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ABSTRACT: We show the multilevel logistic cluster-weigthted model and we make a
comparison with the standard multilevel model when they are employed to provide an
hospitals’ ranking in order to evaluate the performance related to the 30-day mortality.
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1 Introduction

Although measures of clinical outcomes were initially considered too com-
plex and critical to be defined and measured, the growing desire for quality
improvement in medical care has led to public reporting of providers’ per-
formance using league tables. A seminal paper by Goldstein & Spiegelhalter
(1996) described multilevel models to provide hospital performance evalua-
tions, where patients are nested into hospitals. Later on the statistical literature
developed finite mixture models to account for heterogeneity in the response
distribution, by splitting the population into a finite number of relatively homo-
geneous classes (McLachlan & Peel, 2000). Starting from this approach, the
recent literature has proposed an extension of the mixture models to the mul-
tilevel setting to disentangle latent classes within the natural grouping in the
data, such as schools and hospitals (Vermunt, 2005; Muthén & Asparouhov,
2009; Bartolucci et al. , 2011; Agasisti et al. , 2011).

The finite mixture models do not allow to describe the joint distribution of a
random dependent variable Y and a random covariate X when also the distri-
bution X is cluster specific. To this aim, Ingrassia et al. (2012) introduced the
Cluster-Weighted Models (CWM), as a cluster weighted sum of the product



of the conditional distribution of ¥ given X, and the distribution of X. Both
the conditional distribution and the density of X are clustered in groups and
the overall sum is weighted by the proportional impact of the group on the
observed population. Recently, Berta ef al. (2016) extended CWM to the mul-
tilevel framework when Y is distributed as a Normal variable.

In Sec. 2 we propose another extension named Multilevel Logistic CWM (ML-
CWM), and we show in Sec. 3 we present the data related to the application
developed in Sec. 4 concerning the healthcare evaluation field. We apply this
model to different hospital settings demonstrating how the evaluation of the
hospital performance is affected by clusters of patients and how, avoiding this
approach, different results can be obtained. In Sec. 5 we state some concluding
remarks.

2 Multilevel Logistic Cluster Weighted Models

A cluster weighted framework allows to estimate the joint probability of (X,Y),
a random vector of covariates X and a binary dependent variable Y. Suppose
that X and Y are defined in some finite space Q@ C R? x R and that Q is parti-
tioned into C clusters, say Qi,...,Q¢. Extending the CWMs to the multilevel
framework allows to account for the fact that both the conditional distribution
Y|X and the marginal distribution X depend on the C groups. In this way, the
joint density of (X,Y) can be described by a mixture of conditional densities
p(Y|X,Q.) weighted on the marginal densities of ¢(X|Q,.) by the mixture’s
weights 7.

In the following, we consider the observations related to just one covariate
and one outcome (x;j,y;;) with i =1,...,n; and j = 1,...N, where n; is the
number of patients i admitted to the hospital j. Based on this framework, and
defining 0 the vector of all model parameters, the MLCWM can be described
by the joint probability which can be factorized as
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where ¢(x;j;1,02) is assumed to be Gaussian, with parameters y, and ©2,
and p(yij|xij;&c) = (1 —m;)! (yij:())nf;y"-’zl) with 7 the indicator function and
with 7;; linked to the covariates by a logit link with the following multilevel
structure:

IOgit(ﬂU|x,‘j,C = C) = Qg + chij +ucj,



where u.; is the random coefficient for residuals at the hospital j level in the
cluster ¢ and it can be interpreted as the relative effectiveness of hospitals with
respect to the outcome y;;. The model parameters denoted by 0 are estimated
by the Expectaton-Maximization algorithm. Then, each patient can be as-
signed to one of the C clusters according to the maximum posterior probability
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3 Data

We analyze an administrative dataset gathered from the Lombardy region (Italy),
collecting information on patients admitted to 150 hospitals in 2014, including
their demographic and clinical information. The outcome of interest is 30-day
mortality, the most used proxy of quality in this research field. In order to
test the ability of the model in identifying the clusters among patients within
the context of effectiveness evaluation, we test the MLCWM on two different
disciplines: cardiosurgery and medicine. Cardiosurgery is an highly special-
ized discipline admitting patients that need complex surgical intervention. It
is characterized by a low level of mortality and a Diagnosis-Related Group
(DRG) weight five times higher than medicine. Medicine wards admit older
patients with lower complexity, but with an high level of mortality (15%). A
number of selected patients characteristics describing sex and age, and mea-
suring their severity by DRG weight and Elixhauser index (Elixhauser ef al. ,
1998) are included in the models as covariates. In particular DRG weight and
Elixauser index are here considered as a proxy of patients’ severity.

4 Results

Considering the hierarchical structure defined by cardiosurgery and medicine,
we apply the proposed MLCWM to investigate whether there is evidence for
further latent structures. We consider models with a number of different clus-
ters and find that the optimal number of clusters according to the Bayesian
Information Criterion (Schwarz, 1978) is two. We further compare the two
models in order to verify whether the MLCWM help us to evaluate the hospi-
tals in a different way, identifying clusters of patients and increasing our ability
in disentangling the best and worst performer hospitals.



For sake of convenience, we show the results related to Cardiosurgery. De-
scriptive statistics, omitted in this short version, allow us to appreciate the clus-
tering composition provided by the MLCWM. The latter indicates the presence
of two latent groups where the main differences are due to the age (in cluster
2 the patients are younger) and to the risk of mortality. In Table 1 we show the
estimated regression coefficients obtained with the multilevel model and those
obtained with the two cluster components of the proposed model MLCWM.
The effect for all the covariates included in the model is different between the
two latent groups in terms of magnitude and also in terms of direction of the re-
lationship between the covariate and the risk of mortality. This effect has also
a consequence on the final league tables, presented in Figure 1 and in Figure
3. They show the hospital’s estimated random coefficients under the multilevel
model and the MLCWM, respectively. We notice in Figure 3 that the hospital
coded as ”030901” has a bad performance in both the first and second cluster
of patients.

B Multilevel MLCWM

Cl1 C2
Female 0.1785| 0.6189  0.2277
Age 0.0517 | —0.0032  0.0601

DRG Weight —0.0038 | 0.4144 —0.0849
Comorbidities 0.2485| 0.1833 0.3141

Table 1: Estimates of the regression parameters related to the multilevel
model (first column) and to cluster 1 of the MLCWM (second column, CI)
and to cluster 2 of the MLCWM (third column, C2).

5 Conclusions

The proposal can be adopted in order to identify latent clusters in the data,
related to both the outcome and the risk-adjustment variables included in the
analysis. These preliminary results shows that the proposed MLCWM points
out two well-defined latent groups within the patients and, indeed, the model
coefficients have different signs and magnitude for different groups. As well as
the coefficients, the league tables of random effects show different patterns and
this may have great implications for healthcare managers because by adopting
a classic approach these effects could be masked and the final rankings of
hospitals might be biased.
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Figure 1: League Table for the Multilevel Model in Cardiosurgery
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Figure 3: League Tables for the MLCWM in Cardiosurgery
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