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Abstract

MicroRNAs (miRNAs) are small non-coding RNA molecules that have an important role in
a wide range of biological processes, since they interact with specific mRNAs affecting the
expression of the corresponding proteins. The role of miRNA can be deeply influenced by
Single Nucleotide Polymorphisms (SNPs), in particular in their seed sites, since these variations
may modify their affinity with particular transcripts, but they may also generate novel binding
capabilities for specific miRNA binding sites or destroy them. Several computational tools for
miRNA-target site predictions have been developed, but the obtained results are often not in
agreement, making the study the binding sites hard, and the analysis of SNP effects even harder.

For these reasons, we developed a web application called Rank miRNA, which allows to
retrieve and aggregate the results of three prediction tools, but also to process and compare
new input miRNA sequences, allowing the analysis of how variations impact on their function.
Therefore, our tool is also able to predict the impact of SNPs (and any other kind of variations)
on miRNA-mRNA binding capability and also to find the target genes of (potentially new)
miRNA sequences.

We evaluated the performance of Rank miRNA on specific human SNPs, which are likely to
be involved in several mental disorder diseases, showing the potentiality of our tool in helping
the study of miRNA-target interactions.
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1 Introduction

Numerous Single Nucleotide Polymorphisms (SNPs) associated with complex diseases have
been identified by Genome-Wide Association Studies (GWAS), which are large-scale analysis of
specific DNA loci of participants, usually divided in people with a disease (cases) and similar
people without diseases (controls), to understand the association of particular genotypes to
a specific pathology. However, few of these SNPs have explicit biological functions, since
determining the effects of disease-associated SNPs is a complex problem [1, 2].

A possible solution is to correlate the expression of genes/proteins to different genotypes, using
a technique called expression Quantitative Trait Loci (eQTLs). This approach is particularly
suitable to interpret the results of genome-wide association studies, with thousands of variants in
association with complex traits and diseases, most of which are non-coding and therefore difficult
to correlate to causal genes. While several eQTL studies showed that disease-predisposing
variants often affect the expression levels of nearby genes, which are called cis-eQTLs, recent
studies have also identified trans-eQTLs [3] showing unpredictable remote consequences of some
variants. Moreover, techniques relying on Chromatin Conformation Capture can be very useful
to explain the functional mechanisms behind these long-range interactions [4].

Relying on these approaches, recent studies indicated that SNPs within the 3’UTR regions of
susceptibility genes could affect complex traits/diseases, by affecting the function of microRNAs
(or miRNAs). These 3'UTR SNPs are functional candidates to explain the association of
particular genotypes with specific diseases, and therefore they are of great interest in genomics
and medicine. For example, a large meta-analysis revealed that specific miRNAs are differentially
expressed in brain and cerebrospinal fluid of patients with respect to controls [5]. At the same
time, it has been demonstrated that SNPs in the sequence of a miRNA largely influence its
binding capability to specific mRNA, impacting its regulatory function [6].

Although some methods have been implemented to analyze the impact of these variations
on miRNAs-mRNAs bindings (see [7, 8]), they typically rely on a single tool, which analyze
how the score of a miRNA-target interaction changes, according to a given genetic variation.
Unfortunately, by comparing computational results with experimental validations, we can observe
that these tools produce a large number of false positive predictions [9]. This fact suggests
that creating a consensus between different approaches can be very useful to reduce these false
positive results.

Among the most known integration tools, miRGator [10] and ExprTarget [11] try to perform
this task by exploiting functional analysis and genome annotation, to better characterize
the identified targets, and to allow a more suitable discrimination of the predicted list of
targets. Moreover, miRGator also provides a miRNAs expression profile by importing expression
experiments from the GEO databank [12]. Analogously, expression profiles are reported in
mESAdb [13] and miRex [14]. The MAGIA [15] tool allows both to retrieve predictions as union
or intersection of results produced by TargetScan [16, 17], miRanda [18, 19], and PITA [20], and
to integrate mRNA expression values with a miRNA expression score, in order to elucidate an
inverse correlation, thus hypothesizing new miRNA-target couples.

