is possible to recover local (i.e. on each polygon)
classical hp-estimates, see [14]. On the other hand, in view of Sect. 5 also the choice
of the minimum would yield the same convergence result.
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Let FK
n , K ∈ Tn , be the smallest positive constants such that:

|( fn, vn)0,K − ( f, vn)0,K | ≤ FK
n |vn|1,K ∀ vn ∈ V (K ) (24)

and let

α(K ) := 1 + α∗(pK )

minK ′∈Tn α∗(pK ′)
∀ K ∈ Tn, (25)

where α∗(pK ) and α∗(pK ) are introduced in (18).
We show how the energy error |u − un|1,K can be bounded, u and un being respec-

tively the solutions of (6) and (16). We carry out, in particular, an abstract error
analysis which is similar to the one presented in [10]; nevertheless, we decide to show
the details, since assumption (A2) is here weaker than its h counterpart in [10], where
the stability constants α∗(pK ) and α∗(pK ) are assumed to be independent of the local
degree of accuracy.

Lemma 1 Assume that (A1) and (A2) hold. Let u and un be the solutions of problems
(6) and (16) respectively. Then, for all u I ∈ Vn and for all uπ ∈ Sp,−1(Ω, Tn), it
holds that

|u − un|1,Ω ≤
∑

K∈Tn
α(K )

{
FK
n + |u − uπ |1,K + |u − uI |1,K

}
, (26)

where FK
n and α(K ) are defined in (24) and (25) respectively.

Proof Given any uπ ∈ Sp,−1(Ω, Tn) and uI ∈ Vn :

|un − uI |21,Ω =
∑

K∈Tn
|un − uI |21,K

(A2)≤
∑

K∈Tn
α−1∗ (pK )aKn (un − uI , un − uI )

(A1), (6), (16)≤
(
max
K ′∈Tn

α−1∗ (pK ′)

) ∑

K∈Tn

{
( fn − f, un − uI )0,K

−aKn (uI − uπ , un − uI ) − aK (uπ − u, un − uI )
}

(A1), (24)≤
(
max
K ′∈Tn

α−1∗ (pK ′)

) ∑

K∈Tn

{
FK
n |uI − un|1,K

+α∗(pK )|uI − uπ |1,K |un − uI |1,K + |u − uπ |1,K |un − uI |1,K
}

≤
(
max
K ′∈Tn

α−1∗ (pK ′)

)⎛

⎝
∑

K∈Tn

(
FK
n + (1 + α∗(pK ))|u − uπ |1,K

+α∗(pK )|u − uI |1,K
)2
⎞

⎠

1
2

|un − uI |1,Ω .
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where the Cauchy–Schwarz inequality has been used in the last step. Applying a
triangular inequality, we get:

|u − un|1,Ω ≤
∑

K∈Tn

1 + α∗(pK )

minK ′∈Tn α∗(pK ′)

{
FK
n + |u − uπ |1,K + |u − uI |1,K

}
.

This finishes the proof. ��

4 Stability

In this section, we present an explicit choice for the stabilizing bilinear form SK

introduced in (21) and we discuss the associated stability bounds (21) in terms of the
local degree of accuracy. Our choice for the stabilization is the following:

SK (un, vn) = pK
hK

(un, vn)0,∂K + p2K
h2K

(
Π0

pK−2un,Π
0
pK−2vn

)

0,K
. (27)

We note that this local stabilization term is explicitly computable bymeans of the local
degrees of freedom, since on the boundary virtual functions are known polynomials
and the L2 projections are computable using only the internal degrees of freedom, see
[12].

Following the guidelines of [47, formula (4.5.61)], that is the p-version of the
Aubin–Nitsche duality argument, it holds for a convex K :

‖vn − Π∇
pK vn‖0,K � hK

pK
|vn − Π∇

pK vn|1,K ∀ vn ∈ V (K ). (28)

Note that, in order to apply the Aubin–Nitsche argument, we use the fact that vn −
Π∇

pK vn ∈ ker(Π∇
pK ), which guarantees that vn − Π∇

pK vn has zero average on K ; for a
detailed proof see [29, Lemma 3.2].

Assume now that K is nonconvex. Let π < ωK < 2π the largest angle of K . Then,
the Aubin–Nitsche analysis in addition to interpolation theory [49,50] and regularity
of solutions of elliptic problems on polygonal domains [5,6] can be refined giving:

‖vn − Π∇
pK vn‖0,K � hK p

− π
ωK

+ε

K |vn − Π∇
pK |1,K ∀ vn ∈ V (K ), (29)

for all ε > 0.
We now prove the following result.

Theorem 2 Assume that pK , the degree of accuracy of the method on the element K ,
coincides with the polynomial degrees pE , for all edges E ∈ EK of polygon K . Then,
using definition (27), the bounds in (21) hold with:

c∗(pK ) ≥ p−5
K , c∗(pK ) ≤

⎧
⎨

⎩
1 if K is convex,

p
2
(
1− π

ωK
+ε
)

K otherwise,
(30)

123



Exponential convergence of the hp virtual element method...

for all ε > 0, where ωK denotes the largest angle of K .

Proof We assume without loss of generality that the size of polygon K is 1. The
general result follows from a scaling argument.

We start by proving the estimate on c∗(pK ). Integrating by parts, we obtain for
vn ∈ ker(Π∇

pK ):

|vn|21,K =
∫

K
∇vn · ∇vn =

∫

K
−ΔvnΠ

0
pK−2vn +

∫

∂K

∂vn

∂n
vn . (31)

We split our analysis into two parts. We firstly investigate the integral over K in
(31). For this purpose, we need a technical result, namely the following hp polynomial
inverse estimate in two dimensions, see Theorem 5 (which can be applied thanks to
Remark 1):

‖q‖0,K � (pK − 1)2‖q‖−1,K ≤ p2K ‖q‖−1,K ∀q ∈ PpK−2(K ), (32)

where we denote with ‖ · ‖−1,K the dual norm associated with H1
0 (K ), i.e.

‖ · ‖−1,K = ‖ · ‖[H1
0 (K )]∗ = sup

Φ∈H1
0 (K )\{0}

(Φ, ·)0,K
|Φ|1,K .

Subsequently, we note that, owing to (32), we have:

‖Δvn‖0,K � p2K ‖Δvn‖−1,K = p2K sup
Φ∈H1

0 (K )\{0}

(Δvn, Φ)0,K

|Φ|1,K

= p2K sup
Φ∈H1

0 (K )\{0}

(∇Φ,∇vn)0,K

|Φ|1,K ≤ p2K |vn|1,K .

(33)

As a consequence:

∫

K
−ΔvnΠ

0
pK−2vn ≤ ‖Δvn‖0,K · ‖Π0

pK−2vn‖0,K ≤ p2K ‖Π0
pK−2vn‖0,K |vn|1,K .

