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Abstract. In this paper, we investigate the behavior of the eigenvalues of a magnetic Aharonov-
Bohm operator with half-integer circulation and Dirichlet boundary conditions in a bounded
planar domain. We establish a sharp relation between the rate of convergence of the eigenval-
ues as the singular pole is approaching a boundary point and the number of nodal lines of the
eigenfunction of the limiting problem, i.e. of the Dirichlet Laplacian, ending at that point. The
proof relies on the construction of a limit profile depending on the direction along which the
pole is moving, and on an Almgren-type monotonicity argument for magnetic operators.

1. Introduction

This paper is concerned with the behavior of the eigenvalues of Aharonov-Bohm operators in
a planar domain with poles approaching the boundary. For a = (a1, a2) ∈ R2, we consider the
so-called Aharonov-Bohm magnetic potential with pole a and circulation 1/2

Aa(x) = 1
2

( −(x2 − a2)
(x1 − a1)2 + (x2 − a2)2 ,

x1 − a1
(x1 − a1)2 + (x2 − a2)2

)
, x = (x1, x2) ∈ R2 \ {a},

which gives rise to the singular magnetic field Ba = curlAa = πδak, where k is the unit
vector orthogonal to the x1x2-plane and δa is the Dirac delta centered at a. Such a magnetic
field is generated by an infinitely long and infinitely thin solenoid intersecting the plane x1x2
perpendicularly at a. By Stokes’ Theorem, the flux of the magnetic field through the solenoid
cross section is equal (up to the normalization factor 2π) to the circulation of the vector potential
Aa around the pole a, which remains identically equal to 1/2.

We consider the magnetic Schrödinger operator (i∇ + Aa)2 with Aharonov-Bohm vector
potential Aa which acts on functions u : R2 → C as

(i∇+Aa)2u := −∆u+ 2iAa · ∇u+ |Aa|2u, (1.1)
and study the properties of the function mapping the position of the pole a to the eigenvalues
of the operator (1.1) on a bounded domain with homogeneous Dirichlet boundary conditions.

As highlighted in [7], the case of half-integer circulation features a relation between critical
positions of the moving pole and spectral minimal partitions of the Dirichlet Laplacian. It was
proved in [14] that the optimal partition (i.e. the partition of the domain minimizing the largest
of the first eigenvalues on the components) corresponds to the nodal domain of an eigenfunction
of the Dirichlet Laplacian if it has only points of even multiplicity; the optimal partitions with
points of odd multiplicity are instead related to the eigenfunctions of the Aharonov-Bohm oper-
ator, in the sense that they can be obtained as nodal domains by minimizing a certain eigenvalue
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of an Aharonov-Bohm Hamiltonian with respect to the number and the position of poles, see
[13]. We also refer to [4, 5, 6, 11, 12, 22] for the study of the eigenfunctions, their nodal domains
and spectral minimal partitions.

The present paper focuses on the behavior of the eigenvalues of the operator (1.1) when the
pole a is moving in the domain reaching a point on the boundary. Our analysis proceeds by
the papers [1, 2, 7], which provide the asymptotic expansion of the eigenvalue function as the
pole is moving in the interior of the domain. On the other hand, the study of the case of a
pole approaching the boundary was initiated in [21]. In this case the limit operator is no more
singular and the magnetic eigenvalues converge to those of the standard Laplacian. In [21] the
authors predict the rate of this convergence in relation with the number of nodal lines that the
limit eigenfunction possesses at the limit point. More precisely, let us denote as λaN the N -th
eigenvalue of the operator (1.1) in a planar domain Ω with Dirichlet boundary conditions and
as λN the N -th eigenvalue of the Dirichlet Laplacian on the same domain; in [21] it is proved
that if λN is simple and the corresponding eigenfunction ϕN has at a point b ∈ ∂Ω a zero of
order j ≥ 2 (so that ϕN has j − 1 nodal lines ending at b) then

λaN − λN ≤ −C|a− b|2j (1.2)

for a moving on a nodal line approaching b, where C > 0 is a positive constant. In particular,
estimate (1.2) implies that, if the pole stays on a nodal line, then the magnetic eigenvalue
is strictly smaller than the standard Laplacian’s one, thus showing that a diamagnetic-type
inequality is not necessarily true for eigenvalues higher than the first one. In the case of the pole
approaching a boundary point b where no nodal lines of ϕN end, in [21] it is proved that

λaN − λN ≥ C(dist(a, ∂Ω))2 (1.3)

as a→ b, where C is a positive constant. Estimate (1.3) was shown to be sharp in [23, Theorem
2.1.15], where the following exact asymptotics was obtained:

λaN − λN
(dist(a, ∂Ω))2 → c(∇ϕN (b) · ν)2 (1.4)

as a converges to some b ∈ ∂Ω where no nodal lines end, where c is a positive constant.
In the present paper, we describe the asymptotic behavior of the eigenvalue λaN as the pole a

approaches a point on the boundary of Ω moving on straight lines (not necessarily tangent to
nodal lines of the limit eigenfunction), with the aim of sharpening and generalizing the results
in [21]. Our main theorem states that, if ∂Ω is sufficiently smooth, λN is simple, and ϕN has
j − 1 (j ∈ N, j ≥ 1) nodal lines ending at b ∈ ∂Ω, then the limit of the quotient

λN − λaN
|a− b|2j

, (1.5)

as a approches b on a straight line, exists, is finite and depends continuously on the line direction;
furthermore such a limit is strictly positive if the line is tangent to a nodal line of ϕN , while it is
strictly negative if the moving pole direction is in the middle of the tangents to two nodal lines
(Theorem 2.1). This establishes, in particular, that a diamagnetic-type inequality λaN > λN
holds for eigenvalues higher than the first one, when a lies in the middle of the tangents to
two nodal lines of ϕN (or in the middle between a tangent and the boundary). The opposite
inequality λaN < λN holds when a belongs to the tangent to a nodal line of ϕN . Thus, the
diamagnetic inequality for this specific operator can be seen as a particular case of Theorem 2.1,
due to the fact that ϕ1 does not have nodal lines.

Furthermore, we provide a variational characterization of the limit of the quotient (1.5), by
relating it to the minimum of an energy functional associated to an elliptic problem with a crack
sloping at the moving pole direction (Theorem 2.2).
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Theorem 2.1 implies that estimate (1.2) is optimal, thus generalizing the sharp estimate (1.4)
to any order of vanishing of the limit eigenfunction. Furthermore, our result answers a question
left open in [21, Remark 1.9] about the exact behavior of the eigenvalue variation λaN − λN as
the pole a approaches a boundary point b, being b the endpoint of one or more nodal lines of
the limit eigenfunction and a not belonging to any such nodal line; indeed, as a byproduct of
Theorem 2.1, we have that λaN increases as a is moving from a boundary point on the bisector of
two nodal lines of the Dirichlet-Laplacian, or on the bisector of one nodal line and the boundary,
as conjectured in [21, 23].

2. Statement of the main results

Let Ω ⊂ R2 be a bounded, open and simply connected domain. We assume that Ω ∈ C2,γ for
some 0 < γ < 1, and that

0 ∈ ∂Ω.
Furthermore, it is convenient to suppose that there exists R̄ > 0 such that

Ω ∩DR̄ = D+
R̄
, (2.1)

where D+
R̄

is defined as
D+
R̄

:= DR̄ ∩ R2
+,

being DR̄ the open ball of radius R̄ centered at 0 and

R2
+ := {(x1, x2) ∈ R2 : x1 > 0}.

We stress that this assumption is not restrictive provided that a weight is considered in the
eigenvalue problem. Starting from a general domain of class C2,γ , we can indeed perform a
conformal transformation in order to obtain a new domain satisfying (2.1): the counterpart
is the appearance of a conformal weight (real valued) in the new problem, whose regularity is
C1(Ω) thanks to the regularity assumptions on the domain (see [15, Theorem 5.2.4]). More
specifically, the weight verifies

q(x) ∈ C1(Ω), q(x) > 0 for x ∈ Ω. (2.2)

For more details, we refer the [21, Section 3].
For every a ∈ Ω, we introduce the space H1,a(Ω,C) as the completion of{

u ∈ H1(Ω,C) ∩ C∞(Ω,C) : u vanishes in a neighborhood of a
}

with respect to the norm

‖u‖H1,a(Ω,C) =
(
‖∇u‖2L2(Ω,C2) + ‖u‖2L2(Ω,C) +

∥∥∥∥ u

|x− a|

∥∥∥∥2

L2(Ω,C)

)1/2

. (2.3)

For every a ∈ Ω, we also introduce the space H1,a
0 (Ω,C) as the completion of C∞c (Ω \ {a}) with

respect to the norm ‖ ·‖H1,a(Ω,C). In view of the Hardy-type inequality proved in [17] (see (A.1))
and of the Poincaré-type inequality (A.3), an equivalent norm in H1,a

0 (Ω,C) is given by

‖u‖
H1,a

0 (Ω,C) =
(
‖(i∇+Aa)u‖2L2(Ω,C2)

)1/2
. (2.4)

As a consequence of the equivalence between norms (2.3) and (2.4), by gauge invariance it follows
that
if a ∈ ∂Ω, then the space H1,a

0 (Ω,C) coincides with the standard H1
0 (Ω,C)

and the norms (2.3), (2.4) are therein equivalent to the Dirichlet norm ‖∇u‖L2(Ω,C2).
(2.5)
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For every a ∈ Ω and any weight q(x) verifying (2.2), we consider the weighted eigenvalue problem{
(i∇+Aa)2u = λ q(x)u, in Ω,
u = 0, on ∂Ω,

(Ea)

in a weak sense, i.e. we say that λ is an eigenvalue of (Ea) if there exists an eigenfunction
u ∈ H1,a

0 (Ω,C) \ {0} such that∫
Ω

(i∇+Aa)u · (i∇+Aa)v dx = λ

∫
Ω
q(x)uv dx, for all v ∈ H1,a

0 (Ω,C).

From classical spectral theory, (Ea) admits a diverging sequence of real eigenvalues {λak}k≥1
with finite multiplicity (being each eigenvalue repeated according to its own multiplicity). To
each eigenvalue λak we associate an eigenfunction ϕak suitably normalized (see (2.23) and (5.2)).
When a ∈ ∂Ω, hence in particular when a = 0, λak = λk, being λk the k-th weighted eigenvalue
of the Dirichlet Laplacian (with the same weight q(x)); moreover, if

θ̃0 : R2 \ {0} → [−π, π), θ̃0(r cos t, r sin t) = t if t ∈ [−π, π),
is the polar angle centered at 0 and discontinuous on the half-line {(x1, 0) : x1 < 0}, we have
that e−

i
2 θ̃0ϕ0

k = ϕk is a weighted eigenfunction of the Laplacian associated to λk, i.e.{
−∆ϕk = λkq(x)ϕk, in Ω,
ϕk = 0, on ∂Ω.

(2.6)

From [7, Theorem 1.1] and [18, Theorem 1.2] it is known that, for every k ∈ N \ {0}, there holds
λak → λk as a→ 0. (2.7)

Let us assume that there exists N ≥ 1 such that
λN is simple. (2.8)

We observe that, in view of [20], assumption (2.8) holds generically with respect to domain (and
weight) variations. Let ϕN ∈ H1

0 (Ω,C) \ {0} be an eigenfunction of problem (2.6) associated to
the eigenvalue λN such that ∫

Ω
q(x)|ϕN (x)|2 dx = 1. (2.9)

From [10] and [14] (see also [8]) it is known that
ϕN has at 0 a zero of order j for some j ∈ N \ {0}; (2.10)

more precisely, there exists β ∈ C \ {0} such that

r−jϕN (r(cos t, sin t))→ βψj(cos t, sin t) = β sin
(
j
(
π
2 − t

))
, (2.11)

in C1,τ ([−π
2 ,

π
2 ],C) as r → 0+ for any τ ∈ (0, 1). Here, for every j ∈ N \ {0}, ψj is the unique

function (up to a multiplicative constant) which is harmonic in R2
+, homogeneous of degree j

and vanishing on ∂R2
+, more explicitly

ψj(r cos t, r sin t) = rj sin
(
j
(
π
2 − t

))
, r ≥ 0, t ∈

[
−π

2 ,
π
2
]
. (2.12)

We notice that ψj has exactly j − 1 nodal lines (except for the boundary) dividing the π-angle
in equal parts. Moreover, via a change of gauge,

the function e
i
2 θ̃0ψj is a distributional solution to (i∇+A0)2(e i2 θ̃0ψj) = 0 in R2

+.

Let
ϕ0
N = ϕNe

i
2 θ̃0 ,

so that ϕ0
N is an eigenfunction of problem (E0) associated to the eigenvalue λN .
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Figure 1. The j−1 nodal lines
of ϕN ending at 0 dividing the
π-angle into j equal parts; a
approaches 0 along the straight
line a = |a|p, p = (cosα, sinα).
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Figure 2. The sign of the
eigenvalue variation λN − λaN :
positive tangentially to nodal
lines, negative on bisectors of
nodal lines.

As already mentioned, we aim at proving sharp asymptotics for the convergence (2.7) as the
pole a moves along a straight line up to the origin, see Figure 1. More precisely, we fix

p ∈ S1
+ := {(x1, x2) ∈ R2 : x2

1 + x2
2 = 1 and x1 > 0},

and study the limit of the quotient (1.5) as a = |a|p → 0, giving a characterization of such a
limit in terms of the direction p, which allows recognizing directions for which it is nonzero (and
possibly positive or negative).

We are now in position to state our first main result.

