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Abstract
Geometric and topological aspects associated with induction effects of field 
lines in the shape of torus knots/unknots are examined and discussed in detail. 
Knots are assumed to lie on a mathematical torus of circular cross-section and 
are parametrized by standard equations. The induced field is computed by direct 
integration of the Biot–Savart law. Field line patterns of the induced field are 
obtained and several properties are examined for a large family of knots/unknots 
up to 51 crossings. The intensity of the induced field at the origin of the reference 
system (center of the torus) is found to depend linearly on the number of toroidal 
coils and reaches maximum values near the boundary of the mathematical torus. 
New analytical estimates and bounds on energy and helicity are established in 
terms of winding number and minimum crossing number. These results find 
useful applications in several contexts when the source field is either vorticity, 
electric current or magnetic field, from vortex dynamics to astrophysics and 
plasma physics, where highly braided magnetic fields and currents are present.

Keywords: Biot–Savart law, torus knots, winding number, magnetic braids, 
topological fluid mechanics, vortex filaments, electric currents

(Some figures may appear in colour only in the online journal)

1.  Introduction

In this paper we present an accurate analysis of geometric and topological aspects associated 
with the induction effects produced by steady source fields j in the shape of torus knots and 
unknots in ideal conditions. Our approach is rather general and applies to those cases where 
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we need to uncurl the relationship j = ∇×B (with ∇ ·B = 0) to determine the induction 
effects B due to j. The fields {B, j} can be interpreted in terms of velocity–vorticity for vortex 
filaments in Euler equations, magnetic field–electric current for electrostatic conductors, or 
vector potential–magnetic field for thin magnetic flux tubes in ideal magnetohydrodynamics. 
Induction effects due to rectilinear, circular or helical source fields have been widely studied 
in the literature, but very little is known for more complex configurations and indeed, to the 
best of our knowledge, very little is known on topological aspects. Yet, complex structures are 
present in many areas of science and technology. Toroidal and poloidal fields are common in 
astrophysical flows and in solar physics, where magnetic fields tend to form complex patterns 
in the outer space. In the solar corona, in particular, most of the magnetic flux outside sunspots 
is concentrated in plasma loops [6], and relations between morphological and physical proper-
ties of these structures is fundamental to model and predict solar activity [8, 24, 25]. Knotted 
solutions have been constructed in electromagnetism [3] and vortex torus knots have been 
studied computationally in superfluids [16], condensed matter physics [15, 26] and optics 
[13], and even in water by laboratory experiments [14]. In fusion devices such as tokamaks 
and stellarators strong electric currents are used to generate and shape magnetic fields respon-
sible for plasma confinement, where toroidal and poloidal fields are carefully engineered and 
controlled in order to realize stable plasma equilibria [4, 10, 12]. In all these contexts energy 
and safety considerations are of paramount importance and the question of estimating physi-
cal properties (such as energy and helicity) from configurational features or emitted signals is 
of great interest. In communication technology, for instance, backscattering techniques have 
been applied to probe topological differences in physical systems [17, 30] and knotted anten-
nas have been proposed to inject helicity into electro-magnetohydrodynamical plasma [28]. 
Magnetic fields are also used to investigate electric dispersion in conducting tissues present in 
the brain, heart and muscles [29] and are employed in dynamical systems theory, to analyze 
quasi-periodic or chaotic orbits associated with complex networks of field lines [1, 2, 19].

To provide information useful in the most varied contexts of application we consider a gen-
eral source field wrapped on a mathematical torus in the shape of a torus knot or unknot and 
we analyze its induction effects in terms of geometric and topological information. This study 
is based on the computation of the Biot–Savart induction law by assuming that the physical 
filament has an infinitesimally small cross-section and by exploiting a standard parametriza-
tion of the curve (section 2). Field line patterns of the induced field are examined on several 
cross-sectional planes for a large family of knots and unknots of high topological complexity 
up to 51 crossings (section 3). The influence of the winding number, taken as a measure of this 
complexity, and the intensity of the induced field evaluated in the neighborhood of the toroidal 
region are examined in section 4. Energy and helicity, two fundamental physical quantities of 
the system, are examined and the effects of topology through winding number and topological 
crossing number are established both numerically and analytically (section 5). Conclusions 
are drawn in section 6.

