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“Nothing in life is to be feared, it is 

only to be understood. Now is the 

time to understand more,  

so that we may fear less.”  

 

Marie Curie 
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ABSTRACT 

Cancer cells adapt their metabolism to meet the energetic and 

biosynthetic demands associated to their enhanced growth. Metabolic 

alterations in cancer are under direct control of oncogenes such as ras, 

and include the increase in glucose and glutamine consumption, 

decreased mitochondrial activity and increase in ROS production. Since 

molecules out of many cascades of interconnected biochemical pathways 

are involved in oncogenesis, cancer is a Systems Biology disease, requiring 

the integration of the knowledge derived from experimental results 

through mathematical models. 

Here we study the effect of K-ras oncogene activation in NIH3T3 mouse 

fibroblasts on transport and metabolism of cysteine and methionine, the 

two proteinogenic sulphur-containing amino acids. While methionine may 

act as a precursor for cysteine synthesis, cysteine is in turn a precursor for 

the biosynthesis of antioxidant glutathione. We show that cysteine 

limitation and deprivation cause apoptotic cell death in both normal and 

K-ras-transformed fibroblasts (NIH-RAS), due to accumulation of reactive 

oxygen species and a decrease in reduced glutathione. Only cysteine-

containing glutathione partly rescues the cell growth defect induced by 

limiting cysteine, showing that mouse fibroblasts use cysteine mainly in 

the synthesis of glutathione and require an exogenous cysteine source for 

protein synthesis. On the contrary, methionine limitation and deprivation 
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have only a cytostatic effect on mouse fibroblasts, unaffected by 

glutathione. NIH-RAS cells -but not their parental NIH3T3- are extremely 

sensitive to methionine limitation. This fragility correlates with decreased 

expression of the Slc6a15 gene -encoding the nutrient transporter SBAT1, 

known to exhibit a strong preference for methionine- and decreased 

methionine uptake. Remarkably, expression of the ortholog human gene 

SLC6A15 is mostly down-regulated in the NCI-60 human cancer cells. An 

exception is represented by melanoma cells, in which SLC6A15 is highly 

up-regulated. Thus, therapeutic regimens of cancer involving modulation 

of methionine metabolism could be more effective in cells with limited 

methionine transport capability. 

We next study glutamine roles in metabolism and redox homeostasis in K-

ras-transformed NIH3T3 mouse fibroblasts (NIH-RAS), by complementing 

glutamine deprivation with dimethyl-α-ketoglutarate (AKG) and 

nonessential amino acids (NEAA). The combination AKG+NEAA only partly 

rescues glutamine deprivation and weakly activates mTOR pathway. This 

substitution results in low levels of nucleotides and the non-use of 

reductive carboxylation of AKG –predicted by ENGRO model– to 

synthesize lipids, whose content is lower due to downregulated 

expression of genes involved in lipogenesis that correlates with lower 

NADPH levels.  
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Thus, in NIH-RAS cells glutamine is essential as a carbon and nitrogen 

source for biosynthesis (amino acids, nucleotides and glutathione) and as 

a signaling molecule. 

We successfully exploit an integrated, Systems Biology approach to study 

nutritionally-perturbed transformed cells, pushing forward a system-level 

understanding of complex diseases like cancer. 
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RIASSUNTO 

Le cellule tumorali adattano il loro metabolismo per far fronte alle 

richieste energetiche e biosintetiche associate alla loro maggiore crescita. 

Le alterazioni metaboliche nel cancro sono sotto il controllo diretto di 

oncogeni come ras e includono l’aumento del consumo di glucosio e 

glutammina, una ridotta attività mitocondriale e un aumento nella 

produzione di specie reattive dell’ossigeno (ROS). Poiché molecole 

appartenenti a molteplici cascate di vie biochimiche interconnesse sono 

coinvolte nel processo di oncogenesi, il cancro è una malattia che 

necessita di essere studiata attraverso la Biologia dei Sistemi e che 

richiede l’integrazione della conoscenza derivante dai risultati 

sperimentali all’interno di modelli matematici. 

In questa tesi viene studiato l’effetto dell’attivazione dell’oncogene K-ras 

in fibroblasti murini NIH3T3 sul trasporto e sul metabolismo di cisteina e 

metionina, i due amminoacidi solforati utilizzati nella sintesi proteica. 

Mentre la metionina può fungere da precursore per la sintesi della 

cisteina, la cisteina, a sua volta, è un precursore per la biosintesi 

dell’antiossidante glutatione. I dati qui riportati mostrano che la 

limitazione e la deprivazione di cisteina causano la morte cellulare per 

apoptosi sia nelle cellule normali sia in quelle trasformate da K-ras (NIH-

RAS), a causa dell’accumulo di specie reattive dell’ossigeno e di una 

diminuzione del glutatione ridotto. Soltanto il glutatione, che contiene la 
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cisteina nella sua struttura, complementa parzialmente il difetto di 

crescita indotto dalla limitazione di cisteina, evidenziando così che i 

fibroblasti murini utilizzano la cisteina soprattutto per la sintesi del 

glutatione e richiedono una fonte esterna di cisteina per la sintesi 

proteica. Al contrario, la limitazione e la deprivazione di metionina hanno 

soltanto un effetto citostatico sui fibroblasti murini, il quale non viene 

eliminato dal glutatione. Le cellule NIH-RAS, ma non le cellule NIH3T3 da 

cui derivano, sono estremamente sensibili alla limitazione da metionina. 

Tale fragilità correla con una ridotta espressione del gene Slc6a15, che 

codifica per il trasportatore di nutrienti SBAT1, noto per possedere una 

forte preferenza per la metionina, e con una ridotta internalizzazione della 

metionina. Di notevole interesse è il fatto che l’espressione del gene 

ortologo umano SLC6A15 è per la maggior parte downregolato nelle 

cellule tumorali umane che costituiscono il pannello NCI-60. Un’eccezione 

è rappresentata dalle cellule di melanoma, nelle quali il gene SLC6A15 è 

fortemente upregolato. Le terapie antitumorali che prevedono la 

modulazione del metabolismo della metionina potrebbero, dunque, 

essere più efficaci nelle cellule che possiedono limitate capacità di 

trasporto della metionina. 

In seguito viene presentato lo studio dei ruoli della glutammina nel 

metabolismo e nell’omeostasi redox in fibroblasti murini trasformati da K-

ras (NIH-RAS), tramite la complementazione della deprivazione di 

glutammina con dimetil-α-chetoglutarato (AKG) e amminoacidi non 
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essenziali (NEAA). La combinazione AKG+NEAA complementa la 

deprivazione di glutammina e attiva il pathway di mTOR soltanto 

parzialmente. Tale sostituzione ha, come conseguenza, una riduzione dei 

livelli di nucleotidi e, come predetto dal modello ENGRO, il mancato 

utilizzo della carbossilazione riduttiva dell’AKG per la sintesi dei lipidi. Il 

contenuto lipidico, inoltre, è minore a causa di una ridotta espressione dei 

geni coinvolti nella sintesi lipidica, che correla con livelli inferiori di 

NADPH. 

Nelle cellule NIH-RAS, dunque, la glutammina è essenziale come fonte di 

carbonio e di azoto per la biosintesi degli amminoacidi, dei nucleotidi e del 

glutatione, oltre che come molecola coinvolta nella biosegnalazione. 

E’ stato utilizzato con successo un approccio integrato di Biologia dei 

Sistemi per lo studio delle cellule trasformate cresciute in perturbazione 

nutrizionale, utile nella comprensione a livello di sistema di malattie 

complesse come il cancro.   
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1. INTRODUCTION 

1.1 Cancer cell biology 

Mammalian cells require proliferation to sustain embryogenesis, growth 

and functioning of most tissues. The first studies on cell proliferation 

focused on signal transduction pathways, by which cells start and 

maintain cell cycle. However, metabolism also plays an important role in 

cell cycle during doubling of total biomass (proteins, lipids and nucleic 

acids) [1]. When specific alterations in metabolism occur, cells over-

proliferate and acquire malignant properties.  

Indeed, cancer is defined as a set of diseases in which cells become 

abnormal and start an uncontrolled proliferation that leads them to 

invade nearby tissues [2]. Cancer is a major cause of morbidity and 

mortality, with approximately 14 million new cases and 8 million cancer-

related deaths in 2012, affecting populations in all countries and all 

regions. Prostate and breast cancers are the most common sites in men 

and women, respectively, together with lung and colorectal cancers 

(Figure 1.1). 
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Figure 1.1 Estimated world cancer incidence. Adapted from World Cancer Report 2014. The figure 
reports estimated world cancer incidence proportions by major sites, in both sexes combined, in 
men, and in women, 2012. 

While a high heterogeneity exists among more than 100 types of cancer, 

tumors also show some similarities, known as “hallmarks of cancer” and 

first outlined by Hanahan and Weinberg [3]. The mechanisms that 

integrate signal transduction and cell metabolism are largely conserved 

between normal and cancer cells. While in the first ones extracellular 

stimulation is required to initiate signaling, cancer cells often have 

mutations that chronically alter metabolic pathways, allowing them to 

maintain a metabolic phenotype of biosynthesis independently of normal 

physiologic constraints [1,4,5]. For example, activating mutations in the 

RAS signaling pathway controlling proliferative signals are frequently 

found in a variety of cancers [6]. Besides enhanced proliferative signals, 
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cancer progression also requires the inactivation of tumor suppressor 

genes, such as TP53 or RB [7,8], that negatively control cell proliferation. 

Moreover, cancer cells must circumvent the inherent cell death program 

of apoptosis, which serves as a natural barrier to cancer development. 

Indeed, tumor cells adopt a variety of strategies to evade this process, 

such as induction of antiapoptotic regulators (BCL-2, BCL-xL) or 

downregulation of proapoptotic factors (BAX, BIM, PUMA) [9,10,11]. 

Senescence and crisis are the two main mechanisms that limit replicative 

potential in healthy tissues, by maintaining cells in a resting but viable 

state and by involving cell death, respectively. The enzyme telomerase 

confers to cancer cells the resistance to both senescence and crisis [12] 

and renders them immortalized. To spread into an organism, however, 

cancer cells also need nutrients and oxygen as well as the ability to 

evacuate metabolic wastes and carbon dioxide efficiently. Angiogenesis is 

the process that allows the formation of new vessels to fulfill these 

requirements. In tumors, angiogenesis remains activated, following for 

example the upregulation of VEGF, a pro-angiogenic signal [13]. This 

causes normally quiescent vasculature to continually sprout new vessels 

and sustain the expansion of malignancy [14]. Indeed, cancer cells spread 

in the organism in a multistep process of invasion and metastasis. The first 

step of the process is the local invasion, which evolves in the intravasation 

into nearby blood and lymphatic vessels. The transit of cancer cells 

through the lymphatic and hematogenous system is followed by 



4 
 

extravasation and formation of micrometastases that grow into 

macroscopic tumors in a process called colonization [15]. During invasion 

and metastasis, cancer cells develop alterations in their shape as well as 

in their attachment to other cells and to the extracellular matrix [16].  

Two new hallmarks of cancer emerged over the last years [17] (Figure 1.2). 

First, the capacity of cancer cells to evade the immune system, which is 

responsible for detecting and eliminating the vast majority of incipient 

cancer cells and nascent tumors. Second, the reprogramming of cancer 

metabolism. Indeed, to achieve all the above-mentioned hallmarks, 

cancer cells must reorganize the metabolic network at the service of an 

increased demand of energy and macromolecules to sustain cell 

proliferation and tumorigenesis [18]. 



5 
 

 

Figure 1.2 Hallmarks of cancer. Adapted from [17]. Besides the six hallmark capabilities originally 
proposed in [3], two additional hallmarks of cancer are involved in the pathogenesis of cancers. 
One involves the capability to modify, or reprogram, cellular metabolism in order to most effectively 
support neoplastic proliferation. The second allows cancer cells to evade immunological 
destruction. Additionally, two consequential characteristics of neoplasia are genomic instability 
and thus mutability, which endow cancer cells with genetic alterations that drive tumor 
progression. Inflammation by innate immune cells designed to fight infections and heal wounds can 
instead support multiple hallmark capabilities, thereby manifesting the tumor-promoting 
consequences of inflammatory responses. 

Metabolic reprogramming offers tumor cells the possibility either to grow 

at higher rates than normal cells or to proliferate during harsh conditions 

[19]. The studies of Otto Warburg in the 1920s first highlighted the link 

between metabolic alterations and oncogenesis, by showing that cancer 

cells ferment glucose to lactate at high rates even in the presence of 

oxygen [20] (Figure 1.3).  
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Figure 1.3 The Warburg effect. Adapted from [21]. Schematic representation of the differences 
between oxidative phosphorylation, anaerobic glycolysis, and aerobic glycolysis (Warburg effect). 
In the presence of oxygen, normal cells first metabolize glucose to pyruvate via glycolysis and then 

completely oxidize most of that pyruvate in the mitochondria to CO2 during the process of oxidative 
phosphorylation. Oxygen is the final electron acceptor that completely oxidizes the glucose. When 
oxygen is limiting, cells can redirect the pyruvate generated by glycolysis away from mitochondrial 
oxidative phosphorylation by generating lactate (anaerobic glycolysis), but this process results in 
minimal ATP production when compared with oxidative phosphorylation. Cancer cells tend to 
convert most glucose to lactate regardless of whether oxygen is present (aerobic glycolysis). 

Warburg postulated that the diversion of glucose to fermentation rather 

than respiration was due to a damage in mitochondria, already known to 

be the respiratory center of the cells by this time. However, following 

studies showed that the changes in mitochondrial respiration that are 

sometimes present in cancers may not always be the leading injury for 

tumorigenesis [22,23].  

Besides glucose, there are other important metabolites contributing to 

cancer growth and progression. For example, citrate and aspartate, two 



7 
 

TCA intermediates, are diverted to lipid and aspartate biosynthesis, 

respectively. These intermediates need to be replenished through the 

process known as “anaplerosis” (Figure 1.4), in which glutamine is 

involved in many cancer cell types [24,25,26,27]. Glutamine is utilized to 

produce ATP and for biosynthesis; as such, many cancer cells show 

glutamine dependence, being sensitive to its withdrawal [28,29]. 

 

 

Figure 1.4 Main metabolic and biosynthetic cell fates of glutamine. Adapted from [30]. Glutamine 
enters the mammalian cell through transporters such as SLC1A5 (also known as ASCT2). Glutamine 
itself can contribute to nucleotide biosynthesis, or is converted to glutamate by glutaminase (GLS 
or GLS2). Glutamate can contribute to the synthesis of glutathione and has many other metabolic 
fates in the cell. Glutamate is converted to α-ketoglutarate (AKG) through one of two sets of 
enzymes, glutamate dehydrogenase (GLUD1 or GLUD2) or aminotransferases. Whereas the by-
product of GLUD is NH4

+, the by-product of aminotransferase reactions is other amino acids. 
Aminotransferases may be present in either the cytoplasm or the mitochondria. AKG enters the 
tricarboxylic acid (TCA) cycle and can provide energy for the cell. Malate exiting the TCA cycle can 
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produce pyruvate and NADPH for reducing equivalents, and oxaloacetate (OAA) can be converted 
into aspartate to support nucleotide synthesis. Alternatively, AKG can proceed backwards through 
the TCA cycle, in a process called reductive carboxylation (RC) to produce citrate, which supports 
synthesis of acetyl-CoA and lipids. 

 

1.2 Metabolic rewiring in cancer 

Metabolic reprogramming consists of the enhancement or suppression of 

metabolic pathways in cancer cells compared to normal tissues as a result 

of tumorigenic mutations and/or other factors [19]. 

Although tumors display a vast heterogeneity in terms of genetics and 

histology, in all the different cancer types a limited set of pathways is 

commonly induced to support the enhanced growth [31], likely due to 

their regulation by signaling pathways that are generally perturbed in 

cancer cells. Normal cells, upon stimulation by growth factors, activate 

phosphatidylinositol 3-kinase (PI3K) and its downstream pathways AKT 

and mammalian target of rapamycin (mTOR), thus promoting anabolism 

that involves increased glycolytic flux and fatty acid synthesis through 

activation of hypoxia-inducible factor–1 (HIF-1) and sterol regulatory 

element–binding protein (SREBP), respectively [32]. Cancer cells often 

have mutations that allow the PI3K-AKT-mTOR network to reach high 

levels of signaling with minimal dependency on extrinsic stimulation by 

growth factors [33]. Many of the best characterized oncogenes and tumor 

suppressors lie in the PI3K-AKT-mTOR network, and aberrant activation of 

this pathway is among the most frequent alterations observed in a diverse 

set of cancers. 
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Another commonly deregulated pathway in cancer is gain of function of 

MYC oncogene by chromosomal translocations, gene amplification and 

single-nucleotide polymorphisms. MYC increases the expression of many 

genes that support anabolic growth, including transporters and enzymes 

involved in glycolysis, fatty acid synthesis, glutaminolysis, serine 

metabolism and mitochondrial metabolism [34]. Oncogenes like K-ras, 

which is frequently mutated in lung, colon and pancreatic cancers and 

which is described in the next paragraph, cross-talks with PI3K and MYC 

pathways to promote carcinogenesis. Besides oncogenes, tumor 

suppressors such as the p53 transcription factor can also regulate 

metabolism [35]. The p53 protein–encoding gene TP53 (tumor protein 

p53) is mutated or deleted in 50% of all human cancers. Recent studies 

indicate that p53 tumor-suppressive actions might be independent of the 

canonical p53 activities (i.e. execution of DNA repair, cell cycle arrest, 

senescence and apoptosis) but rather dependent on metabolism 

regulation and oxidative stress [36,37]. Loss of p53 increases glycolytic flux 

to promote anabolism and redox balance, two key processes that 

promote tumorigenesis [35]. 

1.2.1 K-RAS oncogene-driven metabolic rewiring in cancer 

As reported above, metabolic alterations in cancer, as well as changes in 

nutrient uptake, are reported to be under direct control of oncogenes 

such as RAS or MYC [1,17,21,28,38,39,40,41]. 
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In humans, RAS gene encodes four distinct but highly homologous 21-kDa 

Ras proteins: H-Ras, N-Ras, K-Ras4A and K-Ras4B (the last two proteins 

being alternative splice variants of the K-RAS gene). Activation of the K-

RAS proto-oncogene [42,43,44,45] has a great incidence in human tumors, 

as reported in the catalogue of somatic mutations in cancer (COSMIC) 

[46]. Particularly, RAS gene is mutated in approximately 30% of human 

tumors [47,48] and K-RAS isoform is the most frequently mutated among 

the three isoforms in malignancies, with a mutation rate in all tumors 

estimated to be 25-30%. In contrast, mutations in N-RAS and H-RAS are 

less common (8 and 3% mutation rate, respectively) [47,48]. K-Ras 

oncoproteins are important clinical targets for anti-cancer therapy [49] 

and several strategies have been explored in order to inhibit aberrant Ras 

signaling, as reviewed in [50,51,52,53]. 

Ras proteins act as transducers that couple cell surface receptors to 

intracellular effectors and alternate between on and off conformation 

that are conferred by binding of GTP or GDP, respectively [54] (Figure 1.5).  

Under physiological conditions, the transitions between these two states 

is finely regulated by guanine nucleotide exchange factors (GEFs), which 

promote the activation of Ras by stimulating GDP for GTP exchange, and 

by GTPase activating proteins (GAPs), which accelerate Ras-mediated GTP 

hydrolysis [55]. Altering this fine balance by deregulation of either GAP or 

GEF activity may result in hypo- or hyper-activation of downstream 
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pathway(s), so that overexpression of a GEF or inactivation of a GAP may 

both result in cell transformation [41,54].  

 

Figure 1.5 Ras signalling pathways. Adapted from [56]. Active (farnesylated, membrane-bound 
and GTP-bound) RAS modulates a number of signalling pathways. Oncogenic RAS mutations tend 
to lock RAS in its GTP-bound state, resulting in constitutive RAS signalling. The major RAS effector 
pathways are shown. The two best-studied pathways that are activated by RAS are the RAF–MEK–
MAPK signalling cascade and the PI3K–AKT pathway. The RAF–MEK–MAPK pathway ultimately 
activates the ETS family of transcription factors, which induce multiple genes that promote cell cycle 
progression and cell migration. Likewise, AKT phosphorylates multiple cellular proteins, leading to 
the inhibition of several tumour suppressors (such as p27, p53, tuberous sclerosis 1 (TSC1), TSC2 
and BCL-2 antagonist of cell death (BAD)) or leading to the activation of several oncogene products. 
RAS also activates other small GTPases such as RALA and RALB. CDC42, cell division cycle 42; DAG, 
diacylglycerol; FOX, forkhead transcription factor; GAP, GTPase-activating protein; GEF, guanine 
nucleotide exchange factor; IKK, IκB kinase; IP3, inositol-1,4,5-trisphosphate; mTORC, mTOR 
complex; NF-κB, nuclear factor-κB; PDK1, phosphoinositide-dependent kinase 1; PKC, protein kinase 
C; PLA, phospholipase A; PLCɛ, phospholipase Cɛ; PLD, phospholipase D; RALGDS, RAL guanine 
nucleotide dissociation stimulator; RHEB, RAS homologue enriched in brain; RIN1, RAS and RAB 
interactor 1; TIAM1, T cell lymphoma invasion and metastasis 1. 

Inactivation of Ras activity by GAPs is the predominant target of the most 

common somatic mutations that are found in the oncogenic variants of 

Ras alleles. Oncogenic substitutions in residues G12 and G13 of Ras 
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prevent the formation of Van der Waals bonds between Ras and the GAP 

through esteric hindrance, perturbing the proper orientation of the 

catalytic glutamine Q61 in Ras, which results in the pronounced 

attenuation of GTP hydrolysis [57]. The outcome of these substitutions is 

the persistence of the GTP-bound state of Ras and, as a consequence, the 

permanent activation of a multitude of Ras-dependent downstream 

effectors pathways. These effectors are involved in many aspects of the 

tumor phenotype such as promotion of proliferation, suppression of 

apoptosis, metabolic reprogramming, remodeling of the 

microenvironment, evasion of the immune response and metastasis [55].   

Although Ras modulates different metabolic processes in the cell, 

regulation of glycolysis is one of the most important metabolic effects 

(Figure 1.6). Its main effect on metabolism is targeted to glycolysis by 

upregulating HIF1α, considered one of the main regulators of glycolysis, 

and glucose transporter expression [58,59,60]. Additionally, Ras family 

proteins act upstream PI3K/Akt/mTOR pathway, which is a regulatory axis 

with deep effects on aerobic glycolysis and cellular biosynthesis. This 

pathway has been shown to stimulate cell growth and ATP production by 

regulating the activity and expression of key glycolytic enzymes and 

nutrient transporters, enabling increased uptake of glucose, amino acids 

and other nutrients [61,62,63,64]. 
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Figure 1.6 Ras effects on metabolism. Adapted from [55]. ERK and PI3K signalling downstream of 
oncogenic RAS converge to activate mTOR by inhibiting its negative regulators tuberin (TSC2) and 
liver kinase B1 (LKB1)–AMP-activated protein kinase (AMPK). TSC2 can be directly phosphorylated 
by both ERK and ERK-activated ribosomal protein S6 kinase (RSK), as well as by AKT, and, likewise, 
RAF–ERK1 or RAF–ERK2 signalling disrupts the LKB1–AMPK checkpoint. This leads to mTOR–
eukaryotic translation initiation factor 4 (eIF4)-dependent translation of hypoxia-inducible factor 
1α (HIF1α). Activated RAS can also result in the transcriptional upregulation of HIF1A. Increased 
levels of HIF1α augment multiple steps in glycolytic metabolism. The upregulation of hexokinase 
(HK) facilitates the conversion of glucose to glucose-6-phosphate, a glycolytic intermediate that is 
used in pentose phosphate pathway-dependent nucleotide synthesis. Higher levels of 
phosphofructokinase (PFK) lead to an enhanced glycolytic flux and the production of pyruvate, 
which, in conjunction with the oncogenic RAS-dependent increase in lactose dehydrogenase (LDH) 
levels, can allow glycolysis to persist by regenerating NAD+, a necessary cofactor for glycolytic 
reactions. In addition, some of the pyruvate can enter the tricarboxylic acid (TCA) cycle where its 
conversion to citrate generates intermediates that are necessary for the synthesis of fatty acids and 
non-essential amino acids. The asterisk represents the mutational activation of RAS. 

Oncogenic activation of K-RAS contributes to the acquisition of the hyper-

glycolytic phenotype (the previously described Warburg effect [65]) due 

to enhancement in glucose transport and aerobic glycolysis [66,67]. K-RAS 

oncogene activation also correlates with down-regulated expression of 
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mitochondrial genes, altered mitochondrial morphology and production 

of large amount of reactive oxygen species (ROS) associated with 

mitochondrial metabolism [68,69]. 

1.2.2 Redox homeostasis and ROS detoxification 

Reactive oxygen species (ROS) are waste by-products of the oxidative 

metabolism that must be either excreted or neutralized. ROS have a toxic 

effect when their concentration increases, leading to oxidative stress. 

However, ROS are essential for many biological functions, such as cell 

growth and differentiation, enzyme regulation or inflammation, and they 

regulate many signal transduction pathways involved in these processes 

(Figure 1.7). They are produced either inside the cells (internal sources) or 

by environmental agents (external sources). Sources of internal oxidative 

stress include peroxisomes and enzymes, like the detoxifying enzymes of 

the P450 complex, xanthine oxidase complexes, and the NADPH oxidase 

complexes. Most of these enzymes operate in the mitochondria, which 

are the main sources of oxidative stress. 
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Figure 1.7 ROS effects in the cell. Inspired by [70]. Reactive oxygen species (ROS) production 
enhances the phosphorylation (P) of inhibitor of NF-κB (IκB). This leads to the ubiquitylation (Ub) of 
IκB and its subsequent degradation by the proteasome. Nuclear factor-κB (NF-κB) is then released 
and translocates to the nucleus to initiate transcription. ROS production also leads to MAPK and 
NRF2 activation, thus promoting the activation of specific gene transcription. 

A moderate increase in ROS can promote cell proliferation and 

differentiation, whereas excessive amount of ROS can damage many 

molecules, including DNA, RNA, lipids and proteins, inducing senescence 

and/or cell death [71] (Figure 1.8). Thus, a fine regulation of ROS –through 

the modulation of their generation and elimination by scavenging 

systems– is necessary [72].  

ROS scavengers include superoxide dismutases, glutathione peroxidase, 

peroxiredoxins, glutaredoxins, thioredoxins or catalase.  Abnormal cancer 

cell growth is associated with increase in ROS and reflects a disruption of 

redox homeostasis, due to either an elevation of ROS production or to a 

decrease of ROS-scavenging capacity, resulting in oxidative stress. 
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Signaling events mediated by oxidative stress have been reported to affect 

all aspects of cancer cell behaviour, including cell cycle progression and 

proliferation, cell survival and apoptosis, energy metabolism, cell 

morphology, motility and adhesion, angiogenesis, and tumor stemness 

[73].  

 

Figure 1.8 ROS levels and cancer. Inspired by [74]. The effect of ROS on cell fate depends on the 
level at which ROS are present. Low levels of ROS provide a beneficial effect, supporting cell 
proliferation and survival pathways. However, once levels of ROS become excessively high, they 
cause detrimental oxidative stress that can lead to cell death. To counter such oxidative stress, a 
cell uses antioxidants that prevent ROS from accumulating at high levels. In a cancer cell, aberrant 
metabolism and protein translation generate abnormally high levels of ROS. Through additional 
mutations and adaptations, a cancer cell exerts tight regulation of ROS and antioxidants in such a 
way that the cell survives and the levels of ROS are reduced to moderate levels. This extraordinary 
control of ROS and the mechanisms designed to counter it allow the cancer cell to avoid the 
detrimental effects of high levels of ROS, but also increase the chance that the cell will experience 
additional ROS-mediated mutagenic events and stress responses that promote tumorigenesis.  

Among the signaling pathways involved are the MAPK pathway or 

PI3K/AKT pathway [75]. As cancer cells with increased oxidative stress are 

likely to be more vulnerable than normal cells to further ROS insults 

induced by exogenous agents [76], this opens new possibilities for 
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therapeutic intervention [77]. For example, breast tumors show 

persistent ROS generation [78,79], and markers of constitutive oxidative 

stress have been detected in samples from in vivo breast carcinomas [80]. 

Despite the clear implications of ROS in tumorigenesis, the precise 

mechanisms leading to oxidative stress in cancer cells remain unclear. 

However, some intrinsic and extrinsic mechanisms are demonstrated to 

cause oxidative stress during cancer development and disease 

progression. Oncogene activation, aberrant metabolism, mitochondrial 

dysfunction, and loss of p53 are intrinsic factors known to cause increased 

ROS production in cancer cells. Moreover, the expression of genes 

associated with tumor transformation, such as RAS, BCR-ABL and c-MYC, 

were found to induce ROS production [68,81]. In H-RasV12-transformed 

NIH3T3 fibroblasts, a large amount of superoxide was generated through 

the activation of the membrane associated ROS-producing enzyme 

NADPH oxidase (NOX) [82]. In addition to the intrinsic mechanisms, 

extrinsic ones such as inflammatory cytokines, imbalance of nutrients and 

hypoxic environment could also affect intracellular redox homeostasis 

[83]. As cancer cells are continuously exposed to high levels of ROS, 

oxidative stress may exert selective pressure to enrich the population of 

cells that are able to resist it. Among the acquired resistance mechanisms, 

for instance, oncogenic H-Ras-transformed cells (which exhibited 

increased superoxide and hydrogen peroxide levels) were shown to 

express higher levels of antioxidant enzymes such as peroxiredoxin-3 and 
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thioredoxin peroxidase compared to their non-tumorigenic parental cells 

[84]. The enhanced antioxidant potential is likely to serve as a key 

mechanism to evade ROS-induced apoptosis, as evidenced by the 

resistance to hydrogen peroxide-induced cell death that was observed in 

the H-Ras-transformed cells [84]. In keeping with these findings, Ras-

transformed cells were also found to be more sensitive to glutathione 

depletion, which leads to ROS accumulation and cell death [81]. Also, an 

increase of the flux through the oxidative branch of PPP [85] as well as the 

overexpression of the NADPH producing enzyme G6PD has been reported 

in K-Ras-transfected NIH3T3 cells [85,86]. Thus, oncogenic signals 

stimulate both the formation of ROS to enhance proliferation and the 

promotion of antioxidant mechanisms to minimize oxidative damage. The 

mechanisms of redox regulation involve multiple signaling pathways 

which employ several antioxidant-sensitive transcription factors such as 

nuclear factor-κB (NF-κB), nuclear factor (erythroid-derived 2)-like 2 

(NRF2), c-JUN, and HIF1, which in turn lead to an increased expression of 

antioxidant molecules such as superoxide dismutase (SOD), catalase, 

thioredoxin and reduced glutathione (GSH). 

Of particular interest in redox homeostasis maintenance is the role of 

NRF2 transcription factor, which induces the expression of many 

cytoprotective genes in response to oxidative stress. NRF2 target genes 

are mainly involved in glutathione synthesis, elimination of ROS, 

xenobiotic metabolism, and drug transport [87]. Interestingly, an increase 
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in NRF2 levels is frequently detected in various types of human cancers, 

resulting in an overactivation of its target genes that provide cells with 

additional capabilities of malignance [88,89,90,91]. The regulation of 

NRF2 by oncogene-dependent signaling has been recently described 

[92,93]. Therein, K-RAS is reported to activate NRF2 transcription through 

the MEK-ERK-JUN signaling pathway and to reduce ROS levels in primary 

fibroblasts. Metabolic genes involved in PPP and NADPH production also 

represent a significant portion of the genes regulated by NRF2 [94]. 

Moreover, NRF2 promotes glutamine consumption by enhancing 

glutaminolysis and glutathione synthesis. Overall, these findings indicate 

that NRF2 acts as a link between redox homeostasis maintenance and 

anabolic metabolism, pointing out the intimate collaboration between 

carbon metabolism and ROS detoxification systems. 

1.3 Nutrient modulation through amino acid deprivation in cancer 

As previously mentioned, cancer cells rewire their metabolism to meet an 

increased demand of energy and macromolecules necessary to sustain 

cell proliferation and tumorigenesis. This renders cancer cells particularly 

addicted to some nutrients compared to normal cells and offers a 

therapeutic opportunity to fight cancer. Indeed, nutrient intake in cancer 

patients can be modulated in order to reduce (or eliminate) from the diet 

those molecules to which cancer cells show dependency. Among the 
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nutrients that tumors consume in large quantity are some amino acids, 

like glutamine and sulfur amino acids methionine and cysteine.  

1.3.1 Glutamine 

1.3.1.1  Glutamine metabolism 

Oncogenic activation of K-RAS also allows cells to make extensive 

anaplerotic usage of glutamine, rendering them addicted to this amino 

acid and to glutaminolysis. Glutamine is the most abundant amino acid in 

blood [95], composed by an amine functional group. Although it is 

considered a non-essential amino acid, most proliferating and tumor cells 

rely on it to grow. The amine group is lost when glutamine is converted to 

alpha-ketoglutarate (AKG), and is used to synthesize nucleotides, 

hexosamines (that glycosylate growth factor receptors and promote their 

localization to the cell surface) and non-essential amino acids (NEAA), all 

of which are necessary for cell growth. Moreover, the oxidation of AKG to 

oxaloacetate generates reducing equivalents that can be used to produce 

energy [26]. Glutamine also modulates redox homeostasis and can 

influence the activity of signal transduction pathways [25].  

While the high demand for glucose shown by tumor cells was already 

known from the 1920s, the need for glutamine of proliferating cells was 

discovered 30 years later. Indeed, in 1955, Eagle observed that glutamine 

consumption rate was about 10-fold higher than that of all other amino 

acids. Moreover, the tested cell lines could not proliferate without 
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glutamine and most of them were neither viable [96]. In 1971, Kovacevic 

demonstrated that some of the carbon atoms of glutamine could be found 

in the carbon dioxide released by the cells, proving that cells may use 

glutamine as a fuel [97]. Besides being an anaplerotic precursor, 

glutamine can also be catabolized in a process known as glutaminolysis 

(Figure 1.4). During this process, glutamine generates glutamate, 

aspartate, pyruvate, lactate, CO2, citrate and alanine. In the first step, 

glutamine is converted to glutamate and ammonia by glutaminase (GLS). 

Then, glutamate is oxidized into AKG, either by glutamate dehydrogenase 

(GDH), generating ammonia and mitochondrial NADH or NADPH [98], or 

by transaminases.  

Besides being oxidized into AKG, glutamic acid is the primary nitrogen 

donor for the synthesis of the NEAAs [99,100]. The amine group of 

glutamic acid is transferred to α-ketoacids by transaminases. The α-

ketoacids used to synthesize NEAAs are the carbon catabolites of glucose 

or glutamine: pyruvate, 3-phosphoglycerate, oxaloacetate and glutamic 

acid gamma-semialdehyde, which are respectively used to synthesize 

alanine, serine, aspartate, and ornithine. Serine is a precursor for glycine 

and cysteine biosynthesis, aspartate is a precursor for asparagine 

biosynthesis, and ornithine is a precursor for arginine biosynthesis. 

