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ABSTRACT: The purpose of this paper is to provide a new regression model for
multivariate continuous variables with bounded support, by taking into consideration
the flexible Dirichlet, which is a special mixture of Dirichlet distributions.
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1 Introduction

When modeling continuous variables restricted to the interval (0, 1), such as
rates or proportions, a recent branch of research favors staying in the sim-
plex, namely the space whose elements are unit-sum constrained vectors with
strictly positive components. For the univariate case, Ferrari & Cribari-Neto,
2004, introduced a regression model for a Beta-distributed response, and re-
cently Migliorati er al., 2017a, proposed a special beta mixture regression
model which provides great flexibility and a good fit in presence of outliers
and in case of heavy-tailed responses. For the multivariate case, a first attempt
to define a Dirichlet regression model dates back to Campbell & Mosimann,
1987. Later, Hijazi & Jernigan, 2009, extended such a model and Maier, 2014,
illustrated an R package that implements a GLM-based approach to it.

Here, we propose a new multivariate regression model based on the flexible
Dirichlet (FD) distribution (see Ongaro & Migliorati, 2013, and Migliorati
et al., 2017b), which is a special mixture of Dirichlet containing the latter as
an inner point. The greater flexibility and richer parametrization of the FD
over the Dirichlet lead to a promising model, as it emerges from simulations
and real data applications.

2 The Flexible Dirichlet Distribution

First, let us briefly recall that the Dirichlet distributed vector {Y},...,Yp} ~
D(a), (0<Y;<I1forall j=1,...,D and Z?zle = 1) has density function



(df) equal to:
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where 0y,...,0p >0and " = Z?:l oj. An alternative parametrization, use-
ful for regression purposes, is the mean-precision-based one, i.e.:
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with 0 < u; <1, ijzl uj =1 and ¢ > 0. Here each variable is marginally beta
distributed: Y; ~ Beta(u;¢, (1 — u;)¢) with the first two moments equal to:
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which clearly justify why ¢ can be interpreted as a precision parameter (Ongaro
& Migliorati, 2013). The reparametrized df of the Dirichlet can be written as:
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Let us now consider a FD-distributed vector {Y1,...,Yp} ~ FD(a,p,T) (On-
garo & Migliorati, 2013; Migliorati et al., 2017b) with df
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where o;; >0,0< p; <1(j=1,...,D),¥;pj=1,1>0,and 0" =¥? ;.
The FD distribution can be conveniently written as a finite mixture of Dirichlet
distributions:

D
fro(y:0,p,7) = Y prfo(y: o) 3)
h=1

where O, = 0L+ Te;,, and ey, is the canonical vector of 0’s except for the A—th el-
ement which is 1. The special mixture structure of the FD distribution ensures
that each component is distinguishable, avoiding the label switching prob-
lem. Furthermore, the FD distribution is identifiable in a strong sense and,
under weak conditions, has a bounded likelihood, unlike general mixtures (see
Migliorati et al., 2017b, for details and proofs.)



3 The Flexible Dirichlet regression model

In order to define a FD regression (FDR) model, a mean-precision reparameter-
ization is required. First, we reparameterize each component of the Dirichlet
mixture (3) according to the alternative parametrization (1). Having defined
0=01+ -+0op+Tand w= %, each component has mean vector equal to
A, = % + wey, and precision parameter equal to ¢. Under this reparameteri-
zation, the FD distribution can be described as a mixture of reparameterized
Dirichlet:

D
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Furthermore, the mean vector of the FD is obtained thanks to its mixture rep-
resentation (4):
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¢

This entails a better understanding of the special mixture structure of the FD
distribution. The Dirichlet-distributed components have a common precision
parameter and different means such that the i-th element of the mean vector of
the i-th component is higher than the corresponding element of the other mean
vectors. Though, note that under this new parametrization, a constraint exists
between u;, w and p;. Therefore, being 0 < g—i <1,weget0< ”jl%pviw < 1.
Since u; will be modeled as a function of the covariates, it should be free to
assume values in (0,1). So the constraint can be referred to w by normalizing

it such that:
w
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Under this reparameterization u;, p; and w* are free to move on (0,1) while
¢ > 0, so that the new parametric space is variation independent. Such as-
pect will prove to be useful both in terms of (Bayesian) estimation issues and
modeling flexibility.