2.  Biot–Savart law for torus knots and unknots

We consider physical knots given by a steady vector field j defined on a filament of negligible 
cross-section and centerline given by a torus knot or unknot Tp,q  in R3. The physical knot 
given by Tp,q  is thus identified by a closed curve that wraps a mathematical torus p times in 
the longitudinal (or toroidal) direction and q times in the meridian (or poloidal) direction. 
Loosely speaking we can say that p denotes the number of toroidal coils and q the number 
of poloidal coils. Torus knots are obtained by taking p > 1 and q > 1, with { p, q} co-prime 
integers (figure 1(a)); torus unknots are obtained when p = 1 or q = 1 (figure 1(b)). These are 
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given by curves multiply wrapped (q or p times, respectively) on the torus that are topologi-
cally equivalent to the standard circle. The ratio w = q/p (w > 0) is called winding number 
and provides a measure of the topological complexity of the knot. For fixed p a poloidal hol-
low ring is realized in the limit when q → ∞; alternatively, for fixed q a toroidal hollow ring 
is realized when p → ∞. In general, for given p and q the knots Tp,q  and Tq,p are topologically 
equivalent, meaning that Tp,q  can be transformed into Tq,p by a series of continuous deforma-
tions [18]; in this case we write Tp,q ∼ Tq,p.

A standard parametrization of Tp,q  is given by [23]

Tp,q :




x∗ = R(1 + λ coswα) cosα,
y∗ = R(1 + λ coswα) sinα,
z∗ = Rλ sinwα,

� (1)

where x∗ = (x∗(α), y∗(α), z∗(α)) denotes the vector position of a point on Tp,q  and α ∈ [0, 2πp) 
is a parameter on the curve; R and r (0 < r < R) denote the large and small radius of the math-
ematical torus, and λ = r/R with λ ∈ (0, 1) the aspect ratio.

For simplicity we take a source field given by j = j0t̂ with j0 constant and ̂t unit tangent to 
Tp,q , so that the physical filament is identified with the centerline Tp,q  carrying a constant flux 
Φ. The source field j = ∇×B, (with ∇ ·B = 0) induces the B-field in the exterior of the 
knot given by the Biot–Savart law

B(x) =
Φ

4π

∫

Tp,q

t̂(x∗)× (x− x∗)

|x− x∗|3
dx∗ .� (2)

By using (1) the above integral reduces to

B(x) =
Φ

4π

∫ 2πp

0

t̂(α)× (x− x∗(α))

|x− x∗(α)|3
|ẋ∗(α)| dα .� (3)

Even in this simplified form this integral is not amenable to an explicit, closed form by ana-
lytic integration. We must therefore resort to studying the influence of geometric and topologi-
cal complexity by means of direct numerical integration; we shall do this in the sections below 
by setting Φ/4π = 1.

Figure 1.  Torus knots and unknots (red online) drawn on a mathematical torus (yellow 
online). (a) The two knots T2,5 and T5,2 are the same knot type, i.e. one can be transformed 
into the other by continuous deformations. (b) Poloidal coil T1,5 and toroidal coil T5,1 are 
topologically equivalent to the standard circle (the unknot).
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3.  Field line patterns of the induced field