Theorem 2.1. Let Ω ⊂ R2 be a bounded, open and simply connected domain of class C2,γ for
some 0 < γ < 1, such that 0 ∈ ∂Ω and (2.1) holds. Let q satisfy (2.2). Let N ≥ 1 be such that the
N -th eigenvalue λN of problem (2.6) is simple and let ϕN ∈ H1

0 (Ω,C) \ {0} be an eigenfunction
of (2.6) associated to λN satisfying (2.9). Let j ∈ N \ {0} be the order of vanishing of ϕN at 0
as in (2.10)–(2.11). For a ∈ Ω, let λaN be the N -th eigenvalue of problem (Ea).

Then, for every p ∈ S1
+, there exists cp ∈ R such that

λN − λaN
|a|2j

→ |β|2 cp, as a = |a|p→ 0, (2.13)

with β 6= 0 being as in (2.11). Moreover
(i) the function p 7→ cp is continuous on S1

+ and tends to 0 as p→ (0,±1);
(ii) cp > 0 if the half-line {tp : t ≥ 0} is tangent to a nodal line of ϕN in 0, i.e. if, for some

k = 1, . . . , j − 1, p =
(

cos(π2 − k
π
j ), sin(π2 − k

π
j )
)
;

(iii) cp < 0 if the half-line {tp : t ≥ 0} is tangent to the bisector of two nodal lines of ϕN
or to the bisector of one nodal line and the boundary, i.e. if, for some k = 0, . . . , j − 1,
p =

(
cos(π2 −

π
2j (1 + 2k)), sin(π2 −

π
2j (1 + 2k))

)
.

The sign properties of cp imply in particular that, as |a| is sufficiently small,

λN − λaN > 0 if a is tangent to a nodal line of ϕN in 0,
λN − λaN < 0 if a lies in the middle of the tangents to two nodal lines of ϕN in 0,
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see Figure 2, in agreement with the preexisting results (1.2) and (1.3). This fact, together with
the continuity property of cp, implies that cp vanishes at least two times between two nodal lines
of ϕN in 0, and then λN − λaN = o(|a|2j) as a→ 0 straightly at least along 2(j − 1) directions.

2.1. Variational characterization of the function p 7→ cp and of the limit profile. Our
second main result is a variational characterization of the function p 7→ cp appearing in Theorem
2.1, for which the following additional notation is needed.

Let us fix α ∈
(
− π

2 ,
π
2
)
and p = (cosα, sinα) ∈ S1

+. We denote by Γp the segment joining 0
to p, that is to say

Γp = {(r cosα, r sinα) : r ∈ (0, 1)},
and define the space Hp as the completion of{

u ∈ H1(R2
+ \ Γp) : u = 0 on ∂R2

+ and u = 0 in a neighborhood of ∞
}

with respect to the Dirichlet norm

‖u‖Hp := ‖∇u‖L2(R2
+\Γp). (2.14)

From the Hardy-type inequality for magnetic Sobolev spaces proved in [17] (see (A.2)) and a
change of gauge, it follows that functions in Hp also satisfy a Hardy-type inequality, so that Hp
can be characterized as

Hp =
{
u ∈ L1

loc(R2
+) : ∇R2

+\Γp
u ∈ L2(R2

+), u
|x| ∈ L

2(R2
+), and u = 0 on ∂R2

+

}
,

where ∇R2
+\Γp

u denotes the distributional gradient of u in R2
+ \ Γp.

The functions in Hp may clearly be discontinuous on Γp. For this reason, we introduce two
trace operators. Let us consider the sets U+

p = {(x1, x2) ∈ R2
+ : x2 > x1 tanα} ∩ D+

1 and
U−p = {(x1, x2) ∈ R2

+ : x2 < x1 tanα}∩D+
1 . First, for any function u defined in a neighborhood

of U+
p , respectively U−p , we define the restriction

R+
p (u) = u|U+

p
, respectively R−p (u) = u|U−p . (2.15)

We observe that, since R±p maps Hp into H1(U±p ) continuously, the trace operators

γ±p : Hp −→ H1/2(Γp), u 7−→ γ±p (u) := R±p (u)|Γp (2.16)

are well defined and continuous from Hp to H1/2(Γp). Furthermore, by Poincaré and Sobolev
trace inequalities, it is easy to verify that the operator norm of γ±p is bounded uniformly with
respect to p ∈ S1

+, in the sense that there exists a constant L > 0 independent of p such that,
recalling (2.14),

‖γ±p (u)‖H1/2(Γp) ≤ L‖u‖Hp for all u ∈ Hp. (2.17)

Clearly, for a continuous function u, γ+
p (u) = γ−p (u).

We will give a variational characterization of the limit of the quotient (1.5) by relating it to
the minimum of the functional Jp : Hp → R defined as

Jp(u) = 1
2

∫
R2

+\Γp
|∇u|2 dx+ j cos

(
j
(
π
2 − α

)) ∫
Γp
|x|j−1(γ+

p (u)− γ−p (u)) ds (2.18)

on the set
Kp := {u ∈ Hp : γ+

p (u+ ψj) + γ−p (u+ ψj) = 0}. (2.19)
The following theorem relates the value cp appearing in the limit (2.13) with the minimum of
Jp over Kp.



SHARP BOUNDARY BEHAVIOR OF EIGENVALUES 7

Theorem 2.2. The minimum of Jp over Kp is uniquely achieved at a function wp ∈ Kp.
Furthermore, letting

mp := min
u∈Kp

Jp(u) = Jp(wp), (2.20)

we have that
cp = −2mp,

with cp being as in Theorem 2.1.

The proofs of Theorems 2.1 and 2.2 rely on the exact determination of the limit of a suitable
blow-up sequence of the eigenfunctions ϕaN , in the spirit of [1, 2]. We emphasize that the
boundary case presents some significant additional difficulties, due to lack of local symmetry and
unavailability of regularity results of the function a 7→ λaN up to the boundary. The overcoming of
these difficulties requires a nontrivial adaptation of the techniques developed in [1, 2] for interior
poles. Being this blow-up result of independent interest, it is worthwhile to be stated precisely.
To this aim, let us define, for every α ∈ [0, 2π) and b = (b1, b2) = |b|(cosα, sinα) ∈ R2 \ {0},

θb : R2 \ {b} → [α, α+ 2π) and θb0 : R2 \ {0} → [α, α+ 2π)

such that
θb(b+ r(cos t, sin t)) = t for all r > 0 and t ∈ [α, α+ 2π),
θb0(r(cos t, sin t)) = t for all r > 0 and t ∈ [α, α+ 2π).

(2.21)

We observe that the difference function θb0−θb is regular except for the segment {tb : t ∈ [0, 1]}.
Moreover, we also define θ0 : R2 \ {0} → [0, 2π) as

θ0(cos t, sin t) = t for all t ∈ [0, 2π).

For a ∈ Ω, let ϕaN ∈ H
1,a
0 (Ω,C) be an eigenfunction of (Ea) related to the weighted eigenvalue

λaN , i.e. solving {
(i∇+Aa)2ϕaN = λaNq(x)ϕaN , in Ω,
ϕaN = 0, on ∂Ω,

(2.22)

and satisfying the normalization conditions∫
Ω
q(x)|ϕaN (x)|2 dx = 1 and

∫
Ω
e
i
2 (θa0−θa)(x)q(x)ϕaN (x)ϕ0

N (x) dx ∈ R+. (2.23)

The following theorem gives us the behavior of the eigenfunction ϕaN for a close to the boundary
point 0; more precisely, it shows that a homogeneous scaling of order j of ϕaN along a fixed
direction associated to p ∈ S1

+ converges to the limit profile Ψp ∈
⋃
r>1H

1,p(D+
r ,C) given by

Ψp := e
i
2 (θp−θp0+θ̃0)(wp + ψj), (2.24)

with wp as in (2.20) and ψj as in (2.12).

Theorem 2.3. Let Ω ⊂ R2 be a bounded, open and simply connected domain of class C2,γ for
some 0 < γ < 1, such that 0 ∈ ∂Ω and (2.1) holds. Let q satisfy (2.2), N ≥ 1 be such that (2.8)
holds, and j ∈ N \ {0} be the order of vanishing of a N -th eigenfunction ϕ0

N of (E0) satisfying
(2.9). Let ϕaN ∈ H

1,a
0 (Ω,C) solve (2.22)–(2.23). Then, for every p ∈ S1

+,

ϕaN (|a|x)
|a|j

→ βΨp as a = |a|p→ 0,

in H1,p(D+
R ,C) for every R > 1, almost everywhere in R2

+ and in C2
loc(R2

+ \ {p},C), with β 6= 0
as in (2.11).
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We notice that the rate of the convergences in Theorems 2.1 and 2.3 is related to the nodal
properties of the limit eigenfunction, see (2.11), as already highlighted in [2, 7, 21]. From the
results in [8, Theorem 1.4] we know that the asymptotic behavior in (2.11) is in turn related to
the so-called Almgren quotient (for a precise definition see §5). More precisely,

lim
r→0+

r
∫
D+
r

(
|(i∇+A0)ϕ0

N |2 − λNq(x)|ϕ0
N |2

)
dx∫

∂D+
r
|ϕ0
N |2 ds

= j. (2.25)

2.2. Organization of the paper and main ideas. In §3 we treat the variational characteri-
zation of the limit profile described above. This extends the one obtained in [21, Proposition 1.6]
for the case j = 1 and the one constructed in [2, Proposition 4.2] for a general j when the pole
a approaches a fixed point (which in this case lays in the interior of the domain) tangentially to
a nodal line of the limit eigenfunction.

On one hand, the case j = 1 is considerably easier because the growth at infinite of the limit
profile is the least possible: this allows characterizing immediately the limit profile through
its Almgren frequency, since the lim inf and the lim sup of the Almgren quotient at infinity
are the same. On the other hand, the construction presented in [2] holds for general j, but
only for a moving tangentially to a nodal line of the limit eigenfunction: this restriction forces
the limit profile to vanish on a half-line, so that the authors are able to construct the limit
profile first on a half-plane solving a minimization problem, then reflecting and multiplying by
a suitable phase jumping on the half-line. Finally, we remark that the sharp estimates obtained
in [1] for a approaching an interior point along a general direction don’t make use of an explicit
construction of the limit profile: in that case, the sharp estimate on nodal lines is enough
to compute the leading term of the Taylor expansion of the eigenvalue variation, thanks to
symmetry and periodicity properties of the Fourier coefficients of the limit profile with respect
to the direction.

In the present paper we are dealing with general j as a approaches a boundary point along
a general direction (not even perpendicular to the boundary of Ω), so that we cannot take
advantage of any remarkable bound for the Almgren quotient nor of any symmetry property.
This requires a completely new approach, based on the construction of the limit profile by solving
an elliptic crack problem prescribing the jump of the solution along the crack Γp, rather than
its value, see (3.13)–(3.15).

In §4 we describe the properties of the function mp defined in (2.20).
Next we turn to study a suitable blow-up of the eigenfunctions ϕaN . Due to the difficulties in

proving a priori energy bounds for the blow-up sequence
ϕaN (|a|x)
|a|j

, (2.26)

we introduce the following auxiliary blow-up sequence

ϕ̃a(x) =

√√√√ K̄|a|∫
∂DK̄|a|

|ϕaN |2 ds
ϕaN (|a|x), (2.27)

for a suitable K̄ > 0. In §5 we take advantage of the Almgren’s frequency function to obtain
a priori bounds on (2.27), see (5.13). We recall that the frequency function in the context of
magnetic operators was first introduced in [16] for magnetic potentials in the Kato class and
then extended to Aharonov-Bohm type potentials in [9].

§6 and §7 provide preliminary upper and lower bounds for the difference λN − λaN , which
are then summarized in Corollary 7.3. These preliminary estimates are obtained by considering
suitable competitor functions, and by plugging them into the Courant-Fisher minimax charac-
terization of eigenvalues. More precisely, to obtain an upper bound for λN − λaN we use the
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Rayleigh quotient for λN , and to get a lower bound for λN − λaN we use the Rayleigh quotient
for λaN .

At this first stage, the estimate from above of λN −λaN is given in terms of the normalization
factor appearing in (2.27); in order to determine the exact asymptotic behavior of such normal-
ization term, in §8 we obtain some energy estimates of the difference between approximating and
limit eigenfunctions after blow-up, exploiting the invertibility of the differential of the function
F defined in (8.1). As a consequence, in §9 we succeed in proving that

|a|−2j−1
∫
∂DK̄|a|

|ϕaN |2 ds

tends to a positive finite limit depending on p ∈ S1
+ as a = |a|p→ 0, and in turn the equivalence

of the two blow-up sequences (2.26) and (2.27). This allows us to conclude the proofs of Theorem
2.3 in §9 and those of Theorems 2.1, 2.2 in §10.

Finally, in the appendix, we recall a Hardy-type inequality for Aharonov-Bohm operators and
some Poincaré-type inequalities used throughout the paper.

2.3. Notation.
• For r > 0 and a ∈ R2, Dr(a) = {x ∈ R2 : |x − a| < r} denotes the disk of center a and
radius r.
• For all r > 0, Dr = Dr(0) denotes the disk of center 0 and radius r.
• R2

+ = {(x1, x2) ∈ R2 : x1 > 0} and R2
− = {(x1, x2) ∈ R2 : x1 < 0}.

• For all r > 0, D+
r = Dr ∩ R2

+ denotes the right half-disk of center 0 and radius r.
• For f ∈ L∞(Ω), ‖f‖∞ = ‖f‖L∞(Ω).

3. Limit profile

Keeping in mind the definitions of R±p (2.15) and of γ±p (2.16) given in the §2.1, we introduce
the following further notation. For p = (cosα, sinα) ∈ S1

+, let

ν+
p = (sinα,− cosα) and ν−p = −ν+

p

be the normal unit vectors to Γp. For every u ∈ C1(D+
1 \ Γp) with R+

p (u) ∈ C1(U+
p ) and

R−p (u) ∈ C1(U−p ), we define the normal derivatives ∂±u
∂ν±p

on Γp respectively as

∂+u

∂ν+
p

:= ∇R+
p (u) · ν+

p

∣∣∣∣
Γp
, and ∂−u

∂ν−p
:= ∇R−p (u) · ν−p

∣∣∣∣
Γp
.