(34)

Next, we turn our attention to the integral over ∂K in (31). Applying a Neumann trace
inequality (see e.g. [47, Theorem A33]):

∫

∂K

∂vn

∂n
vn ≤

∥∥∥∥
∂vn

∂n

∥∥∥∥− 1
2 ,∂K

‖vn‖ 1
2 ,∂K � (|vn|1,K + ‖Δvn‖0,K )‖vn‖ 1

2 ,∂K . (35)

Then, we use (33) on the second term in the first factor and a one dimensional hp
inverse estimate in addition to interpolation theory on the second factor (see [49,50]),
thus obtaining:
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∫

∂K

∂vn

∂n
vn � p2K |vn|1,K pK ‖vn‖0,∂K . (36)

Plugging (34) and (35) in (36), we deduce:

|vn|21,K � |vn|1,K
{
p2K ‖Π0

pK−2vn‖0,K + p3K ‖vn‖0,∂K
}

,

whence

|vn|21,K � p2K

(
p2K ‖Π0

pK−2vn‖20,K
)

+ p5K

(
pK ‖vn‖20,∂K

)
≤ p5K S

K (vn, vn).

Next, we estimate c∗(pK ). Let vn ∈ ker(Π∇
pK ), then:

SK (vn, vn) = pK ‖vn‖20,∂K + p2K ‖Π0
pK−2vn‖20,K

� pK ‖vn‖20,∂K + p2K ‖vn − Π0
pK−2vn‖20,K + p2K ‖vn − Π∇

pK vn‖20,K .

We estimate the three terms separately. We begin with the first one. Applying the
multiplicative trace inequality (see e.g. [23]), the p version of the Aubin–Nitsche
duality argument (28) for convex K and (29) for nonconvex K :

pK ‖vn‖20,∂K � pK
(‖vn‖0,K |vn |1,K + ‖vn‖20,K

)

= pK
(
‖vn − Π∇

pK vn‖0,K |vn |1,K + ‖vn − Π∇
pK vn‖20,K

)

�

⎧
⎪⎪⎨

⎪⎪⎩

pK
(
p−1
K |vn |21,K + p−2

K |vn |21,K
)

≤ |vn |21,K , if K is convex

pK

(
p

− π
ωK

+ε

K |vn |21,K + p
2
(
− π

ωK
+ε
)

K |vn |21,K
)

≤ p
1− π

ωK
+ε |vn |21,K , otherwise

,

(37)

where we recall ωK is the largest angle in K for all ε.
We now deal with the second term; using [14, Lemma 4.1]:

p2K ‖vn − Π0
pK−2vn‖20,K � p2K p−2

K ‖vn‖21,K = ‖vn − Π∇
pK vn‖21,K � |vn|21,K ,

where in the last inequality we used that vn − Π∇
pK vn has zero average on ∂K .

Finally, we treat the third term; usingAubin–Nitsche argument (28) and itsmodified
version for nonconvex polygon (29):

p2K ‖vn − Π∇
pK vn‖20,K

�

⎧
⎨

⎩
p2K p−2

K |vn − Π∇
pK vn |21,K = |vn |21,K if K is convex

p2K p
2
(
− π

ωK
+ε
)

K |vn − Π∇
pK vn |21,K = p

2
(
1− π

ωK
+ε
)

K |vn |21,K otherwise
. (38)

Collecting the three bounds, we obtain the claim. ��
Remark 3 In order to keep the notation simpler, we proved Theorem 2 assuming that
the polynomial degrees pE on each edge E ∈ EK coincide with the degree of accuracy
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pK of the local space V (K ); the same result remains valid if pK ≈ pE , for all E ∈ EK .
In view of the forthcoming definition (59), the case of interest in the following satisfies
such condition and therefore, for the proof of the main result of this work, namely
Theorem 3, we do not use directly Theorem 2, but its nonuniform degree version.

As a consequence of Theorem 2, the quantity α(K ), defined in (25), can be bounded
in terms of pK as follows:

α(K ) = 1 + α∗(pK )

minK ′∈Tn α∗(pK ′)
= 1 + max(1, c∗(pK ))

minK ′∈Tn (min(1, c∗(p′
K )))

�
{
maxK∈Tn p5K if all K are convex

p
2(1− π

ω
+ε)

K maxK∈Tn p5K otherwise
.

(39)

Remark 4 Owing to [22, formula (2.14)], we could replace the boundary term of SK ,
defined in (27), with a spectrally equivalent algebraic expression employing Gauß–

Lobatto nodes. In particular, let Î = [−1, 1] and let {ρ pÎ+1
j }pÎj=0 and {ξ pÎ+1

j }pÎj=0 be

the Gauß–Lobatto nodes and weights on Î respectively. Then:

c

pÎ∑

j=0

q2
(
ξ
pÎ+1
j

)
ρ
pÎ+1
j ≤ ‖q‖2

0, Î
≤

pÎ∑

j=0

q2
(
ξ
pÎ+1
j

)
ρ
pÎ+1
j ∀ q ∈ PpÎ

(
Î
)
, (40)

where c is a positive universal constant. We could replace in (27) the L2 integral on
the boundary with a piecewise Gauß–Lobatto combination, mapping each edge on
the reference interval Î and using (40); the advantage of such a choice is that we can
automatically use the nodal degrees of freedom on the skeleton, assuming that they
have a Gauß–Lobatto distribution on each edge.

The boundary term of the new stabilization is now very close to the classical sta-
bilization choice (see e.g. [10] and [14]) and its implementation is much easier than
the implementation of (27), where one should reconstruct polynomials on each edge;
in fact, it suffices to take instead of the Euclidean inner product of all the degrees of
freedom only the boundary one with some Gauß–Lobatto weights.

For additional issues concerning the stabilization (only for the h version of VEM)
see [17], while for more details concerning the implementation of the method we refer
to [12].

It is worth to mention that stabilization (27) is not the only one available in the
context of hp VEM, but it has the merit of having explicit bounds in terms of p in
the stability constants c∗(pK ) and c∗(pK ) introduced in (21). Such dependence is
algebraic in pK and this will allow us to prove the exponential convergence of the
energy error in Theorem 3.

As a consequence, every stabilization satisfying stability bounds of the form:

c∗(pK ) � p−r1
K , c∗(pK ) � pr2K ,
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where r1 and r2 are two positive universal constants, works fine for proving exponential
convergence of the method.

Finally, we note that at the practical level, as investigated in [41], choosing different
stabilizing forms has little effect on the results.

4.1 Numerical tests for the stability bounds

In Theorem 2, we proved the stability bounds (21) for a possible choice of SK . Such
bounds, which also reflect on α∗(pK ) and α∗(pK ) introduced in (18), are rigorously
proven but have a quite stray dependence on p. In the following, we check numerically
whether the dependence on p of the above-mentioned constants is sharp.