Anyway, none of these tools deals with the impact of variations in the nucleotide sequence
that could affect the miRNA-target pairing. Some tools are available to predict the impact of
SNPs in the mRNA sequence, e.g. MirSNP [7] and PolymiRTS [21], but they rely on a single
algorithm and do not consider SNPs in the miRNA (but only in the mRNA). Other approaches
allow to predict the pairing capability of a user-defined miRNA sequence, but they rely on a
single algorithm and do not allow any comparison [22, 23], or other methods exploit machine
learning approaches to integrate different predictions [24].
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For this reason, we developed a publicly available online database and web application
called Rank miRNA, which allows to predict the impact of SNPs on the pairing capability of
miRNA-mRNA binding sites and also to find the target genes of (potentially new) miRNA
sequences. More precisely, Rank miRNA allows to retrieve and aggregate in a consensus ranked
list, the prediction results of three prediction tools: miRanda [18, 19], TargetScan [16, 17], and
RNAhybrid [25]. This task is accomplished starting from a user-defined input miRNA sequence,
on which its target interactions are computed with each of the considered tool, and then their
results are aggregated into a ranked list, so that new variants of the miRNA sequences can be
easily tested. Therefore, the real strength of the web application is the possibility of comparing
the (aggregate) prediction results of two given input miRNA sequences, so that the impact of
variants in the sequence on the target predictions can be obtained and evaluated.

Rank miRNA is freely accessible at http://155.253.6.106/rankmirna for testing purposes.

2 Background

MicroRNAs (miRNAs) are small non-coding RNA molecules of ~ 22 nucleotides that primarily
mediate post-transcriptional gene silencing processes in animals [26, 27]. MiRNAs inactivate
specific mRNAs and interfere with the translation of the encoded proteins [28]. In mammals,
miRNAs are predicted to control the activities of ~ 50% of all the protein-coding genes [29].
As key post-transcriptional regulators, miRNAs have an important role in a wide range of
biological processes, including cell proliferation, differentiation, apoptosis, and metabolism [26,
27). Evidences indicate that miRNAs are also involved in the pathogenesis of complex diseases,
such as cancer and mental disorders [30, 29].

Complementarity of bases 2 — 8 of the miRNA (called the seed site) is important for the
miRNA-mRNA binding [31, 32]. MiRNAs are key regulators of gene expression and, therefore,
SNPs in their seed sites may create, as well as destroy, miRNA binding sites, and further
affect phenotypes and disease susceptibility. Identifying these seed-site SNPs could help in the
exploration of the molecular mechanism of gene dysregulation. In addition, genetic variants
in miRNA genes may also have important roles by affecting the miRNA maturation, which
may be involved in disease susceptibility [33]. Certain polymorphisms in miRNA genes have
been found to be associated with various complex diseases, including cancers, mental diseases,
cardiomyopathy, and asthma.

It is a challenging problem to identify miRNAs on experimental basis, because of their
limited expression, their structural/sequence variability during miRNA maturation process, and
also considering the tissue specificity of their control mechanism [34]. Moreover, it must be
pointed out that a miRNA can affect the expression of several genes (up to hundreds of different
transcripts), probably in a tissue specific manner, and experimental validation is needed to
corroborate their biological effect. The reduction of the target protein in miRNA transfected
cells can validate the existence of a specific miRNA-target interaction. This technique is very
complex and costly to achieve, thus limiting the number of experiments that can be performed.

Therefore, computational predictions represent a very important approach to screen possible
targets to be experimentally tested. More precisely, the interactions between a miRNA and its
mRNA target sites can be considered from a thermodynamic, probabilistic, and evolutionary
(or sequence-based) point of view. Several computational tools [35] for miRNA-target sites
prediction have been developed in the last years, using one or more of the aforementioned
aspects.

Among the most known prediction tools for miRNA-targets recognition are miRanda [18, 19],
TargetScan [17, 16], and RNAhybrid [25]. miRanda performs three sequential steps: (i) sequence
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matching to find the maximal local complementarity between the mature miRNA and the
putative target site; (ii) free energy calculation to estimate the strength of the potential RNA
duplex; (iii) filtering of predicted targets on the basis of evolutionary conservation. TargetScan
is based on two hypothesis: (i) highly conserved miRNAs are more involved in regulation, and
(ii) membership in large miRNA families leads to a higher number of existing targets. After
the matching step (allowing wobble pairs and stopping at the first mismatch encountered),
thermodynamical evaluation of the RNA duplex is performed. Finally, RNAhybrid predicts the
target genes based on free energy calculation: collects the energetic most favorable structures,
normalizes them, and then uses estimated p-values to determine the significance of each predicted
binding site.

