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Introduction

Structural Equation Models with latent variables have considerably developed in

recent years. Starting from the pioneers of the two most prominent ways of defining

models with latent variables, namely Covariance Structure Analysis and Component

Analysis, with LISREL [J“oreskog, 1970] and Partial Least Squares Path Modeling

[Wold, 1975; Lohm“oller, 1989] as the most famous techniques, several extensions

and improvements have been put forward. Moreover, for Redundancy Analysis

[Van den Wollenberg, 1977] models, which are part of the Component Analysis

framework, but have only observed endogenous variables, new methods have been

proposed in literature to deal with more than one group of exogenous observed vari-

ables, with simple linear equations and a unified optimization problem.

One main criticism, that has been dealt with recently in new strands of literature

regarding Structural Equation Modeling, is the partial inability of these systems

of linear equations to deal with categorical indicators. Several methods have been

proposed, either related to Optimal Scaling [Young, 1981], or adapting the EM al-

gorithm [Dempster et al., 1977] to the particular case under examination.

In the Redundancy Analysis framework, with only observed endogenous variables,

the possibility of extending the estimation procedures to a qualitative setting is

considerably less hampered by model restrictions, even more so in the Extended

Redundancy Analysis [Takane and Hwang, 2005] model, with more than one block

of exogenous variables. This work will hence present two novel estimation tech-

niques for Extended Redundancy Analysis models in presence of binary or categor-

ical endogenous variables: one that will make use of a modification of the Iterated

Reweighed Least Squares algorithm, and one that will employ the Gradient Descent

algorithm with backpropagation in an Artificial Neural Network architecture. For

the latter, recent developments in Structural Equation Models in the neural net-

works setting will be firstly examined, and the new technique will be subsequently

introduced. The promising feature of this new methods lies in the advantage of not

having to resort to Optimal Scaling as a proxy to redefine categorical endogenous

variables, with a proper optimization algorithm tailored for binary, multinomial or
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multivariate responses.

The first chapter will give the main definitions in the Structural Equation Models

setting, with its ramifications and subcategories, also pointing out the limitations

and criticisms of each particular model; The second chapter will present the existing

extensions of these models in the case of categorical endogenous variables; the third

chapter will present the newly proposed estimation procedures for Extended Re-

dundancy Analysis models with categorical indicators, which is the core novelty of

this work; the fourth chapter will present simulation studies on the new proposition,

which will examine both the capability of the models to recover the real parame-

ter values, and compare the two estimation algorithms, also in terms of predicted

probabilities; the fifth chapter illustrates an empirical example to which the new

models presented in this work will be applied, focusing on the comparison of differ-

ent estimation strategies; the sixth chapter offers conclusions and further possible

developments related to the scope of this work.
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Part I

Structural Equation Models with

Latent Variables: definitions,

characteristics and comparisons

1 Structural Equation Models

1.1 Introduction

Structural Equation Models (SEM) comprise a wide group of methods used to repre-

sent hypotheses about means, variances, and covariances of observed data in terms

of a smaller number of (structural) parameters defined by a theoretical model. The

distinction is between observed variables and latent constructs, which are either mea-

surable variables affected by errors which make them not observable, or theoretical

constructs by themselves not measurable or observable (e.g. customer satisfaction).

SEM, in their standard formulation, are particular type of linear models which can

encompass both relationships among observed variable, as in Path Analysis [Wright,

1921; Wright, 1934; Alwin and Hauser, 1975], and employing also relationships

among latent variables [J“oreskog, 1970; Lohm“oller, 1989; Wold, 1966; Wold, 1975;

Wold, 1982]. In fact, SEM tries to conciliate both the factor/component analysis

framework and the path analysis/simultaneous equation modeling framework.

Latent (unobserved) variables in SEM can be defined either as linear composites

of their manifest (observed) measurements or as underlying their manifest measure-

ments. In the first case, the measurement model is defined as formative (left panel

of Figure 1), whereas in the second, the measurement model is defined as reflective

(right panel of Figure 1) [Fornell and Bookstein, 1982; Bagozzi and Fornell, 1982;

Edwards and Bagozzi, 2000].
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Figure 1: SEM defining schemes

In particular, formative and reflective measurement models have the following

differences:

Formative Measurement Model

• Causality from the measures to the la-

tent construct

• High correlation among indicators is

unnecessary

• Eliminating an indicator from the

construct may affect the construct sig-

nificance

• The measurement error is at the con-

struct level.

Reflective Measurement Model

• Causality from the latent construct to

the measures.

• Usually high correlation among indi-

cators.

• Eliminating an indicator from the

construct does not affect the con-

struct significance.

• The measurement error is at the indi-

cator level.

SEM involve linear relationship among those latent variables, in the so called

structural model, comprised of exogenous (latent) variables, which are considered a

cause of the behavior of the endogenous (latent) variables.
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Specifically:

• Exogenous observed variables are denoted with X.

• Endogenous observed variables are denoted with Y.

• Exogenous latent variables are denoted with ξ, and measurement coefficients λX .

• Endogenous latent variables are denoted with η, and measurement coefficients λY .

• Coefficients between ξ and η are denoted with γ

• Coefficients between η and η are denoted with β

• Errors for X are denoted with δ, whose covariance matrix is Θδ.

• Errors for Y are denoted with ε, whose covariance matrix is Θε.

• Errors for η are denoted with ζ.

• Covariance matrix of ξ is denoted as Φ.

Figure 2 shows an example of structural model representation. The unaccounted

causes of exogenous variables are not represented in the model, being unmeasured

(or unknown), and exogenous variables have unrestricted covariances (i.e. not de-

fined by a modeled relationship). On the contrary, the presumed measured causes of

endogenous variables are explicitly considered in the model and therein estimated.

To estimate SEM coefficients, two strands of literature have been established: Co-

variance Structure Analysis (CSA), where the first and most famous model is the

LISREL Model [J“oreskog, 1970] and Partial Least Squares Path Modeling [PLS-

PM; Wold, 1975; Lohm“oller, 1989]. CSA and PLS deal with SEM from different

viewpoints: the former has its roots in Confirmatory Factor Analysis, whereas the

latter falls under Component Analysis (CA) models.

1.2 Covariance-based SEM

The LISREL model [J“oreskog, 1978; J“oreskog and S“orbom, 1982] is the most

common approach in CSA, dealing simultaneously with the estimation of the mea-

surement model of the LV and the estimation of the structural parameters’ causal

8
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Figure 2: SEM path diagram example

links, using a well defined optimum criterion.

The structural model, using the variables and parameters categorization defined

above, is

η = Bη + Γξ + ζ (1)

while the measurement model for the observed variables is

y = ΛY η + ε (2)

x = ΛXξ + δ (3)

From the model assumed above, the covariance of (y′,x′) then is

Σ =

(ΛY (I−B)−1)(ΓΦΓ′ + Ψ)(ΛY (I−B)−1)′ + Θε (ΛY (I−B)−1)ΓΦΛX

ΛX′ΦΓ′(ΛY (I−B)−1)′ ΛXΦΛX′ + Θδ


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The latter specification permits flexibility in defining fixed or constrained pa-

rameters (allowing also for model identification).

The main estimation methods are either based on unweighted least square criterion

or maximum likelihood criterion, to find the parameter matrices that best approxi-

mate the sample covariance matrix S.

fULS =
1

2
tr[(S−Σ)′(S−Σ)]

fML = log |Σ|+ tr[(SΣ−1)− log |S| − (p+ q)

The estimation method is iterative, using the Fletcher-Powell algorithm [Fletcher

and Powell, 1963]. Fit indices are either based on chi-square statistic for ML es-

timation, GFI for ULS estimation, or on the determinant of the fitted covariance

matrix (Q index).

χ2 = (n− 1)fML

GFI = 1− tr[(S− Σ̂)′(S− Σ̂)]

tr[S′S]

Q =
|S|
|Σ̂|

1.3 Component Analysis SEM and PLS Path Modeling

Since the CSA framework require distributional assumptions and has a moderate

level of complexity, alternative ”soft modelling” approaches in the framework of

component analysis [CA; Meredith and Millsap, 1985] have been developed.

Partial Least Squares, the most famous method in CA, firstly introduced by Wold

(1975) under the name NIPALS (Nonlinear Iterative PArtial Least Squares), fo-

cuses on maximizing the variance of the dependent variables (either observed or

unobserved) explained by the independent ones (either observed or unobserved),

while CSA aims to reproduce the covariance matrix. PLS-Path Models (PLS-PM)

are formally defined by two sets of linear equations: an inner model (the CA equiv-

alent of structural model), focused on the relationships between the LVs, and an

outer model (the CA equivalent of measurement model) which models the relation-
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ships between each LV and its manifest indicators (MVs); a third component is also

present, the weight relationships, which is used to estimate case-values for the LVs

[Chin, 1998].

For simplicity, let us suppose that all the LVs are indexed as ξh, and all the LV

coefficients are indexed with β. The inner model connections directed to ξh are

defined as

ξh =
∑
j 6=h

ξjβj + ζh

while the outer model for the h-th LV can be either reflective (Mode A) [Tenen-

haus and Tenenhaus, 2011]

Xh = ξhw
′
h + εh

or formative (Mode B) [Hanafi, 2007]. Note that formative way is not readily

available for LISREL.

ξh = Xhwh + δh

The estimation of PLS-PM fits inner and outer model sequentially, using a fixed

point algorithm, until inner and outer LV estimates reach an equilibrium [Tenenhaus

et al., 2005]. Then the final estimates of the inner and outer coefficients is carried

out.

• Outer estimate: the estimate yh of the LV ξh is

yh ∝
∑
j

wjhxjh

For Mode A, the weights are estimated as

wjh = Cov(xjh, zh)

For Mode B, the weights are estimated as

wh = (X′hXh)
−1X′h, zh

11



where zh is the inner estimate of the LV ξh.

• Inner estimate: the estimate zh of the LV ξh is

zh ∝
∑

j:ξj is connected to ξh

ejhyj

hence, the inner weights are estimated via usual OLS regression.

PLS-PM works without distributional assumptions and its path diagrams are esti-

mated with a very easy algorithm. Moreover, it can be used with a few individuals

and lots of variables, and the LV estimates have a practical meaning, not suffering

from the improper solutions and indeterminacy that plagues CSA based SEM.

However, despite evident benefits in both CSA and PLS methodologies to fit SEM,

both present unsolved issues that may hamper their applicability.

1.4 Redundancy Analysis Models

Within the CA framework, Redundancy Analysis [Van den Wollenberg, 1977] is the

simplest type of structural-equation model between two sets of observed variables,

in which latent variables are intended as components. The aim of RA is to extract

a series of linear components from a set of exogenous variables in such a way that

they are mutually orthogonal and successively account for the maximum variance of

a set of endogenous variables. In this framework, RA may be viewed as special type

of structural-equation model, where: (1) a formative relationship is always assumed

between the unobserved and observed (exogenous) variables, and (2) endogenous

variables are always observed ones.

Recently, new methods to estimate Redundancy based SEM have been pro-

posed: Multiblock Redundancy Analysis [MbRa; Bougeard et al., 2011], and the

so-called Extended Redundancy Analysis [ERA; Takane and Hwang, 2005; Lovaglio

and Vacca, 2016a for the related software], which generalizes RA for more than two

blocks. In ERA, the relationships between the observed exogenous variables and

the observed endogenous variables are moderated by the presence of linear compos-

12



f1

x1 x2 x3

f2

x4

y1 y2

e1 e2

w1 w2 w3 w4

a1
a2 a3

a4

Figure 3: ERA path diagram example

ites (hereinafter LC): LCs are estimated as exact linear combinations of formative

indicators, and both component weights and component loadings are estimated by

consistently minimizing a single optimum criterion.

1.4.1 ERA Model specification

Suppose we have a n× p matrix Y of endogenous variables and a n× q matrix X of

exogenous variables, both centered and with variance scaled to unit. If a variable is

exogenous as well as endogenous it is included in both Y and X. The relationship

between variables is

Y = XWA′ + E = FA′ + E

subject to rank constraint

r(WA′) ≤ min{q, p}

where W is a component weight matrix, A′ is a loading matrix, E is the residual ma-

trix, and F is the component scores matrix with diagonal identification restriction,

diag(F′F) = I. The model may be exemplified by the graph in Figure 3.
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The SSQ objective function (SSQ(X)=tr(X′X)) is

 min
W,A′

SSQ(Y −XWA′) = min
W,A′

SSQ(Y − FA′)

sub diag[(XW)′(XW)] = sub diag[F′F] = I

to be minimized with an Alternating Least Squares estimation algorithm [ALS; Kiers

and ten Berge, 1989]. The above may be expressed also as

SSQ(Y −XWA′) = SSQ [vec(Y)− vec(XWA′)] (4)

= SSQ [vec(Y)− (A⊗X)vec(W)] (5)

= SSQ
[
vec(Y)− (I⊗ F)vec(AT )

]
(6)

where ”⊗” denotes the Kronecker product.