In order to do that, we note that finding α∗(pK ) and α∗(pK ) in (18) is equivalent
to find the minimum and maximum eigenvalues λmin and λmax of the generalized
eigenvalue problem:

AK
n vn = λAK vn. (41)

Here, AK
n and AK ∈ R

dim(V (K ))×dim(V (K )) are defined as

(
AK
n

)

i, j
= aKn (ϕi , ϕ j ), (AK )i, j = aK (ϕi , ϕ j ),

where {ϕi }dim(V (K ))
i=1 denotes the virtual canonical basis of V (K ), see (12). We are

adopting the usual notation, by calling vn ∈ R
dim(V (K )) the vector of the degrees of

freedom associated with vn ∈ V (K ).
We note that we restrict our analysis on functions having zero average on K , since

bothAK
n andAK have constant functions in their kernel; this strategy allows to avoid the

problems related to solving the generalized eigenvalue problem for singular matrices.
Moreover, the entries of matrix AK are not computable exactly, since virtual functions
are not known explicitly; therefore, we approximate them by solving numerically
the associated diffusion problem, by means of a fine and high-order finite element
approximation.

In Table 1, we present the results on three different types of polygon (namely, those
which we employ for the tests in the forthcoming Sect. 6): a square, a nonconvex
decagon (like any of the polygons in the outer layer of Fig. 1, right), a nonconvex
hexagon (like any of the polygons in the outer layer of Fig. 1, center).

The maximum generalized eigenvalue always scales like 1. On the contrary, the
minimum eigenvalue behaves in all the three cases like p−1. This means that in fact
the bounds of Theorem 2 are abundant, whereas the actual behaviour of the stability
bounds may be much milder. Unfortunately, currently we are not able to improve the
stability bounds of Theorem 2. It is worth mentioning that this has no impact on the
asymptotic exponential convergence results in the next section.

The nonmonotonicity of the eigenvalues in Table 1 is due to the fact that thematrices
AK
n are associated with bilinear forms which vary in n, see (20), since their definition

also depend on the choice of the stabilization.
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Table 1 Minimum and maximum eigenvalues of the generalized eigenvalue problem (41) on: sq. a square,
dec. a nonconvex decagon, hex. a nonconvex hexagon

p Sq. λmin Sq. λmax Dec. λmin Dec. λmax hex. λmin hex. λmax

2 7.8559e−01 1.0000e+00 7.9262e−02 5.5516e+00 1.6168e−01 1.1183e+00

3 4.6667e−01 1.0000e+00 1.0306e−01 8.6605e+00 1.3342e−01 1.4751e+00

4 3.3195e−01 1.0000e+00 4.5039e−02 1.0852e+01 1.0321e−01 1.6253e+00

5 2.7547e−01 1.0000e+00 3.4944e−02 1.0513e+01 7.4247e−02 1.8672e+00

6 2.1557e−01 1.0000e+00 2.3463e−02 1.1835e+01 5.5556e−02 1.6707e+00

7 1.8994e−01 1.0000e+00 2.0730e−02 9.7514e+00 3.5664e−02 1.9013e+00

8 1.4136e−01 1.0000e+00 1.6122e−02 1.0447e+01 2.7559e−02 1.8801e+00

9 1.2446e−01 1.0000e+00 1.8555e−02 7.9781e+00 2.1313e−02 1.8337e+00

10 9.2933e−02 1.0000e+00 1.3736e−02 3.9577e+01 1.7991e−02 5.6544e+00
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Fig. 1 Decomposition Tn , n = 3, for Examples 1 (left), 2 (center), 3 (right)

We also observe that a similar numerical investigation was also performed in [14,
Section 6.4] for the hp version of VEM on quasi-uniform meshes, giving analogous
results; moreover, always in [14], numerical evidence shows that the actual effect of
the stabilization on the error slopes of the p version of VEM when approximating
finite Sobolev regularity solutions is extremely mild.

5 Exponential convergence for corner singularity on geometric meshes

In this section, we want to show that exponential convergence is achieved if geometric
mesh refinement and degree of accuracy distribution are chosen appropriately.

In order to achieve such a convergence we employ geometrically graded polygonal
meshes, which are discussed in Sect. 5.1. Then, we show in Sect. 5.2 estimates for the
first and the second terms in the error decomposition (26), in particular proving bounds
for the local right-hand side approximation and for the local best approximation by
means of polynomials. In Sect. 5.3, we obtain estimates for the third term in (26),
in particular illustrating bounds for the best approximation by means of functions
belonging to the virtual space defined in (13). Finally, in Sect. 5.4, under a proper
choice for the polynomial degree vector p introduced in Sect. 3 and the sequence
{Tn}n of polygonal decompositions, we combine together the above error bounds; as a
consequence, we guarantee exponential convergence for the error in the energy norm

123



L. B. da Veiga et al.

in terms of the number of degrees of freedom of the global virtual space Vn defined
in (13).

5.1 Geometric meshes

Here, we describe a class of sequences of nested geometric meshes which we employ
in order to show error convergence.We recall we are assuming that the only “singular”
corner is the origin 0 ∈ ∂Ω , see (8). Let σ ∈ (0, 1) be the grading parameter of the
mesh.

The decomposition Tn consists of n + 1 layers defined as follows. We set L0 the
0-th layer as the set of all polygons K in decomposition Tn such that 0 ∈ VK

n ; next,
we define by induction:

L j =
{
K1 ∈ Tn | K1 ∩ K2 �=∅, for some K2∈ L j−1, K1�∪ j−1

i=0 Li

}
, j =1, . . . , n.

(42)

We set T0 = {Ω}. Given Tn , the decomposition Tn+1 is obtained by refining Tn only
in the layer around the singularity (i.e. L0).We require that at level n the decomposition
satisfies the following grading condition.

(D3) The diameter hK of K satisfies:

hK ≈
⎧
⎨

⎩

1 − σ

σ
dist(0, K ) if K /∈ L0

σ n otherwise
. (43)

Furthermore, the number of elements in each layer is uniformly bounded with
respect to the discretization parameters. We also assume that pK ≥ 2. A more
precise choice is discussed in the forthcoming definition (59).

Assumption (D3) justifies the name geometric for the sequence; more specifically,
the closer a polygon is to 0 the smaller its diameter is. Moreover, it is possible to check
that the ratio between the size of two neighbouring layers is proportional to 1−σ

σ
. As

a consequence of assumption (D3), we also have, for K ∈ L j , hK ≈ σ n− j .

Example 1 A possible sequence satisfying (D1)–(D3) is the graded mesh of squares
elements with hanging nodes on the L-shaped domain, that is used in [47, Defini-
tion 4.30], see Fig. 1 (left). We note that in the VEM context, this mesh contains
pentagons and squares, whereas in the finite element counterpart the very same mesh
is “afflicted” by the presence of squares with hanging nodes.

Example 2 As a second example, see Fig. 1 (center), we consider a mesh which is
obtained by merging all the elements that correspond to one layer in the mesh from
Example 1 in a single large element and by adding an oblique cut on the “central” diag-
onal. This mesh still cannot be used for conforming FEM approximations. Moreover,
it satisfies assumptions (D1) and (D4).
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Example 3 Another choice is depicted in Fig. 1 (right). This mesh is obtained by
merging all the elements that correspond to one layer in the mesh from Example 1
in a single large element. We observe that this mesh is made of n decagons and one
hexagon around 0. Moreover, we want to stress the fact that this mesh, that cannot be
used in the conforming FEM environment, needs many less degrees of freedom than
the meshes in Examples 1 and 2. Finally, we point out that such a mesh does not satify
the star-shapedness assumption (D1).