Glutamic acid is the carbon and nitrogen source for the synthesis of 

proline. Tyrosine, being directly produced from phenylalanine, is the only 

NEAA that does not derive from glucose or glutamine. 
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The second major route of glutamine metabolism, reductive carboxylation 

(RC), occurs in cell lines under hypoxic stress or disrupted mitochondrial 

functioning, and has been shown to take place in Ras-transformed cells 

[24,68,101,102,103,104]. In these conditions, glutamine-derived α-

ketoglutarate preferentially undergoes reductive metabolism through the 

TCA cycle to isocitrate and then citrate, where it can then be converted to 

acetyl-CoA for lipid synthesis [105,106,107]. Mass action controls 

induction of this pathway via situations that perturb the citrate-to-α-

ketoglutarate ratio, such as oxidative energetic stress. Indeed, in vitro 

studies of IDH1 indicate that a high ratio of NADPH/NADP+ and low citrate 

concentration activate the reductive carboxylation reaction [108]. This is 

supported by data demonstrating that interrupting the supply of 

mitochondrial NADPH by silencing the nicotinamide nucleotide 

transhydrogenase (NNT) suppresses reductive carboxylation [109]. NNT, a 

mitochondrial transmembrane protein, catalyzes the transfer of a hydride 

ion from NADH to NADP+ to generate NAD+ and NADPH. Together, these 

observations suggest that reductive carboxylation is modulated in part 

through the balance of substrate/products and the mitochondrial redox 

state. As the inhibition of reductive carboxylation might selectively 

suppress growth of tumor cells subjected to hypoxia or with defects in 

oxidative metabolism, targeting glutamine metabolism through GLS 

inhibition is considered a potential therapeutic strategy under such 
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circumstances, especially in combination with other anticancer drugs 

[104,110,111].  

1.3.1.2  Glutamine transport 

The elevated glutamine influx of some cancer cells is accomplished by the 

upregulation of glutamine transporters, which normally allow cells to use 

exogenous glutamine [112].  

Glutamine transporters can be sodium-dependent or sodium-

independent (Figure 1.9).  

 

Figure 1.9 Glutamine transporters. Adapted from [113]. Interplay among epithelial polarized cells 
(apical membrane is depicted as brush-border; basolateral membrane is in contact with blood) and 
other cells. Glutamine transporters are indicated with different colors. Arrows indicate glutamine 
fluxes from (red) or toward (blue) blood or from lumen to epithelial cells (blue); gray arrows indicate 
sodium fluxes; brown and green arrows indicate proton and other amino acid fluxes, respectively. 

Sodium-dependent transporters include System A (alanine-preferring), 

System N (that exhibit preference for amino acids with nitrogen in their 

side-chains) and System ASC amino acid transporter-2 (ASCT2), while 

System L transporters (leucine-preferring) are included among the 

sodium-independent transporters and have been extensively studied 
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[114]. Sodium-coupled neutral amino acid transporter 1 (SNAT1) is the 

most significant glutamine transporter among System A transporters and 

is implicated in neuronal glutamine uptake [115], while SNAT2 is 

expressed in most tissue, including adipose [115,116,117]. However, 

System N transporters have the highest affinity for glutamine [114,117] 

and include SNAT3, expressed in a variety of tissues [115,117]. Glutamine 

uptake via ASCT2 triggers leucine uptake by a parallel leucine/glutamine 

antiport catalyzed by L-type amino acid transporter 1 (LAT1) [112]. Both 

LAT1 and LAT2 are involved in glutamine absorption [114,116,117], and 

LAT1 also modulates signaling through the mammalian target of 

rapamycin (mTOR) pathway, suggesting a link between LAT1 and cancer 

[113]. 

1.3.1.3  Glutamine activates mTOR pathway 

Another role of glutamine is to activate a master regulator of protein 

translation, the mammalian target of rapamycin complex 1 (mTORC1) 

(Figure 1.10). This evolutionarily conserved complex activates protein 

translation and inhibits macroautophagy (the random sequestration and 

delivery of cytoplasm to the lysosome/vacuole) in the presence of large 

amounts of amino acids and growth factors [118]. Indeed, mTORC1 acts 

by phosphorylating multiple downstream targets, including the p70 

ribosome protein S6 kinase (S6K1), the eukaryotic translation initiation 
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factor 4E-binding protein (4E-BP1) and the autophagy-associated kinase 

ULK1 (Atg1) [119,120].  

 

Figure 1.10 Mammalian target of rapamycin (mTOR) pathway. The mechanistic target of 
rapamycin (mTOR) is an atypical serine/threonine kinase that is present in two distinct complexes. 
The first, mTOR complex 1 (mTORC1), is composed of mTOR, Raptor, GβL, and DEPTOR and is 
inhibited by rapamycin. It is a master growth regulator that senses and integrates diverse 
nutritional and environmental cues, including growth factors, energy levels, cellular stress, and 
amino acids. It couples these signals to the promotion of cellular growth by phosphorylating 
substrates that potentiate anabolic processes such as mRNA translation and lipid synthesis, or limit 
catabolic processes such as autophagy. The small GTPase Rheb, in its GTP-bound state, is a 
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necessary and potent stimulator of mTORC1 kinase activity, which is negatively regulated by its 
GAP, the tuberous sclerosis heterodimer TSC1/2. Most upstream inputs are funneled through Akt 
and TSC1/2 to regulate the nucleotide-loading state of Rheb. In contrast, amino acids signal to 
mTORC1 independently of the PI3K/Akt axis to promote the translocation of mTORC1 to the 
lysosomal surface where it can become activated upon contact with Rheb. This process is mediated 
by the coordinated actions of multiple complexes, notably the v-ATPase, Ragulator, the Rag 
GTPases, and GATOR1/2. The second complex, mTOR complex 2 (mTORC2), is composed of mTOR, 
Rictor, GβL, Sin1, PRR5/Protor-1, and DEPTOR. mTORC2 promotes cellular survival by activating 
Akt, regulates cytoskeletal dynamics by activating PKCα, and controls ion transport and growth via 
SGK1 phosphorylation. 

Moreover, in cancer cells with constitutively high rates of fatty acid 

synthesis, mTORC1 signaling via its effector S6K activates a transcriptional 

program that includes both SREBP-1 and the related protein SREBP-2, 

which regulates transcription of genes in fatty acid and sterol biosynthesis 

[121]. Both SREBP-1 and SREBP-2 are required for mTORC1-mediated cell 

proliferation. The mechanism of SREBP activation by mTORC1 is 

incompletely understood but involves nuclear entry of the phosphatidic 

acid phosphatase Lipin-1, which enhances nuclear SREBP abundance and 

activity on the promoters of lipogenic genes [122]. 

The role of amino acids in the activation of mTORC1-dependent signaling 

has been widely described in literature [123,124]. Of the EAAs, mTORC1-

signaling appears to respond most acutely to leucine; however, glutamine 

is also necessary for maximal mTOR activation [112,123,125]. Particularly, 

a portion of the glutamine that enters the cell through the SLC1A5 (or 

ASCT2) glutamine importer is rapidly exported through the bidirectional 

amino acid transporter SLC7A5 (or LAT1) in exchange for the uptake of 

extracellular EAAs, suggesting that glutamine uptake and export is 

required for EAA activation of mTORC1 [126]. 
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1.3.1.4  Glutamine promotes resistance to cell death 

Although many cancer cells require glutamine for survival, cells with 

enhanced expression of Myc oncoproteins are particularly sensitive to 

glutamine deprivation [28,29,127]. In these cells, glutamine deprivation 

induces depletion of TCA cycle intermediates, depression of ATP levels, 

delayed growth, diminished glutathione pools, and apoptosis (Figure 

1.11). In 2008, Wise and colleagues observed that the glutamine-derived 

AKG was able to rescue MYC-transformed cells from apoptotic cell death 

upon glutamine withdrawal [28], making AKG an essential component of 

glutamine-dependent cell survival. This effect correlates with the ability 

of AKG to replenish the TCA cycle by providing oxaloacetate (OAA). 

Indeed, OAA condenses with acetyl-CoA to produce citrate, thus 

maintaining the TCA cycle and sustaining de novo fatty acid biosynthesis. 

Cheng and co-authors also demonstrated that increased expression of 

pyruvate carboxylase (the enzyme that catalyzes the conversion of 

pyruvate into OAA) can also render MYC-transformed cells resistant to 

glutamine depletion-induced cell death [128]. Overall, these data indicate 

that glutamine maintains cell survival primarily by supporting the 

anaplerosis of the TCA cycle.  

 

 



28 
 

 

Figure 1.11 Glutamine and apoptosis. Inspired by [129]. Glutamine deprivation makes cells 
sensitive to Fas ligand, TNF-α and heat shock-mediated apoptosis. Glutamine deprivation induces 
apoptosis through extrinsic or intrinsic pathway, which is dependent on cell type and cell condition. 
Cyt c, cytochrome c; C-PARP, cleaved-PARP; t-Bid, truncated Bid; ΔΨ, mitochondrial membrane 
potential; GADD, growth arrest and DNA damage-induced genes; ROS, reactive oxygen species; 
JNK, c-Jun N-terminal kinase; HSP70, heat shock protein 70. ┴, inhibiting effect; bold arrow, 
decreased p62 and ΔΨ after glutamine deprivation. 

 

1.3.1.5  The need for glutamine differs among tumors 

One important consideration is that not all cancer cells need an exogenous 

supply of glutamine. For example, a panel of lung cancer cell lines [130] 

and breast cancer cells [131] showed significant variability in their 

response to glutamine deprivation, with some cells displaying almost total 

independence. Resistance to glutamine deprivation is associated with the 
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ability to synthesize glutamine de novo and/or to rely on alternative 

pathways of anaplerosis [128,131]. 

This variability renders essential to develop ways to predict which tumors 

would be more sensitive to the inhibition of glutamine metabolism, like 

methods to image or otherwise quantify glutamine metabolism in vivo 

[132]. Approaches for glutamine-based imaging that do not require a 

specimen of the tumor include a number of glutamine analogues 

compatible with PET [133]. Labeled analogues of glutamate are also taken 

up by some tumors [134,135] and one of these has been evaluated in 

small clinical trials involving patients with several types of cancer 

[134,136]. This analogue enters the cell through the cystine/glutamate 

exchange transporter (xC– transport system), linked to glutathione 

biosynthesis [137], and has high tumor detection rates and good tumor-

to-background ratios in hepatocellular carcinoma and lung cancer. 

1.3.1.6  Pharmacological inhibition of glutamine metabolism in cancer 

One of the most studied approach to inhibit glutamine metabolism 

consists in the use of amino acid analogues (Figure 1.12).  
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Figure 1.12 Targeting glutamine metabolism. Adapted from [138]. Glutamine is imported via 
different transporters, which are the target of some inhibitors, and then enters a complex metabolic 
network to promote cell survival and growth. Inhibitors that target various aspects of glutamine 
metabolism are shown in red. 

However, the well-studied acivicin, 6-diazo-5-oxo-L-norleucine (DON) and 

azaserine showed gastrointestinal toxicity, myelosuppression and 

neurotoxicity [139]. Thus, methods directed at specific nodes of glutamine 

metabolism have been recently developed. ASCT2, the Na+-dependent 

neutral amino acid transporter encoded by SLC1A5, is largely expressed in 

lung cancer cells and transports the majority of glutamine in those cells. 
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The compound γ-L-glutamyl-p-nitroanilide (GPNA) inhibits this 

transporter and limits the growth of lung cancer [140]. Moreover, GPNA 

can enhance the uptake of drugs imported via the monocarboxylate 

transporter MCT1. Suppressing glutamine uptake with GPNA improves 

MCT1 stability and stimulates uptake of the glycolytic inhibitor 3-

bromopyruvate [141].  

Another way to block glutamine metabolism is to inhibit glutaminase 

(GLS). Compound 968 inhibits the transformation of fibroblasts by 

oncogenic Rho GTPases and delays the growth of GLS-expressing 

lymphoma xenografts [142]. Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-

yl)ethyl sulfide (BPTES) also strongly inhibits GLS isoforms encoded 

by GLS [143], impairing ATP levels and growth rates of P493 lymphoma 

cells [144]. 

No effective, specific inhibitors yet exist to target the flux from glutamate 

to α-ketoglutarate. Aminooxyacetate (AOA) inhibits aminotransferases 

nonspecifically, but millimolar doses are usually needed to obtain this 

effect in cultured cells. Nevertheless, AOA was effective in 

neuroblastomas in mice and in breast adenocarcinoma xenografts 

[145,146]. AOA treatment also showed a cytotoxic effect on a glutamine-

dependent MYC-amplified glioblastoma cell line in vitro while having no 

significant effect on a paired Myc-deficient line [28]. Epigallocatechin 

gallate (EGCG), a green tea polyphenol, is able to inhibit GDH [147]. It has 

been successfully employed to kill glutamine-addicted cancer cells during 
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glucose deprivation or glycolytic inhibition [148,149] and to suppress 

growth of neuroblastoma xenografts [146]. 

A set of Food And Drug Administration (FDA)-approved anti-cancer drugs 

used to target cancer metabolism (including glutamine metabolism) is 

reported in Supplementary Information, Chapter 5.2. 

1.3.2 Sulfur amino acid metabolism 

Besides glutamine transporters, all amino acid transporters are being 

receiving attention from scientific community as potential drug targets for 

cancer treatment, given the increased demand of cancer cells for these 

nutrients to support their enhanced cell growth [150,151]. Selective 

blockers of these transporters might be effective in preventing the entry 

of important amino acids into tumor cells, thus essentially starving these 

cells to death. Here we focus on the two proteinogenic sulfur amino acids, 

methionine and cysteine (Figure 1.13). 
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Figure 1.13 Sulfur amino acid metabolism. From [152]. Methionine is partitioned between protein 
synthesis, de novo and recycling pathway, where it is converted to S-adenosylmethionine (SAM). 
SAM is converted to S-adenosylhomocysteine (SAH) during methylation of DNA and a large range 
of proteins and other molecules. SAH is then hydrolyzed to homocysteine (Hcy) in a reversible 
reaction. In the trans-sulfuration pathway, Hcy is metabolized to form cystathionine, which is the 
immediate precursor to cysteine. Besides from methionine, cysteine can be synthesized from serine. 
The sulfur is derived from methionine, which is converted to homocysteine through the 
intermediate SAM. Cystathionine beta-synthase then combines homocysteine and serine to form 
the asymmetrical thioether cystathionine. The enzyme cystathionine gamma-lyase converts the 
cystathionine into cysteine and alpha-ketobutyrate. The trans-sulfuration pathway is not active in 
all cells, and in human is active essentially only in cells from splanchnic organs. Mouse embryonic 
fibroblasts are not able to convert methionine into cysteine: for this reason, the trans-sulfuration 
reaction is highlighted in grey. 

 

1.3.2.1 Methionine 

Methionine is an essential amino acid required for normal growth and 

development in mammals [153]. The intracellular level of methionine 
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depends on the balance between synthesis (through the de novo synthetic 

pathway), recycle (through the salvage pathway), consumption (in 

biosynthesis of proteins) and its transport.  An important metabolite of 

methionine is S-adenosylmethionine (SAM), the principal methyl donor in 

the cell. SAM is required for methylation of DNA, RNA, proteins (including 

histones [154]) and lipids by the enzymes methyltransferases. Moreover, 

SAM is involved in biosynthesis of polyamines, which have far-ranging 

effects on nuclear and cell division, and methionine salvage pathway 

[155]. 

Some cancers show methionine dependence, a feature firstly noted in 

xenograft rodents in response to a methionine-free diet [156]. Since then 

normal cells have been reported to be more resistant to external 

methionine limitation [155,157]. Methionine dependence might be 

correlated with inability of methionine-restricted cells to cope with 

demand for SAM, a major methionine product [155]. This “SAM-

checkpoint” may protect cellular integrity and maintain epigenetic 

stability, since it stops cell cycle progression when intracellular SAM 

concentrations are insufficient to sustain the methylation reactions 

necessary for normal cell physiology [155]. Several drugs that target the 

enzymes that are involved in the post-translational modifications of 

histones and DNA, cell survival, proliferation and stem cell function 

[154,158,159] are being evaluated pre-clinically or in early-stage clinical 

trials [160].  
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Both a deficiency and an excess of the dietary levels of methionine can 

result in either genomic instability, which leads to diseases such as cancer, 

or changes in gene expression, which lead to alterations in metabolism 

[161], including improvement of hepatic lipid and glucose metabolism and 

induction of  adiposity resistance [161]. Some cancer cells show a high 

activity of the methionine cycle that promotes chemo-resistance and 

evasion from apoptosis [162], whereas normal cells are relatively resistant 

to dietary methionine restriction: therapies to block the methionine cycle 

in transformed cells may thus represent a safe and effective strategy to 

fight cancer [162,163]. Dietary methionine restriction, used alone or in 

combination with other treatments, impaired cancer growth and 

carcinogenesis in human patients [164,165] or in rodents [166,167,168]. 

However, one caveat is that methionine restriction must be closely 

regulated, because methionine is an essential amino acid and a long use 

of diets extremely poor in methionine could be extremely toxic and cause 

death. Dietary methionine restriction (achievable in humans with a 

predominantly vegan diet) may have an additive healthy effect if 

combined with calorie restriction, by limiting glucose [168]. The potential 

of methionine depletion in enhancing the anti-cancer effect of 

chemotherapeutic agents on drug-resistant tumors and cell lines has also 

been reported [169]. 

We recently demonstrated that sensitivity to methionine limitation of 

mouse fibroblasts and expression of the SBAT1-encoding Slc6a15 gene (a 
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methionine transporter) are regulated by the activation state of Ras [152], 

resulting in decreased methionine uptake in K-Ras-transformed mouse 

fibroblasts. Slc6a15 and its human ortholog - SLC6A15 - belong to a large 

family (over 450 members) of solute carrier proteins (SLCs) controlling 

import/export of nutrients, cofactors, ions and many drugs. While many 

SLCs have not yet been characterized, a quarter of their encoding genes 

has been associated with human diseases and 26 different SLCs are the 

targets of known drugs, or drugs in development [170,171]. 

Remarkably, expression of the human SLC6A15 gene is mostly down-

regulated in the NCI-60 cells panel, the US National Cancer Institute (NCI) 

panel of 60 human cancer cell lines grown in culture [172]. An exception 

is represented by melanoma cells, in which SLC6A15 is highly up-

regulated. Therefore, the use of methionine uptake as a marker for 

proliferative activity in substitution of fluoro-deoxyglucose [173,174], or 

therapeutic use of dietary methionine restriction would benefit from 

knowledge of the expression of methionine transporters. Particularly, 

therapeutic regimens of cancer involving modulation of methionine 

metabolism could be more effective in cells with limited methionine 

transport capability. 

1.3.2.2  Cysteine 

Cysteine is a sulfur-containing, semi-essential proteinogenic amino acid 

[175]. It can be synthesized in humans to some extent; as such, it is 
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classified as conditionally essential, since it may become temporarily 

essential when synthesis during rapid growth or critical illness is 

insufficient [175]. Cysteine is a precursor for the tripeptide glutathione, an 

important intracellular antioxidant that reduces reactive oxygen species 

(ROS), thereby protecting cells from oxidative stress [176]. The systemic 

availability of oral glutathione (GSH) is negligible; so it must be 

biosynthesized from its constituent amino acids, cysteine, glycine, and 

glutamic acid, the first being the limiting substrate [177]. Furthermore, 

cysteine is a precursor for the production of taurine, another antioxidant, 

and sulfate [163]. At least in liver, glutathione also acts as cysteine 

storage, from which this amino acid can be mobilized if required to 

maintain protein synthesis under nutritional stress [178]. Under normal 

physiological conditions, cysteine can usually be synthesized de novo from 

homocysteine in humans if a sufficient quantity of methionine is available. 

Glutathione content in tumor cells has particular importance in the 

regulation of DNA synthesis, growth, and multidrug and radiation 

resistance [179]. As the half-life of intracellular glutathione is short, a lack 

of cysteine can lead to glutathione depletion, which in turn determines 

growth arrest and reduction in therapy resistance. Thus, glutathione 

might be a good target in cancer therapy [180], and cysteine/cystine 

deprivation of tumor cells has been proposed as treatment against a 

variety of cancers [181,182,183,184]. The xc
- cystine/glutamate antiporter 

is one of the main plasma membrane transporter for cystine and 

https://en.wikipedia.org/wiki/Glycine
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glutamate and is essential for cystine uptake in cancer cells. This 

transporter was first described in 1980 as a Na+-independent transport 

system for L-cystine and L-glutamate in human fibroblasts [185]. The xc
- 

transporter has also proven to be implicated in glutathione-based 

chemoresistance [186,187,188]. As such, the inhibition of xc
- transporter 

to generate cystine/cysteine depletion may reveal a valuable therapeutic 

strategy [183,184,189].  

Some cancers are unable to synthesize cysteine [182], likely due to a 

deficiency in the last enzyme in the transsulfuration pathway, γ-

cystathionase [181]. Thus, cystine/cysteine is an essential amino acid for 

such cancers and its uptake from the external is vital for their growth and 

viability [179]. In addition, some cells show a low uptake capability for 

cystine due to lack of cystine transporter expression, like lymphoid cells. 

As such, in the absence of endogenous pathways for cysteine synthesis, 

these cells are mainly dependent on uptake of extracellular cysteine [182]. 

1.4 A mouse fibroblast model to study Ras-dependent metabolic 

rewiring in cancer 

The identification of the networks underlying a considered system [39] is 

achievable by using a defined, genetically tractable model both for normal 

and transformed cells in which the transformed phenotype can be 

switched on and off by specific molecular events. 
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Normal mouse fibroblasts (NIH3T3) are largely employed for their 

indefinite growth in culture, retention of contact inhibition, and ease of 

transformation due to mutations or expression of introduced genes [41]. 

These cells and their derived cells stably expressing oncogenic K-ras 

mutant (NIH-RAS) proved to be a valid cellular model for studying Ras-

dependent transcriptional reprogramming [191] and metabolic rewiring 

[101,192,193]. Indeed, several reports found coherent correlation 

between the results obtained in this cellular model with findings in tumor 

tissues and animal models [194,195,196,197]. The Ras-dependent 

transformation phenotypes of NIH-RAS cells (like the ability to overcome 

contact inhibition when plated in soft agar [41]) can be down-regulated 

by over-expressing a dominant negative mutant of RasGRF1 with Ras 

sequestering properties, called GEF-DN, extensively characterized in our 

laboratory [50,198,199] (Figure 1.14).  

 

Figure 1.14 Our cellular model to study K-ras-induced transformation. Left: normal NIH3T3 mouse 
fibroblasts; middle: NIH3T3 cells transformed by an activated form of the K-ras oncogene; right: K-
ras-transformed NIH3T3 fibroblasts that stably overexpress the GEF-DN. 
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Particularly, a single amino acid change within the catalytic domain of 

RasGRF1 turns this molecule into a dominant negative protein. GEF-DN is 

able to efficiently displace wild-type GEF from p21ras and to originate a 

stable Ras–GEF binary complex due to the reduced affinity of the 

nucleotide-free Ras–GEF complex for the incoming nucleotide [200]. This 

Ras sequestering property can be utilized to attenuate Ras signal 

transduction pathways in K-ras-transformed mouse fibroblasts, since GEF-

DN expression down-regulates Ras activity both in vitro and in vivo and 

induces a reversion of the transformed phenotype on the basis of 

morphology, anchorage-independent growth and reduction of Ras-

dependent tumor formation in nude mice [198]. Thus, the use of three cell 

lines (normal NIH3T3, transformed NIH-RAS and reverted NIH-RAS GEF-

DN) allows to directly assess the role played by Ras activation in any given 

studied phenotype. 

1.5 The study of cancer metabolism with a Systems Biology approach 

Since the process of mapping and sequencing the human genome began, 

new technologies have made possible to obtain a huge number of 

molecular measurements within a tissue or cell. These technologies can 

be applied to a biological system of interest to get a snapshot of the 

underlying biology at a resolution never reached before. The scientific 

fields associated with measuring such biological molecules in a high-

throughput way are called “-omics” and include proteomics, 
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transcriptomics, genomics, metabolomics, lipidomics and epigenomics, 

which correspond to global analyses of proteins, RNA, genes, metabolites, 

lipids and methylated DNA or modified histone proteins in chromosomes, 

respectively (Figure 1.15).  

 

Figure 1.15 Omic technologies for Systems biology. From [201] 

 

One common reason for conducting -omic research is to achieve a 

comprehensive understanding of the complex biological system under 

study [39]. Another common goal of -omic studies is to associate the 

omics-based molecular measurements with a clinical outcome of interest, 

such as prostate cancer survival time, risk of breast cancer recurrence, or 

response to therapy. The rationale is that, by taking advantage of omics-

based measurements, there is the potential to develop a more accurate 

predictive or prognostic model of a particular condition or disease. 

1.5.1 Main types of -omic data 

Genomics Complete or partial DNA sequence of the genome of an 

organism (that remains essentially constant over time) can be assayed 

using various experimental platforms, including single nucleotide 

polymorphism (SNP) chips and DNA sequencing technology. SNP chips are 
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arrays of thousands of oligonucleotide probes that bind to specific DNA 

sequences in which nucleotide variants are known to occur. Genomic 

analysis also can detect insertions and deletions and copy number 

variation, referring to loss of or amplification of the expected two copies 

of each gene (one from the mother and one from the father at each gene 

locus). Personal genome sequencing is a more recent and powerful 

technology, which allows for direct and complete sequencing of genomes 

and transcriptomes. 

Transcriptomics The transcriptome is the complete set of RNA transcripts 

from DNA in a cell or tissue. The transcriptome includes ribosomal RNA 

(rRNA), messenger RNA (mRNA), transfer RNA (tRNA), micro RNA 

(miRNA), and other non-coding RNA (ncRNA). In humans, only 1.5-2% of 

the genome is represented in the transcriptome as protein-coding genes. 

The two dominant classes of measurement technologies for the 

transcriptome are microarrays and RNA sequencing (RNAseq). 

Microarrays are based on oligonucleotide probes that hybridize to specific 

RNA transcripts. RNAseq is a much more recent approach, which allows 

for direct sequencing of RNAs without the need for probes. Transcriptomic 

data allowed to quantify and characterize global gene expression profiles 

of various cancer types [202,203], showing a differential expression of 

several genes between normal and transformed cells [204,205]. 
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Proteomics The proteome is the complete set of proteins expressed by a 

cell, tissue, or organism. It is inherently quite complex because proteins 

can undergo posttranslational modifications (glycosylation, 

phosphorylation, acetylation, ubiquitylation, and many other 

modifications to the amino acids comprising proteins), have different 

spatial configurations and intracellular localizations, and interact with 

other proteins as well as other molecules. This complexity can lead to 

challenges in proteomics-based test development. The proteome can be 

assayed using mass spectrometry and protein microarrays [206,207]. 

Unlike RNA transcripts, proteins do not have obvious complementary 

binding partners, so the identification and characterization of capture 

agents is critical to the success of protein arrays. Proteomic approaches 

allowed the identification of proteins specifically expressed in 

transformed cells that could be used as cancer biomarkers [208,209,210]. 

Epigenomics The epigenome consists of reversible chemical modifications 

to the DNA, or to the histones that bind DNA, and produce changes in the 

expression of genes without altering their base sequence. Epigenomic 

modifications can occur in a tissue-specific manner, in response to 

environmental factors, or in the development of disease states, and can 

persist across generations. The epigenome can vary substantially among 

different cell types within the same organism. Biochemically, epigenetic 

changes that are measured at high-throughput level belong to two 

categories: methylation of DNA cytosine residues at CpG and multiple 
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kinds of modifications of specific histone proteins in the chromosomes 

(histone marks). RNA editing, the molecular process through which some 

cells can make discrete changes to specific nucleotide sequences within 

a RNA molecule after it has been generated by RNA polymerase, is 

another mechanism for epigenetic changes in gene expression, measured 

primarily by transcriptomic methods [211].  

Metabolomics The metabolome is the complete set of small molecule 

metabolites found within a biological sample (including metabolic 

intermediates and end products). The metabolome is dynamic and can 

vary within a single organism and among organisms of the same species 

due to many factors such as changes in diet, stress, physical activity, 

pharmacological effects and disease. The components of the metabolome 

can be measured with mass spectrometry [212] as well as by nuclear 

magnetic resonance spectroscopy [213]. This method also can be used to 

study the lipidome [214], which is the complete set of lipids in a biological 

sample. 

Metabolomics is the youngest of the -omics technologies and is able to 

concurrently identify thousands of metabolites, generated by the 

enzymatic reactions of specific metabolic pathways. As the different 

amounts of metabolites obtained under perturbed experimental 

conditions reflect the changes in enzyme activity, metabolomics allows to 

obtain a biochemical snapshot of the physiological and pathological state 

of a cell or an organism. Metabolic profiling provides a complete 

https://en.wikipedia.org/wiki/Nucleotide_sequences
https://en.wikipedia.org/wiki/RNA
https://en.wikipedia.org/wiki/RNA_polymerase


45 
 

functional picture of the biochemistry that connects the genome —via 

transcription and translation— to a particular phenotype through the 

interaction between the cell and the environment. For this reason, 

metabolomics applications have recently found a valuable use in clinical 

field, to identify new biomarkers in neurological, cardiovascular and 

cancer diseases [215]. 

Fluxomics Metabolomics, however, only provides a picture of the 

metabolite concentrations in the cell in a particular moment. The 

complete metabolic picture is a consequence of the transformation and 

transport of metabolites throughout metabolic reactions and transport 

processes, which are finely regulated at different levels. To complement 

metabolomics-derived information, the analysis of flux distributions and 

the changes associated to them are explored at cellular level with 

fluxomics [216,217]. 

Similar to genome, transcriptome, proteome, and metabolome, the 

fluxome is the complete set of metabolic fluxes in a cell. Nevertheless, 

unlike the others, the fluxome is a dynamic representation of the 

phenotype. This is due to the fluxome resulting from the interactions of 

the metabolome, genome, transcriptome, proteome, post-translational 

modifications and the environment [218]. Metabolic flux refers to the rate 

of metabolite conversion in a metabolic network: for a reaction, this rate 

is a function of both enzyme abundance and enzyme activity. Enzyme 

concentration is itself a function of transcriptional and translational 
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regulation in addition to the stability of the protein. Enzyme activity is 

affected by the kinetic parameters of the enzyme, the substrate 

concentrations, the product concentrations, and the effector molecules 

concentration. The genomic and environmental effects on metabolic flux 

are what determine healthy or diseased phenotype. Fluxomics describes 

the various approaches that seek to determine the rates 

of metabolic reactions within a biological entity. While metabolomics can 

provide instantaneous information on the metabolites in a biological 

sample, fluxomics describes metabolism as a dynamic process, since 

metabolic fluxes determine the cellular phenotype [219].  

Two important technologies for flux analysis are 13C-fluxomics and Flux 

Balance Analysis (FBA), the latter treated in the next paragraph. In 13C-

fluxomics, metabolic precursors are enriched with 13C before being 

introduced to the system. Using an imaging technique, such as mass 

spectrometry or nuclear magnetic resonance spectroscopy, the level of 

incorporation of 13C into metabolites can be measured and, with 

stoichiometry, the metabolic fluxes can be estimated [220]. 

As many reactions compete for common substrates, not only a single 

reaction or a small portion of the metabolic network must be considered. 

Thus, a complete study of cancer metabolism is achieved by pairing 

biochemical information with transcriptomic and proteomic data. 

Therefore, the study of metabolism is commonly addressed from an 

integrated perspective that aims to consider the metabolic network in its 

https://en.wikipedia.org/wiki/Flux_balance_analysis
https://en.wikipedia.org/wiki/Flux_balance_analysis
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entirety. To this end, Systems biology [221,222] is the conceptual and 

operative approach needed to extract and integrate information from this 

huge amount of different -omic data [216,223,224]. The systems biology 

approach systematically organizes, integrates and rationalizes the 

different -omic data through statistical analysis, computer aided modeling 

and visualization. It requires different scientific competencies so to give 

them structure, improve the understanding of emergent properties and 

their design principles and gain ability to predict the behavior of a system 

and to exploit it for applicative purposes [201]. 

1.5.2 Metabolic modeling 

According to the Systems Biology paradigm, the biological system of 

interest needs to be formally described with a mathematical model. Two 

key features of modeling are the possibility to formulate in vivo-testable 

hypotheses and to integrate different experimental (wet lab) data, 

especially those measured with high-throughput techniques as 

transcriptomics, proteomics and metabolomics. In this context, there is a 

need for models able to analyze the regulatory features of metabolism, as 

well as to give structure and predictive power to post-genomic data. 

Metabolism can be described with mathematical models defined at 

different levels of detail, ranging from genome-wide models, which 

include several thousands of reactions and metabolites, to toy models, 

which consider only a few reactions, passing through core models, usually 

characterized by hundreds of reactions and metabolites. The scale of the 
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model depends on the nature of the biological system under examination 

and the experimental data that are available or measurable for that 

system. Particularly, the analysis of the model is expected to increase the 

current knowledge on the system, thanks to novel predictions on its 

functioning and to their experimental validation. In this phase, initial 

experimental data are necessary to define a plausible mathematical 

model, since they can aid to discriminate among different hypotheses on 

the structure of the system. Moreover, the modeler has to identify the 

proper level of abstraction necessary to formally describe the 

components of the system and their mutual interactions and choose the 

most appropriate mathematical formalism. In this regard, dynamical 

models -usually defined as systems of differential equations- are 

considered the most likely candidates to achieve a detailed 

comprehension of cellular processes. However, the usual lack of 

quantitative parameters represents a limit to a wide applicability of this 

approach for large metabolic networks. Thus, the common practice for 

the computational investigation of metabolism usually relies on 

constraint-based models, which will be briefly treated in this thesis. 

1.5.2.1. From wet lab to dry lab 

1.5.2.1.1. Reconstruction of metabolic network 

The starting point to develop a computational model of metabolism is the 

reconstruction of the network of metabolites and reactions in a cell [225]. 
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This metabolic network can be represented as a graph, in which a number 

of components, called nodes (= metabolites), are interconnected through 

edges (= metabolic reactions). Such formal representations usually rely on 

genomic and literature data, possibly integrated with data obtained from 

laboratory experiments. Network reconstructions can vary in size and in 

levels of abstraction, according to the scope of their formulation. 

One of the main purposes in the reconstruction of genome-wide (GW) 

models is to summarize all the current knowledge concerning metabolic 

processes at the level of single gene annotation, trying to consider every 

single reaction that is known to occur within an organism. The curation of 

GW models became possible after the development of high-throughput 

and -omics technologies [226], able to generate large amounts of 

quantitative data about living systems [227]. Thus, GW models are the 

result of the integration of different kinds of information about 

metabolism. Being extended and complex, GW metabolic network 

reconstructions often derive from a community effort, which may require 

many years of work [228]. 

At the opposite extreme, toy models have a simple structure and include 

a limited number of components, in order to just highlight some major 

regulatory properties and easily identify the most relevant components of 

the system. Core models (CMs) stay in between toy and GW models. They 

can cover in molecular details only one or a few simple pathways, or 

summarize information about several pathways, by including only those 
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elements that are assumed to be essential to unravel the regulatory 

features and/or the dynamic behavior of the phenomenon under study. 

1.5.2.1.2. Ensemble Modeling approach 

Ensemble modeling (EM) aims at the investigation of the model behavior 

under different perturbations. EM consists in a large set of candidate 

models, based on elementary reactions characterized by mass-action 

kinetics, that achieve a certain steady state flux distribution in a given 

experimental condition. This strategy allows to capture the behavior of 

enzymatic reactions, in the case of complete knowledge of reference 

fluxes, or enzyme and metabolite concentrations in the whole network. 

EM is more appropriate than other approaches to directly account for 

uncertainties, especially in the case of models with large numbers of 

unknown parameters, and when some parameters are not completely 

identifiable with the available experimental data [229]. Once the 

ensemble of models is produced, additional experimental data obtained 

in perturbation experiments are acquired and used to iteratively reduce 

the set of candidate models, resulting in an increasingly predictive subset 

of models. 