For a function u differentiable in a neighborhood of Γp, we get
∂+u

∂ν+
p

= −∂
−u

∂ν−p
on Γp. (3.1)

We remark that since ψj is differentiable, it verifies (3.1), so that
∂+ψj

∂ν+
p

(r cosα, r sinα) = −∂
−ψj

∂ν−p
(r cosα, r sinα) = jrj−1 cos

(
j
(
π
2 − α

))
.

Hence the functional Jp : Hp → R defined in (2.18) can be equivalently written as

Jp(u) = 1
2

∫
R2

+\Γp
|∇u|2 dx+

∫
Γp

∂+ψj

∂ν+
p

(γ+
p (u)− γ−p (u)) ds

= 1
2

∫
R2

+\Γp
|∇u|2 dx+

∫
Γp
γ+
p (u)∂

+ψj

∂ν+
p
ds+

∫
Γp
γ−p (u)∂

−ψj

∂ν−p
ds.
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In the following lemma we prove that Jp admits a unique minimum point in the set Kp defined
in (2.19).

Lemma 3.1. The minimum mp = minKp Jp is uniquely achieved at a function wp ∈ Kp. Fur-
thermore, wp is the unique solution to the variational problem

wp ∈ Kp,∫
R2

+\Γp
∇wp · ∇ϕdx+ 2

∫
Γp

∂+ψj

∂ν+
p
γ+
p (ϕ) ds = 0, for every ϕ ∈ K0

p,
(3.2)

where
K0
p := {u ∈ Hp : γ+

p (u) + γ−p (u) = 0}. (3.3)

Proof. From (2.17) and the continuity of the embedding H1/2(Γp) ↪→ L2(Γp), we have that there
exists C > 0 independent of p ∈ S1

+ such that, for all u ∈ Hp,∣∣∣∣∣
∫

Γp

∂±ψj

∂ν±p
γ±p (u) ds

∣∣∣∣∣ =
∣∣∣∣∣j cos

(
j
(
π
2 − α

)) ∫
Γp
|x|j−1γ±p (u) ds

∣∣∣∣∣
≤ j

∫
Γp
|γ±p (u)| ds ≤ j‖γ±p (u)‖L2(Γp) ≤ C‖γ±p (u)‖H1/2(Γp) ≤ CL‖u‖Hp

and then, from the elementary inequality ab ≤ a2

4ε + εb2, we deduce that, for every ε > 0, there
exists a constant Cε > 0 (depending on ε but independent of p) such that, for every u ∈ Hp,∣∣∣∣∣

∫
Γp

∂±ψj

∂ν±p
γ±p (u) ds

∣∣∣∣∣ ≤ ε‖u‖2Hp + Cε. (3.4)

This implies that Jp is coercive in Hp. Furthermore Kp is convex and closed by the continuity of
the trace operators. Hence, via standard minimization methods, Jp achieves its minimum over
Kp at some function wp ∈ Kp. The Euler-Lagrange equation for wp is (3.2).

In order to prove uniqueness, let us assume that wp and vp solve (3.2). Then wp−vp ∈ K0
p and,

taking the difference between the equations (3.2) for wp and vp, we have that wp − vp satisfies∫
R2

+\Γp
∇(wp − vp) · ∇ϕdx = 0, for every ϕ ∈ K0

p,

which, choosing ϕ = wp − vp yields that
∫
R2

+\Γp
|∇(wp − vp)|2 dx = 0 so that wp ≡ vp. �

Proposition 3.2. (i) For every p ∈ S1
+, the function Ψp defined in (2.24) satisfies the follow-

ing properties:
Ψp ∈ H1,p(D+

r ,C) for all r > 1; (3.5){
(i∇+Ap)2Ψp = 0, in R2

+ in a weak H1,p − sense,
Ψp = 0, on ∂R2

+;
(3.6)∫

R2
+\Γp

∣∣(i∇+Ap)(Ψp − e
i
2 (θp−θp0+θ̃0)ψj)

∣∣2 dx < +∞; (3.7)

e
i
2 (θp−θp0+θ̃0)wp = Ψp(x)− e

i
2 (θp−θp0+θ̃0)ψj(x) = O(|x|−1), as |x| → +∞. (3.8)

(ii) The function Ψp defined in (2.24) is the unique function satisfying (3.5), (3.6) and (3.7).

Proof. The fact that wp ∈ Kp and the relation

R±p (θp − θp0)
∣∣∣∣
Γp

= ±π
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imply that
γ+
p (Ψp) = γ−p (Ψp).

As a consequence we have that (i∇ + Ap)Ψp (meant as a distribution in R2
+) is equal to the

L2
loc(R2

+,C)-function ie
i
2 (θp−θp0+θ̃0)∇R2

+\Γp
(wp + ψj), thus yielding (3.5).

In order to prove (3.6), we observe that, for any ϕ ∈ C∞c (R2
+ \ {p}), we have that ϕ̃ :=

e−
i
2 (θp−θp0+θ̃0)ϕ ∈ K0

p (as defined in (3.3)). Hence, by (3.2),∫
R2

+

(i∇+Ap)Ψp · (i∇+Ap)ϕdx =
∫
R2

+\Γp
i e

i
2 (θp−θp0+θ̃0)∇(wp + ψj) ·

(
− ie−

i
2 (θp−θp0+θ̃0)∇ϕ̃

)
dx

=
∫
R2

+\Γp
∇(wp + ψj) · ∇ϕ̃ dx = −2

∫
Γp

∂+ψj

∂ν+
p
γ+
p (ϕ̃) ds+

∫
R2

+\Γp
∇ψj · ∇ϕ̃ dx. (3.9)

Testing the equation −∆ψj = 0 by ϕ̃ and integrating by parts in {(x1, x2) ∈ R2
+ : x2 < x1 tanα}

and in {(x1, x2) ∈ R2
+ : x2 > x1 tanα} respectively, we obtain that the right hand side of (3.9)

is equal to zero. This proves (3.6).
Property (3.7) is a straightforward consequence of the fact that wp ∈ Hp. To prove (3.8), we

observe that the Kelvin transform of wp, i.e. the function w̃p(x) = w( x
|x|2 ) belongs to H1(D+

1 ),
vanishes in ∂R2

+ ∩D1, and weakly satisfies −∆w̃p = 0 in D+
1 . Then from [10] and [14] (see also

[8]) we deduce that w̃p = O(|x|) as |x| → 0 and hence wp = O(|x|−1) as |x| → +∞.
Finally, to prove (ii), let us consider some Ψ ∈

⋃
r>1H

1,p(D+
r ,C) weakly satisfying{

(i∇+Ap)2Ψ = 0, in R2
+,

Ψ = 0, on ∂R2
+,

and ∫
R2

+\Γp
|(i∇+Ap)(Ψ− e

i
2 (θp−θp0+θ̃0)ψj)|2 < +∞. (3.10)

Then the difference Φ = Ψ − Ψp weakly solves (i∇ + Ap)2Φ = 0 in R2
+ and Φ = 0 on ∂R2

+.
Moreover from (3.7) and (3.10) it follows that∫

R2
+

|(i∇+Ap)Φ(x)|2dx < +∞,

which, in view of (3.6) and (A.2), implies that
∫
R2

+
|x− p|−2|Φ(x)|2 dx = 0. Hence Φ ≡ 0 in R2

+
and Ψ = Ψp. �

Remark 3.3. Since Ψp solves (3.6), classical regularity theory yields that Ψp ∈ C∞(R2
+\{p},C),

whereas from [9] it follows that Ψp(x) = O(|x− p|1/2) and ∇Ψp(x) = O(|x− p|−1/2) as x → p.
Therefore we have that wp ∈ C∞(U± \ {p}) with U+ = {(x1, x2) ∈ R2

+ : x2 > x1 tanα} and
U− = {(x1, x2) ∈ R2

+ : x2 < x1 tanα}, and that |∇wp(x)| = O(|x− p|−1/2). Then

∂±wp

∂ν±p
∈ Lq(Γp) and ∂wp

∂ν
∈ Lq(∂D1 ∩ R2

+) for all q < 2,

where ν(x) = x
|x| denotes the unit normal vector to ∂D1. Using a simple approximation argument

and recalling that H1/2(Γp) ↪→ Lq(Γp) for all q ≥ 1, we obtain the following formulas for
integration by parts:∫

R2
+\Γp

∇wp · ∇ϕdx =
∫

Γp

∂+wp

∂ν+
p
γ+
p (ϕ) ds+

∫
Γp

∂−wp

∂ν−p
γ−p (ϕ) ds, (3.11)
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for all ϕ ∈ Hp and∫
D+

1 \Γp
∇wp · ∇ϕdx =

∫
∂D+

1

∂wp
∂ν

ϕ ds+
∫

Γp

∂+wp

∂ν+
p
γ+
p (ϕ) ds+

∫
Γp

∂−wp

∂ν−p
γ−p (ϕ) ds, (3.12)

for all ϕ ∈ H1(D+
1 \ Γp) such that ϕ = 0 on ∂R2

+.
Remark 3.4. In view of (3.11), the weak problem (3.2) solved by wp can be reformulated as an
elliptic problem with jump conditions on the internal crack Γp as follows:

−∆wp = 0, in R2
+ \ Γp, (3.13)

γ+
p (wp + ψj) + γ−p (wp + ψj) = 0, on Γp, (3.14)
∂+(wp + ψj)

∂ν+
p

− ∂−(wp + ψj)
∂ν−p

= 0, on Γp, (3.15)

where the equality in (3.15) is meant in the sense of Lq(Γp) for any q < 2 (see Remark 3.3) and
hence almost everywhere. We refer to [19] for elliptic problems in cracked domains with jumps
of the unknown function and its normal derivative prescribed on the cracks.

The following result provides a characterization of mp as a Fourier coefficient of wp. It will be
used to relate mp with the optimal lower/upper bounds for λN − λaN , see Lemmas 7.4 and 10.1.
Proposition 3.5. For every p ∈ S1

+, let

ωp(r) :=
∫ π/2

−π/2
wp(r cos t, r sin t) sin

(
j
(
π
2 − t

))
dt, r ≥ 1, (3.16)

with wp defined in (2.20). Then
ωp(r) = ωp(1)r−j for all r ≥ 1 and mp = −jωp(1).

Proof. By direct calculations, since −∆wp = 0 in R2
+ \D+

1 , we have that ωp satisfies

−(r1+2j(r−jωp(r))′)′ = 0, for r > 1.
Hence there exists a constant C ∈ R such that

r−jωp(r) = ωp(1) + C

2j

(
1− 1

r2j

)
, for all r ≥ 1.

From (3.8) it follows that ωp(r) = O(r−1) as r → +∞. Hence, letting r → +∞ in the previous
relation, we find C = −2jωp(1), so that ωp(r) = ωp(1)r−j for all r ≥ 1. By taking the derivative
in this relation and in the definition of ωp (3.16), we obtain

− jωp(1) =
∫
∂D+

1

∂wp
∂ν

ψj ds. (3.17)

Choosing ϕ = ψj in (3.12) and then replacing (3.17), we obtain∫
D+

1 \Γp
∇wp · ∇ψj dx =

∫
∂D+

1

∂wp
∂ν

ψj ds+
∫

Γp

(
∂+wp

∂ν+
p

+ ∂−wp

∂ν−p

)
ψj ds

= −jωp(1) +
∫

Γp

(
∂+wp

∂ν+
p

+ ∂−wp

∂ν−p

)
ψj ds.

(3.18)

Testing the equation −∆ψj = 0 by wp and integrating by parts in D+
1 \ Γp, we arrive at∫

D+
1 \Γp

∇wp · ∇ψj dx =
∫
∂D+

1

∂ψj
∂ν

wp ds+
∫

Γp

∂+ψj

∂ν+
p

(γ+
p (wp)− γ−p (wp)) ds

= jωp(1) +
∫

Γp

∂+ψj

∂ν+
p

(γ+
p (wp)− γ−p (wp)) ds,

(3.19)
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where in the last step we used the fact that ∂ψj
∂ν = jψj on ∂D+

1 . By combining (3.18) and (3.19),
we arrive at

jωp(1) = 1
2

∫
Γp

(
∂+wp

∂ν+
p

+ ∂−wp

∂ν−p

)
ψj ds−

1
2

∫
Γp

∂+ψj

∂ν+
p

(γ+
p (wp)− γ−p (wp)) ds. (3.20)

On the other hand, taking ϕ = wp in (3.11), we obtain∫
R2

+\Γp
|∇wp|2 dx =

∫
Γp

∂+wp

∂ν+
p
γ+
p (wp) ds+

∫
Γp

∂−wp

∂ν−p
γ−p (wp) ds,

which, by definition of mp, yields

mp = Jp(wp) = 1
2

∫
Γp

(
∂+(wp + ψj)

∂ν+
p

γ+
p (wp) + ∂−(wp + ψj)

∂ν−p
γ−p (wp)

)
ds

+ 1
2

∫
Γp

∂+ψj

∂ν+
p

(γ+
p (wp)− γ−p (wp)) ds. (3.21)

Moreover (3.14) and (3.15) imply that

∂+(wp + ψj)
∂ν+

p
γ+
p (wp + ψj) + ∂−(wp + ψj)

∂ν−p
γ−p (wp + ψj) = 0 on Γp. (3.22)

Combining (3.21) and (3.22) we obtain

mp = −1
2

∫
Γp

(
∂+(wp + ψj)

∂ν+
p

+ ∂−(wp + ψj)
∂ν−p

)
ψj ds+ 1

2

∫
Γp

∂+ψj

∂ν+
p

(γ+
p (wp)− γ−p (wp)) ds. (3.23)

Since ψj is regular, it satisfies (3.1). Then the statement follows by comparing (3.20) with
(3.23). �

4. Properties of mp

In this section we collect some properties of the map mp defined in (2.20). The next lemma
ensures that p 7→ mp is not the null function, by providing its sign when p belongs either to the
bisector of two nodal lines of ψj , or to one of the nodal lines of ψj .