1.4.2 Parameter estimation

The estimate of W and A follows the aforementioned minimization criterion, with

an ALS algorithm whose two steps are iterated until convergence:

1. Estimate of W for fixed A′ (Equation 5)

let w be the vector obtained by eliminating the zero elements of vec(W), and

let Ω be the matrix obtained by eliminating the columns of A ⊗ X corre-

sponding to the zero elements of vec(W). The LS estimate of w therefore

is

w̃ = (Ω′Ω)−1Ω′vec(X) (7)

W̃ is then reconstructed from w̃ and F is normalised to respect the identifi-

cation restriction.

2. Estimate of A′ for fixed W (Equation 6)

let a be the vector obtained by eliminating the zero element of vec(A′), and let

Γ be the matrix obtained by eliminating the columns of I⊗ F corresponding

14



to the zero elements of vec(A′). The LS estimate of a subsequently is

ã = (Γ′Γ)−1Γ′vec(Y) (8)

Ã′ is then reconstructed from ã.

The goodness-of-fit is the usual

Ψ = 1− SSQ((Y −XW̃Ã
′
))

SSQ(Y)

Bootstrap algorithm may be implemented to assess the reliability of the parame-

ter estimates, as well as to obtain their standard errors [Efron, 1982] or, alterna-

tively, conventional Maximum Likelihood Estimation can be used, assuming matrix-

normality on E, employing an Alternating Maximum Likelihood approach.

2 Limits of CSA, PLS-PM and SEM-RA models

2.1 CSA Models limitations

CSA estimates model parameters via Maximum Likelihood, following the assump-

tion of multivariate normality of the variables. However, such a distributional as-

sumption is often violated. More problematically, estimates can be improper (e.g.,

negative variance estimates), and factor scores or latent variable scores are indeter-

minate. However, the main limitation of CSA SEM (in the LISREL approach) is

represented by indeterminacy of latent scores, due to the exceeding of the rank of the

covariance matrix for latent variables (endogenous, exogenous, errors in equations

and measurement errors) on the rank-of-covariance matrix for the MVs [Steiger and

Sch“onemann, 1975; Sch“onemann, 1971; Vittadini, 1989; Vittadini et al., 2007].

Due to this, LVs and errors are not unique even with a precise identification of the

model [Steiger and Sch“onemann, 1975; Vittadini, 1989; Hwang and Takane, 2004].

Furthermore, there is no necessary and sufficient condition available for model iden-

tification, reason for which it is suggested that ”the identification problem be studied

on a case-by-case basis, examining the equations and choosing the restrictions, not

15



only in number, but also in position” [J“oreskog, 1988].

2.2 PLS-PM limitations

The main intention of PLS-PM is to predict in situations of low theoretical infor-

mation, not emphasizing confirmatory analysis [McDonald, 1996; Garthwaite, 1994;

Tenenhaus et al., 2005]. Secondly, PLS algorithm, despite achieving the goal of

prediction, suffers from logic inconsistency: the weights that define the composite

scores are calculated via linear regressions, which may not respect the role of the

observed variables in the measurement models [Vittadini et al., 2007; Fattore et al.,

2012]. For example, in presence of a LV with reflective indicators, composite scores

are obtained by treating the observed variables as formative. Another problem of

PLS-PM is the so called ”consistency at large”. Because the latent scores of the LVs

are a linear combination of the MVs that involve measurement error, they must be

regarded as biased [Fornell and Cha, 1994]. Therefore, ”the path coefficients esti-

mated through PLS converge on the parameters of the latent-variable model (only)

as both the sample size and the number of indicators of each latent variable become

infinite” [McDonald, 1996, p. 248]. In addition to this, PLS-PM does not solve

a global optimization problem, which makes difficult the evaluation of an overall

model fit, and does not allow for imposing value or equality constraints on path

coefficients. A solution to this problem has been presented with the Generalized

Structured Component Analysis [GSCA; Hwang and Takane, 2004], but this new

model still has to establish itself as a valid alternative to PLS-PM [Henseler, 2012],

despite being capable to fit an optimum criterion.

2.3 ERA limitations

The ERA model has been subject to several extensions, among which restriction

on the composite weights [DeSarbo et al., 2015], application on functional data

[Hwang et al., 2015] and the inclusion of concomitant indicators (i.e. exogenous

variables that may have an effect both on LCs and endogenous observed variables)

managing to separate the contribution of those variable and the fully exogenous
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variables to the formation of the latent composites [Lovaglio and Vittadini, 2014;

Lovaglio and Vacca, 2016b for the related software]. However, the current definition

of the ERA model is purely descriptive, not relying on inferential aspects if not

by aid of bootstrap techniques and, for the constrained version in DeSarbo et al.,

ridge restrictions on composite weights proposed in the literature deal with all the

weights simultaneously, failing to separate internal selection of weights in each la-

tent composite.Furthermore, in presence of categorical endogenous variables, the

only estimation of the model existing in literature is achieved via adaptation of the

Optimal Scaling algorithm [OS; see Hwang and Takane, 2002; Young, 1981].
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Part II

SEM with categorical indicators

1 CSA with categorical indicators

As far as categorical indicators are concerned, CSA and PLS-PM have undergo

significant extensions. In the definition of latent variables following completely re-

flective scheme, sets of only ordinal variables have been modeled either overlooking

the approach typical of Latent Class Analysis [McCutcheon, 1987], using maxi-

mum likelihood estimation in combination with the EM algorithm [Moustaki, 2000;

also accounting for external covariate effect in Moustaki, 2003]. More closely to

the LISREL methodology, a maximum likelihood approach considering a mixture

of dichotomous, ordinal and continuous indicators as manifestations of the latent

variables has been used to estimate CSA models [Muthén, 1984], in a three-stages

algorithm. In these situations, having defined the LV as a cause of its manifest indi-

cators, likelihood approaches are indeed favorable, relying on the common definition

of manifest variables Y as

f(Y) =

∫
R
. . .

∫
R
g(Y|ξ)h(ξ)dξ

where g(.) is the distribution of the manifest variables conditional on the latent

variable ξ, and h(.) is the distribution of the latent variable ξ (in the case of LCA,

integrals are replaced with sums.

2 PLS-PM with categorical indicators

For what concerns PLS-PM, given the possibility of having formative LV constructs,

the role of categorical variates can be regarded from several points of view:

• Manifest categorical variables that have a moderation effect in the formation

of the latent composite;

18



• Manifest categorical variables that concur in the formation of the LV, possibly

altogether with continuous manifest variables.

• Latent categorical variables that create clusters of individual based on unob-

served characteristics (Finite Mixture PLS [Herrmann et al., 2002; Trinchera,

2008; Esposito Vinzi et al., 2008]);

It is important to note that these methods, being closely related to PLS-PM, re-

tain both advantages and drawbacks of the main methodology (i.e., lack of proper

optimization and logic inconsistency).

2.1 The moderation effect

Moderation effects (e.g. the effect of variables such as gender) have firstly been

dealt considering them as separate LVs, accounting also for their interaction with

the continuous manifest variables of the other LVs [Chin et al., 2003], in the so-

called product indicator approach. Consider for example a formative LV ξX with

indicators X, and let m be the moderating effect. To evaluate the effect of m, two

new LVs are constructed: ξm, formed by m, the moderating effect, and ξv, formed

by the product terms vij = xijmi.

More appropriately, a two-step approach has been recently proposed in literature

[Henseler and Fassott, 2010]: in the first step PLS-PM is fitted, regarding the ex-

ogenous and moderating variables as independent in the formation of ξX and ξm; in

the second step an interaction among the latent variable scores is produced, namely

ξ̂vi = ˆξXi ∗ ˆξmi and a new PLS-PM estimation is produced, incorporating this inter-

action term in the prediction of the endogenous latent variable.

In both cases, the categorical variable is not considered as a direct participant in

the formation of the LV, but only as a confounding factor whose effect needs to be

taken into consideration for each of its categories.

2.2 PLS-PM with nominal and ordinal indicators

In these situations, the estimation steps typical of PLS-PM are preceded by a

quantification step that transforms the categorical variables into continuous ones
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[Trinchera et al., 2008; Russolillo, 2012]. Specifically, in the Non-Metric PLS (NM-

PLS) approach, a new quantification step is integrated in the estimation algorithm:

let x∗ be the observed nominal or ordinal variable, a scaling (numeric) value is as-

signed to each category k (k = 1, ..., K ≤ N) of x∗, such that it is coherent with

the chosen scaling level and optimizing the model criterion. Each raw variable is

transformed as x ∝ Xφ, where φ′ = (φ1, . . . , φk) is the vector of optimal scaling

parameters and the matrix X̃ defines a space in which the scaling constraint is

respected. The scaling step is optimized by means of the ordinary least squares

regression coefficients of the LC γx∗ on X̃, i.e. by projecting the LC on the space

spanned by the columns of X̃. Each level of scaling (nominal or ordinal) has a

corresponding scaling function Q(.), which is the projection operator of the LC in

a suitable space spanned the columns of X̃.

In nominal scaling

Q(X̃n,γx∗) = X̃nφ̂ = X̃n(X̃n′X̃n)−1X̃n′γx∗

Respecting the measurement restriction for every unit

(x∗i ∼ x′∗i )→ (x̂i = x̂′i)

where ”∼” means ”belonging to the same category”.

In ordinal scaling

Q(X̃o,γx∗) = X̃oφ̂ = X̃o(X̃o′X̃o)−1X̃o′γx∗

Respecting the measurement restrictions for every unit

(x∗i ∼ x′∗i )→ (x̂i = x̂′i) and (x∗i ≺ x′∗i )→ (x̂i ≤ x̂′i)

where ”≺” indicates categorical order.

Outside the Optimal Scaling methods, variations on the original PLS-PM algorithm

have been devised specifically to treat nominal categorical variables with reflective
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measurement model [Jakobowicz and Derquenne, 2007], substituting linear fitting

with ANOVA or logistic model for the outer estimates. To specifically treat ordinal

categorical variables, the most recent developments to the PLS-PM methodology

make use of the polychoric correlation matrix to fit the model, not having to resort

to Optimal Scaling [Cantaluppi, 2012; Schuberth et al., 2016].

3 SEM-RA with categorical indicators

The original Redundancy Analysis model can be applied also in presence of cat-

egorical responses, either seeing the model as a particular case of Reduced Rank

Regression [Izenman, 1975; Davies, 1982; van der Leeden, 1990], and extending it

to the GLM class for multinomial responses [Yee and Hastie, 2003], or applying

Optimal Scaling techniques [Israels, 1984].

3.1 ERA with categorical indicators

For the ERA model, only OS methods are avaliable, and the estimation is carried

out adding a data transformation step to the ALS algorithm [see Hwang and Takane,

2002]. Specifically, let YS and XS be the parametrized versions of the original data

Y and X. All the parameters are divided into model parameters and data param-

eters, which are alternately updated, and the parametrized variables are updated

one at a time, respecting their measurement characteristics.

Let zi be a variable either in Y or X, so that i = 1, . . . , p+q, and let si be a variable

either in YS or XS. The LS criterion becomes

f = SSQ(YS −XSWA′) = SSQ(YS −XSB) (9)

under the constraints diag[W′XS′XSW] = I, s′isi = 1 and si = ξ(zi), where B =

WA′. The data transformation phase consists of two steps:

• Step 1: the model predictions of si is obtained minimizing Equation 9.

Let sYg and sXh be the g-th and the h-th variables in YS and XS respectively,
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and let s̃i be the model prediction. Equation (4) can be expressed as

f = SSQ(siη
′ − (∆−Ψ)) (10)

Where η, ∆ and Ψ are defined as follows: if si is shared between YS and

XS, it is placed in the g-th column and in the h-th columns of YS and XS

respectively. Then, for YS

∆ =

XS
(h)B(h) if si is shared

XSB otherwise

; Ψ = YS
(g); η

′ =

e′g − b′h if si is shared

e′g otherwise

and, for XS

∆ = XS
(h)B(h); Ψ = YS; η′ = b′h

where XS
(h)B(h) is the product of XS whose h-th column is zero and B whose

h-th row is zero, YS
(g) is the matrix YS with the g-th column replaced with

zeroes, e′g is an all-zeroes vector except for position g, b′h is the h-th row of B.

The optimal prediction is then obtained by

s̃i = (∆−Ψ)η(η′η)−1

• Step 2: si is transformed to maximize the relationship between si and the

model predictions obtained in the previous step, hence it is transformed to be

as close to s̃i as possible, under the appropriate measurement restriction. This

gives the LS estimate of si

si = Υi(Υ
′
iΥi)

−1s̃i

with Υi determined by the measurement restriction imposed on the origi-

nal data columns (i.e., indicator matrix for nominal variables, whose element

stands for category membership).
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3.2 Limitations of optimal scaling for the ERA model and

a new proposition

Estimation of ERA with categorical variables via OS suffers from the typical draw-

backs of the method: the quality of scaling, and thus model performance, is suscepti-

ble to the number of categories and to the equality of interval width [see Lin, 2009].

