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Functional Connectivity

The statistical analysis of fMRI is increasingly common in neuroscience. Recently,
many studies on brain functional connectivity have been carried out which describe
how brain regions covariate, both in a resting state condition or in experimental.
The fMRI data analysis can be split into at lest three subsequent steps:

 

Functional Connectivity

Network Construction

Network Analysis

The pattern of functional connectivity is quantified through correlation among cou-
ples of brain regions.
Here we chose the Spearman’s rank correlation coefficient since it avoids any distri-
butional assumption on the data.
Then, the pattern of functional connectivity is summarized into a map of the brain
containing only significant signals among brain regions of interest.
From a statistical point of view, the determination of significant signals results in a
multiple testing problem.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure: From a correlation (covariance) matrix,
that captures the brain functional connectivity
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Figure: . . . To an adjacency matrix given by
means of a multiple testing procedure

Multiple Comparisons

Let us consider m simultaneous comparisons and the corresponding Spearman’s
coefficients r1, . . . , rj, . . . , rm; we are interested in the simultaneous testing of the
following hypotheses for each correlation parameter ρj, for j = 1, . . . ,m, corre-
sponding to rj,

H0 : ρj = 0 vs H1 = H0 : ρj 6= 0.
with a priori probabilities π0 = pr(H0) and π1 = pr(H1) = 1− π0.
The test statistic tj is

tj = rj√
1− rj2

√
n− 2 , j = 1, . . . ,m.

The corresponding m p-values are given by

pj = 2− 2Fn−2 (|tj|) ,

where Fn−2 is the Student’s cumulative distribution function (cdf) with n−2 degrees
of freedom.
We can define the same rejection region for each test, equivalently with respect to
the test statistic or its associated p-value,

{|rj| ≥ τ} = {pj ≤ γ}

where γ = 2− 2Fn−2

(√
(n−2)τ 2

1−τ 2

)
.

The τ parameter identifies the rejection threshold by which we constructed the
brain network: the higher the τ , close to 1, the more the resulting brain network is
conservative.
As τ increases, the number of links included in the brain network decreases.
A unified approach to identify a suitable threshold in brain networks construction
with a multiple comparison perspective does not yet exist. So, we propose a method
of threshold’s choice that controls for the probability of false discoveries and the
power of the comparisons and we provide an application of this method to real data.

Bayes False Discovery Rate (FDR) and Bayes Power (BP)

In the perspective of a brain network construction, we define the False Discovery
Rate and the Power as:

FDR(γ) = pr(H0 |pj ≤ γ ) = γπ0
F (γ)

,

BP (γ) = pr(pj ≤ γ
∣∣H0) = [1− FDR(γ)]F (γ)

1− π0
,

where F represents the p-values cumulative distribution function.

Empirical Bayesian Estimates

The cumulative distribution function of the p-values is estimated as

F̂ (γ) = # {pj ≤ γ}
m

,

which has expected value

E
[
F̂ (γ)

]
= γπ0 + BP (γ)π1,

The probability π0 is estimated conservatively through

π̂0(λ) = 1− F̂ (λ)
1− λ

,

which has expected value

E [π̂0(λ)] = π0 + 1−BP (λ)
1− λ

π1 ≥ π0.

When π̂0(λ) = 1, the estimate of the power is not yet well defined so we suggest
B̂P λ2(γ) = F̂ (γ) as a proper estimate for the power.

Balancing FDR and BP

To identify the optimal values of the tuning parameters λ1 and λ2 we had to:
• Bootstrap the p-values B times
• Calculate the Bootstrap versions of F̂DRλ1(γ) and of B̂P λ2(γ) over a range of
λ values

• Choose the tuning parameters λ1 and λ2 which minimize the MSEs of FDR
and BP , respectively:

λopt1 = arg min 1
B

B∑
b=1

{
F̂DR

b

λ1
(γ)−min

λ1
F̂DRλ1(γ)

}2

λopt2 = arg min 1
B

B∑
b=1

{
B̂P

b

λ2
(γ)−min

λ2
B̂P λ2(γ)

}2

Lats, we chose a suitable value of the threshold γ such that the Bayes FDR is low
and the BP is reasonably high.

Data acquisition and preprocessing

• We acquired MRI scans of two healthy women, a 33 and a 67 years old, both
with a normal cognitive profile and no evidence of medical disorders.

• The MRI acquisition was carried out by means of a 1.5 T General Electrics
Scanner at the Neuroradiology Department of the Niguarda Cá Granda
Hospital, Milan, Italy. The entire MRI scan lasted for 10 minutes.