Lemma 4.1. (i) If p = (cosα, sinα) with α = π
2 − (1 + 2k) π2j for some k = 0, . . . , j − 1, then

mp = 1
2

∫
R2

+\Γp
|∇wp|2 dx > 0.

(ii) If p = (cosα, sinα) with α = π
2 − k

π
j for some k = 1, . . . , j − 1, then

mp = −1
2

∫
R2

+\Γp
|∇wp|2 dx < 0.

Proof. (i) If α = π
2 − (1 + 2k) π2j for some k = 0, . . . , j − 1, then ∂±ψj/∂ν

±
p = 0 on Γp, so

that Jp(u) = 1
2‖u‖

2
Hp ; since in this case 0 6∈ Kp (since ψj 6≡ 0 on Γp), we conclude that

mp = minKp Jp > 0.
(ii) In the second case we have that ψj ≡ 0 and ∂+ψj

∂ν+
p

(r cosα, r sinα) = j(−1)krj−1 on Γp, so
that

Jp(u) = 1
2

∫
R2

+\Γp
|∇u|2 dx+ 2(−1)kj

∫
Γp
|x|j−1γ+

p (u), for all u ∈ Kp. (4.1)
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From (4.1) it follows easily that mp = minKp Jp < 0. Furthermore, in this case (3.23) is
reduced to

mp = 1
2

∫
Γp

∂+ψj

∂ν+
p

(γ+
p (wp)− γ−p (wp)) ds,

and hence, by definition of Jp and mp,

mp = 1
2

(
mp −

1
2

∫
R2

+\Γp
|∇wp|2 dx

)
which yields that mp = −1

2
∫
R2

+\Γp
|∇wp|2 dx.

�

The following proposition establishes the continuity of the map p 7→ mp.

Proposition 4.2. The map p 7→ mp is continuous in S1
+. Moreover, it can be extended contin-

uously at p = (0, 1) and at p = (0,−1) by letting m(0,1) = m(0,−1) = 0.

Proof. First we claim that there exists C > 0 independent of p such that∫
R2

+\Γp
|∇wp|2 dx ≤ C for every p ∈ S1

+. (4.2)

To prove the claim, we consider a regular cut-off function η defined in R2
+ such that η = 1 in

D+
1 and η = 0 in R2

+ \D+
2 . Then −ηψj ∈ Kp for every p ∈ S1

+ and

mp ≤ Jp(−ηψj) = 1
2

∫
R2

+

|∇(−ηψj)|2 dx.

This fact, together with the inequality (3.4) applied with u = wp, provides (4.2).
Let pn = (cosαn, sinαn) → p = (cosα, sinα) as n → +∞, for some αn ∈ (−π/2, π/2),

α ∈ [−π/2, π/2]. We consider the rotation

Rn =
(

cos(α− αn) − sin(α− αn)
sin(α− αn) cos(α− αn)

)
.

With a slight abuse of notation, we denote by wpn the trivial extension of wpn in R2 (extended
to 0 in the set R2

− = {(x1, x2) ∈ R2 : x1 < 0}) and we define the rotated functions

w̃n(Rn(x)) = wpn(x), x ∈ R2.

We define the space H̃p as the completion of{
u ∈ H1(R2 \ Γp) : u = 0 on (−∞, 0)× {0} and u = 0 in a neighborhood of ∞

}
with respect to the norm ‖u‖H̃p = ‖∇u‖L2(R2\Γp).

We notice that, for all p ∈ S1
+, Hp = {u ∈ H̃p : u = 0 a.e. in R2

−}. For large n, we also define

H̃p,n = {u ∈ H̃p : u = 0 a.e. in H−n },
where H−n =

{
(x1, x2) ∈ R2 : x1 < − tan(α− αn)x2

}
, and observe that w̃n ∈ H̃p,n.

Let ψ̃j,n(Rn(x)) = ψj(x) and H+
n =

{
(x1, x2) ∈ R2 : x1 > − tan(α− αn)x2

}
. By (3.14) we

have that
γ+
p (w̃n + ψ̃j,n) + γ−p (w̃n + ψ̃j,n) = 0, (4.3)

while from (3.2) it follows that∫
H+
n \Γp

∇w̃n · ∇ϕdx+ 2
∫

Γp

∂+ψ̃j,n

∂ν+
p

γ+
p (ϕ) ds = 0, (4.4)

for every ϕ ∈ K̃0
p,n = {u ∈ H̃p,n : γ+

p (u) + γ−p (u) = 0}.



SHARP BOUNDARY BEHAVIOR OF EIGENVALUES 15

Moreover, from (4.2) it follows that
‖w̃n‖2H̃p ≤ C,

hence there exist w̃p ∈ H̃p and a subsequence {w̃nk}k such that w̃nk ⇀ w̃p weakly in H̃p and
a.e. in R2. By a.e. convergence, we have that w̃p = 0 a.e. in R2

−, hence

w̃p ∈ Hp if p ∈ S1
+ while w̃p ∈ D1,2(R2

+) if p = (0,±1).
Moreover, (4.3) and the continuity of the trace embeddings γ±p defined in (2.16) imply that
γ+
p (w̃p + ψj) + γ−p (w̃p + ψj) = 0, thus yielding

w̃p ∈ Kp.
Recall the definition of K0

p in (3.3) and let

ϕ ∈ K0
p ∩ {u ∈ C∞(R2

+ \ Γp) : supp(u) ⊂⊂ R2
+}; (4.5)

then, for n sufficiently large, ϕ ∈ K̃0
p,n (extended by 0 in H−n ), so that (4.4) and the weak

H̃p-convergence w̃nk ⇀ w̃p provide∫
R2

+\Γp
∇w̃p · ∇ϕdx+ 2

∫
Γp

∂+ψj

∂ν+
p
γ+
p (ϕ) ds = 0.

Since the space defined in (4.5) is dense in K0
p, the previous relation holds for every ϕ ∈ K0

p.
Hence w̃p satisfies (3.2) if p ∈ S1

+, while w̃p satisfies −∆w̃p = 0 weakly in R2
+ if p = (0,±1).

Then the uniqueness result proved in Lemma 3.1 implies that
w̃p = wp if p ∈ S1

+ and w̃p = 0 if p = (0,±1).
From Proposition 3.5 we have that

mpnk
= −j

∫ π/2

−π/2
wpnk (cos t, sin t) sin

(
j
(
π
2 − t

))
dt

= −j
∫ π/2+α−αnk

−π/2+α−αnk
w̃nk(cos t, sin t) sin

(
j
(
π
2 − t+ α− αnk

))
dt. (4.6)

The weak H̃p-convergence w̃nk ⇀ w̃p and continuity of the trace embedding H̃p ↪→ L2(∂D1)
allow passing to the limit in (4.6) thus yielding that

lim
k→∞

mpnk
= −j

∫ π/2

−π/2
wp(cos t, sin t) sin

(
j
(
π
2 − t

))
dt = mp if p ∈ S1

+

and
lim
k→∞

mpnk
= 0 if p = (0,±1).

By the Urysohn property, we conclude that limn→∞mpn = mp if p ∈ S1
+ and limn→∞mpn = 0 if

p = (0,±1). �

5. Monotonicity formula and local energy estimates

For 1 ≤ k ≤ N and a ∈ Ω, let ϕak be an eigenfunction of problem (Ea) related to the eigenvalue
λak. More precisely, let ϕak solve{

(i∇+Aa)2ϕak = λakq(x)ϕak, in Ω,
ϕak = 0, on ∂Ω,

(5.1)

and satisfy the orthonormality conditions∫
Ω
q(x)|ϕak(x)|2 dx = 1 and

∫
Ω
q(x)ϕak(x)ϕa` (x) dx = 0 if k 6= `. (5.2)
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For k = N we choose ϕaN being as in (2.23). From (2.7), (2.8), (2.9), (2.22), (2.23), (A.1), and
standard elliptic estimates, we can deduce that

(i∇+Aa)ϕaN → (i∇+A0)ϕ0
N in L2(Ω,C2) (5.3)

and
ϕaN → ϕ0

N in H1(Ω,C) and in C2
loc(Ω,C). (5.4)

The asymptotic behavior of the eigenfunctions ϕak, for 1 ≤ k ≤ N , close to the singular point
a was studied in [9, Theorem 1.3], [11, Theorem 2.1]; in particular it is known that there exist
coefficients ca,k, da,k ∈ C such that

ϕak(a+ (r cos t, r sin t)) = r1/2 e
it/2
√
π

(
ca,k cos

(
t
2
)

+ da,k sin
(
t
2
) )

+ o(r1/2), as r → 0.

To derive energy estimates for the eigenfunctions ϕak in neighborhoods of 0 with size |a|, we use a
monotonicity argument based on the study of an Almgren-type frequency function in the spirit
of [3].

5.1. Almgren-type frequency function.

Definition 5.1. Recall the definition of R̄ in (2.1). Let λ ∈ R, b ∈ R2
+ and u ∈ H1,b(D+

R̄
,C),

with u = 0 on {x1 = 0}. For any |b| < r < R̄, we define the Almgren-type frequency function as

N (u, r, λ,Ab) = E(u, r, λ,Ab)
H(u, r) ,

where

E(u, r, λ,Ab) =
∫
D+
r

|(i∇+Ab)u|2 dx− λ
∫
D+
r

q(x) |u|2 dx, H(u, r) = 1
r

∫
∂D+

r

|u|2 ds. (5.5)

We first prove that the frequency function of the eigenfunctions (5.1) is well defined in a
suitable interval. To this aim, we observe that, since a ∈ Ω 7→ λak admits a continuous extension
on Ω as proved in [21, Theorem 1.1], we have that

Λ := sup
a∈Ω

1≤k≤N

λak ∈ (0,+∞). (5.6)

Lemma 5.2. (i) There exists 0 < R0 < min{R̄, (2Λ‖q‖∞)−1/2)} such that H(ϕak, r) > 0 for
all |a| < R0, r ∈ (|a|, R0] and 1 ≤ k ≤ N .

(ii) For every r ∈ (0, R0], there exist Cr > 0 and αr ∈ (0, r) such that H(ϕak, r) ≥ Cr for all
|a| < αr and 1 ≤ k ≤ N .

Proof. We skip the proof of (i), which is very similar to that of [2, Lemma 5.2]. In order to prove
(ii), suppose by contradiction that there exist 0 < r ≤ R0, an ∈ Ω with an → 0, kn ∈ {1, . . . , N}
such that

lim
n→+∞

H(ϕankn , r) = 0.

From (5.1), (5.2) and (5.6) we deduce that∫
Ω
|(i∇+Aan)ϕankn |

2 dx = λankn ≤ Λ,

so that, by the Hardy-type inequality (A.1),
‖ϕankn‖H1

0 (Ω,C) ≤ C,

for a constant C independent of n. Then, along a subsequence, λankn → λ ∈ R and ϕankn → ϕ a.e.,
weakly in H1

0 (Ω,C) and strongly in L2(Ω,C), for some ϕ ∈ H1
0 (Ω,C). From (5.2) we have that∫

Ω q(x)|ϕ(x)|2 dx = 1 and then ϕ 6≡ 0.
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By (2.5), ϕ ∈ H1,0
0 (Ω,C). We notice that Aanϕankn → A0ϕ a.e. and, in view of (A.1),

‖Aanϕankn‖
2
L2(Ω,C2) ≤ 4

∫
Ω
|(i∇+Aan)ϕankn |

2 dx ≤ 4Λ.

Therefore, up to a subsequence, Aanϕankn ⇀ A0ϕ weakly in L2(Ω,C2). Then we can pass to the
limit in (5.1), so that λ = λk0 for some k0 ∈ {1, . . . , N} and

(i∇+A0)2ϕ = λk0q(x)ϕ in Ω. (5.7)

Furthermore, by compactness of the trace embedding H1(D+
r ,C) ↪→ L2(∂D+

r ,C), we have that

0 = lim
n→∞

1
r

∫
∂D+

r

|ϕankn |
2 ds = 1

r

∫
∂D+

r

|ϕ|2 ds,

which implies that ϕ = 0 on ∂D+
r . By testing (5.7) by ϕ in D+

r , in view of Lemma A.1, we
obtain that

0 =
∫
D+
r

(
|(i∇+A0)ϕ|2 − λk0q(x)|ϕ|2

)
dx ≥ (1− Λ‖q‖∞r2)

∫
D+
r

|(i∇+A0)ϕ|2 dx.

Since r ≤ R0 < (2Λ‖q‖∞)−1/2, we deduce that
∫
D+
r
|(i∇ + A0)ϕ|2 dx = 0. Lemma A.1 then

implies that ϕ ≡ 0 in D+
r . From the unique continuation principle (see [9, Corollary 1.4]) we

conclude that ϕ ≡ 0 in Ω, thus giving rise to a contradiction. �

In the following we let
0 < R0 < min{R̄, (2Λ‖q‖∞)−1/2)}

be such that Lemma 5.2 (i) holds. As a consequence of Lemma 5.2 we have that the function
r 7→ N (ϕak, r, λak, Aa) is well defined in the interval (|a|, R0] for all |a| < R0 and 1 ≤ k ≤ N .

We recall some results proved in [21], which will be used in the sequel.