Hence, this work is going to completely overcome potential setbacks of Optimal

Scaling, applying more appropriate estimation methods. In fact, since the original

ERA model consists of alternating linear models applied recursively, the most nat-

ural extension would be to consider the case of categorical endogenous variables as

an alternating GLM model applied recursively, without resorting to less accurate

Optimal Scaling methods. Thus, the core novelty of this work will be twofold:

• The introduction and estimation of a proper parametric version of the ERA

model for categorical responses, hereinafter named (Vector) Generalized Linear

ERA [(V)GLERA],

• The introduction ad adaptation of gradient descent methods, applied in the

Artificial Neural Networks setting, to the ERA model, thereby named ERA-

ANN, with no need of restrictive parametric assumptions.

Both model specifications will be formally presented in the next chapter, both in

the binary and in the multinomial case, and will subsequently be evaluated with

a simulation study that will cover also hybrid MLE-ANN formulations for either

weights or loading parameters.

23



Part III

Extended Redundancy Analysis

with Categorical Endogenous

Variables

1 Maximum Likelihood Estimation

1.1 The case of one binary endogenous variable (GLERA)

Consider a n×q matrix X of exogenous variables which is centered and with variance

scaled to unit, and a binary endogenous variable y, such that Yi ∼ Ber(π). Suppose

also that the usual logit link function is applied to the probability of success of each

element of y to obtain the linear predictor ηi, with weight matrix W and loading

vector a′, as below:

ηi = logit(P (yi = 1)) = logit(πi) = (XWa′)i (11)

The likelihood of the model is

L(W, a′) =
n∏
i=1

πi(X; W, a′)yi (1− πi(X; W, a′))1−yi

Hence the log-likelihood

l(W, a′) =
n∑
i=1

yi log πi(X; W, a′) + (1− yi) log(1− πi(X; W, a′)) = (12)

=
n∑
i=1

yi log

(
πi(X; W, a′)

1− πi(X; W, a′)

)
+

n∑
i=1

log(1− πi(X; W, a′)) = (13)

=
n∑
i=1

yi (XWa′)i +
n∑
i=1

log(1− πi(X; W, a′)) = (14)
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=
n∑
i=1

yi (XWa′)i −
n∑
i=1

log (1 + exp(XWa′)i)) (15)

The log-likelihood in Equations 12 to 15 can be treated either fixing W or a′,

resulting in

la(W) =
n∑
i=1

yi [(a⊗X)ivec(W)]−
n∑
i=1

log(1 + exp {(a⊗X)ivec(W)}) (16)

for fixed a′, and

lW(a) =
n∑
i=1

yi [Fia
′]−

n∑
i=1

log(1 + exp {Fia
′}) (17)

for fixed W, with the identification restriction diag[(XW)′(XW)] = diag[F′F] = I.

Similarly to the ERA linear model: let w∗ be the vector obtained by eliminating

the zero elements of vec(W), and let Ωi be the vector obtained by eliminating the

elements of (a⊗X)i corresponding to the zero elements of vec(W).

Then Equation 16 becomes

la(w∗) =
n∑
i=1

yi [Ωiw
∗]−

n∑
i=1

log(1 + exp {Ωiw
∗}) (18)

and Equation 17 remains unchanged.

The estimation of the model parameters is carried out with an Alternating Maxi-

mum Likelihood (AML) algorithm, maximizing Equation 18 and Equation 17 alter-

nately until convergence. Standard errors of the parameters can be obtained either

with Bootstrap procedures, or parametrically at convergence, using the covariance

matrices from the profile likelihoods [Richards, 1961; Yee and Hastie, 2003]. The

proposed method is a first step towards modeling categorical endogenous variable,

in the simplest case of one binary response.
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1.2 The case of one multinomial endogenous variables

(VGLERA)

Consider a n×Qmatrix X of exogenous variables which is centered and with variance

scaled to unit, and a categorical endogenous variable y with J categories, such that

Yci ∼ Mult(π1, . . . , πJ) and
∑J

j=1 πj = 1.

Conventionally a baseline category is selected (e.g. the last category J), and it

is assumed that the log-odds of each response follows a linear model

ηij = log

(
P (yci = j)

P (yci = J)

)
= log

(
πij
πiJ

)
= (XWja

′
j)i (19)

Furthermore, the conventional rule ηiJ = 0, is adopted when modeling categorical

responses.

To adapt the estimation algorithm to the multinomial case, the whole model has to

be formulated in Vector GLM notation [VGLM; Agresti, 2002; Yee, 2015], fitting a

two-step Alternating IRLS algorithm (AIRLS), fitting (J − 1) weight matrices Wj

for fixed loading vectors aj in the first step, and fitting (J − 1) loading vectors aj

for fixed weight matrices Wj.

1. Estimation of Wj’s for fixed aj’s.

Let Ωj be the n× RQ matrix such that Ωj = (aj ⊗X), for j = 1, . . . , J − 1.

These matrices have to undergo some manipulation in order to apply VGLM

methods. Specifically:

• Let Ω∗(q) be the matrix obtained by column-binding the q-th columns of

each of the (J − 1) Ωj matrices

Ω∗(q) =
[
Ω

(q)
1 , . . . ,Ω

(q)
J−1

]
q = 1, . . . , RQ

• Every row ω
∗(q)
i of Ω∗(q) is transformed into the corresponding (J − 1)×

(J − 1) diagonal matrix D
ω
∗(q)
i

D
ω
∗(q)
i

=
J−1∑
j=1

ejω
∗(q)
i Ej i = 1, . . . , n
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where ej is the canonical basis column vector in RJ−1, with 1 in the j-th

position and 0 elsewhere, and Ej is the canonical basis square matrix

in R(J−1)×(J−1), with 1 in the (j, j)-th position and 0 elsewhere. These

diagonal matrices are then stacked vertically to form the n(J−1)×(J−1)

matrix DΩ∗(q) .

• Finally, the RQ matrices DΩ∗(q) are bound columnwise to obtain the

n(J − 1)×RQ(J − 1) matrix Ω#

Ω# = [DΩ∗(1)|DΩ∗(2)| . . . |DΩ∗(Q) ]

Similarly, Let Wj be the Q×R weight matrix, for j = 1, . . . , J − 1.

• Each Wj is vectorized into wj, and the QR×(J−1) matrix W̃ is obtained

by column-binding these (J − 1) column vectors.

• Every row wq of W̃ is transformed into the corresponding (J−1)×(J−1)

diagonal matrix Dwq

Dwq =
J−1∑
j=1

ejwqEj q = 1, . . . , RQ

These diagonal matrices are then stacked vertically to form the RQ(J −

1)× (J − 1) matrix Dw. Finally, The row-sum vector w# is calculated

w# = Dw1J−1

where 1k is a column vector of 1’s, of length k.

Furthermore, let Yd be the dummy model matrix of the categorical response

variable y, leaving out the J-th baseline column, and let y∗ = vec(Y′d) be the

n(J − 1)× 1 VGLM response vector. Then, the following GLS model is fitted

recursively

z(s−1) = Ω∗w∗(s) + ε(s−1) (20)
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In Equation 20, w∗(s) is the non-zero subvector of w#, Ω∗ is the matrix ob-

tained by eliminating the columns corresponding to the zero elements of w#,

the error covariance matrix is not spherical (the response distribution is in-

trinsically heteroscedastic) and the z vector is the ”working response” for y∗

z(s−1) = Ω∗w∗(s−1) + K−1(s−1)(y∗ − p(s−1))

with p as the stacked vector of estimated probabilities for y∗ and K−1 as the

n(J − 1) × n(J − 1) inverse reweighing matrix for the multinomial case, in

which every of its diagonal blocks Ki is defined as

Ki =


p1i(1− p1i)

−p1ip2i p2i(1− p2i)
...

...
. . .

−p1ip(J−1)i −p2ip(J−1)i · · · p(J−1)i(1− p(J−1)i)

 i = 1, . . . , n

According to IRLS, parameter estimates and weight matrix are alternately

estimated until convergence. In particular, the estimate of w∗(s) in the s-th

step of IRLS is given by

w∗(s) = (Ω∗
′
K(s−1)Ω∗)−1Ω∗

′
K(s−1)z(s−1)

Subsequently, the Wj’s are reconstructed, and (J − 1) latent composite ma-

trices are calculated

Fj = XWj j = 1, . . . , J − 1

under the identification restriction diag(F′jFj) = I.

2. Estimation of aj’s for fixed Wj’s.

The Fj matrices have to undergo some manipulation in order to apply VGLM

methods. Specifically:

• Let F∗(r) be the matrix obtained by column-binding the r-th columns of
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each of the (J − 1) matrices

F∗(r) =
[
F

(r)
1 , . . . ,F

(r)
J−1

]
r = 1, . . . , R

• Every row f
∗(r)
i of F∗(r) is transformed into the corresponding (J − 1) ×

(J − 1) diagonal matrix D
f
∗(r)
i

D
f
∗(r)
i

=
J−1∑
j=1

ejf
∗(r)
i Ej i = 1, . . . , n

These diagonal matrices are then stacked vertically to form the n(J −

1)× (J − 1) matrix DF∗(r) .

• Finally, the R matrices DF∗(r) are bound columnwise to obtain the n(J−

1)×R(J − 1) matrix F∗

F∗ = [DF∗(1)|DF∗(2) | . . . |DF∗(R) ]

Similarly, Let aj be the R × 1 loading vector, for j = 1, . . . , J − 1. The

(J − 1)×R loading matrix A is constructed

A =


a′1

a′2
...

a′(J−1)


and vectorized to get the corresponding R(J − 1) × 1 parameter vector a∗ =

vec(A).

Then, the following GLS model is fitted recursively

z(s−1) = F∗a∗(s) + ε(s−1)

In Equation 2, the error covariance matrix is not spherical (the response dis-

tribution is intrinsically heteroscedastic) and the z vector is the ”working re-
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sponse” for y∗

z(s−1) = F∗a∗(s−1) + K−1(s−1)(y∗ − p(s−1))

with p as the stacked vector of estimated probabilities for y∗ and K−1 as the

n(J − 1) × n(J − 1) inverse reweighing matrix for the multinomial case, in

which every of its diagonal blocks Ki is defined as

Ki =


p1i(1− p1i)

−p1ip2i p2i(1− p2i)
...

...
. . .

−p1ip(J−1)i −p2ip(J−1)i · · · p(J−1)i(1− p(J−1)i)

 i = 1, . . . , n

According to IRLS, parameter estimates and weight matrix are alternately

estimated until convergence. In particular, the estimate of a∗(s) in the s-th

step of IRLS is given by

a∗(s) = (F∗
′
K(s−1)F∗)−1F∗

′
K(s−1)z(s−1)

Standard errors of the parameters can be obtained with Bootstrap procedures, and

goodness of fit in this preliminary modelization can be obtained calculating the mean

absolute error (MAE) [Hyndman and Koehler, 2006] with respect to the observed

response, along with usual misclassification rates from the confusion matrix.

The proposed method is a first step towards modeling categorical endogenous

variable, in the case of one categorical response, but the above reasoning can also

be applied to multinomial endogenous variables: if yk has Mk categories, the new

variable yc will have J =
∏p

k=1Mk categories.

The binomial and multinomial formulations can be put in comparison with the Par-

tial Least Squares Discriminant Analysis model [PLS-DA; Barker and Rayens, 2003;

Gallo, 2010, in the case of compositional data], that apply the problem of classifica-

tion via Discriminant Analysis to the PLS Regression framework, highlighting how
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the PLS Regression model can be used also for classification purposes.

In the original PLS-R formulation [Wold et al., 1983], suppose A = [a1, . . . , ak],

then

max
a,b;a′A=0′

(
[Cov(a′x,b′y)]2

(a′a)(b′b)

)
= {ak+1,bk+1} (21)

where ak+1 is the eigenvector corresponding to the (k + 1)-th largest eigenvalue of

ΣxyΣyx, and bk+1 = Σyxak+1.

Furthermore, PLS can be reformulated as a Canonical Correlation Analysis [CCA;

Hotelling, 1936] with PCA in the X and Y spaces as the penalties

[Cov(a′x,b′y)]2 = V(a′x)[Corr(a′x,b′y)]2V(b′y) (22)

with Y as the dummy matrix representing group membership. In this case, the CCA

directions are essentially the same directions of Fisher LDA [Bartlett, 1938]. Rein-

stating Equation 22 as a PLS-R objective function, but leaving out the constraints

on b′b since they are not meaningful, pertaining to a dummy variable matrix, leads

to the modified version of Equation 21

max
a,b;a′A=0′

(
[Cov(a′x,b′y)]2

V(b′y)(a′a)

)
= {ak+1,bk+1}

where ak+1 is the eigenvector corresponding to the (k + 1)-th largest eigenvalue of

ΣxyΣ
−1
y Σyx, and bk+1 = Σ−1y Σyxak+1. The sample plugin version of this eigen-

structure solution has been proved [Barker and Rayens, 2003] to be equivalent to

the solution of the discrimination problem that maximizes the among-group sum of

squares

1

n− 1
H = SxyS

−1
y Syx =

J∑
j=1

nj(Xj −X)(Xj −X)′

The main differences between PLS-DA and ERA for classification are in the model

specification and in the formal resolution of the problem: in PLS-DA the classifica-

tion is carried out without imposing restrictions (zero-fixed values) on the parame-

ters; moreover, the solution of the PLS-DA problem is performed with eigenstructure
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decomposition, whilst this new proposition relies on maximum likelihood and least

squares optimization.