Being the main input of the models in the ensemble, the lack of 

experimental measurements or the ability of calculating the steady state 

fluxes can reduce the applicability of EM. 
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1.5.2.2 From models to in silico data: Flux Balance Analysis 

Constraint-based modeling relies on the idea that all the expressed 

phenotypes of a given biological system must satisfy a number of 

constraints, which can be of physicochemical, spatial or environmental 

type. Accordingly, by restricting the space of all possible system’s states, 

it is possible to determine the functional states that a metabolic network 

can or cannot achieve. The fundamental assumption of constraint-based 

modeling is that, regardless of the environmental condition, the organism 

will reach a quasi-steady state that satisfies the given constraints. 

The starting point of constraint-based modeling is the stoichiometric 

matrix, which contains the stoichiometric values of the reactants and 

products of each reaction in the metabolic network: each row in the 

matrix corresponds to a metabolite, each column corresponds to a 

reaction. The null space of this matrix mathematically represents the mass 

balances for each intracellular metabolite, and expresses all those flux 

distributions that can be achieved by the metabolic network at steady 

state. Additional constraints, such as irreversibility or capacity constraints, 

are incorporated to further restrict the solution space, by specifying the 

maximum and minimum values of the flux through any given reaction. 

Capacity constraints are usually set according to experimental records and 

are recommended at least for nutrient intake reactions. 

FBA [230] allows to select a single flux distribution within the obtained 

feasible solution space, by assuming that the cell behavior is optimal with 
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respect to a specified objective (represented according to an objective 

function (OF)), and by calculating the optimal flux distribution by means 

of an optimization routine. 

Thus, the inputs of FBA are the stoichiometric matrix, the specification of 

the flux boundaries for each reaction and the OF, whereas the output is 

the quantification of the flux through each reaction. 

Thanks to the advantages of a modeling approach that does not require 

information about kinetic parameters, FBA has recently received 

increasing attention in Systems Biology, to gain novel knowledge about 

the physiological state of a cell [231,232]. As a general remark, solutions 

obtained with FBA are only as good as the constraints used to identify 

them and the rightness of the OF (knowledge about the true OF that drives 

the evolution is often limited). Moreover, a major limit of FBA is that it is 

not suited for the investigation of the system dynamics, as it disregards 

information on metabolic concentrations and kinetic parameters.  

Despite these challenges, FBA has significant potential to support the 

interpretation of metabolic data, and there have been many innovative 

developments to improve its predictive capabilities [233,234]. 

1.5.2.3. Model validation 

Any in silico metabolic model must undergo a validation process to 

confirm its capability to reproduce the behavior and properties of the 

biological system under study in different conditions. 
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The evaluation of a model proceeds through the analysis of its behavior, 

which allows to detect problems in its reconstruction, according to an 

iterative process of tuning, simulation and validation. Errors in a metabolic 

reconstruction are more likely to occur within large-scale models, which 

are typically investigated with constraint-based approaches. Some known 

issues that can affect the validity of a metabolic reconstruction are the 

presence of dead-end metabolites (i.e., metabolites that are only 

produced or consumed within the network) or the existence of network 

gaps [225], which are missing reactions that should connect some 

metabolites. 

Metabolic models might be evaluated qualitatively (e.g., to assess their 

capability to generate all the precursor metabolites and all the 

metabolites that the organism produces/degrades) and quantitatively, by 

comparing the model behavior with various experimental observation 

such as secretion products and gene essentiality. 

The strategy of gene deletion analysis deserves particular attention as it 

might be exploited either to validate a model, or to infer novel 

experimental hypotheses after model validation. This method consists in 

simulating the inhibition of a metabolic gene by excluding from the model 

the reactions associated to that gene. 
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2. AIM OF THE THESIS 

 

Cancer cells rewire their metabolism to sustain enhanced proliferation 

and survival, rendering them dependent on constant supply of nutrients 

and energy. Besides the well-studied altered glucose metabolism, over 

the last years increased utilization of amino acids has emerged as another 

key feature of cancer cell metabolism. In parallel, recent advances in the 

comprehension of tumorigenesis have revealed that cancer is a complex 

disease and cannot be unraveled by simply investigate genetic mutations 

of cancer cells. In this context, targeting dysregulated metabolic pathways 

that support tumorigenesis and cancer cell growth requires both the 

advancement of experimental technologies for exhaustive measurement 

of -omics as well as the advancement of robust computational methods 

for accurate analysis of the generated data. Such system-level perspective 

of cancer metabolism may help in the identification of novel selective drug 

targets.  

In this regard, the work here presented has the following main objectives: 

1) Study the effect of K-ras proto-oncogene activation in NIH3T3 

mouse fibroblasts on transport and metabolism of the 

proteinogenic sulfur amino acids, cysteine and methionine, by 

using the approach of nutritional perturbation. Possibly extend the 

findings to human cancer cells in the perspective of novel 
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anticancer strategies dealing with sulfur amino acid metabolism, 

which may involve  the approach of dietary methionine restriction; 

2) Investigate the roles that glutamine has in promoting the 

enhanced proliferation of K-ras-transformed NIH3T3 mouse 

fibroblasts, by substituting it with nonessential amino acids (NEAA) 

as nitrogen source and alpha-ketoglutarate (AKG) as carbon source 

and exploiting an integrated, Systems biology approach, which 

makes use of –omics technologies and metabolic modeling to 

analyze the behavior of nutritionally-perturbed cells. 
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Abstract 
 

Background 

Cancer cells have an increased demand for amino acids and require 

transport even of non-essential amino acids to support their increased 

proliferation rate. Besides their major role as protein synthesis precursors, 

the two proteinogenic sulfur-containing amino acids, methionine and 

cysteine, play specific biological functions. In humans, methionine is 

essential for cell growth and development and may act as a precursor for 

cysteine synthesis. Cysteine is a precursor for the biosynthesis of 

glutathione, the major scavenger for reactive oxygen species.  

Methodology and Principal Findings 

We study the effect of K-ras oncogene activation in NIH3T3 mouse 

fibroblasts on transport and metabolism of cysteine and methionine. We 

show that cysteine limitation and deprivation cause apoptotic cell death 

(cytotoxic effect) in both normal and K-ras-transformed fibroblasts, due 

to accumulation of reactive oxygen species and a decrease in reduced 

glutathione. Anti-oxidants glutathione and MitoTEMPO inhibit apoptosis, 

but only cysteine-containing glutathione partially rescues the cell growth 

defect induced by limiting cysteine. Methionine limitation and deprivation 

has a cytostatic effect on mouse fibroblasts, unaffected by glutathione. K-

ras-transformed cells – but not their parental NIH3T3 - are extremely 

sensitive to methionine limitation. This fragility correlates with decreased 

expression of the Slc6a15 gene - encoding the nutrient transporter SBAT1, 
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known to exhibit a strong preference for methionine - and decreased 

methionine uptake. 

Conclusions and Significance 

Overall, limitation of sulfur-containing amino acids results in a more 

dramatic perturbation of the oxido-reductive balance in K-ras-

transformed cells compared to NIH3T3 cells. Growth defects induced by 

cysteine limitation in mouse fibroblasts are largely – though not 

exclusively – due to cysteine utilization in the synthesis of glutathione, 

mouse fibroblasts requiring an exogenous cysteine source for protein 

synthesis. Therapeutic regimens of cancer involving modulation of 

methionine metabolism could be more effective in cells with limited 

methionine transport capability. 
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Introduction 
 
Activation of the K-ras proto-oncogene [1,2,3,4] has a great incidence in 

human tumors, as reported in the catalogue of somatic mutations in 

cancer (COSMIC) [5]. K-ras activation occurs in 22% of all tumors, 

prevalently in pancreatic carcinomas (about 90%), colorectal carcinomas 

(40–50%), and lung carcinomas (30–50%), as well as in biliary tract 

malignancies, endometrial cancer, cervical cancer, bladder cancer, liver 

cancer, myeloid leukemia and breast cancer. K-Ras oncoproteins are 

important clinical targets for anti-cancer therapy [6] and several strategies 

have been explored in order to inhibit aberrant Ras signaling, as reviewed 

in [7,8,9,10]. 

The acquisition of important hallmark traits of cancer cells, including 

enhanced cell growth and survival, rely on deep changes in metabolism 

driven by oncogene activation [11,12,13,14,15]. Oncogenic activation of 

K-ras contributes to the acquisition of the hyper-glycolytic phenotype 

(also known as Warburg effect, from the pioneering studies of Warburg 

[16]) due to enhancement in glucose transport and aerobic glycolysis 

[17,18]. K-ras oncogene activation also correlates with down-regulated 

expression of mitochondrial genes, altered mitochondrial morphology 

and production of large amount of reactive oxygen species (ROS) 

associated with mitochondrial metabolism [19,20]. Furthermore, K-ras 

activation allows cells to make extensive anaplerotic usage of glutamine, 

the more concentrated amino acid in human plasma [21]. In Ras-
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transformed cells, glutamine is largely utilized through reductive 

carboxylation that results in a non-canonical tricarboxylic acid cycle (TCA) 

pathway [19,22,23,24,25,26]. These metabolic changes render Ras-

transformed cells addicted to glutamine, and to glutaminolysis, and offer 

new therapeutic opportunities. Indeed, glutamine metabolism restriction 

and targeted cancer therapeutics directed against glutamine transporters 

or glutaminolysis can be used to limit tumor cell proliferation and survival 

without affecting normal cells [27,28,29].  

Besides glutamine transporters, all amino acid transporters are being 

receiving attention from scientific community as potential drug targets for 

cancer treatment, given the increased demand of cancer cells for these 

nutrients to support their enhanced cell growth [30,31]. Selective blockers 

of these transporters might be effective in preventing the entry of 

important amino acids into tumor cells, thus essentially starving these 

cells to death. 

Methionine is an essential amino acid required for normal growth and 

development in mammals [32]. The intracellular level of methionine 

depends on the balance between synthesis (through the de novo synthetic 

pathway), recycle (through the salvage pathway), consumption (in 

biosynthesis of proteins) and its transport.  An important metabolite of 

methionine is S-adenosylmethionine (SAM), the principal methyl donor in 

the cell. SAM is required for methylation of DNA, RNA, proteins (including 

histones [33]) and lipids by the enzymes methyltransferases. Moreover, 
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SAM is involved in biosynthesis of polyamines, which have far-ranging 

effects on nuclear and cell division, and methionine salvage pathway [34]. 

SAM gives its activated methyl group in methylation reactions, being 

converted to S-adenosylhomocysteine, which is reversibly hydrolyzed to 

homocysteine (S1 Fig). Depending on demand, homocysteine metabolism 

can be either directed toward the re-methylation pathway to regenerate 

methionine (thus increasing methylation potential) or toward antioxidant 

synthesis in the trans-sulfuration pathway [34]. In the first catabolic step 

of trans-sulfuration, homocysteine may be condensed to serine to form 

cystathionine, which in turn may be converted to cysteine [35].  

Cysteine is a sulfur-containing, semi-essential proteinogenic amino acid. It 

can be synthesized in humans to some extent; as such, it is classified as 

conditionally essential, since it may become temporarily essential when 

synthesis during rapid growth or critical illness is insufficient [36]. Cysteine 

is a precursor for the tripeptide glutathione, an important intracellular 

antioxidant that reduces reactive oxygen species (ROS), thereby 

protecting cells from oxidative stress [37]. The systemic availability of oral 

glutathione (GSH) is negligible; so it must be biosynthesized from its 

constituent amino acids, cysteine, glycine, and glutamic acid, the first 

being the limiting substrate [38]. Furthermore, cysteine is a precursor for 

the production of taurine, another antioxidant, and sulfate [39]. At least 

in liver, glutathione also acts as cysteine storage, from which this amino 

acid can be mobilized if required to maintain protein synthesis under 

https://en.wikipedia.org/wiki/Glycine


63 
 

nutritional stress [40]. Under normal physiological conditions, cysteine 

can usually be synthesized de novo from homocysteine in humans if a 

sufficient quantity of methionine is available. 

Normal mouse fibroblasts (NIH3T3) and their derived cells stably 

expressing oncogenic K-ras mutant (NIH-RAS) proved to be a valid cellular 

model for studying Ras-dependent transcriptional reprogramming [41] 

and metabolic rewiring [23,42,43]. The Ras-dependent transformation 

phenotypes of NIH-RAS cells can be down-regulated by over-expressing a 

dominant negative mutant of RasGRF1 with Ras sequestering properties, 

extensively characterized in our laboratory [7,44,45]. We use these cell 

lines to study the effect of K-ras proto-oncogene activation on transport 

and metabolism of the proteinogenic sulfur amino acids, cysteine and 

methionine.  

We show that cysteine limitation and deprivation increase ROS level and 

decrease reduced glutathione, eventually leading to apoptotic cell death. 

Through the complementary use of anti-oxidants glutathione and 

MitoTEMPO (a cysteine non-containing reducing agent) and inhibitors of 

de novo biosynthesis of reduced glutathione, we show that growth defects 

induced by cysteine limitation in mouse fibroblasts are largely – though 

not exclusively – due to cysteine utilization in the synthesis of glutathione 

and that mouse fibroblasts require an exogenous cysteine source for 

protein synthesis. Methionine limitation and deprivation is cytostatic and 

unaffected by glutathione. Limitation of sulfur-containing amino acids 
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perturbs the oxidoreductive balance, particularly in K-ras-transformed 

cells that display selective growth fragility to a moderate reduction in 

methionine supply. Such nutritional fragility correlates with Ras 

activation, decreased expression of the Slc6a15 gene -encoding the 

methionine transporter SBAT1- and reduced methionine uptake.  
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Results 

 

Methionine limitation reduces growth of Ras-transformed mouse 

fibroblasts more than growth of normal cells 

First, we analyzed cell proliferation of normal NIH3T3 and Ras-

transformed NIH-RAS mouse fibroblasts under standard growth condition 

(0.2 mM Cys, 0.2 mM Met), limitation (1/8: 0.025 mM; 1/4: 0.05 mM; 1/2: 

0.1 mM) and deprivation of cysteine or methionine. Both cell lines were 

unable to grow in the absence of either methionine or cysteine (Fig 1A-B, 

open squares), demonstrating that both sulfur amino acids are essential 

for cell proliferation of mouse fibroblasts, which are not able to synthesize 

neither cysteine nor methionine each from the other. 

Growth of NIH-RAS cells was more severely inhibited by methionine 

limitation than that of NIH3T3 cells. In Met1/2 condition (Fig 1A-B, light 

triangles, and Fig 1D) the mass duplication time (MTD) of NIH-RAS cells 

was 1.5 longer than that of NIH3T3 (S1 Table). More stringent methionine 

limitation (Met1/8) resulted in almost complete arrest of cell proliferation 

of both cell lines (Fig 1A, dark filled triangles, and S1 Table). Fig 1C-D show 

cell proliferation data 30 and 72 hours after methionine limitation, 

highlighting enhanced sensitivity of transformed NIH3T3 cells to 

methionine limitation. Note that NIH-RAS cells grown in Met1/2 condition 

are still largely viable after 72 hours, unlike the cells grown in Met1/8 

condition (Fig 1D). Under methionine limitation NIH-RAS cells were also 
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severely hampered in foci formation ability (Fig 1E). Notably the major 

sensitivity of Ras-transformed cells to methionine limitation was fully 

reverted by the over-expression of a dominant negative mutant of the 

Ras-specific guanine nucleotide exchange factor RasGRF1 (RasGRF1W1056E, 

that we refer to as GEF-DN), endowed with Ras sequestering properties 

(Fig 1C-D, S2-3 Fig).  

All together, these data indicate that Ras hyper-activation enhances 

sensitivity to methionine limitation in mouse fibroblasts. 

As shown in Figure 1B and in S1 Table the cell proliferation behavior under 

cysteine limitation and deprivation was quite similar in NIH3T3 and NIH-

RAS cells. In Cys1/2 condition both cell lines grew as well as in standard 

medium (S4A Fig, S1 Table), while further reduction of cysteine (Cys1/4) 

increased the MDT of both NIH3T3 and NIH-RAS cells, even if slightly more 

in transformed cells (Fig 1B, S1 Table). Cysteine limitation strongly 

reduced foci formation ability of NIH-RAS cells (Fig 1E). 

 

Fig 1 Proliferation under methionine and cysteine deprivation and 

limitation.  

Cell proliferation of NIH3T3 and NIH-RAS cells grown in media 

supplemented with different concentrations of methionine and 

glutathione (A) or cysteine and glutathione (B) and counted daily for 72 h 

of growth under conditions indicated. Plotted data are mean +/- standard 

deviation computed from at least three independent experiments. (C-D) 
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Cell proliferation of NIH3T3, NIH-RAS and NIH-RAS pGEF-DN cells grown 

for 30 h (C) and 72 h (D) under conditions indicated. (E) Foci formation of 

NIH-RAS cells grown for 9 days under conditions indicated. *P<0.05; 

**P<0.01 (Student’s t-test). 

 
Cysteine mainly acts as a precursor of glutathione, whose excess mostly 

affects normal cells 

Apoptotic and necrotic cell death can be assayed by FACS after staining 

with Annexin V-FITC and propidium iodide (PI). After limitation or 

deprivation of cysteine for 30 hours, apoptotic cells significantly increased 

in both cell lines, the effect being stronger in cysteine-deprived cells (Fig 

2A). Supplementation of cysteine to cells grown for 72 hours in cysteine-

free medium did not result in any significant growth recovery, reinforcing 

the notion that cysteine deprivation exerted a cytotoxic effect (cell death) 

in both NIH3T3 and NIH-RAS cell lines (Fig 2E).  

Glutathione is the most important endogenous antioxidant in mammalian 

cells, and the major redox buffer responsible for redox homeostasis 

[46,47]. It acts as a ROS scavenger through its oxidation to GSSG. The 

reduced form (GSH) is restored at the expenses of NADPH. The 

intracellular concentration of GSH depends on a dynamic balance 

between synthesis, consumption rate (metabolism), and its transport.  

We measured ROS (by FACS analysis of DCFDA-stained cells, Fig 2B), 

endogenous total (GSH+GSSG) and reduced (GSH) glutathione levels (by 

an enzymatic assay, Fig 2C) in NIH3T3 and NIH-RAS cells in standard 
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medium and 48 h after perturbing cysteine metabolism. In keeping with 

literature data [19,45,48,49], in standard medium NIH-RAS cells showed a 

1.7-fold higher ROS level than NIH3T3 (Fig 2B), accompanied by a 

moderate decrease in total glutathione and a significant decrease in 

reduced glutathione (Fig 2C).  Cysteine limitation and deprivation induced 

an increase in ROS levels, the effect being stronger in NIH-RAS cells (Fig 

2B). Under cysteine limitation, total glutathione levels (GSH+GSSG) were 

lower than in standard condition (Fig 2C), consistently with the notion that 

cysteine availability is rate-limiting for GSH synthesis [50,51,52,53]. The 

high cell mortality under cysteine deprivation hindered the measurement 

of glutathione levels.  

To investigate whether mouse fibroblasts are dependent on cysteine for 

growth, or whether the growth defects are the result of the oxidative 

stress on the cells, we took two complementary approaches. First, we 

modulated the oxidative response of cysteine-depleted cells with either 

cysteine-containing (GSH) or cysteine-non-containing (MitoTEMPO) anti-

oxidants. Second, we blocked glutathione de novo biosynthesis of 

standard or cysteine-limited cells with buthionine sulfoximine (BSO), that 

blocks the activity of gamma-glutamylcysteine synthetase (γ-GCT) 

required for the formation of the glutathione precursor gamma-

glutamylcysteine from glutamate and cysteine [47].  

Supplementing GSH to cysteine-free medium (-Cys+GSH growth 

condition) partially restored cell proliferation (Fig 1A, Fig 1C-D) in both 
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NIH3T3 and NIH-RAS cell lines and the ability to form foci in NIH-RAS cells 

(Fig 1E). Also, supplementation of GSH significantly reduced apoptosis 

induced by cysteine withdrawal and fully restored ROS levels to basal (Fig 

2A-B). Compared to NIH3T3, NIH-RAS cells require a higher GSH 

concentration both to recover cell survival and growth as well as to show 

the “anti-oxidative stress” (Fig 2D), phenomenon described in [54]. The 

reduced sensitivity to both positive and negative effects of GSH is most 

likely the result of the lower GSH content of Ras-transformed cells (Fig 2C). 

Supplementation of MitoTEMPO in cysteine-free medium reduced 

apoptosis to the same levels observed after GSH addition (Fig 2A), but 

could not rescue cell proliferation under cysteine deprivation (S4B Fig).  

In both NIH3T3 and NIH-RAS cell lines, BSO treatment severely down-

regulated glutathione accumulation (Fig 2C) and reduced proliferation 

(S4C Fig). Concurrently, both ROS accumulation (Fig 2B) and the fraction 

of apoptotic cells increased (Fig 2A). These effects appear stronger in NIH-

RAS than in NIH3T3 cells. They are dramatically enhanced by growth in 

limiting cysteine, which results in the death of most cells within 30 h from 

the treatment (Fig 2A). Cell death in BSO-treated cells grown in the 

absence of cysteine was essentially caused by oxidative stress, since 

almost all cells were strongly positive to DCFDA staining, as shown by 

fluorescence-microscopy analysis (S4D Fig). In these conditions ca 90% 

and 50% of NIH-RAS and NIH3T3 cells, respectively, are apoptotic after 30 

h of treatment (Fig 2A). All together, these data confirm the major 
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dependence of NIH-RAS from cysteine availability for the maintenance of 

proper GSH levels, redox homeostasis and cell viability, and on the other 

hand suggest that NIH3T3 cells less recur to the de novo synthesis of GSH 

to maintain redox homeostasis and favorable growth conditions. 

 

Fig 2 Viability and redox state under cysteine deprivation and limitation.  

(A) Representative dot plots for NIH3T3 and NIH-RAS cells stained with 

Annexin V-FITC and propidium iodide and analyzed by FACS after 30 h of 

growth under conditions indicated. Q1 = quadrant 1, healthy cell; Q2 = 

quadrant 2, early apoptotic cells; Q3 = quadrant 3, late apoptotic cells; Q4 

= quadrant 4, necrotic cells. MitoTEMPO and buthionine sulfoximine (BSO) 

were used at the concentration of 10 µM and 100 µM, respectively. The 

values reported for each quadrant are the mean +/- standard deviation of 

three independent experiments. (B) Relative ROS levels in NIH3T3 and 

NIH-RAS cells grown for 48 h under conditions indicated as determined by 

DCFDA (2’,7’-dichlorodihydrofluorescein diacetate) staining. Each bar 

represents the mean of at least three independent experiments with error 

bars representing the standard deviation. (C) Reduced and total 

glutathione levels (measured as described in [55]) in NIH3T3 and NIH-RAS 

cells grown for 48 h under conditions indicated. Each bar represents the 

mean of at least three independent experiments with error bars 

representing the standard deviation. (D) Cell proliferation of NIH3T3 and 

NIH-RAS cells grown for 48 h in cysteine-free medium supplemented with 
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different concentrations of glutathione. Plotted data are mean +/- 

standard deviation computed from at least three independent 

experiments. *P<0.05; **P<0.01 (Student’s t-test). (E) Crystal violet 

staining of NIH3T3 and NIH-RAS cells plated at the density of 9000 

cells/cm2, grown for 72 h under cysteine deprivation and then for 48 h in 

standard medium. 

 

Ras-transformed mouse fibroblasts show lower expression of a gene 

encoding a methionine-transporting solute carrier and reduced 

methionine uptake than normal cells  

Contrary to the behavior of cells perturbed by cysteine limitation or 

deprivation, methionine perturbation only weakly enhanced apoptosis in 

cells, slightly more in NIH-RAS cells (Fig 3A). Methionine limitation and 

deprivation increased ROS levels, methionine limitation having a 

significantly stronger effect in NIH-RAS cells (Fig 3B). As a likely 

consequence, GSH levels under limiting methionine were lower than in 

standard medium (Fig 3C) and inversely correlated with ROS levels (Fig 

3D). By contrast, total glutathione levels (GSH+GSSG) under limiting 

methionine were similar to those found in standard condition, 

consistently with the presence in the medium of the glutathione precursor 

cysteine (Fig 3C). The high cell mortality under methionine deprivation 

hindered the measurement of glutathione levels. These results 

demonstrated that changes in ROS and reduced glutathione levels under 
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methionine limitation (and, likely, in methionine deprivation) do not 

depend on alterations in glutathione biosynthesis. It is noteworthy that 

supplementation of 4 mM GSH to cells growing in methionine-free 

medium (-Met+GSH growth condition) resulted in decreased ROS levels in 

both cell lines (Fig 3B), however, neither NIH3T3 nor NIH-RAS cells were 

able to grow (Fig 1A,C-D), and NIH-RAS cells did not form foci (Fig 1E).  

A GSH versus ROS plot (Fig 3D) confirms that GSH and ROS levels are 

inversely correlated (which is not unexpected) and further shows that 

limitation of sulfur-containing amino acids results in a more dramatic 

decrease of GSH as a function of ROS concentration in NIH-RAS compared 

to NIH3T3 cells. 

Supplementation of methionine to cells grown for 72 hours in methionine-

free medium resulted in a significant growth recovery, reinforcing the 

notion that methionine deprivation exerted a cytostatic effect (arrest of 

cell proliferation) in both NIH3T3 and NIH-RAS cell lines (Fig 3E). 

We analyzed genome-wide transcriptional profiling datasets for NIH3T3 

and NIH-RAS cells (available in NCBI GEO database; accession 

GSM741354-GSM741361 for NIH3T3 cells and GSM741368-GSM741375 

for NIH-RAS cells), previously obtained in our laboratory with an 

MG_U74Av2 Affymetrix Gene Chip [41] to identify the pattern of 

expression of genes encoding solute carriers [56]. The expression of four 

of these genes was significantly altered in Ras-transformed versus normal 

cells (S5 Fig). One of these genes is Slc6a15 that encodes SBAT1, an amino 
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acid transporter exhibiting strong preference for branched chain amino 

acids and methionine [57,58]. RT-PCR analysis of the expression of these 

four genes in normal and transformed fibroblasts (Fig 4A) validated 

Affymetrix results, clearly indicating that in NIH-RAS cells the expression 

of Slc6a15 is down-regulated. Notably, over-expression in NIH-RAS cells of 

the Ras inhibitor GEF-DN determined a significant increase in the 

expression of Slc6a15 (S3C Fig). Consistently with the strong, but not 

always complete reversion of Ras-dependent phenotypes induced by GEF-

DN expression [45], up-regulation of Slc6a15 expression is strong, but 

possibly not complete compared to NIH3T3 cells. Our data thus indicate 

that sensitivity to methionine limitation (S3A-B Fig) and expression of the 

SBAT1-encoding Slc6a15 gene (S3C Fig) are regulated by the activation 

state of Ras. 

To confirm that methionine transport is impaired in NIH-RAS cells as 

suggested by transcriptional analysis, we assayed methionine uptake in 

NIH3T3 and NIH-RAS cells by using a 35S-methionine incorporation assay. 

NIH-RAS cells showed a significantly reduced incorporation of 35S-

methionine per unit of protein in both exponential and confluent growth 

conditions (Fig 4B). The combined transcriptional and biochemical 

analyses therefore suggest that down-regulation of Slc6a15 gene 

expression and ensuing decreased methionine transport activity in Ras-

transformed cells could be the reason for their higher sensitivity to 

methionine limitation. 
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Fig 3 Viability and redox state under methionine deprivation and 

limitation.  

(A) Representative dot plots for NIH3T3 and NIH-RAS cells stained with 

Annexin V-FITC and propidium iodide and analyzed by FACS after 30 h of 

growth under conditions indicated. Q1 = quadrant 1, healthy cell; Q2 = 

quadrant 2, early apoptotic cells; Q3 = quadrant 3, late apoptotic cells; Q4 

= quadrant 4, necrotic cells. The values reported for each quadrant are the 

mean +/- standard deviation of three independent experiments. (B) 

Relative ROS levels in NIH3T3 and NIH-RAS cells grown for 48 h under 

conditions indicated as determined by DCFDA (2’,7’-

dichlorodihydrofluorescein diacetate) staining. Each bar represents the 

mean of at least three independent experiments with error bars 

representing the standard deviation. (C) Reduced and total glutathione 

levels (measured as described in [55]) in NIH3T3 and NIH-RAS cells grown 

for 48 h under conditions indicated. Each bar represents the mean of at 

least three independent experiments with error bars representing the 

standard deviation *P<0.05; **P<0.01 (Student’s t-test). (D) Negative 

correlation between reduced glutathione levels and ROS levels in NIH3T3 

and NIH-RAS cells grown under conditions indicated. Linear regression 

curves are not parallel with a 99.9% confidence interval; Student’s t-test. 

(E) Crystal violet staining of NIH3T3 and NIH-RAS cells plated at the density 

of 9000 cells/cm2, grown for 72 h under methionine deprivation and then 

for 48 h in standard medium. 
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Fig 4 Methionine transport and solute carrier expression in mouse 

fibroblasts and in NCI-60 panel. 

(A) Semiquantitative RT-PCR results for NIH3T3 and NIH-RAS cells grown 

for 48 h in standard medium performed in triplicate on genes showing at 

least a two-fold change between NIH-RAS vs NIH3T3 cells in each of the 

two Affymetrix independent experiments (S5 Fig). (B) Labeled amino acid 

(35S-methionine) uptake rate in exponential and confluent cells (48 and 72 

h of growth in standard medium, respectively), measured after 20’-40’-60’ 

(for exponential cells) and after 30’-50’-60’ (for confluent cells) of labeling 

with 0.025 mCi/ml 35S-Met. Radioactivity values, expressed as CCPM 

(corrected counts per minute), were normalized on total protein content 

and plotted against labeling time. Results are mean +/- standard deviation 

of three independent experiments. **P<0.01; ***P<0.001 (Student’s t-

test). (C) The mRNA expression data for the NCI-60 human tumor cell lines 

were retrieved from CellMiner relational database [59]. These expression 

data were inputted in CIMminer [60] to generate a heat map, as described 

in Materials and Methods. Here are highlighted the names of the genes 

whose expression was statistically different between NIH3T3 and NIH-RAS 

cells, with a particular emphasis on the data related to SLC6A15 gene. (D) 

Concept map of cysteine and methionine metabolism in NIH3T3 and NIH-

RAS cells. 
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Discussion 

 

Cancer cells show metabolic dependencies that distinguish them from 

their normal counterparts [14]. Personalized targeting of cancer 

metabolism that accounts for differences in genetic, epigenetic and 

environmental factors (i.e., nutrient availability) may lead to major 

advances in tumor therapy [61]. In this paper we perform nutrient 

perturbation of the supply of the proteinogenic sulfur-containing amino 

acids methionine (a potential cysteine precursor) and cysteine (a GSH 

precursor) of normal, Ras-transformed and reverted mouse fibroblasts to 

highlight any differential biological response due to the activation state of 

Ras oncoprotein. 

We show that cysteine deprivation causes cell proliferation arrest in both 

normal and Ras-transformed mouse fibroblasts even in presence of 

methionine in the culture media. Although databases of metabolic 

pathway maps, like KEGG ([62,63]), Human Metabolic Atlas ([64]), 

Reactome ([65]) or Recon2 ([66]) annotate methionine-to-cysteine 

conversion for all considered cell types, we show that the biosynthetic 

pathway of cysteine from methionine is not active in mouse fibroblasts 

(Fig 4D, S1 Fig). In fact, the methionine-to-cysteine pathway may be active 

only in cells from splanchnic organs, described as important sites of trans-

methylation and trans-sulfuration of dietary methionine for cysteine 

synthesis [36]. These data are in keeping with previous results 
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demonstrating the dependency from cystine for growth of several human 

diploid cell lines (human fibroblasts), not able to utilize cystathionine in 

lieu of cystine, likely as a consequence of deficient cystathionase activity 

[67].  

Cysteine deprivation is accompanied by an increase in ROS levels, which 

could be due to an enhancement of mitochondrial metabolism, and 

particularly of oxidative phosphorylation-associated proton leakage, 

induced by energetic stress and increased ATP-demand. This redox 

unbalance induced by nutritional stress has a pivotal role in up-regulating 

cellular repair processes and other protective systems (e.g., chaperones) 

and in driving autophagy, a major mechanism by which starving cells 

mobilize and reallocate intracellular nutrient resources in order to 

maintain processes necessary for survival during growth-unfavorable 

conditions [68].  

Cysteine deprivation causes apoptotic cell death. Apoptosis induced by 

cysteine-withdrawal is essentially due to increased oxidative stress caused 

by glutathione deprivation. Non-cysteine containing anti-oxidants 

effectively rescue oxidative stress, but cannot rescue cell death induced 

by cysteine deprivation. Supplementing reduced glutathione to cysteine-

deprived cells not only restores redox homeostasis (and suppresses 

apoptosis), but also partially restores cell growth, indicating that in mouse 

fibroblasts GSH can be used as a cysteine reservoir to maintain protein 

synthesis under nutritional stress. However, high concentrations of GSH 
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have a toxic effect, stressing the notion that to maximize viability a proper 

balance between ROS and antioxidants needs to be obtained [54]. Under 

standard cysteine conditions, severe inhibition of glutathione biosynthesis 

increases oxidative stress, but has moderate effects on viability. Growth 

defects induced by cysteine limitation are synergistically increased by 

inhibiting glutathione synthesis, the more so in NIH-RAS cells, indicating 

that the growth defects induced by cysteine limitation are largely – though 

not exclusively – due to cysteine utilization in the synthesis of glutathione. 

The differential sensitivity of NIH3T3 and NIH-RAS cells to both protective 

and toxic effects of glutathione may depend on the higher glutathione 

content of NIH3T3 cells. 

The role of cysteine in cancer is controversial. While some authors report 

that human tumor growth is associated with decreased plasma levels of 

cysteine and homocysteine [69], more recently other authors 

demonstrated that antioxidants such as N-acetylcysteine (a direct 

precursor of cysteine) can accelerate tumor progression by decreasing 

ROS levels, DNA damage and p53 (a tumor suppressor gene) levels in 

cancer [70]. 

The increase in ROS levels under methionine deprivation in both NIH3T3 

and NIH-RAS cell lines is not followed by a significant increase in neither 

apoptosis nor necrosis. While cell growth of normal and Ras-transformed 

cells was similarly compromised by methionine deprivation, methionine 

limitation mostly affected NIH-RAS cells.  
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Some cancers show methionine dependence, a feature firstly noted in 

xenograft rodents in response to a methionine-free diet [71]. Since then 

normal cells have been reported to be more resistant to external 

methionine limitation [34,72]. Methionine dependence might be 

correlated with inability of methionine-restricted cells to cope with 

demand for SAM, a major methionine product [34]. This “SAM-

checkpoint” may protect cellular integrity and maintain epigenetic 

stability, since it stops cell cycle progression when intracellular SAM 

concentrations are insufficient to sustain the methylation reactions 

necessary for normal cell physiology [34]. Several drugs that target the 

enzymes that are involved in the post-translational modifications of 

histones and DNA, cell survival, proliferation and stem cell function 

[33,73,74] are being evaluated pre-clinically or in early-stage clinical trials 

[75].  