Lemma 5.3 ([21, Lemma 5.2]). For all 1 ≤ k ≤ N and a ∈ Ω, let ϕak be as in (5.1)–(5.2). Then
1

H(ϕak, r)
d

dr
H(ϕak, r) = 2

r
N (ϕak, r, λak, Aa) for all |a| < r < R0. (5.8)

Lemma 5.4 ([21, Lemma 5.3]). Let 1 ≤ k ≤ N and r0 ≤ R0. If |a| ≤ r1 < r2 ≤ r0, then

H(ϕak, r2)
H(ϕak, r1) ≥ e

−2Λ‖q‖∞r2
0

(
r2
r1

)2
.

The formula for the derivative of E(ϕak, r, λak, Aa) presents some differences with respect to
[21], since in [21] the integrals in (5.5) were taken over half-balls centered at the projection of a
on ∂R2

+.

Lemma 5.5. Let p ∈ S1
+, 1 ≤ k ≤ N and a = |a|p. Then, for all |a| < r ≤ R0,

d

dr
E(ϕak, r, λak, Aa) = 2

∫
∂D+

r

|(i∇+Aa)ϕak · ν|2 ds−
λak
r

∫
D+
r

|ϕak|2(2q +∇q · x) dx− 2
r
Ma
k ,

where ν(x) = x
|x| denotes the unit normal vector to ∂Dr and

Ma
k = 1

4
(
a1(c2

a,k − d2
a,k) + 2a2ca,kda,k

)
.

Furthermore, there exists C > 0 depending on p ∈ S1
+ such that, for all µ ≥ 2,

|Ma
k |

H(ϕak, µ|a|)
≤ C

µ2 . (5.9)
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Proof. The expression of Ma
k follows by a Pohozaev-type identity in D+

r , proceeding as in [21,
Lemmas 5.5-5.7]. Next, in the same spirit as in [21, Lemmas 5.7-5.8], we can relate the value
Ma
k to the function v(y) = ϕak(|a|y2 + a) defined in Ω̃ := {y ∈ C : |a|y2 + a ∈ D+

2|a|}. Such a
domain is fixed (with respect to |a|, but depends on p), since a = |a|p is moving on a straight
line. Therefore, we proceed exactly in the same way as in the proofs therein and obtain a bound
depending on p

|Ma
k |

H(ϕak, 2|a|)
≤ C.

Expression (5.9) follows from Lemma 5.4. �

Lemma 5.6 ([21, Lemma 5.11]). Let 1 ≤ k ≤ N , p ∈ S1
+, and r0 ≤ R0. There exists cr0,p such

that, for all µ > 2, a = |a|p with |a| < r0/µ, and µ|a| ≤ r < r0,

e
Λ‖2q+∇q·x‖∞
2−2Λr02‖q‖∞

r2
(N (ϕak, r, λak, Aa) + 1) ≤ e

Λ‖2q+∇q·x‖∞
2−2Λr02‖q‖∞

r2
0 (N (ϕak, r0, λ

a
k, Aa) + 1) + cr0,p

µ2 .

Proof. The proof proceeds as in [21, Lemma 5.11] (see also [2, Lemma 5.6]), where we can replace
a1 with |a| thanks to Lemma 5.5 above. �

Lemma 5.7. For every δ ∈ (0, 1/4) and p ∈ S1
+ there exist rδ > 0 and Kδ,p > 2 such that, if

µ ≥ Kδ,p, a = |a|p with |a| < rδ/µ, and µ|a| ≤ r < rδ, then N (ϕaN , r, λaN , Aa) ≤ j + δ.

Proof. Let m > 0 be sufficiently small so that m(2 + j+m/2) < 1/2. By assumption (2.10) and
by (2.25) we have that

lim
r→0+

N (ϕ0
N , r, λ

0
N , A0) = j,

hence we can choose rδ > 0 sufficiently small so that

rδ < R0, e
Λ‖2q+∇q·x‖∞
2−2Λrδ2‖q‖∞

r2
δ ≤ 1 + δm, N (ϕ0

N , rδ, λ
0
N , A0) < j + δm.

By (5.3)–(5.4) there exists αδ > 0 such that N (ϕaN , rδ, λaN , Aa) < j + δm for every a with
|a| < αδ. We apply Lemma 5.6 with r0 = rδ and k = N , to deduce that for every µ > 2,
|a| < min{αδ, rδµ } and µ|a| < r < rδ it holds

N (ϕaN , r, λaN , Aa) + 1 ≤ (1 + δm)(1 + j + δm) + crδ,p
µ2

≤ 1 + j + δm(2 + j + δm) + crδ,p
µ2 < 1 + j + δ

2 + crδ,p
µ2 .

To conclude the proof it is sufficient to choose Kδ,p > max
{
2,
(
2crδ,p/δ

)1/2
, rδ/αδ

}
. �

5.2. Local energy estimates. Let us fix δ ∈ (0, 1/4) and p ∈ S1
+, and let

r̄ = rδ > 0 and K̄ = Kδ,p > 2 (5.10)

be as in Lemma 5.7. For all a ∈ Ω such that a = |a|p and |a| < r̄/K̄, we denote
Ha = H(ϕaN , K̄|a|).

As a direct corollary of Lemmas 5.3, 5.4, and 5.7, we obtain the following estimates for Ha.

Corollary 5.8. There exists C > 0 independent of |a| such that

Ha ≥ C|a|2(j+δ), if |a| < min
{
r̄

K̄
, αr̄

}
, (5.11)

Ha = O(|a|2) as |a| → 0, (5.12)
with αr̄ being as in Lemma 5.2, part (ii).
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Proof. In view of Lemma 5.7, integration of (5.8) over the interval (K̄|a|, r̄) yields

Ha ≥ H(ϕaN , r̄)
(
K̄|a|
r̄

)2(j+δ)

, if |a| < min
{
r̄

K̄
, αr̄

}
.

Then Lemma 5.2 (ii) provides (5.11). To prove (5.12) we notice that there exists C > 0 such
that

Ha ≤ CH(ϕaN , r0)|a|2,
because of Lemma 5.4, and moreover lima→0H(ϕaN , r0) ≤ C because of (5.4). �

From the Poincaré type Lemmas A.1 and A.2, the scaling property of the Almgren-type
frequency function N , and Lemma 5.7, it follows that, for all R ≥ K̄, the family of functions{

ϕ̃a : a = |a|p, |a| < r̄
R

}
is bounded in H1,p(D+

R ,C) (5.13)
where

ϕ̃a(x) := ϕaN (|a|x)√
Ha

, (5.14)

see [2, Theorem 5.9] for details in a similar case. In particular, for all R ≥ K̄, we have that∫
D+
R|a|

|(i∇+Aa)ϕaN |2dx = O(Ha), as |a| → 0+, (5.15)∫
∂D+

R|a|

|ϕaN |2dx = O(|a|Ha), as |a| → 0+,∫
D+
R|a|

|ϕaN |2dx = O(|a|2Ha), as |a| → 0+. (5.16)

Lemmas 5.4 and 5.6 imply the following local energy estimates for the eigenfunctions ϕak.

Lemma 5.9. For 1 ≤ k ≤ N and a = |a|p ∈ Ω, let ϕak ∈ H
1,a
0 (Ω,C) be a solution to (5.1)–

(5.2). Let R0, αR0 be as in Lemma 5.2. For every µ ≥ R0
αR0

, a = |a|p ∈ Ω with |a| < R0
µ , and

1 ≤ k ≤ N , we have that ∫
∂D+

µ|a|

|ϕak|2 ds ≤ C(µ|a|)3, (5.17)∫
D+
µ|a|

|(i∇+Aa)ϕak|2 dx ≤ C(µ|a|)2, (5.18)∫
D+
µ|a|

|ϕak|2 dx ≤ C(µ|a|)4, (5.19)

for some C > 0 (depending on p).

Proof. From Lemma 5.6, it follows that, if µ > 2 and |a| < R0
µ then, for all 1 ≤ k ≤ N ,

N (ϕak, µ|a|, λak, Aa) ≤ e
Λ‖2q+∇q·x‖∞
2−2ΛR02‖q‖∞

R2
0 (N (ϕak, R0, λ

a
k, Aa) + 1) + cR0,p

µ2 − 1. (5.20)

From (5.1), (5.2), and (5.6) we deduce that∫
D+
R0

|(i∇+Aa)ϕak|2 dx ≤
∫

Ω
|(i∇+Aa)ϕak|2 dx = λak ≤ Λ. (5.21)

Therefore, in view of Lemma 5.2, if |a| < αR0 ,

N (ϕak, R0, λ
a
k, Aa) =

∫
D+
R0
|(i∇+Aa)ϕak|2 dx− λak

∫
D+
R0
q(x)|ϕak|2 dx

H(ϕak, R0) ≤ Λ
CR0

. (5.22)
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Combining (5.20) and (5.22) we obtain that, if µ ≥ R0
αR0

and |a| < R0
µ , then∫

D+
µ|a|

|(i∇+Aa)ϕak|2 dx− λak
∫
D+
µ|a|

q(x)|ϕak|2 dx ≤ constH(ϕak, µ|a|)

for some positive const > 0. Hence, from Lemmas A.1 and A.2,

(1− 2Λ‖q‖∞µ2|a|2)
∫
D+
µ|a|

|(i∇+Aa)ϕak|2 dx ≤ constH(ϕak, µ|a|)

which implies ∫
D+
µ|a|

|(i∇+Aa)ϕak|2 dx ≤
const

1− 2Λ‖q‖∞R2
0
H(ϕak, µ|a|). (5.23)

From Lemma 5.4, it follows that, if µ ≥ R0
αR0

and |a| < R0
µ ,

H(ϕak, µ|a|) ≤ e2Λ‖q‖∞R2
0

(
µ|a|
R0

)2
H(ϕak, R0). (5.24)

On the other hand, Lemma A.2 and (5.21) yield

H(ϕak, R0) ≤
∫
D+
R0

|(i∇+Aa)ϕak|2 dx ≤ Λ. (5.25)

Estimate (5.17) follows combining (5.24), and (5.25), whereas estimate (5.18) follows from (5.23),
(5.24), and (5.25). Finally, (5.19) can be deduced from (5.17), (5.18) and Lemma A.1. �

6. Upper bound for λN − λaN : the Rayleigh quotient for λN

Let R > 2. For |a| sufficiently small and 1 ≤ k ≤ N , we define

vk,R,a :=

v
ext
k,R,a, in Ω \D+

R|a|,

vintk,R,a, in D+
R|a|,

k = 1, . . . , N, (6.1)

where

vextk,R,a := e
i
2 (θa0−θa)ϕak in Ω \D+

R|a|,

with ϕak as in (5.1)–(5.2) and θa, θa0 as in (2.21), so that it solves(i∇+A0)2vextk,R,a = λakq v
ext
k,R,a, in Ω \D+

R|a|,

vextk,R,a = e
i
2 (θa0−θa)ϕak on ∂(Ω \D+

R|a|),

whereas vintk,R,a is the unique solution to the problem(i∇+A0)2vintk,R,a = 0, in D+
R|a|,

vintk,R,a = e
i
2 (θa0−θa)ϕak, on ∂D+

R|a|.

It is easy to verify that dim
(

span{v1,R,a, . . . , vN,R,a}
)

= N .
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Arguing as in [2, Theorem 6.1] and using estimates (5.17)–(5.19), we obtain that, for every
R > max{2, R0

αR0
}, a = |a|p ∈ Ω with |a| < R0

R , and 1 ≤ k ≤ N ,∫
D+
R|a|

|(i∇+A0)vintk,R,a|2 dx ≤ Ĉ(R|a|)2, (6.2)∫
∂D+

R|a|

|vintk,R,a|2 ds ≤ Ĉ(R|a|)3,∫
D+
R|a|

|vintk,R,a|2 dx ≤ Ĉ(R|a|)4, (6.3)

for some Ĉ > 0 (depending on p but independent of |a|). For all R > K̄ and a = |a|p ∈ Ω with
|a| small, we also define

ZRa (x) :=
vintN,R,a(|a|x)
√
Ha

. (6.4)

As a consequence of (5.13) and of the Dirichlet principle, arguing as in [2, Lemma 6.3], we can
prove that the family of functions{

ZRa : a = |a|p, |a| < r̄
R

}
is bounded in H1,0(D+

R ,C). (6.5)

In particular, for all R > K̄,∫
D+
R|a|

|(i∇+A0)vintN,R,a|2dx = O(Ha), as |a| → 0+, (6.6)∫
∂D+

R|a|

|vintN,R,a|2dx = O(|a|Ha), as |a| → 0+,∫
D+
R|a|

|vintN,R,a|2dx = O(|a|2Ha), as |a| → 0+. (6.7)

Lemma 6.1. Let p ∈ S1
+. There exists R̃ > 2 such that, for all R > R̃ and a = |a|p ∈ Ω with

|a| < R0
R ,

λN − λaN
Ha

≤ fR(a)

where

fR(a) =
∫
D+
R

|(i∇+A0)ZRa |2 dx−
∫
D+
R

|(i∇+Ap)ϕ̃a|2 dx+ o(1), as |a| → 0+,

fR(a) = O(1), as |a| → 0+,

with ϕ̃a and ZRa defined in (5.14) and (6.4) respectively. In particular λN − λaN ≤ const Ha as
a = |a|p→ 0, for some const > 0 independent of |a|.

Proof. Let us fix R > max{2, K̄, R0
αR0
}. Let us consider the family of functions {ṽk,R,a}k=1,...,N

resulting from {vk,R,a}k=1,...,N by a weighted Gram–Schmidt process, that is

ṽk,R,a := v̂k,R,a√∫
Ω q|v̂k,R,a|2 dx

, k = 1, . . . , N,

where v̂N,R,a := vN,R,a,

v̂k,R,a := vk,R,a −
N∑

`=k+1
dR,a`,k v̂`,R,a, for k = 1, . . . , N − 1,
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and
dR,a`,k :=

∫
Ω q vk,R,av̂`,R,a dx∫

Ω q |v̂`,R,a|2 dx
.