We require the following additional assumption on the geometry of the decompo-
sition, which we need in order to state the approximation results in Sects. 5.2 and 5.3.

(D4) Let Tn be a geometric polygonal decomposition; write Tn = T 0
n ∪ T 1

n , where
T 0
n = L0 and T 1

n = ∪n
j=1L j . Then, there exists a collectionC1

n of squares, with
edges not necessarily aligned with the coordinate axes, such that:

– card(C1
n) = card(T 1

n ); for each K ∈ T 1
n , there exists Q = Q(K ) ∈ C1

n such that
Q ⊇ K and hK ≈ hQ ; in addition, it must hold dist(0, Q(K ))≈ hK ;

– every x ∈ Ω belong at most to a fixed number of squares Q, independently on all
the discretization parameters;

– ∀K ∈ T 0
n , K is star-shaped with respect to 0; moreover, the subtriangulation of K

obtained by joining 0 with the other vertices is uniformly shape regular (γ being
the shape-regularity constant).

We set Ωext
n = (∪Q∈C1

n
Q) ∪ (∪K∈T 0

n
K ).

We point out that (D4) is a (rather) technical requirement, which has the scope to
import some tools of hp FEM into hp VEM. Indeed, we will numerically prove in
Sect. 6 that also meshes not satisfying (D4) may produce the expected convergence
behaviour shown in Theorem 3, hinting that a potential improvement upon (D4) would
immediately generalize the presented theory.

Assumption (D4) is in the spirit of the strategy of the overlapping square technique
used in [14,27]. We here additionally require that squares covering polygons far from
the singularity cannot cover also such a singularity (since in this case p approximation
results would not hold, thus invalidating Theorem 3). We also stress that the decom-
position in Example 3 does not satisfy neither (D1) nor (D4). Finally, we point out
that instead of considering a decomposition of squares Cn , it is possible to consider
in (D4) a decomposition in sufficiently regular quadrilaterals (e.g. parallelograms),
since the same analysis by means of Legendre polynomials that follows (for instance
in Lemmas 2 and 4) could be performed.

5.2 Local approximation by polynomials

Here, we deal with the approximation of the first and the second term in the right-hand
side (26). What we are going to prove are hp approximation properties by means of
local polynomials on polygons. In hp-FEM literature, classical approximation of this
type is not effectuated on general polygons but only on squares and triangles, see
[7,8,37,40,47] and the references therein.

The basic tool behind this approach is the employment of orthogonal bases, namely
tensor product of Legendre polynomials on the square, see [47], and Koornwinder
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polynomials (that is collapsed tensor product of Jacobi polynomials) on triangles, see
[32,39]; with such basis, explicit computations can be performed, owing to properties
of Legendre and Jacobi polynomials. On a generic polygon an explicit basis with good
approximation properties is not available.

The error analysis follows the lines of [14,47] and is summarized below. Let p
be the vector of the local degree of accuracy on each polygon. We recall that we
denote with Sp,−1(Tn,Ω) the space of piecewise discontinuous polynomials over the
decomposition Tn of degree pK on each polygon pK .

The first result is a polynomial approximation estimate regarding regular functions
on polygons far from the singularity. This result is used for the approximation of the
local second term in (26) for the elements K separated from the singularity.

Lemma 2 Under assumptions (D1)–(D4), let K ∈ L j , j = 1, . . . , n. Let Q(K ) be

defined in (D4) and let u ∈ HsK+3,2
β (Q(K )), β ∈ [0, 1), 1 ≤ sK ≤ pK . Then, there

exists Φ ∈ PpK (Q(K )) such that:

‖Dm(u − Φ)‖20,K � σ 2(n− j)(2−m−β) Γ (pK − sK + 1)

Γ (pK + sK + 3 − 2m)
(ρ
2

)2sK |u|2
H

sK +3,2
β (Q(K ))

, (44)

where m = 0, 1, 2; 1 ≤ j ≤ n; ρ = max(1, 1−σ
σ

), σ is the grading parameter of the
mesh and Γ is the Gamma function.

Proof The result follows from classical scaling arguments and [47, Lemma 4.53].
Here, we only give the idea of the proof. Firstly one encapsulates polygon K into the
corresponding square Q(K ). It is possible to bound the left hand side of inequality
(44) with the same (semi)norm on the square. After that, the square is mapped into
the reference square Q̂ = [−1, 1]2 and a p analysis by means of tensor product
of Legendre polynomials is developed (see [47, Theorem 4.46]). Subsequently, the
reference square is pushed forward to square Q. Using the property of the geometric
mesh stated in assumption (D3) and [47, Lemma 4.50], the result follows. ��

Estimate on polygons around the singularity are discussed in the following lemma.
We point out that for the error control in layer L0 we can work directly on the element
without the need of employing covering squares, as effectuated for the analysis on the
polygons of the other layers, see Lemma 2. The proof is an extension to polygonal
domains of that in Theorem [47, Lemma 4.16].

Lemma 3 Under assumptions (D1)–(D4), let K ∈ L0. Let u ∈ H2,2
β (K ), β ∈ [0, 1).

Then, there exists Φ ∈ P1(K ) such that:

|u − Φ|21,K � h2(1−β)
K ‖|x|β |D2u|‖20,K � σ 2(1−β)n‖|x|β |D2u|‖20,K , (45)

where σ is the grading factor from assumption (D3).
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Proof We start by proving the following Hardy inequality on polygons with a vertex at
0. Let α > 0, let be given a function u such that

∫
K |x|α|D1u|2 < +∞ and u ∈ C0(K ).

Then:
∫

K
|x|α−2|u − u(0)|2 ≤ c

∫

K
|x|α|D1u|2. (46)

We consider the regular subtriangulation by joining 0 with the other vertices of K ; the
existence of such a decomposition is guaranteed by assumption (D4). Thanks to [47,
Lemma 4.18], the “triangular” counterpart of (46) holds:

∫

T
|x|α−2|u − u(0)|2 ≤ c

∫

T
|x|α|D1u|2, ∀ T in the subtriangulation of K . (47)

It suffices then to split the integral over K into a sum of integrals over the triangles of
the subtriangulation, apply (47) and collect all the terms.

Using (46) and applying the argument of [47, Lemma 4.19] to the polygon K ,
we observe that H2,2

β (K ) is compactly embedded in H1(K ). Using such a compact
embedding and proceeding as in [47, Lemma 4.16], the following inequality holds
true for a polygon K star-shaped with respect to 0:

|U |21,K � h2(1−β)
K ‖|x|βD2U‖20,K +

3∑

i=1

|U (Ai )|2 ∀U ∈ H2,2
β (K ), (48)

where {Ai }3i=1 is a set of three arbitrary nonaligned vertices of K .
Let Φ be the linear interpolant of u at Ai , i = 1, . . . , 3. Then, plugging U = u − Φ

in (48), noting thatU (Ai ) = 0, i = 1, 2, 3, and using the geometric assumption (D3),
we get the claim. ��

We note that (45) does not rely on p approximation results, but only on scaling
argument. This is enough in order to prove the main result of this work, that is Theo-
rem 3, and it is in accordance with the choice of the vector of local degrees of accuracy
that is effectuated in the forthcoming definition (59). We emphasize that this is in the
spirit of classical hp refinement, see [47].