3 Method

We developed a web application that tries to integrate the predictions of the aforementioned
tools on miRNA-target interactions of the given input miRNA sequences. This feature consists
of running the three tools on a given input sequence of a miRNA, and then integrating the
lists of predicted target genes with a procedure based on list re-ranking. Figure 1 presents an
overview of the result aggregation procedure employed in the Rank miRNA tool.

miRNA Target Genes

v

miRNA|Target |ScoreR |miRNA|Target|ScoreM |miRNA|Target |ScoreT|

List Aggregator

miRNA|Target|ScoreR|ScoreMScoreT

Figure 1: Workflow of the rank aggregation procedure. Starting from miRNA and genes
sequences, the predictions of their interactions are computed with TargetScan, miRanda, and
RNAhybrid. Then, the (ranked) result lists are aggregated employing a median-based procedure.

The integration of the results obtained with different prediction algorithms is performed
by taking advantage of a previously published approach based on list re-ranking [9], which
overcomes the mere intersection or union of the results provided by some of the previously
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algorithms. The method employed in this work is a further improvement, obtained by replacing
the re-ranking algorithm, from the simple Borda count to the median rank aggregation.

More formally, let E' = {e1,ea, - ,e,} be the set of elements to be ranked, and let S, =
{01,092, -+ ,01} be aset of k different ranks of the elements in E, that is, a (ordered) permutation
of its elements. We denote by o;(e;), with 1 <4 < k and 1 < j < n, the position of element
e; (i.e. its rank) in the ordered permutation o;, and o;(e;) < o;(e,) means that o; ranks the
element e; above element e, .

In our approach, we employ an heuristic approach to aggregate the different ranking lists,
based on the median. More precisely, the new method computes the median position (rank) of
each interaction between miRNA and target obtained from the different prediction algorithms,
and creates the “best” miRNA-target list. Formally, given the set Sy = {01,092, , 0%} of the
different rankings of the elements of E, we compute u'(e; = median(o1(e;), o2(e;), -+, 0x(€;)),
with 1 < i < n, and we order the permutation u’ to obtain the final aggregate rank pu.

Consider the following example in which we have three different rankings of the elements
E ={a,b,c,d}, that is: o1 = (a,b,¢,d), 02 = (b,a,d,c), and o5 = (b, a,¢,d). Then, we compute
' (a) = median{1,2,2} = 2, ¢/ (b) = median{1,1,2} = 1, p/(c) = median{3,3,4} = 3, and
' (d) = median{3,4,4} = 4, so that the resulting (ordered) ranking is u = (b, a, ¢, d).

This re-ranking algorithm guarantees that the new list is as close as possible to all the
individual ordered lists provided by the considered prediction tools, according to the Spearman
footrule distance. This latter measure is the sum of the absolute distances between the ranks of
all the unique elements from all the original lists, and the aggregated one. Formally, given a set
of elements E = {ey,ea, - ,e,} and two rankings o and p of its elements, the footrule distance
F' is defined as:

n
Flo,n) =3 lo(e:) — (e
i=1
Recalling the previous example, F(o1, 1) = |1 — 2|+ |2 — 1| + |3 — 3| + |4 — 4] = 2, that is, the
first two elements are switched, changing one position for each of them.

The median rank aggregation approach provides better results with respect to those obtained
with the Borda count approach, still allowing to order the final miRNA-target list. Moreover, it
guarantees a 3-approximation of the Spearman footrule optimal aggregation, with respect to the
5-approximation of the Borda approach.

As shown in Figure 1, we apply this median-based procedure to aggregate the lists of
results obtained with the three different tools for predicting miRNA-target interactions, namely
TargetScan, miRanda, and RNAhybrid.

In addition to the possibility of computing the aggregated results for a given input miRNA
sequence, we also developed a procedure to compare the predictions on two of them. The idea
is to allow the possibility of evaluating the impact of variants in the nucleotide sequence of a
miRNA on its target genes. In fact, to help in the identification of putative SNPs that can
influence the binding of miRNA to the target 3'UTR of a gene, we designed an integrative

approach which is able to estimate the impact of SNPs that are located in miRNA target sites.

More precisely, to compare the predictions on the two miRNA sequences, say s; and ss, Rank
miRNA runs the same procedure described above to aggregate the results of the three considered

tools on a single sequence, and then compares the aggregated result lists, that is, ps, and ps,.

To do this, starting from the aggregated result lists computed for each of the two sequences s,
and ps,, Rank miRNA extracts:

e interactions present only in pg,: target interactions of s; that disappear in ps,;

e interactions present only in p,: new target interactions created by ss;
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o differences of predictions in s, w.r.t. the same ones in p,,: variations of the scores of the
target interactions present in both the lists.