By constructions, there hold∫
Ω
q|ṽk,R,a|2 dx = 1 for all k and

∫
Ω
q ṽk,R,aṽ`,R,a dx = 0 for all k 6= `. (6.8)

From (5.2), (5.16), (5.19), (6.3), (6.7), and an induction argument, we deduce that∫
Ω
q |v̂k,R,a|2 dx = 1 +O(|a|4) and dR,a`,k = O(|a|4) for ` 6= k as |a| → 0+, (6.9)∫

Ω
q |v̂N,R,a|2 dx =

∫
Ω
q |vN,R,a|2 dx = 1 +O

(
|a|2Ha

)
as |a| → 0+, (6.10)

dR,aN,k = O
(
|a|3

√
Ha
)

as |a| → 0+, for all k < N. (6.11)
From the classical Courant-Fisher minimax characterization of eigenvalues and (6.8) it follows
that

λN ≤ max
(α1,...,αN )∈CN∑N

k=1 |αk|
2=1

∫
Ω

∣∣∣∣(i∇+A0)
( N∑
k=1

αkṽk,R,a

)∣∣∣∣2dx,
so that

λN − λaN ≤ max
(α1,...,αN )∈CN∑N

k=1 |αk|
2=1

N∑
k,n=1

ma,R
k,nαkαn, (6.12)

where
ma,R
k,n =

∫
Ω

(i∇+A0)ṽk,R,a · (i∇+A0)ṽn,R,a dx− λaNδkn,

with δkn = 1 if k = n and δkn = 0 if k 6= n. From (6.10), (6.4), and (5.14) we deduce that

ma,R
N,N = λaN (1−

∫
Ω q |vN,R,a|2 dx)∫

Ω q |vN,R,a|2 dx

+

(∫
D+
R|a|

∣∣(i∇+A0)vintN,R,a

∣∣2dx− ∫D+
R|a|

∣∣(i∇+Aa)ϕaN
∣∣2dx)∫

Ω q |vN,R,a|2 dx

= Ha

(∫
D+
R

|(i∇+A0)ZRa |2 dx−
∫
D+
R

|(i∇+Ap)ϕ̃a|2 dx+ o(1)
)
,

as |a| → 0+. We observe that, in view of (5.13) and (6.5),∫
D+
R

|(i∇+A0)ZRa |2 dx−
∫
D+
R

|(i∇+Ap)ϕ̃a|2 dx = O(1) as |a| → 0+. (6.13)

From (2.7), (6.9), (6.11), (5.18), and (6.2), we obtain that, if k < N ,

ma,R
k,k = −λaN + 1∫

Ω q |v̂k,R,a|2 dx

(
λak −

∫
D+
R|a|

|(i∇+Aa)ϕak|2dx+
∫
D+
R|a|

|(i∇+A0)vintk,R,a|2dx
)

+ 1∫
Ω q |v̂k,R,a|2 dx

∫
Ω

∣∣∣∣(i∇+A0)
(∑
`>k

dR,a`,k v̂`,R,a
)∣∣∣∣2dx

− 2∫
Ω q |v̂k,R,a|2 dx

Re

(∫
Ω

(i∇+A0)vk,R,a · (i∇+A0)
(∑
`>k

dR,a`,k v̂`,R,a
)
dx

)
= (λk − λN ) + o(1) as |a| → 0.
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We observe that from (2.8) it follows that λk − λN < 0 for all k < N .
From (5.15), (5.18), (6.6), and (6.2), we deduce that, for all k < N ,(∫

Ω
q|v̂k,R,a|2 dx

)1/2 (∫
Ω
q|v̂N,R,a|2 dx

)1/2
ma,R
k,N

=
∫
D+
R|a|

(
(i∇+A0)vintk,R,a · (i∇+A0)vintN,R,a − (i∇+Aa)ϕak · (i∇+Aa)ϕaN

)
dx

−
∫

Ω
(i∇+A0)

(∑
`>k

dR,a`,k v̂`,R,a
)
· (i∇+A0)vN,R,a dx = O

(
|a|
√
Ha

)
,

so that, by (6.9) and (6.10),

ma,R
k,N = O

(
|a|
√
Ha

)
and ma,R

N,k = ma,R
k,N = O

(
|a|
√
Ha

)
as |a| → 0+. In a similar way, from (5.18) and (6.2) we can deduce that, for all k, n < N with
k 6= n,

ma,R
k,n = O(|a|2) as |a| → 0.

Thanks to Corollary 5.8 we can apply [2, Lemma 6.1] to conclude that

max
(α1,...,αN )∈CN∑N

k=1 |αk|
2=1

N∑
j,n=1

ma,R
k,nαkαn = Ha

(∫
D+
R

|(i∇+A0)ZRa |2 dx−
∫
D+
R

|(i∇+Ap)ϕ̃a|2 dx+ o(1)
)

as |a| → 0+. The conclusion then follows from (6.12) and (6.13). �

7. Lower bound for λN − λaN : the Rayleigh quotient for λaN

For R > 2, 1 ≤ k ≤ N , and |a| sufficiently small we define

wk,R,a :=

w
ext
k,R,a, in Ω \D+

R|a|,

wintk,R,a, in D+
R|a|,

k = 1, . . . , N,

where wextk,R,a := e
i
2 (θa−θa0 )ϕ0

k in Ω \D+
R|a| solves(i∇+Aa)2wextk,R,a = λkq w

ext
k,R,a, in Ω \D+

R|a|,

wextk,R,a = e
i
2 (θa−θa0 )ϕ0

k, on ∂(Ω \D+
R|a|),

whereas wintk,R,a is the unique solution to the problem(i∇+Aa)2wintk,R,a = 0, in D+
R|a|,

wintk,R,a = e
i
2 (θa−θa0 )ϕ0

k, on ∂D+
R|a|.

From (5.2) it follows easily that dim
(

span{w1,R,a, . . . , wN,R,a}
)

= N . From [10] and [14] (see
also [8]) we have that∫

D+
R|a|

|(i∇+A0)ϕ0
k|2 dx = O(|a|2), (7.1)∫

∂D+
R|a|

|ϕ0
k|2 ds = O(|a|3) and

∫
D+
R|a|

|ϕ0
k|2 dx = O(|a|4) as |a| → 0+. (7.2)
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From estimates (7.1)–(7.2) and the Dirichlet principle we deduce that∫
D+
R|a|

|(i∇+Aa)wintk,R,a|2 dx = O(|a|2), (7.3)∫
∂D+

R|a|

|wintk,R,a|2 ds = O(|a|3) and
∫
D+
R|a|

|wintk,R,a|2 dx = O(|a|4) as |a| → 0+. (7.4)

For all R > 2 and a = |a|p ∈ Ω with |a| small, we define

URa (x) :=
wintN,R,a(|a|x)
|a|j

, Wa(x) := ϕ0
N (|a|x)
|a|j

. (7.5)

From (2.11) we deduce that
Wa → βe

i
2 θ̃0ψj as |a| → 0+ (7.6)

in H1,0(D+
R ,C) for every R > 2, where ψj is given in (2.12) and β ∈ C \ {0} is as in (2.11). Let

uR be the unique solution to the problem{
(i∇+Ap)2uR = 0, in D+

R ,

uR = e
i
2 (θp−θp0)e

i
2 θ̃0ψj , on ∂D+

R .
(7.7)

Using the Dirichlet principle and (7.6), we can prove that, for all R > 2,

URa → βuR, in H1,p(D+
R ,C), (7.8)

as a = |a|p→ 0.

Lemma 7.1. For every r > 1, uR → Ψp in H1,p(D+
r ,C) as R→ +∞.

Proof. Let r > 2. For every R > r, let ηR : R2 → R be a smooth cut-off function such that
ηR ≡ 0 in DR/2, ηR ≡ 1 on R2 \DR, 0 ≤ ηR ≤ 1, and |∇ηR| ≤ 4/R in R2. From the Dirichlet
Principle, (3.7), and (3.8) we deduce that∫

D+
r

|(i∇+Ap)(uR −Ψp)|2 dx ≤
∫
D+
R

∣∣∣(i∇+Ap)
(
ηR(e

i
2 (θp−θp0)e

i
2 θ̃0ψj −Ψp)

)∣∣∣2 dx
≤ 2

∫
R2

+\D
+
R/2

∣∣∣(i∇+Ap)
(
e
i
2 (θp−θp0)e

i
2 θ̃0ψj −Ψp

)∣∣∣2 dx
+ 32
R2

∫
D+
R\D

+
R/2

∣∣∣e i2 (θp−θp0)e
i
2 θ̃0ψj −Ψp

∣∣∣2 dx = o(1)

as R→ +∞. �

Lemma 7.2. Let p ∈ S1
+. Let R̃ be as in Lemma 6.1. For all R > R̃ and a = |a|p ∈ Ω such

that |a| < R0
R , there holds

λN − λaN
|a|2j

≥ gR(a)

where lim|a|→0+ gR(a) = i|β|2κ̃R, being β as in (2.11) and

κ̃R =
∫
∂D+

R

(
e−

i
2 (θp−θp0)e−

i
2 θ̃0(i∇+Ap)uR · ν − (i∇)ψj · ν

)
ψj ds. (7.9)

Proof. Let {w̃k,R,a}k=1,...,N be the family of functions resulting from {wk,R,a} by the weighted
Gram–Schmidt process

w̃k,R,a := ŵk,R,a√∫
Ω q |ŵk,R,a|2 dx

, k = 1, . . . , N,
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where ŵN,R,a := wN,R,a and, for k = 1, . . . , N − 1, ŵk,R,a := wk,R,a −
∑N
`=k+1 c

R,a
`,k ŵ`,R,a, with

cR,a`,k :=
∫

Ω q wk,R,aŵ`,R,a dx∫
Ω q |ŵ`,R,a|2 dx

.

By construction, there hold∫
Ω
q|w̃k,R,a|2 dx = 1 for all 1 ≤ k ≤ N and

∫
Ω
q w̃k,R,aw̃`,R,a dx = 0 for all k 6= `. (7.10)

From (5.2), (7.2), (7.4), (7.6), and (7.8), and an induction argument,it follows that∫
Ω
q |ŵk,R,a|2 = 1 +O(|a|4) and cR,a`,k = O(|a|4) for ` 6= k as |a| → 0+, (7.11)∫

Ω
q |ŵN,R,a|2 dx =

∫
Ω
q |wN,R,a|2 dx = 1 +O

(
|a|2j+2) as |a| → 0+, (7.12)

cR,aN,k = O
(
|a|3+j) as |a| → 0+, for all k < N. (7.13)

From the classical Courant-Fisher minimax characterization of eigenvalues and (7.10) it follows
that

λaN ≤ max
(α1,...,αN )∈CN∑N

k=1 |αk|
2=1

∫
Ω

∣∣∣∣(i∇+Aa)
( N∑
k=1

αkw̃k,R,a

)∣∣∣∣2dx,
so that

λaN − λN ≤ max
(α1,...,αN )∈CN∑N

k=1 |αk|
2=1

N∑
k,n=1

ha,Rk,nαkαn, (7.14)

where
ha,Rk,n =

∫
Ω

(i∇+Aa)w̃k,R,a · (i∇+Aa)w̃n,R,a dx− λNδkn.

From (7.12), (7.5), (7.6), and (7.8) it follows that

ha,RN,N = λN (1−
∫
Ω q |wN,R,a|2 dx)∫

Ω q |wN,R,a|2 dx

+

(∫
D+
R|a|

∣∣(i∇+Aa)wintN,R,a

∣∣2dx− ∫D+
R|a|

∣∣(i∇+A0)ϕ0
N

∣∣2dx)∫
Ω q |wN,R,a|2 dx

= |a|2j
(∫

D+
R

|(i∇+Ap)URa |2 dx−
∫
D+
R

|(i∇+A0)Wa|2 dx+ o(1)
)

= |a|2j |β|2
(∫

D+
R

|(i∇+Ap)uR|2 dx−
∫
D+
R

|∇ψj |2 dx+ o(1)
)

= −i|a|2j |β|2(κ̃R + o(1))

as |a| → 0+, with κ̃R as in (7.9). From (7.11), (7.13), (7.3), and (7.1), we obtain that, if k < N ,

ha,Rk,k = (λk − λN ) + o(1) as |a| → 0.
We observe that from (2.8) it follows that λk − λN < 0 for all k < N .

From (7.6), (7.8), (7.1), (7.3), (7.11), and (7.12) we deduce that, for all k < N ,

ha,Rk,N = O(|a|1+j) and ha,RN,k = ha,Rk,N = O(|a|1+j)

as |a| → 0+. Moreover, from (7.1) and (7.3) we have that, for all k, n < N with k 6= n,

ha,Rk,n = O(|a|2) as |a| → 0.
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Using [2, Lemma 6.1] we can conclude that

max
(α1,...,αN )∈CN∑N

k=1 |αk|
2=1

N∑
k,n=1

ha,Rk,nαkαn = |a|2j(−i|β|2κ̃R + o(1))

as |a| → 0+. The conclusion then follows from (7.14). �

A combination of Lemmas 6.1 and 7.2 with Corollary 5.8 yields the following preliminary
estimates of the eigenvalue variation.

Corollary 7.3. Let p ∈ S1
+. Then

(i) |λN − λaN | = O(1) max{Ha, |a|2j} as a = |a|p→ 0;
(ii) |λN − λaN | = O(Hj/(j+δ)

a ) as a = |a|p→ 0.