We now turn our attention to the approximation of the first local term in (26), i.e.
to the local approximation of the loading term. Since we are approximating it with
piecewise polynomials of local degree pK − 2, we set p = p − 2, i.e. ∀K ∈ Tn ,
pK = pK − 2. We have, for all vn ∈ Vn :

( fn, vn)0,K − ( f, vn)0,K =
∑

K∈Tn

∫

K
(Π0

p−2,K f − f )(vn − Π0
0,K vn)

=:
∑

K∈Tn
FK (vn), (49)

where we recall we are assuming for the sake of simplicity pK ≥ 2 for all K ∈ Tn ,
see Sect. 3.
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As above, we develop a different analysis for polygons near and far from the sin-
gularity. We start with the “far” case.

Lemma 4 Under assumptions (D1)–(D4), let K ∈ L j , j = 1, . . . , n. Let Q(K )

be defined in (D4). Let f ∈ HsK+3,2
β (Q(K )), β ∈ [0, 1), 0 ≤ sK ≤ pK , with

pK = pK − 2. Then, for all vn ∈ V (K ),

FK (vn) ≤ |vn|1,K
{

σ (n− j)(2−β)

(
Γ (pK − sK + 1)

Γ (pK + sK + 1)

) 1
2 (ρ

2

)sK | f |
H

sK +3,2
β (Q(K ))

}

with the same notation of Lemma 2.

Proof It suffices to use a Cauchy–Schwarz inequality in (49), standard bounds for the
projection errors and analogous estimate to those in Lemma 2. ��
Assume now that K is an element in the finest level L0. We work here a bit differently
from what we did in Lemma 3. In particular we get the following.

Lemma 5 Under assumptions (D1)–(D3), let K ∈ L0. Assume f ∈ L2(K ). Let
β ∈ [0, 1). Then:

FK (vn) ≤ h1−β
K |vn|1,K ‖ f ‖0,K � σ n(1−β)|vn|1,K , ∀vn ∈ V (K ),

where σ is the grading factor from assumption (D3).

Proof Using a Cauchy–Schwarz inequality and Bramble Hilbert lemma (see [23]),
we obtain:

FK (vn)� hK |vn|1,K ‖ f ‖0,K � h1−β
K |vn|1,K ‖ f ‖0,K � σ n(1−β)|vn|1,K ∀ vn ∈ V (K ).

��
We point out that for the proof of Lemmas 3 and 5 we work directly on the polygon

without the need of using the covering squares technique of assumption (D4), like in
Lemmas 2 and 4. This justifies the fact that in assumption (D4) we did not require the
existence of a collection of squares C0n associated with the finest layer L0 but only the
existence of collection Cn1 associated with all the other layers.

5.3 Approximation by functions in the virtual space

Here, we treat the approximation of the third term in the right-hand side of (26). We
observe that this term has two main differences with respect to the other two. The first
difference is that we need an approximant uI which is globally continuous; the second
one is that uI is not a piecewise polynomial but a function belonging to the virtual
space Vn .

As done in Sect. 5.2, we split the analysis into two parts. Firstly, we work on
polygons not abutting the singularity, see Lemma 6; secondly, we work on elements
K in the first layer L0, see Lemma 7.
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Lemma 6 Let assumptions (D1)–(D4) hold. Let K ∈ L j , j = 1, . . . , n. Let β ∈
[0, 1). Let f , the right-hand side of (6), belong to space B0

β(Ω); consequently, u, the

solution of problem (6), belongs to space B2
β(Ω), see Theorem 1 and definition (4).

Assume that pE ≈ pK if E ∈ ∂K. Assume moreover that if K ∈ L1, then pK ≈ 2.
Then, for all 1 ≤ sK ≤ pK , there exists u I ∈ V (K ) such that:

|u − uI |21,K � ‖ f − Π0
pK−2 f ‖20,K

+ σ (n− j)(3−2β) p−2sK−1
K

(ρe
2

)2sK+1 ∑

E∈EK

|u|2
H

sK +1,2
β (E)

, (50)

where we recall that Π0
pK−2 is the L2(K ) orthogonal projection from V (K ) into

PpK−2(K ), σ is the grading factor from assumption (D3) and ρ = max
(
1, 1−σ

σ

)
.

Proof Before starting the proof, we observe that the boundary norm in the right-hand
side of (50) exists, since u ∈ B2

β(Ω) implies that u ∈ Ht (K ) for all t ∈ N and
polygons K /∈ L0.

We define uI as the weak solution of the following problem:
{

−ΔuI = Π0
pK−2 f in K

uI = πu on ∂K
, (51)

where πu ∈ B(∂K ), see (9), is defined in the following way. Assume for the time
being that K /∈ L1. Let Î = [−1, 1]. Given an edge E ⊆ ∂K , πu is defined as
the push-forward of a function π̂u ∈ PpE ( Î ) which we fix as follows. Let û be the
pull-back of u|E on Î . Then, π̂u′ is the Legendre expansion of û′ up to order pE − 1.
In particular, we write:

û′(ξ) =
∞∑

i=0

ci Li (ξ), π̂u′(ξ) =
pE−1∑

i=0

ci Li (ξ). (52)

Here {Li (ξ)}∞i=0 is the L2( Î ) orthogonal basis of Legendre polynomials, with
Li (−1) = (−1)i and Li (1) = 1. Next, we define π̂u as:

π̂u(ξ) =
∫ ξ

−1
π̂u′(η)dη + û(−1).

It is possible to prove that π̂u interpolates û at the endpoints of Î using the definition
of π̂u and the fundamental theorem of calculus. Recalling [47, Theorem 3.14] and
using simple algebra, the following holds true:

‖û − π̂u‖�, Î � esK p−sK−1+�
E |u|sK+1, Î , � = 0, 1 ∀ 1 ≤ sK ≤ pK . (53)

Applying a scaling argument, interpolation theory (see [49,50]) and summing on all
the edges, we get:
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‖u − πu‖21
2 ,∂K

�
∑

E∈EK

e2sK+1
(
hE

pE

)2sK+1

|u|2sK+1,E , ∀ 1 ≤ sK ≤ pK . (54)

If now K ∈ L1, we define πu|E as above if E does not belong to the interface between
L0 and L1, otherwise uI is defined as the linear interpolant of u at the two endpoints of
E . We point out that (54) remains valid also if K ∈ L1 paying an additional constant
c2sK+1, since pK ≈ 2 whenever K ∈ L1. We also note that (54) implies, recalling
that pE ≈ pK if E ⊆ ∂K and following the ideas in [47, Lemma 3.39]:

‖u − uI ‖21
2 ,∂K

= ‖u − πu‖21
2 ,∂K

� σ (n− j)(3−2β) p−2sK−1
K

(ρe
2

)2sK+1 ∑

E∈EK

|u|2
H

sK +1,2
β (E)

, (55)

where we recall that j denotes the number of the layer to which K belongs.
We are now ready to prove the error estimate. For arbitrary constants c1 and c2,

there holds (also recalling that ( f − Π0
pK−2 f ) is L

2-orthogonal to constants):

|u − uI |21,K =
∫

K
|∇ (u − uI − c1) |2 =

∫

∂K
∂n (u − uI ) (u − uI − c1)

−
∫

K

(
f − Π0

pK−2 f
)

(u − uI − c2)

≤ ‖∂n (u − uI )‖− 1
2 ,∂K ‖u − πu − c1‖ 1

2 ,∂K + ‖ f − Π0
pK−2 f ‖0,K ‖u

− uI − c2‖0,K .