2 Estimation via Artificial Neural Networks

2.1 Artificial Neural Networks

2.1.1 Introduction

The term ”neural network” (NN or ANN) has its origins in biology and neuro-

sciences, attempting to find mathematical representations of information processing

in biological systems [McCulloch and Pitts, 1943; Widrow et al., 1960]. This has

deeply affected the lexis of the related methodology also in practical applications

of pattern recognition and statistical modeling [Werbos, 1974]. A typical neural

network architecture is made of input and output neurons (i.e. independent and

dependent variables), mediated by so-called layers of hidden (i.e. unobservable)

neurons; connections among those layers represent how the input information is

combined and transformed towards subsequent layers [Bishop, 1995; Bishop, 2006].

A simple representation of an ANN architecture with one hidden layer is given in

Figure 4.

Formally, breaking down the features of the network, the jt-th hidden neuron

in the t-th layer is given by a transformed linear combination of its inputs. For

example, considering the above architecture, the hidden layer neurons values are

given by:

hj1,1 = σ1

(
J0∑
j0=1

xj0wj0,0 + b0

)
j1 = 1, . . . , J1 (23)

then the neurons of the first hidden layer are again combined and transformed,

forming the output of the net:

oj2 = hj2,2 = σ2

(
J1∑
j1=1

hj1,1wj1,1 + b1

)
j2 = 1, . . . , J2 (24)
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Input layer Hidden layer Output layer

Figure 4: Artificial Neural Network example

Putting all together:

oj2 = hj2,2 = σ2

(
J1∑
j1=1

(
σ1

(
J0∑
j0=1

xj0wj0,0 + b0

))
wj1,1 + b1

)
j2 = 1, . . . , J2 (25)

In particular, he first stage neurons are the observed inputs xj0 , j0 = 1, . . . , J0, while

the last stage neurons are the estimated outputs ojT , jT = 1, . . . , JT that will be

compared with the observed outputs yjT , jT = 1, . . . , JT . Moreover, inputs are not

considered as a layer. A schematic representation of the input/output transition is

shown in Figure 5.

The choice of the activation functions depends (also) on the nature of the final

output, and on the task of the analysis. The most common functions are the linear

activation function, used for linear prediction

σt(w,x) = w′x

33



h2,t w2,t Σ σt

Activation
function

hj,t+1

Output

h1,t w1,t

hJt,t wJt,t

Weights

Bias
bt

...
...

Inputs

Figure 5: Neural Network input-output transition

the sigmoidal, hyperbolic tangent and hard limit functions, used for non-linear pre-

diction or binary classification

σt(w,x) = logit(w′x)

σt(w,x) = tanh(w′x)

σt(w,x) =

1 if w′x > 0

−1 otherwise

the softmax function, used for multiclass classification (J categories)

σtj(wj,x) =
exp(w′jx)∑J
k=1 exp(w′kx)

the radial basis function, used for classification, similarly to Discriminant Analysis

techniques, and weighed kernel approximation.

σt(w,x) =

(
J1∑
j=1

wj,tφ(||x− µj||)

)
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2.1.2 Estimation of Artificial Neural Networks

The objective function to be minimized with respect to the neural network weights,

collected in the vector w, is

E(w) =
N∑
n=1

||on(xn,w)− yn||2 (26)

The above objective function can be used either for prediction or classification

purposes, but the cross-entropy error function has been proved to be more efficient

and accurate for classification problems than the standard sum of squares criterion

[Simard et al., 2003]

E(w) = −
N∑
n=1

K∑
k=1

ynk log onk + (1− ynk) log(1− onk) (27)

The estimation of neural network models relies on the iteration of two steps:

• Feedforward: using the weights estimated in the previous iteration, the net-

work outputs are calculated. For a single observation n, from input neurons

i, to output neuron j:

aj =

(∑
i

wjihi

)
(28)

hj = σ(aj) (29)

Note that one or more of the variables hi in the sum in Equation 28 could be

an input, and similarly, the unit j in Equation 29 could be an output.

• Backpropagation of the error [Rumelhart et al., 1986]: having

En =
1

2

∑
k

(onk(xn,w)− ynk)2

the gradient of the error w.r.t. w is calculated via the chain rule, ”backpropa-

gating” it to every node of the network. For instance, consider the evaluation

of the derivative of En with respect to a weight wji, noting that En depends
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on the weight only via aj

∂En
∂wji

=
∂En
∂aj

∂aj
∂wji

(30)

Using the notation ∂En

∂aj
= δj,

∂aj
∂wji

= hi, Equation 30 becomes

∂En
∂wji

= δjhi

hence, the derivative is simply the product of the δ of the neuron at the output

side of the weight by the z of the neuron at the input side of the weight. The

evaluation of δj-s is carried out using the chain rule

δj =
∂En
∂aj

=
∑
k

∂En
∂ak

∂ak
∂aj

(31)

for all k-s to which unit j is connected. Finally, using the above notation and

Equations 28 and 29

δj = σ′(aj)
∑
k

δkwkj (32)

Equation 32 is applied recursively, starting from the output units, for which

δk = (ok−yk), back through the connections of the networks, up until the first

set of weights (hence the term ”backpropagation”).

• Weights update by gradient descent, with tuning parameter η.

w(s+1) = w(s) − η∇E(w(s)) (33)

The usual gradient descent update can be slow and computationally burden-

some. For this reason, quicker update methods have been implemented to

drastically increase the algorithm efficiency [Vogl et al., 1988; Rigler et al.,

1991; Hagan and Menhaj, 1994], such as variable tuning parameter and re-

silient backpropagation.
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Other methods, such as BFGS Quasi-Newton [Bonnans et al., 2006]

w(s+1) = w(s) − [H(s)]−1∇E(w(s))

and Lavenberg-Marquardt [Levenberg, 1944; Marquardt, 1963]

w(s+1) = w(s) − [J(s)′J(s) + µI]−1J(s)′e(s)

make use also of the Hessian matrix H, either computing it directly or approx-

imating it with the Jacobian matrix of the weights J (especially useful with

big networks).

Usually, a few layers are enough to approximate network outputs and target variables

and, with a sufficient number of neurons, any continuous function on a compact in-

put domain can be approximated with great accuracy [Cybenko, 1989; Hornik et al.,

1989; Hornik, 1991]; this remains valid for a wide range of hidden layers activation

functions, excluding polynomials. Recently there has been a rise of methods in-

volving the estimation of neural networks with many hidden layers (e.g., more than

three), referred to as deep learning architectures [Goodfellow et al., 2016]. In the

next section, the implementation of ANN in the SEM framework will be discussed

and analyzed, leading to a new proposition for the ERA model with categorical

endogenous variables.

2.2 SEM and Artificial Neural Networks

To implement an ANN for structural equation models with latent variables, the main

challenge is to give a proper definition of latent variable using the typical constructs

of the neural network approach.

The most simple case of dimensionality reduction applied to the data, in some

sense analogous to Principal Component Analysis, regards the mapping of vectors

xn ∈ Rd onto vectors zn ∈ Rm, with m << d [Rumelhart et al., 1986]. The targets

used to train the network are simply the input vectors themselves, hence this ANNs

is called autoassociative neural network (see Figure 6). It attempts to map each
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Figure 6: Autoassociative Neural Network

input vector onto itself, with a hidden layer comprised of m neurons, by minimizing

a sum-of-squares error of the form

E =
1

2

∑
n

d∑
k=1

(x̂k(xn,w)− xnk)2

If the hidden units have linear activations functions, then it can be shown that

the error function has a unique global minimum, and that at this minimum the

network performs a projection onto the m-dimensional subspace spanned by the

first m principal components of the data [Bourlard and Kamp, 1988; Baldi and

Hornik, 1989]. The vector of weights forms a basis set which spans the principal

subspace. If additional hidden layers are permitted in the network, two subsequent

functional mappings can be employed with two additional layers, one between the

input and the projection, one between the projection layer and the output, both

with sigmoid or tanh activation functions. Such a network effectively performs a

non-linear principal component analysis [Kramer, 1991].
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To extend the implementation of ANN to SEM with latent variables, the hidden,

mono-neural layers have to be connected one to the other, forming the structural

part of the model while, for the measurement models, the left-hand side of the

LV neuron contains formative weight, and the right-hand side of the LV neuron

contains reflective weights. The measurement model is referred to as ”Observation-

LV Network” (OLN), depicted in Figure 7, and the corresponding architecture is the

so-called ”hierarchical ANN topology” [Hsu et al., 2006], shown in Figure 8. This

model representation proved to be a good alternative to PLS-PM, and performed

better than CSA, albeit tested only with linear activation functions and a fairly

simple architecture.

Literature on this topic has also explored the ANN implementation of LISREL,

via the same hierarchical ANN topology with limited connectivity, pointing out dif-

ferences and similarities between the two methods and addressing potential benefits

of the ANN implementation, since ”An additional neural estimation assists in as-

sessing the stable and robust relationships, in avoiding overinterpretation, and in

reconsidering the policy recommendations” [Davies et al., 1999]. The potential use

of Neural Networks as universal approximators has also allowed to extend the usual

SEM specification in a nonlinear setting [Malthouse et al., 1997]. Specifically, in the

nonlinear setting the objective function to be minimized is

min
f ,sf ,h,g,tg

n∑
i=1

[||xi − f(sf (xi))||2 + ||tg(yi)− h(sf (xi))||2 + ||yi − g(tg(yi))||2] (34)
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Figure 8: Hierarchical ANN topology for SEM

in Equation 34, the first and last term are the nonlinear autoassociative parts of

the network, whereas the second term relate the predictor variable scores to the

response variable scores as close as possible. The benefits of this method are clear

especially when the observed predictor variables lie on a lower dimensional surface.

An example of NLPLS modeled with a neural network architecture is shown in

Figure 9.

However, despite their relatively easy implementation, ANN in the SEM frame-

work revolves around observed variables that are identified as targets to be approx-

imated by the network. In ANN, observed endogenous variables are the core of the

analysis, while in LISREL or PLS the latent structure is the core of the analysis.

For this reason, redundancy analysis models such as ERA are the most favorable

setting in which an ANN structure can be developed, since the endogenous variables

are all observed. What differentiates the standard ERA specification from the ANN

architecture is the estimation method (e.g., ALS/AML vs backpropagation), broad-

ening the spectrum of available estimating methods for the same model and allowing

the treatment of categorical endogenous variables for classification purposes with no

need of parametric assumptions.
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Figure 9: Nonlinear PLS topology [as in Malthouse et al., 1997]

2.3 The ERA-ANN method for one binary endogenous vari-

able: four possible strategies

In the simplest possible structure, the ANN specification of the ERA path diagram is

depicted in Figure 10. However, the straightforward implementation of this network

leads to parameters unidentifiability, since no restriction is imposed on the hidden

layer structure; in practice, any product wa′ of rows and columns of W and A′

respectively is equally capable of predicting the target values.

For this reason, the AML algorithm for GLERA is converted to its ANN coun-

terpart, with two subnetworks, one fitting the Ω matrix onto y, for fixed a′, one

fitting the F matrix onto y, for fixed W.

1. Estimate of W for fixed a′ (subnetwork 1)

let w be the vector obtained by eliminating the zero elements of vec(W) in

Equation 5, and let Ω be the matrix obtained by eliminating the columns of

(a ⊗ X) corresponding to the zero elements of vec(W). The ANN for this
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Figure 10: ANN architecture for ERA, unidentifiable model

classification problem is specified by

o = σ

(
K∑
k=1

ωkwk

)
(35)

with sigmoid activation function and the backpropagation algorithm. The

weights in w are thus estimated, reconstructing W̃, and F = XW̃ is nor-

malised to respect the identification restriction.

2. Estimate of a′ for fixed W (subnetwork 2)

Having now reconstructed and normalized F, the ANN for this classification

problem is specified by

o = σ

(
p∑

m=1

fmam

)
(36)

with sigmoid activation function and the backpropagation algorithm.

The two subnetworks are iterated until convergence of the estimates, and usual net-

work performance indexes are then calculated to evaluate the model performance.

In addition to the GLERA specification in Section 1.1 and the ANN-ERA specifica-

tion just described, two hybrid methods are estimable: one that estimates weights

in W with MLE (Equation 18) and loadings in a′ with ANN (Equation 36), thereby

called MLE / ANN ERA, and one that estimates weights in W with ANN (Equation
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35) and loadings in a′ with MLE (Equation 17), thereby called ANN / MLE ERA.

For a graphical representation of the four configurations, see Figure 11.