To get an idea of the induction effects of the source field geometry and topology we first ana-
lyze the field line patterns of a given knot on different cross-sectional planes and then compare 
these patterns by considering different knots and unknots. To do this we proceed as follows: 
(i) by using (3) we compute Bx, By, Bz; (ii) we determine the projection P(B) onto the desired 
cross-sectional plane and evaluate P(B) at several points x in this plane; (iii) we plot the field 
lines as the envelope of P(B). Such patterns are produced by standard routines which read two- 
component vectors only. Since in general P(B) has three non-zero components we must 
make use of a standard rendering technique. In what follows we shall employ Mathematica’s 
StreamPlot [31] which reads the vector V = (V1, V2) ∈ R2; hence we can only plot field 
lines on the two principal planes, x = 0 from V = (By, Bz) by using Px(B) = (0, By, Bz), and 
y = 0 from V = (Bx, Bz) by using Py(B) = (Bx, 0, Bz). For any other plane we apply a render-
ing technique based on the use of the rotation matrix R(φ), given by

R(φ) =



cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 .� (4)

To illustrate how this procedure works consider the example given by the projection onto the 
plane Ππ/6 through the θ = π/6 rotation of the (x, z)-plane Π0 around the z-axis (see figure 2). 
We proceed as follows:

	 1.	apply the rotation matrix (4) with φ = π/6 to map x = (x, 0, z) ∈ Π0 to 
xπ/6 = [(

√
3/2)x, (1/2)x, z] ∈ Ππ/6; 

	 2.	project B onto the plane Ππ/6 with orthonormal basis given by ŵ1 = (
√

3/2, 1/2, 0) and 
ŵ2 = (0, 0, 1), to get

P(B) = (B · ŵ1)ŵ1 + (B · ŵ2)w2 =

(
3
4

Bx +

√
3

4
By,

√
3

4
Bx +

1
4

By, Bz

)
;

�

(5)

	 3.	rotate P(B) by −π/6 (backward) to get the components on Π0:

Bπ/6 =

(√
3

2
Bx +

1
2

By, 0, Bz

)
;� (6)

	 4.	use StreamPlot with input given by

V =

(√
3

2
Bx(xπ/6) +

1
2

By(xπ/6), Bz(xπ/6)

)
.� (7)

As we see two rotations have been applied: a first rotation to obtain points on Ππ/6 from points 
on Π0, and a second rotation to reduce the non-zero components of P(B) to two. This is a 
general procedure that works for any given 3D vector field and does not rely on any symmetry 
property of the system.

Distinct patterns induced by several knot types have been analyzed. Induced fields given 
by the knot T2,3 (R = 1 and λ = 0.75) on various cross-sectional planes are shown in figure 2. 
The region (yellow online) interior to the mathematical torus is delimited by circles and the 
knot intersections with the cross-sectional plane are denoted by bullets. Given the rotational 
symmetry of the standardly embedded knot, the pattern is seen to rotate (non-isometrically) 
with θ, becoming gradually self-similar with increasing p.
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Figure 3 shows for comparison the field line patterns induced by different torus knots and 
unknots in the plane θ = π/6 (R = 1 and λ = 0.75). At distances much greater than the aver-
age knot size the pattern becomes gradually indistinguishable from that given by a circular 
source field. For small p (see, for example, figure 3(e)) the pattern resembles that given by 
2p parallel, straight field lines orthogonal to the cross-sectional plane. For large p the source 
field becomes mainly toroidal, with the poloidal component of the induced field dominant 
(see figure 3(f)). As q increases toroidal effects become more pronounced and they cannot be 
visualized on cross-sectional planes.

4.  Influence of winding number and knot type

The influence of the winding number w on the intensity |B|, computed at different induction 
points on the x-axis, is shown in figure 4. At the origin x = 0 |B| grows with the number of 
toroidal wraps, remaining almost constant for a poloidal source field. When x moves away 

Figure 2.  B-lines induced by T2,3 (R = 1 and λ = 0.75) plotted for increasing values 
of θ on cross-sectional planes θ = constant. Bullets denote the knot intersections and 
circles delimit the region (yellow online) interior to the mathematical torus.