Both a deficiency and an excess of the dietary levels of methionine can 

result in either genomic instability, which leads to diseases such as cancer, 

or changes in gene expression, which lead to alterations in metabolism 

[76], including improvement of hepatic lipid and glucose metabolism and 

induction of  adiposity resistance [76]. Some cancer cells show a high 

activity of the methionine cycle that promotes chemo-resistance and 

evasion from apoptosis [77], whereas normal cells are relatively resistant 

to dietary methionine restriction: therapies to block the methionine cycle 

in transformed cells may thus represent a safe and effective strategy to 
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fight cancer [39,77]. Dietary methionine restriction, used alone or in 

combination with other treatments, impaired cancer growth and 

carcinogenesis in human patients [78,79] or in rodents [80,81,82]. 

However, one caveat is that methionine restriction must be closely 

regulated, because methionine is an essential amino acid and a long use 

of diets extremely poor in methionine could be extremely toxic and cause 

death. Dietary methionine restriction (achievable in humans with a 

predominantly vegan diet) may have an additive healthy effect if 

combined with calorie restriction, by limiting glucose [82]. The potential 

of methionine depletion in enhancing the anti-cancer effect of 

chemotherapeutic agents on drug-resistant tumors and cell lines has also 

been reported [83]. 

Sensitivity to methionine limitation of mouse fibroblasts and expression 

of the SBAT1-encoding Slc6a15 gene are regulated by the activation state 

of Ras (Fig 4A and S3 Fig), resulting in decreased methionine uptake in 

NIH-RAS (Fig 4B). Remarkably, expression of the ortholog human gene - 

SLC6A15 - is mostly down-regulated in the NCI-60 cells panel, the US 

National Cancer Institute (NCI) panel of 60 human cancer cell lines grown 

in culture [84] (Fig 4C). An exception is represented by melanoma cells, in 

which SLC6A15 is highly up-regulated. Therefore, the use of methionine 

uptake as a marker for proliferative activity in substitution of fluoro-

deoxyglucose [85,86], or therapeutic use of dietary methionine restriction 
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would benefit from knowledge of the expression of methionine 

transporters.  

Slc6a15 and its human ortholog belong to a large family (over 450 

members) of solute carrier proteins (SLCs) controlling import/export of 

nutrients, cofactors, ions and many drugs. While many SLCs have not yet 

well characterized, a quarter of their encoding genes has been associated 

with human diseases and 26 different SLCs are the targets of known drugs, 

or drugs in development [87,88]. An increase in amino acid transport may 

be expected in cancer, most likely as the result of increased amino acid 

demand for energy, protein synthesis and cell division: surprisingly, S5 Fig 

shows that SLC-encoding genes down-regulated in NIH-RAS compared to 

NIH3T3 cells are enriched in genes encoding amino acid transport, 

particularly of neutral amino acids (e.g. the SBAT1-encoding Slc6a15 

gene).  

In conclusion, we show that limitation of sulfur-containing amino acids 

results in a more dramatic perturbation of the oxidoreductive balance in 

K-ras-transformed cells compared to NIH3T3 cells (Fig 3D). Growth defects 

induced by cysteine limitation in mouse fibroblasts are largely – though 

not exclusively – due to cysteine utilization in the synthesis of glutathione, 

mouse fibroblasts requiring an exogenous cysteine source for protein 

synthesis. We show for the first time a correlation between Ras-

transformation and defects in methionine transport that affect the 

dependence of K-ras-transformed mouse fibroblasts for this amino acid. 
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Therapeutic regimens of cancer involving modulation of methionine 

metabolism could be more effective in cells with limited methionine 

transport capability. To further understand nutrient interactions (such as 

methionine and glucose restriction), to study the correlation between 

methionine metabolism and cell signaling and to design a precision 

medicine approach taking into account the specific nutritional 

dependencies of a patient’s cancer, we consider essential to unravel the 

underlying networks by using an integrated, Systems Biology approach. 
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Materials and Methods 
 
Cell culture 

Three cells lines have been used in this paper, namely normal NIH3T3 

mouse fibroblasts (obtained from the ATCC, Manassas, VA, USA), a K-Ras-

transformed normal-derived cell line -that we refer to as NIH-RAS [44,89]- 

and NIH-RAS cells stably transfected with a pcDNA3-based vector 

expressing a dominant negative mutant of the Ras-specific guanine 

nucleotide exchange factor RasGRF1 (RasGRF1W1056E, here simply 

named GEF-DN) with Ras-sequestering property [44,45,90]. These cell 

lines proved to be a valid cellular model for studying Ras-dependent 

transcriptional reprogramming [41], and metabolic rewiring [23,42,43]. 

Both control and ras-transformed NIH3T3 have been passaged a similar 

number of times, taking care to refreeze the cell lines immediately and to 

use them for a limited number of passages. The cell lines are periodically 

assayed to check that the major properties of the cells do not change over 

time, that the major transformation-related phenotypes are retained and 

ras-dependent (see S2 Fig and accompanying text). The cell lines were 

routinely grown in Dulbecco’s modified Eagle’s medium (Invitrogen Inc., 

Carlsbad, CA, USA) containing 10% newborn calf serum, 4 mM glutamine, 

100 U/ml penicillin and 100 mg/ml streptomycin (standard medium), at 

37°C in a humidified atmosphere of 5% CO2. Cells were passaged using 

trypsin-ethylenediaminetetraacetic acid (EDTA) (Invitrogen Inc., Carlsbad, 

CA, USA) and maintained in culture before experimental manipulation. 
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Cell proliferation analysis 

Cells were plated at the density of 3000 cells/cm2 in standard medium and 

incubated overnight at 37°C and 5% CO2. After 18 h, cells were washed 

twice with phosphate-buffered saline (PBS) and, to verify the response to 

the cysteine or methionine deprivation, cells were incubated in medium 

without cysteine and methionine (Invitrogen Inc., Carlsbad, CA, USA), 

possibly supplemented with limiting concentration of cysteine (0.025, 

0.05, 0.1 mM) or methionine (0.025, 0.1 mM) (Sigma Aldrich Inc.) or with 

antioxidants glutathione (0.08, 0.2, 0.8, 2, 4, 16 mM) or MitoTEMPO (10 

µM) (Sigma Aldrich Inc.). To measure cell proliferation, cells were treated 

with trypsin at 0, 3, 6, 24, 30, 48, 54, 72 hours after medium change. Viable 

(i.e., unstained) cells were counted in a Bürker chamber after staining with 

0.5% trypan blue. In amino acid re-feeding and foci formation 

experiments, qualitative evaluation of cell proliferation was obtained by 

staining with 0.2% Crystal violet (diluted in water from Giemsa Stain 0.4%, 

Sigma Aldrich Inc.). After 45 minutes of incubation in the dark at RT, cells 

were washed twice with water, photographed, and counted. 

 

Foci formation assay 

Cells were plated at the density of 30 cells/cm2 in standard medium and 

incubated overnight at 37°C and 5% CO2. After 18 h, cells were washed 

twice with phosphate-buffered saline (PBS) and, to test the ability of 
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forming foci of NIH3T3 and NIH-RAS under nutritional modulation, cells 

were incubated for 9 days in medium without cysteine and methionine 

(Invitrogen Inc., Carlsbad, CA, USA), possibly supplemented with limiting 

concentration of cysteine (0.025, 0.05 mM) or methionine (0.025, 0.1 

mM) (Sigma Aldrich Inc.) or with 4 mM reduced glutathione (Sigma Aldrich 

Inc.). After 9 days, cells were washed with PBS and fixed with 

paraformaldehyde 4%, then washed with ice-cold PBS and stained with 

0.2%. Crystal violet, photographed as described above and the number of 

foci counted.  

 

Determination of intracellular ROS 

Intracellular accumulation of H2O2 and O2•- was determined after 48 h 

from medium change with 2’,7’-dichlorodihydrofluoresceine diacetate 

(Sigma Aldrich Inc.). The cells were incubated for 30 minutes at 37°C with 

H2DCFDA 10 mM, treated with trypsin, resuspended in PBS supplemented 

with NCS 10% (Invitrogen Inc., Carlsbad, CA, USA) and acquired by 

FACScan (Becton-Dickinson), using the Cell Quest software (BD 

Bioscience). The percentage of ROS-producing cells was calculated for 

each sample and corrected for autofluorescence obtained from samples 

of unlabeled cells.  

 

Apoptosis Assay 
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Cells were plated at the density of 3000 cells/cm2 in standard medium and 

incubated overnight at 37°C and 5% CO2. After 18 h, cells were washed 

twice with phosphate-buffered saline (PBS) and incubated for 30 hours in 

medium without cysteine and methionine (Invitrogen Inc., Carlsbad, CA, 

USA), possibly supplemented with limiting concentrations of cysteine 

(0.025, 0.05 mM) or methionine (0.025 and 0.1 mM) (Sigma Aldrich Inc.) 

or with antioxidants glutathione (4 mM) or MitoTEMPO (10 µM) (Sigma 

Aldrich Inc.). For apoptosis analysis, 1 × 106 cells (adherent and in 

suspension cells) were collected, stained with Annexin V-FITC 

(Immunotools, GmbH) and propidium iodide (Sigma Aldrich Inc.) and 

analyzed by FACScan (Becton-Dickinson) using the FL1 and FL2 channels. 

Data analysis was performed with Flowing Software. 

 

Determination of glutathione levels 

For reduced and total glutathione measurements, cells were plated at the 

density of 3000 cells/cm2 in standard medium and incubated overnight at 

37°C and 5% CO2. After 18 h, cells were washed twice with phosphate-

buffered saline (PBS) and incubated for 48 h in standard medium or under 

limitation of cysteine or methionine. Cells were then treated with trypsin, 

collected, washed twice with PBS and lysed through freeze-and-thaw 

cycles. Samples were deproteinized with a 5% 5-sulfosalicylic acid 

solution, centrifuged to remove the precipitated protein and assayed for 

glutathione. GSH measurement was an optimization of Tietze’s enzymatic 
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recycling method [55], in which GSH is oxidized by the sulfhydryl reagent 

5,5’-dithio-bis(2-nitrobenzoic acid) (DTNB) to form the yellow derivative 

5’-thio-2-nitrobenzoic acid (TNB), measurable at 412 nm and the 

glutathione disulfide (GSSG) formed is recycled to GSH by glutathione 

reductase in the presence of NADPH. The amount of glutathione in the 

samples was determined through a standard curve of reduced 

glutathione. Glutathione levels were normalized to protein content 

measured by Bradford assay (Bio-Rad reagent) on an aliquot of cell extract 

collected before deiproteinization. 

 

Methionine transport assays 

NIH3T3 and NIH-RAS cells were seeded at the density of 3000 cells/cm2 

and incubated overnight at 37°C and 5% CO2, then medium change was 

done after 18 h. At 48 h (exponential growth condition) and 72 h 

(confluent growth condition), standard medium was replaced with 0.4 ml 

labeling medium (cysteine and methionine-free medium + 0.025 mCi/ml 

35S-Met, PerkinElmer), that was removed after 20-40-60 minutes or 30-

50-60 minutes at 37°C and 5% CO2. Cells were then washed once with cold 

PBS and scraped after adding lysis buffer. Cell lysates were centrifuged 

and an aliquot spotted on Whatman Glass Microfiber filters (Sigma Aldrich 

Inc.). To the remaining volume, 1 volume of cold 20% TCA (Sigma Aldrich 

Inc.) was added and, after 30 minutes in ice, samples were spotted on 

filters and washed twice with cold 10% TCA and ethanol (Sigma Aldrich 
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Inc.). Air-dried filters were transferred to vials containing Ultima Gold MV 

scintillation fluid (PerkinElmer) and radioactivity measured in a beta-

counter (Wallac Microbeta Trilux, PerkinElmer). Averages of technical 

triplicates for cell lysates (representing amino acid uptake) were 

calculated and the resulting values were normalized on total protein 

content, measured by using QuantiProTM BCA Assay Kit (Sigma Aldrich 

Inc.). 

 

RNA extraction and semi quantitative RT-PCR analysis 

Cells were plated at the density of 3000 cells/cm2 in standard medium and 

incubated overnight at 37°C and 5% CO2. After 18 h, cells were washed 

twice with phosphate-buffered saline (PBS) and incubated for 48 h in 

standard medium. RNA was then extracted from cells by using the Quick-

RNA™ MicroPrep kit (Zymo Research). Total RNA was reverse-transcribed 

with oligo-dT by using the iScript cDNA Synthesis Kit (Bio-Rad 

Laboratories). The RT product (0.5 µg) was amplified with primer pairs 

specific for the genes studied. As internal control of PCR assays, specific 

primers for 18S and β-actin transcripts were used. Primers used: Slc6a15 

forward: 5’-GCATCGGAAGAATTTCTGAGC-3’, reverse: 5’-

AGCGACGAATGATGAACACC-3’; Slco3a1 forward: 5’-

GAGTTAGCCTATCCTTGTTG-3’, reverse: 5’-GACAGAACATCACCTTACAA-3’; 

Slc16a13 forward: 5’-ACCTGAGTATTGGGCTGCTG-3’, reverse: 5’-

CCATGGTCGGAGTGAAGGT-3’; Slc43a3 forward: 5’-

http://www.bio-rad.com/en-us/product/iscript-cdna-synthesis-kit
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CACCTTGTTGACTGGACTCTTG-3’, reverse: 5’-

CCAGGGTAAAGATGAGTGAGAAC-3’. 

 

Generation of the heat map of solute carrier gene expression profiles in 

NCI-60 cell lines 

The heat map, or Clustered Image Map (CIM), was generated with 

CIMminer by selecting the one matrix option. The rows of the matrix were 

the different cell lines and the columns (each representing a solute carrier 

gene) were clustered according to Average Linkage algorithm and to 

Euclidean distance measure. Data values were mapped to colors using the 

quantile method: the weight range of data values was divided into 

intervals each containing approximately the same number of data points, 

thus effectively spreading out the color differences between data values 

that were present in regions with a large number of values. 

 

Supporting Information 
 
S1 Fig. Methionine and cysteine metabolism in mouse fibroblasts. 

Methionine is partitioned between protein synthesis, de novo and 

recycling pathway, where it is converted to S-adenosylmethionine (SAM). 

SAM is converted to S-adenosylhomocysteine (SAH) during methylation of 

DNA and a large range of proteins and other molecules. SAH is then 

hydrolyzed to homocysteine (Hcy) in a reversible reaction. Under normal 

conditions, approximately 50% of Hcy is re-methylated to form 
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methionine that, in most tissues, occurs via methionine synthase. In the 

trans-sulfuration pathway, Hcy is metabolized to form cystathionine, 

which is the immediate precursor to cysteine. Besides from methionine, 

cysteine can be synthesized from serine. The sulfur is derived from 

methionine, which is converted to homocysteine through the 

intermediate SAM. Cystathionine beta-synthase then combines 

homocysteine and serine to form the asymmetrical thioether 

cystathionine. The enzyme cystathionine gamma-lyase converts the 

cystathionine into cysteine and alpha-ketobutyrate. The trans-sulfuration 

pathway is not active in all cells, and in human is active essentially only in 

cells from splanchnic organs. Here we demonstrated that mouse 

embryonic fibroblasts are not able to convert methionine into cysteine. 

For this reason the trans-sulfuration reaction is highlighted in grey. 

 

S1 Table. Mass duplication times under different nutritional 

perturbations. Mass duplication times (MDT) for NIH3T3 and NIH-RAS 

under different methionine or cysteine concentrations (possibly 

supplemented with GSH) were calculated on semi-logarithmic curves 

represented in Fig 1A-B. Then, Student’s t-test was performed on linear 

regression curves for each nutritional condition that allowed cell growth. 

A = not parallel to linear regression curve of NIH-RAS cells in standard 

medium (99% CI); B = not parallel to linear regression curve of NIH3T3 cells 

in standard medium (99.9% CI); C = not parallel to linear regression curve 
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of NIH-RAS cells in standard medium (99.9% CI); D = not parallel to linear 

regression curve of NIH3T3 cells in standard medium (99% CI); E = not 

parallel to linear regression curve of NIH3T3 cells in standard medium 

(99.9% CI). CI = confidence interval. 

 

S2 Fig. Ras and MAPK activation state and expression levels in cellular 

models used in the paper: NIH3T3, NIH-RAS, NIH-RAS pGEF-DN and NIH-

RAS pcDNA3 

Expression levels of Total Ras proteins (A) and MAPKs p42 and p44 (B) in 

cell lysates of pull down assay. Antibodies directed against Ras (sc259 

Santa Cruz), Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (Cell 

Signaling #9101) and p44/42 MAPK (Erk1/2) (Cell Signaling #9102) were 

used. (C) Ras–GTP eluted from GST–RBD–glutathione–sepharose, pre-

incubated with cell lysates. Pull down assay was performed as described 

in [7]. (D) Quantification of the Ras–GTP amount after normalization over 

total Ras. Data are normalized over the Ras-GTP/total Ras ratio in NIH3T3 

taken equal to 100. Data shown are mean +/- standard deviation of two 

independent experiments. (E) Morphological analysis of the different cell 

lines. (F) Phospho-p44/42 MAPK level in cell lysates, determined by ELISA 

assay performed using PathScan® Phospho-p44/42 MAPK 

(Thr202/Tyr204) (Cell Signaling). Data shown are mean +/- standard 

deviation of two independent experiments. (F) 100X magnification of a 

focus generated by NIH-RAS cells in foci formation assay shown in Fig 1.  
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S3 Fig. Over-expression of GEF-DN reverts sensitivity to methionine 

limitation in NIH-RAS cells and partially rescues the defect in the 

expression of Slc6a15 gene encoding methionine transporter SBAT1 

(A) Cell proliferation of NIH3T3, NIH-RAS, NIH-RAS pGEF-DN and NIH-RAS 

pcDNA3 cells grown in media with different concentrations of methionine 

and counted daily for 72 h of growth under conditions indicated. Plotted 

data are mean +/- standard deviation. computed from three independent 

experiments. (B) Relative to t=0 cell proliferation of NIH3T3, NIH-RAS, NIH-

RAS pGEF-DN and NIH-RAS pcDNA3 cells grown for 72 h in media with 

different concentrations of methionine, as indicated in (A). Part of the 

data in (B) are present in Fig 1D. (C) Semi-quantitative RT-PCR results for 

NIH3T3, NIH-RAS, NIH-RAS pGEF-DN and NIH-RAS pcDNA3 cells grown for 

48 h in standard medium performed in triplicate on genes showing at least 

a two-fold change between NIH-RAS vs. NIH3T3 cells in each of the two 

Affymetrix independent experiments (S5 Fig). *P<0.05; **P<0.01; 

***P<0.001 (Student’s t-test). 

 

S4 Fig. Cell proliferation and qualitative ROS levels under different 

methionine concentrations and in cysteine-limiting or -depleted 

medium (possibly supplemented with antioxidants glutathione and 

MitoTEMPO or with GSH synthesis inhibitor BSO). For all the 

experiments, MitoTEMPO and buthionine sulfoximine (BSO) were used at 



97 
 

the concentration of 10 µM and 100 µM. (A-B) Cell proliferation of NIH3T3 

and NIH-RAS cells grown in media supplemented with different 

concentrations of methionine and cysteine with or without antioxidants 

glutathione or MitoTEMPO and counted after 72 h (A) and 30 h (B) of 

growth under conditions indicated. Part of the data in (A) are present in 

Fig 1D. Plotted data are mean +/- standard deviation computed from three 

independent experiments. *P<0.05 (Student’s t-test). (C) Cell proliferation 

of NIH3T3 and NIH-RAS cells under conditions indicated. (D) Qualitative 

evaluation of ROS levels in NIH3T3 and NIH-RAS cells upon staining with 

DCFDA and analysis with a fluorescence microscope.  

 

S5 Fig. Solute carriers differentially expressed between NIH3T3 and NIH-

RAS cells. Genome-wide transcriptional profiling datasets for NIH3T3 and 

NIH-RAS cells (available in NCBI GEO database; accession GSM741354-

GSM741361 for NIH3T3 cells and GSM741368-GSM741375 for NIH-RAS 

cells), previously obtained in our laboratory with an MG_U74Av2 

Affymetrix Gene Chip [41], were filtered for all genes encoding for solute 

carriers. Then, to identify genes whose expression was significantly 

altered in Ras-transformed versus normal cells (here represented in bold), 

a two-fold and a <0.05 cut-offs on Fold Changes and on p-values were 

used, respectively. In this Figure are represented all transporter genes 

with a fold change ≥2 (about 20% of all transporter genes) irrespective of 

their p-values. Gene Ontology (GO) enrichment based on molecular 
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function was performed with GoTermFinder (http://go.princeton.edu/cgi-

bin/GOTermFinder) and genes encoding for amino acid transporters were 

colored in magenta, while genes encoding for ion transporters were 

colored in grey. 
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Abstract 

The enhanced growth and survival of K-Ras-transformed cells rely on deep 

changes in metabolism, including glutamine addiction and increased 

oxidative stress.  

We study glutamine roles in metabolism and redox homeostasis in K-ras-

transformed NIH3T3 mouse fibroblasts (NIH-RAS), by complementing 

glutamine deprivation with dimethyl-α-ketoglutarate (AKG) and 

nonessential amino acids (NEAA).  

The combination AKG+NEAA only partly rescues glutamine deprivation 

and weakly activates mTOR pathway. This substitution results in low levels 

of nucleotides and the non-use of reductive carboxylation of AKG –

predicted by ENGRO model– to synthesize lipids, whose content is lower 

due to downregulated expression of genes involved in lipogenesis that 

correlates with lower NADPH levels. 

Thus, in NIH-RAS cells glutamine is essential as a carbon and nitrogen 

source for biosynthesis (amino acids, nucleotides and glutathione) and as 

a signaling molecule. 

We successfully exploit an integrated, Systems Biology approach to study 

nutritionally-perturbed transformed cells, pushing forward a system-level 

understanding of complex diseases like cancer. 
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Introduction 

In the last decades, increasing attention has been directed to the 

dependency of some cancer cells on the conditionally essential amino acid 

glutamine [1,2,3,4]. Indeed, during situations of stress, the organism 

needs glutamine supplementation with the diet to satisfy the increased 

demand of this amino acid [1,2]. Similarly, rapidly growing cancer cells 

may display an increased glutamine consumption to sustain their fast 

proliferation and may die rapidly in the absence of glutamine [3]. As a 

metabolic precursor, glutamine is used for protein, RNA and DNA 

biosynthesis. Moreover, through the process known as glutaminolysis, 

glutamine generates ammonia and glutamate (GLU) that, in turn, can be 

catabolyzed to α-ketoglutarate (AKG) through either transamination or 

oxidative deamination. As such, glutamine participates in energy 

production and cellular redox homeostasis, being a precursor of the 

antioxidant glutathione [4]. As the carbon skeleton from glutaminolysis 

can be used for anabolic or anaplerotic processes, tumor cells may be 

addicted to glutamine as an alternative fuel (which is oxidized to CO2 for 

energy production), or because glutamine-derived AKG enters the TCA 

cycle to replenish metabolic intermediates removed for biosynthesis, 

particularly NADPH and fatty acids [5]. Alternatively, glutamine can 

undergo reductive carboxylation (RC), which consists in the reverse 

conversion of AKG into citrate through mitochondrial and cytosolic 

isoforms of NADP+/NADPH-dependent isocitrate dehydrogenase. 
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Subsequent metabolism of glutamine-derived citrate provides both the 

acetyl-CoA for lipid synthesis and the 4-carbon intermediates needed to 

produce remaining TCA cycle metabolites and related macromolecular 

precursors [6]. 

Besides playing a particularly important role in cell growth and 

metabolism, glutamine acts as a signaling molecule that ultimately 

activates a master regulator of protein translation, the mammalian target 

of rapamycin (mTOR) pathway [7,8]. mTOR is an atypical serine/threonine 

kinase that integrates several stimuli to regulate cell growth, metabolism, 

and aging [9]. Indeed, mTORC1 acts by phosphorylating multiple 

downstream targets, including the p70 ribosome protein S6 kinase (S6K1), 

that phosphorylates and activates ribosomal protein S6 (rpS6), a 

component of the 40S ribosomal subunit involved in the regulation of cell 

size and cell proliferation [10]. Although mTOR-signaling appears to 

respond most acutely to the essential amino acid leucine, glutamine 

uptake and export is required for EAA activation of mTORC1 [8,11]. 

We propose to dissect glutamine roles in cell proliferation by using K-ras-

transformed NIH3T3 mouse fibroblasts (NIH-RAS) as cellular model, 

extensively characterized in our laboratory [12,13,14]. We feed 

glutamine-deprived NIH-RAS with dimethyl-alpha-ketoglutarate (AKG) –a 

membrane-permeable analogue of alpha-ketoglutarate- as carbon source 

and nonessential amino acids (NEAA: Pro, Ala, Asp, Asn) as nitrogen 

source, to reconstitute glutamine and facilitate the understanding of its 
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roles in sustaining cell growth. In a Systems Biology perspective, we study 

NIH-RAS cell metabolism with ENGRO metabolic model and –omics 

technologies, highlighting that glutamine owns multiple and unique roles 

in proliferating cells and may not be substituted by other nutrients, even 

if contained in its structure. Indeed, we demonstrate that glutamine is 

necessary to activate mTOR pathway and hence lipogenesis and, above 

all, to maintain redox homeostasis, allowing NIH-RAS cells to produce 

lipids through reductive carboxylation of glutamine and to provide a 

source of nitrogen for nucleotide biosynthesis. 
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Results 

Alpha-ketoglutarate and nonessential amino acids partly rescue 

glutamine deprivation in NIH-RAS cells 

To study nutritional dependency of transformed cells, the first step usually 

consists in the analysis of physiological readouts, like cell proliferation and 

viability, under different nutrient perturbations. In this context, we first 

evaluated parental NIH3T3 and transformed NIH-RAS cell proliferation 

under glutamine deprivation and we observed that both NIH3T3 and NIH-

RAS cell lines are glutamine-addicted, as they die in the absence of this 

amino acid (Figure 1C-D, light blue line). This is in accordance with 

previous literature data [15]. 

Given that glutamine is a nitrogen and carbon source, we tried to 

substitute this amino acid with other nutrients having analogous function. 

Particularly, when glutamine is available in the medium, it is converted 

into glutamate and ammonium by glutaminase (GLS), then glutamate is 

converted into α-ketoglutarate and ammonium either by glutamate 

dehydrogenase (GDH) or transaminases (Figure 1A). As these reactions 

are reversible, we decided to supplement glutamate (GLU) and 

ammonium or dimethyl-α-ketoglutarate (AKG) –a membrane-permeable 

analogue of α-ketoglutarate– and ammonium to glutamine-deprived 

NIH3T3 and NIH-RAS cells, in order to allow these cells to synthesize 

glutamine through glutamine synthetase (GS)-catalyzed reaction (Figure 

1B). As a source of ammonium, we provided NIH3T3 and NIH-RAS with 
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nonessential amino acids (NEAA: aspartate, asparagine, alanine, proline), 

since previous experiments demonstrated that supplementing 

ammonium sulfate or ammonium acetate to NIH3T3 and NIH-RAS cells 

resulted in cell toxicity and death (data not shown), differently from what 

happens in yeast.  

Supplementing equimolar amounts of GLU (4 mM) to glutamine-depleted 

NIH3T3 and NIH-RAS did not rescue their growth ability (Figure 1C-D, dark 

green line), as reported by Eagle [16] and, later, by Tardito [17]. Similarly, 

supplementing NEAA or AKG was ineffective in rescuing growth (Figure 

1C-D, yellow and light green lines, respectively). 

Only co-supplementation of AKG AND NEAA (Figure 1C-D, red line) or GLU 

AND NEAA (Figure 1C-D, dashed burgundy line) restored cell growth and 

viability, but only in NIH-RAS cells. The apparent mass duplication time 

(MDT) of NIH-RAS in both these conditions was about 4.5 longer than in 

standard (STD) medium. Future experiments will clarify whether this 

reduction originates from all cells growing slower, or to a reduced growth 

fraction in nutritionally-perturbed conditions. 

We measured apoptosis and necrosis of NIH3T3-derived cell lines in STD 

and –GLN+AKG+NEAA conditions after 54 h from medium change (Figure 

1E). We found that, in –GLN+AKG+NEAA, neither NIH3T3 nor NIH-RAS cells 

undergo apoptosis. This is in line with the fact that NIH-RAS cells can 

proliferate –though with higher mass duplication time- in –



115 
 

GLN+AKG+NEAA and indicates that NIH3T3 only arrest their proliferation 

in –GLN+AKG+NEAA without dying. 

Due to the low number of NIH3T3 cells grown in –GLN+AKG+NEAA 

medium and to the ensuing low reliability of experimental results 

obtainable with such a small cell fraction, we decided to focus our 

attention on NIH-RAS cells and to analyse different parameters in these 

cells grown in STD versus –GLN+AKG+NEAA medium. 

First, we analysed cell dimensions by measuring protein content per cell 

and we found that NIH-RAS cells are significantly smaller when grown in –

GLN+AKG+NEAA medium compared to STD medium (Figure 1F). 

Glutamine-deprived NIH-RAS cells also show slightly higher levels of 

autophagy, which promotes cellular survival during glutamine starvation 

(data not shown). However, the differences in autophagy levels between 

STD and –GLN+AKG+NEAA conditions are mild, likely due to a high basal 

level of autophagy in NIH-RAS cells compared to the parental NIH3T3 cell 

line [18]. Further experiments will clarify this aspect by evaluating the 

presence and the level of autophagy markers. 

In the absence of glutamine, NIH-RAS cells may rely more on glucose to 

produce essential building blocks like amino acids, thus diverting less 

glucose to lactate. We analysed fresh and spent media to measure glucose 

consumption (and subsequent lactate production), finding that NIH-RAS 

grown in –GLN+AKG+NEAA may consume a little less glucose (and 

produce a little less lactate). However, the differences are minor and 
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unlikely to be significant. On the contrary, cells grown in –GLN+AKG+NEAA 

produce and secrete large quantities of glutamate (Figure 1G). 

Next, we aimed to understand if NIH-RAS cells internalize and consume 

AKG and NEAA supplemented to the glutamine-free medium. NIH-RAS 

cells grown in –GLN+AKG+NEAA consume substantial amounts of AKG, 

Asp and Asn. Little if any consumption of Ala and Pro is detected, 

suggesting that Asp and Asn may be the only required amino acids to allow 

growth of NIH-RAS in glutamine-deprived media supplemented with AKG 

(Figure 1H). This conclusion is supported by preliminary results (Figure 1D, 

fuchsia line). 

As reported in the Introduction, glutamine also acts as a signaling 

molecule that ultimately activates mammalian target of rapamycin 

(mTOR) pathway (Figure 2C). Thus, the lack of glutamine in –

GLN+AKG+NEAA medium may downregulate mTOR pathway activation, 

partially accounting for the slower growth of NIH-RAS cells in this medium 

compared to STD medium. 

We confirmed our hypothesis by assaying the activation state of the mTOR 

pathway, using the level of phosphorylated S6 –a ribosomal protein that 

acts downstream of mTOR (Figure 2C)– in our experimental system and 

we highlighted a weak mTOR pathway activation in –GLN+AKG+NEAA and 

also in –GLN+GLU+NEAA conditions (Figure 2A-B). 
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Figure 1 Alpha-ketoglutarate and nonessential amino acids partly rescue glutamine deprivation 

in NIH-RAS cells. (A-B) Representative scheme of cell metabolism in STD (A) and –GLN+AKG+NEAA 
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(B) media. (C-D) Growth kinetics of NIH3T3 (C) and NIH-RAS (D) cells grown under different nutrient 

conditions as indicated (STD: 4 mM Gln; AKG: 4 mM dm-aKG; NEAA: 4 mM Ala, 4 mM Asp, 4 mM 

Asn, 4 mM Pro; GLU: 4 mM Glu) and counted daily with trypan blue excluding method (semilog 

curves). (E) Representative dot plots for NIH3T3 and NIH-RAS cells stained with Annexin V-FITC and 

propidium iodide and analyzed by FACS after 30 h of growth under conditions indicated. (F) Cellular 

size of NIH-RAS cells grown in STD and –GLN+AKG+NEAA, determined by measuring protein 

content per cell (Bradford assay). **P<0.01 (Student’s t-test). (G) Glucose and glutamine 

consumption and lactate and glutamate production under conditions indicated measured with YSI 

Analyzer. (H) AKG and NEAA consumption for NIH-RAS cells after 54 h of growth under conditions 

indicated. Measurements were made with GC-MS on fresh and spent media. 

 

 

Figure 2 Mammalian target of rapamycin (mTOR) pathway activation is low in glutamine-

deprived NIH-RAS supplemented with AKG+NEAA or GLU+NEAA. (A) Expression and 

phosphorylation of the S6 protein in NIH-RAS cells grown in STD, –GLN+AKG+NEAA and –

GLN+GLU+NEAA media. For the protein expression, cells were collected at 54 h after medium 

change and 30 µg of proteins from the total cellular extract were subjected to SDS-PAGE followed 
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by Western blotting with a specific anti-phosphorylatedSer235/236 S6 (P-S6) antibody and an anti-S6 

(S6) antibody. (B) Quantification of the P-S6 over S6 amounts after normalization over vinculin. 

Quantitative data were obtained by analyzing Western blot with ImageJ software. (C) Schematic 

overview of mTOR pathway activation by glutamine. 

 

Glutamine-deprived NIH-RAS cells supplemented with AKG+NEAA 

downregulate the expression of genes involved in lipogenesis 

Transcriptomic analysis on NIH-RAS cells grown in STD and in –

GLN+AKG+NEAA media revealed that only 115 genes are differentially 

expressed between the two nutritional conditions (Fold Change >1.5; 

corrected P value <0.05) (Figure 3A). The heat map in Figure 3A shows the 

hierarchical clustering of such differentially expressed genes (DEGs), 

represented in green if downregulated in NIH-RAS cells grown in –

GLN+AKG+NEAA medium, while in red if upregulated. As Panther analysis 

revealed (Figure 3C), most of the DEGs deal with metabolism, especially 

cholesterol biosynthesis and transport. Other identified DEGs are involved 

in the response to the oxidative stress induced by nutrient deprivation, 

like that mediated by p53 signaling pathway, and in cell cycle, like the 

downregulated Cdkn1a gene. 

To integrate transcriptomic data and deepen the aspect of the strong 

impact on metabolism induced by growth in –GLN+AKG+NEAA medium, a 

computational analysis was carried out to identify the “reporter 

metabolites” (Figure 3D; see Materials and Methods for the reporter 

metabolite identification process). Reporter metabolites are those spots 
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in the metabolism where there is a substantial regulation either to 

maintain homeostasis (i.e. a constant metabolite level) or adjust the 

concentration of the metabolite to another level required for proper 

functioning of the metabolic network. Thus, the identification of reporter 

metabolites adds knowledge to the pathway analysis shown in Figure 3C, 

as it considers the information on the connectivity and the magnitude of 

the significance of change for differentially expressed genes. Moreover, 

reporter metabolite analysis also takes into account genes not 

differentially expressed, which can exhibit significant coordinated changes 

when considered together.  

Reporter metabolite analysis confirmed that most of the downregulated 

genes in cells grown in –GLN+AKG+NEAA medium deal with lipid 

synthesis, especially cholesterol synthesis and transport (Figure 3D), 

which is a process that requires a high amount of NADPH. In this regard, 

the most relevant reporter metabolite (i.e. to which the highest 

normalized score is associated) was NADP –either in its reduced or 

oxidized form- (Figure 3D), suggesting potential differences in redox state 

between NIH-RAS cells grown in STD medium and glutamine-deprived 

NIH-RAS cells.  