Let us now consider a vector of n independent multivariate responses Y/ =
(Y1,...,Yi,...,Y,) such that each Y/ = (Y;1,...,Yip), fori=1,...,n, is a
composition in the simplex. The FD regression model under the parametriza-
tion (u;,p,w,0) has to take into account the constraint Z?:l uij =1, for j =
1,...,D. In this regard, we may adopt a multinomial logit strategy (Agresti &
Hitchcock, 2005) by estimating the first j = 1,...,D — 1 parameters, having

w =




fixed D as the baseline category:
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with B, = 0. By substituting (6) into each
Mijn = pij — pjwij +wijejn, h=1,....D (7
where w;; = w* min;{ min %, 1;_’;;’ }, we observe that each element of the

mean vector of the A-th term of the mixture is a piecewise increasing linear
functions of the y;;, varying in (0, 1).

The estimation problem has no explicit solution, thus a Bayesian approach
to inference seems an appropriate choice. Since the FDR model is a mixture
model, the allocation of data to each mixture component is unknown result-
ing in an incomplete data problem, for which data augmentation and Gibbs
sampling are well suited. In this regard, we implemented the Gibbs sampling
algorithm through the BUGS software in order to generate a finite set of val-
ues from the posterior distribution, and we further analysed the results through
the R software. We iterated the algorithm until convergence by burning-in the
first B simulated values, to avoid the influence of the chain’s initial values.
Furthermore, to properly treat autocorrelations, we also set a thinning interval,
say L, such that only the first generated values in every batch of L iterations
were kept. To verify the convergence of the algorithm, we checked for several
statistical tests (Geweke and Heidel diagnostics for stationarity and Raftery di-
agnostic for autocorrelation, to name a few). To elicit the prior distribution,
we assumed a priori independence, which is feasible in our context since the
parametric space is variation independent and, therefore, the joint prior distri-
bution can be factorized. We decided to adopt flat priors, so as to generate the
minimum impact on the posteriors (see e.g. Albert, 2009). With respect to the
regression parameters, we selected the usual multivariate normal prior with
a diagonal covariance matrix with “large” values for the variances. Further-
more, we chose a gamma distribution for ¢, a non-informative uniform prior
for w and a non-informative Dirichlet for p ~ Dir(1).

4 Illustrative Application

To illustrate the FDR model we provide an application concerning n = 39 sed-
iments (sand, silt and clay) collected in an Arctic lake (Aitchison, 1986). We



investigate how the composition depends on the water depth by estimating a
regression model as in (6). We implemented the Dirichlet regression model
and the FDR model for the vector of means in both cases by simulating an
MCMC chain of length 30000 and discarding the first half iterations.

Bo B1 P o w
FD (1.704,1.149) (-5.215,-1.381) (0.632,0.055,0.312) 34.304 0.534
Dir (1.689, 1.258) (-5.241, -1.588) 13.322

Table 1. Estimates of the parameters of the FDR model and of the Dirichlet regression
model for the mean.

From Figure 1 we observe that the FDR model and the Dirichlet one per-
form similarly in terms of estimation of the mean vector. However, the flexi-
bility of the FD induces a better adaptation also to outliers observations, as it
emerges from the cluster means A, (7).

Figure 1. Scatterplots of water depth vs sand (black), silt (red) and clay (blue). Re-
gression lines of the u; for the Dirichlet (dotted lines) and for the FD regression model
(solid lines). In dashed the regression lines Ay, for the FDR model.

The well-known bayesian comparison criteria, namely DIC, EAIC and
EBIC (Spiegelhalter et al., 2002), confirm the better fit of the FDR model
with respect to the Dirichlet regression model (see Table 2).

DIC EAIC EBIC
FD -218.1094 -204.4153 -189.4433
Dir -145 -140.2061 -131.8883

Table 2. Comparison Criteria.
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