Applying the trace inequalities on Neumann and Dirichlet traces, choosing c2 to be
the average of u − πu on K and applying a Poincaré inequality, we get:

|u − uI |21,K �
(
|u − uI |1,K + ‖ f − Π0

pK−2 f ‖0,K
)

‖u − πu − c1‖ 1
2 ,∂K + ‖ f

− Π0
pK−2 f ‖0,K |u − uI |1,K

� ‖u − uI − c1‖1,K
{
‖ f − Π0

pK−2 f ‖0,K + ‖u − uI − c1‖ 1
2 ,∂K

}
.

We deduce, picking c1 to be the average of u − uI on ∂K and applying a Poincaré
inequality:

|u − uI |21,K � ‖ f − Π0
pK−2 f ‖20,K + ‖u − πu‖21

2 ,∂K
.

In order to conclude, it suffices to apply (55). ��
We turn now our attention to the approximation on the polygons abutting the singu-
larity.

Lemma 7 Let assumptions (D1)–(D4) hold. Let β ∈ [0, 1). Let f , the right-hand side
of (6), belong to space B0

β(Ω); consequently, u, the solution of problem (6), belongs
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to space B2
β(Ω), see Theorem 1 and definition (4). Assume that pK = 2 if K ∈ L0

and pK ≈ 2 if K ∈ L1. Then there exists u I ∈ V (K ) such that:

|u − uI |21,K � σ 2(1−β)n‖|x|β |D2u|‖20,K + ‖ f − Π0
pK−2 f ‖20,K .

where we recall that Π0
pK−2 is the L2(K ) orthogonal projection from V (K ) into

PpK−2(K ), σ is the grading factor discussed in assumption (D3) and n + 1 is the
number of layers.

Proof We consider uI defined as in (51); in particular, we fix πu, the trace of uI on
∂K to be the piecewise affine interpolant of u at the vertices of K . From Lemma 6,
we have:

|u − uI |21,K � ‖ f − Π0
pK−2 f ‖20,K + ‖u − uI − c1‖21

2 ,∂K
, (56)

where c1 is the average of u − uI on ∂K .
In order to get the claim, it suffices to bound the second term. As in Lemma 3, we

consider the subtriangulation T̃n = T̃n(K ) of K obtained by connecting all the vertices
of K to 0, see assumption (D4). In particular, every triangle T ∈ T̃n is star-shaped with
respect to a ball of radius≥ γ̃ hT , where γ̃ is a positive universal constant.Wedefine ũK
as the piecewise linear interpolant polynomials over the triangular subtriangulation,
interpolating u at the vertices of T , for every T ∈ T̃n . Using [47, Lemma 4.16] and
applying a Poincaré inequality, yield to:

‖u − uI − c1‖21
2 ,∂E

� ‖u − ũK − c1‖21,K �
∑

T∈T̃n
|u − ũK |21,T

�
∑

T∈T̃n
h2(1−β)
T ‖|x|β |D2u|‖20,T � σ 2(1−β)‖|x|β |D2u|‖20,K .

(57)

We stress that the third inequality in (57) holds since ũK |T is a linear polynomial and
therefore D2ũK = 0 on all T ∈ T̃n . ��
We note that in Lemmas 6 and 7 the error between f and its L2 projection can be
bounded using Lemmas 4 and 5. We also point out that the hypothesis concerning
the distribution of the local degrees of accuracy, i.e. the fact that pK = 2 if K ∈ L0,
pK ≈ 2 if K ∈ L1, pE ≈ pK if E ⊆ ∂K , are in accordance with the forthcoming
definition (59) that we introduce for the proof of Theorem 3. Finally, we point out in
Lemmas 6 and 7 we introduced a function uI which is locally in V (K ) and globally
continuous; thus, uI is a function in the global VE space Vn introduced in (13).

5.4 Exponential convergence

We set Ωext = ∪n∈NΩext
n = Ωext

1 , where the Ωext
n are introduced in (D4). We recall

that we are assuming that 0 ∈ ∂Ωext.
We observe that our error analysis needs regularity on f and subsequently on u, the

right-hand side and the solution of problem (6), respectively. In particular, we require:
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f can be extended to a function in B0
β

(
Ωext) ,

u can be extended to a function in B2
β

(
Ωext) . (58)

With a little abuse of notation we call this two functions f and u. Assuming
f ∈ B0

β (Ω) automatically implies that u is in B2
β (Ω); this follows from classical

elliptic regularity theory, see Theorem 1. In the classical hp finite element method,
this regularity leads to exponential convergence of the energy error, see [47]. In order
to prove the same exponential convergence with hp VEM, we need (58) since the
approximation by means of polynomials on the polygons not abutting the singular-
ity needs regularity of the target function on a square containing the polygon, see
Lemmas 2 and 4.

We recall the inflated domain Ωext has been built in such a way that the singularity
is never at the interior of Ωext, see assumption (D4). We highlight also the fact that
(58) can be easily generalized to the case of multiple singularities, see e.g. [47].

In order to obtain exponential convergence of the energy error in terms of the
number of degrees of freedom, we henceforth assume that the vector p of the degrees
of accuracy associated with Tn is given by:

pK =
{
2 if K ∈ L0

max (2, �μ · ( j + 1)�) if K ∈ L j , j ≥ 1
, (59)

where μ is a positive constant which to be determined in the proof of Theorem 3
and where �·� is the ceiling function. Note that choice (59) could be modified asking
for pK = 1 if K ∈ L0; under this requirement in fact Lemmas 3, 5 and 7 are still
valid. Nonetheless, we prefer to use (59) in order to avoid technical discussions on the
construction of the right-hand side of the method and keep the simple representation
(23).

It is clear from (59) that if K1 and K2 belong to the j-th and the ( j + 1)-th layers
respectively, for some j = 1, . . . , n − 1, then pK1 ≈ pK2 , independently on all the
other discretization parameters. Thus, owing to Sect. 4, we also have α(K1) ≈ α(K2),
independently on all the other discretization parameters. Besides, pE ≈ pK whenever
E ⊆ ∂K .

Theorem 3 Let {Tn}n be a sequence of polygonal decomposition satisfying (D1)–
(D4). Let u and un be the solutions of problems (6) and (16) respectively; let f be
the right-hand side of problem (6). Let N = N (n) = dim(Vn). Assume that u and
f satisfy (58). Then, there exists μ > 0 such that p, defined in (59), guarantees the
following exponential convergence of the H1 error in terms of the number of degrees
of freedom:

‖u − un‖1,Ω � exp(−b 3
√
N ), (60)

with b a constant independent of the discretization parameters.