C Oberti and R L Ricca﻿J. Phys. A: Math. Theor. 50 (2017) 365501
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from the center, but still very close to the torus boundary (at x = 0.2 and x = 0.3) we observe 
a branching of the |B|-curves for unknots Tp,1 that depends on the parity value of p. To under-
stand this let us compare, for example, T2,1 (w = 1/2) and T3,1 (w = 1/3). From the plot of 
figure 3(b) we can see how the local arrangement of the inner coils of T3,1 near the point 
x = 0.2 (figure 4 top right plot) determines a value of the induced field that is much lower 
than that given by the inner coil of T2,1, which is very close to that location. This local effect 
also causes the branching for points in the torus interior at x = 0.3. More generally at x = 0.3 
poloidal source fields (i.e. with dominant poloidal geometry) induce much stronger effects 
with |B| reaching high values roughly proportional to q. For toroidal source fields high values 
are attained in the region just outside the torus between x = 0 and x = 0.2. As x approaches 
the torus boundary we note a peak in |B|, with |B| → 0 as x → ∞.

Let us compute the intensity per unit length, given by

|B| = |B|
L

,� (8)

where L is the total length of Tp,q . Note that L increases with increasing values of p and q. Plots 
of |B| and |B| computed at x = 0 are shown in figure 5. For knots and unknots with q < p |B| 
is proportional to the total length of the knot; since L is a linear function of p [23] induction 

Figure 3.  B-lines induced by different torus knots and unknots in the cross-sectional 
plane θ = π/6 (R = 1 and λ = 0.75). Bullets denote the knot intersections and circles 
delimit the region (yellow online) interior to the mathematical torus.
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effects at the origin are essentially proportional to p (figures 5(a) and (b), top diagrams). On 
the contrary, since poloidal wraps on opposite sides have opposite source field orientation, at 
the origin their induction effects tend to cancel out. As we can see from the plots of T1,q  and 
T2,q  (figures 5(a) and (b), bottom plots) the intensity of the induced field of unknots with one 
toroidal coil is about half of that due to knots with two toroidal coils, being negligible the 
contribution from poloidal wraps.

By inspecting the functional behavior of |B| at various points on the x-axis (plots not shown 
here) we note that the maximum of the field’s intensity remains localized near the boundary 

Figure 4.  |B| against winding number w for unknots Tp,1 and T1,q  with 
p, q ∈ {2, 3, 4, 5, 6, 7, 8}, and knots Tp,2 and T2,q  with p, q ∈ {3, 5, 7, 9, 11, 13, 15} 
(R = 1 and λ = 0.75). Induction points are placed on the x-axis. Inset: position of 
induction point (denoted by a bullet) with respect to toroidal region (yellow online). 
Interpolation is for visualization purposes only.
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of the mathematical torus independently of the geometric and topological complexity of the 
source field. This information is useful when we consider field lines confined to a torus (like 
in tokamaks) that are not necessarily closed curves but rather space-filling trajectories of a 
dynamical system that displays chaotic behavior. In this case information on average proper-
ties is useful for physical applications. In order to have such information in a concise way 
we consider the average values 〈|B|〉 based on the arithmetic mean of |B| taken over the first 
seven knots/unknots of the families Tp,1, T1,q , Tp,2 and T2,q  and plot 〈|B|〉 at various points 
along the x-axis (figure 6). Induction points interior to the toroidal region (yellow online) are 
delimited between dashed, vertical lines. The two peaks of 〈|B|〉 just inside the toroidal region 
(respectively at x = 0.3 and x = 1.7, see figure 6, left plots) are generic features of all knots 
Ti,qs tested (i fixed, q > i). Alternatively, for Tp,is 〈|B|〉 reaches a maximum at about x = 1.7, 
behaving differently for x ∈ [0, 0.3] according to the parity of the i-index.

