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Abstract

The first part of the thesis proposes new bounds on the prices of European-style
swaptions for affine and quadratic interest rate models. These bounds are com-
putable whenever the joint characteristic function of the state variables is known. In
particular, our lower bound involves the computation of a one-dimensional Fourier
transform independently of the swap length. In addition, we control the error of our
method by providing a new upper bound on swaption price that is applicable to all
considered models. We test our bounds on different affine models and on a quadratic
Gaussian model. In the second part of the work, we extended the lower and upper
bounds to pricing swaption in a multiple-curve framework. In the third part, we
propose a novel multiple-curve model, set in the Heath-Jarrow-Morton framework,
with time-changed Lévy processes, in order to obtain a parsimonious but also flex-
ible model, which is able to reproduce quoted volatility surface of interest rate op-
tions. The model is developed in a multiple-curve post crisis set-up and it allows for
negative rates. First, we build arbitrage free term structures for zero coupon bonds
and Libor Forward Rate Agreement (FRA) rates. Then, we price interest rate deriva-
tives, as caps and swaptions, using the Fourier transform method. Two choices for
the construction of the driving processes are calibrated to market data and results
are examined and compared.

In the last part, we analyse common practice for determining the fair value of asset
and liabilities of insurance funds and we propose an arbitrage free stochastic model
for interest rate, credit and liquidity risks, that takes into account the dependences
between different issuers. The impact of the common practice against our proposed
model is tested for the evaluation of financial options written on with-profit policies
issued by European insurance companies.
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Introduction

The largest portion of the global financial market is represented by fixed-income
instruments, even larger than equities. According to the yearly statistics provided
by the Bank for International Settlements, the notional amounts outstanding in 2016
for over-the-counter (OTC) interest rate derivatives is 418 trillion of dollars out of
the total volume of 544 trillion of dollars (about the 76%). Furthermore, according
to EMMI (European Money Markets Institute) the notional volume of outstanding
financial contracts indexed to Euribor is estimated to be greater than 180 trillion of
Euro.

Moreover, in the last decade the interest rate market has experienced great changes.
The credit crunch in the summer of 2007 and the Eurozone sovereign debt crisis
in 2009-2012 have particularly impacted fixed-income market. The principal rules
in these crisis are played by counterparty risk, i.e. the risk of a counterparty de-
fault, and liquidity (or funding) risk, i.e. the risk of excessive costs of raising cash
due to the lack of liquidity in the market. After the 2007 crisis significant spreads
are observed between Libor/Euribor rates with different tenors and between Li-
bor/Euribor rates and the overnight indexed swaps (OIS) rates. Due to the presence
in the market of various interest rate curves linked to different tenors, practition-
ers and researchers developed a so-called multiple-curve approach. Finally, in last
years, in order to provide a sufficient stimulus to the economy, central banks in Euro
area have pushed interest rates into negative territory.

Swaptions (i.e. options written on interest rate swap contracts) are among the most
liquid OTC derivatives and no exact swaption pricing formula is available for multi-
factor interest rate models. Our first contribution is to develop accurate and efficient
bounds to approximate the price of European-swaption in a single-curve pre-crisis
framework. These bounds are computable for affine and quadratic models, when-
ever the joint characteristic function of the state variables is known. In particular, our
lower bound involves the computation of a one-dimensional Fourier transform in-
dependently of the swap length. In addition, we control the error of our method by
providing a new upper bound on swaption price that is applicable to all considered
models. Then, our second contribution of our work is the extension of the swaption
pricing bounds developed in the single-curve framework to an HJM (Heath Jarrow
Morton) multiple-curve Gaussian model, which allows also for negative rates.

The third contribution of our work is the application of time-changed Lévy pro-
cesses to the HJM multi-curve framework introduced previously. Our aim is to ob-
tain a parsimonious but also flexible model, which is able to reproduce a quoted
volatility surface of interest rate options. First, we build a term structure for zero



coupon bonds and Libor Forward Rate Agreement (FRA) rates and we derive suf-
ficient conditions to ensure the absence of arbitrage. Then we price interest rate
derivatives, as caps and swaptions, using the Fourier transform method. Finally
two different choices for the construction of the driving processes are examined and
compared.

Interest rate and credit/liquidity risks modelling are not only important for the fi-
nancial sector but also for the insurance industry. In the last part of this thesis, we
analyse common practice for determining the fair value of asset and liabilities of in-
surance funds. In the last years regulators introduced, with the Solvency II directive,
a market consistent valuation framework for determining the fair value of asset and
liabilities of insurance funds. A relevant aspect is how to deal with the estimation of
sovereign credit and liquidity risk, that are important components in the valuation of
the majority insurance funds, which are usually heavily invested in treasury bonds.
The common practice is the adoption of the certainty equivalent approach (CEQ) for
the risk neutral evaluation of insurance liabilities, which results in a deterministic
risk adjustment of the securities cash flows. Hence, our fourth contribution is the
application of an arbitrage free stochastic model for interest rate, credit and liquid-
ity risks, which takes into account the dependences between different government
bond issuers, to the valuation of financial options written on with-profit policies is-
sued by European insurance companies. We test the impact of the common practice
against our proposed model via Monte Carlo simulations. We conclude that in the
estimation of options whose pay-off is determined by statutory accounting rules,
which is often the case for traditional with-profit insurance products, the determin-
istic adjustment for risk of the securities cash flows is not appropriate, and that a
more complete model such as the one described in this thesis is a viable and sensible
alternative in the context of market consistent evaluations.

The work is organized as follows. First chapter presents a lower and upper bound
to the price of European-swaption in (single-curve) affine and quadratic models. In
the second chapter lower and upper bounds are extended to price swaption in a
multiple-curve framework. Third chapter propose an HJM multiple-curve model
with time-changed Lévy process, moreover interest rate option pricing formulae are
presented and the model is calibrated to market data. In the fourth chapter we ap-
plied a complete stochastic model for interest rate, credit and liquidity risks to the
valuation of embedded option in minimum guaranteed insurance funds.

The first two chapters refer to the following two papers [Gambaro et al., 2015], [Gam-
baro et al., 2017]. The third chapter consists in the second work produced for the
doctoral thesis, [Gambaro et al., 2016a]. Finally, the paper [Gambaro et al., 2016b] is
reported in the fourth chapter.



Chapter 1

Approximate pricing of swaptions
in affine and quadratic models

The accurate pricing of swaption contracts is fundamental in interest rate markets.
Swaptions are among the most liquid OTC derivatives and are largely used for hedg-
ing purposes. Many applications also require efficient computation of swaption
prices, such as calibration, estimation of risk metrics and credit and debit value ad-
justment (CVA and DVA) valuation. In the calibration of interest rate models, a large
number of swaptions with different maturities, swap lengths and strikes are priced
using iterative procedures aimed at fitting market quotations. Similarly, in the esti-
mation of risk metrics for a portfolio of swaptions, if a full revaluation setting is used
and millions of possible scenarios are considered, a fast pricing algorithm is essential
to obtain results in a reasonable time. In addition, the Basel III accords introduced
the CVA and DVA charge for OTC contracts, and for the simplest and most popular
kind of interest rate derivative, i.e. interest rate swap, the two adjustments can be
estimated by pricing a portfolio of forward start European swaptions (see [Brigo and
Masetti, 2005b]). Hence, the appeal of a fast and exact closed-form solution for the
swaption pricing problem is explained.

The famous [Jamshidian, 1989] formula is applicable only when the short rate de-
pends on a single stochastic factor while for multi-factor interest rate models, several
approximate methods have been developed in the literature. [Munk, 1999] approxi-
mates the price of an option on a coupon bond by a multiple of the price of an option
on a zero-coupon bond with time to maturity equal to the stochastic duration of the
coupon bond. The method of [Schrager and Pelsser, 2006] is based on approximat-
ing the affine dynamics of the swap rate under the relevant swap measure. These
methods are fast but not very accurate for out-of-the-money options. The method
of [Collin-Dufresne and Goldstein, 2002] is based on an Edgeworth expansion of the
density of the swap rate and requires a time-consuming calculation of the moments
of the coupon bond and it provides reliable estimation only for a low volatility level.
An estimation of the error of the [Collin-Dufresne and Goldstein, 2002] has been
provided in [Zheng, 2013]. [Singleton and Umantsev, 2002] introduce the idea of
approximating the exercise region in the space of the state variables. This method
has the advantage of producing accurate results across a wide range of strikes, in
particular for out-of-the-money swaptions. However, it does not allow a simple ex-
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tension to general affine interest rate models because it requires the knowledge of
the joint probability density function of the state variables in the closed form. [Kim,
2014] generalizes and simplifies the [Singleton and Umantsev, 2002] method. Up to
now, Kim’s method seems to be the most efficient proposed in the literature. Nev-
ertheless, Kim’s method requires the calculation of as many Fourier transforms as
the number of cash flows in the underlying swap, which implies that the run time
of the algorithm increases with the swap length. Moreover, none of these papers
discusses the direction of the error, i.e. whether the price is overestimated or un-
derestimated. Further, except for [Collin-Dufresne and Goldstein, 2002], none of
the methods proposed in the literature is able to estimate or control the approxima-
tion error. Recently, a lower and an upper bound on swaption prices was proposed
in [Nunes and Prazeres, 2014], but these are applicable only to Gaussian models.
Similar to [Singleton and Umantsev, 2002] and [Kim, 2014], we propose a lower
bound that is based on an approximation of the exercise region via an event set
defined through a function of the model factors. Our pricing formula consists of
the valuation of an option on the approximate exercise region and requires a single
Fourier transform. Our procedure gives a new perspective with respect to existing
methods, such as those of [Singleton and Umantsev, 2002] and [Kim, 2014]. Indeed,
we prove that their approximations are also lower bounds to the swaption price. To
the best of our knowledge, this has not been reported previously. Moreover, we de-
velop methods to control the approximation error by deriving a new upper bound
on swaption prices.

The chapter is organized as follows. Section 2 introduces a general formula for the
lower bound on swaption prices based on an approximation of the exercise region.
In addition, the popular methods of [Singleton and Umantsev, 2002] and [Kim, 2014]
are proved to be included in our setting. Then we apply the general lower bound
formula to the case of affine models and Gaussian quadratic interest rate models and
we find an efficient algorithm to calculate analytically the approximate swaption
price. In Section 3, the new upper bound is presented for affine-quadratic models.
Section 4 shows the results of numerical tests.

1.1 Lower bound on swaption prices

In this section, we discuss the general pricing formula for a receiver European-style
swaption and the approximations presented in [Singleton and Umantsev, 2002] and
[Kim, 2014]. In particular, we prove that these approximations are lower bounds.

A European swaption is a contract that gives the right to its owner to enter into an
underlying interest rate swap, i.e. it is a European option on a swap rate. It can be
equivalently interpreted as an option on a portfolio of zero-coupon bonds (or as an
option on a coupon bond). Let ¢t be the current date, 7" the option expiration date,
Ty, ..., T, the underlying swap payment dates (by constructiont < 7' < T} < ... <
T,) and R the fixed rate of the swap. The payoff of a receiver swaption is

n +
(Z wy P(T, Ty,) — 1) ,

h=1



where w, = R(T), —Tp—1) forh=1,..,n—1,w, = R(T, —Tp—1)+1,and P(T,T}) is
the price at time 7" of a zero-coupon bond expiring at time 7},. The time ¢ no-arbitrage
price is the risk-neutral expected value of the discounted payoff,

n +
Ct) =E, [e— S r(X(s)ds (Z wp P(T, Tp,) — 1) ] (1.1)

h=1

where r(X(s)) is the short rate at time s, and X(s) denotes the state vector at time s
of a multi-factor stochastic model. The price formula (1.1) after a change of measure
to the T-forward measure becomes

C(t) = P(t,T)E!

(Z wp P(T, T},) — 1) I(A)] (1.2)

h=1

with I denoting the indicator function, and A is the exercise region, which is seen as
a subset of the space events 2,

A={weQ:> w,P(T,T,) >1}.
h=1

By changing the measure of each expected value from the 7" forward measure to the
T}, measure, the pricing formula in expression (1.2) can be written as

C(t) = 3 wn Pl Th) B A] — P(:,T) B A
h=1

where P7[A] denotes the time ¢ probability of the exercise set A under the S-forward
measure. [Singleton and Umantsev, 2002] and [Kim, 2014] replace the exercise set A
in the above formula by a new set G that makes the computation of the swaption
price much simpler, and then their approximate pricing formula reads as (see [Sin-
gleton and Umantsev, 2002] and [Kim, 2014] for further details)

Cg(t) = zn: wy P(t, Ty) PI"[G) — P(t,T) PT[G]. (1.3)
h=1

The choice of the approximate exercise region is made so that the above probabilities
can be computed by performing n + 1 Fourier inversions, where n is the number of
payments in the underlying swap. We can now show that Cg(¢) is a lower bound
approximation to the true price. Indeed, we observe that for any event set G C €

n + n +
Ef KZ wi P(T, Ty) ~ 1) =4 (Z wnP(T,Th) - 1) ! <g>]
h=1 h=1
> T Kzn: wpP(T, Ty) — 1) 1(G)
h=1




Then by discounting we obtain:

C(t) > LBg(t) :== P(t,T) E]

(Z wy P(T, Tp,) — 1) I(g)] : (1.4)

h=1

i.e. LBg(t) is a lower bound to the swaption price for all possible sets G. Using the
same change of measures as in [Singleton and Umantsev, 2002] and [Kim, 2014], it
immediately follows that

LBg(t) = Cg(t).

Therefore, the approximate pricing formula presented in [Singleton and Umantsev,
2002] and [Kim, 2014] are indeed lower bounds. This was not previously noted. In
particular, our new framework allows us to control the approximation error by pro-
viding an upper bound. In addition, we show how to speed up the computation
of the formula (1.4) by performing a single Fourier transform. This allows a reduc-
tion of the computational cost, mainly when we have to price swaptions written on
long-maturity swaps.

1.1.1 Affine and Gaussian quadratic models

In affine and quadratic interest rate models, the price at 7" of a zero-coupon bond
with expiration 7}, > T can be written as the exponential of a quadratic form of the
state variables,

P(T,T)) = e X (D)ChX(T)+b) X(T)+ap, (1.5)

for X(7T') a d-dimensional state vector and ay, = A(T — Tj), by, = B(T — T}) and
Cy, = C(T — T},) functions of the payment date 7},, which are model specific. Fixing
a date T}, by, is a d-dimensional vector and (', is a d x d symmetric matrix.

From the literature ( [Ahn et al., 2002], [Leippold and Wu, 2002] and [Kim, 2014]),
we know that if the risk-neutral dynamics of the state variates are Gaussian, then the
functions A(7), B(7) and C(r) are the solution of a system of ordinary differential
equations with initial condition A(0) = 0, B(0) = 0, C(0) = 0gxq. Affine models
can be obtained by forcing C}, to be a null matrix. For affine models, under certain
regularity conditions, the functions A(7) and B(7) are the solution of a system of d+1
ordinary differential equations that are completely determined by the specification
of the risk-neutral dynamics of the short rate (see [Duffie and Kan, 1996] and [Dulffie
et al., 2000] for further details). The solutions of these equations are known in closed
form for most common affine models.

From [Duffie et al., 2000] and [Kim, 2014], we know that the quadratic T-forward
joint characteristic function of the model factors X has the form

@(A,A) _ Ef |:€)\TX(T)+X(T)TAX(T) (16)

eA(T—t,A,A)—A(T—t)—&-(E(T—t,}\,A)—B(T—t))TX(t)+X(t)T(C’(T—t,)\,A)—C(T—t))X(t)



where A € C% and A is a complex d x d symmetric matrix. If X(¢) is a Gaussian
quadratic process (or an affine process, i.e. A, C and C are null matrices), the func-
tions A(7,\,A), B(1,\,A) and C(7,\, A) are the solutions of the same ODE sys-
tem of the zero-coupon bond functions, but with initial conditions fl(O, A A) =0,
B(0,A,A) =X, and C(0,\,A) = A.

In the case of a quadratic model, it is convenient to define the approximate exercise
region G using a quadratic form of the state vector,

G={weQ:X(T)'TX(T)+8"X(T) >k},
where I' is a constant d x d symmetric matrix, 3 € R? and k € R.

Proposition 1.1.1. The lower bound to the European swaption price for quadratic interest
rate models is given by the following formula:

LB(t) = ma; LBgr(k;t), 1.7
®) keR,,@eRd,F)éSymd(R) ﬁI( ) (1.7)
where
8_6k +o0 )
LBar(kit) = P(T)"— [ Re (e + i) v (1.8)
0
and

Y(z) = <Z wye® (by, + 28, Ch + 2T') — @ (26, zr)> 1, (1.9)

z
h=1

with 1(z) defined for Re(z) > 0 for receiver swaptions and for Re(z) < 0 for payer swap-
tions. The integral in formula (1.8) must be interpreted as a Cauchy principal value integral
and 0 is a positive or negative constant for receiver or payer swaptions, respectively.

Proof: See Appendix A.1.

1.2 The approximate exercise region

1.2.1 The geometric average approximate exercise region

The approximate exercise set is defined through the logarithm of the geometric av-
erage of the portfolio of zero coupon bonds

G = {we:gX(T)) =k},

G(X(T)) = HP(Ta Th>wh7
h=1

9(X(T)) = W(GX(T)) =) wpln(P(T,Th)).
h=1



For linear-quadratic models, G and ¢g(X) are given by
G={weQ:X(T)'TX(T)+ B"X(T) + o >k},

where I’ = 2221 Wh, Ch, ,3 = 2221 whbh and o = 2221 WhA.

Since we don’t know the optimum value of the parameter k, then the pricing method
requires the maximization of the lower bound, LB(k;t,T,{T}}};_,, R), seen as a
function of k. The optimization can be accelerated looking for a good starting point.
We suggest the following

k =log (Zf?i:llwfz) = —log (Z R(T), — Th_1)> .

h=1

According to this choice G; = {w € Q: g(X(T)) > k} is the greatest possible subset
of the true exercise region, A. In fact normalizing the weights, the expression of the
true exercise region can be rewritten as

A={weQ: Y wP([.Ty) 21} = {we Q: Y @ P(T,T;) > "} =
h=1 h=1

={we Q: AX) Zek},

where A(X) is the arithmetic mean of the ZCBs portfolio, w;, = Ez}f’; o, and so

22:1 wy, = 1. .
By the arithmetic-geometric inequality we know that A(X) > G(X) VX, then Vk > k

A2 G 2 Gg.

Instead if k < k then it is no more guaranteed that Gy, is a subset of the true exercise
region.

1.2.2 The Taylor (or tangent hyperplane) approximation

For two-factor affine interest rate models, [Singleton and Umantsev, 2002] propose
to approximate the exercise boundary of an option on a coupon bond with a straight
line that closely matches the exercise boundary where the conditional density of the
model factors is concentrated. [Kim, 2014] improves on the [Singleton and Umant-
sev, 2002] idea and considers three different types of approximation for the exercise
region. We choose its approximation “A” because it appears to be the most accu-
rate.! In the approximation “A”, the approximate exercise region is obtained by a
first-order Taylor expansion of the coupon bond price, which is defined as

B(X(T)) =Y wyP(T,Tp), (1.10)
h=1

! The three approximations presented in [Kim, 2014] are lower bounds, as proved in Section 1.1.
Therefore, the most precise is the one that produces the highest price, which was not discussed in the
Kim paper.



(a) Exercise regions (b) Histogram of the density

Figure 1.1: The first figure shows the true and the approximate exercise boundary
for a 2 x 10 years swaption with the two-factor CIR model. Light blue and red lines
are the boundary of the true region and of the approximate set, respectively. The
region represented by a blue circle is where the joint probability density function
of the two factors is highest at the maturity of the option. The second figure is the
histogram of the joint probability density function of the two factors at maturity.

around the point on the true exercise boundary where the density function of the
model factors is largest. Moreover, [Kim, 2014] extends his approximation “A” to
Gaussian quadratic interest rate models using a second-order Taylor expansion of
the coupon bond. In this way, the optimization of the lower bound (formula (1.7)),
which can be very expensive, is not performed. It is instead replaced by a prelimi-
nary search of the parameters I', 3 and k, which are chosen via the Taylor expansion
of the coupon bond price.

In particular, for affine models, the first-order Taylor expansion of the coupon bond
is a tangent hyperplane approximation. In fact, the approximate exercise boundary
is defined as

B'X(T)+a=0,
with
a=-VB(X*)'X*, B8=VB(X*) and k= —a. (1.11)

Hence, it is a tangent hyperplane to the true exercise boundary at the point, X(T") =
X*, where the density function of the model factors is the largest. In order to calcu-
late the point X*, we use the equation (2.20) of [Kim, 2014]. A two-dimensional vi-
sualization of the approximate exercise region is shown in Figure 1.1. Once I', 3 and
k are found, the Kim approximation requires the computation of n+ 1 forward prob-
ability P/"[G], as in formula (1.3). This is done by performing n + 1 one-dimensional
Fourier inversions. In contrast, our lower bound is calculated as in formula (1.8), i.e.
performing a single one-dimensional Fourier transform with respect to the parame-
ter k.



1.3 Upper bound on swaption price

In this section, we define a new upper bound to swaption prices that is applicable
to all affine and quadratic interest rate models. First of all, it is straightforward
to see that for a lower bound defined by a generic approximate exercise set G, the
(undiscounted) approximation error is

t,
— ET((BX(T)) ~ )] ~ BT [(BX(T)) - 1)1(G)
_ ET((BOX(T)) — 1)*1(G%)] + EF[(1 ~ BOX(T))* 1(G)
= A1 + A2>

where B(X(T")) is the coupon bond price defined as in formula (1.10). The previous
formula for the approximation error is valid also for payer swaptions. In general,
A1 and Ay are not explicitly computable. However, we can provide upper bounds
€1 and €3 to them. Hence, an upper bound to the swaption price easily follows:

UB(t) = LB(t) + P(t,T) (e1 + €2), (1.12)

for e; > Aj and e > As.
For every set of strikes (K1, ..., K,) such that >, | K;, = 1, upper bounds to the
errors are

Ay < e =Y El[(wnP(T, Th) — Kn)™ 1(6°)], (1.13)
h=1

Ag < ea =Y B [(Kp—wiP(T,Tn))" 1(G)], (1.14)
h=1

where P(T,T},) is the price at time 7" of the zero-coupon bond with maturity 77,.
However, without a proper choice of the strikes (K7, ..., K,,), the approximations can
be very rough and so we want to find the values of (K7, ..., K,,) that reduce the error
without performing a time-consuming multidimensional numerical minimization.
Given that

1 +
B -0 = BED) (1= 5 )

. 1\
— thP(T’Th) <1_B(X(T))>

h=1
& wpP(T, T)\ T
- hzl(“’hp 1)~y (119

as B(X(T)) > 0 and w, P(T,T) > 0 VX(T), we note that the following equality
holds:

E{ [(B(X(T)) = 1) 1(G)] = Y Ef [(wp P(T, T},) = Kn(X(1))* 1(G°)],
h=1
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for

Ky(X(1)) = ")

By similar reasoning, we also have:
E{ (1= BX(D)T 1(G)] = Y _E{ (Kn(X(T)) — wn P(T, Ty)) " 1(G)].
h=1

Hence, if in formula (1.13) and (1.14), we choose the strikes (K7, ..., K,) in the fol-
lowing way:

Kp = Kp(X*) = wp, P(T, Th)|x (1)=x*>» (1.16)
then the equalities ¢; = A and e = Aj hold in X(7') = X*, the point on the true
exercise boundary where the density function of the model factors is largest. The

computation of X* is explained in Section 1.1.1.
This allows us to avoid a multidimensional optimization with respect to (K1, ...K}).

1.3.1 Affine and Gaussian quadratic models

The following proposition explains how to compute the quantities €; and €3 defined
in expressions (1.13) and (1.14), and hence the upper bound in formula (1.12), using
the Fourier Transform method.

Proposition 1.3.1. The upper bound to the European swaption price for quadratic interest
rate models is given by the following formula:

UB(t) = LB(t) + P(t,T) (e1(—a) + e2(—a)) (1.17)

where

ei(k) = i *wd " +ood z": ap ,—(8+iv)k —(n+iw)kh1/) (6 +i +iw)

1 2 /. v Re w wpe'h e e h iy, +iw) |,

- h=1
+oo +oo " ) )
ea(k) = —2;2 /0 dv Re </ dewhe“h Ok =ikn  (—6 + iy, —n —|—iw)> ,
—oo p=1

and

D (28 + (y+ 1)bp, 2T + (y + 1)Ch)
zy(y +1)

Qph(Z?y) = - ) (118)

where fE(t) is given in Proposition 1.1.1, ky, = log(K},) — log(wy,) — ap, Ky, are defined in
equation (1.16) and ®(X, A) is defined in equation (1.6). The upper bound formula is valid
for both receiver and payer swaptions. If Re(z) < 0 and Re(y) > 0, (2, y) is the double
Fourier transform of

EZ[(ePh TXAXTCX _ ki)t [(XTTX + BTX < k)],
and if Re(z) > 0and Re(y) < —1, Yy (2, y) is the transform of
EZ[(ebr — Pn TXAXTCX )+ 1(XTTX + BTX > k)],

with § > 0, n > 1 constants.
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Proof: See Appendix A.2.