Proof. As a direct consequence of Lemmas 6.1 and 7.2, we obtain that there exist cp, dp ∈ R
such that, if a = |a|p with |a| sufficiently small, then

cp|a|2j ≤ λN − λaN ≤ dpHa. (7.15)
We notice that, up to now, we still do not have any indication of the sign of the constants cp, dp.
Estimate (i) follows directly from (7.15). Estimate (ii) follows combining (i) with (5.11). �

Lemma 7.4. Let κ̃R be as in (7.9). Then,
lim

R→+∞
κ̃R = 2imp,

with mp as in (2.20).

Proof. First, for simplicity, we rename

vR = e−
i
2 (θp−θp0)e−

i
2 θ̃0uR,

where uR is the unique solution of (7.7). Let’s introduce the function

ϕR(r) =
∫ π

2

−π2
vR(r cos t, r sin t) sin

(
j
(
π
2 − t

))
dt, r > 1.

By direct calculations, it is easy to verify that, since −∆vR = 0 in D+
R \D

+
1 , ϕR satisfies

−
(
r1+2j

(
r−jϕR(r)

)′)′
= 0, for r ∈ (1, R]. (7.16)

Since vR = ψj on ∂D+
R , we have that

ϕR(R) = π

2R
j .

Hence, by integrating (7.16) over (1, r), we get

ϕR(r) =
π
2 − ϕR(1)R−2j

1−R−2j rj +
ϕR(1)− π

2
1−R−2j r

−j , r ∈ (1, R].

By differentiation of the previous identity, we obtain that

ϕ′R(R) = jRj−1

1−R−2j

(
π

2 (1 +R−2j)− 2ϕR(1)R−2j
)
. (7.17)

On the other hand

iϕ′R(R) = i

Rj+1

∫
∂D+

R

∂vR
∂ν

ψj ds. (7.18)
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By combining (7.17) and (7.18) we get

i

∫
∂D+

R

∂vR
∂ν

ψj ds = ij

1−R−2j

(
π

2R
2j + π

2 − 2ϕR(1)
)
. (7.19)

The second term of the right hand side of (7.9) can be calculated explicitly:

i

∫
∂D+

R

∂ψj
∂ν

ψj ds = ij
π

2R
2j . (7.20)

From (7.19), (7.20) and (7.9) it follows that

κ̃R = ij

1−R−2j (−2ϕR(1) + π) . (7.21)

Finally, Lemma 7.1 and Proposition 3.5 imply that

lim
R→+∞

ϕR(1) = ωp(1) + π

2 = −mp

j
+ π

2 .

This allows passing to the limit in (7.21) thus getting the conclusion. �

8. Energy estimates for the eigenfunction variation

This section aims at providing some energy estimates for the function vN,R,a defined in (6.1),
in order to improve the estimates on Ha collected in Lemma 5.8.

Throughout this section, we will regard the space H1
0 (Ω,C) (which coincides with H1,0

0 (Ω,C),
see (2.5)) as a real Hilbert space endowed with the scalar product

(u, v)
H1,0

0,R(Ω,C) = Re

(∫
Ω

(i∇+A0)u · (i∇+A0)v dx
)
,

which induces on H1
0 (Ω,C) the norm (2.4) (with a = 0), which is equivalent to the Dirichlet

norm, as observed in (2.5). To take in mind that here H1
0 (Ω,C) is treated as a vector space over

R, we denote it as H1
0,R(Ω,C) and its real dual space as (H1

0,R(Ω,C))?.
Let us consider the function

F : C×H1
0,R(Ω,C)→ R× R× (H1

0,R(Ω,C))? (8.1)

F (λ, ϕ) =
(
‖u‖2

H1,0
0 (Ω,C) − λN , Im

( ∫
Ω q(x)ϕϕ0

N dx
)
, (i∇+A0)2ϕ− λqϕ

)
,

where (i∇+A0)2ϕ− λϕ ∈ (H1
0,R(Ω,C))? acts as

(H1
0,R(Ω,C))?

〈
(i∇+A0)2ϕ− λqϕ, u

〉
H1

0,R(Ω,C)
= Re

(∫
Ω(i∇+A0)ϕ · (i∇+A0)u dx−λ

∫
Ω qϕu dx

)
for all ϕ ∈ H1

0,R(Ω,C). In (8.1) C is also meant as a vector space over R. From (E0) and (2.9),
we have that F (λN , ϕ0

N ) = (0, 0, 0).

Lemma 8.1. The function F defined in (8.1) is Fréchet-differentiable at (λN , ϕ0
N ) and its

Fréchet-differential dF (λN , ϕ0
N ) ∈ L

(
C×H1

0,R(Ω,C),R× R× (H1
0,R(Ω,C))?

)
is invertible.

Proof. The proof follows from the Fredholm alternative and assumption (2.8) by quite standard
arguments, see [2, Lemma 7.1] for details for a similar operator. �

Theorem 8.2. Let p ∈ S1
+ and R > R̃, being R̃ as in Lemma 6.1. For a = |a|p with |a| < r̄

R ,
let vN,R,a be as defined in (6.1). Then ‖vN,R,a − ϕ0

N‖H1,0
0 (Ω,C) = O

(√
Ha
)
as |a| → 0+.
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Proof. From (6.1), (5.14), (6.4), (7.5), we have that∫
Ω

∣∣(i∇+A0)(vN,R,a − ϕ0
N )
∣∣2 dx =

∫
Ω
|e

i
2 (θa0−θa)(i∇+Aa)ϕaN − (i∇+A0)ϕ0

N |2 dx

+Ha

∫
D+
R

∣∣∣(i∇+A0)
(
ZRa −

|a|j√
Ha
Wa

)∣∣∣2 dx
−Ha

∫
D+
R

∣∣∣e i2 (θp0−θp)(i∇+Ap)ϕ̃a − |a|j√
Ha

(i∇+A0)Wa

)∣∣∣2 dx.
We can estimate the second term at the right hand side in the following way

Ha

∫
D+
R

∣∣∣(i∇+A0)
(
ZRa −

|a|j√
Ha
Wa

)∣∣∣2 dx
≤ 2Ha

∫
D+
R

∣∣∣(i∇+A0)ZRa
∣∣∣2 + 2|a|2j

∫
D+
R

∣∣∣(i∇+A0)Wa

∣∣∣2 = O(|a|2)

as |a| → 0, via (5.12), (6.5), (7.6). The estimate of the third term is analogous recalling (5.13)
in addition. In view of (5.3), we thus conclude that vN,R,a → ϕ0

N in H1
0 (Ω,C) as |a| → 0+.

Therefore, we take advantage from Lemma 8.1 and expand

F (λaN , vN,R,a) = dF (λN , ϕ0
N )(λaN−λN , vN,R,a−ϕ0

N )+o
(
|λaN−λN |+‖vN,R,a−ϕ0

N‖H1,0
0 (Ω,C)

)
(8.2)

as |a| → 0. In view of Lemma 8.1, the operator dF (λN , ϕ0
N ) is invertible (and its inverse is

continuous by the Open Mapping Theorem), then from (8.2) it follows that

|λaN − λN |+ ‖vN,R,a − ϕ0
N‖H1

0 (Ω,C)

≤ ‖(dF (λN , ϕ0
N ))−1‖L(R×R×(H1

0,R(Ω,C))?,C×H1
0,R(Ω,C))‖F (λaN , vN,R,a)‖R×R×(H1

0,R(Ω))?(1 + o(1))

as |a| → 0+. It remains to estimate the norm of

F (λaN , vN,R,a) = (αa, βa, wa)

=
(
‖vN,R,a‖2H1,0

0 (Ω,C) − λN , Im
(∫

Ω qvN,R,aϕ
0
N dx

)
, (i∇+A0)2vN,R,a − λaN q vN,R,a

)
in R × R × (H1

0,R(Ω))?. As far as αa is concerned, using (6.5), (5.13), and Corollary 7.3 (part
(ii)), since δ < 1 ≤ j we have that

αa =
(∫

D+
R|a|

|(i∇+A0)vintN,R,a|2 dx−
∫
D+
R|a|

|(i∇+Aa)ϕaN |2 dx
)

+ (λaN − λN )

= Ha

(∫
D+
R

|(i∇+A0)ZRa |2 dx−
∫
D+
R

|(i∇+Ap)ϕ̃a|2 dx
)

+ (λaN − λN )

= O(Hj/(j+δ)
a ) = O(

√
Ha), as |a| → 0+.

As far as βa is concerned, by the normalization in (2.23), (2.2), (6.7), (5.16), and (2.11), we have
that

βa = Im

(∫
D+
R|a|

q vintN,R,aϕ
0
N dx−

∫
D+
R|a|

q e
i
2 (θa0−θa)ϕaNϕ

0
N dx+

∫
Ω
q e

i
2 (θa0−θa)ϕaNϕ

0
N dx

)
= O(

√
Ha|a|j+2) = o

(√
Ha
)
, as |a| → 0+.
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Let ϕ ∈ C∞c (Ω,C). Then, if |a| is sufficiently small, e
i
2 (θa−θa0 )ϕ ∈ H1,a

0 (Ω,C) and then, in view
of (5.1),

0 =
∫

Ω
e
i
2 (θa0−θa)(i∇+Aa)ϕaN · (i∇+A0)ϕdx− λaN

∫
Ω
q e

i
2 (θa0−θa)ϕaNϕdx.

Hence, by (6.1),∫
Ω

(i∇+A0)vN,R,a · (i∇+A0)ϕdx− λaN
∫

Ω
q vN,R,aϕdx

=
∫
D+
R|a|

(i∇+A0)vintN,R,a · (i∇+A0)ϕdx− λaN
∫
D+
R|a|

qvintN,R,aϕdx

−
∫
D+
R|a|

e
i
2 (θa0−θa)(i∇+Aa)ϕaN · (i∇+A0)ϕdx+ λaN

∫
D+
R|a|

q e
i
2 (θa0−θa)ϕaNϕdx,

which, in view of (5.15), (5.16), (6.6), (6.7), yields

sup
ϕ∈C∞c (Ω,C)\{0}

(H1
0,R(Ω,C))?

〈
(i∇+A0)2vN,R,a − λaNqvN,R,a, ϕ

〉
H1

0,R(Ω,C)

‖ϕ‖
H1,0

0 (Ω,C)
= O(

√
Ha),

as |a| → 0+. By density of C∞c (Ω,C) in H1,0
0 (Ω,C) we conclude that

‖wa‖(H1
0,R(Ω,C))? = O

(√
Ha
)
, as |a| → 0+,

thus completing the proof. �

As a consequence of Theorem 8.2, we obtain the following improvement of Corollary 5.8.

Theorem 8.3. We have that |a|2j = O(Ha) as a = |a|p→ 0.

Proof. Directly from scaling and Theorem 8.2, we obtain that, for every R > R̃,(∫(
1
|a|Ω

)
\D+

R

∣∣∣∣(i∇+Ap)
(
ϕ̃a(x)− e

i
2 (θp−θp0) |a|j√

Ha
Wa

)∣∣∣∣2dx
)1/2

= O(1), as a = |a|p→ 0, (8.3)

from which it follows that

|a|j√
Ha

(∫
D+

2R\D
+
R

∣∣∣∣(i∇+Ap)
(
e
i
2 (θp−θp0)Wa

)∣∣∣∣2dx
)1/2

≤ O(1) +
(∫

D+
2R\D

+
R

∣∣∣∣(i∇+Ap)ϕ̃a(x)
∣∣∣∣2dx

)1/2

as a = |a|p→ 0. Via (7.6) and (5.13), this reads |a|j√
Ha

= O(1) as |a| → 0+, thus concluding the
proof. �

9. Blow-up analysis

Theorem 9.1. For p ∈ S1
+ and a = |a|p ∈ Ω, let ϕaN solve (2.22). Let ϕ̃a be as in (5.14), K̄ be

as in (5.10), β be as in (2.11) and Ψp be the function defined in (2.24). Then

lim
a=|a|p→0

|a|j√
Ha

= 1
|β|

√√√√ K̄∫
∂D+

K̄

|Ψp|2 ds
(9.1)

and

ϕ̃a →
β

|β|

√√√√ K̄∫
∂D+

K̄

|Ψp|2 ds
Ψp, as a = |a|p→ 0, (9.2)

in H1,p(D+
R ,C) for every R > 1, almost everywhere in R2

+, and in C2
loc(R2

+ \ {p},C).
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Proof. From Theorem 8.3, we know that |a|j√
Ha

= O(1) as a = |a|p → 0. Furthermore, we
have that the family {ϕ̃a : a = |a|p, |a| < r̄

R} is bounded in H1,p(D+
R ,C) for all R ≥ K̄, see

(5.13). Then, by a diagonal process, for every sequence an = |an|p with |an| → 0, there exist
c ∈ [0,+∞), Φ̃ ∈

⋃
R>1H

1,p(D+
R ,C), and a subsequence an` such that

lim
`→+∞

|an` |j√
Han`

= c

and
ϕ̃an` ⇀ Φ̃ weakly in H1,p(D+

R ,C) for every R > 1 and almost everywhere.
By (5.14) and compactness of the trace embedding, we have that

1
K̄

∫
∂D+

K̄

|Φ̃|2 ds = 1; (9.3)

in particular Φ̃ 6≡ 0. Passing to the weak limit in the equation satisfied by ϕ̃a, i.e. in equation

(i∇+Ap)2ϕ̃a = λaN |a|2q(|a|x)ϕ̃a, in 1
|a|Ω = {x ∈ R2 : |a|x ∈ Ω}, (9.4)

we obtain that Φ̃ weakly solves

(i∇+Ap)2Φ̃ = 0, in R2
+. (9.5)

By continuity of the trace operator H1,p(D+
R ,C)→ L2({0} × (−R,R),C) and vanishing of ϕ̃an`

on {0} × (−R,R) for large `, we also have that

Φ̃ = 0, on ∂R2
+. (9.6)

By elliptic estimates, we can prove that ϕ̃an` → Φ̃ in C2
loc(R2

+ \ {p},C). Therefore, for every
R > 1,

∫
∂D+

R
|ϕ̃an` |

2 ds →
∫
∂D+

R
|Φ̃|2 ds as ` → +∞ and, passing to the limit in (9.4) tested by

ϕ̃an` , we obtain that∫
D+
R

|(i∇+Ap)ϕ̃an` |
2 dx→

∫
D+
R

|(i∇+Ap)Φ̃|2 dx, as `→ +∞.