5.  Energy and helicity

It is interesting to investigate relationships between energy, helicity and complexity. We define 
the integral J = J(Tp,q) given by

J =
1
2

∫

V
|j(x∗)|2 d3x∗,� (9)

over the volume V = V(Tp,q). Evidently this reduces to the conventional form of magnetic 
energy M when j is the magnetic field, i.e.

J ≡ M =
1
2

∫

V
|B(x∗)|2 d3x∗ .� (10)

Alternatively, when the source field is vorticity the integral (9) is enstrophy. Since the knot is 
very thin, J can be reduced to a function of the knot length L. If we normalize J with respect to 
the value J0 of a planar, circular filament of radius R and the same cross-section and strength 
of Tp,q  we have the non-dimensional quantity J̄ given by

J̄ =
J
J0

= L̄,� (11)

where L̄ = L/2πR is the non-dimensional length. Now, from elementary geometric properties 
of torus knots [23] we have lower and upper bounds on J̄ given by

Figure 5.  |B| and |B| at the origin of the reference system (R = 1 and λ = 0.75). 
(a) Unknots Tp,1 and T1,q  with p, q ∈ {2, 3, 4, 5, 6, 7, 8}; (b) knots Tp,2 and T2,q  with 
p, q ∈ {3, 5, 7, 9, 11, 13, 15}; knots and unknots are equally spaced on the x-axis. 
(c) Intensity per unit length |B| against w computed at x = 0. Interpolation is for 
visualization purposes only.
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p
√

(1 − λ)2 + λ2w2 � J̄ � p
√
(1 + λ)2 + λ2w2,� (12)

and in general

(i) J̄ ≈ λq (q � p),
(ii) J̄ ≈ (1 + λ) p ( p � q) .� (13)

Moreover, since p and q are related to the topological crossing number cmin of Tp,q  [22] by

cmin(Tp,q) = min [ p(q − 1), q( p − 1)] ,� (14)

i.e. cmin = q( p − 1) if q > p and cmin = p(q − 1) if p > q, by (13) we have

(i) J̄ ≈ λ
p−1 cmin (q � p),

(ii) J̄ ≈ 1+λ
q−1 cmin ( p � q),

� (15)

showing that J̄ is linearly proportional to the topological complexity of the knot. An alterna-
tive way to see the effect of topology comes from the winding number w that can be related to 
the self-linking number SL of the knot (see [23] and eqs. 18–19 below). If we take, for the sake 
of discussion, SL = pq = wp2 = q2/w (from 19 below) from figure 7(a) we see how topology 
influences the J̄-levels for any fixed p (or q).

More on this from helicity, that in ideal conditions is a fundamental topological invariant 
of the system [20, 32]. We define H = H(Tp,q) by taking

H =

∫

V
j ·B d3x∗,� (16)

Figure 6.  Mean intensity 〈|B|〉 at various positions along the x-axis. Mean values taken 
over the families Tp,1 and T1,q  (p, q ∈ {2, 3, 4, 5, 6, 7, 8}, top row), and Tp,2 and T2,q  
(p, q ∈ {3, 5, 7, 9, 11, 13, 15}, bottom); R = 1 and λ = 0.75. The toroidal region (yellow 
online) is delimited between dashed, vertical lines. Interpolation is for visualization 
purposes only.
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with ∇ ·B = 0. The above integral reduces to the standard magnetic helicity Hm when we 
take j to be the magnetic field, i.e.

H ≡ Hm =

∫

V
B ·A d3x∗� (17)

(where A is the associated vector potential of B). Alternatively, when j is vorticity the int
egral (16) becomes kinetic helicity. H can be computed by using the assumptions of section 2 
and equation (3) by taking care of the logarithmic singularity that develops when source and 
induction points become asymptotically close to one another, in which case we need to apply 
a de-singularization technique (see [24]). A more practical and straightforward approach con-
venient to applications is given by considering the expression of helicity in terms of geometric 
decomposition associated with the topological interpretation of H [21], given by