• Resting-state functional images, with a voxels size of 1× 1× 1 mm, were
acquired using an Echo Planar Imaging Sequence sensitive to BOLD contrast,
and afterwards were analysed using the Matlab toolbox “DPARSF-A”.

• Finally, we defined 116 non-overlapping anatomical ROIs according to the
automated anatomical labelling (AAL) atlas and we extracted 116 time-series
representing the mean low-frequency fluctuations.

Data analysis

We selected τ = 0.2 for the elderly participant and τ = 0.21 for the young one as the
values which ensure the best balance between the Bayes FDR and the BP . In fact,
the trade-off between the Bayes FDR and the BP implies that as the probability of
false discoveries increases, the power also increases. The balanced γ is equal to the
maximum value of γ value such that the Bayes FDR is smaller than the maximum
error considered being acceptable. In our application, the maximum acceptable error
was set equal to 0.01: if the maximum γ that guarantees FDR ≤ 0.01 is chosen,
then the BP is maximum, under such a constraint. On the contrary, if, instead of
choosing the maximum γ that guarantees FDR ≤ 0.01, we select a smaller γ, still
FDR ≤ 0.01 but the BP would be smaller.

Figure: Graphical representation in stereotactic coordinates of the brain networks of the healthy
participants (woman, 33 years old (left panel) and woman, 67 years old (right panel)). Each grey
circle corresponds to a ROI: the wider the diameter of the circle, the higher the degree associated
to the ROI (i.e. the number of edges starting from that node); each gray line, otherwise,
corresponds to a significant link between couple of ROIs.

Female, Age 33
N° of links=774
FDR=0.009
Power=0.497

Female, Age 67
N° of links=1381
FDR=0.008
Power=0.766

We may compare these networks with respect to some network measures. For ex-
ample, the number of links suggests a less dense network for the young participant.
Since the scans have been conducted at resting state, this result is a preliminary sig-
nal of a ageing process characterized by the activation of an undifferentiated neural
activity. Further studies on larger samples are necessary to confirm this hypothesis.

Simulation Study with Independent p-values

We simulated m = 1000 independent and normally distributed random variables
Zi ∼ N(µ, 1) where µ = 0 under the null hypothesis while µ = 2 under the alterna-
tive hypothesis. For each i-th multiple comparison, i = 1, . . . ,m, we computed the
associated p-value pi = 2− 2Φ(|zi|), where zi is the observed value of the i-th nor-
mal random variable. To provide Monte Carlo estimates we iterated our simulation
N = 1000 times for π0 = 0.1, . . . , 0.9 and given γ = 0.01.

π0 FDR λ1 F̂DR MSE BP λ2 B̂P MSE
0.1 0.0039 0.8 0.0089 2.60e-05 0.2828 0.8 0.3271 0.0022
0.2 0.0088 0.8 0.0137 2.68e-05 0.2816 0.7 0.3311 0.0025
0.3 0.0150 0.7 0.0203 3.03e-05 0.2826 0.7 0.3307 0.0027
0.4 0.0232 0.7 0.0286 3.31e-05 0.2820 0.7 0.3310 0.0030
0.5 0.0345 0.7 0.0395 3.48e-05 0.2814 0.6 0.3382 0.0036
0.6 0.0506 0.7 0.0556 3.90e-05 0.2830 0.6 0.3370 0.0041
0.7 0.0769 0.7 0.0815 5.24e-05 0.2826 0.5 0.3474 0.0059
0.8 0.1251 0.6 0.1306 1.05e-04 0.2830 0.4 0.3599 0.0093
0.9 0.2462 0.8 0.2463 7.17e-04 0.2813 0.9 0.3275 0.0847

Simulation Studies with Dependent p-values

We assumed the set of random variables Z1, . . . , Z1000 to have a multivariate normal
distribution. Each marginal distribution Zi ∼ N(µ, 1) has the same variance and
mean equal to 0 under the null hypothesis while equal to 2 under the alternative
hypothesis.
We explored three different patterns of dependency among variables:

1 autoregressive pattern of dependency: each correlation among pairs of
random variables equals to Corr(Zi, Zj) = ρ|i−j| and we fixed ρ = 0.8.

2 unstructured pattern of dependency: given a covariance matrix made up as
block matrix with 100 sub-matrices of size 10× 10 on its diagonal, the
correlation’s values in each sub-matrix were randomly assigned in the range
(0; 0.35).