To validate transcriptomic data, we first measured lipid and cholesterol 

levels in STD and –GLN+AKG+NEAA media, confirming a lower lipid 

content (Figure 4A) and a reduction of 40% of cholesterol levels under 

glutamine deprivation (Figure 4B). 
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Figure 3 Glutamine-deprived NIH-RAS cells supplemented with AKG+NEAA downregulate the 

expression of genes involved in lipogenesis. (A) Heat map of significant DEGs (115; FC>1.5; 
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corrected P value<0.05) in NIH-RAS grown in –GLN+AKG+NEAA versus STD media. (B) STRING 

analysis of putative interactions between the identified DEGs. (C) List of pathways affected by the 

identified DEGs (Panther analysis). (D) Main reporter metabolites (RM) mapped in red on steroid 

biosynthetic pathway. In parentheses: normalized score for each RM. 

 

 

Figure 4 Glutamine-deprived NIH-RAS cells supplemented with AKG+NEAA have a lower lipid and 

cholesterol content. (A) Nile Red staining of lipids in NIH-RAS cells grown in STD and –

GLN+AKG+NEAA media. Cells were analyzed with confocal microscope (60X magnification) and 

photos were taken after exciting with FITC (left) and AlexaFluor488 channels (right). Total cell 
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fluorescence (i.e. green + red) integrated on cell area was determined using ImageJ software and 

plotted in the histogram. (B) Cholesterol levels in NIH-RAS cells grown in STD and –GLN+AKG+NEAA 

media, measured with Total Cholesterol Assay kit (Cell Biolabs). **P<0.01; ***P<0.001 (Student’s 

t-test). 

 

AKG and NEAA mitigate oxidative stress and redox unbalance 

induced by glutamine deprivation in NIH-RAS cells 

As mentioned above, computational analyses on transcriptomic data 

suggested that NIH-RAS cells grown in STD and in –GLN+AKG+NEAA media 

may differ in terms of redox potential (Figure 3D). Thus, we wanted to 

explore this aspect, as well as to further validate transcriptomic results.  

According to literature data on K-ras-transformed cell lines [19], we found 

that glutamine deprivation enhances oxidative stress in NIH-RAS cells, and 

supplementation of AKG or NEAA partly decreases ROS levels, especially 

when combined in the –GLN+AKG+NEAA medium (Figure 5A). 

Measuring reduced glutathione (GSH) and total glutathione (GSH+GSSG) 

levels (Figure 5B-C), we found that glutamine deprivation leads to 

decreased GSH and GSH+GSSG levels, due to the lack of glutamate (and 

ensuing glutathione) precursor glutamine. As seen for ROS levels, 

supplementation of AKG or NEAA –but above all their combination- partly 

restores basal GSH and GSH+GSSG levels. According to the role of ROS 

scavenger that glutathione in the reduced form has [20], we obtained a 

negative correlation between ROS and GSH levels (Figure 5D). 
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Figure 5 Glutamine-deprived NIH-RAS cells supplemented with AKG+NEAA show increased 

oxidative stress and redox unbalance. (A) Relative ROS levels in NIH-RAS cells grown for 54 h under 

conditions indicated as determined by DCFDA (2',7'-dichlorodihydrofluorescein diacetate) staining. 

Each bar represents the mean of at least three independent experiments with error bars 

representing the standard deviation. (B) Reduced glutathione levels measured after 54 h from 

medium change as described in [23]. Each bar represents the mean of at least three independent 

experiments with error bars representing the standard deviations. (C) Total glutathione levels 

measured after 54 h from medium change as described in [23]. Each bar represents the mean of 
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at least three independent experiments with error bars representing the standard deviations. (D) 

Negative correlation between reduced glutathione levels and ROS levels. (E-F) Mitochondrial 

matrix redox potential (in (E): basal level) in NIH-RAS transfected with Mito-roGFP (ratiometric 

redox-sensitive GFP), grown in STD and –GLN+AKG+NEAA and time-lapse-analyzed with confocal 

microscope (Ex: 405 and 485 nm; Em: 510 nm). (G) Representative images obtained at confocal 

microscope during time-lapse analysis of mitochondrial redox potential. Cells were excited at 405 

nm (left) and 488 nm (center); the resulting ratio 405/488 nm is reported on the right. (H) NADPH 

levels of NIH-RAS cells grown under conditions indicated as determined with NADP/NADPH 

Quantitation Kit (BioVision). *P<0.05; **P<0.01; ***P<0.001 (Student’s t-test). 

 

To further characterize the aspect of redox state in the presence or 

absence of glutamine, we used a redox-sensitive GFP probe (roGFP) that 

contains engineered cysteine residues, enabling dithiol formation in 

response to oxidant stress. This causes reciprocal changes in emission 

intensity at 510 nm when excited at two different wavelengths (405 and 

488 nm): the ratio between the emission intensity obtained by exciting at 

405 nm and that obtained by exciting at 488 nm would increase in an 

oxidizing environment. In detail, we used a plasmid harbouring 

mitochondrial matrix ro-GFP (Matrix-roGFP; Figure 5E-G). We performed 

time-lapse analyses of the fluorescence of roGFP-transfected NIH-RAS 

cells grown in STD versus –GLN+AKG+NEAA media for 54 h (Figure 5G), 

highlighting that the mitochondrial matrix is found in a more oxidizing 

environment in –GLN+AKG+NEAA versus STD medium (Figure 5E-F). 

As revealed by transcriptomic data and ensuing analyses, NIH-RAS cells 

grown in –GLN+AKG+NEAA medium downregulate the synthesis of fatty 

acids and cholesterol, which is a NADPH-requiring process. Therefore, 



126 
 

such downregulation may depend on a lower NADPH content in 

glutamine-deprived NIH-RAS cells supplemented with AKG+NEAA.  

We confirmed that, in glutamine-deprived NIH-RAS cells supplemented 

with AKG+NEAA, NADPH resulted about 50% lower than in STD (Figure 

5H). We observed a drop in NADPH levels also for –GLN+GLU+NEAA 

growth condition, which showed a NADPH content 30% lower than in STD 

(Figure 5H). Thus, we hypothesized that the reaction responsible for the 

lower NADPH content and redox unbalance in –GLN+AKG+NEAA or –

GLN+GLU+NEAA media may be the one catalyzed by the mitochondrial 

enzyme glutamate dehydrogenase (GDH). 

 

Glutamine-deprived NIH-RAS cells supplemented with AKG+NEAA 

have low levels of nucleotides partly rescued by deoxyribonucleotide 

supplementation 

Glutamine is known to be the nitrogen donor for N-3 and N-9 of the purine 

nucleobases, adenine and guanine, and for the amino group of guanine 

(Figure 6A). In this context, we wanted to compare nucleotide levels of 

NIH-RAS cells grown in STD and –GLN+AKG+NEAA media to highlight any 

difference between the two nutritional conditions. 

First, as low energy levels may contribute to the slow growth of glutamine-

deprived NIH-RAS cells, we measured ATP content, which was reduced of 

about 50% in glutamine-deprived NIH-RAS compared to NIH-RAS grown in 

STD medium (Figure 6B).  
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Previous literature data showed that depletion of deoxyribonucleotides 

(dNTPs) is the major effect of glutamine limitation, leading to reduced 

proliferation of NIH-RAS cells, which is rescued by adding these precursors 

of DNA polymerization to low glutamine medium [15]. Therefore, we 

measured the level of nucleotides and nucleotide precursors in NIH-RAS 

cells grown in STD and in –GLN+AKG+NEAA media, which resulted lower 

under glutamine deprivation (Figure 6C). Thus, we supplemented dNTPs 

at 0, 24, 48 and 72 hours to NIH-RAS cells grown in –GLN+AKG+NEAA 

medium. This supplementation schedule [15] allowed complete recovery 

of cell growth in the first 72 hours. The incomplete recovery at later time 

points may depend on nucleotide exhaustion or degradation (Figure 6D). 
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Figure 6 Glutamine-deprived NIH-RAS cells supplemented with AKG+NEAA show low nucleotide 

levels partly rescued by deoxyribonucleotide supplementation. (A) Glutamine in purine and 

pyrimidine synthesis. (B) Relative ATP levels in NIH-RAS grown in STD and –GLN+AKG+NEAA media 

determined with ATPlite Luminescence Assay System (Perkin Elmer). (C) Relative nucleotide 

abundance of NIH-RAS cells grown in STD and in –GLN+AKG+NEAA, analyzed with GC-MS. (D) 

Nucleotide supplementation in NIH-RAS cells grown in –GLN+AKG+NEAA medium.  

 

Glutamine-deprived NIH-RAS cells do not follow reductive 

carboxylation of AKG and divert NEAA mainly to glutamate 

production 

We analyzed metabolic profile of NIH-RAS cells grown in STD and in –

GLN+AKG+NEAA media with GC/MS technology. As Figure 7A shows, in –

GLN+AKG+NEAA condition the level of amino acids, glutamate, fumarate, 

malate and lactate is lower than in STD medium, while the level of proline 

and alanine is higher (Figure 7A). Next, we analyzed the fluxome of NIH-

RAS cells grown in STD and in –GLN+AKG+NEAA media to understand if 

glucose (another major nutrient source for transformed cells) is diverted 

to other pathways to sustain growth when cells are glutamine-deprived 

and to understand if supplements AKG and NEAA under glutamine 

deprivation follow the same metabolic pathways as glutamine.  

First, we provided NIH-RAS cells grown in STD and –GLN+AKG+NEAA 

media with [U-13C6]-glucose, finding that, compared to STD medium, 

labelled glucose is preferentially converted to serine, glycine and 
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glutamate in –GLN+AKG+NEAA medium and less converted to lactate 

(Figure 7B). 

Then, we provided [U-13C5]-glutamine to NIH-RAS cells grown in STD 

medium (Figure 7C). Compared to what seen for glucose, NIH-RAS cells 

showed a higher use of glutamine for the synthesis of TCA cycle 

intermediates and for NEAA biosynthesis (with the exception of glucose-

derived alanine), while lactate fully derived from glucose rather than from 

glutamine.  

Likewise, we provided [1-13C]-glutamate -and NEAA- to glutamine-

deprived NIH-RAS cells. Strikingly, about 80% of the glutamate was still [1-

13C]-labeled, suggesting that glutamate may not be converted to other 

metabolites under glutamine deprivation (Figure 7C). 

Finally, we provided NIH-RAS cells grown in –GLN+AKG+NEAA medium 

either with [15N]-aspartate or with [15N]-asparagine (the only NEAA that 

enter NIH-RAS cells) to follow their intracellular destiny. While asparagine 

is not used to synthesize other molecules, aspartate is mainly used to 

produce glutamate, since 43% of glutamate is 15N-labelled (Figure 7D). 
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Figure 7 Metabolome and metabolic fluxes of NIH-RAS cells under nutrient perturbation. (A) 

Metabolic profile of NIH-RAS cells grown in STD and in –GLN+AKG+NEAA for 54 h, analyzed with 

GC-MS. (B) Percentage of metabolite labeling from [U-13C6]glucose in NIH-RAS cells grown in STD 

and –GLN+AKG+NEAA conditions. The analysis was made with GC-MS on NIH-RAS cells grown for 

54 h. NA = not applicable, due to isotope dilution by external addition of NEAAs. (C) Percentage of 

metabolite labeling from [U-13C5]glutamine (for STD medium) or from [1-13C]glutamate (for –

GLN+GLU+NEAA medium) analyzed with GC-MS after 54 h of cell growth. (D) Percentage of 

metabolite labeling from [15N]aspartate and from [15N]asparagine in NIH-RAS cells grown for 54 h 

in –GLN+AKG+NEAA medium, measured with GC-MS. 
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Previous results on NIH-RAS cell metabolism [21] suggested that 

glutamine reductive carboxylation (RC) through the aconitase-catalyzed 

reaction is a marker of the enhanced growth of NIH-RAS cells when 

compared to their parental NIH3T3 normal cell line. Therefore, we 

performed a series of Flux Balance Analysis (FBA) simulations on the 

model on central carbon metabolism ENGRO introduced in [22] by 

maximizing the backward direction of the aconitase–catalyzed reaction in 

both STD and –GLN+AKG+NEAA conditions. The aim of the analysis was to 

investigate the compatibility of the two growth conditions with the 

possibility of undergo RC. Figure 8A-B shows that when the backward 

direction of aconitase-catalyzed reaction is maximized, NIH-RAS cells 

grown in –GLN+AKG+NEAA medium are less capable of relying on RC for 

fatty acid synthesis. Indeed, the aconitase-catalyzed reaction displays a 

much higher flux value for NIH-RAS cells grown in STD medium than for 

glutamine-deprived NIH-RAS cells. Furthermore, FBA experiments 

highlighted that recurring to RC in –GLN+AKG+NEAA growth condition 

implies a 62%-reduction of biomass synthesis flux with respect to growth 

in STD medium, according to experimental observations (Figure 1D).  

To validate computational results, we provided [U-13C5]-glutamine to NIH-

RAS cells grown in STD medium (Figure 8C), founding that glutamine-

derived labeled AKG undergoes both RC and forward TCA cycle. Indeed, 

both citrate M4 isotopomer (i.e. with 4 labeled carbon atoms, typical of 

oxidative metabolism) and citrate M5 isotopomer (typical of reductive 
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metabolism) are generated, in line with previous results [19]. On the 

contrary, as predicted by ENGRO model, we demonstrated that AKG 

derived from [1-13C]-glutamate in glutamine-deprived NIH-RAS cells does 

not follow RC, since neither TCA intermediates nor citrate were labelled 

(labelled carbon atom is indeed lost as CO2 in the decarboxylation step 

from AKG to succinyl-CoA) (Figure 8D). 
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Figure 8 Glutamine-deprived NIH-RAS cells supplemented with AKG+NEAA do not follow 

reductive carboxylation (RC) pathway. (A-B) Flux balance analysis (FBA) experiments on ENGRO 

network to maximize the backward direction of the aconitase-catalyzed reactions for NIH-RAS cells 

grown in STD (A) and –GLN+AKG+NEAA (B) media. (C) Map and experimental values of labeling 

destiny when [U-13C5]glutamine is metabolized both reductively and oxidatively (for STD medium). 

(D) Map and experimental values of labeling destiny when [1-13C]glutamate is metabolized 

oxidatively (for –GLN+GLU+NEAA medium). 
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Discussion 

Growing cancer cells often depend on glutamine, with some cell lines 

dying rapidly if they are deprived of this amino acid [3,4]. 

We show that K-ras-transformed mouse fibroblasts are addicted to 

glutamine, glutamine concentration modulating the transformed 

phenotype [15].  

Alpha-ketoglutarate and ammonium-containing nonessential amino 

acids, the molecules that constitute glutamine, can only partly restore cell 

growth when combined upon glutamine deprivation (Figure 1C-D). 

A likely cause of the partial complementation of glutamine deprivation 

may lie in altered signaling events, such as the low mTOR activation 

pathway when glutamine is substituted by AKG+NEAA or GLU+NEAA 

(Figure 2A-B). This result is in accordance with previous literature data 

[15] in which addition of GLU or AKG failed to rescue mTORC1 activation 

under glutamine deprivation. 

Other key reasons for the partial growth recovery of glutamine-deprived 

NIH-RAS supplemented with AKG+NEAA are metabolic events that we 

studied at the biochemical, transcriptional and cellular level. Such events 

include a reduction in nucleotide synthesis (Figure 6B-C) and in fatty acid 

and lipid synthesis (Figure 3-4). Downregulation of lipogenesis, which is a 

process that requires high amounts of reducing power in the form of 

NADPH, correlates with the higher oxidative stress evidenced by 

ratiometric roGFP probes and the lower NADPH levels (Figure 5). The 
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observation that NADPH levels are lower also when glutamine is 

substituted by GLU+NEAA may reflects a probable missed production of 

NADPH in the reaction step catalyzed by glutamate dehydrogenase (GDH). 

Indeed, glutamine-deprived NIH-RAS cells may not need to synthesize 

AKG from GLU through the GDH-catalyzed reaction when AKG+NEAA are 

supplemented, while GDH may be inhibited by sirtuin SIRT4 [24], not 

transcriptionally repressed by weakly active mTORC1, when glutamine-

deprived NIH-RAS cells are supplemented with GLU+NEAA. The inhibition 

of GDH by SIRT4, together with the probable low ATP-dependent 

glutamine synthase (GS) activity -likely due to the low ATP levels 

measured under glutamine deprivation (Figure 6B)-, could account for the 

intracellular accumulation of GLU supplemented to glutamine-deprived 

NIH-RAS cells (Figure 7C). Experiments to test GDH and GS activities are 

needed to clarify this aspect. 

A possible connection between mTOR pathway activation state and 

lipogenesis lies in the fact that the transcriptional program activated by 

mTOR includes SREBP-1 and the related protein SREBP-2, which regulates 

transcription of genes in fatty acid and sterol biosynthesis [25,26]. Thus, 

when mTOR is inactive (or weakly active), SREBP-mediated fatty acid and 

sterol biosynthesis cannot occur, leading to dowregulated lipid content. 

Finally, glutamine-deprived NIH-RAS cells supplemented with AKG 

precursor GLU and NEAA rely less on reductive carboxylation of AKG 

(Figure 8D), which is an efficient and rapid way to synthesize lipids but 
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requires high amounts of NADPH to ensure an adequate citrate 

production [27]. This result was predicted by our model of NIH-RAS cell 

metabolism ENGRO introduced in [22], which indicated that cells grown 

in –GLN+AKG+NEAA medium are less capable of relying on reductive 

carboxylation for fatty acid synthesis (Figure 8B).  

In our work, we validated some of the above-mentioned observations 

about NIH-RAS cell behaviour when deprived of glutamine and 

supplemented with AKG+NEAA, like the rescuing effect of 

deoxyribonucleotide supplementation on cell growth. We also 

rationalized some other observations through mathematical models of 

metabolism, like the lower reliance on reductive carboxylation pathway. 

We will need further experiments to extend such validations and to clarify 

some aspects. First, we would like to deepen our knowledge about the 

role of mTOR in NIH-RAS cell proliferation when glutamine is substituted 

with AKG+NEAA, by activating mTOR pathway biochemically or genetically 

and measuring its possible complementation effect on cell growth. 

Second, we may want to study the epigenetic state of the genes involved 

in fatty acid and sterol biosynthesis. Third, we would like to understand 

how do signalling and metabolic pathways intersect and cross-regulate 

each other. 

Although the extension of our research to human cell lines is required to 

identify fragile points in the metabolic network of cancer cells, our studies 

help to elucidate the role of glutamine in the proliferation of glutamine-
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addicted cancer cells. Moreover, by integrating metabolic and signaling 

events, as well as experimental data within metabolic models, such 

studies may reveal useful in defining clinical protocols that make use of 

drugs directed against glutamine metabolism [4]. 
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Materials and Methods 
 

Cell culture  

Two cell lines have been used in this work, namely normal NIH3T3 mouse 

fibroblasts (obtained from the ATCC, Manassas, VA, USA) and a K-Ras-

transformed normal-derived cell line –that we refer to as NIH-RAS. Both 

control and ras-transformed NIH3T3 have been passaged a similar 

number of times, taking care to refreeze the cell lines immediately and to 

use them for a limited number of passages. The cell lines are periodically 

assayed to check that the major properties of the cells do not change over 

time, that the major transformation-related phenotypes are retained and 

ras-dependent. The cell lines were routinely grown in Dulbecco’s modified 

Eagle’s medium (Invitrogen Inc., Carlsbad, CA, USA) containing 10% 

newborn calf serum (NCS), 4 mM glutamine, 100 U/ml penicillin and 100 

mg/ml streptomycin, that we refer to as standard medium (STD), at 37°C 

in a humidified atmosphere of 5% CO2. Cells were passaged using trypsin-

ethylenediaminetetraacetic acid (EDTA) (Invitrogen Inc., Carlsbad, CA, 

USA) and maintained in culture before experimental manipulation. 

Cell proliferation analysis  

Cells were plated at the density of 3000 cells/cm2 in standard medium and 

incubated overnight at 37°C and 5% CO2. After 18 h, cells were washed 

twice with phosphate-buffered saline (PBS) and, to verify the response to 
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glutamine deprivation, cells were incubated in medium without glutamine 

(Invitrogen Inc., Carlsbad, CA, USA), possibly supplemented with dimethyl-

2-oxoglutarate (AKG, 4 mM, Sigma Aldrich Inc.) or glutamate (GLU, 4 mM, 

Sigma Aldrich Inc.) and/or nonessential amino acids (Pro, Ala, Asp, Asn, 4 

mM each, Sigma Aldrich Inc.).To measure cell proliferation, cells were 

treated with trypsin at 0, 24, 48, 54, 72, 144, 168, 192, 240 and 312 hours 

after medium change. Viable (i.e., unstained) cells were counted in a 

Bürker chamber after staining with 0.5% trypan blue.  

Apoptosis Assay  

Cells were plated at the density of 3000 cells/cm2 in standard medium and 

incubated overnight at 37°C and 5% CO2. After 18 h, cells were washed 

twice with PBS and incubated for 30 hours in medium without glutamine 

(Invitrogen Inc., Carlsbad, CA, USA), supplemented with dimethyl-2-

oxoglutarate (AKG, 4 mM, Sigma Aldrich Inc.) and nonessential amino 

acids (Pro, Ala, Asp, Asn, 4 mM each, Sigma Aldrich Inc.). For apoptosis 

analysis, 1×106 cells (adherent and in suspension cells) were collected, 

stained with Annexin V-FITC (Immunotools, GmbH) and propidium iodide 

(Sigma Aldrich Inc.) and analyzed by FACScan (Becton-Dickinson) using the 

FL1 and FL2 channels. Data analysis was performed with Flowing 

Software. 
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Autophagy assay 

Autophagy was determined by using Autophagy Assay Kit (Sigma Aldrich 

Inc.) following manufacturer’s instructions. Briefly, NIH-RAS cells that had 

to be grown in STD medium were plated at 3000 cells/cm2, while NIH-RAS 

cells that had to be grown in –GLN+AKG+NEAA medium were plated at 

9000 cells/cm2 in glass bottom petri dishes, suitable for confocal 

microscopy, with normal growth medium (STD). After 18 h at 37°C and 5% 

CO2, cells were rinsed twice with PBS and medium change was done, by 

incubating cells for 24 h with STD or –GLN+AKG+NEAA media. Cells were 

then incubated with the Autophagosome Detection Reagent working 

solution for 30 minutes in a 37°C in a 5% CO2 incubator and washed 4 

times with wash buffer. Cells were imaged immediately under a confocal 

microscope with a DAPI channel. 

Cell size measurement 

NIH-RAS cells were plated at 3000 cells/cm2 (for 54 h-growth in STD and 

for 144 h-growth in –GLN+AKG+NEAA) and at 9000 cells/cm2 (for 54 h-

growth in –GLN+AKG+NEAA) in 6-well plates in STD medium and 

incubated overnight at 37°C and 5% CO2. After 18 h, cells were washed 

twice with PBS and incubated for 54 h and 144 h in STD medium or in –

GLN+AKG+NEAA medium. Cells were then 1) trypsinized and counted in a 

Bürker chamber (Trypan blue excluding method) and 2) scraped in lysis 

buffer to measure protein content with Bradford assay [28]. The resulting 
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protein content was then normalized on cell number for both nutritional 

conditions (STD and –GLN+AKG+NEAA) to get the protein content per cell, 

which is an indicator of cell size. 

Determination of intracellular ROS  

Intracellular accumulation of H2O2 and O2
•- was determined after 54 h 

from medium change with 2’,7’-dichlorodihydrofluoresceine diacetate 

(Sigma Aldrich Inc.). The cells were incubated for 30 minutes at 37°C with 

H2DCFDA 10 mM, treated with trypsin, resuspended in PBS supplemented 

with NCS 10% (Invitrogen Inc., Carlsbad, CA, USA) and acquired by 

FACScan (Becton-Dickinson), using the Cell Quest software (BD 

Bioscience). The percentage of ROS producing cells was calculated for 

each sample and corrected for autofluorescence obtained from samples 

of unlabeled cells. 

Determination of glutathione levels 

For reduced and total glutathione measurements, cells were plated at the 

density of 3000 cells/cm2 in standard medium and incubated overnight at 

37°C and 5% CO2. After 18 h, cells were washed twice with PBS and 

incubated for 54 h in STD medium or in medium without glutamine 

(Invitrogen Inc., Carlsbad, CA, USA), possibly supplemented with dimethyl-

2-oxoglutarate (AKG, 4 mM, Sigma Aldrich Inc.) and/or nonessential 

amino acids (Pro, Ala, Asp, Asn, 4 mM each, Sigma Aldrich Inc.). Cells were 

then treated with trypsin, collected, washed twice with PBS and lysed 
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through freeze-and-thaw cycles. Samples were deproteinized with a 5% 5-

sulfosalicylic acid solution, centrifuged to remove the precipitated protein 

and assayed for glutathione. GSH measurement was an optimization of 

Tietze’s enzymatic recycling method [23], in which GSH is oxidized by the 

sulfhydryl reagent 5,5’-dithio-bis (2-nitrobenzoic acid) (DTNB) to form the 

yellow derivative 5’-thio-2-nitrobenzoic acid (TNB), measurable at 412 nm 

and the glutathione disulfide (GSSG) formed is recycled to GSH by 

glutathione reductase in the presence of NADPH. The amount of 

glutathione in the samples was determined through a standard curve of 

reduced glutathione. Glutathione levels were normalized to protein 

content measured by Bradford assay (Bio-Rad reagent) on an aliquot of 

cell extract collected before deproteinization. 

Western blot analysis 

For the analysis of mTOR pathway protein levels, cells were harvested 

after 54 h of growth in STD, –GLN+AKG+NEAA or –GLN+GLU+NEAA media 

and disrupted in an appropriated lysis buffer [29]. Thirty microgram of the 

total cellular extracts were then resolved by SDS-PAGE and transferred to 

the nitrocellulose membrane, which was incubated overnight with specific 

antibodies: vinculin from Santa Cruz Biotechnology Inc. (1:10000); S6 

Ribosomal Protein (5G10) Rabbit mAb and Phospho-S6 Ribosomal Protein 

(Ser235/236) Rabbit mAb from Cell Signaling Technology Inc. (1:1000). 

Protein levels were determined by densitometric scanning and 
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quantitation with ImageJ software. Data are expressed after 

normalization to the level of vinculin. 

Confocal microscopy analyses of redox potential 

Cells were seeded at the density of 3000 cells/cm2 (for growth in STD 

medium) and 9000 cells/cm2 (for growth in –GLN+AKG+NEAA and –

GLN+GLU+NEAA media) in glass bottom petri dishes, suitable for confocal 

microscopy, in STD medium and incubated overnight at 37°C and 5% CO2. 

After 18 h, cells were transfected with 2 μg of plasmid harbouring either 

Cyto-roGFP (engineered GFP able to measure redox potential in cytosol) 

or Matrix-roGFP (engineered GFP able to measure redox potential in 

mitochondrial matrix), using Lipofectamine® RNAiMax Reagent (Thermo 

Fisher Scientific). After 24 h from transfection, medium was changed to 

STD, -GLN+AKG+NEAA or –GLN+GLU+NEAA (depending on the nutritional 

condition to be assayed). After 54 h from medium change, cells were 

analyzed with a Nikon Eclipse Ti-E confocal microscope, equipped with a 

climate chamber (with CO2 vent and humidifier), a 405-nm UV diode laser 

and a 488-nm Ar laser. In detail, time-series experiments were performed 

by exciting the cells with 405-nm and 488-nm lasers for 7 minutes every 

30 seconds (15 loops), using the 40x-oil objective. Then, cells were treated 

with 100 μM H2O2 to become fully oxidized (a procedure necessary to 

calibrate the microscope) and followed over time for 50 minutes by 

exciting them at 405 and 488 nm. Finally, the ratio 405:488 nm (i.e. the 
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ratio between the emission intensity at 510 nm obtained by exciting at 

405 nm and that obtained by exciting at 488 nm) was determined for each 

loop after drawing ROIs (Regions Of Interest) on analyzed fluorescent 

cells, using NIS-Elements Software (Nikon Instruments). 

NADPH levels 

The measurement of NADPH levels of NIH-RAS grown in STD, –

GLN+AKG+NEAA and –GLN+GLU+NEAA media was made using 

NADP/NADPH Quantification Colorimetric Kit (BioVision), following 

manufacturer’s instructions. Cells were seeded at the density of 3000 

cells/cm2 (for growth in STD medium) and 9000 cells/cm2 (for growth in –

GLN+AKG+NEAA and –GLN+GLU+NEAA media) in 150-mm dishes in STD 

medium and incubated overnight at 37°C and 5% CO2. After 18 h, cells 

were washed twice with PBS and incubated for 54 h in STD, –

GLN+AKG+NEAA or –GLN+GLU+NEAA media. The day of the analysis, cell 

metabolism was quenched with liquid nitrogen and cells were lysed with 

NADP/NADPH Extraction Buffer provided with the kit. After following the 

protocol, NADPH and NADP+NADPH were quantified by reading the 

absorbance of the samples at 450 nm and comparing it with NADPH 

standard curve. 

Cholesterol levels 

Cholesterol levels of NIH-RAS grown in STD and –GLN+AKG+NEAA media 

were measured by using Total Cholesterol Assay Kit, Colorimetric (Cell 
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Biolabs), following manufacturer’s protocol. Cells were seeded at the 

density of 3000 cells/cm2 (for growth in STD medium) and 9000 cells/cm2 

(for growth in –GLN+AKG+NEAA medium) in 150-mm dishes in STD 

medium and incubated overnight at 37°C and 5% CO2. After 18 h, cells 

were washed twice with PBS and incubated for 54 h in STD or –

GLN+AKG+NEAA media. The day of the analysis, cells were lysed with a 

mixture of chloroform:isopropanol:NP-40 (7:11:0.1) and samples were 

processed according to the datasheet instructions. Finally, cholesterol 

levels were assayed by reading the absorbance of the samples at 570 nm 

and comparing it with cholesterol standard curve. 

Lipid content (Nile Red staining) 

The neutral lipid dye Nile Red (9-diethylamino-5H-benzo[α]phenoxazine-

5-one) was used for lipid staining. The stock solution (1.0 mg/ml) in 

methanol was stored frozen (−20°C) in dark. Staining was carried out on 

live cells by adding the dye to a final concentration of 10 ng/ml directly in 

the culture medium for 5 minutes. Then, the dye was carefully washed out 

using PBS prior to microscopy. Lipid droplets were then visualized with 

confocal microscope (Nikon Eclipse Ti-E; 60X magnification) by exciting 

with FITC (green fluorescence) and AlexaFluor488 (red fluorescence) 

channels. Total fluorescence (i.e. green+red) per cell was determined by 

analysing photos with ImageJ software: regions of interest (ROIs) 

corresponding to each cell were drawn on brightfield images, then ROIs 
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were superimposed on photos acquired by exciting both with green and 

red fluorescence. Then, the corrected total cell fluorescence (CTCF) –

normalized on cell area– was calculated, after subtracting the mean 

fluorescence of the background readings, by summing the corrected 

green and red fluorescence. 

RNA extraction and transcriptomic analysis  

Cells were plated at the density of 3000 cells/cm2 in standard medium and 

incubated overnight at 37°C and 5% CO2. After 18 h, cells were washed 

twice with PBS and incubated for 54 h in STD medium or for 144 h in 

medium without glutamine (Invitrogen Inc., Carlsbad, CA, USA) 

supplemented with dimethyl-2-oxoglutarate (AKG, 4 mM, Sigma Aldrich 

Inc.) and nonessential amino acids (Pro, Ala, Asp, Asn, 4 mM each, Sigma 

Aldrich Inc.). RNA was then extracted from cells by using TriFastTM reagent 

(EuroGOLD) and generated triplicate samples were stored at -80°C until 

the analysis. The QC evaluation was performed using Nanodrop and 

Agilent 2100 Bioanalyzer. Single strand biotinylated cDNA was generated 

from 200 ng of total RNA using two cycles of cDNA synthesis with the 

Affymetrix WT PLUS expression Kit. The first cycle-first strand synthesis 

was performed using an engineered set of random primers that excluded 

rRNA-matching sequences and included the T7 promoter sequences. After 

second-strand synthesis, the resulting cDNA was in vitro transcribed with 

the T7 RNA polymerase to generate a cRNA. This cRNA was subjected to a 
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second cycle-first strand synthesis in the presence of dUTP in a fixed ratio 

relative to dTTP. Single strand cDNA was then purified and fragmented 

with a mixture of uracil DNA glycosylase and apurinic/apirimidinic 

endonuclease 1 (Affymetrix) in correspondence of incorporated dUTPs. 

DNA fragments were then terminally labeled by terminal deoxynucleotidyl 

transferase (Affymetrix) with biotin. The biotinylated cDNA was 

hybridized to the Clariom D Arrays (previously known as Mouse GeneChip 

MTA 1.0 Arrays) containing more than 214000 full-length transcripts. 

After the hybridization, chips were washed and scanned on the Affymetrix 

Complete GeneChip® Instrument System, generating digitized image data 

(DAT) files and CEL files. CEL files were analyzed by R Bioconductor Oligo 

and Limma Packages, respectively. The full dataset was normalized by 

using the Robust Multialignment Algorithm (RMA). Results were filtered 

for a Fold Change ≥1.5. The genes were classified as Differentially 

Expressed if showed a FDR corrected p-value ≤ 0.05. 

Reporter metabolites 

Transcriptomic data were mapped on the corresponding enzymes of a 

genome scale metabolic model adding the p value obtained from a 

Student's t-test as a specification of the significance of differential gene 

expression (and so of the change for each enzyme). Each pi was then 

converted to a Z score of the enzyme node (Zni) connected to the enzyme 
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under investigation, by using the inverse normal cumulative distribution 

(θ–1). 

Zni = θ–1 (1-pi) 

Thus, each metabolite node in the genome-wide metabolic model 

(GWMM) was scored based on the normalized transcriptional response of 

its neighboring enzymes. Dealing with differential data, the normalized 

transcriptional response has been calculated as size-independent 

aggregated Z scores of the k neighboring enzymes. 

Z metabolite = (1/√k) ∑ Zni 

The scoring used to identify reporter metabolites was a test for the null 

hypothesis “neighbor enzymes of a metabolite in the metabolic graph 

show the observed normalized transcriptional response by chance”. 

Metabolites with the highest score are defined as reporter metabolites, 

namely those metabolites around which transcriptional changes occur. 

To perform the analyses, the Cobra Toolbox function “reporterMets” was 

used, which implements under Matlab the reporter metabolites algorithm 

by Patil and Nielsen [30]. Regarding the input, the Recon 2.2 model [31] 

was used. 

Metabolomics analyses 

For metabolite extraction, NIH-RAS cells that had to be grown in STD 

medium were plated at 3000 cells/cm2, while NIH-RAS cells that had to be 

grown in –GLN+AKG+NEAA medium were plated at 9000 cells/cm2 –in 
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order to reach the same cell density after 54 h– in 6-well plates with 

normal growth medium (STD). After 18 h at 37°C and 5% CO2, cells were 

rinsed twice with PBS and incubated for 54 h in STD medium or –

GLN+AKG+NEAA medium. After 54 h from medium change, cells were 

quickly rinsed with NaCl 0.9% and quenched with 0.4 ml ice-cold 

methanol. An equal volume of water was added, and cells were collected 

by scraping with a pipette tip. Cells were sonicated 5 seconds for 5 pulses 

at 70% power three times. One volume of chloroform was added, and cells 

were vortexed at 4°C for 20 min. Samples were centrifuged at 12000 g for 

10 min, and the aqueous phase was collected in a new tube and 

evaporated under airflow at 37°C. Dried polar metabolites were dissolved 

in 60 μl of 2% methoxyamine hydrochloride in pyridine (Pierce) and held 

at 40°C for 6 h. After dissolution and reaction, 90 μl of MSTFA (N-Methyl-

N-(trimethylsilyl) trifluoroacetamid) was added and samples were 

incubated at 60°C for 1 h. For cell culture, GC/MS analysis was performed 

using 6890 GC system combined with 5975BMS system (Agilent 

Technologies) equipped with a 30-m DB-5MS capillary column operating 

under electron impact (EI) ionization at 70eV. 1 μl of sample was injected 

in splitless mode at 250°C, using helium as the carrier gas at a flow rate of 

1 ml/min. The GC oven temperature was held at 70°C for 2 min and 

increased to 325°C at 10°C/min. GC/MS data processing was performed 

using Agilent MassHunter software and statistical analyses were 

performed using Mass Profile Professional (MPP) software [32]. Relative 
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metabolites abundance was carried out after normalization to internal 

standard norvaline and cell number. 