H̄ ≡ SL = Wr + T ,� (18)

where H̄ = H/Φ2, SL is self-linking, Wr writhe and T normalized total torsion (the field lines 
have no intrinsic twist). Direct computation of the geometric quantities actually shows that 
for these knots writhe alone would provide a rather good estimate of H̄  [24]. An even simpler 
estimate of SL is given by assuming that inflexions (points of zero curvature present only 
when λ = λcr = (1 + w2)−1, see [23]) are absent, and by applying a result of Fuller Jr (see 
[23] section 5), we have

|H̄| ≡ |SL| =

{
q( p − 1) if 0 < λ < λcr,
pq if λcr < λ < 1 .

� (19)

Plots of |H̄| against w are shown in figure 7(b). As for magnetic energy, also helicity levels are 
evidently influenced by topology through w for given fixed values of p (or q).

6.  Conclusions

In this paper we have carried out a detailed analysis of the influence of geometric and topologi-
cal properties on the induction effects of a source field in the shape of torus knots and unknots 
in ideal conditions. This is done by considering the standard embedding of several knot types 

Figure 7.  (a) Non-dimensional values of J̄ and |H̄| against winding number w 
for several torus knots and unknots (R = 1 and λ = 0.5). Unknots Tp,1, T1,q  with 
p, q ∈ {2, 3, 4, 5, 6, 7, 8}; knots Tp,2, T2,q  with p, q ∈ {3, 5, 7, 9, 11, 13, 15}, Tp,3, T3,q  
with p, q ∈ {4, 5, 7, 8, 10, 11, 13} and Tp,4, T4,q  with p, q ∈ {5, 7, 9, 11, 13, 15, 17}. 
Interpolation is for visualization purposes only.
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(up to 51 crossings) onto a mathematical torus. Knot types are described by a parametric rep-
resentation of the curve and induction effects associated with the field, identified with a given 
knot, are computed by the Biot–Savart law. The pattern of the induced field lines are extracted 
and analyzed on several cross-sectional planes for different knot families and intensity is calcu-
lated at various locations, inside and outside the toroidal region. Geometric features associated 
with rotational symmetry of the standard embedding are reflected in the self-similar features of 
the patterns. The intensity of the induced field measured at the center of symmetry is found to 
grow linearly (to a first approximation) with the number p of toroidal coils, remaining almost 
uninfluenced by the number q of poloidal coils. Maxima of intensity are found in the interior 
region of the mathematical torus and next to its boundary, a generic feature observed for every 
Tp,q  independently of knot complexity. The effects of local geometry are clearly dominant, but 
second order effects due to topology are more significant at a distance of the order of the torus 
cross-sectional size, becoming negligible as |x| → ∞, where the field’s effects are indistin-
guishable from those given by a circular wire. These results are consistent with what has been 
reported in literature [17, 28]. The effects of the winding number (which can be interpreted as a 
topological invariant of the system through the self-linking number) on the energy and helicity 
are examined in details numerically and analytically, showing that energy and helicity levels 
are influenced by growing topological complexity and remarkable correspondence between 
energy and helicity dependence on w is found. Since physical knots have negligible cross-
sections, simple relations of energy and helicity in terms of p, q and cmin are established, show-
ing that both energy and helicity grow with cmin and, depending on the value of p or q, with w.

The results presented here are of general validity and find applications in a wide variety of 
contexts that involve field confinement in toroidal geometry or braided patterns, most nota-
bly in magnetic confinement of plasma in tokamaks and stellarators [33], or in the study of 
braided structures in the solar corona [6, 7]. In the first case winding number information is 
important in engineering optimal confinement and efficiency of the burning plasma since w is 
directly related to the tokamak’s safety factor χ (∝ 1/w) [9] and stellarator’s rotational trans-
form ξ (∝ w) [11, 33]. In the second case, writhe and structural complexity measurements 
based on crossing number information [5, 25, 27] can help to estimate energy and helicity 
contents in energy build-up processes and flare predictions.
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