Therefore, in view of the Poincaré inequality (A.3), we deduce the convergence of norms ‖ϕ̃an`‖H1,p(D+
R ,C) →

‖Φ̃‖H1,p(D+
R ,C) as `→ +∞ and then conclude that the convergence ϕ̃an` → Φ̃ is actually strong

in H1,p(D+
R ,C) for every R > 1.

Therefore we can pass to the limit along an` in (8.3) and, recalling (7.6), we obtain that∫
R2

+\D
+
R

∣∣∣(i∇+Ap)
(
Φ̃− e

i
2 (θp−θp0+θ̃0)cβψj

)∣∣∣2 dx < +∞,

for every R > R̃.
This implies that c > 0; indeed, otherwise, c = 0 would imply that

∫
R2

+
|(i∇+Ap)Φ̃|2 dx < +∞,

which, in view of (9.5)-(9.6) and (A.2), would yield Φ̃ ≡ 0, thus contradicting (9.3). Therefore,
from (9.5), (9.6) and Proposition 3.2 we have necessarily that

Φ̃ = cβΨp. (9.7)

From (9.7), (9.3) and the fact that c > 0, we have that

c = 1
|β|

√√√√ K̄∫
∂D+

K̄

|Ψp|2 ds
,
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so that the convergences (9.1)–(9.2) hold along the subsequence {an`}`. Since the limits in
(9.1)–(9.2) depend neither on the sequence {an}n nor the subsequence {an`}`, we conclude that
the convergences holds for |a| → 0+. �

Proof of Theorem 2.3. It follows directly from (9.1), (9.2). �

From Theorem 9.1 it follows that the blow-up family of functions ZRa introduced in (6.4)
converges to a multiple of the unique solution zR to{

(i∇+A0)2zR = 0, in D+
R ,

zR = e
i
2 (θp0−θp)Ψp, on ∂D+

R .
(9.8)

Lemma 9.2. Under the same assumptions as in Theorem 9.1, let ZRa be as in (6.4). Then, for
all R > R̃,

ZRa →
β

|β|

√√√√ K̄∫
∂D+

K̄

|Ψp|2 ds
zR, in H1,0(D+

R ,C),

as a = |a|p→ 0.

Proof. Once the convergence (9.2) is established, it follows from a standard Dirichlet principle,
see [2, Lemma 8.3] for details. �

10. Sharp asymptotics for convergence of eigenvalues: fR(a)

In view of Lemmas 6.1 and 7.2 and of the asymptotics of Ha given by (9.1), to compute the
limit of λ

a
N−λN
|a|2j it remains to compute the limit of fR(a) as a = |a|p→ 0 and R→ +∞.

Lemma 10.1. For all R > R̃ (where R̃ is given in Lemma 6.1) and a = |a|p ∈ Ω with |a| < R0
R ,

let fR(a) be as in Lemma 6.1. Then,

lim
|a|→0+

fR(a) = −i K̄∫
∂D+

K̄

|Ψp|2 ds
κR,

where
κR =

∫
∂D+

R

(
(i∇+A0)zR · ν zR − (i∇+Ap)Ψp · νΨp

)
ds. (10.1)

Furthermore, limR→+∞ κR = −2imp, where mp is defined in (2.20).

Proof. First, we observe that, by Theorem 9.1, Lemma 9.2, and the equations of zR (9.8) and
Ψp (3.6),

lim
|a|→0+

fR(a) = lim
|a|→0+

(∫
D+
R

|(i∇+A0)ZRa |2 dx−
∫
D+
R

|(i∇+Ap)ϕ̃a|2 dx
)

+ o(1)

= K̄∫
∂D+

K̄

|Ψp|2 ds

(∫
D+
R

|(i∇+A0)zR|2 dx−
∫
D+
R

|(i∇+Ap)Ψp|2 dx
)

= −i K̄∫
∂D+

K̄

|Ψp|2 ds
κR,

with κR from (10.1). We divide the computation of the limit limR→+∞ κR in two steps.
Step 1. We claim that

κR =
∫
∂D+

R

(
e
i
2 (θp−θp0)(i∇+A0)zR − (i∇+Ap)Ψp

)
· ν e−

i
2 (θp−θp0+θ̃0)ψj ds+ o(1), (10.2)

as R→ +∞. Indeed, we observe that κR can be written as

κR =
∫
∂D+

R

(
e
i
2 (θp−θp0)(i∇+A0)zR − (i∇+Ap)Ψp

)
· ν e−

i
2 (θp−θp0+θ̃0)ψj ds+ I1(R) + I2(R),
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where

I1(R) =
∫
∂D+

R

(i∇+A0)
(
zR − e

i
2 θ̃0ψj

)
· ν
(
e
i
2 (θp0−θp)Ψp − e−

i
2 θ̃0ψj

)
ds,

I2(R) = −
∫
∂D+

R

(i∇+Ap)
(
Ψp − e

i
2 (θ̃0+θp−θp0)ψj

)
· ν
(
Ψp − e−

i
2 (θp−θp0+θ̃0)ψj

)
ds.

Let ηR be a smooth cut-off function satisfying

ηR ≡ 0 in DR/2, ηR ≡ 1 on R2 \DR, 0 ≤ ηR ≤ 1 and |∇ηR| ≤ 4/R in R2.

By testing the equation
(i∇+Ap)2

(
Ψp − e

i
2 (θp−θp0+θ̃0)ψj

)
= 0,

which is satisfied in R2
+ \D+

R , on (Ψp − e
i
2 (θp−θp0+θ̃0)ψj)(1− η2R)2, we obtain that

I2(R) = i

∫
R2

+\D
+
R

|(i∇+Ap)
(
Ψp − e

i
2 (θp−θp0+θ̃0)ψj

)
|2(1− η2R)2 dx

+ 2
∫
R2

+\D
+
R

(1− η2R)
(
Ψp − e−

i
2 (θp−θp0+θ̃0)ψj

)
(i∇+Ap)

(
Ψp − e

i
2 (θp−θp0+θ̃0)ψj

)
· ∇η2R dx.

Hence,

|I2(R)| ≤ 2
∫
R2

+\D
+
R

∣∣∣(i∇+Ap)
(
Ψp − e

i
2 (θp−θp0+θ̃0)ψj

)∣∣∣2 dx
+ 4
R2

∫
D+

2R\D
+
R

∣∣∣Ψp − e
i
2 (θp−θp0+θ̃0)ψj

∣∣∣2 dx→ 0, as R→ +∞,

thanks to (3.7), (3.8). On the other hand, by testing the equation (i∇+A0)2(zR − e i2 θ̃0ψj) = 0
in D+

R on ηR
(
e
i
2 (θp0−θp)Ψp − e

i
2 θ̃0ψj

)
, the Dirichlet principle yields that

|I1(R)| =
∣∣∣i ∫

D+
R

(i∇+A0)
(
zR − e

i
2 θ̃0ψj

)
· (i∇+A0)

(
ηR
(
e
i
2 (θp0−θp)Ψp − e

i
2 θ̃0ψj

))
dx
∣∣∣

≤
∫
D+
R

∣∣∣(i∇+A0)
(
ηR
(
e
i
2 (θp0−θp)Ψp − e

i
2 θ̃0ψj

))∣∣∣2 dx
≤ 2

∫
D+
R\D

+
R/2

∣∣∣(i∇+A0)
(
e
i
2 (θp0−θp)Ψp − e

i
2 θ̃0ψj

)∣∣∣2 dx
+ 32
R2

∫
D+
R\D

+
R/2

∣∣∣e i2 (θp0−θp)Ψp − e
i
2 θ̃0ψj

∣∣∣2 dx.
Hence limR→+∞ I1(R) = 0 thanks to (3.7) and (3.8). The proof of (10.2) is thereby complete.
Step 2. We now compute limR→+∞ κR. First, we define

ζR(r) =
∫ π

2

−π2
e−

i
2 θ̃0(r cos t,r sin t)zR(r cos t, r sin t) sin

(
j
(
π
2 − t

))
dt.

Thanks to the equation satisfied by zR (9.8), we have that(
r1+2j(r−jζR(r)

)′)′ = 0, in (0, R].

Therefore, by integrating over (r,R), we obtain, for some B ∈ C,

ζR(r) = ζR(R)
Rj

rj − B

R2j r
j +Br−j , in (0, R].
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Next, we note that the function z0
R := e−

i
2 θ̃0zR is a solution to −∆z0

R = 0 in D+
R and z0

R = 0 on
∂R2

+ ∩DR, so z0
R = O(|x|) as |x| → 0 (see e.g. [10]). This implies that B = 0 and

ζR(r) = ζR(R)
Rj

rj and ζ ′R(r) = jζR(R)
Rj

rj−1, in (0, R].

On the other hand, we can compute

ζ ′R(R) = 1
Rj+1

∫
∂D+

R

∇
(
e−

i
2 θ̃0zR

)
· ν ψj ds = − i

Rj+1

∫
∂D+

R

(i∇+A0)zR · ν e−
i
2 θ̃0ψj ds.

Hence, by combining the two previous equations, we have that∫
∂D+

R

(i∇+A0)zR · ν e−
i
2 θ̃0ψj ds = ijRjζR(R). (10.3)

To compute explicitly ζR(R), we can use the boundary conditions of zR on ∂D+
R , Proposition

3.5 and (2.12) to obtain

ζR(R) =
∫ π

2

−π2
e
i
2 (θp0−θp−θ̃0)(R cos t,R sin t)Ψp(R cos t, R sin t) sin

(
j
(
π
2 − t

))
dt

=
∫ π

2

−π2
(wp + ψj)(R cos t, R sin t) sin

(
j
(
π
2 − t

))
dt = − mp

jRj
+Rj

π

2 . (10.4)

By combining (10.3) and (10.4), we get∫
∂D+

R

(i∇+A0)zR · ν e−
i
2 θ̃0ψj ds = −imp + ijR2j π

2 . (10.5)

Next, in view of (2.24) we rewrite∫
∂D+

R

(i∇+Ap)Ψp · ν e
i
2 (θp0−θp−θ̃0)ψj ds = i

∫
∂D+

R

∇(wp + ψj) · ν ψj ds.

By using Proposition 3.5 and (2.12), we immediately obtain that

i

∫
∂D+

R

∇(wp + ψj) · ν ψj ds = imp + ijR2j π

2 . (10.6)

Finally, by combining (10.2), (10.5) and (10.6) we obtain that limR→+∞ κR = −2imp, thus
concluding the proof. �

Proof of Theorems 2.1 and 2.2. From Lemmas 7.2, 6.1, Theorem 9.1 and Lemma 10.1, it follows
that, for all R > R̃,

i|β|2κ̃R + o(1) ≤ λN − λaN
|a|2j

≤ fR(a) Ha

|a|2j

=

−i K̄∫
∂D+

K̄

|Ψp|2 ds
κR + o(1)

|β|2
∫
∂D+

K̄

|Ψp|2 ds

K̄
+ o(1)

 ,
as a = |a|p→ 0. Hence,

i|β|2κ̃R ≤ lim inf
a=|a|p→0

λN − λaN
|a|2j

≤ lim sup
a=|a|p→0

λN − λaN
|a|2j

≤ −i|β|2κR,

for every R > R̃. From Lemmas 7.4 and 10.1, by letting R→ +∞, we obtain that

−2|β|2mp ≤ lim inf
|a|→0+

λN − λaN
|a|2j

≤ lim sup
|a|→0+

λN − λaN
|a|2j

≤ −2|β|2mp,
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which yields that
lim

a=|a|p→0

λN − λaN
|a|2j

= −2|β|2mp,

thus proving (2.13) together with Theorem 2.2. Statements (i),(ii), and (iii) of Theorem 2.1
follow from combination of Theorem 2.2, Lemma 4.1, and Proposition 4.2. �

Appendix: Hardy & Poincaré inequalities

In this appendix we recall some well-known Hardy and Poincaré-type inequalities used through-
out the paper.

In [17] the following Hardy-type inequalities were proved:∫
R2
|(i∇+Aa)u|2 dx ≥

1
4

∫
R2

|u(x)|2

|x− a|2
dx, (A.1)

which holds for all functions u ∈ D1,2
a (R2), being D1,2

a (R2) the completion of C∞c (R2 \ {a},C)
with respect to the norm ‖(i∇+Aa)u‖L2(R2,C2), and∫

Dr(a)
|(i∇+Aa)u|2 dx ≥

1
4

∫
Dr(a)

|u(x)|2

|x− a|2
dx, (A.2)

which holds for all r > 0, a ∈ R2 and u ∈ H1,a(Dr(a),C), see also [9, Lemma 3.1 and Remark
3.2].

We also recall from [21] two Poincaré-type inequalities in half-balls.

Lemma A.1 ([21, Lemma 3.3]). Let r > 0 and a ∈ D+
r . For all u ∈ H1,a(D+

r ,C), with u = 0
on {x1 = 0}, we have

1
r2

∫
D+
r

|u|2 dx ≤ 1
r

∫
∂D+

r

|u|2 ds+
∫
D+
r

|(i∇+Aa)u|2 dx. (A.3)

Lemma A.2 ([21, Lemma 3.4]). Let r > 0 and a ∈ D+
r . For all u ∈ H1,a(D+

r ,C), with u = 0
on {x1 = 0}, we have

1
r

∫
∂D+

r

|u|2 ds ≤
∫
D+
r

|(i∇+Aa)u|2 dx.
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