2.4 The ERA-ANN method for one multinomial endoge-

nous variable: a ”One-versus-All” approach

The multinomial version of the model in the VGLERA specification cannot be eval-

uated by ANN, since ANN is not able to handle varying predictor matrices at

each estimation step, hence a two-step One-versus-All strategy will be employed

(thereby 2S-ANN), fitting (J−1) categories against the baseline one at a time, with

(J − 1) separate binary logistic regressions [Agresti, 2002], one for each column of

the dummy model matrix of y. For a graphical representation of VGLERA and

2S-ANN, see Figure 12

1. Estimate of Wj’s for fixed a′j’s

For every j = 1, . . . , J − 1 let wj be the vector obtained by eliminating the

zero elements of vec(Wj), and let Ωj be the matrix obtained by eliminating

the columns of aj ⊗ X corresponding to the zero elements of vec(Wj). The

ANN for each classification problem is specified by

oj = σ

(
K∑
k=1

ωkjwkj

)
j = 1, . . . , J − 1 (37)

with sigmoid activation function and the backpropagation algorithm.

Each w̃j is thus estimated, reconstructing W̃j, and each Fj = XW̃j is nor-

malised to respect the identification restriction.

2. Estimate of a′j’s for fixed Wj’s

Having now reconstructed and normalized Fj, for every j = 1, . . . , J − 1, the

ANN for this classification problem is specified by

oj = σ

(
p∑

m=1

fmjamj

)
j = 1, . . . , J − 1 (38)

with sigmoid activation function and the backpropagation algorithm.
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The estimated parameters will be different from the ones obtained with VGLERA,

but the two approaches will yield comparable results in terms of classification.

The models presented in this chapter will be evaluated in a simulation study that

will define their capability to recover the underlying population parameters or, in

the case of the 2S-ANN strategy, its performance in terms of prediction.
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Figure 11: Four strategies to fit ERA with one binary endogenous variable. From top left to bottom right: pure GLERA (a), ANN / MLE
ERA (b), MLE / ANN ERA (c), pure ANN-ERA (d).
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Figure 12: Two strategies to fit ERA with one categorical endogenous variable. Top panel VGLERA (a), bottom panel 2S-ANN (b). Note
that in panel (a) parameters are estimated jointly with one model, while in panel (b) (J−1) 2-Stage binary networks are estimated separately.



Part IV

A Simulation Study

1 Introduction

This chapter will cover a simulation study on the models introduced in the previous

chapters. Specifically:

• For the case of one binary endogenous variable, the recovery of one set of

parameters will be evaluated in four different models: a pure GLERA strategy

(AML for both weights and loadings), a pure ANN-ERA strategy for both

weights and loading and the two hybrid strategies MLE / ANN ERA and

ANN / MLE ERA, as in Figure 11.

• For the case of one multinomial endogenous variable, the recovery of two sets of

parameters will be evaluated using VGLERA (Figure 12, panel (a)), whereas

the comparison with the 2S-ANN estimation (Figure 12, panel (b)) will be

made on the accuracy in estimating the predicted probabilities, compared with

the probabilities that generated the data, for both the sets of parameters.

• Both VGLERA and 2S-ANN prediction capabilities will be put in comparison

with the standard classification problem with one set of coefficients b = Wa′

employing ANN with softmax activation function and no latent composites.

The data will be generated, in all cases, for sample size n = {50, 100, 200, 500, 1000}.

The exogenous variables in X are fixed for each sample size, across R = 1000 repli-

cations of the response variable. The exogenous variables are randomly generated

from X ∼ NQ(0,Σ), where

Σ =

1
.3 1
.1 .1 1
.1 .1 .3 1


This Σ matrix has been chosen to give a higher level of correlation among variables in
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the same LC with respect to the other variables, also avoiding to induce collinearity

that may affect the estimation. To evaluate the quality of the recovery of the

parameters θ across the replications, two indicators are used: the relative bias γk in

absolute value for each estimated value θ̂k, calculated as

γk = 100
|θk − θ̂k|
|θk|

where

θk =
1

R

R∑
r=1

θ̂kr

and the congruence index ρ between the parameter vector and the estimated vector

[Tucker, 1951; Lorenzo-Seva and Ten Berge, 2006], calculated as

ρ =
θ′θ̂√

(θ̂
′
θ̂)(θ′θ)

To evaluate the predicted probability, the mean absolute error (MAE) across the

R replications, between the estimated probabilities and the true probabilities is

calculated, for each of the J categories

MAEj =
1

Rn

R∑
r=1

n∑
i=1

|πij − pirj| j = 1, . . . , J − 1

where πij is the true probability for subject i to belong in class j, according to the

simulated model

πij =
exp(xiWja

′
j)

1 +
∑J−1

j=1 exp(xiWja′j)

For the baseline category J , exp(xiWja
′
j) = 1.
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2 Simulation Results

2.1 The case of one binary endogenous variable

For this simulation study, the parameter matrices are

W =

.6 0
.6 0
0 .6
0 .6

 a =

[
.3
3.8

]

Tables 2 and 3 shows the simulation results for the case of one binary endogenous

variable, in all four estimation strategies. To obtain a satisfying parameter recovery

n has to be at least equal to 200 in all cases. Standard errors and biases for n = 50

give the worst results: due to the dramatic difference between the loading param-

eters, such a small sample size is not enough to obtain satisfying standard errors

and biases. Nevertheless, biases and std. errors patterns are generally decreasing

with an increase in n, indicating a successful recovery of the true parameter values,

and the congruence index shows an increasing pattern in all four estimation strate-

gies. Among the four strategies there is no clear best choice, at least for higher

values of the sample size, whereas if n ≤ 100, the MLE-ANN strategy yields com-

paratively better results for both standard errors and biases. Furthermore, the full

ANN strategy is the only one by which parameters biases have similar magnitude

among themselves, whereas in the other strategies very high biases are only related

to loadings. Figure 13 shows biases decrease patterns for weights and loadings in

each estimation strategy.

2.2 The case of one multinomial endogenous variable

For this simulation study, a three-categories response variable is modeled with

VGLERA and with 2S-ANN, holding j = 3 as the reference category. The pa-

rameter matrices for the first setting are

W1 = W2 =

.7 0
.7 0
0 .7
0 .7

 a1 =

[
.4
.3

]
a2 =

[
.6
.6

]
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Setting 1 MAE - 2S-ANN MAE - VGLERA MAE - ANN (Classic Softmax)
n Cat. 1 Cat. 2 Cat. 3 Overall Cat. 1 Cat. 2 Cat. 3 Overall Cat. 1 Cat. 2 Cat. 3 Overall
50 0.108 0.113 0.087 0.103 0.101 0.101 0.097 0.010 0.340 0.478 0.301 0.373
100 0.075 0.078 0.078 0.077 0.072 0.072 0.069 0.071 0.395 0.460 0.289 0.381
200 0.056 0.064 0.075 0.065 0.049 0.051 0.048 0.049 0.377 0.470 0.307 0.385
500 0.043 0.052 0.077 0.057 0.032 0.033 0.031 0.032 0.345 0.490 0.313 0.383
1000 0.038 0.05 0.077 0.055 0.022 0.023 0.022 0.022 0.354 0.538 0.341 0.411

Setting 2 MAE - 2S-ANN MAE - VGLERA MAE - ANN (Classic Softmax)
n Cat. 1 Cat. 2 Cat. 3 Overall Cat. 1 Cat. 2 Cat. 3 Overall Cat. 1 Cat. 2 Cat. 3 Overall
50 0.076 0.074 0.066 0.072 0.076 0.074 0.088 0.079 0.063 0.083 0.102 0.083
100 0.06 0.061 0.059 0.060 0.052 0.053 0.063 0.056 0.095 0.089 0.112 0.099
200 0.043 0.041 0.038 0.041 0.037 0.037 0.045 0.040 0.109 0.099 0.118 0.109
500 0.036 0.037 0.033 0.035 0.023 0.023 0.028 0.025 0.099 0.094 0.122 0.105
1000 0.032 0.032 0.03 0.031 0.016 0.016 0.019 0.017 0.076 0.067 0.105 0.083

Table 1: Comparison between 2S-ANN (gradient descent), VGLERA and clas-
sic softmax ANN with no hidden layers in the recovery of each category prob-
ability. Top panel for Setting 1, bottom panel for Setting 2. Sample sizes
n = {50, 100, 200, 500, 1000}.

whereas the parameter matrices for the second setting are

W1 = W2 =

.7 0
.7 0
0 .7
0 .7

 a1 =

[
1
2

]
a2 =

[
−1
−2

]

For the softmax architecture and no latent composite, the parameter vectors for the

first setting are

b1 = W1a
′
1 =

[
0.7
1.4

]
b2 = W2a

′
2 =

[
−0.7
−1.4

]

whereas the parameter vectors for the second setting are

b1 = W1a
′
1 =

[
0.21
0.42

]
b2 = W2a

′
2 =

[
0.28
0.42

]

Tables 4 and 5 show the simulation results for the VGLERA model. To obtain

a satisfying parameter recovery, with bias below 10%, n has to be at least equal to

500 in the first setting, and 200 in the second setting, meaning that a more efficient

recovery is possible if the loadings discriminate the groups more evidently. Biases

and std. errors are generally decreasing with an increase in n, indicating a successful

recovery of the true parameter values regardless of how far apart are the loadings.

The congruence index shows an increasing and excellent pattern in all parameters

settings. Figure 15 shows biases decrease patterns for weights and loadings. In
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comparison with 2S-ANN estimation method, as shown in Table 1, VGLERA yields

slightly more precise estimates of the probabilities generating the response. This

is probably due to the restriction in using ANN in this contexts, that prevents the

model from considering covariances between the dummy variables. Furthermore,

MAE for the baseline category does not decrease as the MAE for the other cat-

egories for ANN, in the first setting, remaining stable around 0.07. Nevertheless,

both estimation techniques are effective in recovering the true probabilities as the

sample size increases, even more efficiently in the second parameter setting. Fig-

ure 14 shows the comparison between the two methods for the chosen sample sizes.

Furthermore, comparing both methods with a standard softmax ANN, the two new

methods always perform better than the architecture without the presence of latent

composites, even more evidently in the first parameter setting, when the parame-

ters are close between categories. Explanation for this behaviour is due partly to

the double optimization process present in VGLERA and 2S-ANN (hence thanks

to the presence of latent composites), partly to the tendency of the architecture of

assigning drastically higher probability to the category chosen by the network.
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n = 50 n = 100 n = 200 n = 500 n = 1000

method label par est s.e. bias% est s.e. bias% est s.e. bias% est s.e. bias% est s.e. bias%

MLE w1 0.6 1.382 17.639 130.333 0.743 0.98 23.9 0.615 0.316 2.557 0.648 0.334 7.921 0.558 0.259 7.037

w2 0.6 1.378 19.601 129.673 0.737 0.553 22.899 0.648 0.337 7.942 0.675 0.414 12.449 0.571 0.256 4.859

w3 0.6 0.813 9.302 35.495 0.634 0.099 5.645 0.664 0.046 10.747 0.615 0.032 2.449 0.627 0.023 4.567

w4 0.6 0.631 3.992 5.115 0.565 0.09 5.849 0.665 0.052 10.858 0.614 0.036 2.414 0.627 0.023 4.521

MLE a1 0.3 5.923 84.936 1874.444 0.553 0.317 84.289 0.445 0.237 48.41 0.349 0.148 16.250 0.322 0.102 7.304

a2 3.8 40.882 675.238 975.848 4.249 1.085 11.808 4.065 0.669 6.980 3.883 0.359 2.171 3.844 0.261 1.158

ρ = 0.966 ρ = 0.998 ρ ≈ 1 ρ ≈ 1 ρ ≈ 1

n = 50 n = 100 n = 200 n = 500 n = 1000

method label par est s.e. bias% est s.e. bias% est s.e. bias% est s.e. bias% est s.e. bias%

ANN w1 0.6 0.79 1.079 31.644 0.597 0.308 0.42 0.647 0.328 7.901 0.611 0.293 1.84 0.599 0.285 0.115

w2 0.6 0.788 1.355 31.351 0.615 0.308 2.433 0.648 0.34 7.965 0.563 0.273 6.216 0.574 0.264 4.302

w3 0.6 0.665 1.05 10.799 0.638 0.094 6.269 0.556 0.054 7.329 0.624 0.028 4.073 0.595 0.023 0.874

w4 0.6 0.597 0.949 0.446 0.651 0.085 8.523 0.551 0.055 8.208 0.621 0.031 3.463 0.591 0.024 1.509

MLE a1 0.3 1.458 14.154 385.842 0.568 0.303 89.257 0.439 0.22 46.397 0.35 0.142 16.728 0.322 0.104 7.177

a2 3.8 23.976 553.861 530.946 4.234 1.062 11.421 3.996 0.615 5.162 3.898 0.378 2.566 3.838 0.26 1.002