13C tracer analyses 

All labeling experiments were performed in media with 10% dialyzed 

newborn calf serum (NCS) for 54 h. All tracers were purchased from 

Sigma-Aldrich. For metabolite extraction, NIH-RAS cells that had to be 

grown in STD medium were plated at 3000 cells/cm2, while NIH-RAS cells 

that had to be grown in –GLN+AKG+NEAA medium were plated at 9000 

cells/cm2 –in order to reach the same cell density after 54 h– in 6-well 

plates with normal growth medium (STD). After 18 h at 37°C and 5% CO2, 

cells were rinsed twice with PBS and medium change was done, by 

incubating cells for 54 h with STD or –GLN+AKG+NEAA media containing 

dialyzed NCS and the proper tracer ([U-13C6]-glucose, [U-13C5]-glutamine, 

[1-13C]-glutamate, [15N]-aspartate or [15N]-asparagine). Labeled cell 

cultures were then washed with 0.9% NaCl and metabolism was quenched 

in liquid nitrogen and then with -20°C cold 70% methanol. After cell 

scraping in 70% methanol (containing internal standards norvaline and 

glutarate), -20°C cold chloroform was added and the samples were 

vortexed at 4°C to extract metabolites. Phase separation was achieved by 

centrifugation at 4°C. The methanol-water phase containing polar 

metabolites was separated and dried using a vacuum concentrator. Dried 

metabolite samples were stored at −80 °C.  
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Polar metabolites were derivatized for 90 min at 37 °C with 7.5 µl of 20 

mg/ml methoxyamine in pyridine and subsequently for 60 min at 60°C 

with 15 µl of N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide, 

with 1% tert-butyldimethylchlorosilane [33] (Sigma-Aldrich). Mass 

distributions and metabolite concentrations were measured with a 7890A 

GC system (Agilent Technologies) combined with a 5975C Inert MS system 

(Agilent Technologies). 1 µl of sample was injected into a DB35MS column 

in splitless mode using an inlet temperature of 270°C. The carrier gas was 

helium with a flow rate of 1 ml/min. Upon injection, the GC oven was held 

at 100°C for 3 min and then ramped to 300°C with a gradient of 2.5°C/min 

followed by a 5 min after run at 320°C. The MS system was operated under 

electron impact ionization at 70 eV and a mass range of 100–650 amu was 

scanned. Mass distributions were extracted from the raw ion 

chromatograms using a custom Matlab M-file [34]. Mass spectra were 

corrected for naturally occurring isotopes [35] and for potential 

metabolite contamination in a blank extraction. All labeling fractions were 

transformed to a natural abundance corrected mass distribution vector 

(MDV) [36]. Metabolite levels were determined based on the internal 

standards norvaline and glutarate, and protein content determined with 

Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific) to normalize 

metabolomics data. 
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ENGRO metabolic network reconstruction 

A metabolic network designed to evaluate the contribution of glucose and 

glutamine to biomass formation was extracted from the HMR [37] and 

Recon 2 [38] databases and manually curated. It includes central 

metabolic pathways and the connected production of building blocks for 

lipids and protein biosynthesis, together accounting for 80% of the dry 

cellular biomass [38]. To streamline the analysis of ENGRO emergent 

properties, unless strictly required by reaction thermodynamics, all 

metabolites are assumed in the same compartment and linear pathways 

are lumped into a single reaction. The obtained model is structurally free 

from thermodynamically infeasible loops, which is a major problem in 

genome-wide models [39].  

Flux Balance Analysis (FBA) 

FBA requires a stoichiometric matrix S and a set of constraints that impose 

the upper and lower bound of fluxes. The steady state constraint is 

defined by the equation 𝑑𝑥 𝑑𝑡 = 𝑆 ∙ 𝑣 = 0⁄ , where dx/dt are time 

derivatives of metabolite concentrations represented by the product of 

the m×n matrix S times the vector of fluxes 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛), where vi 

is the flux of reaction i, n is the number of reactions, and m is the number 

of metabolites. The ensemble of functional states that the system can 

reach given a boundary condition I determines the feasible solutions space 

Φ=Σ∩I. By exploiting linear programming, FBA allows for optimization of 
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the flux through a weighted sum of fluxes. In particular, the COBRA 

Toolbox [40] and the GLPK solver were used. 
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4. GENERAL DISCUSSION 

Compared to normal cells, transformed cells have the ability to 

continuously proliferate and thus to expand to become tumors. Tumor 

metabolism is significantly altered to accommodate for the increased 

metabolic needs for energy generation (bioenergetic) and macromolecule 

synthesis (biosynthetic) necessary for oncogenic transformation. The 

Warburg Effect is a central feature of tumor metabolism that consists in 

the preferential use of glucose and glycolysis for energy generation 

[235,236,237,238]. The generated lactate contributes to the prominent 

lactic acidosis in most solid tumors. The causes and functional 

consequences of this increased glucose uptake and utilization are the 

subject of many studies. However, glucose deprivation is common in solid 

tumors, and the extracellular acidosis further restricts the glucose uptake 

and glycolysis [239,240]. Therefore, recent research efforts have found 

that, beside glucose, tumor cells also rely on a wide variety of alternative 

fuels to provide various metabolic needs. The consumption and utilization 

of these alternative fuels are affected by different oncogenic signaling 

events and/or tumor microenvironmental stresses. The reliance of tumor 

cells on alternative fuels may present tumor-specific metabolic fragilities, 

and thus, meaningful therapeutic windows to eradicate tumor cells. 

Targeting essential tumor metabolism may be particularly interesting for 

the tumors that have developed resistance to chemotherapeutics or 
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targeting agents. Indeed, improved understanding of cancer nutrient 

addictions may allow to better target these metabolic dependencies. 

Most mammalian cells have efficient ways to cope with, and therefore 

survive, nutrient deprivation in their external environments that occurs 

during pathological adaptations or therapeutic intervention. The success 

of these mechanisms allows cells to survive nutrient deprivation and 

preserve the capacity to resume proliferation after the resolution of the 

metabolic stresses. Thus, addiction to alternative nutrients, as measured 

by cell death upon deprivation, will only manifest when these adaptive 

mechanisms fail or are inadequate. During nutrient starvation, cells can 

resort to autophagy (self-eating) to generate amino acids, lipids and other 

nutrients by degrading existing macromolecules [241]. In addition, 

mammalian cells can trigger highly conserved signaling mechanisms in 

response to nutrient deprivation and other metabolic stresses to control 

protein translation and transcriptional responses. One of these 

mechanisms is via mammalian target of rapamycin (mTOR), a conserved 

Ser/Thr kinase (a part of the mTOR complexes), to regulate cell growth 

and autophagy. The importance of nutrient sensing and adaptive 

pathways in cancer biology is clear when considering the high number of 

tumor suppressors and oncogenes in these pathways that are oncogenic 

drivers. Employing these nutrient sensing pathways allows many cells (but 

not all) to adapt to and survive nutrient limitations in their environments. 
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Generally, alternative fuels become indispensable for cancer-specific 

nutrient dependencies through several underlying mechanism. First, the 

enhanced proliferation of tumor cells increases the demands on the 

quantity of building blocks necessary to synthesize the macromolecules 

needed for cell growth. Additionally, cancer cells may also require 

nutrients to maintain pro-growth gene expression programs and redox 

homeostasis. Second, many mechanisms of oncogenic transformation 

alter the expression or activities of enzymes critical for the metabolism of 

essential nutrients. Third, the expression of rate-limiting enzymes 

themselves may be transcriptionally regulated or affected by the DNA 

amplifications or deletions that become selected for during cancer 

progression as they provide survival advantage. Fourth, tumor cells are 

often exposed to different tumor microenvironmental stresses, including 

hypoxia, lactic acidosis and glucose deprivation, which further restrict the 

nutrients and fuels available to the tumor cells. Fifth, tumor cells have 

different cellular origins and may retain some of the metabolic properties 

of the original cells that are associated with a particular differentiation 

program or environmental milieu. All of these different factors may 

contribute to the particular nutrient addictions and metabolic 

vulnerabilities that different cancer cells develop [242]. 

Glutamine is the most abundant amino acid in plasma and plays a unique 

role in the metabolism of proliferating cells. However, the essential role 

of glutamine in cancer metabolism was not well understood until recent 
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studies employed modern biochemical and genetic tools. It is now clear 

that glutamine plays several important metabolic roles, including as a 

carbon source for energy production, a nitrogen source for biosynthetic 

reactions, a regulator of lipid generation and a maintainer of redox 

homeostasis. Glutamine availability and metabolism also tightly intersect 

with oncogenic mutations and transduction pathways involved in 

oncogenesis. Therefore, glutamine metabolism is a particularly attractive 

therapeutic target for the significant number of tumors that appear to be 

addicted to this nutrient [126,142]. 

One of the most important metabolic needs of proliferating tumor cells is 

the biosynthesis of macromolecules for cell division. To support lipid 

biosynthesis from acetyl-CoA, citrate is exported out of the mitochondria 

to generate acetyl-CoA in the cytoplasm. As this depletes TCA cycle 

intermediate metabolites, an additional carbon source is required to 

replenish the TCA cycle, and this occurs in the process of anaplerosis. In 

most proliferating cells, glutamine serves as an important anaplerotic 

substrate to generate oxaloacetate that will combine with acetyl-CoA to 

replenish citrate. Consequently, for many of the cancer cells that are 

glutamine-addicted, it has a critical role as a carbon source to feed 

anaplerotic reactions. Additionally, under hypoxia or with mitochondrial 

dysfunction, glutamine can directly supply the acetyl-CoA needed for 

lipogenesis by being converted into α-ketoglutarate that can undergo 

reductive carboxylation to generate isocitrate, which is then converted 
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into citrate [102,106]. Therefore, the direction of metabolic flux and 

utilization of glutamine can vary among different tumors with distinct 

somatic mutations and degrees of hypoxia. 

The amido and amino groups of glutamine contribute to the nucleotide 

synthesis, especially during proliferation. For instance, the cell cycle arrest 

of K-ras transformed fibroblasts caused by glutamine deprivation could be 

rescued by addition of deoxyribonucleotides [243]. Interestingly, the 

expression of glutaminase 1 (GLS1), that encodes the critical enzyme for 

glutaminolysis into glutamate, is tightly regulated within the cell cycle 

[244]. The coupling between the degree of glutaminolysis and DNA 

synthesis likely contributes to glutamine role in supporting DNA synthesis 

and cell proliferation. 

Glutamine can also modulate cellular signaling pathways, including redox 

homeostasis [245]. Glutamine metabolism is crucial in the synthesis of 

glutathione (GSH), an endogenous antioxidant constituted by glutamate, 

cysteine and glycine. High endogenous levels of glutathione render it the 

predominant cellular anti-oxidant that scavenges reactive oxygen species 

by donating electrons and becoming oxidized (GSSG). The regeneration of 

GSH from GSSG requires NADPH, which can be produced by glutamine 

metabolism through malic enzyme. In addition, glutamine also increases 

the NADPH/NADP+ ratio and maintains the GSH levels and cellular redox 

state by being converted to pyruvate [103]. Thus, glutamine metabolism 

is essential to maintain the GSH level and redox homeostasis. 
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In addition to glutamine, a wide variety of studies and systems have 

indicated that amino acid addiction is a common phenomenon of cancer 

cells that changes significantly among different normal and transformed 

cells. Exogenous cysteine is essential for several cancer types (glioma 

[183], prostate [184] and pancreatic [179]), as blocking uptake through 

the cystine/glutamate antiporter (system Xc-) reduces viability due to the 

cell death caused by uncontrolled oxidative stresses [246,247]. 

Methionine is also essential for maintaining levels of S-Adenosyl 

methionine (SAM), which is critical for subsequent histone methylation, 

especially tri-methylation of histone H3 lysine-4 (H3K4me3). Given the 

potential involvement of HeK4me3 and H3K4 demethylase JARID1B 

upregulation in prostate cancer [248], methionine restriction may affect 

the epigenetic landscape and oncogenesis of tumor cells driven by these 

epigenetic features [157,249]. 

Cancer cells are highly versatile in obtaining nutrients from the 

extracellular environment to satisfy their metabolic needs. With the 

limited availability of glucose, tumor cells resort to the use of various 

amino acids and other nutrients as alternative fuels to support their 

continuous survival and proliferation. There is extensive crosstalk and 

reciprocal metabolite flow between these alternative fuels and the 

sensing and metabolic pathways of glucose metabolism [250]. The 

importance of these pathways can be demonstrated by the DNA 

amplifications or significant up-regulation of many genes involved in the 
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metabolic adaptations under stresses [251,252]. The huge flexibility in the 

nutrients that cancer cells are able to successfully metabolize likely 

reflects both the metabolic demands necessary to support oncogenesis 

and the survival advantage for cells that have developed the abilities to 

use such nutrients. 

Second, these alternative fuels supply many aspects of tumor biology 

beyond the bioenergetic and biosynthetic needs. Methionine may be 

important for the levels of SAM and the proper pattern of histone and 

DNA methylation. Both glutamine and cysteine are essential for the 

generation of GSH and maintenance of redox homeostasis. These results 

indicate an extensive and intricate involvement of metabolic flux into 

many aspects of tumor biology, which were not previously thought to be 

fueled by metabolic needs. Thus, the approach of nutrient deprivation, by 

removing one nutrient at a time, may be applied to a large number of 

cancer cells with genetic information to uncover, on a systemic level, the 

linkage of particular oncogenic events with nutrient addictions. 

By understanding how oncogenic mutations regulate the uptake and 

metabolism of the alternative fuels that cancer cells are able to use to 

support their metabolic needs, we may be able to identify therapeutic 

targets to eradicate tumors via their metabolic fragilities.  

In this regards, mathematical modeling and computational methods have 

become an indispensable mean to achieve a full understanding of the 

functioning and to identify the design principles of complex systems. 
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Interaction-based models and, particularly, constraint-based models are 

the most widely used for the study of metabolism, although they neglect 

most of the quantitative and kinetic information. 

In order for a model to be useful to experimental biologists, it must be 

strongly linked with biological data and ad hoc experimental 

measurements during the computational phases of model construction 

and validation. In Systems Biology, the interaction between experimental 

biologists and modelers is indeed necessary to understand each other’s 

requirements and to take advantage of the respective expertise. 

Experimental biologists have to design appropriate laboratory 

experiments, while modelers should develop appropriate modeling 

strategies and simulation tools. This interplay is then expected to increase 

the efficacy and broaden the scope of mathematical models in the study 

of metabolism, and increase our knowledge of cancer metabolism and its 

regulatory properties. 
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5. SUPPLEMENTARY INFORMATION 

5.1 Stable isotope tracers to study cancer cell metabolism: assessing 

utilization of glutamine as an example 

As previously explained, to date large-scale analyses of cancer cells 

include metabolomics and fluxomics, with the aim of understanding 

posttranscriptional modifications [253,254,255]. Compared to 

metabolomics, that enables the study of metabolism at the system level 

through the measurement of metabolite concentrations, fluxomics allows 

to better characterize metabolic routes through the measurement of 

fluxes, which describe the actual functionality of an enzyme or pathway 

[256,257]. Thus, intracellular fluxes for a given system are quantitatively 

estimated through isotopic tracers and computational algorithms 

[258,259], being such methods effectively applied to mammalian cells 

[85,260]. 

Stable isotope labeling offers a direct readout of intracellular metabolism 

and can be combined with the known stoichiometry of biochemical 

pathways to quantify the activity of corresponding enzyme fluxes [261]. 

Here are described the steps to perform the analysis. 

a) Choice of tracer 

In isotopic labeling studies, the choice of tracer determines the range of 

possible labeling metabolite patterns, strongly affecting the observability 
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and the accuracy of the estimated intracellular fluxes. Usually, [U-13C5] 

glutamine allows a good evaluation of the total contribution of glutamine 

in the TCA cycle and lipogenesis [262], while partially labeled glutamine 

tracers such as [1-13C] and [5-13C]-glutamine are useful to estimate the 

fraction of glutamine that flows through RC [111]. 

b) Cell culture 

Cell culture is usually performed with commercially available media 

formulations, such as Dulbecco’s modified Eagle medium (DMEM). In 

stable isotope tracer experiments, special basal media without glucose, 

glutamine, and/or any other substrate of interest are used, allowing the 

use of specific 13C-labeled tracer (usually glucose or glutamine). As the 

culture medium is supplemented with 10% serum (e.g. NCS), which 

contains many unspecified molecules that may dilute 13C-labeling of 

intracellular metabolites and interfere in cellular metabolism, in tracer 

experiments normal serum is replaced by dialyzed serum (typical cut-off: 

10000 Da). 

c) Measuring extracellular glutamine and glutamate 

As mentioned before, different cancer cell lines have distinct patterns of 

glutamine metabolism and are either glutamine-dependent or -

independent. Measuring consumption of glutamine gives an indication of 

its total use by cells. The concentration of glutamine and glutamate can 

be measured by numerous ways, among which are enzymatic assay [263], 
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high-performance liquid chromatography [264] and mass spectrometry-

based methods like GC- or LC-MS [265,266]. The YSI Bioanalytical System 

(YSI Life Science) uses immobilized enzymes to catalyze the corresponding 

chemical reactions to measure glutamine and glutamate. The analysis is 

carried out on cells in exponential growth phase and when the culture has 

reached its metabolic steady state, i.e. all intra- and extracellular fluxes 

are constant. Then, the specific growth rate, specific uptake rate of 

glutamine and specific production rate of ammonium can be determined 

[267]. 

d) Extraction of intracellular metabolites 

While extracellular metabolite measurements only provide information 

on those metabolites that are consumed or secreted, intracellular 

metabolite concentrations contain more information on the state of 

cellular metabolism. However, most intracellular metabolites cannot 

cross the cell membrane, making necessary the lysis of the cells to release 

the metabolites. Moreover, due to the differences in the level of polarity 

among metabolites, it is necessary to apply both polar and nonpolar 

solvents to extract metabolites after cell lysis. Finally, in the process of cell 

lysis and metabolite extraction, cells experience highly harsh conditions 

and the metabolic steady state may be strongly perturbed; therefore, an 

effective quenching procedure is of utmost importance to rapidly stop all 

enzymatic activities so that concentration of metabolites is not 

significantly altered. 
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e) GC-MS analysis of intracellular metabolites 

GC-MS is largely used for the analysis of 13C-labeled intracellular 

metabolites [268], which are chemically derivatized for better volatility in 

GC separation and analyzed by electron impact ionization in MS. 

Each set of metabolite mass fragments generates ion chromatograms that 

are integrated to give the resulting mass isotopomer distribution (MID) 

[269]. The MID is characterized as the fractional abundance of mass 

isotopomers defined by M0, M1 to Mn. Particularly, M is the base mass of 

an ion fragment while the following number from 0 to n (active carbon 

number) indicates the mass shift from M. To account for the contribution 

in the labeling of a metabolite that is derived from only the 13C atoms 

from 13C isotopic tracers, MIDs need to be corrected for natural isotope 

abundances [270]. Intracellular metabolites can be identified by searching 

against libraries of the metabolite’s retention time (using the specific GC 

program) and its characteristic fragmentation pattern. 
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5.2 Drugs or compounds targeting metabolism under clinical trial or 

approved by the US Food And Drug Administration (FDA) [271] 
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Abstract

Background

Cancer cells have an increased demand for amino acids and require transport even of non-

essential amino acids to support their increased proliferation rate. Besides their major role

as protein synthesis precursors, the two proteinogenic sulfur-containing amino acids,

methionine and cysteine, play specific biological functions. In humans, methionine is

essential for cell growth and development and may act as a precursor for cysteine synthe-

sis. Cysteine is a precursor for the biosynthesis of glutathione, the major scavenger for

reactive oxygen species.

Methodology and Principal Findings

We study the effect of K-ras oncogene activation in NIH3T3 mouse fibroblasts on transport

and metabolism of cysteine and methionine. We show that cysteine limitation and depriva-

tion cause apoptotic cell death (cytotoxic effect) in both normal and K-ras-transformed fibro-

blasts, due to accumulation of reactive oxygen species and a decrease in reduced

glutathione. Anti-oxidants glutathione and MitoTEMPO inhibit apoptosis, but only cysteine-

containing glutathione partially rescues the cell growth defect induced by limiting cysteine.

Methionine limitation and deprivation has a cytostatic effect on mouse fibroblasts, unaf-

fected by glutathione. K-ras-transformed cells–but not their parental NIH3T3—are

extremely sensitive to methionine limitation. This fragility correlates with decreased expres-

sion of the Slc6a15 gene—encoding the nutrient transporter SBAT1, known to exhibit a

strong preference for methionine—and decreased methionine uptake.

Conclusions and Significance

Overall, limitation of sulfur-containing amino acids results in a more dramatic perturbation

of the oxido-reductive balance in K-ras-transformed cells compared to NIH3T3 cells.

Growth defects induced by cysteine limitation in mouse fibroblasts are largely–though not
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exclusively–due to cysteine utilization in the synthesis of glutathione, mouse fibroblasts

requiring an exogenous cysteine source for protein synthesis. Therapeutic regimens of

cancer involving modulation of methionine metabolism could be more effective in cells with

limited methionine transport capability.

Introduction

Activation of the K-ras proto-oncogene [1,2,3,4] has a great incidence in human tumors, as
reported in the catalogue of somatic mutations in cancer (COSMIC) [5]. K-ras activation
occurs in 22% of all tumors, prevalently in pancreatic carcinomas (about 90%), colorectal carci-
nomas (40–50%), and lung carcinomas (30–50%), as well as in biliary tract malignancies, endo-
metrial cancer, cervical cancer, bladder cancer, liver cancer, myeloid leukemia and breast
cancer. K-Ras oncoproteins are important clinical targets for anti-cancer therapy [6] and sev-
eral strategies have been explored in order to inhibit aberrant Ras signaling, as reviewed in
[7,8,9,10].
The acquisition of important hallmark traits of cancer cells, including enhanced cell growth

and survival, rely on deep changes in metabolism driven by oncogene activation
[11,12,13,14,15]. Oncogenic activation of K-ras contributes to the acquisition of the hyper-gly-
colytic phenotype (also known as Warburg effect, from the pioneering studies of Warburg
[16]) due to enhancement in glucose transport and aerobic glycolysis [17,18]. K-ras oncogene
activation also correlates with down-regulated expression of mitochondrial genes, altered mito-
chondrial morphology and production of large amount of reactive oxygen species (ROS) asso-
ciated with mitochondrialmetabolism [19,20]. Furthermore,K-ras activation allows cells to
make extensive anaplerotic usage of glutamine, the more concentrated amino acid in human
plasma [21]. In Ras-transformed cells, glutamine is largely utilized through reductive carboxyl-
ation that results in a non-canonical tricarboxylic acid cycle (TCA) pathway
[19,22,23,24,25,26]. These metabolic changes render Ras-transformed cells addicted to gluta-
mine, and to glutaminolysis, and offer new therapeutic opportunities. Indeed, glutamine
metabolism restriction and targeted cancer therapeutics directed against glutamine transport-
ers or glutaminolysis can be used to limit tumor cell proliferation and survival without affecting
normal cells [27,28,29].
Besides glutamine transporters, all amino acid transporters are being receiving attention

from scientific community as potential drug targets for cancer treatment, given the increased
demand of cancer cells for these nutrients to support their enhanced cell growth [30,31]. Selec-
tive blockers of these transporters might be effective in preventing the entry of important
amino acids into tumor cells, thus essentially starving these cells to death.
Methionine is an essential amino acid required for normal growth and development in

mammals [32]. The intracellular level of methionine depends on the balance between synthesis
(through the de novo synthetic pathway), recycle (through the salvage pathway), consumption
(in biosynthesis of proteins) and its transport. An important metabolite of methionine is
S-adenosylmethionine (SAM), the principal methyl donor in the cell. SAM is required for
methylation of DNA, RNA, proteins (including histones [33]) and lipids by the enzymes
methyltransferases. Moreover, SAM is involved in biosynthesis of polyamines, which have far-
ranging effects on nuclear and cell division, and methionine salvage pathway [34]. SAM gives
its activated methyl group in methylation reactions, being converted to S-adenosylhomocys-
teine, which is reversibly hydrolyzed to homocysteine (S1 Fig). Depending on demand, homo-
cysteinemetabolism can be either directed toward the re-methylation pathway to regenerate
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methionine (thus increasingmethylation potential) or toward antioxidant synthesis in the
trans-sulfuration pathway [34]. In the first catabolic step of trans-sulfuration, homocysteine
may be condensed to serine to form cystathionine, which in turn may be converted to cysteine
[35].
Cysteine is a sulfur-containing, semi-essential proteinogenic amino acid. It can be synthe-

sized in humans to some extent; as such, it is classified as conditionally essential, since it may
become temporarily essential when synthesis during rapid growth or critical illness is insuffi-
cient [36]. Cysteine is a precursor for the tripeptide glutathione, an important intracellular
antioxidant that reduces reactive oxygen species (ROS), thereby protecting cells from oxidative
stress [37]. The systemic availability of oral glutathione (GSH) is negligible; so it must be bio-
synthesized from its constituent amino acids, cysteine, glycine, and glutamic acid, the first
being the limiting substrate [38]. Furthermore, cysteine is a precursor for the production of
taurine, another antioxidant, and sulfate [39]. At least in liver, glutathione also acts as cysteine
storage, from which this amino acid can bemobilized if required to maintain protein synthesis
under nutritional stress [40]. Under normal physiological conditions, cysteine can usually be
synthesized de novo from homocysteine in humans if a sufficient quantity of methionine is
available.
Normal mouse fibroblasts (NIH3T3) and their derived cells stably expressing oncogenic K-

rasmutant (NIH-RAS) proved to be a valid cellular model for studying Ras-dependent tran-
scriptional reprogramming [41] and metabolic rewiring [23,42,43]. The Ras-dependent trans-
formation phenotypes of NIH-RAS cells can be down-regulated by over-expressing a
dominant negative mutant of RasGRF1with Ras sequestering properties, extensively character-
ized in our laboratory [7,44,45].We use these cell lines to study the effect of K-ras proto-onco-
gene activation on transport and metabolism of the proteinogenic sulfur amino acids, cysteine
and methionine.
We show that cysteine limitation and deprivation increase ROS level and decrease reduced

glutathione, eventually leading to apoptotic cell death. Through the complementary use of
anti-oxidants glutathione and MitoTEMPO (a cysteine non-containing reducing agent) and
inhibitors of de novo biosynthesis of reduced glutathione, we show that growth defects induced
by cysteine limitation in mouse fibroblasts are largely–though not exclusively–due to cysteine
utilization in the synthesis of glutathione and that mouse fibroblasts require an exogenous cys-
teine source for protein synthesis. Methionine limitation and deprivation is cytostatic and
unaffected by glutathione. Limitation of sulfur-containing amino acids perturbs the oxidore-
ductive balance, particularly in K-ras-transformed cells that display selective growth fragility to
a moderate reduction in methionine supply. Such nutritional fragility correlates with Ras acti-
vation, decreased expression of the Slc6a15 gene -encoding the methionine transporter
SBAT1- and reducedmethionine uptake.

Results

Methionine limitation reduces growth of Ras-transformed mouse

fibroblasts more than growth of normal cells

First, we analyzed cell proliferation of normal NIH3T3 and Ras-transformedNIH-RASmouse
fibroblasts under standard growth condition (0.2 mMCys, 0.2 mMMet), limitation (1/8: 0.025
mM; 1/4: 0.05 mM; 1/2: 0.1 mM) and deprivation of cysteine or methionine. Both cell lines
were unable to grow in the absence of either methionine or cysteine (Fig 1A and 1B, open
squares), demonstrating that both sulfur amino acids are essential for cell proliferation of
mouse fibroblasts, which are not able to synthesize neither cysteine nor methionine each from
the other.
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Growth of NIH-RAS cells was more severely inhibited by methionine limitation than that of
NIH3T3 cells. In Met1/2 condition (Fig 1A and 1B, light triangles, and Fig 1D) the mass dupli-
cation time (MTD) of NIH-RAS cells was 1.5 longer than that of NIH3T3 (S1 Table). More
stringent methionine limitation (Met1/8) resulted in almost complete arrest of cell proliferation
of both cell lines (Fig 1A, dark filled triangles, and S1 Table). Fig 1C and 1D show cell prolifera-
tion data 30 and 72 hours after methionine limitation, highlighting enhanced sensitivity of
transformed NIH3T3 cells to methionine limitation. Note that NIH-RAS cells grown in Met1/2
condition are still largely viable after 72 hours, unlike the cells grown in Met1/8 condition (Fig
1D). Under methionine limitation NIH-RAS cells were also severely hampered in foci forma-
tion ability (Fig 1E). Notably the major sensitivity of Ras-transformed cells to methionine limi-
tation was fully reverted by the over-expression of a dominant negative mutant of the Ras-
specific guanine nucleotide exchange factor RasGRF1 (RasGRF1W1056E, that we refer to as
GEF-DN), endowed with Ras sequestering properties (Fig 1C and 1D, S2 and S3 Figs).
All together, these data indicate that Ras hyper-activation enhances sensitivity to methio-

nine limitation in mouse fibroblasts.
As shown in Fig 1B and in S1 Table the cell proliferation behavior under cysteine limitation

and deprivation was quite similar in NIH3T3 and NIH-RAS cells. In Cys1/2 condition both cell
lines grew as well as in standard medium (S4A Fig, S1 Table), while further reduction of cyste-
ine (Cys1/4) increased the MDT of both NIH3T3 and NIH-RAS cells, even if slightly more in
transformed cells (Fig 1B, S1 Table). Cysteine limitation strongly reduced foci formation ability
of NIH-RAS cells (Fig 1E).

Cysteine mainly acts as a precursor of glutathione, whose excess

mostly affects normal cells

Apoptotic and necrotic cell death can be assayed by FACS after staining with Annexin V-FITC
and propidium iodide (PI). After limitation or deprivation of cysteine for 30 hours, apoptotic
cells significantly increased in both cell lines, the effect being stronger in cysteine-deprived cells
(Fig 2A). Supplementation of cysteine to cells grown for 72 hours in cysteine-freemedium did
not result in any significant growth recovery, reinforcing the notion that cysteine deprivation
exerted a cytotoxic effect (cell death) in both NIH3T3 and NIH-RAS cell lines (Fig 2E).
Glutathione is the most important endogenous antioxidant in mammalian cells, and the

major redox buffer responsible for redox homeostasis [46,47]. It acts as a ROS scavenger
through its oxidation to GSSG. The reduced form (GSH) is restored at the expenses of
NADPH. The intracellular concentration of GSH depends on a dynamic balance between syn-
thesis, consumption rate (metabolism), and its transport.
We measured ROS (by FACS analysis of DCFDA-stained cells, Fig 2B), endogenous total

(GSH+GSSG) and reduced (GSH) glutathione levels (by an enzymatic assay, Fig 2C) in
NIH3T3 and NIH-RAS cells in standard medium and 48 h after perturbing cysteinemetabo-
lism. In keeping with literature data [19,45,48,49], in standard mediumNIH-RAS cells showed
a 1.7-fold higher ROS level than NIH3T3 (Fig 2B), accompanied by a moderate decrease in
total glutathione and a significant decrease in reduced glutathione (Fig 2C). Cysteine limitation
and deprivation induced an increase in ROS levels, the effect being stronger in NIH-RAS cells

Fig 1. Proliferation under methionine and cysteine deprivation and limitation. Cell proliferation of NIH3T3

and NIH-RAS cells grown in media supplemented with different concentrations of methionine and glutathione (A) or

cysteine and glutathione (B) and counted daily for 72 h of growth under conditions indicated. Plotted data are mean

+/- standard deviation computed from at least three independent experiments. (C-D) Cell proliferation of NIH3T3,

NIH-RAS and NIH-RAS pGEF-DN cells grown for 30 h (C) and 72 h (D) under conditions indicated. (E) Foci

formation of NIH-RAS cells grown for 9 days under conditions indicated. *P<0.05; **P<0.01 (Student’s t-test).

doi:10.1371/journal.pone.0163790.g001
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(Fig 2B). Under cysteine limitation, total glutathione levels (GSH+GSSG) were lower than in
standard condition (Fig 2C), consistently with the notion that cysteine availability is rate-limit-
ing for GSH synthesis [50,51,52,53]. The high cell mortality under cysteine deprivation hin-
dered the measurement of glutathione levels.
To investigate whethermouse fibroblasts are dependent on cysteine for growth, or whether

the growth defects are the result of the oxidative stress on the cells, we took two complementary
approaches. First, we modulated the oxidative response of cysteine-depleted cells with either
cysteine-containing (GSH) or cysteine-non-containing (MitoTEMPO) anti-oxidants. Second,
we blocked glutathione de novo biosynthesis of standard or cysteine-limited cells with buthio-
nine sulfoximine (BSO), that blocks the activity of gamma-glutamylcysteine synthetase (γ-

Fig 2. Viability and redox state under cysteine deprivation and limitation. (A) Representative dot plots for NIH3T3 and NIH-RAS cells stained with

Annexin V-FITC and propidium iodide and analyzed by FACS after 30 h of growth under conditions indicated. Q1 = quadrant 1, healthy cell; Q2 = quadrant 2,

early apoptotic cells; Q3 = quadrant 3, late apoptotic cells; Q4 = quadrant 4, necrotic cells. MitoTEMPO and buthionine sulfoximine (BSO) were used at the

concentration of 10 μM and 100 μM, respectively. The values reported for each quadrant are the mean +/- standard deviation of three independent

experiments. (B) Relative ROS levels in NIH3T3 and NIH-RAS cells grown for 48 h under conditions indicated as determined by DCFDA (2’,7’-

dichlorodihydrofluorescein diacetate) staining. Each bar represents the mean of at least three independent experiments with error bars representing the

standard deviation. (C) Reduced and total glutathione levels (measured as described in [55]) in NIH3T3 and NIH-RAS cells grown for 48 h under conditions

indicated. Each bar represents the mean of at least three independent experiments with error bars representing the standard deviation. (D) Cell proliferation

of NIH3T3 and NIH-RAS cells grown for 48 h in cysteine-free medium supplemented with different concentrations of glutathione. Plotted data are mean +/-

standard deviation computed from at least three independent experiments. *P<0.05; **P<0.01 (Student’s t-test). (E) Crystal violet staining of NIH3T3 and

NIH-RAS cells plated at the density of 9000 cells/cm2, grown for 72 h under cysteine deprivation and then for 48 h in standard medium.

doi:10.1371/journal.pone.0163790.g002
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GCT) required for the formation of the glutathione precursor gamma-glutamylcysteine from
glutamate and cysteine [47].
Supplementing GSH to cysteine-freemedium (-Cys+GSH growth condition) partially restored

cell proliferation (Fig 1A, 1C and 1D) in both NIH3T3 and NIH-RAS cell lines and the ability to
form foci in NIH-RAS cells (Fig 1E). Also, supplementation of GSH significantly reduced apopto-
sis induced by cysteine withdrawal and fully restored ROS levels to basal (Fig 2A and 2B). Com-
pared to NIH3T3, NIH-RAS cells require a higher GSH concentration both to recover cell
survival and growth as well as to show the “anti-oxidative stress” (Fig 2D), phenomenon
described in [54]. The reduced sensitivity to both positive and negative effects of GSH is most
likely the result of the lower GSH content of Ras-transformed cells (Fig 2C). Supplementation of
MitoTEMPO in cysteine-freemedium reduced apoptosis to the same levels observedafter GSH
addition (Fig 2A), but could not rescue cell proliferation under cysteine deprivation (S4B Fig).
In both NIH3T3 and NIH-RAS cell lines, BSO treatment severely down-regulated glutathi-

one accumulation (Fig 2C) and reduced proliferation (S4C Fig). Concurrently, both ROS accu-
mulation (Fig 2B) and the fraction of apoptotic cells increased (Fig 2A). These effects appear
stronger in NIH-RAS than in NIH3T3 cells. They are dramatically enhanced by growth in lim-
iting cysteine, which results in the death of most cells within 30 h from the treatment (Fig 2A).
Cell death in BSO-treated cells grown in the absence of cysteine was essentially caused by oxi-
dative stress, since almost all cells were strongly positive to DCFDA staining, as shown by fluo-
rescence-microscopy analysis (S4D Fig). In these conditions ca 90% and 50% of NIH-RAS and
NIH3T3 cells, respectively, are apoptotic after 30 h of treatment (Fig 2A). All together, these
data confirm the major dependence of NIH-RAS from cysteine availability for the maintenance
of proper GSH levels, redox homeostasis and cell viability, and on the other hand suggest that
NIH3T3 cells less recur to the de novo synthesis of GSH to maintain redox homeostasis and
favorable growth conditions.