We note some important mathematical features of the swaption pricing problem in
the affine interest rate model case. In this set up, C, and I' are null matrices, which
simplifies the upper bound formula. The coupon bond B(X(T")) seen as a function
of the model factors X(7) is convex as it is a positive linear combination of convex
functions, the ZCBs. In fact, the zero-coupon price seen as a function of the state
vector, i.e. P(T,Ty) = eb;X(T)*'ah, is a convex function because it is composed of
convex monotone functions, the exponential, and a linear function of X. Thus, the
convexity of the sub-level { B(X(T")) < 1} ensues from the previous argument.
Choosing the tangent hyperplane approximation as the lower bound and resorting
to the hyperplane separation theorem, it follows immediately that the approximate
exercise region is included in the true region, as graphically illustrated in Figure 2
for a two-factor case,

G = {B"X +a >0} C {BX(T)) > 1},

provided that o and 3 are defined as in formula (1.11).

Figure 1.2: The light blue line represents the true exercise boundary for a 2 x 10-
year swaption with a two-factor CIR model. The blue star indicates the point X*.
The approximate exercise region G is the half-space below the red line. Since the
sub-level { B(X(T')) < 1} is convex, then G N {B(X(T)) < 1} = 0 by the hyperplane
separation theorem.

Hence, the separation theorem guarantees that A, is zero, which allows us to com-
pute only the term ¢; in Proposition 1.3.1.

It is possible to show that for one-factor affine interest rate models, the upper bound
coincides with the [Jamshidian, 1989] formula.
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1.4 Bounds for affine Gaussian specification

For the affine Gaussian model, the lower bound can be calculated analytically as
follows:

LBg(k;t) = P(t,T) w (Z wy, e PRIVt s dl N (d, — d)) — N(—w d)) :
h=1

where w = 1 for receiver swaptions and w = —1 for payer swaptions. The upper
bound formula can be simplified to

d .2 n Vi, _ _
e1(k) :/ dz 1 e 2 theah <eM’l+T} N (—Mh log Y + Vh) —YLN (7Mh lOgYh)) ,
oo V2 byt vV'Vh V'V

whered = 282 4 — blv,V, =b] (V—vv )by, v=—2L— M, =b] utzb]v,

VBTVB VBTVB
Y, = the’zh and y = El[X(T)] and V = Vary(X(T)) are the mean and covari-

ance matrix of the variable X(7') that is multivariate normal under the 7-forward
measure. N (x) represents the standard Gaussian cumulative distribution function.
Proofs of the simplified bounds are in Appendix A.3 and A 4.

1.5 Numerical results

For each model, we fix a set of parameters and we calculate a matrix of swaption
prices with different maturities, swap lengths and three different strikes, i.e. ATMF
(at-the-money forward), ITMF (0.85 x ATMEF for affine models and ATMF - 0.75% for
the quadratic model) and OTMF (1.15 x ATMF for affine models and ATMF + 0.75%
for the quadratic model). This is a common choice in the literature (see, for instance,
[Schrager and Pelsser, 2006], [Singleton and Umantsev, 2002] and [Kim, 2014]). The
description and values of the parameters for each model are reported, respectively,
in Appendix B and D. The tested models are a three-factor affine Gaussian model, a
two-factor affine Cox, Ingersoll and Ross (CIR) model, a two-factor affine Gaussian
model with double exponential jumps and a two-factor Gaussian quadratic model.
Monte Carlo is used as a benchmark for the computation of the true swaption price.
The 97.5% mean-centred Monte Carlo confidence interval is used as a measure of
the accuracy. For the affine three-factor Gaussian model, we add as a benchmark the
lower bound proposed in [Nunes and Prazeres, 2014], which is extremely accurate.
For the affine three-factor Gaussian model, lower bounds are obtained via the closed
formula described in Section 1.4. Kim’s prices are calculated using the closed price
formula for the T-forward probabilities (formula (3.9) and (3.16), [Kim, 2014]). For
the two-factor CIR model, the Gaussian model with jumps and the Gaussian quadratic
model, the integrals involved in the lower bounds and in Kim’s method are evalu-
ated by a Gauss-Kronrod quadrature rule using Matlab’s built-in function quadgk.
The Matlab function quadgk is also used for the integral appearing in the upper
bound formula for the three-factor Gaussian model (see Section 1.4). For the two-
factor CIR model, the Gaussian model with jumps and the Gaussian quadratic model,
the upper bound formula requires the calculus of double integrals that are evaluated
using Matlab’s function quad2d, an iterative algorithm that divides the integration
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region into quadrants and approximates the integral over each quadrant by a two-
dimensional Gauss quadrature rule.

Another important fact is that our lower bound formula is suitable for use as a con-
trol variate to reduce the Monte Carlo simulation error. The approximate formula is
easily implemented in a Monte Carlo scheme and turns out to be very effective. In
this way, the simulation error is considerably reduced.

Numerical results obtained with parameters reported in Appendix D are shown in
Tables 1.1-1.12. Computational time for each pricing method is also given in Table
1.14.

1.5.1 Test with random parameters

In this section, we test the robustness of the bounds” approximation to parameter
changes. We use 100 randomly simulated parameters for the two-factor CIR model.
The model parameters are independent and uniformly distributed within a reason-
able range, which is shown in Appendix D.

For each set of simulated parameters, we calculate a matrix of swaption prices with
different maturities and swap lengths and three different strikes, i.e. ATM, ITMF
(0.85 x ATMF) and OTMF (1.15 x ATMF).

For each swaption, we calculate the root mean square deviation (RMSD) of the lower
and upper bounds with respect to the Monte Carlo estimation, which is used as the
benchmark:

MSD = = M avg — = )
s m\/ (MCp? =T N

where N is the number of random trials, B; = LB; or B; = UB; (lower or upper
bound) and MC; is the Monte Carlo estimation of the swaption price with the i
set of random parameters and M Cl,, is the average of Monte Carlo prices over all
random trials. Monte Carlo values are estimated using 107 simulations. Numerical
results of this test are shown in Table 1.13.

1.5.2 Comments on numerical results

Numerical results are presented across a wide class of affine models and for the
Gaussian quadratic model. The tangent hyperplane lower bound and the approxi-
mation “A” of [Kim, 2014] produce the same prices because they are two different
implementations of the same approximation. However, the new algorithm, which
requires the computation of a single Fourier inversion, is faster across all models
for which the characteristic function is known in its closed form. In fact, in Table
1.14, our implementation of the lower bound is faster than Kim’s method except for
the Gaussian quadratic model for which the characteristic function is available in a
semi-analytical form (see Appendix B). The improvement in computational perfor-
mance is more evident for swaptions with a large number of cash flows, as illus-
trated in Table 1.15. For the three factor Gaussian affine model, [Nunes and Praz-
eres, 2014] conditioning approach is more efficient than our bounds, however our
aim is to find approximations that are applicable to a wider class of models and not
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only to Gaussian affine models. Comparing the speed of different methods is not
simple because each algorithm should be optimized. However, our considerations
about the efficiency of an algorithm are also justified by theoretical reasoning and
confirmed by our estimations of the computational time. The lower bound with the
(log-)geometric approximate exercise region is slightly less accurate and less efficient
than the tangent hyperplane lower bound. Moreover, for the Gaussian quadratic
model, it fails to reproduce OTMF swaption prices with a long swap length. How-
ever, it can be useful when it is difficult to find the correct point of tangency (i.e.
the point X* on the true exercise boundary, where the density of the model factor is
highest, see Section 1.2.2).

Our upper bound is applicable to all affine-quadratic models and it is particularly
efficient for affine models. In the literature, upper bounds are available only for
Gaussian affine models. In particular, for the three-factor affine Gaussian model,
we compare our bounds with the ones proposed by [Nunes and Prazeres, 2014].
Lower bound proposed by [Nunes and Prazeres, 2014] is comparable to our lower
bound for all maturities and strikes. We find that our upper bound is less accurate
for ATMF options but it seems to be more accurate for OTMF options (see Tables
1.1-1.3). We observe that for the given set of parameters, price estimated using our
bounds and the conditioning approach are very close. On the other hand, with ref-
erence to computational time (see Table 1.14), [Nunes and Prazeres, 2014] approach
is more efficient than our bounds. However, our aim is to find approximations that
are applicable to a wider class of models and not only to Gaussian affine models.
The computation of the upper bound is slower than the lower bound calculation, but
it is still faster than Monte Carlo simulations for a comparable accuracy (see Table
1.14). In addition, the range between the lower and upper bound is always narrow
s0, in practice, the combined use of the two bounds provides an accurate estimate of
the true price.

In each table we compute the mean absolute percentage error (MAPE) of bounds
with respect to Monte Carlo prices, taken as a benchmark, for fixed maturity and
strike.

The RMSD computation performed for the two-factor CIR model and reported in
Table 1.13 is an important validation for the stability of the accuracy of the bounds
to changes in the parameter set. The RMSD of the lower bound for at-the-money and
in-the-money options is less than 0.1% of the Monte Carlo average price, which is a
good result. The relative error is larger for out-of-the-money options, in particular
for the swaptions with a long swap length. Indeed, the maximum error is around
0.3% of the Monte Carlo price. The RMSDs of the upper bound are greater than the
RMSDs of the lower bound, in particular for swaptions with longer swap lengths.
However, the maximum RMSD of the upper bound is about 0.8% of the Monte Carlo
price, which is also confirmation of the good performance of the upper bound.

In conclusion, numerical results confirm our hypothesis about the performance of
the new algorithm in terms of computational times for the calculus of the lower
bound, except for quadratic models in which the characteristic function is not ana-
lytic. Moreover, numerical tests show a very good accuracy of the new upper bound
for different models across tenors, maturities and strikes.
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Opt. Mat. 1
Swap length) MC LB (G) LB (HP) UB (HP) LB (CA) UB (CA)
1 20.817 20.817 20.817 20.818 20.817 20.817
0.001 0.001 0.000
’ 33.119 33.119 33.119 33.129 33.119 33.120
0.002 0.010 0.001
5 53.312 53.312 53312 53.396 53.312 53.323
0.002 0.084 0.011
10 65.583 65.579 65.584 65.758 65.584  65.613
0.003 0.174 0.029
MAPE 0.002% 0.0005% 0.115% 0.0005% 0.018%
Opt. Mat. 2
Swap length| MC LB (G) LB (HP) UB (HP) LB (CA) UB (CA)
1 23.555 23.554 23554 23555 23554  23.555
0.001 0.001 0.0001
5 38.434 38.434 38434 38444 38434 38.435
0.002 0.010 0.002
5 63.688 63.686 63.686 63.764 63.686 63.702
0.003 0.078 0.015
10 79.068 79.062 79.067 79.224  79.067  79.106
0.004 0.157 0.039
MAPE 0.004% 0.002% 0.086% 0.002% 0.018%
Opt. Mat. 5
Swap length) MC LB (G) LB (HP) UB (HP) LB (CA) UB (CA)
1 23.207 23.207 23.207 23.208 23.207  23.207
0.001 0.001 0.0001
’ 38.723 38.722 38.722 38.730 38.722  38.724
0.002 0.008 0.002
5 65.684 65.683 65.683 65.741 65.683  65.700
0.003 0.058 0.017
10 82.161 82156 82.159 82273 82.159  82.201
0.004 0.114 0.042
MAPE 0.003% 0.001% 0.061% 0.001% 0.019%

Table 1.1: The table shows ATMF payer swaption prices for the three-factor Gaus-
sian model at three different maturities (1Y, 2Y and 5Y). For each swaption, we re-
port the price in basis points estimated with the Monte Carlo method, MC, the geo-
metric lower bound, LB (G), the hyperplane approximation lower bound, LB (HP),
the upper bound, UB (HP), and the lower and upper bounds obtained with the con-
ditional approach of [Nunes and Prazeres, 2014], LB (CA) and UB(CA). Monte Carlo
prices are estimated using 10° simulations, the antithetic variates method and the
exact probability distribution. Below each Monte Carlo price, the size of the confi-
dence interval at 97.5% is reported in basis points. The distance between the lower

and the upper bounds is provided below each upper bound value.
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Opt. Mat. 1
Swap length| MC LB(G) LB (HP) UB(HP) LB (CA) UB (CA)
1 79.4449 79.4449 79.4449 79.4451 79.4449 79.4449
0.0003 0.0002 0.0001
5 154.5632 154.5632 154.5632 154.5646 154.5632 154.5642
0.0003 0.0014 0.0010
5 361.4695 361.4695 361.4695 361.4713 361.4695 361.4793
0.0001 0.0018 0.0098
10 636.9818 636.9816 636.9818 636.9819 636.9818 637.0074
0.0001 0.0001 0.0256
MAPE 0.00002% 0.00002% 0.0004% 0.00002% 0.0019%
Opt. Mat. 2
Swap length| MC LB(G) LB (HP) UB(HP) LB (CA) UB(CA)
1 78.4043 78.4039 78.4039 78.4042 78.4039 78.4040
0.0005 0.0003 0.0001
5 150.9113 150.9108 150.9108 150.9131 150.9108 150.9121
0.0005 0.0023 0.0013
5 346.2753 346.2753 346.2753 346.2813 346.2753 346.2884
0.0003 0.0061 0.0132
10 604.8099 604.8098 604.8101 604.8113 604.8101 604.8443
0.0002 0.0013 0.0342
MAPE 0.0002% 0.0002% 0.0008% 0.0002% 0.0026%
Opt. Mat. 5
Swap length| MC LB (G) LB (HP) UB(HP) LB (CA) UB(CA)
1 69.4421 69.4420 69.4420 69.4423 69.4420 69.4421
0.0005 0.0003 0.0001
5 131.9486 131.9485 131.9485 131.9511 131.9485 131.9500
0.0007 0.0026 0.0015
5 295.1619 295.1618 295.1619 295.1717 295.1619 295.1762
0.0006 0.0098 0.0143
10 508.8398 508.8397 508.8398 508.8444 508.8398 508.8766
0.0003 0.0046 0.0368
MAPE 0.0001% 0.0001% 0.0016% 0.0001% 0.0033%

Table 1.2: The table shows ITMF (0.85 x ATMF) payer swaption prices for the three-
factor Gaussian model at three different maturities (1Y, 2Y and 5Y). For each swap-
tion, we report the price in basis points estimated with the Monte Carlo method, MC,
the geometric lower bound, LB (G), the hyperplane approximation lower bound, LB
(HP), the upper bound, UB (HP), and the lower and upper bounds obtained with the
conditional approach of [Nunes and Prazeres, 2014], LB (CA) and UB(CA). Monte
Carlo prices are estimated using 10° simulations, the antithetic variates method and
the exact probability distribution. Below each Monte Carlo price, the size of the con-
fidence interval at 97.5% is reported in basis points. The distance between the lower

and the upper bounds is provided below each upper bound value.
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Opt. Mat. 1
Swap length) MC LB (G) LB (HP) UB (HP) LB (CA) UB (CA)
1 1.5700 1.5700 1.5700 1.5703 1.5700 1.5701
0.0003 0.0003 0.0001
5 1.0649 1.0648 1.0648 1.0671 1.0648 1.0661
0.0003 0.0022 0.0013
5 0.1496 0.1495 0.1495 0.1523 0.1495 0.1624
0.0001 0.0027 0.0129
10 0.00268 0.00268 0.00268 0.00281 0.00268 -
0.00002 0.0001 -
MAPE 0.0327% 0.0327% 1.788% 0.032%  2.914%
Opt. Mat. 2
Swap length| MC LB (G) LB (HP) UB (HP) LB (CA) UB (CA)
1 2.8242 28238 28238 2.8242 2.8238  2.8239
0.0005 0.0005 0.0002
5 26128 26123 2.6123 26162 2.6123 2.6141
0.0006 0.0039 0.0018
5 0.9049 09048 09048 0.9141 09048 0.9222
0.0004 0.0093 0.0174
10 0.0756 0.0756 0.0756  0.0776  0.0756  0.1199
0.0001 0.0019 0.0443
MAPE 0.017% 0.017% 0.928% 0.017% 15.146%
Opt. Mat. 5
Swap length| MC LB (G) LB (HP) UB (HP) LB (CA) UB (CA)
1 3.7940 3.7938 3.7938 3.7943 3.7938  3.7940
0.0006 0.0005 0.0002
5 43224 43223 43223 43265 4.3223 4.3242
0.0008 0.0043 0.0020
5 25697 25693 25696 25839 25696  2.5884
0.0007 0.0144 0.0189
10 0.5166 0.5164 0.5166 0.5231 0.5166  0.5643
0.0003 0.0065 0.0477
MAPE 0.015% 0.003% 0.481% 0.003% 2.503%
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Table 1.3: The table shows OTMF (1.15 x ATMF) payer swaption prices for the
three-factor Gaussian model at three different maturities (1Y, 2Y and 5Y). For
each swaption, we report the price in basis points estimated with the Monte Carlo
method, MC, the geometric lower bound, LB (G), the hyperplane approximation
lower bound, LB (HP), the upper bound, UB (HP), and the lower and upper bounds
obtained with the conditional approach of [Nunes and Prazeres, 2014], LB (CA) and
UB(CA). Monte Carlo prices are estimated using 10° simulations, the antithetic vari-
ates method and the exact probability distribution. Below each Monte Carlo price,
the size of the confidence interval at 97.5% is reported in basis points. The dis-
tance between the lower and the upper bounds is provided below each upper bound




Opt. Mat. 1
Swap length) MC LB (G) LB (HP) UB (HP) MC (CV) Kim
48.469 48.466 48.466 48.467  48.466  48.466

1 0.004 0.001 1074
) 85.876 85.871 85.871 85.883  85.871 85.871
0.008 0.012 1074
5 169.437 169.427 169.428 169.639 169.428 169.428
0.016 0.211 1074
10 265.834 265.779 265.820 266.634 265.818 265.820
0.025 0.814 0.004
MAPE 0.010% 0.005% 0.108%
Opt. Mat. 2

Swap length| MC LB (G) LB (HP) UB (HP) MC (CV) Kim
59.359 59.361 59.361 59362  59.361 59.361

1

0.005 0.001 1074
) 106.885 106.890 106.890 106.904 106.890 106.890
0.010 0.014 1074
5 216.868 216.879 216.880 217.103 216.881 216.880
0.020 0.222 1074
10 344.969 344.949 344.990 345.795 344.992 344.990
0.033 0.805 0.005
MAPE 0.005% 0.005% 0.093%
Opt. Mat. 5

Swap length) MC LB (G) LB (HP) UB (HP) MC (CV) Kim
66.979 66970 66970 66.971 66.970  66.970

1

0.006 0.001 1074

» 123.847 123.830 123.830 123.842 123.830 123.830
0.011 0.012 1074

5 261.403 261.366 261.368 261.525 261.368 261.368
0.025 0.157 1074

10 422939 422.857 422.883 423.408 422.887 422.883
0.042 0.525 0.004

MAPE 0.015% 0.013%  0.044%

Table 1.4: The table shows ATMF payer swaption prices for the two-factor CIR
model at three different maturities (1Y, 2Y and 5Y). For each swaption, we report
the price in basis points estimated with the Monte Carlo method, MC, the geometric
lower bound, LB (G), the hyperplane approximation lower bound, LB (HP), the up-
per bound, UB, the Monte Carlo with control variable technique, MC (CV), and the
approximation “A” of [Kim, 2014]. Monte Carlo without and with control variable
are estimated using 10 and 10° simulations, respectively, and the exact probability
distribution. Below each Monte Carlo price, the size of the confidence interval at
97.5% is reported in basis points. The distance between the lower and the upper
bounds is provided below each upper boi19nd value.



Opt. Mat. 1
Swap length| MC LB(G) LB(HP) UB MC(CV) Kim
1 107.578 107.577 107.577 107.578 107.577 107.577
0.002 0.001  107*
» 208.039 208.037 208.037 208.045 208.037 208.037
0.004 0.008 10~
5 475.672 475.668 475.669 475.782 475.669 475.669
0.007 0113 1074
10 812.488 812.470 812.482 812917 812.482 812.482
0.009 0.435 0.002
MAPE 0.001% 0.001% 0.020%
Opt. Mat. 2
Swap length| MC LB(G) LB(HP) UB MC(CV) Kim
1 116.838 116.839 116.839 116.840 116.839 116.839
0.003 0.001  107*
’ 222.361 222.363 222.363 222.373 222.363 222.363
0.006 0.010 10~*
5 493.297 493.301 493.301 493.454 493.301 493.301
0.011 0.152 1074
10 825.213 825.202 825.218 825.772 825.219 825.218
0.017 0.554  0.003
MAPE 0.001% 0.001% 0.027%
Opt. Mat. 5
Swap length| MC LB(G) LB(HP) UB MC(CV) Kim
1 114.936 114.930 114.930 114.931 114.930 114.930
0.004 0.001 10~
» 217.219 217.208 217.208 217.217 217.208 217.208
0.008 0.009 107*
5 473.353 473.330 473.331 473.455 473.331 473.331
0.016 0.124 10~
10 778.608 778.559 778.572 778.993 778.573 778.572
0.028 0420  0.002
MAPE 0.005% 0.005% 0.019%
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Table 1.5: The table shows ITMF (0.85 x ATMF) payer swaption prices for the two-
factor CIR model at three different maturities (1Y, 2Y and 5Y). For each swaption,
we report the price in basis points estimated with the Monte Carlo method, MC,
the geometric lower bound, LB (G), the hyperplane approximation lower bound,
LB (HP), the upper bound, UB, the Monte Carlo with control variable technique,
MC (CV), and the approximation “A” of [Kim, 2014]. Monte Carlo without and
with control variable are estimated using 10? and 10° simulations, respectively, and
the exact probability distribution. Below each Monte Carlo price, the size of the
confidence interval at 97.5% is reported in basis points. The distance between the
lower and the upper bounds is provided below each upper bound value.




Opt. Mat. 1
Swap length| MC LB(G) LB(HP) UB MC(CV) Kim
1 15977 15973 15973 15973 15973 15.973
0.006 0.001  107*
» 23.73 23.724 23.724 23733 23.724 23.724
0.011 0.009 10~*
5 33.576 33.565 33.567 33.698 33.567 33.567
0.024 0.132 1074
10 42.469 42425 42458 42873 42459 42458
0.039 0.414 0.005
MAPE 0.047% 0.026% 0.337%
Opt. Mat. 2
Swap length| MC LB(G) LB(HP) UB MC(CV) Kim
1 24445 24446 24446 24447 24446 24.446
0.007 0.001  107*
’ 39.961 39.964 39964 39977 39.964 39.964
0.013 0013 1074
5 68.731 68.740 68.742 68.918 68.742 68.742
0.029 0.176 0.001
10 99.027 99.004 99.049 99.626 99.045 99.049
0.048 0.577  0.005
MAPE 0.012% 0.013% 0.232%
Opt. Mat. 5
Swap length| MC LB(G) LB(HP) UB MC(CV) Kim
1 34.558 34.546 34.546 34547 34.546 34.546
0.008 0.001 10~
9 61.86 61.838 61.838 61.849 61.838 61.838
0.015 0011  107*
5 124.445 124.396 124.398 124.546 124.399 124.398
0.032 0.148 0.001
10 196.344 196.230 196.265 196.742 196.266 196.265
0.056 0476  0.005
MAPE 0.042% 0.037% 0.083%
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Table 1.6: The table shows OTMF (1.15 x ATMF) payer swaption prices for the two-
factor CIR model at three different maturities (1Y, 2Y and 5Y). For each swaption,
we report the price in basis points estimated with the Monte Carlo method, MC,
the geometric lower bound, LB (G), the hyperplane approximation lower bound,
LB (HP), the upper bound, UB, the Monte Carlo with control variable technique,
MC (CV), and the approximation “A” of [Kim, 2014]. Monte Carlo without and
with control variable are estimated using 10? and 10° simulations, respectively, and
the exact probability distribution. Below each Monte Carlo price, the size of the
confidence interval at 97.5% is reported in basis points. The distance between the
lower and the upper bounds is provided below each upper bound value.