ρ = 0.970 ρ = 0.998 ρ = 0.999 ρ ≈ 1 ρ ≈ 1

Table 2: Simulation study for the case of one binary endogenous variable. The top panel displays pure GLERA estimation (Figure
11, panel (a)), the bottom panel displays ANN / MLE estimation (Figure 11, panel (b)). Columns show estimates (est), standard
errors (s.e.) and relative bias (×100) in absolute value (bias%). Sample sizes n = {50, 100, 200, 500, 1000}.



n = 50 n = 100 n = 200 n = 500 n = 1000

method label par est s.e. bias% est s.e. bias% est s.e. bias% est s.e. bias% est s.e. bias%

MLE w1 0.6 1.013 7.583 68.835 0.643 0.316 7.198 0.636 0.637 6.003 0.624 0.453 3.954 0.589 0.263 1.87

w2 0.6 0.832 3.255 38.699 0.612 0.296 2.043 0.615 0.318 2.45 0.627 0.385 4.493 0.587 0.258 2.194

w3 0.6 0.73 5.457 21.683 0.578 0.087 3.599 0.606 0.048 0.966 0.606 0.034 1.012 0.634 0.022 5.716

w4 0.6 0.728 4.379 21.284 0.578 0.079 3.729 0.596 0.054 0.672 0.608 0.032 1.327 0.637 0.023 6.097

ANN a1 0.3 0.969 3.117 223.023 0.636 0.405 111.988 0.444 0.226 48.07 0.35 0.152 16.643 0.322 0.098 7.218

a2 3.8 5.622 15.511 47.944 4.415 1.185 16.191 4.021 0.661 5.815 3.891 0.39 2.408 3.831 0.255 0.813

ρ = 0.995 ρ = 0.997 ρ = 0.999 ρ ≈ 1 ρ ≈ 1

n = 50 n = 100 n = 200 n = 500 n = 1000

method label par est s.e. bias% est s.e. bias% est s.e. bias% est s.e. bias% est s.e. bias%

ANN w1 0.6 2.205 8.517 267.471 0.684 0.371 14.055 0.668 0.331 11.268 0.596 0.29 0.723 0.607 0.254 1.209

w2 0.6 1.909 7.814 218.237 0.641 0.327 6.904 0.656 0.324 9.347 0.57 0.285 4.974 0.579 0.251 3.433

w3 0.6 1.456 5.177 142.644 0.58 0.091 3.326 0.618 0.046 3.013 0.575 0.033 4.095 0.612 0.023 1.925

w4 0.6 1.440 4.84 139.966 0.579 0.107 3.456 0.616 0.055 2.659 0.572 0.035 4.589 0.614 0.023 2.255

ANN a1 0.3 2.081 11.553 593.628 0.592 0.358 97.312 0.44 0.227 46.556 0.355 0.134 18.306 0.317 0.103 5.532

a2 3.8 12.406 49.075 226.472 4.419 1.234 16.302 4.054 0.65 6.696 3.894 0.386 2.472 3.832 0.251 0.831

ρ = 0.995 ρ = 0.998 ρ ≈ 1 ρ ≈ 1 ρ ≈ 1

Table 3: Simulation study for one binary endogenous variable. The top panel displays MLE / ANN estimation (Figure 11, panel
(c)), the bottom panel displays pure ANN-ERA estimation (Figure 11, panel (c)). Columns show estimates (est), standard errors
(s.e.) and relative bias (×100) in absolute value (bias%). Sample sizes n = {50, 100, 200, 500, 1000}.
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n = 50 n = 100 n = 200 n = 500 n = 1000

method par est s.e. bias% est s.e. bias% est s.e. bias% est s.e. bias% est s.e. bias%

VGLERA w1.1 0.7 0.422 0.592 39.663 0.534 0.459 23.744 0.605 0.386 13.604 0.685 0.205 2.171 0.705 0.142 0.651

ref: 3 w1.2 0.7 0.337 0.642 51.918 0.633 0.34 9.641 0.687 0.222 1.9 0.703 0.138 0.482 0.711 0.093 1.513

w2.1 0.7 0.413 0.593 41.064 0.554 0.471 20.904 0.579 0.412 17.218 0.679 0.202 3.004 0.695 0.145 0.712

w2.2 0.7 0.325 0.648 53.563 0.63 0.341 10.002 0.67 0.227 4.236 0.695 0.133 0.747 0.706 0.093 0.924

w3.1 0.7 0.571 0.465 18.488 0.428 0.58 38.812 0.526 0.462 24.828 0.647 0.285 7.536 0.68 0.19 2.845

w3.2 0.7 0.548 0.477 21.746 0.645 0.332 7.807 0.669 0.222 4.444 0.692 0.136 1.213 0.693 0.098 0.935

w4.1 0.7 0.528 0.485 24.558 0.398 0.586 43.1 0.582 0.437 16.845 0.631 0.296 9.909 0.667 0.197 4.756

w4.2 0.7 0.553 0.472 20.968 0.617 0.332 11.869 0.696 0.213 0.555 0.682 0.139 2.616 0.692 0.098 1.103

a1.1 0.4 0.605 0.356 51.176 0.522 0.246 30.6 0.432 0.229 7.901 0.419 0.114 4.668 0.411 0.081 2.74

a1.2 0.6 0.76 0.39 26.677 0.695 0.294 15.794 0.651 0.192 8.509 0.615 0.117 2.561 0.611 0.084 1.771

a2.1 0.3 0.537 0.351 78.836 0.412 0.257 37.338 0.373 0.171 24.195 0.326 0.111 8.766 0.313 0.083 4.396

a2.2 0.6 0.763 0.405 27.198 0.687 0.275 14.509 0.651 0.182 8.501 0.619 0.117 3.23 0.609 0.086 1.525

ρ = 0.932 ρ = 0.974 ρ = 0.993 ρ ≈ 1 ρ ≈ 1

Table 4: Simulation study for VGLERA, first parameter setting. Columns show estimates (est), standard errors (s.e.) and relative
bias (×100) in absolute value (bias%). Sample sizes n = {50, 100, 200, 500, 1000}.



n = 50 n = 100 n = 200 n = 500 n = 1000

method par est s.e. bias% est s.e. bias% est s.e. bias% est s.e. bias% est s.e. bias%

VGLERA w1.1 0.7 0.628 0.368 10.344 0.663 0.267 5.295 0.677 0.192 3.330 0.674 0.108 3.704 0.692 0.078 1.137

ref: 3 w1.2 0.7 0.568 0.413 18.854 0.598 0.384 14.614 0.685 0.173 2.095 0.686 0.107 2.001 0.696 0.074 0.586

w2.1 0.7 0.618 0.370 11.709 0.670 0.258 4.356 0.694 0.177 0.789 0.688 0.107 1.682 0.696 0.079 0.562

w2.2 0.7 0.625 0.406 10.693 0.610 0.388 12.842 0.691 0.176 1.269 0.676 0.110 3.414 0.693 0.074 0.984

w3.1 0.7 0.694 0.188 0.902 0.709 0.126 1.226 0.696 0.091 0.531 0.695 0.057 0.762 0.719 0.035 2.759

w3.2 0.7 0.678 0.258 3.210 0.618 0.370 11.646 0.699 0.090 0.172 0.694 0.054 0.787 0.718 0.035 2.521

w4.1 0.7 0.698 0.189 0.313 0.708 0.126 1.086 0.700 0.090 0.050 0.699 0.057 0.178 0.718 0.035 2.629

w4.2 0.7 0.677 0.233 3.238 0.614 0.373 12.348 0.697 0.089 0.373 0.699 0.053 0.079 0.720 0.035 2.873

a1.1 1 1.495 0.855 49.532 1.177 0.476 17.741 1.076 0.312 7.588 1.032 0.179 3.231 1.022 0.126 2.174

a1.2 -1 -1.376 0.830 37.620 -1.107 0.706 10.673 -1.082 0.301 8.163 -1.031 0.175 3.060 -1.016 0.121 1.560

a2.1 2 2.731 1.334 36.540 2.300 0.664 15.015 2.121 0.432 6.066 2.051 0.259 2.526 2.023 0.176 1.130

a2.2 -2 -2.599 1.317 29.950 -2.057 1.343 2.872 -2.133 0.445 6.635 -2.048 0.255 2.417 -2.022 0.170 1.119

ρ = 0.987 ρ = 0.996 ρ ≈ 1 ρ ≈ 1 ρ ≈ 1

Table 5: Simulation study for VGLERA, second parameter setting. Columns show estimates (est), standard errors (s.e.) and relative
bias (×100) in absolute value (bias%). Sample sizes n = {50, 100, 200, 500, 1000}.
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Figure 14: Comparison between VGLERA, 2S-ANN and standard Softmax neural network (no hidden layers) in terms of Mean
Absolute Error (MAE), along with sample size. Left panel for setting 1, Right panel for setting 2.

57



●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●
●●●●
●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

● ●●
●
●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●●●●●●●●
●
●●
●
●●●● ●●●●

●●●●

●

●●

●

●

●

●

●

●●
●●

●●●● ●●●●

Setting 1 Setting 2

1−
W

eights
2−

Loadings

250 500 750 1000 250 500 750 1000

0

20

40

60

80

0

20

40

60

80

Sample_Size

B
ia

s%

Parameter
●

●

●

●

●

●

●

●

●

●

●

●

a1.1

a1.2

a2.1

a2.2

w1.1

w1.2

w2.1

w2.2

w3.1

w3.2

w4.1

w4.2
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Part V

Application: Two Practical

Examples

1 Example 1: An Application in Marketing Re-

search

The GLERA and VGLERA models, together with their ANN counterparts will now

be illustrated, using a classic data set in marketing research, revisited with categori-

cal coding of the endogenous variable. For a study in an industrial sales force in the

framework of the classic LISREL model, Bagozzi (1980) examined self-performance

appraisals for (n = 122) salespersons,with two endogenous latent constructs: a self-

fulfilment latent construct, including sales performance which is hypothesized to be

a surrogate, and a job satisfaction latent construct, composed of two related manifest

indicators. The researcher further believes that exogenous background factors such

as achievement, motivation, task specific self-esteem and verbal intelligence may

have an impact on the aforementioned job satisfaction and performance measures.

The endogenous blocks collected performance as dollar volume of sales achieved by

each salesperson (Sales) and two measures of self-satisfaction: the first concerns the

degree of satisfaction with promotion, pay, and the overall work situation (Sat1),

the second the degree of satisfaction with opportunity to demonstrate ability and

initiative and sense of accomplishment (Sat2). Regarding the exogenous blocks, one

is related to self-esteem, measuring each salesperson’s attributions (in relation to

other salespeople in the company) in the firm (Self1, Self2), the second is made by

two measures of salesperson’s motivations (Motiv1, Motiv2), and the third is a single

observed variable measuring cognitive ability to accurately and efficiently perceive,

attend and process information associated with the job (Verbal). In that paper the

main question was whether sales performance influences satisfaction, or vice-versa,

taking into account the exogenous background factors.
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In this context, to show a simple application of the new proposition in this work, the

two exogenous blocks will be retained, whereas the endogenous categorical variable

will be a recoding of (Sat1) in two or three categories based on the quantiles of

the original numerical variable, to show how GLERA (and its ANN variations) and

VGLERA (and its 2S-ANN variation) respectively perform. For the dichotomiza-

tion, the median has been chosen as the cut-point, while the first and third quartiles

were chosen for the recoding in three categories. In addition, parameters standard

errors will be calculated with bootstrap, and their significance will be evaluated

using the critical ratio (CR), dubbing a coefficient as significant if its |CR| > 2.

1.1 Results - GLERA

Table 6 and Figure 16 show the results for the GLERA model. Looking at the

estimated coefficients it is to be noted that, with respect to the baseline of low sat-

isfaction, all the parameters are strictly positive, meaning that all the exogenous

variables have a positive impact on the response variable. However, the only signif-

icant ones concern (Motiv2) and the Motivation latent composite.

Binary Response. Reference Category: Sat1 = 0

Par Est. Boot Mean Boot SE CR

Motiv1 → Motivation 0.296 0.230 0.325 0.911
Motiv2 → Motivation 0.857 0.799 0.234 3.664
Self1 → Self-Esteem 0.438 0.370 0.549 0.798
Self2 → Self-Esteem 0.696 0.573 0.520 1.338
Motivation→ Sat1 0.611 0.666 0.236 2.587
Self-Esteem→ Sat1 0.381 0.460 0.213 1.788

Table 6: Marketing data example with the GLERA model. “Est.” column contains
parameter estimates for the original dataset, “Boot Mean”, “Boot SE” and “Boot
CR” show bootstrap mean estimates, bootstrapped standard errors and Critical
Ratios, respectively. Significant parameters (|CR| > 2) in bold.

Table 7 show performance comparisons between GLERA and full or hybrid ANN

specifications, in terms of misclassification rate. Class membership is selected based

on the highest predicted probability value. All the specifications yield similar results.
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Motivation

Motiv1 Motiv2 Self1

Self-Esteem

Self2

Sat1

0.30 0.86 0.44 0.70

0.61 0.38

Figure 16: Marketing data example. GLERA Application path diagram. Significant
parameters (|CR| > 2) in bold.