In details, the idea is to compare similar miRNA sequences, like those having a SNP variation,
in order to assess the differences in the predicted target genes. For this reason, we focused on
the target interactions present in only one list, that is, those only found when computing the
results of s that disappear in so, and the ones that are created by the second sequence so but
are not present among the results of s;. Moreover, we also highlight the variations of the results
obtained considering s; w.r.t. the ones obtained for the s, sequence. In this case we quantify
the variations of the scores of the considered tools: Targetscan, miRanda, and RNAhybrid.

We implemented the Rank miRNA web application using Java servlet, and embedded the
code into JSP pages, which allow a dynamic visualization of the results as well as an easy way
to interact with them.

4 Experimental Evaluation

In order to test the capability of Rank miRNA in evaluating the effect of specific miRNAs variants
over the regulation of gene expression, by considering the alterations of miRNAs-mRNAs
bindings, we searched for known examples of SNPs impacting the regulatory effect of miRNAs.

It should be noticed that the frequencies of SNPs in putative seed-matching regions are lower
compared to the overall SNPs distribution in the reference human genome, suggesting a possible
negative selection and, thus, a potential functional biological role of such genetic variants [36].

However, by considering the Single Nucleotide Polymorphism database (dbSNP build 137),
we identified few variants within miRNA seed regions (see Table 1) known to have a biological
impact on neurological disease developments.

miRNA id. ‘ SNP id. Chr. Position Strand Seed Variation
hsa-miR-146a-3p | rs2910164 5 159912418 + CU[C/G]JUGAA
hsa-miR-221-5p ‘ rs113054794 X 45605666 - CCU[G/U]GCA
hsa-miR-128-1-5p ‘ rs117812383 2 136422988 + GGGGCC[G/A]
hsa-miR-145-3p ‘ rs190323149 5 148810267 + GAUU[C/U|CU
hsa-miR-124-3p ‘ rs34059726 20 61809907 + AA[G/U]GCAC

Table 1: Tested miRNA. The first column reports the id. of the considered miRNA, while the
remaining five columns correspond to the tested SNPs, with their details: id., chromosome,
position, strand, and the nucleotide variation. The coordinates (chromosome, position, and
strand) are referred to the Human Genome version 19 (hg19).

These variants can significantly affect the regulation of gene expression exerted by miRNAs
and, thus, are potential candidates for gene association studies. For instance, SNP rs2910164
in hsa-miR-146a-3p was found to be associated with Alzheimer, and interestingly a specific
genotype of this SNP (GQG) is correlated to higher expression of inflammatory proteins [37].

Relying on these test cases, we tested the capabilities of Rank miRNA in identifying the
different binding affinity of miRNAs, considering the number of novel binding sites created and
destroyed. Moreover, for those miRNA-target associations still present in both the lists, we
evaluated the changes in the binding affinity.
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* joblD: 1485945089911
* miRNA Sequence1: CCUCUGAAAUUCAGUUCUUCAG
* miRNA Sequence2: CCUGUGAAAUUCAGUUCUUCAG
« organism: hg19
Download Full Sequence1 Result file (CSV format)
Download Full Sequence2 Result file (CSV format)
Interactions Changed
Interactions for Sequence1 changed when considering Sequence2.
Download Interactions-modified Result file (CSV format)
Search:
Showing page 1 of 2
Rank New_Rank Name Gene_Name Chrom Strand Start End Miranda_Start Miranda End Miranda Score TScan Start TScan End TScan Score RNAhybrid Start RNAhybrid_Score
29 17 T NM_001126181 NRGN chri1 + 124615621 124617102 235 259 -25.26 (-25.26) null null null (null) 236 -27.4(-27.4)
29 17 ? NM_006176 NRGN chri1 + 124615621 124617102 235 259 -25.26 (-25.26) null null null (null) 236 -27.4 (-27.4)
50 830 l NM_001079818 ITGA6 chr2 + 173368981 173371181 89 109 -26.3 (-21.79) 102 108 -0.196 (null) null null (null)
56 119 ‘ NM_002547 OPHN1 chrX - 67262186 67268265 635 656 -28.61(-24.1) 649 655 -0.1 (nul) null null (null)
61 585 ‘ NM_003137 SRPK1 chré - 35800811 35803080 879 900 -26.85 (-22.34) 893 899 -0.04 (null) null null (null)
63 105 ‘ NM_001193421 TSHZ2 chr20 + 51873103 52111869 62836 62858 -29.52 (-25.01) 62851 62858 -0.018 (null) null null (null)
63 105 ‘ NM_173485 TSHZ2 chr20 + 51873103 52111869 62836 62858 -29.52 (-25.01) 62851 62858 -0.018 (null) null null (null)
78 830 ‘ NM_000210 ITGAS chr2 + 173366608 173371181 2462 2482 -26.3 (-21.79) 2475 2481 0.002 (null) null null (null)
84 459 ‘ NM_198560 LHFPL4 chr3 - 9540045 9543894 2499 2522 -27.31(-22.8) 2515 2521 0.042 (null) null null (null)
133 94 T NM_015995 KLF13 chr1s + 31664503 31670102 4435 4456 -25.5 (-26.14) null null null (null) null null (null)