Opt. Mat. 1
Swap length| MC LB (G) LB (HP) UB (HP) MC (CV) Kim
403.88 403.77 403.77 403.77 403.77 403.77

! 0.37 0.00  0.00001
» 546.54 546.17 546.17 546.39 546.17 546.17
0.61 022 0.00001
5 857.58 856.73 85693 859.96 856.93 856.93
1.02 3.03 0.0006
10 963.67 962.77 96296 96451 962.96 962.96
1.13 1.55  0.00012
MAPE 0.071% 0.061% 0.105%
Opt. Mat. 2

Swap length| MC LB (G) LB (HP) UB (HP) MC (CV) Kim
43432 43424 43424 43424 43424 43424

! 0.39 0.00  0.00001

5 678.54 677.82 677.82 67833 677.82 677.82
0.73 0.50  0.00004

5 1238.63 1236.76 1236.99 1240.84 1236.99 1236.99
1.28 3.86 0.001

10 1426.94 1425.00 1425.19 142695 1425.19 1425.19
1.42 1.77 0.0003

MAPE 0.103% 0.095% 0.057%
Opt. Mat. 5

Swap length| MC LB (G) LB (HP) UB (HP) MC (CV) Kim
47322 47345 47345 47348 47345 47345

1 0.44 0.03  0.00001

» 926.64 925.17 925.17 92628 925.17 925.17
0.91 1.11 0.0001

5 1986.48 1983.64 1983.83 1987.31 1983.84 1983.83
1.64 3.48 0.002

10 2341.44 2339.38 2339.51 2340.84 2339.51 2339.51
1.83 1.33 0.0003

MAPE 0.110% 0.106% 0.041%

Table 1.7: The table shows ATMF payer swaption prices for the two-factor Gaus-
sian model with exponential jump sizes at three different maturities (1Y, 2Y and
5Y). Parameter values are calibrated to the Euribor six-month curve from January
4th, 2015. For each swaption, we report the price in basis points estimated with
the Monte Carlo method, MC, the geometric lower bound, LB (G), the hyperplane
approximation lower bound, LB (HP), the upper bound, UB, the Monte Carlo with
control variable technique, MC (CV), and the approximation “A” of [Kim, 2014].
Monte Carlo without and with control variable are estimated using 8 x 10% and 10°
simulations, respectively, an Euler scheme with a time step equal to 0.0005 and the
antithetic variates technique. Below each Monte Carlo price, the size of the confi-
dence interval at 97.5% is reported in basis points. The distance between the lower
and the upper bounds is provided below each upper bound value.
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Opt. Mat. 1
Swap length| MC LB (G) LB (HP) UB (HP) MC (CV) Kim
42839 428.16 428.16 42852 428.16 428.16

! 0.38 0.36  0.00001

» 640.68 64035 64035 64045 64035 640.35
0.64 0.10  0.00002

5 1360.17 1359.32 1359.44 1360.83 1359.44 1359.44
1.08 1.39 0.0005

10 2500.03 2499.21 2499.24 2501.74 2499.24 2499.24
1.12 251  0.00018

MAPE 0.050% 0.047% 0.046%
Opt. Mat. 2

Swap length| MC LB (G) LB (HP) UB (HP) MC (CV) Kim
45834 45837 45837 45837 45837 458.37

! 0.40 0.00  0.00001

5 768.02 768.01 768.01 76830 768.01 768.01
1.07 0.29  0.00007

5 1700.29 1698.58 1698.72 1700.66 1698.72 1698.72
1.34 1.94 0.001

10 2792.62 2790.86 2790.91 2793.15 279091 279091
1.42 2.24 0.0004

MAPE 0.043% 0.040% 0.021%
Opt. Mat. 5

Swap length| MC LB (G) LB (HP) UB (HP) MC (CV) Kim
496.72 496.84 49684 49696 496.84 496.84

1

0.45 0.12  0.00001

» 1011.09 1010.49 1010.49 1011.31 1010.49 1010.49
0.94 0.81  0.00004

5 2399.67 2396.76 2396.88 2399.13 2396.88 2396.88
1.71 224 0.001

10 3459.41 3457.41 3457.46 3458.80 3457.46 3457.46
1.34 1.35 0.0002

MAPE 0.066% 0.064% 0.028%

Table 1.8: The table shows ITMF (0.85 x ATMF) payer swaption prices for the two-
factor Gaussian model with exponential jump sizes at three different maturities
(1Y, 2Y and 5Y). Parameter values are calibrated to the Euribor six-month curve
from January 4th, 2015. For each swaption, we report the price in basis points es-
timated with the Monte Carlo method, MC, the geometric lower bound, LB (G), the
hyperplane approximation lower bound, LB (HP), the upper bound, UB, the Monte
Carlo with control variable technique, MC (CV), and the approximation “A” of [Kim,
2014]. Monte Carlo without and with control variable are estimated using 8 x 10°
and 10° simulations, respectively, an Euler scheme with a time step equal to 0.0005
and the antithetic variates technique. Below each Monte Carlo price, the size of the
confidence interval at 97.5% is reported in basis points. The distance between the
lower and the upper bounds is provided below each upper bound value.
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Opt. Mat. 1
Swap length| MC LB (G) LB (HP) UB (HP) MC (CV) Kim
243.47 243.35 24335 24338 243.35 243.35

! 0.30 0.02  0.00001
» 159.23 158.92 158.92 159.82 15892 158.92
0.40 0.89 0.0001
5 136.63 136.17 136.28 137.77 136.28 136.28
0.50 1.49 0.0007
10 7913 7896 7899  79.09 7899  78.99
0.41 0.10  0.00002
MAPE 0.20% 0.17%  0.32%
Opt. Mat. 2

Swap length| MC LB (G) LB (HP) UB (HP) MC (CV) Kim
27348 27341 27341 27343 27341 27341

! 0.32 0.02  0.00001

5 261.82 261.00 261.00 26225 261.00 261.00
0.51 1.25 0.0004

5 265.11 263.92 264.13 267.07 26413 264.13
0.68 2.94 0.001

10 161.29 160.82 160.89 161.17 160.89 160.89
0.58 0.28 0.001

MAPE 027% 0.24% 0.25%
Opt. Mat. 5

Swap length| MC LB (G) LB (HP) UB (HP) MC (CV) Kim
314.50 314.82 314.82 31491 314.82 314.82

1

0.36 0.09  0.00001

» 460.58 459.26 459.27 461.01 459.27 459.27
0.68 1.74 0.0005

5 591.07 588.97 58936 591.92 589.36 589.36
0.99 2.56 0.002

10 397.28 39591 396.04 396.79 396.04 396.04
0.88 0.75 0.0004

MAPE 0.27% 0.25%  0.12%

Table 1.9: The table shows OTMF (1.15 x ATMF) payer swaption prices for the
two-factor Gaussian model with exponential jump sizes at three different maturi-
ties (1Y, 2Y and 5Y). Parameter values are calibrated to the Euribor six-month curve
from January 4th, 2015. For each swaption, we report the price in basis points esti-
mated with the Monte Carlo method, MC, the geometric lower bound, LB (G), the
hyperplane approximation lower bound, LB (HP), the upper bound, UB, the Monte
Carlo with control variable technique, MC (CV), and the approximation “A” of [Kim,
2014]. Monte Carlo without and with control variable are estimated using 8 x 10°
and 10° simulations, respectively, an Euler scheme with a time step equal to 0.0005
and the antithetic variates technique. Below each Monte Carlo price, the size of the
confidence interval at 97.5% is reported in basis points. The distance between the
lower and the upper bounds is provided below each upper bound value.
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Opt. Mat. 1
Swap length| MC LB (G) LB(T) UB MC(CV) Kim
5 5235 5232 5232 5233 5232 5232
0.03 0.02 0.00001
5 106.44 106.39 106.39 106.5 106.39 106.39
0.05 0.11 0.00001
10 148.35 148.31 148.32 148.54 148.31 148.32
0.06 0.22 0.00001
MAPE 0.05% 0.04% 0.07%
Opt. Mat. 2
Swap length| MC LB (G) LB(T) UB MC(CV) Kim
9 65.68 65.69 65.69 65.69 65.69  65.69
0.03 0.01 0.00001
5 129.98 130.00 130.00 130.05 130.00 130.00
0.06 0.06 0.00001
10 182.14 182.17 182.17 182.25 182.17 182.17
0.06 0.08 0.00001
MAPE 0.01% 0.01% 0.05%
Opt. Mat. 5
Swap length| MC LB (G) LB(T) UB MC(CV) Kim
9 65.87 6587 65.87 6587 65.87  65.87
0.03 0 0.00001
5 130.10 130.10 130.10 130.12 130.1  130.1
0.04 0.02 0.0001
10 190.54 190.54 190.53 190.64 190.53 190.54
0.04 0.11 0.0004
MAPE 0.001% 0.002% 0.02%

Table 1.10: The table shows ATMF payer swaption prices for the two-factor Gaus-
sian quadratic model at three different maturities (1Y, 2Y and 5Y). For each swap-
tion, we report the price in basis points estimated with the Monte Carlo method, MC,
the geometric lower bound, LB (G), the (second order) Taylor approximation lower
bound, LB (T), the upper bound, UB, the Monte Carlo with control variable tech-
nique, MC (CV), and the approximation “A” of [Kim, 2014]. Monte Carlo without
and with control variable are estimated using 8 x 10% and 10° simulations, respec-
tively, an Euler scheme with a time step equal to 0.0005 and the antithetic variates
technique. Below each Monte Carlo price, the size of the confidence interval at 97.5%
is reported in basis points. The distance between the lower and the upper bounds is

provided below each upper bound value.
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Opt. Mat. 1
Swap length| MC LB (G) LB(T) UB MC(CV) Kim
5 138.51 138.47 138.47 13849 138.47 138.47
0.02 0.01 0.00001
5 304.44 304.39 304.39 304.43 304.39 304.39
0.02 0.05 0.00001
10 494.61 494.59 494.59 494.73 494.58 494.59
0.02 0.14 0.00001
MAPE 0.02% 0.02% 0.02%
Opt. Mat. 2
Swap length| MC LB (G) LB(T) UB MC(CV) Kim
9 14042 140.42 140.42 14042 14042 14042
0.02 0.01 0.00001
5 304.26 304.26 304.26 304.31 304.26 304.26
0.03 0.05 0.00001
10 488.15 488.14 488.14 488.26 488.14 488.14
0.02 0.12 0.00001
MAPE 0.001% 0.001% 0.01%
Opt. Mat. 5
Swap length| MC LB (G) LB(T) UB MC(CV) Kim
» 124.36 124.37 124.37 124.37 12437 124.37
0.02 0.01 0.00001
5 268.66 268.66 268.67 268.69 268.66 268.66
0.03 0.02 0.00003
10 432.70 432.71 432.70 432.78 432.70 432.70
0.04 0.08 0.0001
MAPE 0.004% 0.002% 0.01%
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Table 1.11: The table shows ITMF (ATMF - 0.75%) payer swaption prices for the
two-factor Gaussian quadratic model at three different maturities (1Y, 2Y and 5Y).
For each swaption, we report the price in basis points estimated with the Monte
Carlo method, MC, the geometric lower bound, LB (G), the (second order) Taylor
approximation lower bound, LB (T), the upper bound, UB, the Monte Carlo with
control variable technique, MC (CV), and the approximation “A” of [Kim, 2014].
Monte Carlo without and with control variable are estimated using 8 x 10% and 10°
simulations, respectively, an Euler scheme with a time step equal to 0.0005 and the
antithetic variates technique. Below each Monte Carlo price, the size of the confi-
dence interval at 97.5% is reported in basis points. The distance between the lower
and the upper bounds is provided below each upper bound value.



Opt. Mat. 1
Swap length| MC LB (G) LB(T) UB MC(CV) Kim
2 11.87 11.86 11.86 11.87 11.86 11.86
0.02 0.01 0.00001
5 1790 1790 17.89 1795 17.89 17.89
0.03 0.06 0.00001
10 12.21 - 12.23 1231 12.22 12.23
0.02 0.08 0.00001
MAPE - 0.11% 0.37%
Opt. Mat. 2
Swap length| MC LB (G) LB(T) UB MC (CV) Kim
5 23.04 23.04 23.04 23.05 23.04 23.04
0.03 0 0.00001
5 3452 3440 3454 3456 34.54 34.54
0.04 0.03 0.00001
10 2795 - 2797 28.01 27.97 27.97
0.03 0.04 0.00001
MAPE - 0.05% 0.13%
Opt. Mat. 5
Swap length| MC LB (G) LB(T) UB MC (CV) Kim
2 27.55 2755 2755 2755 27.55 27.55
0.02 0 0.00004
5 39.84 39.82 39.82 39.86 39.82 39.84
0.03 0.04 0.0004
10 36.10 - 36.05 36.52 36.05 36.11
0.03 0.47 0.0008
MAPE - 0.06% 0.41%

Table 1.12: The table shows OTMF (ATMF + 0.75%) payer swaption prices for the
two-factor Gaussian quadratic model at three different maturities (1Y, 2Y and 5Y).
For each swaption, we report the price in basis points estimated with the Monte
Carlo method, MC, the geometric lower bound, LB (G), the (second order) Taylor
approximation lower bound, LB (T), the upper bound, UB, the Monte Carlo with
control variable technique, MC (CV), and the approximation “A” of [Kim, 2014].
Monte Carlo without and with control variable are estimated using 8 x 10% and 10°
simulations, respectively, an Euler scheme with a time step equal to 0.0005 and the
antithetic variates technique. Below each Monte Carlo price, the size of the confi-
dence interval at 97.5% is reported in basis points. The distance between the lower
and the upper bounds is provided below each upper bound value.
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RMSD - LB (HP)

ATM| 1 2 5 [ITM[ 1 2 5 [OoTM| 1 2 5
1 [0.05% 0.07% 0.08%| 1 | 0.01% 0.02% 0.02%| 1 |0.2% 0.2% 0.2%
2 0.05% 0.07% 0.08%| 2 | 0.01% 0.01% 0.01%| 2 [0.2% 0.2% 0.2%
5 [0.05% 0.07% 0.09%| 5 [0.004% 0.01% 0.01%| 5 |0.2% 0.3% 0.3%
10 |0.05% 0.07% 0.09%| 10 |0.004% 0.01% 0.01%| 10 |0.2% 0.3% 0.3%

RMSD - UB (HP)

ATM| 1 2 5 [1TM] 1 2 5 [oIM[ 1 2 5
1 [0.05% 0.07% 0.08%| 1 | 0.01% 0.02% 0.01%| 1 |0.2% 0.2% 0.2%
2 0.06% 0.09% 0.11%| 2 |0.01% 0.02% 0.02%| 2 |02% 0.3% 0.3%
5 [0.14% 0.20% 0.28%| 5 |0.03% 0.05% 0.08%| 5 |0.3% 0.5% 0.6%
10 |0.15% 0.22% 0.32%| 10 | 0.04% 0.06% 0.09%| 10 |0.3% 0.5% 0.7%

Table 1.13: These tables report for each swaption the RMSD value of the bounds with
respect to the Monte Carlo value obtained by randomly sampling 100 parameter sets.

3 factor Gaussian model

Overall time (sec)] MC LB (G) LB (HP) UB (HP) Kim LB (CA) UB (CA)
ATMF 32 x 102 0.122  0.084 0.140 0.141 0.024 0.024
ITMF 32 x 102 0.117 0.170 0.223 0.219 0.035 0.035
OTMF 32 x 102 0.113  0.169 0.223 0.219 0.037 0.037

2 factor CIR model
Overall time (sec)|] MC LB(G) LB (HP) UB (HP) Kim
ATMEF 23 x 10> 1456 0.146  17.054 0.391
ITMF 23 x 102 1.199 0.150 17.015 0.341
OTMF 23 x 10> 1314 0.152 17.018 0.395

2 factor Gaussian model with exponential jumps

Overall time (sec)] MC LB (G) LB (HP) UB (HP) Kim
ATMF 35 x 103 2.643 1957 132229 1.968
ITMF 35 x 10 2.643 0.868 129.218 0.977
OTMF 35 x 103 2.643 0.845 149.071 0.966

2 factor Gaussian quadratic model
Overall time (sec) MC LB (HP) UB (HP) Kim
ATMF 1.472 x 10> 0.861 587.403 0.665
ITMF 1.472 x 103 1.124  635.807 0.717
OTMF 1.472 x 103> 1.019  509.202 0.633

Table 1.14: Computational times shown in the table are the overall time needed for
calculating the matrices of swaption prices reported in Tables 1.1-1.12.
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Swap length (y) | LB (HP) (sec) | Kim (sec) | LB (HP) (%) | Kim (%)
1 0.024 0.022 - -
2 0.023 0.026 0% 20%
5 0.023 0.034 0% 55%
10 0.032 0.051 34% 132%
15 0.040 0.071 69% 225%
20 0.048 0.089 102% 305%

Table 1.15: For each swaption, we report in the first two columns the run time in
seconds and in the last two columns the percentage variation between the run times
and the first row. The maturity of the swaptions is two years and the frequency of
payments is six months.
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Chapter 2

Approximate pricing of swaption
in a multiple-curve framework

In this chapter, we extend the lower and upper bounds to multiple-curve models
that reflect the presence of various interest curves in the market after the 2007 cri-
sis. Multiple-curve interest rate models are widely discussed in the literature (see,
among others [Ametrano and Bianchetti, 2009], [Morini, 2009] and recently [Moreni
and Pallavicini, 2014] and [Fanelli, 2016]). In particular, we concentrate on the affine
multiple-curve model developed in [Moreni and Pallavicini, 2014]. To the best of
our knowledge, none of the approximate methods previously described for pricing
swaptions has been developed for a multiple-curve interest rate framework. The
extension of the previous discussed bounds to a multiple curve framework is not
trivial, because, as we see in the next section, in a multiple curve market, the pricing
formula of swaption changes substantially. In particular, a swaption is no more a
plain vanilla option written on a basket of ZCB (or on a coupon bound).

The chapter is organised as follows. In Section 2 we introduce the weighted Gaus-
sian multiple curve model of [Moreni and Pallavicini, 2014]. In Sections 3 and 4, we
extend the lower and upper bound formulas developed in the previous chapter to
the multiple-curve model. Section 5 presents numerical results.

2.1 Multiple-curve model

The (payer) swaption formula in the multi-curve framework becomes

C(t) = P(t,T)El (2.1)

N
(ZPTT (T,Tj,x)K)>

wherez = T; —Tj_;isthetenorVj = 1,...,nand Ty = T. F*(t,T, x) is the fair rate of
a FRA contract written on the Libor rate between T' — = and 7" and tenor x (usually
xz = 1M, 3M, 6M or 12M). P(t,T) is the price at time ¢ of a risk-free zero-coupon
bond with maturity 7. We test the lower and upper bounds to the multiple-curve
weighted Gaussian model presented in [Moreni and Pallavicini, 2014]. In this model,
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the zero-coupon bond price process has the following dynamic

P(0,T) ft( (5,8)=2(s,T)) T dW (s)+ [ (A(5,t)—A(s,T)) ds
P(+.T s s (s (s 2.2
(*.T) P(0,t) ’ ’ 2.2)
where

j; o(t,u) du is a d-dimensional vector volatility function,

W(t) is a d-dimensional standard Brownian motion,

A, T) =13, T) (L, T).

[Moreni and Pallavicini, 2014] define the risk-free forward rate F°, which can be
identified in the market using the overnight rate. It is built as the simple com-
pounded forward rate in a classical single-curve framework. The risk-free forward
rate at time ¢ for the interval [T — x, T is

1 (Pt T—x)
FOt,T,x) = = [ ——2—1]). 2.3
1) =2 (P 1) @3)
Substituting equation (2.2) into (2.3), the following dynamic under the risk-neutral
measure is obtained

FOt,T,x) =

ISER

|:(1 +x FO(O, T, x))efg $0(s,T,a) T dW (s)+ fif A(s,T\x) ds _ 1],2.4)
where

Y(s,T,yz) = X(s,T) — (s fT L 0(s,u) du,

A8, T,z) = A(s,T) — A(s, T —z) = 35(s,T) " 2(s,T) — 3%(s, T —z)" £(s,T — ).

The Libor FRA rate F*(t,T, x) is the fair rate of a FRA contract written on the Libor
rate with tenor x (usually x = 1M, 3M, 6M or 12M). It is defined as

F*(t,T,z) = Bl [L(T — z,T)], (2.5)
where

L(T — z,T) is the spot Libor rate, fixed at time 7' — z for the time interval [T'— z, T,

EZ[] denotes the expectation under T-forward measure, P
To model the FRA rate, these constraints have to be respected

(i) F'*(t,T,z) has to be a martingale under the 7-forward measure,

(ii) limg o F*(t, T, ) = lim, o FO(t,T,z) and F*(t,T,x) ~ FO(t,T,z) if x ~ 0.
Hence, under the risk-neutral P measure, the FRA rate is in the form

1 t s b p
Fz(t, T,{L‘) _ = |:(1 +x FI(O, T7{E))€f0 7 (s,Tyx) T dW (s)+ [§ A%(s,T\x) ds _ 1] . (2.6)
x

where

- ¥%(s,T,x) fT ,0(s,u;T,x) duis a d-dimensional volatility function,
- in order to satisfy condition (ii) (s, 7;T,0) = o(s,T),
- to satisfy condition (i)

1
A*(s,T,z) = —5296(5,T,x)T ¥2(s,T,z) + 2%(s,T,2) " 2(s,T).  (2.7)
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2.1.1 Volatility specification

The weighted Gaussian specification of the multiple-curve model assumes a deter-
ministic volatility in the form

o(t,u;T,x) = h(t)q(u; T, ) g(t,u),
g(t,u) = exp(=A(u—1)),
h(t) = €(t)hR,

where )\ is a deterministic array function, h is a diagonal matrix, and R is an upper
triangular matrix such that p = R R is a correlation matrix. The model allows for a
time-varying common volatility shape €(t) of the form

E(t) =1+ (ﬁo — 1+B1 t)eﬂQt,
where (3, 81 and (3, are three positive constants. Furthermore, the matrix ¢ is given
by
gijw;T,x) = e "m*I(i=yj) fori,j=1,..,d

where 7 is a deterministic constant vector.

2.1.2 Markovian specification for the weighted Gaussian model

By plugging the expression for the volatility into formula (2.6), it is possible to work
out the expression leading to the following Markovian representation of the FRA
rate:

1 <1+xe(t,T,:13)

1+ Fo(0,T, a:)) = G(t.T.x)" X(t) +alt, T ), 28)

where a(t, T, x) is a deterministic coefficient and it has the following form:

at, Tox) = GULT,z) V(1) <G(t,T)—;G(t,T,w)>

Y () = /ng‘(svt)(hT(S) h(s))ikgr(s,t)ds i,k =1,...d,

G(t,T,x) is a deterministic vector with components

T

T—x

G(t,T) is a deterministic vector with components

T
Gi(t, T) = / gi(tu) du,
t

and X(¢) is a vector Markovian process with components, under the risk-neutral
measure, in the form

Xi(t) = i / i) (h2j<s>dwj<s> £ (0T() h(5))ig ( / t gi<s,y>dy) ds) .
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A similar Markovian representation can be obtained for the ZCB price,

P(0,t)
P(0,7)

log <P(t,T) ) = -G, T)" X(t)+a(t,T), (2.9)

where a(t,T) is a deterministic coefficient and it has the following form:

at,T) = —%G(mT)TY(t)G(t,T).

2.2 Extension of the lower bound formula to a multi-curve
weighted Gaussian model

Using the Markovian representation of the FRA rate and of the risk-free ZCBs in the
swaption pricing formula (see Section 2.1), we obtain

)

C(t) = P(t,T)E{ [(Z wey (@1 XD rars ) e(G”)TX(T)*“”) I(A)

J=1

where
A is the exercise region and is in the form
n
A={weQ: Zwlj e(G13) X(D)Far; gy, o o(G2i) T X(T)Faz; 5 )
j=1

wi; = I;((tt’gf)) (1 +z Fz(t, Tj, x)) and wa; = 1;((2’52)) (1 + .TK),

Gij = G(T,T;,0) = G(T,Tj) and Ga; = —G(T, T;),
arj = a(T, Tj, ) + o(T, Tj) and ag; = a(T, Tj).

If we substitute the set A with any other event set G € (2, we obtain a lower bound
of the true price. In the affine class models, it is convenient to define the set G using
a linear function of the state variates,

G={weQ:B"X(T) >k},

with 8 and « defined in formula (1.11). The lower bound is provided in the follow-
ing proposition.

Proposition 2.2.1. The lower bound to the European swaption price, for the multiple-curve
weighted Gaussian model, is given by the following formula

LB(t) = (max LBs(k;t). (2.10)

For fixed parameters k and 3, the lower bound is

n 1 1
LB/g(k‘;t) = P(t,T) w Z <’LU1]‘ exp ((Glj)TM +ai; + 5‘/1%: + 2<d1j)2> N(OJ (dlj — d))
j=1
1 1
—  wy; exp ((sz)Tu +a; + 5 Ve + 2(dzj)2> N (w (daj — d))> : (2.11)
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.
where w = —1 for receiver swaption and w = 1 for payer swaption, d = k=B n L, dii =
f p for pay p Jarve i

(Gij)TUfori:1,20ndj:1,...7d,’l): \/W, ‘/Z? (GZJ)T<V—UU zjforl—172
and j = 1,....dand p = EF'X(T)] and V = Vary(X(T)) are the mean and covariance

matrix of the variable X(T'), which is multivariate normal under the T-forward measure.

Proof: See Appendix C.1.

2.3 Extension of the upper bound formula to a multi-curve
weighted Gaussian model

In a multiple-curve framework, the swaption price can also be written as
C(t) = P(t,T) E{ [(B1(X(T)) — B2(X(T)))"] (212)

where
n
Bi(X(T)) = ZP(T’Tj) 14z F*(T,T},x) Zwl e(G1) T )+a1j’
j=1
n

ByX(T)) = (1+zK) Y P(I,T)) = szj e(G2) ' X(D)voay,
j=1 j=

Hence, the (undiscounted) approximation error of the lower bound defined in Propo-
sition 2.2.1 is

s (€0~ IB)

= E[[(BuX(T)) — Bo(X(T))) 1(G°)] + Ef [(B2(X(T)) — B1(X(T))) " 1(9)]
= A7+ As.