3 constant pattern of dependency: given a covariance matrix made up as block
matrix with 100 sub-matrices of size 10× 10 on its diagonal, we fixed each
correlation within clusters equal to the others. We simulated this covariance
pattern with respect to three different constant values: c = 0.1, 0.5, 0.9.

Table: Simulation in case of dependent p-values given an autoregressive covariance matrix, over a
range of π0 = 0.1, . . . , 0.9 and γ = 0.1, 0.05, 0.01, 0.001; for Bayes FDR and Power we reported
the true value, the optimal values of the tuning parameters λ1 and λ2, the Monte Carlo Empirical
Bayes estimate (indicated with hat) and the true mean square error.

π0 FDR λ1 F̂DR MSE BP λ2 B̂P MSE
0.1 0.0040 0.8 0.0092 0.000033 0.2829 0.8 0.3283 0.0024
0.2 0.0090 0.8 0.0141 0.000033 0.2809 0.7 0.3282 0.0027
0.3 0.0152 0.7 0.0204 0.000036 0.2846 0.7 0.3323 0.0030
0.4 0.0239 0.7 0.0295 0.000046 0.2801 0.7 0.3290 0.0035
0.5 0.0356 0.7 0.0410 0.000055 0.2799 0.6 0.3333 0.0044
0.6 0.0524 0.7 0.0578 0.000068 0.2819 0.6 0.3382 0.0057
0.7 0.0801 0.7 0.0858 0.000125 0.2815 0.4 0.3592 0.0105
0.8 0.1325 0.6 0.1397 0.000389 0.2806 0.3 0.3789 0.0208
0.9 0.2663 0.9 0.2737 0.003671 0.2823 0.9 0.2744 0.0686

Table: Simulation in case of dependent p-values given a hub-constant covariance matrix with the
constant set equal to 0.5, over a range of π0 = 0.1, . . . , 0.9 and γ = 0.01; for Bayes FDR and
power we reported the true value, the optimal values of the tuning parameters λ1 and λ2, the
Monte Carlo Empirical Bayes estimate (indicated with hat) and the true mean square error.

π0 FDR λ1 F̂DR MSE BP λ2 B̂P MSE
0.1 0.0040 0.8 0.0090 0.000029 0.2827 0.8 0.3276 0.0023
0.2 0.0089 0.8 0.0140 0.000031 0.2819 0.7 0.3296 0.0026
0.3 0.0151 0.7 0.0205 0.000035 0.2835 0.7 0.3321 0.0029
0.4 0.0235 0.7 0.0289 0.000039 0.2817 0.7 0.3313 0.0033
0.5 0.0348 0.7 0.0402 0.000044 0.2824 0.6 0.3362 0.0039
0.6 0.0518 0.7 0.0571 0.000055 0.2817 0.5 0.3411 0.0049
0.7 0.0784 0.7 0.0837 0.000093 0.2832 0.4 0.3576 0.0086
0.8 0.1294 0.6 0.1357 0.000245 0.2825 0.3 0.3805 0.0161
0.9 0.2535 0.9 0.2583 0.001999 0.2866 0.9 0.3001 0.0767

Table: Simulation in case of dependent p-values given a hub-unstructured covariance matrix, over
a range of π0 = 0.1, . . . , 0.9 and γ = 0.1, 0.05, 0.01, 0.001; for Bayes FDR and power we reported
the true value, the optimal values of the tuning parameters λ1 and λ2, the Monte Carlo Empirical
Bayes estimate (indicated with hat) and the true mean square error.

π0 FDR λ1 F̂DR MSE BP λ2 B̂P MSE
0.1 0.0039 0.8 0.0090 0.000028 0.2829 0.7 0.3310 0.0025
0.2 0.0088 0.8 0.0136 0.000027 0.2835 0.7 0.3303 0.0024
0.3 0.0151 0.7 0.0203 0.000031 0.2820 0.7 0.3296 0.0026
0.4 0.0232 0.7 0.0285 0.000034 0.2824 0.7 0.3319 0.0030
0.5 0.0344 0.7 0.0396 0.000035 0.2831 0.6 0.3368 0.0035
0.6 0.0512 0.7 0.0565 0.000044 0.2813 0.6 0.3368 0.0044
0.7 0.0773 0.6 0.0829 0.000061 0.2831 0.5 0.3469 0.0059
0.8 0.1254 0.6 0.1303 0.000118 0.2851 0.4 0.3612 0.0097
0.9 0.2505 0.8 0.2561 0.001005 0.2804 0.9 0.2910 0.0723

All simulation results provided empirical evidence supporting the robustness of the
proposed estimates.
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