Proof It suffices to combine Lemma 1, the results of Sect. 4, Lemmas from 2 to 7 and
to use the same arguments of [47, Theorem 4.51], properly choosing the parameter μ.
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The basic idea behind the proof is that around the singularity, geometric mesh
refinement are employed, since p approximation leads only to an algebraic decay of
the error; on the other hand, on polygons far from the singularity, it suffices to increase
the degree of accuracy, since on such polygons both the loading term and the exact
solution of (6) are assumed to belong to the Babuska space B2

β(Ωext) defined in (4)
and therefore p approximation leads to exponential convergence of the local errors
(see [14, Theorem 5.6]).

Following [47, Theorem 4.51] and using Lemma 1 yield:

|u − un|1,Ω ≤ c max
K ′∈Tn

α(K ′)σ 2(1−β)(n+1), (61)

where c is a constant independent of both the discretization parameters and the number
of layers. Applying (39), we obtain:

α(K ) � p2K max
K ′∈Tn

p5K ′ � (n + 1)7 ∀ K ∈ Tn, (62)

where we recall n + 1 denotes the number of layers. Plugging (62) in (61), we get:

|u − un|1,Ω ≤ c(n + 1)7σ 2(1−β)(n+1).

We infer:

|u − un|1,Ω � exp(−b(n + 1)), for some b > 0.

Now, we prove that N � (n + 1)3. In order to see this, we proceed as follows.
In each layer there exists a fixed maximum number of elements; this follows from
the geometric assumptions (D1) and (D3), applying for instance the arguments in
[38, Section 4]. Using geometric assumption (D2) (which guarantees a maximum
number of edges per each element), the definition of the local virtual space (10) and
the distribution of the local degrees of accuracy (59), it is straightforward to note that
for all K ∈ Tn the dimension of each local space V (K ) is proportional to p2K , with
p2K ≈ �2 for K ∈ L�.

Recalling again (59), we can now compute a bound for the dimension of the local
space, viz. the number of the degrees of freedom:

N �
n∑

�=0

�2 ≤ n
n

max
�=0

�2 = n3,

where we stress that we are using that in each layer there is a fixed maximum number
of elements. The result follows from Poincaré inequality. ��

5.5 Extension to more general problems

The very same analysis performed in the foregoing sections can be generalized and
applied to general elliptic problems. The VE approximation of such problems was
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firstly introduced in [13] and it bases on the existence of local L2 projectors Π0
pK on

spaces of polynomials of degree pK and not pK − 2 as required in our framework.
A straightforward way for enabling the computation of these projectors consists in

replacing the definition of local spaces V (K ) in (10) with the following:

V (K ) :=
{
vn ∈ H1(K ) | Δvn ∈ PpK (K ) and vn ∈ B(∂K )

}
, (63)

where we recall that the space B(∂K ) is defined in (9).
Doing so, the present theoretical analysis would extend easily, but the dimension

of the local and global spaces would increase without implying any gain in the rate of
convergence of themethod. A possible way to overcome this increase of the dimension
is to follow the approach in [13] and, more precisely, using the so-called enhancing
technique introduced in [2] which allows to remove the additional degrees of freedom
introduced in definition (63) and keeping the computability of projectorsΠ∇

pK on each
K ∈ Tn . The resulting VE spaces go under the name of enhanced spaces.

We highlight that we performed some numerical tests employing such enhanced
spaces and computing the local discrete right-hand sides as:

( fn, vn)0,K =
∫

K
Π0

pK f vn . (64)

The numerical results obtained using (64) are comparable to those presented in Sect. 6
where we considered the standard definition (23). Nonetheless, we stress that a theo-
retical analysis of VEM when employing enhanced spaces has not been investigated
yet.

6 Numerical results

We show here numerical experiments validating Theorem 3. Let u, the solution of (6),
given by the classical benchmark

u(r, θ) = r
2
3 sin

(
2

3

(
θ + π

2

))
, (65)

on the L-shaped domain:

Ω = [−1, 1]2\[−1, 0]2. (66)

6.1 Tests on different meshes

We consider sequences of the meshes depicted in Fig. 1 and we consider two different
choices for the degree of accuracy distribution p. As a first selection, we pick on all the
elements a constant local degree of accuracy which is equal to the number of layers,
i.e. p = (n + 1, n + 1, . . . , n + 1). As a second selection, we pick pK as in (59),
with μ = 1, μ being the parameter introduced for the construction of the vector of the
degrees of accuracy. In Figs. 2, 3 and 4, the numerical results are shown.
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Fig. 2 Error |u − Π∇
p un |1,Tn employing the meshes in Fig. 1, σ = 1

2 . Left: the degree of accuracy is
uniform and equal to the number of layers. Right: the degree of accuracy is varying over the mesh layers,
μ = 1 in (59)
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Fig. 3 Error |u − Π∇
p un |1,Tn employing the meshes in Fig. 1, σ = √

2 − 1. Left: the degree of accuracy
is uniform and equal to the number of layers. Right: the degree of accuracy is varying over the mesh layers,
μ = 1 in (59)
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Fig. 4 Error |u−Π∇
p un |1,Tn employing the meshes in Fig. 1, σ = (

√
2−1)2. Left: the degree of accuracy

is uniform and equal to the number of layers. Right: the degree of accuracy is varying over the mesh layers,
μ = 1 in (59)
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On the y-axis, we plot a log scale of the relative energy error between u, defined in
(65), and the energy projection Π∇

pK , defined in (19a), (19b), of the solution un of the
discrete problem (16), i.e.

∣∣∣u − Π∇
p un
∣∣∣
1,Tn

:=
√√√√
∑

K∈Tn

∣∣∣u − Π∇
pK un
∣∣∣
2

1,K
. (67)

where we recall that Π∇
pK is defined in (19a) and (19b).

On the other hand, in the x-axiswe plot the cubic root of the number of the degrees of
freedom of the relative virtual space. The reason for choice (67) is that it is not possible
to compute the true energy error since virtual functions are not known explicitly.

We consider the behaviour of the error with three different σ , grading parameter,
namely σ = 1

2 ,
√
2 − 1, (

√
2 − 1)2 and we compare the three types of meshes. In

particular, we denote by mesh a), mesh b) and mesh c) the meshes depicted in Fig. 1
(left), (center) and (right) respectively.

As mentioned previously, the sequence of meshes in Fig. 1 (right) does not satisfy
assumptions (D1) and (D4). Nevertheless, the expected exponential convergence rate
is attained in all cases and for all geometric parameters σ .

6.2 A comparison between hp FEM and hp VEM

We want now to show a comparison between the performances of hp (quadrilateral)
FEM and hp VEM. We stress that an analogous of Theorem 3 holds for hp FEM, see
e.g. [47]. We consider again the benchmark with known solution (65) and we consider
the quadrilateral mesh in Fig. 5. In the following we denote suchmesh with d) whereas
we recall that we denote by (a), (b) and (c) the meshes depicted in Fig. 1 (left), (center)
and (right) respectively.