The previous equality holds for both receiver and payer swaptions. Applying the
same reasoning as in the single-curve case, we find that the upper bound is

UB(t) = LB(t) + P(t,T)(e1 + €2), (2.13)

where €; and e are the upper bounds for A; and A; and their expressions are as
follows:

iEtT[P(T, T;) (142 F*(T,Tj,x) — K;)* 1(G°)]
_ iET [(wu (LX) +ay _ B ec:;fjx(T)Jran)+ I(QC)] ’ (2.14)

€ = Zn:IEtT[P(T%) (Kj =1 - F*(T,Tj,2))" 1(9)]
_ ZE [(wQ (LX), ee;jx(T>+a1j)+ I(g)}, 2.15)
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P(t,T;)
P(t,ilz) K and

where wy; =
Kj =1l+uz F(T7 Tj7 ‘T)‘X(T):X*’ (216)

where X* is the point on the true exercise boundary (i.e. B1(X(T")) — B2(X(T) = 0))
where the density function of the model factors is largest.

Proposition 2.3.1. The upper bound to the European swaption price for the multiple-curve
weighted Gaussian model is given by the following formula:

UB(t) = LB(t) + P(t,T) (e1(—a) + e2(—a)), (2.17)
where
d n
a(k) = PR S Zw M+ VG N (dv;) — a2+ Mo +3 Vs N (d;)
1 - \/2— 13 15 27 25)
S T =
. log (g;) + Myj + ayj — Maj — agj + V{5 — Cov;
1; = )

\/VISTv + Vg —2Cov;

doj = dij—\JVi§ +V§ —2C0u;,
n
EQ(k) _ /+oo & 1 67% Z U~)2j e[l2j+M2j+%V2C; N (61j) —wyj €a1j+M1j+%Vlcj N (52j) ,
d \ 27 =

5 —log (g;) —Mlj—a1j+M2j+a2j+‘/2?—COUj
15 = )

\/VS + Vg — 2Cov;

by = b1y —\JVi§ + Vi —200u;,

and ZE(t) is given in Proposition 2.2.1, d = Ll AT VZS; = G;;(V—U'UT)GZ']‘ and Cov; =

VBTVE
GlTj(V — 'U’UT)GQJ' fori=1,2and j =1,..,d, M;; = GiTj,u + zGiijfori = 1,2 and
j=1,..,dv = \/;/ETB, and p = EI[X(T)] and V = Var (X(T)) are the mean and

covariance matrix of the variable X(T"), which is multivariate normal under the T-forward
measure and N (x) is the standard Gaussian cumulative distribution function. The upper
bound formula holds for both receiver and payer swaption.

Proof: See Appendix C.2.

2.4 Numerical results

As in the single curve case, we fix a set of parameters and we calculate a matrix of
swaption prices with different maturities, swap lengths and three different strikes,
i.e. ATMF (at-the-money forward), ITMF (0.85 x ATMF) and OTMF (1.15 x ATMF
). The values of the parameters are reported in Appendix D. The tested model is the
two-factor affine multiple-curve Gaussian model. Monte Carlo is used as a bench-
mark for the computation of the true swaption price. The 97.5% mean-centred Monte
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Carlo confidence interval is used as a measure of the accuracy. The lower bounds
is obtained via the closed formula described in Section 2.2. The Matlab function
quadgk is used for the integral appearing in the upper bound formula (see Section
2.3). Numerical results obtained with parameters reported in Appendix D are shown
in Tables 2.2-2.4. Computational time is also given in Table 2.1.

The tangent hyperplane lower bound and the approximation “A” of [Kim, 2014] pro-
duce the same prices because they are two different implementations of the same
approximation. However, the new algorithm, which requires the computation of a
single Fourier inversion, is faster for the Gaussian multiple-curve model of which
we know an analytical pricing formula for the lower bound. In fact, in Table 2.1, our
implementation of the lower bound is faster than Kim’s method. The improvement
in computational performance is more evident for swaptions with a large number of
cash flows. As in the single curve case, comparing the speed of different methods
is not simple because each algorithm should be optimized. However, our consid-
erations about the efficiency of an algorithm are also justified by theoretical reason-
ing and confirmed by our estimations of the computational time. Our bounds are
applicable to all affine-quadratic models, both in single- and multiple-curve frame-
works, and they are particularly efficient for affine models. The computation of the
upper bound is slower than the lower bound calculation, but it is still faster than
Monte Carlo simulations for a comparable accuracy (see Table 2.1). In addition, the
range between the lower and upper bound is always narrow so, in practice, the com-
bined use of the two bounds provides an accurate estimate of the true price. For the
multiple-curve model, we compare our bounds with an approximate method that
is widely used in the market, i.e. the freezing drift approximation (see [Moreni and
Pallavicini, 2014]) and we find that the lower and upper bounds perform better for
swaptions with long maturities (2Y and 5Y in Tables 2.2-2.4) with comparable com-
putational times. Moreover, the freezing technique is a generic approximation, i.e.
we cannot know a priori if the approximated price underestimates or overestimates
the true price. In each table we compute the mean absolute percentage error (MAPE)
of bounds with respect to Monte Carlo prices, taken as a benchmark, for fixed matu-
rity and strike.

Conclusions

In this first two chapters, we propose a general lower bound formula of the swap-
tion price based on an approximation of the exercise region. We note that previ-
ous approximations, such as the [Kim, 2014] and [Singleton and Umantsev, 2002]
methods, represent a particular case of our general formula and so they can also
be interpreted as lower bounds. Moreover, we provide a new algorithm to imple-
ment the lower bound that is found to be more efficient for interest rate models in
which the joint characteristic function of state variables is known in analytical form.
Further, we provide a new upper bound to swaption prices that is applicable to all
affine-quadratic models and that is accurate and computable in a reasonable time.
Therefore, the lower bound approximation error is controlled. Finally, we extend
lower and upper bounds to multiple-curve models. Numerical results confirm our
hypothesis about the performance of the new algorithm in terms of computational
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times for the calculus of the lower bound, except for quadratic models in which the
characteristic function is not analytic. Moreover, numerical tests show a very good

accuracy of the new upper bound for different models across tenors, maturities and
strikes.

2 factor multiple-curve Gaussian model

Overall time (sec)|] MC LB(HP) UB Kim
ATMF 43280 0.094 0.416 0.346
ITMF 43.3603 0.114 0.403 0.309
OTMF 42.040 0.116 0.409 0.315

Table 2.1: Computational times shown in the table are the overall time needed for
calculating the matrices of swaption prices reported in Tables 2.2-2.4.
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Opt. Mat. 1
Swap length| MC LB (HP) UB Freezing
1 37396 37.397 3854 37.286
0.002 1.143 0.11
” 71233 71.235 72.045 71.245
0.003 0.811  0.011
5 172.64 172.644 173.66 172.748
0.008 1.016  0.108
10 318.57 318.576 319.658 319.361
0.015 1.083  0.792
MAPE 0.002% 1.283% 0.155%
Opt. Mat. 2
Swap length| MC LB (HP) UB Freezing
1 56.128 56.131 56.932 55.542
0.003 0.801  0.586
9 106.625 106.63 107.183 106.015
0.005 0.553 0.61
5 255.82 255.832 256.526 254.594
0.012 0.694  1.225
10 467.734 467.756 468.496 467.056
0.022 0.74 0.678
MAPE 0.005% 0.599% 0.560%
Opt. Mat. 5
Swap length| MC LB (HP) UB Freezing
1 77.727 77725 77993 72.826
0.004 0.267  4.900
5 146.539 146.536 146.718 138.249
0.007 0.181  8.290
5 345.864 345.859 346.086 326.836
0.016 0.228  19.028
10 622.779 622.769 623.012 591.763
0.029 0.243 31.016
MAPE 0.002% 0.141% 5.611%

Table 2.2: The table shows ATMF payer swaption prices for the two-factor multiple-
curve Gaussian model at three different maturities (1Y, 2Y and 5Y). For each swap-
tion, we report the price in basis point as estimated with the Monte Carlo method
(MC), the hyperplane approximation lower bound (LB), the upper bound (UB) and
the freezing technique. Monte Carlo values are estimated using 10° simulations, the
antithetic variates method and the exact probability distribution. Below each Monte
Carlo price, the size of the confidence interval at 97.5% is reported in basis points.
The distance between the lower and the upper bounds is provided below each up-
per bound value. The error of the freezing techniques is estimated as the difference
between the approximated price and the Monte Carlo price.
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Opt. Mat. 1
Swap length| MC LB (HP) UB Freezing
1 47.814 47.814 48935 47.659
0.002 1.121  0.155
5 100.76 100.762 101.539 100.693
0.003 0.777  0.068
5 273.07 273.073 274.015 272.934
0.007 0.942  0.135
10 557.826 557.83 558.793 558.364
0.013 0.963  0.538
MAPE 0.001% 0.909% 0.134%
Opt. Mat. 2
Swap length| MC LB (HP) UB Freezing
1 70.136 70.139 70.927 69.376
0.003 0.788 0.76
9 142.769 142.774 143.312 141.805
0.005 0.537  0.965
5 365.386 365.397 366.061 363.166
0.011 0.664 222
10 706.939 706.96 707.656 704.774
0.02 0.696  2.165
MAPE 0.003% 0.448% 0.668%
Opt. Mat. 5
Swap length| MC LB (HP) UB Freezing
1 100.195 100.193 100.454 93.816
0.004 0.261  6.378
5 195.296 195.293 195.47 183.977
0.007 0176  11.318
5 469.529 469.523 469.744 443.005
0.015 0.221 26.524
10 86193 861.92 862.154 817.64
0.028 0.235 44.291
MAPE 0.001% 0.105% 5.737%
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Table 2.3: The table shows ITMF (0.85 x ATMF) payer swaption prices for the two-
factor multiple-curve Gaussian model at three different maturities (1Y, 2Y and 5Y).
For each swaption, we report the price in basis point as estimated with the Monte
Carlo method (MC), the hyperplane approximation lower bound (LB), the upper
bound (UB) and the freezing technique. Monte Carlo values are estimated using 10°
simulations, the antithetic variates method and the exact probability distribution.
Below each Monte Carlo price, the size of the confidence interval at 97.5% is reported
in basis points. The distance between the lower and the upper bounds is provided
below each upper bound value. The error of the freezing techniques is estimated as
the difference between the approximated price and the Monte Carlo price.




Opt. Mat. 1
Swap length| MC LB (HP) UB Freezing
1 28.556 28.556 29.677 28.481
0.002 1.12 0.075
” 47929 4793 48706 47.98
0.003 0.776 ~ 0.051
5 99.692  99.695 100.636 99.881
0.007 0.94 0.189
10 157.949 157.953 158.913 158.619
0.013 0.96 0.67
MAPE 0.002% 1.776% 0.245%
Opt. Mat. 2
Swap length| MC LB (HP) UB Freezing
1 44.051 44.054 44.841 43.61
0.003 0.787  0.441
9 76.962 76.968 77.504 76.608
0.005 0.536  0.354
5 170.002 170.014 170.677 169.429
0.011 0.662  0.573
10 288.059 288.081 288.775 288.16
0.02 0.694 0.1
MAPE 0.007% 0.786% 0.458%
Opt. Mat. 3
Swap length| MC LB (HP) UB Freezing
1 58.779 58.778 59.039 55.111
0.004 0.261  3.668
5 106.418 106.416 106.592 100.557
0.007 0176  5.862
5 245.442 245.436 245.656 232.329
0.015 022 13113
10 431.263 431.253 431.486 410.522
0.028 0.234  20.741
MAPE 0.002% 0.186% 5.475%

Table 2.4: The table shows OTMEF (1.15 x ATMF) payer swaption prices for the two-
factor multiple-curve Gaussian model at three different maturities (1Y, 2Y and 5Y).
For each swaption, we report the price in basis point as estimated with the Monte
Carlo method (MC), the hyperplane approximation lower bound (LB), the upper
bound (UB) and the freezing technique. Monte Carlo values are estimated using 10°
simulations, the antithetic variates method and the exact probability distribution.
Below each Monte Carlo price, the size of the confidence interval at 97.5% is reported
in basis points. The distance between the lower and the upper bounds is provided
below each upper bound value. The error of the freezing techniques is estimated as
the difference between the approximated price and the Monte Carlo price.
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Chapter 3

HJM multiple-curve model with
time-changed Lévy processes

In this chapter we propose a parsimonious model for the term structure of interest
rate in a multi-curve framework, which is capable of reproducing volatility surfaces
of interest rate options quoted in the market. Our multi-curve framework is inspired
by the HJM multi-curve scheme presented in [Moreni and Pallavicini, 2014] due to
its parsimony and analytically tractability. In particular, this multiple curve frame-
work does not introduce different underlying assets for each forward rate tenor (e.g.
1M, 3M, 6M) and hence, it avoids an over-parametrization issues in calibration pro-
cedure. In fact, the market quotes interest rate options only on few yield curves.
For instance, actively traded swaptions and cap/floor are only those indexed to the
three-month Libor curve (maturity one-year for swaption and maturities from one to
two years for cap/floor) and the six-month Libor curve (maturities from 2 or 3 to 30
years). Moreover in [Moreni and Pallavicini, 2014] work, Libor FRA rate is modelled,
which is a real traded asset, instead of Libor bond rate, as suggested also in [Mercu-
rio, 2010]. Furthermore, their multi-curve scheme allows for negatives rates, which
recently appear in Euro market. [Moreni and Pallavicini, 2014] use a multi-factor dif-
fusion process as driving process of the HIM multi-curve model. However, Gaussian
models are not rich enough to reproduce the term structure of the volatility smile of
interest rate options, unless a large number of factors is used. In order to improve the
flexibility of interest rate models, [Eberlein and Raible, 1999] introduce Lévy process
in an HJM setting. [Eberlein and Raible, 1999] work is extended by [Crépey et al.,
2015] to a multi-curve framework. The model in [Crépey et al., 2015] reproduces
very well the swaption volatility smile at fixed maturity (and swap tenor), but it
requires time-dependent parameters in order to fit the term structure of the volatil-
ity. Instead, we propose a model that is able to reproduce the quoted volatility term
structure of cap/floor (or swaptions), across maturities and strikes, without intro-
ducing time-dependent parameters. In this way we maintain the parsimony of the
model.

Hence, in order to obtain a parsimonious but also flexible model, we extend [Moreni
and Pallavicini, 2014] multi-curve model using time-changed Lévy as driving pro-
cesses for the ZCB and the FRA rate dynamics. Time-changed Lévy processes are
introduced in finance by [Carr and Wu, 2004] for pricing equity derivatives. How-
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ever, recent, empirical studies, such as [Leippold and Stremberg, 2014], suggest the
application of time-changed Lévy process to interest rate financial products. In par-
ticular, Lévy processes generate very flexible return innovation distribution and take
into account potential discontinuities in Libor dynamics. Moreover, our model ex-
hibit through the the random time a stochastic behaviour of the Libor volatility and
a dependence between the base Lévy process and the volatility. These features en-
able the model to reproduce not only the volatility smile but also the volatility term
structure of interest rate options.

The chapter outline is as follows. In Section 1 we present the time-changed Lévy
process. In Section 2 we build the HJM multiple-curve model and we study the
martingale property of integrated time-changed Lévy process in order to show that
the model is theoretically well posed. In particular, we derive drift conditions on the
zero coupon bond price and Libor FRA rate processes that ensure the no-arbitrage
requirement Section 3 develops the pricing of interest rate derivatives. In Section
4 two different driving process constructions are presented. Numerical results are
shown in Section 5 .

3.1 Time-changed Lévy process

Let (2, F,P) be a probability space, endowed with a standard complete filtration
F = (Ft)i>0. We define on the probability space a Lévy process X = (X(t))i>0,
a stochastic process with stationary and independent increments. The law of the
increments is infinitely divisible and hence by the Lévy-Khintchine formula

E [e"“ X(t)} N

)

Y(u) =iub— 1uzc + /(ei“x — 1 —iuh(x))v(de), 3.1)
2 R

where h(x) is a suitable truncation function, b € R is the drift, ¢ > 0 is the coefficient
of the diffusive part and v is the Lévy measure of X, i.e. a positive measure on R\ {0}
such that [, (1Az?)v(dz) < oc. The triplet (b, ¢, v) is called the characteristic triplet of
X, the drift b depends on the choice of the truncation function h. As in [Eberlein and
Raible, 1999] we assume the following regularity condition, in order to guarantee
the existence of an interval, on which the moment generating function of the Lévy
process is well defined.

Assumption 3.1.1. There exist constants M;, Ms and € > 0 such that
/ e"v(dr) < oo (3.2)
lz|>1

for all u € [—(1+ €)My, (1 + €)Ms).

The Assumption 3.1.1 holds if and only if the moment generating function is finite
in the interval [—(1 + €)M, (1 + €)M>], i.e.

E {e“x(t)} < o0
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for all w € [—(1 + €)M, (1 + €)My]. Furthermore, Assumption 3.1.1 implies that
h(xz) = x can be used as truncation function (see [Eberlein and Kluge, 2006]); this is
equivalent to say that

i) X is a special semimartingale with the canonical representation

()—bt+\/Wt+/ / X(ds, dz) — v(dz)ds),

where pX (ds,dz) is the counting measure of the jumps of X and v(dz) is the
Lévy measure of X.

ii) the cumulant generating function of X, &, is defined for any z € C such that
Re(z) € [ (1 4+ e)My, (1 + €)M>] as

k(z) = zb+ %zQ c+ /(e” —1—-zz)v(dx)
R
and if ¢ is defined as in the Lévy—Khintchine formula, then we have the relation
k(z) = P(—iz).

Definition 3.1.2. Let (2, 7, P) be a probability space, endowed with a standard com-
plete filtration F = (F;):>0; a process 7 = (7(t))¢>0 is called a time change if

i) 7isareal positive and increasing right continuous process with left limits (RCLL);

ii) for every t > 0, 7(t) is a stopping time respect to the filtration F and is finite
P-almost surely;

iii) 7(0) =0 and hm 7(t) = oo.

—00

We denote by F the collection of all sets A € F, such that AN {7 <t} € F; forall
t € RT. Consequently, we can define a time-changed filtration,

G = (Gt)>0, Gt = Frp

The time change is said to be continuous if 7 is a continuous process. In particular, as
in [Carr and Wu, 2004], the time change 7 is modelled as an increasing semimartin-
gale characterized in terms of its positive intensity v(t) as

T(t):/o v(s_)ds, (3.3)

hence 7 is absolutely continuous.

Let X be a Lévy process with the properties previously described and 7 an absolutely
continuous time change defined as in equation 3.3. Then a time-changed Lévy pro-
cess is defined as Y = X (1), i.e. forany ¢ > 0 Y (¢) = X (7(¢)). From proposition
E.3.1, the Laplace cumulant process of the process Y is defined as

r(u) (1),
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for any u € [—(1 + €)M, (1 + €)M>), i.e. the process
Mu(t) _ euY(t)—n(u) 7(t)

is a local martingale.
Moreover, Y has the canonical representation

Y(t) = ()+\/WT(t)+/Tt/ X(ds,dz) — v(dxz)ds) (3.4)
= b/o v(s)ds+ﬁ/0 Vu(s_) dW (s) // Y(ds, dz) — v(dz)v(s_)ds),

where (b, ¢, v) is the characteristic triplet of the Lévy process X, uY (ds,dz) is the
random measure of the jumps of Y with P-compensator v (ds, dr) = v(dx)v(s_) ds

If v(dz) is expressed in term of its Lévy density, i.e. v(dz) = mw(x)dx, then 7(x)v(¢ )
is the arrival rate of the jumps of the semimartingale Y.

3.2 Multiple-curve HJM model with T.C. Lévy

In this section we build an arbitrage free HIM multiple-curve framework with time-
changed Lévy as driving process.

3.2.1 Risk free bond prices

Let X () and 7(¢) be a Lévy process and a continuous time change with properties
previously described and Y (t) = X (7(t)) a time-changed Lévy process. We model
the zero coupon bond price process as,

_ POT)  rt(s(s,)—S(s,7)) dY ()4 [ (A(s,t) = A(s,T)) v(s_) ds
PT) = Py o o , (3.5)
where (¢, T) = [, o(t,u) du is the volatility function, 7(t) = [ v(s_)ds is a random

time Change Y( ) = X( (t)) is a time-changed Lévy process Alt, T) Y1 X(t,T))
and ¢ (u) is the characteristic exponent of the Lévy process X defined in equation
3.1. In order to define the bond price process in a HJM framework, we make the
following standard assumptions as reported in [Eberlein and Raible, 1999]

Assumption 3.2.1. The initial bond prices are given by a deterministic, positive, and
twice continuously differentiable function ' — P(0,T) on the interval [0, 7).

Assumption 3.2.2. P(T,T)=1 on the interval VT € [0, T].
We slightly modify the assumption related to the volatility function.

Assumption 3.2.3. The volatility is a continuous bounded function ¥ : R} x [0, =
[0, X] that is null outside A = {(¢,7) : 0 <t < T < T'}. Moreover ¥ < min{ M, M>}
and ¥ is twice differentiable in A.

The last one assures that the volatility is bounded and that the volatility of a just-
maturing bond is zero because its value is known for sure.
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3.2.2 Libor FRA rate

As in [Moreni and Pallavicini, 2014], we define the risk free forward rate F°, which
can be identified in the market with the overnight rate. F 0 is built as the linear
compounded forward rate in a classical single curve framework.

The risk free forward rate at time ¢ for the interval [T — z, T'] is

1 (P(t,T—x)
FO(t,T,z) = - (P(t,T) - 1) : (3.6)

Substituting the dynamic of the risk free ZCB, equation 3.5, in the previous formula,
we obtain the following dynamics for the risk free forward rate under the risk neu-
tral P measure

F(t,T,z) =

S

|:(1 iy FO(O, T, a:))efot ¥0(s,T,x) dY(s)Jrfg A%(s,Tyx) v(s_)ds _ 1. (37)

for
¥O0(s,T,x) = %(s,T) — B(s, T —x) = fTT_z o(s,u) du,
A%s, T,x) = A(s,T) — A(s fT (s, u) du.

The Libor FRA rate F*(t, T, x) is the fair rate of a FRA contract written on the Libor
rate with tenor x (usually = 1M, 3M, 6M or 12M) and it is defined as

F*(t,T,z) = Bl [L(T — z,T)], (3.8)

where L(T — z,T) is the spot Libor rate, fixed at time 7" — z for the time interval
[T — x,T], EI'[ ] denotes the expectation under the T-forward measure, P, defined
by a density process, which is the discounted risk free ZCB bond price

dPT

e P(t T) —fo (s,T7)dY (s fo (i X(s,T)) v(s—) ds (3.9)

5 B PO,T) ’

and ((t) = el (945 i the money market account.
We model the FRA rate using time-changed Lévy processes under the risk neutral P
measure, as

Fo(t,T,z) =

S R

{(1 o F(0,T, z))e Ji 2% (s, Tyx) dY (s)+ [ A*(s,T\x) v(s—) ds _ 1] . (3.10)
with ¥%(s, T, x) fT (s,u;T,x) du. The FRA rate dynamic has to respect the
following constraints

(i) F*(t,T,z) has to be a martingale under the 7-forward measure,

(ii) limg o F*(t, T, ) = limy_o FO(t, T, z) = f(t,T)

(iii) F*(t,T,z) ~ FO(t,T,z) if  ~ 0, i.e. for a tenor that goes to zero the FRA rate

is similar to the risk free forward rate.
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In order to satisfy the martingale condition (i) previously stated, we impose in for-
mula 3.10 that

A*(s,Tox) = $(iS(s,T)) — (i (s, T) — i T (s, T, ),
while in order to fulfil conditions (ii) and (iii), we require that
o(s, T;7,0) = o(s,T). (3.11)

Similarly to the HJM zero coupon bond volatility function, the HJM forward volatil-
ity function has to satisfy the following assumption, which ensures the boundedness
of the volatility and consequently the existence of the log-FRA rate moment gener-
ating function (see Assumption 3.2).

Assumption 3.2.4. The forward volatility is a continuous bounded function,
YRy x {(T,x): 0 <2 <T} —[0,%7],

t_hat is null outside Ay = {(t,T,z) : 0 <t < T,0 <z < T < T}. Moreover
Y% < min{M;, My} and X7 is twice differentiable if t < T

Finally, to ensure the tractability and a Markovian specification of the model (see
[Moreni and Pallavicini, 2014]), the forward volatility in formula 3.10 should have
the following form

o(t,u;T,x) = h(t)g(w; T, ) g(t,u)

glt,u) = exp (- /t ’ a(s)ds>

q(u;u,0) = 1.
We choose the following specification

h(t) = h (e*ﬁtﬂlt + 1)

g(t,u) = et
g(; T, 2) = e, (3.12)

where h, 3, 51, a and v are all positive constant parameters.