Method
Miscl. Rate Miscl. Rate Miscl. Rate

(LOOCV: Overall) (LOOCV: Sat1 = 0) (LOOCV: Sat1 = 1)

MLE / MLE (a) 0.387 0.373 0.402
ANN on W (b) 0.385 0.368 0.404
ANN on A′ (c) 0.385 0.368 0.404

ANN / ANN (d) 0.386 0.368 0.404

Table 7: Marketing data example. Comparison of prediction capabilities for the
four different specifications of the GLERA model (letters (a) to (d) as in Figure 11,
evaluated with Leave One Out Cross Validation (LOOCV).

1.2 Results - VGLERA / 2S-ANN

Table 8 and Figure 17 show the results for the VGLERA model. Looking at the

estimated coefficients it is to be noted that, compared to the lowest level of (Sat1),

variables (Motiv2) and (Self1) play an increasing role in the level of satisfaction,

going from 0.692 for an average level of satisfaction, to 1.04 for a high level of

satisfaction. Variables (Motiv1) and (Self2) show a decreasing, yet non-significant

pattern in determining the level of satisfaction. In fact, only the comparison with

the highest level of (Sat1) shows significant results, and only for the increasing co-

efficients, i.e. (Motiv2) and (Self1). Concerning the loadings, only the comparison

with the highest level of (Sat1) shows significant results, with a slight prevalence of

the self-esteem latent composite, that has a higher loading. Compared to GLERA,

adding a new category provides more insight on the behavior of exogenous variables
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Categorical Response
Par Est. Boot Mean Boot SE Boot CR

(Ref: Sat1 = 1)

Sat1 = 2

Motiv1 → Motivation 0.517 0.386 0.584 0.886
Motiv2 → Motivation 0.692 0.472 0.596 1.161
Self1 → Self-Esteem 0.269 0.186 0.593 0.454
Self2 → Self-Esteem 0.831 0.707 0.492 1.69
Motivation→ Sat1 0.34 0.454 0.252 1.348

Self-Esteem → Sat1 0.461 0.551 0.263 1.75

Sat1 = 3

Motiv1 → Motivation -0.114 -0.103 0.379 -0.3
Motiv2 → Motivation 1.04 0.965 0.179 5.818
Self1 → Self-Esteem 1.003 0.927 0.286 3.506
Self2 → Self-Esteem 0.002 0.004 0.414 0.005
Motivation→ Sat1 0.551 0.605 0.213 2.591

Self-Esteem → Sat1 0.606 0.672 0.244 2.485

Table 8: Marketing data example with the VGLERA model. “Est.” column contains
parameter estimates for the original dataset, “Boot Mean”, “Boot SE” and “Boot
CR” show bootstrap mean estimates, bootstrapped standard errors and Critical
Ratios, respectively. Significant parameters (|CR| > 2) in bold.

and latent composites, turning the results in favor of Self-Esteem condition in the

prediction of the level of satisfaction.

Table 9 shows performance comparisons among VGLERA, 2S-ANN and two

standard classification networks without forming latent composites (i.e. a Softmax

ANN and a more general pattern recognition network composed of one hidden layer

with 10 neurons and one softmax layer). The confusion matrix for each model has

been calculated, selecting class membership based on the highest predicted probabil-

ity value. The 2S-ANN specification performs comparatively better w.r.t. Multino-

mial Logit and VGLERA, when classifying the medium category, which accounts for

50% of the total observations; the VGLERA specification, conversely, performs bet-

ter with the low and high categories, but does not manage to recover the true group

membership for the medium category as efficiently. Multinomial Logit performs

worse than 2S-ANN and VGLERA for this dataset, and the standard classifica-

tion network, while performing comparatively better than all the other methods in

general, fails completely to predict individuals in the third category.
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Motivation

Motiv1 Motiv2 Self1

Self-Esteem

Self2

Sat1

0.52; -0.11 0.69; 1.04 0.27; 1.00 0.83; 0.002

0.34; 0.55 0.46; 0.61

Figure 17: Marketing data example. VGLERA Application path diagram. Esti-
mates of second and third category w.r.t. baseline (Sat1 = 1) are separated by a
semicolon. Significant parameters (|CR| > 2) in bold.

VGLERA Multinomial Logit

Ŝat1 = 1 Ŝat1 = 2 Ŝat1 = 3 Ŝat1 = 1 Ŝat1 = 2 Ŝat1 = 3

Sat1 = 1 17 7 7 17 7 7

Sat1 = 2 22 17 21 23 16 21

Sat1 = 3 8 5 18 9 4 18

LOOCV Acc.% 0.429 0.431

2S-ANN Hidden Sigmoid + Softmax ANN

Ŝat1 = 1 Ŝat1 = 2 Ŝat1 = 3 Ŝat1 = 1 Ŝat1 = 2 Ŝat1 = 3

Sat1 = 1 15 8 8 8 23 0

Sat1 = 2 19 23 18 6 54 0

Sat1 = 3 8 9 14 1 30 0

LOOCV Acc.% 0.442 0.529

Table 9: Marketing data example. Comparison between the confusion matrices
on the original dataset of VGLERA (top-left table), 2S-ANN (bottom-left table),
Multinomial Logit (top-right table) and Softmax Neural Network with preceding
hidden layer - 10 neurons - (bottom-right table). The bottom line of each table
provides LOOCV Accuracy of classification.
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2 Example 2: The Iris Dataset

This famous dataset consists of 50 samples from each of three species of Iris (Iris

setosa, Iris virginica and Iris versicolor). Four features were measured from each

sample: the length and the width of the sepals and petals, in centimeters. For the

purpose of illustrating the VGLERA and 2S-ANN prediction capabilities, two latent

composites are created: the petal LC, whose manifest variables are (Petal Length,

Petal Width), and the Sepal LC, whose manifest variable are (Sepal Length, Sepal

Width). The response variable is the (Species) of each iris. Parameter estimates

will not be analyzed, being not statistically significant with the use of a preliminary

multinomial logistic regression, thus the focus will be on correct classification of each

species.

2.1 Results - VGLERA / 2S-ANN

Table 10 shows performance comparisons among VGLERA, 2S-ANN and two stan-

dard classification methods without forming latent composites (i.e. a multinomial

logistic regression and a pattern recognition network composed of one hidden layer

with 10 neurons and one Softmax layer). For each of the models, the confusion ma-

trix for each model has been calculated, having class membership selected based on

the highest predicted probability value. The 2S-ANN specification performs compar-

atively better when classifying Versicolor, and worse when classifying the Virginica,

with respect to VGLERA; Multinomial Logit performs worse than VGLERA and

2S-ANN for Versicolor, but better than both for Virginica; in general, neural network

models tend to wrongly predict Virginica species, while compensating by correctly

predicting Versicolor species. Lastly, between 2S-ANN and Softmax neural network

with one hidden layer, the latter performs better, thanks to the additional hidden

layer. For a graphical representation of the VGLERA classification performance,

which has offered the best correct classification rate, see Figure 18.
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VGLERA Multinomial Logit

Ŝetosa ̂Versicolor ̂Virginica Ŝetosa ̂Versicolor ̂Virginica

Setosa 50 0 0 50 0 0

Versicolor 0 33 17 0 30 20

Virginica 0 5 45 0 3 47

LOOCV Acc.% 0.850 0.848

2S-ANN Hidden Sigmoid + Softmax ANN

Ŝetosa ̂Versicolor ̂Virginica Ŝetosa ̂Versicolor ̂Virginica

Setosa 50 1 0 49 1 0

Versicolor 0 38 12 4 42 4

Virginica 0 17 33 0 14 36

LOOCV Acc.% 0.824 0.735

Table 10: Iris example. Comparison between the confusion matrices on the original
dataset of VGLERA (top-left table), 2S-ANN (bottom-left table), Multinomial Logit
(top-right table) and Softmax Neural Network with preceding hidden layer - 10
neurons - (bottom-right table). The bottom line of each table provides LOOCV
Accuracy of classification.
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Figure 18: Classification results for the iris dataset, VGLERA model. Sepal variables
on the top panel, petal variables on the bottom panel.
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Part VI

Conclusion

Structural Equation Models with latent variables have recently undergone consid-

erable development, in terms of estimation techniques, extensions and inferential

capability. Several methods are available when dealing with categorical or ordinal

observed variables: for the LISREL model, they make use of adaptations of the EM

algorithm, whereas for PLS-PM they are mostly related to Optimal Scaling of the

categorical variables into pseudo-quantitative variables. In the Redundancy Analy-

sis framework, with only observed endogenous variables, the possibility of extending

the estimation procedures to a qualitative setting meet favorable conditions, not

having strong model restrictions and a unified optimization criterion. In fact, this

work has proved that, especially for the Extended Redundancy Analysis model, the

GLERA extension herein proposed makes resorting to Optimal Scaling and its po-

tential flaws in the transformation of categorical variables into numerical surrogates

unnecessary.

The simulation results give credit to the potential of this new model in the quali-

tative setting, with a large enough sample. Considering also the Artificial Neural

Network setting, in which SEM have still found limited applicability, ERA can be

readily adapted for classification problems, with three other competing strategies

that yielded results comparable to GLERA. In fact, bias values rapidly decrease

with higher sample size and have the tendency to uniform, regardless of which of

the four strategy is chosen. The only occasion in which ANN estimation seems to

perform better than MLE is the MLE / ANN strategy, but the ability to recover

the true parameter values is still in question for lower sample sizes.

In the multinomial case, VGLERA has been presented as a natural extension of

GLERA, exploiting the possibilities offered by Vector GLM models and Iterated

Reweighed Least Squares combined with the Alternating Least Squares algorithm

already used in the ERA model. The simulations have shown that VGLERA man-

ages to recover the true parameter values efficiently with reasonable sample size, in
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two parameter settings reflecting different capability of the underlying model to sepa-

rate the response categories. Considering also Artificial Neural Networks, VGLERA

outperforms 2S-ANN in all sample sizes for all categories, yet both modeling tech-

niques offer satisfying prediction capabilities. However, if the focus is on parameter

values, VGLERA offers category-vs-baseline estimates which are more directly in-

terpretable, whereas in 2S-ANN predicted probabilities are the core feature. The

standard softmax neural network, modeling directly the response onto the exogenous

variables without the use of latent composites, offers drastically worse performance:

reasons for this may be found either in the absence of the latent composites, that

if present manage to provide better estimates, by separating weights and loadings

parameters, or in the tendency of neural networks to give unbalanced probability

towards the chosen category.

The application on a classic dataset used in the SEM framework has shown clear

and interpretable results, with additional insights depending on the number of cat-

egories and different prediction capabilities depending on the chosen methodology.

For this dataset, and for dichotomous response, GLERA and its ANN variations of-

fer virtually the same prediction power, whereas in the multinomial setting 2S-ANN

does not manage to generally outperform existing classification methods based on

neural networks such as Softmax with one hidden layer. There is however no method

clearly emerging as preferable: for the marketing data example, general prediction

based on Softmax network gives better results, but misclassifies one entire category;

for the iris example, VGLERA generally outperforms the other three methods, and

Softmax behaves better than 2S-ANN, thanks to the presence of the hidden layer.

These results offer also the opportunity to further extend the capabilities of ERA,

both in the GLM and in the ANN frameworks: firstly, this work deals with logistic

links, but can be readily extended to different link functions in future developments;

secondly, these new classification models have yet to be adapted and extended with

ordinal response or in presence of external covariate, which may affect directly the

endogenous variable(s), or affect both the latent composites and the endogenous

variable(s) simultaneously; thirdly, the possibility of having a mix of categorical

and quantitative endogenous variables has yet to be explored; then, looking at the
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marketing example and the iris example, noticing how they offer different results in

term of correct classification, further studies are necessary to investigate the model

under unbalanced designs; finally, especially looking at the iris example and noticing

how hidden layers improve the performance, the potential of neural network analysis

shows at its best when dealing with non-linearities in the data, or in non-parametric

analyses, hence ERA for neural networks can be also employed for classification

with more hidden layers, mapping latent composites onto high dimensional feature

spaces before fitting them with the response variable.
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Appendix: Code Excerpts in R

and Matlab R©

This appendix offers supplementary information on the scripts used for GLERA

and VGLERA, coded in R [R Core Team, 2016]. The ANN variations are coded in

Matlab R© [2016], creating custom neural networks for; excerpts of the ANN-ANN

configuration in the binary case will be shown.

1 R Code for the GLERA model

The code below invokes the GLERA algorithm for binary response

1 attach(jobsat)

2 glera.oneshot=glera(

3 y = sat.cat , #binary response variable

4 X = list(X1 = cbind(motiv1 ,motiv2), #list of blocks of exogenous

variables

5 X2 = cbind(self1 ,self2)),

6 winit = 0.5, ainit = 1, #starting value for W and a’

7 maxiter = 100, #maximum number of GLERA

iterations

8 tol = 0.00001 , #threshold value

Inside the function, the two steps of GLERA are iterated until convergence.