In particular, we pick in both cases pK as in (59) for all K ∈ Tn , with μ = 1. We
discuss the case of sequences of meshes with grading parameter σ equal to 1

2 ,
√
2− 1

and (
√
2 − 1)2.

Since we cannot compute the true energy error with the VEM (it is not computable
since functions in the virtual space are not known explicitly), in order to compare the
two methods, we investigate the L2 error on the skeleton En (it is computable in all
cases a),. . . ,d), since also the virtual functions are polynomials on En), i.e.

Fig. 5 Mesh used for the hp
FEM
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Fig. 6 hp FEM versus hp FEM. L2 error on the skeleton ‖u − un‖0,En employing different sequence of

meshes and different parameters σ . Left: σ = 1
2 , middle: σ = √

2 − 1, right: σ = (
√
2 − 1)2, linearly

varying over the mesh layers degrees of accuracy μ = 1 defined in (59)
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Fig. 7 Error |u−Π∇
p un |1,Tn for hpVEMand error |u−un |1,Ω for hp FEM, employing different sequence

of meshes and different parameters σ . Left: σ = 1
2 , middle: σ = √

2 − 1, right: σ = (
√
2 − 1)2, linearly

varying over the mesh layers degrees of accuracy μ = 1 defined in (59)

‖u − un‖0,En

and we postpone the comparison between H1 errors later.
The results are shown in Fig. 6, where the hp version of VEM is applied to meshes

(a), (b) and (c), while the hp version of FEM is applied to mesh (d).
It is possible to see that there is not a preferential choice; for instance, hp VEM

performs better than hp FEM when σ = 1
2 , they perform almost the same when

σ = √
2 − 1, performs much worse when σ = (

√
2 − 1)2.

In this sense, we can say that the two methods are comparable; nonetheless, the
VEM leads to a huge flexibility in the choice of the domain meshing which is not
available in standard H1 conforming FEM.

Webelieve that, in order to really see amarked advantage of hp-VEMover hp-FEM,
more complex situations need to be addressed. This may involve, for instance, com-
plex geometries (where polyhedral meshes can do a better job), hp-adaptivity (where
again there is more refinement freedom) or more involved problems (Discrete Fracture
Network, crack propagation, Fluid Structure Interaction, etc.). At the present stage,
on the Laplace problem on academic examples, what we can display is the flexibility
in refining near corners. Note that hp-adaptivity is currently under investigation.

Next, in Fig. 7, we compare the H1 error of VEM defined in (67) with the stan-
dard H1 error of hp FEM employing the same meshes and discretization parameters
discussed for the comparison of L2 errors on the skeleton.
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The results are comparable to those related to the L2 error on the skeleton and more
precisely the two method display similar behaviours.

Remark 5 We have not discussed yet the choice that we perform for the polynomial
basis {qα}pK−2

|α|=0 which is dual to the definition of the internal degrees of freedom
defined in (11). In all the numerical experiments so far we employed the monomial
basis:

qα(x) =
(

x − xK

hK

)α

=
(
x − xK
hK

)α1
(
y − yK
hK

)α2

∀α = (α1, α2) ∈ N
2 with |α| ≤ p − 2. (68)

Such a choice is typical in VEM literature and was in fact introduced in the pioneering
works [10,12] since the implementation of the method under (68) turns out to be
simple.

Nonetheless, as firstly observed in [4], employing (68) entails a bad effect on the
condition number of the VEM stiffness matrix for high values of p. In order to avoid
such a ill-conditioning one may define local polynomial bases which are orthonormal
in L2 on each element, for instance obtained by employing a stable Gram–Schimdt
algorithm, e.g. as that presented in [9]. A deep investigation of this aspect can be found
in [41].
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Appendix

The aim of this first appendix is addressing the polynomial hp inverse estimate (32).

Theorem 4 Let T̂ be the reference triangle of vertices (0, 0), (1, 0) and (0, 1). Let
bT̂ be the cubic bubble function associated with T̂ . Let q ∈ Pp(T̂ ), p ∈ N. Then:

∫

T̂
bα

T̂
q2 ≤ c(p + 1)2(β−α)

∫

T̂
bβ

T̂
q2, (69)

where c is a positive constant independent on p.

Proof The proof is a modification of that in [42, Theorem D2]. For a complete proof
in the case α ≥ 0, see [15, Theorem A.3]. ��
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Lemma 8 Let T be a triangle and let bT be the associated cubic bubble function. Let
q ∈ Pp(T ), p ∈ N. Then:

|qbT |1,T ≤ c
p + 1

hT
‖qb

1
2
T ‖0,T ,

where c is a positive constant independent on hT and p, hT = diam(T ).

Proof The idea of the proof is presented in [42, Theorem D2]. For a complete proof,
see [15, Lemma A.4]. ��
We are now ready for the inverse estimate involving the H−1 norm of polynomials.

We highlight that such result, namely Theorem 5, has been firstly proven in [35,
Theorem 3.9]. It is worth to mention that the work [35] is devoted to prove hp polyno-
mial inverse estimates on (possibly) bad-shaped domains; this keeps the topic at a very
general level. On the other hand, this work provides rather technical proofs that can
be in fact eased when employing regular triangles/polygons. In particular, the proof
of Theorem 5 provided here turns out to be simpler than the one in [35, Theorem 3.9].

Theorem 5 Let K ⊆ R
2 be a polygon. Assume that there exists Tn(K ) subtriangula-

tion of K such that hK ≈ hT for all T ∈ Tn(K ), where hω = diam(ω), ω ⊆ R
2. Let

q ∈ Pp(K ) with p ∈ N ∪ {0}. Then:

‖q‖0,K ≤ c
(p + 1)2

hK
‖q‖−1,K ,

where ‖q‖−1,K := ‖q‖(H1
0 (K ))∗ .

Proof Let bK be the piecewise bubble function, defined on each T ∈ Tn(K ) as the
local cubic bubble function bT introduced in Lemma 8. Then:

‖q‖−1,K = sup
Φ∈H1

0 (K ),Φ �=0

(q, Φ)0,K

|Φ|1,K ≥ (q, q bK )0,K

|q bK |1,K = ‖q√
bK ‖20,K

(∑
T∈Tn(K ) |q bT |21,T

) 1
2

.

(70)

Using now Lemma 8, (70) and the hypothesis that hK ≈ hT for all T in the subtrian-
gulation of K , we obtain:

‖q‖−1,K � minT∈Tn(K ) hT
p + 1

‖q√bK ‖0,K � hK
p + 1

⎛

⎝
∑

T∈Tn(K )

‖q√bT ‖20,T
⎞

⎠

1
2

. (71)

Finally, we apply Theorem 4 with α = 0 and β = 1 and we get:

‖q‖−1,K � hK
(p + 1)2

⎛

⎝
∑

T∈Tn(K )

‖q‖20,T
⎞

⎠

1
2

= hK
(p + 1)2

‖q‖0,K .

��
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