3.3 Derivatives pricing
In this section, we present the pricing formula for interest rate options (cap /floor and

swaptions) with time-changed Lévy process using the Fourier transform method
of [Carr and Madan, 1999].
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3.3.1 Caplets

Let us consider a caplet with strike K" and maturity 7' — « on the spot Libor rate on
the period [T — z, T'], settled in arrears at time 7". The risk neutral price is

C0) = PO, T)E" [& (FY(T —x,T,z) — K)*]
= PO,T)E" (142 FYT -=2,T,2))— (1+2 K))T]

Once we know the characteristic function of the shifted log-FRA rate under the PT
measure,

FE(T —x,T
o) = ET [exp (z’ulog (14;:6_5515%(0 ?x’)x)>>} ’

then the caplet can be priced using the Fourier transform method (see [Carr and
Madan, 1999])

co) = Pmﬂwe5k/+mRe<aw#%ﬁzﬁv—ﬂ5+1»)d
0

s (ty+0)(iy+0+1)
where § > 0 is such that the characteristic function in v — i(d + 1) is well defined,

1+z K
and k£ = log (71+I ;I(O’T@)).

3.3.2 Characteristic function of the log-FRA rate

The characteristic function of the (shifted) log-FRA rate under P measure is trans-
formed into an expectation under the risk neutral measure using the radon-Nikodym
derivative in formula 3.9

L+x F*(t,T,
¢g:t(u) = ET |:exp <’iu10g <1 Ize((O’T7‘i))>>:|

- E |:€— fot >(s,T) dY(s)—fg A(s,T) v(s—) ds+iu fg % (s,T,x) dY (s)+iu fot A®(s,T\x) v(s—) ds

- E [e("“”) S (@ 2(s,1)) v(s=)ds—iu [y (i 2(s,T)—i £°(s,T,x)) v(s_)ds
efg(qu”(s,T,ac)—Z(s,T)) dY(s)} ‘

The characteristic function of the shifted log-FRA rate can be calculated as a Laplace
transform of the time change intensity v(¢), u € C

Go(u) =K [efot Dluss) v(s-) ds] : (3.13)

- -]
where the expectation E[ ] is with respect to a new measure P < P, defined by the
density process

o(t) = oJo (=7 (s, T,2)=5(s,T)) dY (s)— [ (u £ (5,T) +i £(s,T)) (s (3.14)

the function +(u, s) has form

Blus) = (a5, T,a)+i 2(s,T)) + (iu — 1) (i S(s, )
— uy(iX(s,T) —iX%(s, T, x)), (3.15)
1 (u) is the characteristic exponent of the Lévy process X and (¢(u,t) v(t-)),> is the
Fourier cumulant processes of Y.
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The affine case

Here, we present an extension of the work of [Filipovic, 2001], in order to obtain a
system of ordinary differential equations (ODEs) to calculate the characteristic func-
tion of the log-FRA rate in the affine case. We consider the case in which the activity
rate process v(t) is a Feller process with infinitesimal generator

Af) = (o' B0) ['(0) + 3¢ v ()

+ /OOO (f(v+2) = f(v) = f'(v) h(z)) (m(dz) + v p(dz))

where o/ = a+ [+ h(z)m(dz), h(z) is a truncation function, p(dx) is a Lévy measure
0

and m(dx) is a Lévy measure of finite variation. Such process is quite general and
it is known as (stochastically continuous) CBI process (continuous state branching
process with immigration).

We assume that after the change of measure previously described, the dynamic of
v(t) is modified by the Girsanov theorem in the following way

8 — B(S) and u(dy) — fs(dy).

The previous hypothesis is satisfied in all the examples presented in Section 3.4.
Hence, the infinitesimal generator of v under the P measure is

Af(s,0) = (o = B()0) 0o (s,0) + 7 v 02 (5,0)

[ (04 9) = F(60) = 0uf(5:0) W) (mldy) + v i)

0

Let us define

OLiu) = f(s,v) = B [l P00 F(s),w(s) = o]

s,t
in virtue of the the Feynmann-Kac representation

Osf + Asf +h(u,s)v f =0 and f(t,v) = 1.
We assume that the characteristic function is affine, i.e.

¢sT,t(U) = f(s,v) = e_A(Syt)—B(s,t)v7

this implies that the Feynman-Kac differential equation can be decomposed in the
following system of ODEs for the coefficients A and B

0. A(s,1) = —aB@¢y+/

[ (=) i,
0

DsB(s,t) = B(s)B(s,t)Jr%n2 BQ(SJ)JF/

+
RO

(fﬂww—1+3@¢m@0g4@)

At,t) = B(tt) =
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3.3.3 Swaptions

Due to lack of closed analytical formulas for the price of this product, in this section
we develop an approximate valuation of an European swaption using the multiple-
curve time-change Lévy model and the lower bound formula presented in Chapters
1and 2.

Let us consider an European (payer) option on a Interest Rate Swap (IRS) with fixed
interest rate K and payment dates (71, - - - T ), the maturity of the option is 7" and it
is the first fixing date of the IRS. The pricing formula under the risk neutral measure
is

Swo(0) = (3.16)

N +
(Z P(T,Tj) « (F*(T, T}, x) — K))
j=1

where x = T; — T;_; for j = 1,..., N, the zero coupon bond price P(7,T}) is defined
in equation 3.5 and the FRA rate F*(T', T}, z) is defined in equation 3.10.
We rewrite the swaption price as

N
(Z wr ; 4 TFVIT) ezjm) I(A)
j=1

where we define some useful quantities

P<0,Tj))
P(0,7)

Swo(0) =

)

Zi(T) = log(P(T,T})) — log (

T T
= /0 (X(s,T) — X(s,Tj)) dY (s) +/0 (A(s,T) — A(s,Tj)) v(s—) ds
Ui(T) = log(l1+zF*(T,T},x)) —log(1+x F*(0,T},x))

T
= / X (s,Tj,x) dY (s /A (s,Tj,x) v(s—) ds
0

wi,; = ‘Z(((()):?)) (1+$F1(0,1},3}))
wa; = (1+zK) Z((%’?))

and we point out the exercise region set

N
A= {Z w1, 5 Z (M+U;(T > ZU)Q] . (317)
j=1

Then, we perform an approximate evaluation by means of the lower bound pro-
posed in Chapters 1 and 2

Swo(0) > max LBy(0)
keR

LBy(0) =

N
(Z wy eZi(T)+U;(T) _ Wy GZ](T)) I(gk)] )
j=1
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where Gy, is the following approximate exercise region

N

Gr = {>_U;(T) > k}. (3.18)

J=1

In order to linearise the exercise region, we substitute the sum over the payment
dates with a product (i.e we substitute an arithmetic average with a geometric one)
and then we apply the logarithm. In Chapters 1 and 2, we describe a more sophis-
ticate approximation of the exercise region based on the tangent hyperplane. How-
ever, in our case this approximation is not applicable, because it is too computational
demanding to find the correct point of tangency (i.e. the point X* on the true exercise
boundary, where the density of the model factor is highest, see Section 1.2.2).

The lower bound is calculated using the Fourier transform method of [Carr and
Madan, 1999]

e*(Sk‘

LB,(0) = P(0,T)

™

/000 Re (e_“W fE(é + z*y)) d. (3.19)

LB is the Fourier transform of the lower bound and it has the following form

)
w

N
LB(CL)) = Z w15 (ﬁZ,U(—ib]‘, —i(bj + wb)) — W24 (ﬁZ,U(—Z'bj, —iwb)
j=1

b and b; are N-dimensional vectors with, respectively, all the components equal to
one and the jth component equal to one and the others equal to zero and ¢z (2, u)
is the joint characteristic function of the log-FRA rates and of the log-ZCB prices,

bzu(z,u) =E" i 2701 2125 (T)+u; U (T) |

3.3.4 The joint characteristic function

The calculus of the joint characteristic function the log-FRA rates and of the log-ZCB
prices follows the same steps as in Section 3.3.2. Thus, let

¢z u(z,u) =E" [ei 551 2525 (T)+u; U (T)}

_E {exp </OT(¢ on (s 2, u) — (s, T)) dY (s) + /OT(igpN(s; ) — A(s,T)) u(s_)dsﬂ ,

where

(305, T) — B(s, 1)) + u;¥*(s, 1), ),

Va)
4
)
\'1\2
£
|
- 1M
Ql\z
Vo)
~

pn(siz,u) =Y z(A(s, T) — A(s, Tj)) + wjA™(5, T, o).
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Using the change of measure from P to P defined by the following density process

T T
o(t) = exp (/0 (isn(s;z,u) —X(s,T))dY (s) — /0 Y(sn(s;z,u) +iX(s,T)) v(s)ds) ,

the joint characteristic function of Z and U becomes a Laplace transform of the pro-
cess v(t),

QbZ7U(Z7 u) e ]E |:ef0T 12’(5§Zyu) U(87)dsi| ’

Y(s;z,u) = Yon(s;z,u) +i2(s,T)) +ipn(s; z,u) — Y(iX(s, T)).

3.4 Some examples of driving processes

In this section we present different possible choices of the time-changed Lévy driv-
ing process and for each process we illustrate the specific calculus of characteristic
function of the log-FRA rate.

3.4.1 Continuous diffusive case

We consider the case in which the driving Lévy process is a Brownian motion,

X(t) =W(t),

the intensity of the time-change is a CIR process,

dv(t) = (a — Bou(t))dt + n\/v(t)dZ(t),
and the two Brownian motions, W and Z, are correlated
E[dW (t) dZ(t)] = pdt.

Following the procedure described in Section 3.3.2, the characteristic function of the
log-FRA rate is affine in v, hence

¢(u; S,t) _ efA(s,t)fB(s,t)v(s)

and the coefficients A and B are solutions of the following system of ordinary dif-
ferential equations (ODEs)

0sA(s,t) = —aB(s,t),
0.B(s,) = %nQBQ(s,t) +(B—np(uS®(s,T,2) — S(s,T))) Bls,t)
Sl ) (s, T ),

A(t,t) = 0 and B(t,t) =0.
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3.4.2 Pure jump case

The dynamic of the time-changed Lévy process is inspired by [Carr and Wu, 2015]

/ / X(ds,dz) — n(x) dz ds),

v(t) — v :/0 (= Bo(s— ds—i—n/ /R+ Y(ds,dz) — m(x) dx v(s_) ds),

Y(t)= / / Y(ds,dy) — 7(y) dy v(s_) ds).

where ((ds, dr), with i € {X,v,Y} is the counting measure of the jumps of the
respective process, and 7(z) is the Lévy density.

The function 7(z)v(s—) represents the activity rate of the jumps. The model includes
a self-exciting behaviour: an upside-jumps of the Libor FRA rate increases the in-
tensity of future upside-jump event. This is typical of crisis periods, in which the
spread between the Libor rate and the the risk free rate, represented by the OIS rate,
increases. Instead downside-jumps have no effect on the activity rate.

In this case, the density process defined in formula 3.14 can be simplified to

Q(t) _ ef(f JpGou X (s, T,x)—X(s,T)) y ,uY(ds,dy)ffOt Jz (e(i“ S (s,T,2)=%(s,T) yfl) m(y) dy v(s-) d?320)

By the Girsanov theorem for semimartingale, extended for complex measures, we
obtain the dynamic of v(¢) under the measure P:

t
o(t) v = / (o= B(s) v(s)) ds+ 1 / / Y(ds,dy) — #(y,5) v(s_) dy ds),
B) = B [ b OISO 1)) ay,
Fly,t) = TSN r(y)1(y > 0),

where h(y) = y is the truncation function (see Assumption 3.2).
From results in Section 3.3.2, the characteristic function of the log-FRA rate is affine
in v and consequently

é(u; 5,t) = E [eiulogF(t,T,S) | ]_-S} — F(s,T,S)™ o—A(s,0)=B(s,)v(s)

for A and B solutions of the following ODE system

0sA(s,t) = —aB(s,t),
0.5(s,1) = () Bls.0)+ [ (B0 = 14 B0y b)) 70 dy
+ P s),

A(t,t) = 0 and B(t,t) =0,

where h(y) = y is the truncation function and the expression of ¢ (u, s) is reported in
formula 3.15.

52



Now, we exemplify the case of a Variance Gamma process, which is a pure Lévy
process with infinite activity and finite variation (see [Madan et al., 1998] for further
details). The Variance Gamma Lévy density has form

z |z
e vt e v—
() = . I(xz > 0) + 7]

I(z <0)
= e_ﬁx_ll(m > 0) — eu%:n_ll(m < 0).

Then, substituting the Lévy density specification in the characteristic function ODE
system we obtain.

0sA(s,t) = —aB(s,t),
9:B(s,t) = (B+nvT) B(s,t) —log(1+nit(s)B(s, 1)) + ¥(u, s)

where
+
() = |
1— (wX=(s,T,x) — X(s,T)) vt
Y(u,s) = —log (1 —iuX(s, T, x)u+’T) —log (1 + iuX?(s, T, :c)y_’T)
b i log (1- (5. T,0) ™) 4 log 1+ 52(.T.) )]
+
e
14+ 3(s, T)v*

The choice of the VG density induces a restriction in the domain of the (extended)
characteristic function (see Assumption 3.1.1). In fact the moment generating func-
tion of a VG process is well defined only if Re(u) € [, -] C R. This condition
impose an upper limit to the volatility function, as required in Assumption 3.2.4.

3.5 Example of cap volatility calibration

For the construction of the initial term structure of the Eonia, Euribor 3M and Eu-
ribor 6M curves, we follow a consolidated procedure, described for example in
[Crépey et al., 2015]. Zero coupon bonds curves are taken from Bloomberg (ICVS
function). Figure 3.1 shows the Nelson-Siegel-Svensson fitting of the zero coupon
rates for the Eonia, Euribor 3M and 6M curves on January 4th 2011 .

We calibrate the models parameters to cap implied volatility surfaces on Euribor of
the 4" January 2011 (BBIR Bloomberg data). Bloomberg provides the cap implied
volatility surface for 3 months tenor until a maturity of two years and then for 6
months tenor; the surface is constructed in an arbitrage free manner, with Eonia as
discounting curve. Implied volatilities are obtained from quoted prices using the
Black model. We note an humped shape of the volatility surface for short maturities.
Maturities are from 1 year to 10 years, to fit the volatility smile at each maturities,
we use the at the money forward (ATMF) strike plus three out of the money forward
(OTMF) fixed strikes quoted in Bloomberg.
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Figure 3.1: Nelson-Siegel-Svensson fit of the market zero coupon rates for the Euri-
bor 3M/6M and the Eonia curves at the 4/ January 2011.

The calibration is performed in two step, first through the minimization of the quadratic
difference between model and market prices with a differential evolution algorithm,
and then through the minimization of the quadratic distance between the implied
and the market volatilities with an interior-point method (Matlab function fmincon).
The accuracy of the calibration is quantified through different error indicators: the
root mean square error (RMSE) of model prices (or volatilities) with respect to mar-
ket data, the mean absolute percentage error (MAPE) and the maximum absolute
error (MAE). Definitions the error indicators are reported in Table 3.1.

RMSE | L/ (x; — xphty2

N i
MAPE % >imt | irfm

X —1]

MAE |max;—1_ n | X; — X/"* |

Table 3.1: Error indicators formulas: NV is the number of market quotes, X; and X ZM kt

are the model and the market quantities, respectively.

The calibrated parameters are reported in Tables 3.2 and 3.3, while the calibration
errors are shown in Table 3.4 and 3.5. Figures 3.2 and 3.3 illustrate the calibration
results.

Yo «a B n P a h B Y
0.0017437 | 3.2275|0.23993 | 0.0015698 | -0.1845 | 1.6524 | 0.0024864 | 4.8203 | 0.002952

Table 3.2: Time-changed diffusive model. Calibrated parameters on the Euribor cap
volatility surface at 04 January 2011.
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Vo a B n vt v a h B1 g
2.8166(1.787310.3155|1.3108 | 0.41102 | 0.61621 | 0.4047 | 0.0122 | 1.6305 | 1.3653

Table 3.3: Time-changed variance gamma model. Calibrated parameters on the Eu-
ribor cap volatility surface at 04 January 2011.

Volatility

RMSE (%) 1.89

MAPE (%) 5.53
Max Absolute error (%) | 4.69

Price

RMSE (bps) 17.93

MAPE (%) 9.29
Max Absolute error (bps) | 70.23

Table 3.4: Time-changed diffusive model. Calibration results on the Euribor cap
volatility surface at 04 January 2011.

Volatility

RMSE (%) 2.66

MAPE (%) 6.85
Max absolute error (%) | 7.52

Price

RMSE (bps) 16.50

MAPE (%) 15.46
Max absolute error (bps) | 49.54

Table 3.5: Time-changed variance gamma model. Calibration results on the Euribor
cap volatility surface at 04 January 2011.
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Figure 3.2: Time-changed diffusive model. Calibration results on the Euribor cap
volatility surface at 04 January 2011.
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Figure 3.3: Time-changed variance gamma model. Calibration results on the Euribor
cap volatility surface at 04 January 2011.

3.6 In-sample and out-of-sample numerical tests

In order to obtain a deeper analysis of the models accuracy, we perform an in-sample
and out-of-sample numerical test. First, we calibrate the parameter of the models to
the sample, composed by the third Wednesday cap quotes of each month of 2015;
in particular we use ICAP! quotations obtained through the provider Bloomberg.
Calibration is performed each day as described in the previous section, the only
difference is that the 2015 cap (implied) volatility surfaces are obtained from quoted
prices with the normal model, instead of the Black model. This difference is due to
the fact that the Black model does not accept negative rates. Indeed, for instance, the
zero coupon rates for the Eonia curve of the 21" January 2015 are negative for short
maturities (figure 3.4), which implies discount factors greater than one. However

'ICAP is a brokerage company, specialised in interest rate derivatives market.
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the Nelson-Siegel-Svensson parametrization is flexible enough to fit the curve. The
calibration accuracy is quantified via the error indicators defined in Table 3.1 and
used in previous section. Then we perform the out-of-sample test, i.e. we price
cap market quotes of the next day (i.e. the third Thursday of each month), using
the parameters previously calibrated and the market data for the discounting and
forwarding curves, of the next day. This test is important because it verifies if the
model is stable. Moreover, in practice, calibration are performed by practitioner each
day using the parameters obtained the previous day as starting point. As shown in
Tables 3.7 and 3.9, error are similar in the in-sample and in the out-of-sample case,
this means that both models are stable.

-3
14210

12 -

10

ZCB rate
(2]
.

4{ *  Eonia

2k / —— Nssfit
Euribor3M

— NSSfit

0 E&* %,}" Euribor6M
Hok NSSfit

0 5 10 15 20 25

maturity (year)

Figure 3.4: Figure shows the Nelson-Siegel-Svensson fit of the market zero coupon
rates for the Euribor 3M/6M and the Eonia curves at the 21*" January 2015.
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Calibrated
parameters
January | 09933 3.7117 0.0409 2.5548 -0.0250 0.9283 0.0016 1.3670 1.0294
February | 1.2192 3.3328 0.0398 2.4739 -0.0330 2.0064 0.0019 2.0544 0.8417
March 1.2145 3.2735 0.0626 2.4218 -0.0633 2.1138 0.0021 2.2922 0.8575
April 0.3463 3.1051 0.0939 24283 -0.0361 2.2614 0.0034 1.4669 0.3770
May 0.7323 3.3695 0.1085 1.9588 -0.0785 1.4992 0.0017 2.3645 0.1728
June 0.8874 3.4051 0.1261 2.2839 -0.0579 0.8739 0.0012 2.8807 0.3146
July 0.8813 3.4453 0.1154 2.2899 -0.0596 0.7279 0.0009 29882 0.3411
August 0.0958 3.3936 0.1160 1.9553 -0.0381 1.2217 0.0014 2.5465 0.1627
September | 0.8837 3.6121 0.0869 1.5278 -0.0478 1.3727 0.0011 2.6369 0.0760
October | 0.8974 3.8108 0.1260 1.5585 -0.0482 0.4715 0.0007 3.3682 0.3756
November | 1.1164 3.7450 0.1153 1.5498 -0.0966 0.8952 0.0011 3.1726 0.6590
December | 09374 3.5602 0.1164 2.0606 -0.0650 0.9103 0.0012 29134 0.5725

Ug ot B 7 p a h B1 vy

Table 3.6: Time-changed diffusive model. Calibrated parameters on the Euribor cap
volatility surface at third Wednesday of each month of 2015.
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. In sample Out of sample
Volatility "RAISE (%) MAPE (%) MAE (%) | RMSE (%) MAPE (%) MAE (%)
January 0.05 9.27 0.11 0.04 8.32 0.10
February 0.05 9.85 0.13 0.06 10.49 0.15
March 0.06 8.07 0.27 0.06 8.42 0.30

April 0.04 6.84 0.10 0.04 6.83 0.09
May 0.04 5.83 0.17 0.04 5.59 0.19
June 0.05 6.45 0.15 0.05 6.74 0.17
July 0.03 441 0.13 0.04 4.67 0.12
August 0.05 8.81 0.13 0.05 8.98 0.11
September 0.05 7.50 0.14 0.05 8.04 0.14
October 0.04 5.98 0.09 0.05 7.26 0.18
November|  0.05 5.81 0.19 0.05 5.83 0.19
December |  0.03 5.11 0.11 0.03 5.55 0.11

. In sample Out of sample
Price  'RMSE (bps) MAPE (%) MAE (bps) | RMSE (bps) MAPE (%) MAE (bps)

January 14.51 2224 42.70 14.94 16.38 49.50
February | 1478 40.80 241 15.33 55.10 42.04
March 12.33 15.22 40.49 13.02 15.59 37.46
April 11.70 13.34 29.77 11.71 13.53 31.89
May 5.22 12.16 12.87 449 11.37 12.69
June 7.06 31.08 21.26 8.84 22.80 26.47
July 6.57 9.21 15.25 7.04 9.68 17.95
August 9.60 19.59 23.95 11.18 19.34 27.76
September|  11.50 16.19 29.93 12.24 17.91 36.69
October 8.36 12.39 23.65 8.41 12.72 23.95
November| 458 10.46 11.34 5.24 10.35 15.29
December |  6.96 10.12 24.63 7.29 10.55 20.94

Table 3.7: Time-changed diffusive model. Calibration results on the Euribor cap
volatility surface at third Wednesday of each month of 2015 and the out-of-sample
results on the Euribor cap volatility surface at third Thursday of each month of 2015.
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Calibrated - o 3 0 A+ - a h 3 5
parameters
January | 1.2525 3.3092 0.0375 3.0871 0.8134 0.7382 1.0311 0.0018 1.3544 1.2851
February |1.4558 3.2182 0.0409 3.3349 0.7355 0.6598 1.1091 0.0018 1.4596 1.0392
March |2.0232 3.0133 0.0591 3.4167 0.5236 0.5189 1.1926 0.0027 1.3100 0.7759
April 1.7837 2.8636 0.1026 3.5637 0.5043 0.4253 1.0650 0.0030 1.5001 0.4902
May 1.7245 2.9874 0.1223 3.5088 0.3469 0.5487 0.6330 0.0022 1.8751 0.4009
June 1.7326 2.9901 0.1212 3.5123 0.3964 0.5485 0.6230 0.0022 1.8999 0.3988
July 1.6511 3.0326 0.1216 3.4944 0.3760 0.5500 0.4746 0.0017 2.1414 0.4183
August | 0.0985 2.3946 0.1401 2.7756 0.4745 0.4673 0.6235 0.0020 2.8716 0.4562
September | 0.7980 2.6267 0.0928 2.5904 0.4114 0.2311 1.2103 0.0025 2.8637 0.1067
October |0.9980 2.7811 0.0920 2.5453 0.3512 0.3795 1.5952 0.0033 3.1251 0.7377
November | 1.0543 2.7723 0.1025 2.5456 0.3450 0.4149 1.5874 0.0034 3.1053 0.7197
December | 1.0358 2.8563 0.1099 2.5441 0.3706 0.3965 1.2851 0.0026 3.2397 0.5301

Table 3.8: Time-changed variance gamma model. Calibrated parameters on the Eu-
ribor cap volatility surface at third Wednesday of each month of 2015.
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. In sample Out of sample
Volatility "RNISE (%) MAPE (%) MAE (%) | RMSE (%) MAPE (%) MAE (%)
January 0.06 12.66 0.19 0.04 9.01 0.11
February 0.06 11.18 0.16 0.06 11.65 0.17
March 0.05 8.62 0.13 0.05 8.65 0.14

April 0.04 6.98 0.11 0.04 7.60 0.12
May 0.04 6.23 0.12 0.04 6.22 0.13
June 0.05 6.99 0.12 0.05 7.03 0.14
July 0.03 6.16 0.11 0.04 6.30 0.11
August 0.04 8.16 0.14 0.04 8.43 0.14
September 0.05 8.31 0.15 0.05 9.41 0.15
October 0.05 9.34 0.18 0.04 8.30 0.10
November 0.03 5.19 0.12 0.04 5.51 0.12
December 0.03 5.71 0.09 0.03 5.97 0.09

. In sample Out of sample
Price  'RMSE (bps) MAPE (%) MAE (bps) | RMSE (bps) MAPE (%) MAE (bps)

January 7.19 52.38 20.87 7.68 19.59 22.73
February 9.00 33.23 27.19 9.38 38.48 26.46
March 11.40 17.98 34.94 10.94 17.75 32.01
April 9.52 14.97 28.26 10.40 17.20 28.58
May 4.79 12.50 12.86 5.01 12.11 15.22
June 5.83 22.49 17.33 6.64 20.59 17.08
July 5.75 15.99 14.70 5.96 16.37 13.92
August 6.27 20.52 20.49 7.11 19.95 25.13
September 5.27 25.51 12.76 11.16 25.02 36.86
October 8.19 32.55 21.93 7.92 15.97 22.79
November 3.13 9.54 7.93 4.18 10.07 14.74
December 5.77 11.04 17.76 6.71 11.15 20.73

Table 3.9: Time-changed variance gamma model. Calibration results on the Euri-
bor cap volatility surface at third Wednesday of each month of 2015 and the out-of-
sample results on the Euribor cap volatility surface at third Thursday of each month
of 2015.
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3.7 Preliminary numerical tests of swaption lower bound

For each model we fix the set of parameters calibrated on cap volatility surface (Ta-
bles 3.2 and 3.3) and we calculate ATM swaption prices with different maturities and
swap lengths. Monte Carlo is used as a benchmark for the computation of the true
swaption price. The 97.5% mean-centred Monte Carlo confidence interval is used
as measure of the accuracy. Furthermore, we compare the ATM swaption prices
obtained with the parameters calibrated on caps with market quotations.
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Figure 3.5: Time-changed diffusive model. Figure (a) shows the relative error of
the lower bound respect to the Monte Carlo method. Monte Carlo error is the ratio
between the confidence interval and the price. Figure(b) compares model prices and
the market swaption prices. Prices are obtained using parameters in Table 3.2.
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Figure 3.6: Time-changed variance gamma model Figure (a) shows the relative error
of the lower bound respect to the Monte Carlo method. Monte Carlo error is the ratio
between the confidence interval and the price. Figure(b) compares model prices and
the market swaption prices. Prices are obtained using parameters in Table 3.3.
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Conclusion

In this chapter we introduce a novel multi-curve model with time-changed Lévy
process. The choice of time-changed Lévy as driving process is motivated by their
flexibility in reproducing the smile and the term structure of the implied volatility
of quoted interest rate derivatives. In particular our model is capable to reproduce
the market volatility across maturities and strikes without using time dependent
parameters and hence, preserving the parsimony of the model.