Ras-transformed mouse fibroblasts show lower expression of a gene

encoding a methionine-transporting solute carrier and reduced

methionine uptake than normal cells

Contrary to the behavior of cells perturbedby cysteine limitation or deprivation, methionine
perturbation only weakly enhanced apoptosis in cells, slightly more in NIH-RAS cells (Fig 3A).
Methionine limitation and deprivation increased ROS levels, methionine limitation having a
significantly stronger effect in NIH-RAS cells (Fig 3B). As a likely consequence, GSH levels
under limiting methionine were lower than in standard medium (Fig 3C) and inversely corre-
lated with ROS levels (Fig 3D). By contrast, total glutathione levels (GSH+GSSG) under limit-
ing methionine were similar to those found in standard condition, consistently with the
presence in the medium of the glutathione precursor cysteine (Fig 3C). The high cell mortality
under methionine deprivation hindered the measurement of glutathione levels. These results
demonstrated that changes in ROS and reduced glutathione levels under methionine limitation
(and, likely, in methionine deprivation) do not depend on alterations in glutathione biosynthe-
sis. It is noteworthy that supplementation of 4 mMGSH to cells growing in methionine-free
medium (-Met+GSH growth condition) resulted in decreasedROS levels in both cell lines (Fig
3B), however, neither NIH3T3 nor NIH-RAS cells were able to grow (Fig 1A, 1C and 1D), and
NIH-RAS cells did not form foci (Fig 1E).
A GSH versus ROS plot (Fig 3D) confirms that GSH and ROS levels are inversely correlated

(which is not unexpected) and further shows that limitation of sulfur-containing amino acids
results in a more dramatic decrease of GSH as a function of ROS concentration in NIH-RAS
compared to NIH3T3 cells.
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Fig 3. Viability and redox state under methionine deprivation and limitation. (A) Representative dot plots for NIH3T3 and NIH-RAS cells

stained with Annexin V-FITC and propidium iodide and analyzed by FACS after 30 h of growth under conditions indicated. Q1 = quadrant 1,

healthy cell; Q2 = quadrant 2, early apoptotic cells; Q3 = quadrant 3, late apoptotic cells; Q4 = quadrant 4, necrotic cells. The values reported

for each quadrant are the mean +/- standard deviation of three independent experiments. (B) Relative ROS levels in NIH3T3 and NIH-RAS

cells grown for 48 h under conditions indicated as determined by DCFDA (2’,7’-dichlorodihydrofluorescein diacetate) staining. Each bar

represents the mean of at least three independent experiments with error bars representing the standard deviation. (C) Reduced and total

glutathione levels (measured as described in [55]) in NIH3T3 and NIH-RAS cells grown for 48 h under conditions indicated. Each bar

represents the mean of at least three independent experiments with error bars representing the standard deviation *P<0.05; **P<0.01

(Student’s t-test). (D) Negative correlation between reduced glutathione levels and ROS levels in NIH3T3 and NIH-RAS cells grown under

conditions indicated. Linear regression curves are not parallel with a 99.9% confidence interval; Student’s t-test. (E) Crystal violet staining of
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Supplementation of methionine to cells grown for 72 hours in methionine-freemedium
resulted in a significant growth recovery, reinforcing the notion that methionine deprivation
exerted a cytostatic effect (arrest of cell proliferation) in both NIH3T3 and NIH-RAS cell lines
(Fig 3E).
We analyzed genome-wide transcriptional profiling datasets for NIH3T3 and NIH-RAS

cells (available in NCBI GEO database; accession GSM741354-GSM741361 for NIH3T3 cells
and GSM741368-GSM741375 for NIH-RAS cells), previously obtained in our laboratory with
an MG_U74Av2 AffymetrixGene Chip [41] to identify the pattern of expression of genes
encoding solute carriers [56]. The expression of four of these genes was significantly altered in
Ras-transformed versus normal cells (S5 Fig). One of these genes is Slc6a15 that encodes
SBAT1, an amino acid transporter exhibiting strong preference for branched chain amino
acids and methionine [57,58]. RT-PCR analysis of the expression of these four genes in normal
and transformed fibroblasts (Fig 4A) validated Affymetrix results, clearly indicating that in
NIH-RAS cells the expression of Slc6a15 is down-regulated. Notably, over-expression in NIH-
RAS cells of the Ras inhibitor GEF-DN determined a significant increase in the expression of
Slc6a15 (S3C Fig). Consistently with the strong, but not always complete reversion of Ras-
dependent phenotypes induced by GEF-DN expression [45], up-regulation of Slc6a15 expres-
sion is strong, but possibly not complete compared to NIH3T3 cells. Our data thus indicate
that sensitivity to methionine limitation (S3A and S3B Fig) and expression of the SBAT1-en-
coding Slc6a15 gene (S3C Fig) are regulated by the activation state of Ras.
To confirm that methionine transport is impaired in NIH-RAS cells as suggested by tran-

scriptional analysis, we assayed methionine uptake in NIH3T3 and NIH-RAS cells by using a
35S-methionine incorporation assay. NIH-RAS cells showed a significantly reduced incorpo-
ration of 35S-methionine per unit of protein in both exponential and confluent growth condi-
tions (Fig 4B). The combined transcriptional and biochemical analyses therefore suggest that
down-regulation of Slc6a15 gene expression and ensuing decreasedmethionine transport activ-
ity in Ras-transformed cells could be the reason for their higher sensitivity to methionine
limitation.

Discussion

Cancer cells show metabolic dependencies that distinguish them from their normal counter-
parts [14]. Personalized targeting of cancer metabolism that accounts for differences in genetic,
epigenetic and environmental factors (i.e., nutrient availability) may lead to major advances in
tumor therapy [61]. In this paper we perform nutrient perturbation of the supply of the protei-
nogenic sulfur-containing amino acids methionine (a potential cysteine precursor) and cyste-
ine (a GSH precursor) of normal, Ras-transformed and revertedmouse fibroblasts to highlight
any differential biological response due to the activation state of Ras oncoprotein.
We show that cysteine deprivation causes cell proliferation arrest in both normal and Ras-

transformedmouse fibroblasts even in presence of methionine in the culture media. Although
databases of metabolic pathway maps, like KEGG ([62,63]), Human Metabolic Atlas ([64]),
Reactome ([65]) or Recon2 ([66]) annotate methionine-to-cysteine conversion for all consid-
ered cell types, we show that the biosynthetic pathway of cysteine frommethionine is not active
in mouse fibroblasts (Fig 4D and S1 Fig). In fact, the methionine-to-cysteinepathway may be
active only in cells from splanchnic organs, described as important sites of trans-methylation
and trans-sulfuration of dietarymethionine for cysteine synthesis [36]. These data are in

NIH3T3 and NIH-RAS cells plated at the density of 9000 cells/cm2, grown for 72 h under methionine deprivation and then for 48 h in standard

medium.

doi:10.1371/journal.pone.0163790.g003
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keeping with previous results demonstrating the dependency from cystine for growth of several
human diploid cell lines (human fibroblasts), not able to utilize cystathionine in lieu of cystine,
likely as a consequence of deficient cystathionase activity [67].
Cysteine deprivation is accompanied by an increase in ROS levels, which could be due to an

enhancement of mitochondrial metabolism, and particularly of oxidative phosphorylation-
associated proton leakage, induced by energetic stress and increasedATP-demand. This redox
unbalance induced by nutritional stress has a pivotal role in up-regulating cellular repair pro-
cesses and other protective systems (e.g., chaperones) and in driving autophagy, a major

Fig 4. Methionine transport and solute carrier expression in mouse fibroblasts and in NCI-60 panel. (A) Semiquantitative RT-PCR results for NIH3T3

and NIH-RAS cells grown for 48 h in standard medium performed in triplicate on genes showing at least a two-fold change between NIH-RAS vs NIH3T3

cells in each of the two Affymetrix independent experiments (S5 Fig). (B) Labeled amino acid (35S-methionine) uptake rate in exponential and confluent cells

(48 and 72 h of growth in standard medium, respectively), measured after 20’-40’-60’ (for exponential cells) and after 30’-50’-60’ (for confluent cells) of

labeling with 0.025 mCi/ml 35S-Met. Radioactivity values, expressed as CCPM (corrected counts per minute), were normalized on total protein content and

plotted against labeling time. Results are mean +/- standard deviation of three independent experiments. **P<0.01; ***P<0.001 (Student’s t-test). (C) The

mRNA expression data for the NCI-60 human tumor cell lines were retrieved from CellMiner relational database [59]. These expression data were inputted in

CIMminer [60] to generate a heat map, as described in Materials and Methods. Here are highlighted the names of the genes whose expression was

statistically different between NIH3T3 and NIH-RAS cells, with a particular emphasis on the data related to SLC6A15 gene. (D) Concept map of cysteine and

methionine metabolism in NIH3T3 and NIH-RAS cells.

doi:10.1371/journal.pone.0163790.g004
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mechanism by which starving cells mobilize and reallocate intracellular nutrient resources in
order to maintain processes necessary for survival during growth-unfavorable conditions [68].
Cysteine deprivation causes apoptotic cell death. Apoptosis induced by cysteine-withdrawal

is essentially due to increased oxidative stress caused by glutathione deprivation. Non-cysteine
containing anti-oxidants effectively rescue oxidative stress, but cannot rescue cell death
induced by cysteine deprivation. Supplementing reduced glutathione to cysteine-deprived cells
not only restores redox homeostasis (and suppresses apoptosis), but also partially restores cell
growth, indicating that in mouse fibroblasts GSH can be used as a cysteine reservoir to main-
tain protein synthesis under nutritional stress. However, high concentrations of GSH have a
toxic effect, stressing the notion that to maximize viability a proper balance between ROS and
antioxidants needs to be obtained [54]. Under standard cysteine conditions, severe inhibition
of glutathione biosynthesis increases oxidative stress, but has moderate effects on viability.
Growth defects induced by cysteine limitation are synergistically increased by inhibiting gluta-
thione synthesis, the more so in NIH-RAS cells, indicating that the growth defects induced by
cysteine limitation are largely–though not exclusively–due to cysteine utilization in the synthe-
sis of glutathione. The differential sensitivity of NIH3T3 and NIH-RAS cells to both protective
and toxic effects of glutathione may depend on the higher glutathione content of NIH3T3 cells.
The role of cysteine in cancer is controversial. While some authors report that human

tumor growth is associated with decreased plasma levels of cysteine and homocysteine [69],
more recently other authors demonstrated that antioxidants such as N-acetylcysteine (a direct
precursor of cysteine) can accelerate tumor progression by decreasing ROS levels, DNA dam-
age and p53 (a tumor suppressor gene) levels in cancer [70].
The increase in ROS levels under methionine deprivation in both NIH3T3 and NIH-RAS

cell lines is not followed by a significant increase in neither apoptosis nor necrosis.While cell
growth of normal and Ras-transformed cells was similarly compromised by methionine depri-
vation, methionine limitation mostly affectedNIH-RAS cells.
Some cancers show methionine dependence, a feature firstly noted in xenograft rodents in

response to a methionine-free diet [71]. Since then normal cells have been reported to be more
resistant to external methionine limitation [34,72]. Methionine dependencemight be corre-
lated with inability of methionine-restricted cells to cope with demand for SAM, a major
methionine product [34]. This “SAM-checkpoint” may protect cellular integrity and maintain
epigenetic stability, since it stops cell cycle progression when intracellular SAM concentrations
are insufficient to sustain the methylation reactions necessary for normal cell physiology [34].
Several drugs that target the enzymes that are involved in the post-translational modifications
of histones and DNA, cell survival, proliferation and stem cell function [33,73,74] are being
evaluated pre-clinically or in early-stage clinical trials [75].
Both a deficiency and an excess of the dietary levels of methionine can result in either geno-

mic instability, which leads to diseases such as cancer, or changes in gene expression, which
lead to alterations in metabolism [76], including improvement of hepatic lipid and glucose
metabolism and induction of adiposity resistance [76]. Some cancer cells show a high activity
of the methionine cycle that promotes chemo-resistance and evasion from apoptosis [77],
whereas normal cells are relatively resistant to dietarymethionine restriction: therapies to
block the methionine cycle in transformed cells may thus represent a safe and effective strategy
to fight cancer [39,77]. Dietarymethionine restriction, used alone or in combination with
other treatments, impaired cancer growth and carcinogenesis in human patients [78,79] or in
rodents [80,81,82]. However, one caveat is that methionine restrictionmust be closely regu-
lated, becausemethionine is an essential amino acid and a long use of diets extremely poor in
methionine could be extremely toxic and cause death. Dietarymethionine restriction (achiev-
able in humans with a predominantly vegan diet) may have an additive healthy effect if
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combined with calorie restriction, by limiting glucose [82]. The potential of methionine deple-
tion in enhancing the anti-cancer effect of chemotherapeutic agents on drug-resistant tumors
and cell lines has also been reported [83].
Sensitivity to methionine limitation of mouse fibroblasts and expression of the SBAT1-en-

coding Slc6a15 gene are regulated by the activation state of Ras (Fig 4A and S3 Fig), resulting
in decreasedmethionine uptake in NIH-RAS (Fig 4B). Remarkably, expression of the ortholog
human gene—SLC6A15—ismostly down-regulated in the NCI-60 cells panel, the US National
Cancer Institute (NCI) panel of 60 human cancer cell lines grown in culture [84] (Fig 4C). An
exception is represented by melanoma cells, in which SLC6A15 is highly up-regulated. There-
fore, the use of methionine uptake as a marker for proliferative activity in substitution of
fluoro-deoxyglucose [85,86], or therapeutic use of dietarymethionine restriction would benefit
from knowledge of the expression of methionine transporters.

Slc6a15 and its human ortholog belong to a large family (over 450 members) of solute car-
rier proteins (SLCs) controlling import/export of nutrients, cofactors, ions and many drugs.
While many SLCs have not yet well characterized, a quarter of their encoding genes has been
associated with human diseases and 26 different SLCs are the targets of known drugs, or drugs
in development [87,88]. An increase in amino acid transport may be expected in cancer, most
likely as the result of increased amino acid demand for energy, protein synthesis and cell divi-
sion: surprisingly, S5 Fig shows that SLC-encoding genes down-regulated in NIH-RAS com-
pared to NIH3T3 cells are enriched in genes encoding amino acid transport, particularly of
neutral amino acids (e.g. the SBAT1-encoding Slc6a15 gene).
In conclusion, we show that limitation of sulfur-containing amino acids results in a more

dramatic perturbation of the oxidoreductive balance in K-ras-transformed cells compared to
NIH3T3 cells (Fig 3D). Growth defects induced by cysteine limitation in mouse fibroblasts are
largely–though not exclusively–due to cysteine utilization in the synthesis of glutathione,
mouse fibroblasts requiring an exogenous cysteine source for protein synthesis. We show for
the first time a correlation between Ras-transformation and defects in methionine transport
that affect the dependence of K-ras-transformedmouse fibroblasts for this amino acid. Thera-
peutic regimens of cancer involving modulation of methioninemetabolism could be more
effective in cells with limited methionine transport capability. To further understand nutrient
interactions (such as methionine and glucose restriction), to study the correlation between
methioninemetabolism and cell signaling and to design a precision medicine approach taking
into account the specific nutritional dependencies of a patient’s cancer, we consider essential to
unravel the underlying networks by using an integrated, Systems Biology approach.

Materials and Methods

Cell culture

Three cells lines have been used in this paper, namely normal NIH3T3mouse fibroblasts
(obtained from the ATCC, Manassas, VA, USA), a K-Ras-transformednormal-derived cell line
-that we refer to as NIH-RAS [44,89]- and NIH-RAS cells stably transfected with a pcDNA3-
based vector expressing a dominant negative mutant of the Ras-specific guanine nucleotide
exchange factor RasGRF1 (RasGRF1W1056E, here simply named GEF-DN) with Ras-seques-
tering property [44,45,90]. These cell lines proved to be a valid cellular model for studying Ras-
dependent transcriptional reprogramming [41], and metabolic rewiring [23,42,43]. Both con-
trol and ras-transformed NIH3T3 have been passaged a similar number of times, taking care to
refreeze the cell lines immediately and to use them for a limited number of passages. The cell
lines are periodically assayed to check that the major properties of the cells do not change over
time, that the major transformation-related phenotypes are retained and ras-dependent (see S2
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Fig and accompanying text). The cell lines were routinely grown in Dulbecco’s modifiedEagle’s
medium (Invitrogen Inc., Carlsbad, CA, USA) containing 10% newborn calf serum, 4 mM glu-
tamine, 100 U/ml penicillin and 100 mg/ml streptomycin (standard medium), at 37°C in a
humidified atmosphere of 5% CO2. Cells were passaged using trypsin-ethylenediaminetetra-
acetic acid (EDTA) (Invitrogen Inc., Carlsbad, CA, USA) and maintained in culture before
experimentalmanipulation.

Cell proliferation analysis

Cells were plated at the density of 3000 cells/cm2 in standard medium and incubated overnight
at 37°C and 5% CO2. After 18 h, cells were washed twice with phosphate-buffered saline (PBS)
and, to verify the response to the cysteine or methionine deprivation, cells were incubated in
mediumwithout cysteine and methionine (Invitrogen Inc., Carlsbad, CA, USA), possibly sup-
plemented with limiting concentration of cysteine (0.025, 0.05, 0.1 mM) or methionine (0.025,
0.1 mM) (Sigma Aldrich Inc.) or with antioxidants glutathione (0.08, 0.2, 0.8, 2, 4, 16 mM) or
MitoTEMPO (10 μM) (Sigma Aldrich Inc.). To measure cell proliferation, cells were treated
with trypsin at 0, 3, 6, 24, 30, 48, 54, 72 hours after medium change. Viable (i.e., unstained)
cells were counted in a Bürker chamber after staining with 0.5% trypan blue. In amino acid re-
feeding and foci formation experiments, qualitative evaluation of cell proliferation was
obtained by staining with 0.2% Crystal violet (diluted in water from Giemsa Stain 0.4%, Sigma
Aldrich Inc.). After 45 minutes of incubation in the dark at RT, cells were washed twice with
water, photographed, and counted.

Foci formation assay

Cells were plated at the density of 30 cells/cm2 in standard medium and incubated overnight at
37°C and 5% CO2. After 18 h, cells were washed twice with phosphate-buffered saline (PBS)
and, to test the ability of forming foci of NIH3T3 and NIH-RAS under nutritional modulation,
cells were incubated for 9 days in mediumwithout cysteine and methionine (Invitrogen Inc.,
Carlsbad, CA, USA), possibly supplemented with limiting concentration of cysteine (0.025,
0.05 mM) or methionine (0.025, 0.1 mM) (Sigma Aldrich Inc.) or with 4 mM reduced glutathi-
one (Sigma Aldrich Inc.). After 9 days, cells were washed with PBS and fixed with paraformal-
dehyde 4%, then washed with ice-cold PBS and stained with 0.2%. Crystal violet, photographed
as described above and the number of foci counted.

Determination of intracellular ROS

Intracellular accumulation of H2O2 and O2•- was determined after 48 h frommedium change
with 2’,7’-dichlorodihydrofluoresceine diacetate (Sigma Aldrich Inc.). The cells were incubated
for 30 minutes at 37°C with H2DCFDA 10 mM, treated with trypsin, resuspended in PBS sup-
plemented with NCS 10% (Invitrogen Inc., Carlsbad, CA, USA) and acquired by FACScan
(Becton-Dickinson),using the Cell Quest software (BD Bioscience). The percentage of ROS-
producing cells was calculated for each sample and corrected for autofluorescence obtained
from samples of unlabeled cells.

Apoptosis Assay

Cells were plated at the density of 3000 cells/cm2 in standard medium and incubated overnight
at 37°C and 5% CO2. After 18 h, cells were washed twice with phosphate-buffered saline (PBS)
and incubated for 30 hours in mediumwithout cysteine and methionine (Invitrogen Inc.,
Carlsbad, CA, USA), possibly supplemented with limiting concentrations of cysteine (0.025,

Sulfur Amino Acids in Normal and K-Ras-Transformed Mouse Fibroblasts

PLOS ONE | DOI:10.1371/journal.pone.0163790 September 29, 2016 13 / 22



0.05 mM) or methionine (0.025 and 0.1 mM) (Sigma Aldrich Inc.) or with antioxidants gluta-
thione (4 mM) or MitoTEMPO (10 μM) (Sigma Aldrich Inc.). For apoptosis analysis, 1 × 106

cells (adherent and in suspension cells) were collected, stained with Annexin V-FITC (Immu-
notools, GmbH) and propidium iodide (Sigma Aldrich Inc.) and analyzed by FACScan (Bec-
ton-Dickinson) using the FL1 and FL2 channels. Data analysis was performedwith Flowing
Software.

Determination of glutathione levels

For reduced and total glutathione measurements, cells were plated at the density of 3000 cells/
cm2 in standard medium and incubated overnight at 37°C and 5% CO2. After 18 h, cells were
washed twice with phosphate-buffered saline (PBS) and incubated for 48 h in standard
medium or under limitation of cysteine or methionine. Cells were then treated with trypsin,
collected,washed twice with PBS and lysed through freeze-and-thaw cycles. Samples were
deproteinized with a 5% 5-sulfosalicylic acid solution, centrifuged to remove the precipitated
protein and assayed for glutathione. GSHmeasurement was an optimization of Tietze’s enzy-
matic recyclingmethod [55], in which GSH is oxidized by the sulfhydryl reagent 5,5’-dithio-bis
(2-nitrobenzoic acid) (DTNB) to form the yellow derivative 5’-thio-2-nitrobenzoic acid (TNB),
measurable at 412 nm and the glutathione disulfide (GSSG) formed is recycled to GSH by glu-
tathione reductase in the presence of NADPH. The amount of glutathione in the samples was
determined through a standard curve of reduced glutathione. Glutathione levels were normal-
ized to protein content measured by Bradford assay (Bio-Rad reagent) on an aliquot of cell
extract collected before deiproteinization.

Methionine transport assays

NIH3T3 and NIH-RAS cells were seeded at the density of 3000 cells/cm2 and incubated over-
night at 37°C and 5% CO2, then medium change was done after 18 h. At 48 h (exponential
growth condition) and 72 h (confluent growth condition), standard mediumwas replaced with
0.4 ml labeling medium (cysteine and methionine-freemedium + 0.025 mCi/ml 35S-Met, Per-
kinElmer), that was removed after 20-40-60 minutes or 30-50-60 minutes at 37°C and 5% CO2.
Cells were then washed once with cold PBS and scraped after adding lysis buffer. Cell lysates
were centrifuged and an aliquot spotted onWhatman Glass Microfiber filters (Sigma Aldrich
Inc.). To the remaining volume, 1 volume of cold 20% TCA (Sigma Aldrich Inc.) was added
and, after 30 minutes in ice, samples were spotted on filters and washed twice with cold 10%
TCA and ethanol (Sigma Aldrich Inc.). Air-dried filters were transferred to vials containing
Ultima GoldMV scintillation fluid (PerkinElmer) and radioactivitymeasured in a beta-
counter (Wallac Microbeta Trilux, PerkinElmer). Averages of technical triplicates for cell
lysates (representing amino acid uptake) were calculated and the resulting values were normal-
ized on total protein content, measured by using QuantiProTM BCAAssay Kit (Sigma Aldrich
Inc.).

RNA extraction and semi quantitative RT-PCR analysis

Cells were plated at the density of 3000 cells/cm2 in standard medium and incubated overnight
at 37°C and 5% CO2. After 18 h, cells were washed twice with phosphate-buffered saline (PBS)
and incubated for 48 h in standard medium. RNA was then extracted from cells by using the
Quick-RNA™MicroPrep kit (Zymo Research). Total RNA was reverse-transcribedwith oligo-
dT by using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories). The RT product (0.5 μg)
was amplified with primer pairs specific for the genes studied. As internal control of PCR
assays, specific primers for 18S and β-actin transcripts were used. Primers used: Slc6a15
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forward: 5’-GCATCGGAAGAATTTCTGAGC-3’, reverse: 5’-AGCGACGAATGATGAACAC
C-3’; Slco3a1 forward: 5’-GAGTTAGCCTATCCTTGTTG-3’, reverse: 5’-GACAGAACATCA
CCTTACAA-3’; Slc16a13 forward: 5’-ACCTGAGTATTGGGCTGCTG-3’, reverse: 5’-CCA
TGGTCGGAGTGAAGGT-3’; Slc43a3 forward: 5’-CACCTTGTTGACTGGACTCTTG-3’,
reverse: 5’-CCAGGGTAAAGATGAGTGAGAAC-3’.

Generation of the heat map of solute carrier gene expression profiles in

NCI-60 cell lines

The heat map, or Clustered Image Map (CIM), was generated with CIMminer by selecting the
one matrix option. The rows of the matrix were the different cell lines and the columns (each
representing a solute carrier gene) were clustered according to Average Linkage algorithm and
to Euclidean distance measure. Data values were mapped to colors using the quantile method:
the weight range of data values was divided into intervals each containing approximately the
same number of data points, thus effectively spreading out the color differences between data
values that were present in regions with a large number of values.

Supporting Information

S1 Fig. Methionine and cysteine metabolism in mouse fibroblasts.Methionine is partitioned
between protein synthesis, de novo and recycling pathway, where it is converted to S-adenosyl-
methionine (SAM). SAM is converted to S-adenosylhomocysteine (SAH) during methylation
of DNA and a large range of proteins and other molecules. SAH is then hydrolyzed to homo-
cysteine (Hcy) in a reversible reaction. Under normal conditions, approximately 50% of Hcy is
re-methylated to formmethionine that, in most tissues, occurs via methionine synthase. In the
trans-sulfuration pathway, Hcy is metabolized to form cystathionine, which is the immediate
precursor to cysteine. Besides frommethionine, cysteine can be synthesized from serine. The
sulfur is derived frommethionine, which is converted to homocysteine through the intermedi-
ate SAM. Cystathionine beta-synthase then combines homocysteine and serine to form the
asymmetrical thioether cystathionine. The enzyme cystathionine gamma-lyase converts the
cystathionine into cysteine and alpha-ketobutyrate. The trans-sulfuration pathway is not active
in all cells, and in human is active essentially only in cells from splanchnic organs. Here we
demonstrated that mouse embryonic fibroblasts are not able to convert methionine into cyste-
ine. For this reason the trans-sulfuration reaction is highlighted in grey.
(PDF)

S2 Fig. Ras and MAPK activation state and expression levels in cellular models used in the
paper: NIH3T3, NIH-RAS, NIH-RAS pGEF-DN and NIH-RAS pcDNA3. Expression levels
of Total Ras proteins (A) and MAPKs p42 and p44 (B) in cell lysates of pull down assay. Anti-
bodies directed against Ras (sc259 Santa Cruz), Phospho-p44/42MAPK (Erk1/2) (Thr202/
Tyr204) (Cell Signaling #9101) and p44/42 MAPK (Erk1/2) (Cell Signaling #9102) were used.
(C) Ras–GTP eluted from GST–RBD–glutathione–sepharose, pre-incubated with cell lysates.
Pull down assay was performed as described in [7]. (D) Quantification of the Ras–GTP amount
after normalization over total Ras. Data are normalized over the Ras-GTP/total Ras ratio in
NIH3T3 taken equal to 100. Data shown are mean +/- standard deviation of two independent
experiments. (E) Morphological analysis of the different cell lines. (F) Phospho-p44/42MAPK
level in cell lysates, determined by ELISA assay performed using PathScan1 Phospho-p44/42
MAPK (Thr202/Tyr204) (Cell Signaling). Data shown are mean +/- standard deviation of two
independent experiments. (F) 100X magnification of a focus generated by NIH-RAS cells in
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foci formation assay shown in Fig 1.
(PDF)

S3 Fig. Over-expression of GEF-DN reverts sensitivity to methionine limitation in NIH-
RAS cells and partially rescues the defect in the expression of Slc6a15 gene encoding methi-
onine transporter SBAT1. (A) Cell proliferation of NIH3T3, NIH-RAS, NIH-RAS pGEF-DN
and NIH-RAS pcDNA3 cells grown in media with different concentrations of methionine and
counted daily for 72 h of growth under conditions indicated. Plotted data are mean +/- stan-
dard deviation. computed from three independent experiments. (B) Relative to t = 0 cell prolif-
eration of NIH3T3, NIH-RAS, NIH-RAS pGEF-DN and NIH-RAS pcDNA3 cells grown for 72
h in media with different concentrations of methionine, as indicated in (A). Part of the data in
(B) are present in Fig 1D. (C) Semi-quantitative RT-PCR results for NIH3T3, NIH-RAS, NIH-
RAS pGEF-DN and NIH-RAS pcDNA3 cells grown for 48 h in standard medium performed in
triplicate on genes showing at least a two-fold change betweenNIH-RAS vs. NIH3T3 cells in
each of the two Affymetrix independent experiments (S5 Fig). �P<0.05; ��P<0.01; ���P<0.001
(Student’s t-test).
(PDF)

S4 Fig. Cell proliferation and qualitative ROS levels under different methionine concentra-
tions and in cysteine-limiting or -depleted medium (possibly supplemented with antioxi-
dants glutathione and MitoTEMPO or with GSH synthesis inhibitor BSO). For all the
experiments,MitoTEMPO and buthionine sulfoximine (BSO) were used at the concentration
of 10 μM and 100 μM. (A-B) Cell proliferation of NIH3T3 and NIH-RAS cells grown in media
supplemented with different concentrations of methionine and cysteine with or without anti-
oxidants glutathione or MitoTEMPO and counted after 72 h (A) and 30 h (B) of growth under
conditions indicated. Part of the data in (A) are present in Fig 1D. Plotted data are mean +/-
standard deviation computed from three independent experiments. �P<0.05 (Student’s t-test).
(C) Cell proliferation of NIH3T3 and NIH-RAS cells under conditions indicated. (D) Qualita-
tive evaluation of ROS levels in NIH3T3 and NIH-RAS cells upon staining with DCFDA and
analysis with a fluorescencemicroscope.
(PDF)

S5 Fig. Solute carriers differentially expressed between NIH3T3 and NIH-RAS cells.
Genome-wide transcriptional profiling datasets for NIH3T3 and NIH-RAS cells (available in
NCBI GEO database; accession GSM741354-GSM741361 for NIH3T3 cells and
GSM741368-GSM741375 for NIH-RAS cells), previously obtained in our laboratory with an
MG_U74Av2 AffymetrixGene Chip [41], were filtered for all genes encoding for solute carri-
ers. Then, to identify genes whose expression was significantly altered in Ras-transformed ver-
sus normal cells (here represented in bold), a two-fold and a<0.05 cut-offs on Fold Changes
and on p-values were used, respectively. In this Figure are represented all transporter genes
with a fold change�2 (about 20% of all transporter genes) irrespective of their p-values. Gene
Ontology (GO) enrichment based on molecular functionwas performedwith GoTermFinder
(http://go.princeton.edu/cgi-bin/GOTermFinder) and genes encoding for amino acid trans-
porters were colored in magenta, while genes encoding for ion transporters were colored in
grey.
(PDF)

S1 Table. Mass duplication times under different nutritional perturbations.Mass duplica-
tion times (MDT) for NIH3T3 and NIH-RAS under different methionine or cysteine concen-
trations (possibly supplemented with GSH) were calculated on semi-logarithmic curves
represented in Fig 1A and 1B. Then, Student’s t-test was performed on linear regression curves
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for each nutritional condition that allowed cell growth. A = not parallel to linear regression
curve of NIH-RAS cells in standard medium (99% CI); B = not parallel to linear regression
curve of NIH3T3 cells in standard medium (99.9% CI); C = not parallel to linear regression
curve of NIH-RAS cells in standard medium (99.9% CI); D = not parallel to linear regression
curve of NIH3T3 cells in standard medium (99% CI); E = not parallel to linear regression curve
of NIH3T3 cells in standard medium (99.9% CI). CI = confidence interval.
(PDF)
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Abstract 

Many high-throughput post-genomic (-omic) technologies have been developed to unravel cellular complexity 

and to investigate biological systems. Each -omic technology (such as genomics, transcriptomics, proteomics 

or metabolomics) deals with a different layer of cellular or tissue functioning. The integration of two or more -

omics connects these different layers, allowing to extract information that would otherwise remain latent if each 

data set was considered alone. This approach paves the way to the identification of functional emergent 

properties and their design principles at both the cellular and organismal level. Many diseases are multi-

factorial in nature and are affected by the alteration of a large number of gene products whose interaction may 

profoundly modify the penetrance of the disease and the efficacy of a given therapeutic approach. Ultimately, 

integration of the knowledge of functional emergent properties will merge with personalized –omic 

data to generate and constrain mathematical models of the diseased functions allowing to develop 

personalized medical treatment of multi-factorial diseases. 

 

Keywords 

-omic technologies, data integration, multi-factorial diseases, emergent properties, personalized treatment, data 

visualization, modeling, metabolic diseases, cancer. 
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Introduction 

The various components of a biological system do not act individually, but rather through complex 

hierarchical, coordinated, dynamical, non-linear interactions of a large number of components (e.g. 

proteins interacting with DNA, RNA, metabolites and other proteins) that allow the functioning (or 

dysfunctioning) of the system itself (Langley et al., 2013). Therefore, a biological function 

generates as an emergent property (Bhalla and Iyengar, 1999) of the system, and is not ascribable or 

found in its single components, but only in their networking.  

High-throughput technologies allow to collect genome-scale comprehensive molecular information 

– collectively referred to as -omic data – using an increasing number of sophisticated high 

throughput technologies, including transcriptomics, proteomics (that includes the study of protein 

level and post-translational modification data at the proteome scale), metabolomics and 

interactomics. Indeed, our current understanding of biological functions is not limited by 

availability of vast amounts of data (big data), but rather by our ability to integrate and process 

them. Systems biology (Kitano, 2002, Alberghina and Westerhoff, 2005) is the conceptual and 

operative approach needed to extract and integrate information from this huge amount of different 

omic data. The systems biology approach systematically organizes, integrates and rationalizes the 

different omic data through statistical analysis, computer aided modeling and visualization. It 

requires different scientific competencies so to give them structure, improve our understanding of 

emergent properties and their design principles and gain ability to predict the behavior of a system 

and to exploit it for applicative purposes (Figure1).  