Display 10 jrecords per page

Figure 2: Example of results provided by Rank miRNA. Here, the table showing the interactions
of hsa-miR-~146a-3p found in both the variants of SNP rs2910164 is reported. Arrows in the
second column highlight if the new interaction obtained for the second sequence has a lower
(down) or higher (up) rank w.r.t. that of the first sequence.

The web site computes the predictions of both the input sequences, using the three tools
described above, i.e. Targetscan, miRanda, and RNAhybrid. Then, it visualizes three tables with
the achieved results. In this experimental setup, we decided to report the first 2000 high-ranked
miRNA-mRNA interactions, i.e. those having the lowest median value, which are used for
the comparison and split into the aforementioned tables. The motivation for this choice is
that the RNAhybrid tool tends to report several results, that could lead in some cases to an
overestimation of the predictions. For this reason, we selected from each aggregated list those
best interactions, and we compared the difference between them, to highlight the results that
are most affected by the SNP variants.

The main result table highlights genes that are targeted by both the input sequences
(Figure 2), showing the changes in the list, according to the common schema in which a “down
arrow” means a worst affinity, while an “up arrow” a better affinity.

Moreover, genes that, according to the achieved predictions, are targeted by the first (wild
type) miRNA but not by the second (variated) sequence (destroyed binding sites), are identified.
Vice versa, also genes that are not targeted by the wild type miRNA, but that seems to be
controlled by the variated form (new binding sites) are reported.

Results achieved on the test datasets show that SNPs in the seed region of miRNAs have a
huge impact in their ability to bind specific target genes (see Table 2), as testified by the large
number of different genes that each miRNA is able to bind with and without considering the
genomic variation.

By comparing the results with those in the literature, we can say that Rank miRNA is highly
sensitive and covers most experiments confirmed SNPs that affect the miRNA function [37].
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This makes Rank miRNA suitable to be combined by researchers’ with specific GWAS or eQTL
positive data sets to identify the putative miRNA-related SNPs from traits/diseases associated
variants.

Num. Interaction
miRNA id. Created Disappeared Modified

hsa-miR-146a-3p | 1981 1981 19
hsa-miR-221-5p | 1982 1982 18
hsa-miR-128-1-5p | 1521 1521 479
hsa-miR-145-3p | 1926 1926 74
hsa-miR-124-3p | 1991 1991 74

Table 2: Top-ranked 2000 results achieved in the comparison of the tested miRNAs. The first
column reports id of the considered miRNA. The second, third, and fourth columns represent the
number of miRNA-target interactions that are created, disappear, and are modified, respectively,
due to the presence of the SNP.

5 Conclusions

In this work we presented Rank miRNA, a web application able to analyze the impact of genomic
variations on miRNA-target interactions. Indeed, our tool offers the possibility to test the
potential interactions of new sequences and to compare the results obtained with two input
miRNA sequences. This allows the study of how variations, including but not limited to SNPs,
impact on the miRNA regulation capabilities. Our approach differs from other approaches
since it offers the possibility to combine target predictions from different tools, which allows
the reduction of false positive results. These combined features represent a real improvement
since, to our knowledge, no other tool allows to perform the same operations on a given miRNA
sequence(s).

This will make the study of the effects of specific nucleotide variations (e.g. SNPs) on the target
interactions easier. This is very important, since the identification of mRNAs binding alterations
as a consequence of genetic variations can help in the detection of important biochemical
pathways involved in the analyzed phenotype. In particular, a number of dysregulated miRNAs
have been reported to be associated with Alzheimer’s disease.

Now, we are working on the integration of other tools (such as PITA) in Rank miRNA to
make its predictions more robust, and we are also testing new algorithms to improve the list
aggregation procedure. For the future, we are planning to extend the set of operations done by
our tool and to improve its performance for the computation of the results and also to allow the
possibility of retrieving (aggregated) interactions by specifying a miRNA or Target identifier.
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