We build a coherent and arbitrage free term structure for zero coupon bonds and
Libor Forward Rate Agreement (FRA) rates and we study the pricing of interest
rate derivatives in a semi-analytical way and we derive the ordinary differential
equation to obtain the characteristic function of the log-FRA rate. Then, we calibrate
two different driving processes on real market data and we compare the precision of
the calibration results. We can not conclude that a pure Lévy driving process is more
flexible than a time-changed diffusion process. However, in order to have a complete
answer, others Lévy specifications should be tested. Furthermore, we present an in-
sample/out-of-sample test that confirms the stability of the two models. Finally, we
perform preliminary numerical results, that verifies the precision of the swaption
lower bound formula.
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Chapter 4

Quantitative assessment of
common practice procedures in the
fair evaluation of embedded
options in insurance contracts

The most recent and widely adopted European Embedded Value (EEV) and Sol-
vency II principles and standards require a market consistent approach for deter-
mining the fair value of asset and liabilities of insurance funds ( see [CFO-Forum,
2016a] and [CFO-Forum, 2016b]).

According to the standard formula approved by the European Insurance and Oc-
cupational Pension Authority (EIOPA) and local regulators, government bonds is-
sued by countries belonging to European Union all have the same risk!, i.e. the
credit and liquidity risk that they carry is not accounted in the valuation of insur-
ance products. In order to cope with this assumption, it is a common practice by
insurance companies to introduce a deterministic adjustment on assets cash flows,
so that their present value, calculated discounting over the risk-free curve, and their
market value, are equal. This approach in the context of market consistent evalua-
tion, is called certainty equivalent [CFO-Forum, 2016a, principle 13].

Hence, in the common model, credit and liquidity risk factors do not affect the
volatility of the assets portfolio and the correlation between credit and liquidity
spreads of different issuers is not considered at all. This has the further consequence
that the tools generally adopted by insurance companies for Solvency Il related val-
uations are not adequate for risk management. Instead, in this chapter we propose a
model for credit and liquidity risks, which allows for a stochastic behaviour of these
factors and for correlated movements across different issuers. Therefore, it is more
suitable for risk management than the approach suggested by regulators.

In addition, we also disentangle the two sources of risk, credit and liquidity, in order
to assess their relative importance. In fact, some econometric literature suggests

'For a more precise definition of bonds that are treated like government bonds under Sol-
vency II standards see https://eiopa.europa.eu/regulation-supervision/insurance/
solvency—-ii/solvency-ii-technical-specifications
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Figure 4.1: The figure shows the historical series of the 5 year German Bund BVAL
yields (red line), the Eur OIS 5Y rate (blue line) and the 5 year German CDS premium
(green line).

that the liquidity effect is quite important in crisis period (see for instance [Beber
et al., 2009]). An example of liquidity spread is reported qualitatively in Figure 4.1
for the German sovereign case. The historical series show that in several periods
the Bund yield becomes smaller than the overnight rates in spite of a positive CDS
premium. This behaviour can be interpreted as a fly-to-liquidity effect as explained
in [Beber et al., 2009], i.e. there is a liquidity component in the bond spread and it
turns out to be negative. This behaviour is also consistent when explained in terms
of the re-denomination risk as suggested in a working paper of the European Central
Bank ( [Santis, 2015]). In order to separate the effects of the two sources of risk, we
consider firstly a model where the stochastic spread is driven by only one factor and
we calibrate it on the Credit Default Swap (CDS) quotations; then we add a second
stochastic factor to the spread and we calibrate it on the bonds yields. Assuming that
CDS quotations are not affected by liquidity risk?, we can isolate the contribution of
the two stochastic components in the valuation of the portfolio.

The chapter is organized as follows. Section 2 describes a with-profit Italian segre-
gated fund and explains the generally adopted (in market consistent evaluations)
certainty equivalent approach used to evaluate the minimum guaranteed option. In
Section 3 we describe our jointly stochastic model for interest rate, credit and lig-
uidity risks and we perform the calibration of this model on market data. Section 4
presents the numerical evaluation of the embedded options. Results obtained with
the common procedure are compared to the results obtained with our model, inclu-
sive of credit and liquidity risk. Conclusive remarks are presented in last Section.

2This assumption is widely used in literature, see for instance [Duffie and Singleton, 2003] and
[E. Longstaff and Neis, 2005].

65



4.1 Quantitative assessment of the common practice

Fundamental aspects in the evaluation of insurance products and in particular of
segregated funds are the statutory accounting rules which drive the profit sharing
mechanism (between policyholder and shareholder) and ultimately, the shareholder
obligations toward policyholders.

The common practice for the implementation of a market consistent framework con-
sists in using a certainty equivalent approach (CEQ) to evaluate assets, which for
risky securities boils down to applying a risk adjustment to their cash flows. Then,
in practical valuations, it becomes critical to determine which assets are considered
risk free (and therefore risk adjusted according to CEQ), or risky. In the latter case,
the certainty equivalent approach may not be applied, depending on the sophisti-
cation of the calculators implemented. Unfortunately, according to Solvency II stan-
dard formula, all government bonds issued by sovereign countries belonging to the
European Monetary Union are risk free 3 .

This is also in contrast with the view of capital markets, which quote very different
government bonds spreads (e.g. over the Euro overnight interest rate swap) on EMU
sovereign issuers.The consequence is that insurance companies, in order to treat ho-
mogeneously government bonds under the certainty equivalent approach, heavily
risk-adjust bonds cash flows. They have to do so in order to recover a present value,
discounting cash flows using the risk free curve provided by EIOPA, equal to the
assets market price. Unfortunately, the value of financial options embedded in in-
surance contracts (minimum guaranteed options) is not invariant to risk adjustment
on cash flows because their pay-off is determined by statutory accounting rules, as
explained in the next section.

4.1.1 Description of segregated fund characteristics

A segregated fund is a type of investment fund administered by insurance compa-
nies in the form of life insurance contracts offering certain guarantees to the policy-
holder, as a minimum rate of return (minimum guaranteed). Segregated funds are
owned by the life insurance company, not the individual investors, and must be kept
separate from the company’s other assets.

These funds consist of a pool of investments in securities such as bonds and stocks
but their value does not fluctuate according to the market value of the underlying
securities. In fact, for the purpose of determining the rate of return of the fund, assets
are evaluated at their amortized (average) cost, and income is computed according
to the dividends, coupons and amortization payments accrued over the year, plus
any realized gain or loss derived from the sales of assets with respect to their amor-
tized cost. Segregated funds accounting rules are explained further in the Appendix
E1. Every year at a specific date not necessarily coincident with the end of the fiscal
year, this rate is published and shared with the policyholder for the part exceeding
the minimum guaranteed, according to predefined contractual rules. The amount

*https://eiopa.europa.eu/regulation-supervision/insurance/solvency—-ii/
solvency-ii-technical-specifications.
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passed as a bonus to the policyholder is accrued in the statutory reserve represent-
ing the insurance company obligations to policyholders.

To make the matter even more complicated, the determination of the return of the
segregated fund (AKA credited or bonus rate) is subject to discretionary rules ap-
plied by the insurance company or management actions. These can be: the invest-
ment policy, investment limits and crediting (or gains and losses) realization strat-
egy.

Let p(t) be the payoff of the annual profit earned by an insurer holding a minimum
guaranteed investment fund, N (¢) be the notional amount, R(t) be the rate of return
of the segregated fund, 7 be the minimum guaranteed rate, 5 be the policyholder
participation coefficient and f be the fee charged by the insurer to the policyholder.
The payoff p(t) is given by

p(t) = N(t)(R(t) —max(§ (R(t) - f),7)) (4.1)
= N(@)[1-B)Rt)+ B f— (7B (R~ )]

Hence, a guaranteed investment fund contains an embedded option which is similar
to a set of floorlet sold by the insurance company to the policyholder. However, the
embedded option can not be evaluated as a “classical” strip of put options written
on the segregated fund. In fact, the underlying of the option is a return determined
according to accounting rules, which depends on both accounting and market value
of assets, and the discretionary management actions applied to the fund. Moreover,
the notional amount of the floorlet depends on the history of accrued rates. This
makes the option path dependent. In fact, if the rate of return is greater than the
minimum guaranteed, then next year the notional amount which is the value of the
statutory reserve is increased by a corresponding percentage.

For these reasons, in order to estimate the value of financial options embedded in
a generic insurance product backed by a segregated fund (value of guarantees or
VOG), we have to proceed simulating the fund applying a Monte Carlo approach
which includes an appropriate asset and liabilities management (ALM) model.

4.1.2 Description of the simulation apparatus

In order to evaluate the options embedded in insurance contracts linked to segre-
gated funds, we have developed a full ALM model. The first step is assets cali-
bration. By this term, we mean a procedure apt to make the value of securities,
calculated as a present value of contractual cash flows, exactly identical to their ob-
served market value. This procedure should not be confused with the calibration
described in Section 4.2.1 of the interest, credit and liquidity risk models. In fact,
while the purpose of the latter is to determine the values of a set of parameters so
that the mathematical model describing the dynamic of some stochastic processes
is in agreement with observed data, the former is used to correct any discrepancy
in securities pricing which is not explained by the modelled risk factors. These dis-
crepancies can arise for different reasons. Generally speaking, the more complete
the pricing model, the closer the price of a security should be to its observed market
value. Since we want to compare results calculated simulating alternative models,
we need to be sure that the asset portfolio has the same initial value regardless the
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discounting factor’s specification that is used to recover the present value of the se-
curities. This means that all the residual value in assets pricing, not explained by
the model, is captured by the (constant) calibration factors introduced from time to
time.

This assets calibration is performed basically in two ways: adjusting the cash flows
(this is used under the CEQ approach) or adjusting the discount rate using a flat
z-spread.

In our analysis both approaches have been utilised. The first one has been applied
to test the standard, common, approach where the discount rate must be the risk
free rate alone. In this case the assets calibration consists in applying a constant pos-
itive probability of default to cash flows of risky securities which are priced above
their market value using the risk free curve for discounting. In formula, the price at
valuation date (time zero) of the i-th security F ; is

T

Cri(l—pp)t
Py; = E —_— th 0<p; <1
v t=0 (L47r)t v b ’

where p; is the calibration parameter specific for the i-th security, representing the
i-th security’s default rate, r; is the risk free rate, Cy ; is the cash flow paid by the i-th
security at time ¢, and 7 is the i-th security’s maturity.

The second approach has been used to test our model against the standard pro-
cedure. The z-spread is calibrated initially for each security, added to the market
curve, and then kept constant during the simulation. In mathematical terms, we can
express it similarly to the previous one

P d Cii
0 ; (1+ 7+ 2)t

where 7; is the market (risky) rate including, for example, credit and liquidity spread,
and z; is the z-spread specific fo the i-th security.

There are some remarkable differences between the two approaches. Using the z-
spread approach, cash flows are not affected by assets calibration, in fact the z-spread
affects only the discounting curve. The z-spread is greatly reduced by modelling ap-
propriately a security’s market discounting curve. That is the case of our sovereign
bond model, which includes interest, credit and liquidity risk. Furthermore, the CEQ
calibration factor (default probability) depends arbitrarily on the choice of the risk
free curve, which is the only possible discounting curve in the CEQ model. Finally,
whenever the choice of the discounting curve is not appropriate the probability of
default of the CEQ approach may not be constrained between 0 and 1.

After having calibrated the assets portfolio the simulation is run. The simulation
consists in performing algorithmically all the calculation steps that a real insurance
company would perform over the year. Firstly, the assets portfolio is evaluated.
Then, assets cash flows and payment of contractual obligations which are matured
are collected. In case available cash is not enough to pay the contractual obligations,
assets are sold and gains or losses are accounted.

Thereafter, crediting strategy is performed, i.e. assets are sold to meet the level of
income targeted by the insurance company; usually the target is the minimum guar-
anteed plus a fixed management fee. Then, assets and liabilities are aligned and
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capital is injected or withdrawn depending on whether assets book value? is lower
or higher, respectively, than liabilities statutory value®. Finally, the portfolio is rebal-
anced according to investment limits.

Management actions occur during the process just described. Because the purpose
of our analysis is to evaluate the impact of introducing a more sophisticated evalu-
ation framework, which includes the stochastic credit and liquidity risk component
of sovereign bonds, all the parameters affecting the ALM policy and the manage-
ment actions are set flat and constant during the projection and across scenarios. In
particular, investment limits are set fixed and they do not depend on the economic
scenario or on time. Same applies to the targeted credited rate.

Reinvestment strategy deserves a particular comment, since in our model new in-
vestments occur on constant maturity strategy®. This gives mainly two advantages:
the exposure on key rate maturities can be controlled easily during the simulation,
and no accounting option emerges to bias the results. In fact, modelling on an ac-
counting base new bonds would introduce another option in the evaluation since
bonds can be booked in more than one way, e.g. immobilized or available for sales.
Another important assumption is relative to the actuarial factors which are assumed
constant across the scenarios. For instance, the death rate of policyholders is de-
terministic and estimated from life tables. In the context of this study, hypothesis-
ing constant actuarial factors over time serve the purpose of having a greater focus
on financial aspect. However, our model can be easily extended adding an affine
stochastic mortality rate process (see for instance [Schrager, 2006] and [Vigna and
Luciano, 2008]).

Finally, VOG is calculated under the hypothesis that the insurance company is al-
ways solvent, i.e. it can not default, and it is always able to provide enough capital
to cover statutory liabilities.

Without these assumptions, comparability of results would be greatly impaired.

4.2 The model

The model for sovereign bonds discussed in this section allows for three different
sources of risk: interest rates, credit and liquidity. Credit and liquidity risks are
modelled considering a specific term structure of spreads for each issuer.

At first, we model the risk free interest rate curve using the classical Vasicek model
(see [Vasicek, 1977]). The dynamics of the short rate is described by the following
stochastic differential equation

dr(t) = a(f —r(t))dt + ocdW(t), 4.2)

r(0) = 7o,

*The assets book value is calculated under the local generally adopeted accounting principles
(GAAP).

° This is the old, Solvency I, coverage ratio; under Solvency II there are more stringent coverage
conditions but they are less easy to model in a computational efficient way

®A constant maturity strategy is an investment strategy where every year a bond with a specific
maturity is purchased to be sold the following year. The proceeds are then used to finance the purchase
of a new bond with the same maturity of the bond initially purchased
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where 7 and a are the so called long run mean and speed of reversion coefficient
(larger a faster r will move towards its mean and converge to 7), o is the volatility
parameter and W (t) is a standard Brownian motion. The adoption of a Gaussian
interest rate model is consistent with the recent experience of negative rates. With-
out loss of generality, the above dynamic is assumed to hold under the risk-neutral
measure.

The time ¢ price of a risk free Zero Coupon Bond (ZCB) with maturity 7" is obtained
by computing the following expectation under the risk-neutral measure

Pt,T)=E [e— ST (s) ds} ’

and it can be easily shown (see [Brigo and Mercurio, 2006] page 59) that this expec-
tation can be written as

P(t,T) = A(t, T)e” B&T) (), (4.3)
where
1 — e—a(T—1)
Bt.T) = ———,
0'2 0'2
A(t,T) = exp [(F — 2a2> (B(t,T)—T +1t) — 4aB(t,T)2] :

In order to model the price of a bond issued by a defaultable issuer, we adopt an
intensity model with zero recovery. This is equivalent, see for example [Jarrow and
Turnbull, 1995], to sum a spread to the short rate. The spread is related to the cred-
itworthness of the issuer I. Therefore, the price of a defaultable ZCB is obtained
as

P, T)= E [e— SEr(u)+s! (w) du] (4.4)

Assuming independence between spread and risk free short rate model’, the price
of the ZCB can be split into the product of two components, the risk free ZCB and
an adjustment factor

PL(t,T) = P(t,T) Adjl(t,T),
where

Adjl(t,T) = E [e— s dﬂ : (4.5)

the adjustment factor can be interpreted as a survival probability, i.e. a no-default
probability of the bond issuer.

The credit spread s’ (t) is modelled as a positive stochastic process, for instance the
square-root Cox-Ingersoll-Ross (CIR, see [Cox et al., 1985]) process. Therefore, we
write

ds'(t) = by (51— s'(t))dt +nr\/s!(t)dZ;(2), (4.6)

s'(0) = s,

7A common assumption in literature, see for instance [Brigo and Masetti, 2005a] and [Brigo and
Morini, 2005].
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where Z; is a standard Brownian motion, assumed to be independent from the
Brownian motion driving the dynamics of the risk-free rate.

If the spread follows the dynamic in equation (4.6), then the adjustment factor can
be expressed in closed form (see [Brigo and Mercurio, 2006] page 66)

Adjl(t,T) = Al(t,T)e BN 10, (47)
205 /12
(b+h)(T—t)/2
AL@T) = 2 ,
2h+ (b+ h) (eT-Dh —1)
2 (eT=0h —1)
2h+ (b+h) (eTDh —1)’

h = +/b%+2n2.

A similar financial model is proposed in [Grbac and Runggaldier, 2015] in the so
called multiple-curve Libor market, i.e. a Libor rates model with different tenors.

If we consider in our model also the liquidity risks then we add a liquidity spread,
11(t), to the rate in the ZCB formula

BI(t,T) =

Pl#,T)=E [e— JEr@)+s! () =1 (u)) du| (4.8)

In this case we do not require [/ (¢) to take only positive values and we can use again
the Vasicek model

dil(t) = ki(l; —15@t)dt + ¢rdYL(t), (4.9)
oy = I,

where Y/ is a standard Brownian motion, assumed to be independent from the
Brownian motions driving the dynamics of the risk-free rate and the credit spread.
The possibility of having negative liquidity spread is relevant for example in the
German sovereign case as previously shown. In practice, a negative liquidity spread
allows us to capture the so called fly-to-liquidity effects; in other words a negative
liquidity spread is an implicit convenience yield that arises to the owner of a liquid
bond. If we assume that the liquidity spread is independent from both the risk free
rate and the credit spread, then, simply, the ZCB formula contains a second multi-
plicative adjustment factor that has the following closed form

Adj] (t,T) = Al (t, )+ Bl DO, (4.10)
where
1 — e k(T-1)
Bl - 20
I - ¢ ¢? 2

The assumption of independence is necessary for the analytical tractability of the
model. The liquidity spread is calibrated using the bond yields quoted in the market.
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Finally, credit and liquidity spreads of different issuers can be correlated through the
Brownian motions of the CIR or Vasicek processes, i.e. for I # J

dZ;(t) dZ;(t) = pt’ at,
dYy(t) dYy(t) = pi’ dt.

4.2.1 Model calibration

In this section we describe a possible calibration procedure of the model.

The implementation of the model requires firstly to identify the risk-free curve.
EIOPA proposes a risk-free discounting curve based on Euribor 6 months par In-
terest Rate Swap (IRS) rates®. However, as highlighted in several papers, [Ametrano
and Bianchetti, 2009], [Henrard, 2009], [Mercurio, 2009] and [Morini, 2009] among
others, the Euribor par swap rate is affected by credit and liquidity risk of the inter-
bank market, which is not negligible. To fix this problem the EIOPA curve contains
a Credit Risk Adjustment (CRA). Finally, a Volatility Adjustment (VA) is applied to
the curve (see [EIOPA, 2016]). These adjustments lead to a market consistency issue
of the curve as highlighted in [Karoui et al., 2015]. Therefore, according to the re-
cent financial literature (for instance [Z.Kenyon, 2010], [Morini, 2009] and [Moreni
and Pallavicini, 2014]), we identify the overnight rate (in particular the Eonia rate
for Euro currency) to be the best proxy for the risk free interest rate. In particular,
given that there are no liquid options written on the Eonia rate, we calibrate the pa-
rameters of the stochastic model of r(¢) to the Euro overnight indexed swap (OIS)
curve.

In the model previously presented in Section 4.2 ZCB price can be written as

Pi(t,T) = P(t,T)Adjl(t,T) Adj/ (¢,T)
o(—RET) =S (t.T)+L! (t.T)) (T—t)

where R(t,T) is the zero risk free rate, S'(¢,T) and L!(¢,T) are the credit spread
and the liquidity spread, respectively, calculated between ¢ and T for the issuer I. In
order to estimate from the market the credit component, we bootstrap the term struc-
ture of survival probabilities (i.e. the no-default probabilities of the issuer) from the
quotations of credit default swap (CDS) spreads for each specific issuer. However,
there are no liquid quotations of CDS for maturities longer than 10 years. Hence, we
extract the long term issuer survival probabilities from sovereign ZCB curves under
the hypothesis that the long term liquidity spread remains constant and equal to the
10 years spread. We fix t = 0 and 7" = 10 years and we assume that for maturities
T longer than T™ the liquidity spread remains constant, i.e.

LY(0,T) = LY(0,T%).

Without this assumption, we observe too large values of long maturity liquidity

$More details about the construction of the EIOPA curve are given in Appendix F.2.
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spread’. Hence, we obtain the following formula for the issuer survival probabilities

PST(0.7) fﬂmjv<P@TﬂP§mJ”

N, .
P(0,7) P1(0,T%) )  HT 2T
By the previous formula the issuer survive probabilities PS?(0,T) for T > T* are
extracted using (a) CDS quotations up to time 7%, i.e. PS?(0,T*), (b) using the ZCB
prices of the issuer I, P/(0,T) and P!(0,T*), obtained from quoted sovereign spot
curves and (c) using the risk free ZCB prices, P(0,7") and P(0,7™), bootstrapped
from the OIS curve.
By this procedure, we have now a market implied term structures of P(0,T), PS(0,T)
and P!(0,T) up to 30 years and we use them to calibrate the parameters of the pro-
cesses r(t), s/ (t) and I7(t), i.e. the risk free short rate and the stochastic credit and
liquidity spreads of the issuers. Calibration results on market quotations at March
30, 2016 of the Vasicek model for r(t), of the CIR model for s!(¢) and of the Vasicek
model for 1! (t) are given in Table 4.1, 4.2 and 4.3 and Figure 4.2, 4.3 and 4.4, re-
spectively. The calibrations are performed through the minimization of Root Mean
Square Deviation (RMSD) between market data (ZCB prices and probabilities of de-
fault) and the corresponding model quantity. In Tables 4.1-4.3, we report the RMSD
and the maximum relative error (MRE), i.e. the maximum of the relative error be-
tween market and model quantities. More details about the calibration procedure
are given in Appendix F.3. Market data are reported in Appendix F.4.
Finally, we estimate the historical correlations between the credit spreads of the two
issuers and we do the same for the liquidity spreads of the two issuers. The data
set covers the period from March, 30°h 2015 to March, 305 2016 and it is composed
by Euro OIS rates with maturity from 1 months to 10 years, CDS spread quotations
of the two issuers with maturity from 6 months to 10 years and bond yield curves
of the two issuers with maturity from 3 months to 10 years. For each date in the
sample, we bootstrap the ZCB prices from OIS rates, then we choose the most lig-
uid maturity and we invert formula (4.3) to extract r(t¢). In this way, we obtain the
historical time series of the risk free short rate r(¢). In order to extract the historical
series of the stochastic credit spreads for each issuer, s’ (t), we bootstrap in each date
the issuer survival probability curve from CDS quotations, using OIS as discount-
ing curve, and then we choose the most liquid maturity and we invert formula (4.7)
to compute s’ (t). The correlation calculated between the series of daily returns of
the two credit spreads is assumed to be a proxy of the correlation between the two
Brownian motions driving the CIR processes. Finally, we subtract the risk free and
the credit components from the bond yields and the remaining part can be identi-
fied with the natural logarithm of formula (4.10), so that we obtain also the series of
the liquidity spreads I/ (t). The correlation calculated between the series of daily re-
turns is assumed to be a proxy of the correlation between the two Brownian motions
driving the Vasicek processes of the two liquidity spreads. More details are given in

? This quantity is given by the following form (as in [Vasicek, 1977])

0.00) = 71— 191
L' (0,00) = —I 33
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Appendix F.3. The historical values of the correlation between Italian and German
credit and liquidity spreads are equal to p. = 0.2463 and p; = 0.3341, respectively.
From a risk management point of view, it is very important to assess the impact of
the correlation on the volatility of portfolio. For this reason, we simulate the portfo-
lio using not only the historical based estimates od correlations but also considering
extreme correlation scenarios, i.e. p. = p; = 1, as well as the zero correlation case.

ro a 7 o | RMSD |MRE (%)
-0.0107|0.1993]0.0135 | 0.0006 [4.9x10~3| 1.5

Table 4.1: Vasicek model: calibrated parameters on the Eonia curve on March 30
2016. The result of the calibration is shown in Figures 4.2. The root mean square
deviation (RMSD) and the maximum relative error (MRE) of the calibration are also
reported.