1 # STEP 1 = W

2 vW = vec(W)[vec(W) != 0, drop=FALSE] #W matrix is vectorized and zeroes are

deleted

3 gamma = (t((A)) %x% Z)[,vec(W) != 0,drop=FALSE] #corresponding columns of A x

Z are deleted

4 df = data.frame(gamma = gamma)

5 y2 = relevel(y, ref = base) #set baseline according to specified input

6 mw = glm(y2 ~ 0 + ., data = df, family = "binomial") #fit logistic with no

intercept

7 w = mw$coefficients #extract coefficients

8 W = update(W,t(w))

Estimate of W
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1 FZ = Z %*% W #compute F and normalize

2 FZ = normLC(FZ)

3

4 #STEP 2 = A

5 df2 = data.frame(FZ = FZ)

6 y2 = relevel(y, ref = base) #set baseline according to specified input

7 ma = glm(y2 ~ 0 + ., data = df2 , family = "binomial") #fit logistic with no

intercept

8 A = ma$coefficients #extract coefficients

Estimate of a′

The algorithm stops if either the maximum number of iterations is reached or the

difference between subsequent estimates is lower than the specified threshold.

1 iter = iter + 1 #iteration number increases

2 if ((abs(OldW - W) < tol && abs(OldA - A) < tol) | iter > maxiter) #stop

criterion

3 { break }

Stopping criteria

The output is a list containing the estimated parameter matrices and the predicted

probabilities for the outcome.

1 #output

2 out = list(weights = W, #weight matrix W

3 loadings = A, #loading matrix a’

4 fitted.values = ma$fitted.values) #predicted probabilities

5 return(out)

Output generation
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2 R Code for the VGLERA model

The code below invokes the VGLERA algorithm for multinomial response

1 attach(iris)

2 oneshot.vglera=vglera(y = Species , #categorical response variable

3 X = list(X1 = cbind(Sepal.Length , Sepal.Width), #list of

blocks of exogenous variables

4 X2 = cbind(Petal.Length , Petal.Width)),

5 winit = 2, ainit = -3, #starting value for W’s and a’s

6 maxiter = 100, #maximum number of ALS iterations

7 tol1 = 0.0001 , #threshold value for IRLS

8 tol2 = 0.0001 , #threshold value for ALS

9 base = 1, #baseline category

10 eps =0.002 , #adjustment for initial BFGS hessian matrix

11 boot=FALSE) #TRUE for reduced output in case of bootstrap

Inside the function, the two steps of VGLERA are iterated until convergence. The

code chunk that transforms the initial input (as in Part III, Section 1.2) is omitted.

Specifically, IRLS is fitted for W and a′, alternately. BFGS algorithm used to up-

date the individual Ki matrices.

As initial Ki’s, the linear predictor based on the initial parameter values is consid-

ered, and it is multiplied by eps to ensure matrix inversion.

1 #STEP 1: W FOR FIXED A

2 omega = (Omegavlm)[,lambdav != 0, drop=FALSE] #drop zero columns from Omega

3 lambdav = lambdav[lambdav != 0, drop=FALSE] #drop zero elements from vector of

weights

4

5 #initial values for BFGS

6 #linear predictor

7 eta = omega %*% lambdav * eps

8

9 listeta = list() #list of individual linear predictors

10 listx = list() #list of individual covariates

11 listy = list() #list of individual response pattern

12

13 for (i in 1 : nrow(omega0))

14 {

15 low = (2 * (i - 1)) + 1

16 up = 2 * i

17 listx[[i]] = omega[low:up ,]
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18 listeta [[i]] = eta[low:up]

19 listy[[i]] = vy[low:up]

20 }

21

22 #computing concatenation of individual probabilities with logistic function

23 p = as.matrix(vec(sapply(listeta , FUN = function(x){exp(x) / (1 + sum(exp(x)))})

))

24 p.bis = as.matrix(t(sapply(listeta , FUN = function(x){exp(x)/(1 + sum(exp(x)))})

))

25

26 #vertical concatenation of individual hessian matrices

27 pmat = hadamard.prod(( - p.bis %x% rep(1, 2) + rep(1, nrow(p.bis)) %x% diag (2)),

28 (matrix(p,nrow = nrow(p), ncol = 2)))

29

30 listch = list() #list of individual hessian matrices

31 listu = list() #list of individual gradients

32 for (i in 1 : nrow(omega0))

33 {

34 low = (2 * (i - 1)) + 1

35 up = 2 * i

36 listu[[i]] = listy [[i]] - p[low:up]

37 listch [[i]] = pmat[low:up ,]

38 }

39

40 listz = list() #list of individual adjusted responses

41 for (i in 1 : nrow(omega0))

42 {

43 listz[[i]] = listeta [[i]] + chol2inv(listch [[i]]) %*% listu [[i]]

Estimate of W’s: initial value for individual Ki’s.

Then IRLS iterates to obtain the estimate of W, for fixed a′.

1 repeat{

2 #save old quantities

3 old.listeta = listeta

4 old.listu = listu

5 old.listch = listch

6

7 #individual estimates

8 listb1 = list()

9 listb2 = list()

10 for (i in 1 : nrow(omega0))

11 {

12 listb1 [[i]] = t(listx [[i]]) %*% listch [[i]] %*% listx[[i]]

13 listb2 [[i]] = t(listx [[i]]) %*% listch [[i]] %*% listz[[i]]
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14 }

15

16 #new parameter estimate

17 lambdanew = chol2inv(Reduce(’+’, listb1)) %*% Reduce(’+’, listb2)

18

19 #break loop if difference between subsequent iteration is lower than

20 #the threshold value

21 if(mean(lambdav - lambdanew) < tol1)

22 {break}

23

24 #update quantities

25 lambdav=lambdanew

26

27 #compute BFGS updates:

28 #linear predictor

29 eta=omega%*%lambdav

30

31 listeta=list() #list of individual linear predictors

32 listx = list() #list of individual covariates

33 listy = list() #list of individual response pattern

34

35

36 for (i in 1 : nrow(omega0))

37 {

38 low = (2 * (i - 1)) + 1

39 up = 2 * i

40 listx[[i]] = omega[low:up ,]

41 listeta [[i]] = eta[low:up]

42 listy[[i]] = vy[low:up]

43 }

44

45 #computing concatenation of individual probabilities with logistic function

46 p = as.matrix(vec(sapply(listeta , FUN = function(x){exp(x) / (1 + sum(exp(x))

)})))

47 p.bis = as.matrix(t(sapply(listeta , FUN = function(x){exp(x) / (1 + sum(exp(x

)))})))

48

49 #vertical concatenation of individual hessian matrices

50 pmat = hadamard.prod(( - p.bis %x% rep(1, 2) + rep(1, nrow(p.bis)) %x% diag

(2)),

51 (matrix(p,nrow = nrow(p),ncol = 2)))

52

53 listu = list() #list of individual gradients

54

55 for (i in 1 : nrow(omega0))

56 {

57 low = (2 * (i - 1)) + 1
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58 up = 2 * i

59 listu[[i]] = listy [[i]] - p[low:up]

60 }

61

62 #BFGS updates

63

64 listq = list() #difference between subsequent estimates of gradient

65 lists = list() #difference between subsequent estimates of linear predictor

66

67 for(i in 1 : length(listeta)){

68

69 listq[[i]] = - (listu [[i]] - old.listu[[i]])

70 lists[[i]] = listeta [[i]] - old.listeta [[i]]

71

72 #BFGS update of Ki ’s

73 listch [[i]] = old.listch [[i]] +

74 (t(t(listq [[i]])) %*% t(listq[[i]])) /

75 matrix(rep(t(lists [[i]]) %*% t(t(listq[[i]])), 4), nrow = 2, ncol = 2)

-

76 (old.listch [[i]] %*% lists [[i]] %*% t(lists[[i]]) %*% old.listch [[i]])

/

77 matrix(rep((t(lists [[i]]) %*% old.listch [[i]] %*% lists [[i]]), 4), nrow

= 2, ncol = 2)

78 }

79

80 listz=list()

81

82 for (i in 1 : nrow(omega0))

83 {

84 listz[[i]] = listeta [[i]] + chol2inv(listch [[i]]) %*% listu [[i]]

85 }

86 }

IRLS for W with BFGS updates.

The same method is applied for a′, for fixed W. The algorithm stops if either the

maximum number of iterations is reached or the difference between subsequent es-

timates is lower than the specified threshold (as in GLERA).

The output is a list containing the estimated parameter matrices and the predicted

probabilities for the outcome (as in GLERA).

75



3 Matlab R© Code for ANN sections

The code below fits the ANN-ANN configuration for the binary case, giving out

parameter matrices and predicted category.

1 %create network for W

2 netW = network( ...

3 1, ... % numInputs , number of inputs ,

4 1, ... % numLayers , number of layers

5 [0], ... % biasConnect , numLayers -by -1 Boolean vector ,

6 [1], ... % inputConnect , numLayers -by-numInputs Boolean matrix ,

7 [0], ... % layerConnect , numLayers -by-numLayers Boolean matrix

8 [1] ... % outputConnect , 1-by -numLayers Boolean vector

9 );

10 % number of hidden layer neurons

11 netW.layers {1}. size = 1;

12 % hidden layer transfer function

13 netW.layers {1}. transferFcn = ’logsig ’;

14

15 % create network for a’

16 netA = network( ...

17 1, ... % numInputs , number of inputs ,

18 1, ... % numLayers , number of layers

19 [0], ... % biasConnect , numLayers -by -1 Boolean vector ,

20 [1], ... % inputConnect , numLayers -by-numInputs Boolean matrix ,

21 [0], ... % layerConnect , numLayers -by-numLayers Boolean matrix

22 [1] ... % outputConnect , 1-by -numLayers Boolean vector

23 );

24 % number of hidden layer neurons

25 netA.layers {1}. size = 1;

26 % hidden layer transfer function

27 netA.layers {1}. transferFcn = ’logsig ’;

28

29 %initial values for W and a’

30 ww = 0.6;

31 aa = 1;

32 W = [ww, 0;

33 ww, 0;

34 0, ww;

35 0, ww];

36

37 A = [aa; aa];

38

39 %input matrix X

40 X = [motiv1 motiv2 self1 self1 ];
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41

42 edges = [-Inf 0 Inf];

43

44 sat.cat = discretize(sat1 , edges);

45

46 %ANN -ANN fitting

47 exit = 0; %loop exit flag

48 iter = 0; %iteration count

49 tol = 0.00001 %threshold value

50 while exit == 0

51

52 if cyc > 0

53 W = Wupd;

54 A = Aupd;

55 end

56 cyc = cyc+1;

57

58 %STEP 1: estimate of W

59 vW = W( : ); %vector of W

60 vWs = W( : );

61 Omega = kron(A’, X); % A kronecker X

62

63 %delete columns of Omega corresponding to zeroes in vec(W)

64 Omega( :, find(~vW)) = [];

65 %delete zeroes in vec(W)

66 vW( find(~vW), : ) = [];

67

68 %configure input and outputs for network

69 inputs = {Omega ’};

70 outputss = {sat.cat’};

71

72 netW.trainFcn = ’traingdx ’; %gradient descent algorithm

73 netW.performFcn = ’crossentropy ’; %cross -entropy objective function

74 netW = configure(netW ,inputs ,outputss); %net configuration

75

76 netW.IW{1,1} = vW( find(vW), : )’; %initial net weights

77 netW.trainParam.showWindow = 0;

78 netW = train(netW , inputs , outputss); %net training

79

80 PAR = getwb(netW); %extract weigths

81 Wupd = zeros ([8 ,1]);

82 Wupd(find(vWs)) = PAR;

83 Wupd = reshape(Wupd ,[4 ,2]);

84

85 %compute F and normalize

86 F = X * Wupd;

87 F = zscore(F);
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88

89 %STEP 2: estimate of a’

90 vA = A( : );

91 vAs = A( : );

92 Gamma = kron(eye(1), F);

93

94 Gamma( :, find(~vA)) = [];

95 vA( find(~vA), : ) = [];

96

97 %configure input and outputs for network

98 inputs = {Gamma ’};

99 outputss = {sat.cat’};

100

101 netA.trainFcn = ’traingdx ’;

102 netA.performFcn = ’crossentropy ’;

103 netA = configure(netA , inputs , outputss);

104

105 netA.IW{1,1} = vA( find(vA), : )’;

106 netA.trainParam.showWindow = 0;

107 netA = train(netA , inputs , outputss);

108

109 PAR = getwb(netA); %extract loadings

110 Aupd = reshape(PAR ,[2 ,1]);

111

112 if cyc > 50 || (all(abs(W( : ) - Wupd( : )) < tol) && all(abs(A( : ) - Aupd( : )) <

tol))

113 exit = 1;

114 end

115 end

116

117 %parameter estimates

118 Wupd

119 Aupd

120

121 %predicted category

122 predY = netA(F’) > 0.5

Matlab R© code for the ANN-ANN configuration
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