Country | s b 5 n RMSD | MRE (%)
GER |0.0001 |0.3659 | 0.0075 | 0.0742 | 4.1x 1073 1.1
ITA [0.0001|0.4761|0.0389|0.1925 [1.1x10~2 4.8

Table 4.2: CIR model: calibrated parameters on CDS and sovereign ZCB curves on
March 30 2016. The results of the calibrations are shown in Figure 4.3. The root mean
square deviation (RMSD) and the maximum relative error (MRE) of the calibrations
are also reported.

Country | 1o k I ¢ | RMSD |MRE (%)
GER |-0.0078|0.9990|0.0090 | 0.0021|3.8x10~3| 1.0
ITA  |-0.0001 | 0.4806|0.0261 |0.0011 [8.0x10~3 | 3.4

Table 4.3: Vasicek model: calibrated parameters on the sovereign ZCB curves on
March 30 2016. The results of the calibrations are shown in Figure 4.4.

4.2.2 Risk neutral evaluation and martingale test

In order to prove that the Economic Scenario Generator (ESG) built upon the model
presented in previous section is risk neutral and market consistent, as required by
the regulator under Solvency II directive, martingale tests on sovereign coupon bonds
with different maturities are performed. The martingale process is built by dividing
the total return performance of an asset by a the total return performance of the cash
account, i.e. the numeraire of the risk neutral measure. The results are shown in
Figures 4.5-4.7, using the calibrated parameters presented in Tables 4.1-4.3.
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Figure 4.2: Calibration of the Eonia curve on March 30, 2016 with the Vasicek model.
Blue markers are the market quotations.

German CDS calibration

survive probability
o
©

o o
® ©
kN =3
T T
L L

o
©
RN
T
#

L L L

0 5 10 15 20 25 30
maturity (year)

o
©

Italian CDS calibration
1 T T T T T

4 o o
= ~ ©
T T T

survive probability

o
3
T

04 r

03 L L L L L
0 5 10 15 20 25 30

maturity (year)

Figure 4.3: Calibration of the CDS and ZCB sovereign curves on March 30, 2016
with the CIR model. Blue markers are the market quotations. The last four market
quotations (15, 20, 25 and 30 years) are extracted from ZCB sovereign curves with
the assumption of long term constant liquidity spread as explained in Section 4.2.1.
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German sovereign curve calibration
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Figure 4.4: Calibration of the sovereign BVAL curves on March 30, 2016 with Vasicek
model for the risk free and the liquidity component and a CIR model for the credit
factor. Blue markers are the market quotations.
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Figure 4.5: Martingale test performed on risk free coupon bonds with 100 Monte
Carlo simulations and parameter reported in Table 4.1. The error bars are the 97.5%
confidence intervals.
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Martingale test German sovereign bonds
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Figure 4.6: Martingale tests performed on sovereign German and Italian coupon
bonds with 100 Monte Carlo simulations and parameter reported in Tables 4.1 and
4.2. The error bars are the 97.5% confidence intervals.
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Martingale tests performed on sovereign German and Italian coupon
bonds with 100 Monte Carlo simulations and parameter reported in Tables 4.1, 4.2
and 4.3. The error bars are the 97.5% confidence intervals.
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4.3 Numerical results

In this section, we compare the value of contractual options embedded in Italian in-
surance (with-profit) traditional products, assuming that all government bonds are
risk free, with the value provided by the more complete model described in previous
sections. Overcoming the need of adopting a CEQ approach makes the evaluations
more sensible and robust, and ultimately, more consistent with a risk management
framework. In particular for the credit and liquidity model we study the role of the
correlation among issuers. The possibility to stress parameters such as correlation is
of paramount importance for a model to be of use as a risk management tool '°. This
opportunity is not achievable under the commonly adopted framework. In order
to test the consistency of our approach, we compare the full model including credit
and liquidity spreads with a (less complete) model that includes only credit spread
and with one (incomplete) including only the risk free interest rate as stochastic fac-
tor. In the latter case, we evaluate the embedded option using the (standard) CEQ
approach and a z-spread adjustment calibrated at valuation date. Significantly, all
the results agree with theory. In particular, results show that adjusting cash flows
for risk undesirably affects the value of the option through the statutory accounting
rules of the segregated fund.

4.3.1 Description of the tested portfolio

The ALM set-up described in the previous section is used to simulate, over a 20 years
time-horizon a portfolio of endowments, i.e. life liabilities with death, surrender and
maturity benefit (no annuities), which has a total duration (modified) of about nine
years and which runs-off in approximately 20 years. Liabilities have an average
minimum guaranteed of 3% (7), a total value (mathematical reserve) of one billion
and a vintage year of 4 years. The average policyholder participation coefficient /5 is
near to one and fixed fees are set very low at 25 basis points.

The life liabilities are written on a portfolio of government bonds with fixed or float-
ing rate, issued by Italy or Germany (90% Italian and 10% German) with a total du-
ration (modified) of about nine years. The asset portfolio has an operating (current)
accounting return higher than 3% for the next 5 years.

4.3.2 Evaluation of the embedded option

We perform a Monte Carlo simulation using the apparatus described above and a set
of stochastic scenarios consisting of the risk free rate, the Italian and German credit
spreads and the Italian and German liquidity spreads. The stochastic model adopted
is described in Section 4.2 and the calibration parameters are reported in Tables 4.1,
4.2 and 4.3 in Section 4.2.1.

The embedded option is evaluated under alternative set-ups. In Table 4.4 the stochas-
tic scenarios used to evaluated the VOG are generated using all available risk factors
(set-up 1), which are interest rate, credit and liquidity, while in the set-up 2 only in-
terest rate and credit risk are used.

!The approach presented in this work is also in agreement with the prudent person principle. For
more details please check [AIFIRM, 2016, Paragraph 6]
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The asset calibration is carried out using a z-spread, which is very few basis points
when the complete model is used.

In the first two set-ups different dependence scenarios between the two issuers are
generated and tested. Historical correlations for credit and liquidity spreads of the
two issuers are estimated in calibration Section 4.2.1. Extreme values (-1 and 1) of
the correlation between Brownian motions of credit and liquidity spreads are tested.
Moreover, the portfolio is simulated also in the hypothesis of independent issuers.
Table 4.4 shows clearly that correlation affects sensibly the results and that adding
the liquidity risk to the model increases the value of the option. This is consistent
with the diversification effect which is expected when correlation turns negative. In
fact, increasing the correlation increases the variance of the portfolio and makes the
options more expensive. Although the standard error is still material with only 500
simulations, also in the set-up 2 it is evident that a diversification effect is operating.
In Table 4.5, only interest rate is used to generate stochastic scenarios. In this case
the evaluation is done, in the first case performing the assets calibration with the
z-spread, and in the second case applying a risk adjustment to securities cash flows,
according to the CEQ approach. The difference in results of Table 4.5 is striking.
The explanation is that the option is written on an underlying that depends on ac-
counting rules that are not invariant to arbitrary risk adjustments of cash flows.
Compared to the model used to generate the results reported in Table 4.5, the results
in Table 4.4, Set-Up 1, are obtained using five risk factors (encompassing all the as-
sets classes in position which are German and Italian government bonds), instead of
just one. Therefore, we would have expected a result of the CEQ model close to the
one we have got using Set-Up 1 and perfect correlation. Because the magnitude of
the discrepancy observed between these models cannot be explained by some miss-
ing risk factor or by a smaller volatility of the richer model compared to the CEQ, the
only explanation must be the appropriateness of the constant and arbitrary adjust-
ment derived from the application of the CEQ approach. From Appendix F.1, it will
be clear that any risk adjustment applied to a security’s cash flows would change the
assessment of the statutory income through the gains or losses at maturity of bonds
available for sales, the coupons received, the difference between accrued interest,
and finally, the calculation of average book value, and that all these changes do not
necessarily compensate. To confirm our interpretation of the numerical results, we
have calculated the VOG evaluating the segregated fund return (which is the op-
tion’s underlying) at market value, i.e. we have evaluated the fund applying the
same principles as for the assets classified in the Fair Value Through Profit and Loss
(FVTPL) category as defined by International Financial Reporting Standards (IFRS).
In line with our expectation, the choice of the accounting rules has a great impact
on the value of the embedded option. The most relevant aspect is that the results
obtained with a CEQ approach and whit our model in case of perfect correlation, are
quite close if the fund is evaluated "mark to market" (see Table 4.6). These results
have also an interesting implication, with respect to a topic quite controversial in
economic literature which is whether or not accounting rules have an impact on the
economic value of assets. In case of options embedded into the traditional insurance
life contracts, they do because of the smoothing effect of the volatility of the option’s
underlying they provide (e.g. immobilized assets don’t show return volatility by
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definition if they can be hold to maturity; see also Section 4.1.2).

Correlation | VOG - Set-Up 1| VOG - Set-Up 2
(Spread corr.) | (Std error) (Std error)
-1 10,582,957 8,753,313
(-60.2%) (635,986) (626,633)
0 11,476,256 10,126,767
(-0.8%) (835,419) (780,436)
Hist 11,524,598 10,613,700
(19.1%) (837,614) (848,216)
1 12,210,034 9,995,398
(99.0%) (876,037) (856,718)

Table 4.4: The table reports the Value of Options and Guarantees (VOG) calculated
running 500 stochastic simulations; in parenthesis is reported in the first column
the average correlation observed on simulated spread and in the second and third
columns the standard error of VOG.

VOG - Set-Up 3 (z-spread)
1,987,941
(36,397)

VOG - Set-Up 3 (CEQ)
36,754,113
(337,158)

Table 4.5: The table reports the value of VOG calculated using the z-spread and using
the CEQ approach. Both methods use only interest rate as a stochastic risk factor.

VOG - Set-Up 3 (z-spread)
104,977,985
(1,941,351)

VOG - Set-Up 3 (CEQ)
187,379,809
(1,738,295)

VOG - Set-Up 1 (corr=1)
180,569,933
(8,756,981)

Table 4.6: The table reports the value of VOG calculated using the z-spread and the
CEQ approach with only the interest rate as stochastic risk factor and our full model
with correlation equal to 1. In all cases, the segregated fund which is the option
underlying is evaluated using the FVTPL accounting rule of IFRS.

The reasons for the CEQ approach is not appropriate for the evaluation of this type
of options may be summarised as follows:

- the return of the funds and hence the value of the option depends on accounting
conventions;

- the value of the option also depends on the interaction of assets and liabilities
which is not completely under control of the insurance company and which de-
pends on unobservable (in the capital market) variables such as mortality and sur-
render rates;

- the value of the option depends on discretionary actions (management actions) de-
fined by the company such as the commercial targets on segregated fund statutory
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return, the investment rules including the guidelines to classify newly purchased
assets on the segregated fund balance sheet, the criteria to sell assets to pay for
contractual obligations or for realize gains or losses.

Conclusion

The European directive also known as Solvency II has driven more focus on the
need of sounder risk management practice by insurance companies. At the same
time, it has introduced standards in the evaluation of assets and liabilities in the
attempt of creating a fairer playing field in the insurance sector. Although the Euro-
pean regulator has succeeded in its attempt, this success is not without critics. One
of most debated issues is the assumption that all European government bonds has
to be evaluated using a risk free discounting curve. This assumption together with
the adoption, mandatory in the Solvency II framework, of market consistent evalu-
ations, has pushed insurance companies to adopt the certainty equivalent approach
to cope with the complexity of simulation apparatus needed to carry out all the nec-
essary calculations, while being consistent with the assumptions of the (Solvency
IT) Standard Formula. In this chapter we have analysed the consequences of over-
simplified risk models, in particular where risk adjustment is applied to options
whose underlying depends on accounting rules. Moreover, we have introduced a
new model for European government bonds that is more consistent with prices ob-
served in capital markets and at the same time, more flexible to be used for day-to-
day risk management.
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Appendix A

Proofs of Chapter 1

A.1 Proof Proposition 1.1.1

We consider the lower bound to the swaption price as in formula (1.4) for quadratic
models:

LBgr(k;t) = P(t,T)El

(Z wp, eX(T)TChX(T)-‘rb;X(T)'Fah _ 1> I(g)]

h=1

where theset G = {w € Q: X(T)"T X(T) + 8" X(T) > k}.

We apply the extended Fourier transform (refer to [Titchmarsh, 1986] for a compre-
hensive treatment and to [Hubalek et al., 2006] for examples of financial applica-
tions) with respect to the variable & to the T-forward expected value,

oo = [ et

(Z wy, XD T OhX(T)+b X (T)+an _ 1) IX(T)'TX(T) + B"X(T) > k)] dk.

Assuming that we can apply Fubini’s Theorem, which is verified in concrete cases,
we have

¥(2)

/m eZkI(X(T)TF X(T)+ B"X(T) > k) dk] :

—0o0

The function ¢(z) is defined for k — —oo if Re(z) > 0 and

IS

¥(2)

(Z wy,eXT) T CRX(D)+by X(T)+ap _ 1> AX(T)TT X(T)+ng(T))]

Using the (quadratic) characteristic function of X, ®, calculated under the T-forward
measure, the function ¢(z) can be written as

¥(z) = (Z whe D (by, + 23, Ch, + 2T') — D (26, zr>> L@

z
h=1
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Finally, the lower bound is the inverse transform of ¢(z) in the sense of the Chauchy
principal value integral,

1 6+i&
LBgr(k;t) = P(t,T) —— lim e Fy(2)dz,
’ 127 £—o00 5—i€

where § is a positive constant. The function (6 + i7) is the Fourier transform of
the real function e °*LBgr(k;t), then ¢)(J + i7) has an even real part and an odd
imaginary part. This is useful to simplify the expression above to

e—ékz

LBgr(kit) = P(t,T)

/0+OO Re (e_”kz/J(cs + w)) dry.

™

The proof for a payer swaption follows the same reasoning.

A.2 Proof of Proposition 1.3.1

Here, we show the calculation of the quantity ¢;, defined in equation (1.13). The
computation of the quantity e» follows the same reasoning. Hence, we have to cal-
culate a sum of terms that have the following form:

E{ [(wn P(T, T) — Kn)" 1(G°)].

Substituting into the previous expression the definition of the zero-coupon bond
price P(T,T}) as in formula (1.5), the strike K, as in formula (1.16) and the comple-
ment of the approximate exercise region G as defined in section 1.1.1, we obtain the
following formulation:

E [(wn P(T, Ty) — Kp)* 1(G%)] = wne™ f(k, kp),
where
Fk, k) = BT [(XTTOXTDIFDIXT) _ knyt [(X(T)TT X(T) + BTX(T) < k)],

and kj, = log(K}) — log(wy) — ap. We apply the extended Fourier transform with
respect to the variable k to the function f(k, k;,) and by Fubini’s theorem we obtain

(X(T)TT X(T)+BTX(T))

’ k — X(T) T CLX(T)+b ] X(T k e*
/ e f(k, kn) dk ET | (eX(T) CnX(T)+by, X(T) _ ohn)+
z

—00

The integral converges for k£ — +o0 if Re(z) < 0, then we apply a second extended
Fourier transform with respect to the variable kj,

Foo 1 T T T T
N / evhn LET [(eX(T) CWX(T)+BIX(T) _ ghiyt o= (X(1)TDX(T)+8 X(T))} dk,
z

— 00

+oo
_ Ll K / e (KT ORXIBIX() _ ok
z — 00
I(X(T)TCLX(T) + by X(T) > k) dkh> e <X<T>TFX<T>WTX<T>>} .
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The integral converges for k;, — —oo if Re(y) > 0. Then the function v (z,y) is in
the form

w@m=:[m%[m%w%mﬂhm
P(zB+ (y+1)by,2I'+ (y + 1)Ch)
zy(y +1)

and it is defined for Re(z) < 0 and Re(y) > 0.
Finally, f(k, k) is the inverse transform of (2, y) in the sense of a Cauchy principal
value integral,

- 1 | | 0+i€ J A n+is p ok
== —_— 1 1 -z - h
f (K, kn) (2 dm dm [ dze /n_ig ye V(2. y),

where § < 0 and 7 > 0 are constants. Noting that ¢)(d + ivy,n + iw) is the double
Fourier transform of the function e®*e"*" f (k, k;,), we obtain

e~ 0k o—nkn +& . ) )
flk,kp) = ———— lim lim dy e 0k / dw e “kna(§ 4 iy, m + iw),
—<

4’7'('2 £—00 §—0 —¢

where § < 0 and n > 0 are constants. The inner integral of the above formula
is the Fourier transform of a real function, and so we can use the same symmetry
properties explained in Appendix A.1 and we obtain

e—5k6—nkh +& . +< .
f(k, kp) = ——— lim dy Re <e”k lim dw e~ Fnap(§ 4 iy, m + M)) .

272 =00 Jo s—oo | .

A.3 Proof of the analytical lower bound for Gaussian affine

models

Since X(T') ~ N(u, V) in T-forward measure, then the approximate exercise region
G becomes

G={weQ:B"X(T)>kl={weQ:z>d},

.
where 2 is a standard normal random variable and d = £=8_£
VBTV

The lower bound expression can be written using the law of iterative expectation,

(Z wpePr X(Ttan _ 1) |z] I(z > d)] .

Conditionally to the random variable z, the variable X is distributed as a multivari-
ate normal with mean and variance

LBg(k;t) = P(t,T)E |E]

V3
VBV

EI'[X|z] = p+2v and Var(X|z) =V —vv', with v =
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We can now compute the inner expectation,

LBg(k;t) = P(t,T) (Z wy ET [ewb}f A ALY (PR d)} BT Iz > d)])
h=1

= PT) (Z wy, e PrptsVitadi N(d, — d) — N(—d)) .
h=1

where Vj, = b} (V — vvT)by, d; = b} v and N(x) is the cumulative distribution
function of standard normal variable. The proof for a payer swaption follows the
same reasoning.

A.4 Proof of the upper bound formula for Gaussian affine
models

Since X ~ N (p, V) in T-forward measure and using the law of iterative expectations,
then

EX [(wye® on X(T) — g\ P 1(BTX < k)]
= EIE[(wpe™ XD — k)Y Z2)1(Z < d)],

d 1 22 T
= / dz e 7 Bl [(wpe®Pr X1 _ )F|Z = 2].

—s0o V27
where Z ~ N(0,1) and d = \k/%

Since b;X conditioned to the variable Z is a normal random variable with mean
and variance,

M, =El'b}X|Z =2 =b) u+zb] v,
Vi = Vargbl X|Z = 2] =b} (V —vv )by
VB

N

then the conditioned expectation can be evaluated with a Black formula,

EtT[(wheah+bZX(T) . Kh)+|Z _ z]

= Wy (eszhN (Mh ~ logVp + Vh> v <M—1gY)> |
\/Vh \/Vh

where Y}, = wfﬁ and N (z) is the cumulative distribution function of a standard

normal variable.
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Appendix B

Models description of Chapter 1

B.1 Affine Gaussian models

Affine Gaussian models assign the following stochastic differential equation (SDE)
to the state variable X,

dX(t) = K(0 — X(t)) dt + X dW(t) and X(0) = xq

where W, is a standard d-dimensional Brownian motion, K is a d x d diagonal matrix
and Y is a dxd triangular matrix. The short rate is obtained as a linear combination of
the state vector X; it is always possible to rescale the components X;(¢) and assume
thatr(t) = ¢ + Zle Xi(t), » € Rwithout loss of generality.

The ZCB formula (1.5) and T-forward characteristic function (1.6) of X can be ob-
tained in closed form using the moment-generating function of a multivariate nor-
mal variable or solving the ODE system in [Dulffie et al., 2000], and the solution is
given, for example, in [Collin-Dufresne and Goldstein, 2002].

B.2 Multi-factor CIR model

In this model, the risk-neutral dynamics of the state variates are
dXi(t) = ai(6; — Xi(t))dt + o5/ Xi(t)dW'(t) and X(0) = xo,

where i = 1, ...,d, W'(t) are independent standard Brownian motions, and a;, §; and
o; are positive constants. The short rate is obtained as r(t) = ¢ + Zle X;(t), where
¢ eR.

In multi-factor CIR models, the bond price (1.5) and the characteristic function (1.6)
have closed-form expressions, which are given, for example, in [Collin-Dufresne and
Goldstein, 2002].

B.3 Gaussian model with double exponential jumps

In this model, the risk-neutral dynamics of the state variates are

dX(t) = K(0 — X(t)) dt + S dW (t) + dZ* (t) — dZ~(t) and X(0) = xq,
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where W, is a standard d-dimensional Brownian motion, K is a d x d diagonal ma-
trix, ¥ is a d x d triangular matrix and Z* are pure jump processes whose jumps
have fixed probability distribution » on R? and constant intensity p*. The short
rate is obtained as a linear combination of the state vector X. In particular, 7=+ are
compounded Poisson processes with jump sizes that are exponentially distributed,
ie.

+
where [ = 1, ..., d is the factor index, N jE(75) are Poisson processes with intensity “7
and Yﬁ, for a fixed [, are independent identically distributed exponential random
variables of mean parameters m;".

Since u* do not depend on X, we know that
d(N) = Ez‘ [eATX(T)] _ (I)D()\) oA (T—tX) =AY (T—1) (B.1)

where ®P () is the T-forward characteristic function of the affine Gaussian model
and the function A7(r,\) is available in closed form (see [Duffie et al., 2000] for
further details).

B.4 Gaussian quadratic model
In this model, the risk-neutral dynamics of the state variates are
dX(t) = K(0 —X(t)) dt + X dW; andX(0) = x,

where W, is a standard d-dimensional Brownian motion, @ is a d-dimensional con-
stant vector, K and ¥ are d x d matrix. The short rate is a quadratic function of the
state variates, r(t) = a, + b, X(t) + X(t)'C.X(t), a, € R, b, € R?and C, isad x d
symmetric matrix.

We solve the system of ordinary differential equation for the functions A(7, X\, A),
B(7,\, A), C(1,\, A) in formula (1.6), using the method proposed in [Cheng and
Scaillet, 2007]. The closed-form evaluation of these functions proposed in [Cheng
and Scaillet, 2007] requires the calculus of a matrix exponentiation and a numerical
integration. However, numerical tests show that this method is much faster than
numerically solving the ODE system using the Runge-Kutta or Dormand-Prince
schemes.
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Appendix C
Proofs of Chapter 2

C.1 Proof of Proposition 2.2.1

The proof is similar to the single-curve affine Gaussian case. As in that case, X(7') ~
N(p, V) in T-forward measure and the approximate exercise region G becomes

G={weQ:B"X(T) >k} ={we:z>d},
k=BT

. S NI |
The lower bound expression can be written using the law of iterative expectation,

where z is a standard normal random variable and d =

n
LBg(k;t) = P(t,T)Ef |ET || Y wijeCu XOHan G2 X(D4az | 121 [ (2 > d)

Conditionally to the random variable z, the variable X is distributed as a multivari-
ate normal with mean and variance

VB
VBTve

El'[X|z] = p+2zv and Var(X|z) =V —vv', with v =

We can now compute the inner expectation,

n
LBa(k;t) = P(tT) [ wyEF [ealﬁGEH“GEV*%VﬁI(z>d)}
j=1

n
) T T 1yG

j=1
where VG GT(V —vv)Gyj, dij = Giij and N(z) is the cumulative distribution
function of the standard normal variable. The proof for a receiver swaptions follows

the same reasoning.
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C.2 Proof of Proposition 2.3.1

The proof is similar to the single-curve affine Gaussian case except that instead of the
Black formula, we apply Margrabe’s formula ( [Margrabe, ]) for exchange options.
Here, we show the computation of the quantity €; defined in proposition (2.3.1). The
evaluation of €, follows the same steps. Since X ~ N (u, V) in T-forward measure
and using the law of iterative expectations, then

EtT[(wlj €a1j+GLX(T) _ ij ea2j+G2TjX(T))+I(BTX < k)]

= ET[E] [(wy; et OXT) — ;22 G2 XM F 7]1(Z < )],

d
1 22 T T
— dz e~ T ET[(U)l‘ ea1j+G1]~X(T) — i €a2j+G2jX(T))+|Z _ Z].
- /7271_ t J J
where Z ~ N(0,1) and d = £2£

VBTVE
G;;X conditioned to the variable Z is a normal random variable with mean and
variance

M;; =B [G)X|Z = 2] = Gju + 2G]}v,
VI =Van|GlX|Z = 2] = G (V — v )Gy
VB

VB've

Hence, considering for each fixed j the following two underlying variables

VvV =

a1 +G.X(T
Slj = wije 114 ()7

. T
Spj = gy e TOHXI),

the conditional expectation can be evaluated with the Margrabe formula
Ef[(wlj eau-ﬁ-GLX(T) N ’LZ)QJ ea2j+G;jX(T))+’Z _ Z]
My lyG N A My LvG
= wy; e MRV N (dyj) — gy e® TRV N (dyy)

. log (g;) + Myj + ayj — Maj — agj + V{5 — Cov;
15 = )
\/Vg + Vg —2Cov;

dgj = dlj—\/VngVij—2Covj,

where Cov; = GlTj(V — v )Gy fori=1,2and j = 1,...,d and N(z) is the standard
Gaussian cumulative distribution function.
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Appendix D

Parameters values - Chapter 1 and 2

Three-factors Gaussian model and Cox-Ingersoll-Ross model
We verify the accuracy of our bounds using models and parameter values that have
already been examined in the literature!

1.0 0 0
e Three-factor Gaussianmodel: K = | 0 0.2 0 |,6=[0,0,0]T, o =[0.01,0.005,0.002] T,
0 0 05

1 —0.2 —-0.1
p=1-02 1 0.3 |, ¥ =diag(o) chol(p)?, z¢ = [0.01, 0.005, —0.02] " and
—0.1 0.3 1
¢ = 0.06;

e Two-factor Cox-Ingersoll-Ross model: a = [0.5080, —0.0010] ", 8 = [0.4005, —0.7740] ",
o =[0.023, 0.019] T, zo = [0.374, 0.258] " and ¢ = -0.58.

Numerical results for this model are shown in Tables 1.1 and 1.6.

Moreover, we specify the interval of parameters of the two-factor CIR model from
which we extract the 100 parameters sets for the RMSD calculation: =y € [0.001, 0.5] %
[0.001,0.5], ¢ € [0.001,1], a € [0.001,1] x [0.001,1], & € [0.001,1] x [0.001,1], o €
[0.001, 4/2a(1)8(1)] x [0.001, /2a(2)6(2)].

Two-factor Gaussian model with double exponential jumps

We test the affine Gaussian model with exponentially distributed jumps using pa-
rameter values obtained by minimization of the least square distance between the
model and the market discount curve implied by bootstrapping the Euribor six-
month swap curve up to 30 years. The calibration is performed on January 4th 2015,
to obtain the parameters set reported below.

Parameters:

1 [Schrager and Pelsser, 2006] and [Duffie and Singleton, 1997] for the two-factor CIR model.

2diag(a') means the diagonalization of the vector o and chol(p) means the Cholesky decomposi-
tion of the correlation matrix p, where o and p are the volatility vector and the correlation matrix,
respectively, of the original paper.
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0.050926 0

— T __ T
0 136s7|/0=[0.01",0=[0.0048887,0.24025] ",

e Gaussian parameters: K = [

B 1 —0.1482
P=1_0.1482 1

0 = [0.00035256, 0.00035497]T and ¢ = 4.332 x10~5;

} , 2 = diag(o) chol(p),

e Jump parameters: p* =0.4372, m* = [0.027372,0.045667] T,
p~ =0.1101, m~ = [0.027043,0.012339] ".

Figure 3 shows fitting of the calibration. Numerical results for this model are shown
in Tables 1.7-1.9.
[Figure 3 approximately here]

Two-factor quadratic Gaussian model
Beyond the affine framework, we test the two-factor quadratic Gaussian model us-
ing the following parameter values as proposed by [Kim, 2007]:
o [F0.0541 0.0361]
—1.2113 0.4376|’

0.0145 0

0 0.0236

1 0.4412
0.4412 1

6 =[0.1932, 0.1421]7, ¥ = [ ],:co = [0.1690, —0.0501]T,

a, =0.0444, b, = |0, O]T and C, = {
are shown in Tables 1.10-1.12.

] ; Numerical results for this model

Multiple-curve two-factor Gaussian model

We verify the accuracy of our bounds using the following fixed parameters:

A = [0.0073,4.7344], n = [0.1581,0.8894], h = [0.0059,0.0411], p12 = —0.8577, By =
1.3160, p1 = 1.3327 and 5 = 0.5900. Numerical results for this model are shown in
Tables 2.2-2.4.
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Appendix E

Appendices - Chapter 3

E.1 Martingales: change of time and change of measure

In most of the practical cases, it is true that the time change does not affect the mar-
tingale property. However this is not a trivial consequence of the optional stopping
theorem. This is why the optional stopping theorem requires the boundedness of
the stopping time or the uniform integrability of the initial martingale. As we see
in the previous section the random time change is a family of almost surely finite,
but not bounded, stopping times. Moreover the uniform integrability is a strong re-
quirement that is not easy to ensure (See [Kallsen and Shiryaev., 2002a] or [Criens
et al., 2015]). In this section we investigate the sufficient conditions to guaranteed
that a time-changed martingale is again a martingale without the two previously
mentioned hypothesis.

First it is useful to connect the martingale property with the change of measure
toolkit.

Consider a filtered space (€2, ) and two measures, P and Q, defined on it. P is a
probability measure, instead Q can be a probability measure or a complex measure.

Definition E.1.1. The measure Q is said to be locally absolutely continuous with

1
respect to P and we write Q 2<C P, if Q; <« P; Vt € RT, where P, and Q; are the
restriction of the measures on F;.!

1
Definition E.1.2. If Q < P, we define the Radon-Nikodyn derivative as the random
variable

dQ
e
and the density process is defined as
Z(t) = dQ .
dP | 74y

The link between change of measures and martingales is given by the following
proposition.

loc
fQ € Pand Qo < P, then Q < P.
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Proposition E.1.3 ( [Jacod, 1979] Proposition 7.14). The following statements are equiv-
alent:

loc
i) Q<K P,
(ii) Z is a P-martingale and E[Z(0)] = 1.

Now we are interested in the behaviour of the process Z(t), when we introduce a
stopping time. A relatively well known result concerning the relationship between
change of measures and stopping time, is the following.

I
Proposition E.1.4. If Q <Pand Tisa F -stopping time then

QANA{T < x0}) = / Z(T) dP (E.1)
AN{T< oo}
foreach A € F, i.e. with restriction to the set {T' < oo}, Qr < Pr and
Z(T) = aQ :
| Fry

The previous proposition is presented in different books, we cite some of them
for interested readers: [Revuz and Yor, 1998] (Proposition VIIL.1.3) and [Jacod and
Shiryaev, 2002] (Theorem I11.3.4).

Now we derive a straightforward, but important, application of the results previ-
ously presented.

I
Corollary E.1.5. Let 7(t) be a time change as defined in section 3.1 and Q < Pwith respect
to the filtration F.
If vVt € RT Q(7(t) = 00) = 0, then the process

_ 4

M) = 20(0) = G|

(E.2)

is a P-martingale respect to the time-changed filtration G = (F () )i>o0-

Proof
For each fixed t € R*, Q) < P, by proposition E.1.4, and the restriction to the
set {7(t) < oo} is negligible since 7(¢) is finite P-almost surely and Q-almost surely.

1
Hence Q < P on the time-changed filtration G = (F,(;))t>0, by definition. Finally
due to the equivalence in proposition E.1.3, the density process Z(7(t)) is a martin-
galeon (92, G,P). O

Now, for clarity, we resume the results and we explained what happens in practice.

e We start with a P-martingale Z such that E[Z(0)] = 1,

e then Z “induces” a new measure Q that is locally absolutely continuous respect
toP,
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e if the time change 7(¢) is finite Q-almost surely then we known that the time-
changed process, M(t) = Z(7(t)), is again a martingale.

Remark E.1.6. It is useful to note that the starting measure P is always a a probability
measure (a real positive finite measure), instead Q is a measure that can be complex.
Q can be (locally) absolutely continuous respect to P, but if it is complex then the
vice-versa does not make sense. This means that, if Q is complex, I’ and Q can not be
(locally) equivalent and the change of measure makes sense only in one way, from PP

1 1
to Q. Instead if Q is a probability measure and Q p (i.e.Q <O<C P and P 2<C Q), then Z
and + are real strictly positive martingales and  is the Radon-Nikodyn derivative
of P respect to Q.

Remark E.1.7. In practical cases 7(t) is modelled as a P-semimartingale. The Girsanov

theorem for semimartingales asserts that, if Q l<0<C P with Radon-Nikodyn derivative
Z, then 7(t) is a Q-semimartingale and more important the new semimartingale
characteristic is Q-almost surely finite valued, as observed in [Jacod and Shiryaev,
2002] (theorem 3.24, pages 172-173).

E.2 Integrated time-changed Lévy processes

We are interested in studying the behaviour of the process
Mp(t) = e Jo £(5) dY (5)=Jo w(65(s) v(s-) ds (E.3)

where § € C, Y = X(r) is a time changed Lévy process, 7(t) = fgv(s,)ds, P()
is the characteristic exponent of X analytically extended to Cand f : R — Risa
continuous deterministic function. For instance, the density process in equation 3.9
is modelled as M;(t), where f(s) = (s, T') represents the volatility function.

Our aim is to prove that My is a P-martingale. In Appendix E.1, we prove that a
time-changed martingale is again a martingale. In the following, we summarize the
main results concerning time-changed martingale:

- If a process, Z, is a P-martingale such that E[Z(0)] = 1, then it “induces” a new
measure Q that is locally absolutely continuous respect to P.

- If the time change 7(t) is finite Q-almost surely, i.e. Q(7(t) = oo) = 0, then we
know that the time-changed process, M (t) = Z(7(t)), is again a P-martingale.

- Moreover, if 7(t) is modelled as a P-semimartingale, the technical condition Q(7(t) =
o0) = 0 is not a real constraint. In fact the Girsanov theorem for semimartingales
guarantees the finiteness of 7 (see Remark E.1.7).

In order to show that Mj is a time-changed martingale, we require the existence of a
process Zg such that My = Zy(7) and Zy is a martingale.

Hence, we need the following result about the change of variable for stochastic inte-
grals.
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Proposition E.2.1. Let X bea F-semimartingale. Let T be a continuous and strictly positive
F-time change. T is the right inverse of 7. If H € L(G, X (7)), where G; = F), then
H(T—) € L(F, X). Moreover, for all t > 0

7(t)

/0 () dX(r(s) = [ H(E(s-) dX (), (E.4)

with probability one.

Now we have to give a rigorous definition of the right-inverse of a time change, we
refer the interested reader to [Barndorff-Nielsen and Shiryaev, 2015].

Definition E.2.2. Given a random time change 7(t), its right-inverse is the process
defined by
7(s) =inf{t > 0: 7(t) > s}.

Lemma E.2.3 ( [Barndorff-Nielsen and Shiryaev, 2015]). Let A = (A(t))i>0 be a F-
adapted right-continuous random process with A(0) = 0 and

7(s) =inf{t > 0: A(t) > s}.
The family of random variable T = (7(s))s>0 constitutes a time-change.

Since 7(t) is a RCLL increasing process then the family of random variables (7(s))s>0
is a random time change with respect to the time-changed filtration G. Moreover, if
7T is continuous and strictly increasing, we have the following result.

Lemma E.2.4 ([Barndorff-Nielsen and Shiryaev, 2015]). If 7(t) is continuous and strictly
positive then

- 7(7(t)) = tand 7(7(s)) = s,
- 7(s) = 77 Ys) and T(t) = T7L(1).

Further, if T' is a F-stopping time then Fr = Gz(1y = Fr(7(T))-

Now we have all the elements to prove the proposition E.2.1.

Proof of Proposition E.2.1

By Lemma E.3.1, Y := X (1) is a G-semimartingale. 7 is a G-time change. Since 7 is
continuous (7(t) = 7(t_)), for any s > 0

Y(7(s)) = X(7(7(s))) = X(7(7(s)-)) = X (7(7(s-))) = YV(7(5-))-

Thus, Y is 7-adapted. Let H € L(G, X (7)), from proposition E.3.2 H(7—) € L(G, X),
where G; = Gz(;). Since 7 is continuous and strictly positive, then by Lemma E.2.4
G = F. Thus, H(7—) € L(F, X). By proposition E.3.2, with probability one

(1) ¢
/ H(s) dY (s) = / H(7(s_)) dY (7(s))
0 0
- / H(7(s_)) dX (r(7(s))) = / H(7(s_)) dX (s)
0 0
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forall t > 0. The last passage derives from the fact that 7 is continuous and therefore
7(7(t)) = t almost surely
Hence, with probability one,

/0?(7(15)) / H(R(s_)) dX(s).

Since Y is 7-adapted, i.e. Y is constant in [7(t_),7(t)], then [; H(s)dY (s) is 7-
adapted.
By Lemma E.2.4 7(7(t)) = t, consequently

7(r(t)) t
/ H(s)dY (s) = / H(s)dY (s)
0 0

Hence the thesis is proved. O

If 7 is continuous and strictly increasing (i.e. v strictly positive), we apply Proposi-
tion E.2.1 to the exponent of My (formula E.3) to obtain

My(t) = Zo(r(t)) and Zp(t) = e Jo [F(=)) dX()=[gv(0f(F(s-))ds (E 5)

As f(7—) is a F-predictable process with continuous paths, we can apply the fol-
lowing proposition, deduced from [Raible, 2000].

Proposition E.2.5. Let X be a Lévy process satisfying Assumption 3.1.1. Let H be an
adapted process with left continuous paths such that it takes value in [—My, Ms] C R.
Define the set

My My

G)::{HG(C:—(1—i—e)rmn<]\/[2 M,

) < —Im(0) <1+¢€}.

If 6 € ©, then the process

Zo(t) = ¢t JEH(s)dX (s)— [ w(0H(s))ds
is a martingale, where 1) is the characteristic exponent of X.
Remark E.2.6. Since § = —i always belongs to ©, then

Z_i(t) = efo HEAX ()= [gv(=iH()ds _ ofg H(s)dX (s)= g r(H(5))ds

is a martingale.

Identifying f(7—) with the process H of Proposition E.2.5, we can conclude that if

f is bounded and f = sup | f(¢) |< min(M;, Ms), then Zy is a martingale on the
>0

probability space (2, F,P) .

So Zy induces a new measure Q? l<0<C P and by Corollary E.1.5, we know that if Ql(r =
00) = 0, then My is a martingale respect to (2, G, P).

As previously mentioned, the finiteness of 7 under Q’ is guaranteed by the Girsanov
theorem for semimartingales.
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E.3 Useful literature results

We report useful literature results for the reader’s convenience.

Proposition E.3.1 ( [Kallsen and Shiryaev., 2002b], Lemma. 2.7). Let 7 be a time
change. Let Z be a F-semimartingale and T-adapted®, i.e. for any t > 0, Z is constant
on [t(t-),7(t)] . If (B,C,v) is the characteristic of Z, then Y = Z(r) is a martingale
respect to the filtration G, where (Gt)i>0 = (Fr))t>0, with characteristic (BY,CY ,vY)
defined as

BY (t) = B(r(t), CY(t) = C(r(t)) and Ig + v} =1Ig % vy
wheret e R, E € B4 3

Proposition E.3.2 ( [Jacod, 1979], Prop. 10.21). Let 7 be a time change. Let Z be a F-
semimartingale and T-adapted. If H € L(Z, F) (i.e. H is a F-predictable process integrable
respect to the semimartingale Z), then H(t—) € L(Z(7),G). Moreover with probability
one, for all t > 0:

7(t) t
H(s) dZ(s) = /0 H(r(s_)) dZ(7(s)). (E.6)

0

Remark E.3.3. An important observation is that every stochastic process is T-adapted,
if 7 belongs to the class of absolutely continuous time changes. If 7 is defined through
the path-wise integral of an intensity as in equation (3.3), then it is absolutely con-
tinuous.

Proposition E.3.4. ( [Raible, 2000] Prop. 7.8) Let H be a predictable bounded process and
let X be a Lévy process. For each u € R, the process

Z,(t) = ol J H(s)dX (s)— [y (uH (s))ds

is a martingale, where 1) is the characteristic exponent of X.

’In literature are common also the expressions 7-continuous or 7-synchronized.
3B is the Borel sigma algebra of R?.
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Appendix F

Appendices - Chapter 4

F1 Segregated fund accounting rules

In this section we describe briefly how the performance of fixed income securities
(coupon bonds) is calculated in case of Italian segregated funds. More information
can be found in the book [Corvino, 2003]. Similar rules are applied to traditional sav-
ing and pension products also by other countries in continental Europe (e.g. France,
Germany; see [Therond, 2008] or [PWC, 2010]).

The components of the accounting performance are the determination of the bond
current (periodical) income and the average book value.

A bond’s current income is made of the following elements:

coupons paid during the year or calculation period,

- difference between initial and final accrued interests, during the calculation pe-
riod,

amortisation,

any realized gain or loss due to sales of part or all the quantity in position,
- any realized gain or loss at a bond’s maturity date.

The amortisation depends on the classification the bond receives when it is pur-
chased. The same asset can have more than one classification in the same segre-
gated fund. Admissible classifications are of two types: Immobilised, or Available
for Sales. When a bond is classified as immobilised it cannot be sold before maturity
and the difference between price paid when the asset was purchased and its value
at maturity (reimbursement) can be amortised linearly every year. If instead a bond
is classified as available for sales, the bond can be sold at any time, but only the dif-
ference between issue price and reimbursement price can be amortized. Therefore, a
remarkable characteristic of assets classified as available for sale within a segregated
fund, is that in case they are purchased above par, the difference between the face
value and the price is accounted as a loss (negative income or a cost) when the bond
matures. Obviously, the same applies with opposite sign when assets are purchased
below par.
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In order to calculate the statutory accounting return or performance, the income as-
sessed during the calculation period has to be divided by the average book value.
The average book value is the time weighted average of the book values of the as-
sets in position during the calculation period. A numerical example may help un-
derstanding. Let us assume the calculation period is one year, that a bond with a
notional of 1000 Euro is purchased at a price of 100 at the beginning of the year and
then another bond of the same type with a notional of 1000 Euro is bought at a price
of 110 after 6 months and hold until year’s end. Then the average book value is
1000 0.5 + 2100 0.5 = 1550.

For those that have some knowledge of financial assets performance measurement,
this is a way to compute a money weighted performance.

E2 EIOPA curve construction

In this Appendix, for aim of completness, we describe the procedure to obtain the
regulatory-specific risk free curve. Our presentation is based on the EIOPA official
technical documentation as of May, 30 2016 ( [EIOPA, 2016]).

EIOPA curve is based on the bootsrapping of the 6 months Euro swap rates from 1
year maturity onwards.

The credit risk adjustment (CRA) is applied trough a parallel downward shift of the
observed par swap rates. For the Euro curve, the CRA is the difference between the
3 months OIS rate and the 3 months Euro swap rate, in spite of the fact that in the
technical documentation is said “The maturity of the OIS rate used to derive the CRA is
consistent with the tenor of the floating legs of the swap instruments used to derive the term
structure.”

After the CRA, a Smith-Wilson method (described in details in EIOPA technical doc-
umentation) is used to extrapolate forward rates between a maturity of 20 years (the
“last liquid point”) and a maturity of 60 years (the “convergence point”). The one-
year zero-coupon forward rate is assumed to converge towards a Ultimate Forward
Rate (UFR), that for the Euro zone is settled equal to 4.2%. As specified in the doc-
umentation: “The control input parameters for the interpolation and extrapolation are the
last liquid point, ultimate forward rate (UFR), the convergence point and the convergence
tolerance.”

Finally, a Volatility Adjustment (VA) treatment is applied on the ZCB curve. The
VA is published by EIOPA at least on a quarterly basis for each relevant currency.
The technical documentation defines the VA in the following way: “The volatility
adjustment (VA) is an adjustment to the relevant risk-free interest rate term structure. The
VA is based on 65% of the risk-corrected spread between the interest rate that could be earned
from bonds, loans and securitisations included in a reference portfolio and the basic risk-free
interest rates.”

As highlighted in [Karoui et al., 2015], the two adjustments, CRA and VA, create a
market consistency issue of the curve. In particular, it is not clear why the CRA for
the Euro currency is based on a different tenor with respect to the swap curve. In
addition, after the VA correction the curve is no more risk free, since this adjustment
contains the credit and liquidity risk of bonds loans and securization.
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E3 Calibration procedure

The calibrations are performed through the minimization of the sum of squared dif-
ferences between model and market data as follows:

min ZT]:[:l(Marketn — Model,,(©))?
@ I

N

where N is the number of available market quotations, Market,, and M odel,, are
the market and the model quantities, respectively, and O is the vector of the model
parameters.

Once we have calibrated the model, for each curve, we report the root mean square
deviation (RMSD) and the maximum relative error (MRE), defined as follows

N
1
RMSD = —— Market,, — Model* )2
M — M *
MRE =  max | Market,, odel? |
n=1,..,N Market,,

where Model;, is the model quantity calculated in correspondence of the optimal
parameters vector, o*.

The market quantities used for calibration purpose are ZCB prices for the Eonia and
sovereign bonds curves, and CDS quotes.

The calibration is performed in three steps; firstly a Vasicek model is calibrated on
the Eonia ZCB curve, secondly a CIR model is calibrated on the survival probability
curve, finally the liquidity parameters (Vasicek) are calibrated on the sovereign or
corporate ZCB curve, fixing the other parameters previously obtained.

We report the explicit form of the historical correlation estimated between the lig-
uidity spreads through the procedure described in section 4.2.1:

1 — e~ (kitha)dt 2y k1ks
\/(1 — e—2k1dt) (1 — g—2ka2dt) k14 k2

pit = Corr(di* (), dI*(t)) = pi (E1)

where p; is the correlation between the two Brownian motions. Hence, the estimated
correlation is not exactly equal to the model correlation. However, for small d¢ the
difference between the two correlations goes to zero, for this reason we choose his-
torical series of daily returns.

We do not have an explicit formula for the correlation between credit spreads, but
the procedure of the estimation follows similar reasoning.

F4 Market data

We report market data on March 30, 2016 used for calibrating the model. Market
data are taken from the provider Bloomberg.
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Maturity | Mid swap rate (%) | Maturity | Mid swap rate (%)
04-Apr-16 -0.3470 03-Apr-18 -0.4106
08-Apr-16 -0.3574 01-Oct-18 -0.3908
15-Apr-16 -0.3555 01-Apr-19 -0.3813
02-May-16 -0.3482 01-Apr-20 -0.3315
01-Jun-16 -0.3503 01-Apr-21 -0.2548

01-Jul-16 -0.3507 01-Apr-22 -0.1547
01-Aug-16 -0.3645 03-Apr-23 -0.0437
01-Sep-16 -0.3690 02-Apr-24 0.0724
03-Oct-16 -0.3696 01-Apr-25 0.1819
01-Nov-16 -0.3724 01-Apr-26 0.2855
01-Dec-16 -0.3760 01-Apr-27 0.3655
02-Jan-17 -0.3816 03-Apr-28 0.4624
01-Feb-17 -0.3860 01-Apr-31 0.6499
01-Mar-17 -0.3936 01-Apr-36 0.8062
03-Apr-17 -0.3982 01-Apr-41 0.8659
02-Oct-17 -0.4067 02-Apr-46 0.8818

Table F.1: Term Structure of zero rates from EONIA swap market quotes on March
30, 2016.

CDS Germany CDS Italy
tenor (year) | spread (bps) | tenor (year) | spread (bps)
0.5 5.29 0.5 28.45
1.0 5.44 1 36.00
2.0 6.71 2 67.06
3.0 8.94 3 86.62
4.0 14.86 4 114.10
5.0 18.38 5 122.36
7.0 27.01 7 150.81
10.0 38.54 10 186.00

Table F.2: Term Structure of German and Italian CDS spreads on March 30, 2016.
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German sovereign curve | Italian sovereign curve
tenor yield( %) tenor yield (%)
0.25 -0.504 0.25 -0.166
0.5 -0.422 0.5 -0.053
1 -0.460 1 -0.058
2 -0.481 2 -0.002
3 -0.469 3 0.093
4 -0.426 4 0.230
5 -0.361 5 0.396
7 -0.183 7 0.772
8 -0.079 8 0.965
9 0.024 9 1.143
10 0.117 10 1.300
15 0.467 15 1.827
20 0.679 20 2.145
25 0.776 25 2.360
30 0.844 30 2.382

Table F.3: Term Structure of zero rate of German and Italian BVAL sovereign curves
on March 30, 2016.
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