Most common diseases affecting adults, including cardiovascular diseases, cancer and diabetes, are 

multi-factorial and derive by the interaction of several genetic and environmental factors concurring 

to phenotype and clinical manifestation (Wruck et al., 2015, Alberghina et al., 2014, Hornberg et 

al., 2006, Kitano, 2007b, Kitano, 2004). As -omic data become available with ever increasing 

accuracy and decreased cost, they can be used to guide the choice, design and follow-up of effective 

therapeutic approaches, allowing to translate systems biology to medicine that aims at tackling the 

complexity of multi-factorial diseases by means of systematic and integrated approaches for clinical 

purposes, i.e. to allow a more efficient disease classification and identification of novel therapeutic 

targets. Post-genomic omic-based systems medicine aims to transform diagnostic and therapeutic 

strategies being, in the next future, “personalized and predictive”, namely able to suggest the most 

potentially effective drug for any patient and to eventually foretell if and when a disease will occur 

and how it will develop (Tanaka, 2010, Hood and Tian, 2012, Auffray and Hood, 2012, Hood et al., 

2012, Tian et al., 2012).  
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Health care systems have nowadays to face considerable challenges connected with the highly 

variable clinical efficacy of current drugs as well to the huge costs associated with drug discovery, 

development and clinical trials, inevitably causing economical suffering and high impacts on the 

financing of the sector. Indeed, a basic problem of the current disease classification system, based 

on phenotype determination, is that the same phenotype may derive from several disease 

mechanisms. Thus, a drug directed against one of those mechanisms would not be clinically 

effective in patients with different underlying mechanisms (Gustafsson et al., 2014). 

Let’s take breast cancer as an example. During the last 30 years, the definition of a few biomarkers 

allowed to identify molecular breast cancer subgroups with different clinical characteristics, clinical 

courses, and sensitivities to existing therapies and allowed to design novel and more effective 

treatments for patients (Hortobagyi, 2012). Patients with Estrogen Receptor-negative, human 

Epidermal Growth Factor Receptor 2–positive cancers are currently treated with the monoclonal 

antibody trastuzumab and have one of the more favorable prognoses of all breast cancer patients. 

However, trastuzumab is effective only in up to 50% of these patients, possibly because of various 

resistance mechanisms. As knowledge of the molecular events underlying the ability to respond to 

trastuzumab treatment increases, novel accurate predictive biomarkers – allowing to identify those 

patients who will respond to trastuzumab treatment – and/or novel drug targets will be identified. 

The increased resolution in the classification of these tumors will allow to develop new, highly 

targeted molecular therapeutics, and at the same time to devise molecular diagnostic tools that will 

allow to implement a truly personalize medicine. 	

In this chapter we describe approaches to -omics integration that may uncover information hidden 

in each individual -omics. Integration of -omic data can be fully exploited if combined with 

modeling approaches, allowing to develop precision, personalized medicine of patients of multi-

factorial diseases, such as cancer.  
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Figure 1 Overview of the systems biology approach towards the realization of personalized 
medicine. The many different -omic data currently available (reddish box) must be deposited in one 
or more database in order to systematically organize the information and to facilitate the data 
integration process. Integrated -omic data are analyzed (light blue box) by means of statistical 
methods, computer aided modeling and visually represented in order to understand emergent 
properties and design principles of the biological system (orange cartoon). Personalized -omic data 
(green box), the knowledge of emergent properties/design principles and different scientific 
competencies (purple box) will ultimately merge allowing to develop personalized medical 
treatment of multi-factorial diseases. 

Data sources 

-omic technologies generate extremely large data sets and a quick Web search can give a first 

picture of the huge variety of data sources publicly available. Assessing their relevance and quality 

may be a particularly hard task due to the heterogeneity of representations and notations. 

Historically, the Human Genome Project has been the first -omic initiative related to human health. 

This pioneering study gave rise to a plethora of initiatives paving the way towards the current 

explosion of data generated by means of different -omic approaches. Focusing exclusively on data 

sources related to cancer disease, Table 1 describes some of the most relevant repositories of -omic 

data. Most of the available resources deal with genomic, transcriptomic and proteomic data with 

some emphasis on cancer-related data. More recent initiatives tend to shed light on the 

heterogeneity of cancer in terms of genomic mutations and phenotypic differences among the 
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different tumor subtypes. Table 1 highlights a substantial lack of information on metabolomics, a 

technology having a great potential to impact clinical practice (e.g. biomarkers for diagnosis, 

monitoring and definition of new therapeutic targets). In this context, a current challenge is the 

definition of metabolite resources with comprehensive spectral libraries, various integrative 

approaches and serious considerations for clinical validation of the identified biomarkers (More et 

al., 2015). 

 

Data	source	 Main	features	
	

Type	of	–omic	data	
	

Web	page	 Ref.	

Gene	
Expression	

Omnibus	(GEO)	

Repository	of	gene	expression	data	from	more	
than	2500	studies	 Proteomics	 http://www.ncbi.nlm.nih.gov/geo/	

(Edgar	et	al.,	
2002,	Barrett	
et	al.,	2013)	

Ensembl	

Sequence	data	fed	into	a	gene	annotation	
system	creating	a	set	of	predicted	gene	locations	

saved	in	a	MySQL	database	for	subsequent	
analysis	and	display.	

Genomics	 http://www.ensembl.org	 (Hubbard	et	
al.,	2002)	

TRANSFAC	
database	

Data	on	eukaryotic	transcription	factors	and	
their	miRNAs,	binding	sites	and	regulated	genes.	

	
Regulomics	

http://www.biobase-
international.com/product/transcri

ption-factor-binding-sites	

(Wingender	
et	al.,	1996)	

1000	Genomes	
Project	

Generic	genetic	variants	whose	frequencies	are	
at	least	of	1%	in	the	human	population	by	NGS	
sequencing	of	genomes	from	many	individuals.	
The	raw	and	processed	data	associated	with	the	
1000	resulting	genomes	are	also	stored	and	

managed.	

Genomics	 http://www.1000genomes.org/	

(Abecasis	et	
al.,	2010,	
Abecasis	et	
al.,	2012)	

Encyclopedia	of	
DNA	Elements	

Project	
(ENCODE)	

Integration-based	approach	aimed	at	the	
characterization,	for	a	set	of	animal	

models/tissues/cell	lines,	of	the	profile	of	mRNA	
expression,	histone	marks	and	transcription	
factor	binding	profiling,	DNA	methylation,	
chromatin	conformation	and	the	location	of	
active	regulatory	regions	among	others.	

Genomics	
Transcriptomics	
Epigenomics	
Regulomics	

http://genome.ucsc.edu/ENCODE/	

(Ecker	et	al.,	
2012,	

ENCODE	
Project	

Consortium,	
2011,	

Harrow	et	
al.,	2012)	

The	Cancer	
Genome	Atlas	
Project	(TCGA)	

Provides	insights	into	the	heterogeneity	of	
different	cancer	subtypes	by	creating	a	map	of	
molecular	alterations	for	every	type	of	cancer	at	
multiple	levels.	For	instance	the	endometrial	
carcinoma	has	been	characterized	by	mRNA,	

miRNA,	protein,	DNA	methylation,	copy	number	
alterations	and	somatic	chromosomal	

aberrations.	

Transcriptomics	
Regulomics	
Proteomics	
Epigenomics	
Phenomics	

http://cancergenome.nih.gov/	
(Weinstein	et	
al.,	2013)	

International	
Cancer	Genome	
Consortium	

(ICGC)	

Coordinates	large-scale	cancer	genome	studies	
in	tumors	from	50	cancer	types/subtypes	of	
main	importance	across	the	globe.	More	than	
25000	cancer	genomes	are	studied	at	the	

genomic,	epigenomic	and	transcriptomic	levels,	
to	reveal	the	repertoire	of	oncogenic	mutations,	
uncover	traces	of	the	mutagenic	influences,	

define	clinically	relevant	subtypes	for	prognosis	
and	therapeutic	management	and	enable	the	

development	of	new	cancer	therapies.	

Genomic	
Epigenomic	

Transcriptomic	
https://www.icgc.org/	

(Hudson	et	
al.,	2010)	

Cancer	Genome	
Project	(CGP)	

Uses	the	human	genome	sequence	and	high-
throughput	mutation	detection	techniques	to	

identify	somatically	acquired	sequence	
variants/mutations	and	thus	genes	critical	to	the	

development	of	human	cancers.	

Genomics	
Phenomics	

http://www.sanger.ac.uk/research/
projects/cancergenome/	

(Pleasance	et	
al.,	2010)	

Catalogue	of	
Somatic	

Mutations	in	
Cancer	

(COSMIC)	

Contains	data	generated	from	the	ICGC	and	
TCGA	studies,	the	Cancer	Genome	Project	(CGP)	
and	targeted	sequencing	of	the	NCI60	cell	lines	
(a	panel	of	60	human	cell	lines)	in	known	cancer	
genes,	in	addition	to	information	extracted	from	

the	literature.	

Genomics	
Phenomics	 http://cancer.sanger.ac.uk/cosmic	 (Bamford	et	

al.,	2004)	

Clinical	 Has	the	goal	of	understanding	the	molecular	 Proteomics	 http://proteomics.cancer.gov/prog (Ellis	et	al.,	
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Proteomic	
Tumor	Analysis	
Consortium	
(CPTAC)	

basis	of	cancer	through	the	application	of	
proteomic	technologies	and	workflows,	

systematically	identifying	proteins	that	derive	
from	alterations	in	cancer	genomes	and	related	
biological	processes,	and	providing	this	data	with	

accompanying	assays	and	protocols	to	the	
public.	

Genomics	 rams/cptacnetwork	 2013,	Zhang	
et	al.,	2014)	

Kyoto	
Encyclopedia	of	

Genes	and	
Genomes	
(KEGG)	

KEGG	contains	representations	of	biological	
systems.	It	integrates	genetic	building	blocks	of	
genes	and	proteins,	chemical	building	blocks	of	

small	molecules	and	reactions,	and	wiring	
diagrams	of	molecular	interaction	and	reaction	
networks.	Thus,	KEGG	databases	are	categorized	

into	systems,	genomic,	chemical	and	health	
information.	

Many,	including	
Genomics,	
Proteomics,	

Interactomics	and	
Metabolomics	

http://www.kegg.jp	
(Kanehisa	
and	Goto,	
2000)	

Multi-Omics	
Profiling	
Expression	
Database	
(MOPED)	

Omics	expression	database	that	contains	over	5	
million	protein	and	gene	expression	records.	It	
links	to	various	protein	and	pathway	databases,	
including	GeneCards,	Panther,	Entrez,	UniProt,	
KEGG,	SEED	and	Reactome.	Protein	identifiers	
are	integrated	from	GeneCards,	GI,	RefSeq,	
Locus	Tag,	UniProt,	WormBase	and	SGD.	

Mainly	Proteomics	
and	

Transcriptomics	

http://moped.proteinspire.org	
(accessible	only	with	valid	

certificate)	

(Kolker	et	al.,	
2012,	Higdon	
et	al.,	2014)	

Search	Tool	for	
the	Retrieval	of	
Interacting	

Genes/Proteins	
(STRING)	

Database	of	known	and	predicted	protein	interac
tions.	The	interactions	include	direct	(physical)	
and	indirect	(functional)	associations,	derived	

from	genomic	context,	high-throughput	
experiments,	coexpression	and	previous	

knowledge.	STRING,	currently	covering	about	10	
million	proteins	from	2031	organisms,	

quantitatively	integrates	interaction	data	from	
these	sources	for	a	large	number	of	organisms	

and	transfers	information	between	these	
organisms	where	applicable.	

	
	

Interactomics	

http://string-db.org/	 (Snel	et	al.,	
2000)	

Human	Protein	
Atlas	(HPA)	

Database	of	information	for	almost	all	human	
protein-coding	genes.	Data	are	available	on	

expression	and	localization	of	proteins	based	on	
both	RNA	and	protein	data.	

Proteomics	 http://www.proteinatlas.org	 (Uhlen	et	al.,	
2010)	

Human	
Metabolome	
Database	
(HMDB)	

Database	containing	41,993	metabolite	entries,	
5,701	protein	sequences	are	linked	to	these	

metabolite	entries.	Each	entry	has	around	110	
data	fields	with	2/3	of	the	information	on	

chemical/clinical	data	and	the	rest	regarding	
enzymatic	or	biochemical	data.	

Metabolomics	 http://www.hmdb.ca	

(Wishart	et	
al.,	2007,	
Wishart	et	
al.,	2009,	
Wishart	et	
al.,	2013)	

MINT	

The	database	contains	experimentally	verified	
protein-protein	interactions	mined	from	the	
scientific	literature	through	human	manual	

curation		

Interactomics	
Bibliomics	

http://mint.bio.uniroma2.it/mint/
Welcome.do	

(Licata	et	al.,	
2012)	

IntAct	

	
Database	of	molecular	interaction	data,	here	
every	interaction	is	derived	from	literature	or	

submitted	directly	by	the	user.	
	

Interactomics	 http://www.ebi.ac.uk/intact/	
(Orchard	et	
al.,	2014)	

BioGRID	

Repository	with	interaction	data	manually	
curated.	It	contains	56,300	publications	for	
1,060,041	protein	and	genetic	interactions,	

27,501	chemical	associations	and	38,559	post-
translational	modifications	

Interactomics	
Regulomics	

http://thebiogrid.org	 (Oughtred	et	
al.,	2016)	

Table 1 Main data sources available for data integration 
 
 

Integration of different data sources 

The definition and the population of a database is by far the most effective way to represent and 

organize a wide range of data; however, biological databases are affected by the lack of uniformity 

in types and formats of data sources, mainly due to the lack of a unique standard. Databases of 
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pathways are an example of this problem. For example, some of the 547 biological pathways 

reported in Pathguide (http://www.pathguide.org) are similar and redundant but are defined with 

different boundaries and components. This heterogeneity has to be taken into account when genome 

analysis methods based on pathways are applied (e.g. in (Menashe et al., 2010, Swaminathan et al., 

2012, Sloan et al., 2010, Zhang et al., 2011)). Indeed, the same input data can generate different 

results if different databases are used for the analysis (Elbers et al., 2009). To overcome these 

issues, Cantor and colleagues proposed to use multiple databases for each analysis (Cantor et al., 

2010) in order to balance divergences among databases and/or to validate similar results obtained 

from different data sources. Gomez-Cabrero and colleagues, while reviewing data integration in the 

-omics era, advocate the need to create standards at earlier stages when novel data-type resources 

are developed (Gomez-Cabrero et al., 2014). 

One of the first definitions of database integration has been formulated in the context of the 

smoothening of redundancies between databases, pointing out the need to access different databases 

with overlapping content and to connect several of them, as if the user were interacting with one 

single information system. In general, since 1980’s, two main approaches have been defined to 

efficiently integrate data coming from different sources:  

1. Data warehousing: Data warehousing consists in the storage of all the data belonging to a 

certain category from different databases in only one large database, according to the 

process named ETL (Extract, Transform and Load) (Ponniah, 2004).  

2. Federated approaches: In contrast to data warehouse, in federated databases data remains 

in the original data source. The integration consists in mapping data from each source on the 

federated database; thus, the end user can operate on a simple database. This data storage 

approach is relevant when the researcher needs updated information or must integrate a 

large amount of data deriving both from private and public databases (Sheth and Larson, 

1990).  

 

The second approach is currently trending in the domain of life sciences. Proving this fact, one of 

the most common ways to connect data from several biological databases consists in implementing 

hypertext links between entries of different data sources. As such, link integration approaches 

represent a connection between web pages, whereas the actual integration method is then carried on 

by a user or by another application. As a matter of fact, this approach requires a significant amount 

of manual work in order to integrate data: scientific institutions that maintain biological databases 

have to face a time-consuming checking process to map the links between entries from distinct data 
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sources. Therefore, given the high number of databases pertaining to the biological field, only links 

to the most used ones are typically set. A meaningful example is provided by one of the main search 

engines for health science databases: Entrez Global Query Cross-Database Search System 

(http://www.ncbi.nlm.nih.gov/sites/gquery), a tool that is able to retrieve information stored in 

several sources and regarding bio-molecular sequences, structures and literature references. 

 

Integration of different -omic data 

It is becoming more and more evident that the integration of multiple -omic layers is required for a 

deeper understanding of complex biological entities. To meet this goal, initial attempts of data 

integration reported in literature analyzed data from individual -omics separately. This phase was 

then followed by downstream actual integration of previous independent and parallel analyses 

outcomes. However, this method entails the loss of key emergent properties, which only become 

apparent by analyzing multiple -omic dataset as a whole and not by studying the system as the sum 

of its parts (Liu et al., 2013). A first step in the integration of multiple -omic layers is the joining of 

information deriving from pairs of them. In the following paragraphs, we will illustrate examples of 

pairwise integration between different -omic data.  

Integrating transcriptomics and proteomics  
Several studies in model organisms have shown that mRNA and protein expression profiles are 

often poorly correlated (Yeung, 2011, Ghazalpour et al., 2011, Pascal et al., 2008). Proteins are 

generally more stable than mRNAs (Schwanhausser et al., 2011), so situations where a protein is 

still abundant in the near absence of the cognate mRNA may arise. The opposite situation (i.e., low 

protein level while the corresponding transcript is high) may derive from poor translation of the 

mRNA. This happens either because the RNA itself is poorly translatable (due, for example, to 

secondary structures that hamper translation (Hinnebusch, 2014, Stefanovic, 2013) or because of 

interaction with other molecules, such as the trans-acting factors, RNA-binding proteins (RBPs) and 

small RNAs that bind to the mRNA and modify its translatability (Szostak and Gebauer, 2013). 

Among these natural antisense transcripts that regulate gene expression (Nishizawa et al., 2012) are 

small (19-22 nucleotide) non-protein-coding RNA molecules (microRNAs or miRNAs). miRNAs 

down-regulate expression of their target mRNAs through specific base pairing that result in 

decreased translation of the mRNA or leads to mRNA degradation (Ambros, 2004). Although a 

large number of human miRNAs are reported to be implicated in several developmental and adult 

disease states (e.g. cancer), many of their mRNA targets and their impact on phenotypes remain 
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unknown (Nam et al., 2009). Recently, due to the advance of high-throughput and low-cost 

experimental methods, there has been a huge development of computational methods based on 

sequence complementarity between the miRNA and the mRNAs (Muniategui et al., 2013).  

The utility - and possibly the necessity - of integrating mRNA, miRNA and protein expression in 

order to obtain a more comprehensive view of the system under study has been recently pointed out 

(Tebaldi et al., 2012). A possible approach to integration involves the analysis of individual -omic 

layers separately, whose results are then merged and compared. By way of example, Com and 

colleagues in a study of gentamycin nephrotoxicity report that transcriptomic and proteomic data 

were complementary and that their integration provided a more comprehensive picture of the 

putative nephrotoxicity mechanism of the antibiotic, consistent with histopathological evidence 

(Com et al., 2012). Although valuable, this approach misses the interconnection between the 

different –omic layers and may fail to uncover the system-level functional properties. By mapping 

transcriptomic and proteomic data sets on the protein interaction network and using chronic kidney 

disease as an example, Perco and colleagues show that such a joint analysis highlights pathways and 

processes characteristic for the phenotype under analysis that goes unnoticed when the two data sets 

are analyzed independently (Perco et al., 2010). A similar, network-based methodology for 

integrative analysis of proteomic and transcriptomic data on psoriasis, showed complementarities 

between two levels of cellular organization and allowed to identify common regulators - such as the 

most influential transcription factors and receptors - for two datasets (Piruzian et al., 2010). 

Imielinski and colleagues identified sub-networks enriched in differentially expressed genes within 

networks built from proteins differentially expressed in estrogen receptor positive breast cancer 

tumors (Imielinski et al., 2012) from which a gene expression-based signature biomarker predictive 

of clinical relapse could be constructed.  

Liu and colleagues (Liu et al., 2013) focused on the melanoma sub-set from NCI-60 – a panel of 60 

different human cancer cell lines from 9 different tissues. They quantified the additional 

information provided by their method compared to non-joint approaches and observed that 

integration and annotation in the analysis of different type of data changed the flow of information, 

with the joint analysis giving fully relevant molecular information only upon annotation of all 

mRNA, proteins and miRNA. Particularly, compared to the separate analysis, the joint analysis 

better described melanogenesis, while the separate analyses failed to identify enrichment in melanin 

biosynthetic and metabolic processes, both related to the basal melanocyte physiology. A similar 

algorithm (iCluster) has been used to cross-correlate gene copy number and transcriptional profiling 

to discover potentially novel cancer breast and lung cancer subtypes by combining weak, consistent 

alteration patterns across subtypes (Shen et al., 2009).  
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A final approach worth mentioning exploits the Bayesian framework to infer gene regulatory 

network form transcriptomics, whose accuracy is extended by combining prior knowledge (Zhang 

et al., 2007) or protein-protein interaction data (Nariai et al., 2004)..  

The reader is referred to Haider and Pal (Haider and Pal, 2013) for a recent comprehensive review 

detailing other methods for integrating transcriptomic and proteomic networks. 

Integrating transcriptomics and interactomics  
Analysis of genome-wide expression profiles recently allowed to identify several disease markers 

(e.g. (Ramaswamy et al., 2003)) exploiting the link between perturbations of a particular phenotype 

and changes in mRNA levels. In this kind of analysis, each gene is scored for the ability of its 

expression pattern to discriminate between various classes of disease; subsequently, marker sets are 

selected based on attributed scores (signature-based approach). However, different marker sets for a 

specific disease are found among different studies (e.g. (van 't Veer et al., 2002) and (Wang et al., 

2005)), likely because changes in expression of the few selected genes may be small compared to 

those of the downstream effectors, which may vary significantly among patients (Ein-Dor et al., 

2005). As such, a better strategy to identify markers would be to combine gene expression 

measurements over groups of genes that fall within common pathways (Subramanian et al., 2005, 

Tian et al., 2005, Wei and Li, 2007). Nevertheless, pathway-based analysis (to which gene-set 

enrichment analysis (GSEA) belongs) has the limitation that there is still no assignment of most 

human genes to a specific pathway.  

A partial solution to these challenges lays in the use of protein–protein interaction (PPI) networks 

(the interactome) that provide a comprehensive map of functional interactions in the cell and allow 

the identification of sub-networks (composed by a group of proteins functionally linked to each 

other) that are significantly dysregulated in a disease of interest. In this regard, the development of a 

scoring scheme to assess the collective dysregulation of multiple interacting genes (mapped on the 

corresponding protein on the PPI network) and the development of efficient computational 

algorithms to search for sub-networks with significant scores represent the main methodological 

challenges. Commonly, the differential expression of each gene is first scored individually using a 

standard statistical test (e.g. t-test), then sub-network scores are computed as an aggregation of 

these individual differential expression scores. However, these methods provide limited systems 

level insights, since they assess the differential expression of functionally related genes individually 

and cannot capture patterns of coordinated dysregulation. An alternative strategy has been proposed 

in (Chen and Yuan, 2006). Here, authors illustrate a representation where genes having consistent 

expression patterns are mapped on PPI networks to form subnetworks that are significantly 

dysregulated in a disease of interest and may be conserved across multiple species (Sharan et al., 
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2005). Chuang and colleagues (Chuang et al., 2007) applied a protein-network-based approach to 

identify markers of metastasis within gene expression profiles, with the aim of detecting genetic 

alterations and predicting the probability of metastasis in unknown samples. They show that the 

network-based method has many advantages compared to earlier analyses of differential expression: 

1) The generated subnetworks provided models of the molecular mechanisms underlying 

metastasis. 

2) Though analysis of differential expression usually does not allow detecting genes with 

known breast cancer mutations (such as KRAS, among others), these genes play a key role 

in the protein network by interconnecting many expression-responsive genes. 

3) Subnetworks are remarkably more reproducible among different breast cancer cohorts than 

separate marker genes selected without network information.  

4) Accuracy in prediction is higher with network-based classification, as demonstrated by 

selecting markers from one data set and applying them to a second independent data set.  

A further evolution of the method, called interactome-transcriptome integration (ITI), consists in the 

integration of the analysis of several gene expression datasets (multidataset) to extract subnetworks 

that discriminate breast cancer distant metastasis (Garcia et al., 2012). The method showed 

increased performance on a vast collection of publicly available data and was validated on two 

independent breast cancer gene expression datasets (Desmedt et al., 2008, van de Vijver et al., 

2002).  

For a further dissertation on the essential role for the comprehension of biological systems of the 

integration between transcriptomics and interactomics (but also with other categories of -omic data, 

such as genomics, and proteomics), we refer the interested reader to a recent review (Snider et al., 

2015) that summarizes strengths and weaknesses of the different approaches. 

Integrating transcriptomics and metabolic pathways 
In order to better understand the role of differentially transcribed metabolic genes in the context of 

metabolic pathways, Patil and Nielsen (Patil and Nielsen, 2005) devised a technique of network 

enrichment whose goal is to identify the “reporter metabolites”, i.e. those spots in the metabolism 

where there is a crucial regulation to maintain homeostasis (i.e., a constant level of the metabolite) 

or to reset the concentration of the metabolite to a different level required for the correct functioning 

of the metabolic network. The first step of the procedure consists on mapping differential 

expression data on the corresponding enzymes of a genome-wide biochemical network (whose 

reconstruction process is described in the following section) adding a specification of the 

significance of differential gene expression. In this way, each metabolite node is scored based on 
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the normalized transcriptional response of its neighboring enzymes. When dealing with differential 

data, the normalized transcriptional response is calculated as size-independent aggregated Z-scores 

of the neighboring enzymes. The scoring used to identify reporter metabolites is a test for the null 

hypothesis hereafter formulated: “Neighbor enzymes of a metabolite in the metabolic graph show 

the observed normalized transcriptional response by chance”. Metabolites with the highest score are 

defined as reporter metabolites, i.e. those metabolites around which transcriptional changes occur. 

All in all, advantages of performing a multi dimensional -omic analysis to obtain more information 

from human high throughput data instead of analyzing a single -omic data type can be summarized 

as follows:  

1) Integration of multiple data types is a strategy to prevent information loss due to the fact that 

information on a biological entity (gene, protein, transcript,…) can suggest to refine other -

omic analyses in order to fill information gaps or to correct wrong data associations.  

2) Different data sources providing information on the same gene or pathway are less likely to 

produce “false positives”. 

3) Examination of different levels of regulation by means of an integrated approach is a 

promising way to unravel the functioning and fine regulation of the biological system under 

examination. 

Readers interested in mathematical aspects of methods for multi-omic data integration may refer to 

a recent review (Bersanelli et al., 2016). The availability of dedicated servers for the analysis of 

multi-omic datasets, including trancriptomics, miRNomics, proteomics and genomics may help to 

spot similarities and differences between the enrichments obtained from different –omics and widen 

the use of integrative multi-omic analyses (Stockel et al., 2016). 

As highlighted in the Introduction, many common diseases such as cancer, diabetes and 

cardiomyopathy, should be considered as network diseases. If the complexity of the network is not 

taken into account, we may fail in identifying a potential drug having high efficacy and low toxicity 

(Kitano, 2007a, Ogilvie et al., 2015, Wierling et al., 2015, Westerhoff, 2015). One of the main 

reasons of such a poor predictive power is that the exploitation of individual -omic platform does 

not provide enough information to link drug response with personalized -omic profile. Indeed, a 

stronger integration of different -omic platforms could validate data and help in clarifying the 

connections between -omics, as well as accelerate multi-target drug discovery (Leung et al., 2013). 

Cellular subsystems have been defined by ontologies, such as Gene Ontology (GO). It has been 

proposed that such a hierarchical structure may guide the organization of -omic data. Interpretation 
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of this “ontotype” through logical rules generated by machines learning techniques allowed  

predictions of the growth properties of over 2,000 yeast strains carrying inactivation of two genes 

and could pave the way for interpretation of the phenotypic properties of complex diseases (Yu et 

al., 2016). According to similar reasoning an initiative to define the hallmark networks of cancer 

has been recently launched (Krogan et al., 2015).  

As we will see later, a further step, modeling, may be required to fully extract information hidden in 

-omic data, structure according to mechanistic principles and generate experimentally testable 

predictions.  

Visualization of integrated -omic data 
Consistently with the need for -omic data integration approaches, a strong need for tools able to 

represent them in an effective way has emerged among scientist and clinicians belonging to 

different communities. To satisfy this need, visual representations of -omic data have been 

extensively used to give an immediate representation of the complexity beyond the systems, to sum-

up relevant information (Suderman and Hallett, 2007) and to help to formulate hypotheses on 

represented systems.  

The recourse to visualization strategies has been motivated by the fact that the human brain has a 

remarkable capability to process visual information in order to identify patterns (e.g. biochemical 

pathways) and relevant topological features (e.g. the presence of highly connected nodes called 

“hubs”) (Bucci et al., 2011). The “visual complexity” of these representations ranges over various 

orders of magnitude spanning from the description of a small functional units (signal transduction 

and metabolic pathways, interaction pool of a protein), to the representation, at whole 

cell/tissue/organism level, of the interactions involving different -omic data.  

The development of high-throughput -omic technologies has imposed a change of paradigm for the 

definition of these representations, shifting from the manual curation and refinement to fully (or 

partially) automatized procedures exploiting sophisticated software. Even if recent efforts have 

produced remarkable results (see (Gehlenborg et al., 2010) for an extensive review and Table 2 for 

a non exhaustive list of relevant and widely used tools for data visualization), in this domain some 

challenges are still open.  

A first challenge is related to the scalability of the methods. Scalability issues are particularly 

relevant in network representations, an obvious and traditional way to visualize data and their 

relationships (generally nodes represent entities and edges represent relationships). This type of 

representation is intuitive and powerful for simple systems, but has also some scalability 

limitations: when the system size and complexity increases, also the “visual complexity” increases, 
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and since most of the software make use of standard visualization packages, the most common 

layout of the network is often a very uninformative “hairball” (Figure 2A) (Suderman and Hallett, 

2007) 

.  

Figure 2 From uninformative to meaningful -omic data visualization with Cytoscape: adding 
data on the network in a rational way improves the information content of the representation. On the 
top part, an example of hairball layout obtained using data from high-confidence protein-protein 
interactions (von Mering et al., 2002). On the lower level, examples of -omic data mapped on a 
network modifying its elements (nodes and edges color/dimension, layout) exploiting Cytoscape 
apps (Node Chart Plugin for transcriptomics (B), CyFluxViz for fluxomics (C) and chemViz2 for 
metabolomics (D)).  

 

The wide usage of this primitive layout is mainly due to the lack of knowledge on the inner 

organization of the network (e.g. cellular localization of elements, molecular functions, structure of 

protein complexes, etc.), but also to the difficulty of representing the system in a way expected by 

the user (e.g. the arrangement of metabolic or signaling pathways using an immediately 

recognizable shape). To move from the uninformative “hairball layout” to a more meaningful 

representation, several algorithms have been devised to visually organize the network, on the basis 

of given criteria, such as node degree distribution, geometrical representations (e.g. circles, grids), 

directionality of the process (hierarchical representations) and physical simulations, modifying both 

the spatial layout and placing information (i.e. -omic data) on network elements 

(color/dimension/shape of nodes and edges). In Figure 2, we provide an example of useful -omic 
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data visualization: in box B, transcriptomic data have been mapped on nodes (genes) using a color 

code for expression level (red for up-regulation, green for down-regulation, yellow for no change) 

while slice size in the pie chart is proportional to the number of experiments where the gene has the 

same expression pattern (up-/down-regulation or no change). In the same graph, node size is 

proportional to the node degree (i.e. nodes having a large number of connections – hubs – have a 

larger size). Edges, in box B indicate interactions between proteins encoded by genes represented in 

nodes, dashed edges indicating a low confidence interaction. In box C, the layout of a metabolic 

network has been manually defined accordingly to a commonly used representation (in the panel a 

portion of the TCA cycle). Metabolites are represented with blue nodes having size proportional to 

the node degree, while reaction nodes are marked with green diamond nodes. Edge thickness is 

proportional to the value of the flux through a given reaction. In box D, another metabolic network 

has been represented using a default layout, however metabolite nodes have been represented using 

boxes inside of which structural formulas are shown; the abundance of every metabolite can be 

represented here coloring the border of the box accordingly to a color gradient.  

A promising way to face visual complexity emerging from -omic size networks, is represented by 

clustering approaches (e.g. MCODE) that are integrated with network visualization tools and used 

e.g. to predict higher-order protein complexes from the interaction data. Network clustering is a 

new kind of clustering method that is performed using correlation networks, in which each node is a 

gene and each edge indicates co-expression of two genes under a given experimental condition 

(Figure 3). Available tools include BioLayout Express 3D and Cytoscape.  

Figure 3 Network showing a clustering of co-expression data using Cytoscape (Dataset from 
(Prieto et al., 2008)). In the network, genes are mapped as nodes while edges represent the 
coexpression relation. Identified clusters (isolated groups of nodes highlighted with ellipses) 
represent different cellular functions, e.g.: A. mitochondrial metabolism, B. ribosome, C. nuclear 
related metabolism, D. immune response. 
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A second challenge is connected to the retrieval of desired information and to the network 

navigation for the exploration of the “surroundings” of a given element, an activity that could 

generate insights to direct the investigation of the system. 

A further challenge can be identified in the enrichment of the visualization by adding further 

information (e.g. attributes from external sources and database) while maintaining a good 

readability of the relevant information. In this context, when network enrichment is used to find 

pathways or networks where genes are significantly over-represented, a valid aid for the 

interpretation of the results of the analysis is the superimposition on the reference map of the 

metabolite concentrations or significance levels towards a certain metric by means of dedicated 

tools, such as MapMan, Pathway Tools Omics Viewer (Figure 4) and ProMeTra. 

 

	
Figure 4 A cellular overview of the metabolic network of yeast generated with PathwayTools. 
In this visualization, metabolic reactions are subdivided in pathways (grey boxes), exchange 
reactions are placed across the border of a rectangle representing the cellular membrane, while 
reactions not assigned to a specific pathway are grouped on the right side. The metabolic map has 
been enriched with data (colored nodes) on reporter metabolites (see section “Integrating 
transcriptomics and metabolic pathways” for a reference on reporter metabolites), the color of the 
node is set accordingly to the confidence value for the reporter metabolite identification (top left 
colorbar), the distribution of nodes having a given confidence value is shown on a histogram in the 
bottom left corner.  
	

Lastly, future perspectives in -omic visualization through networks representations include (1) the 

exploration of three-dimensional layouts, i.e. multiple networks (representing each one a 

homogeneous type of data) linked among them to provide a more complete understanding of the 

system (e.g.: BioLayout Express 3D); (2) combinations of both three-dimensional layouts and 

temporal descriptions (e.g.: E-Cell 3D); (3) layouts that mix aspects of classic and three 

dimensional representation (e.g.: Arena3D). 

Besides network representations, visualization of -omic data can be performed through 

complementary approaches that aim at aggregating information and reduce visual complexity. In 
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particular in the context of transcriptomics (expression profiles), many tools implement scatter plots 

combined with dimensionality reduction, profile plots, heat maps, dendrograms and clustering. 

 

 
Visualization	tools	focused	on	interaction	networks	

Visualization	
tool	

Main	features	 Functions	and	compatibility	 Advantages	 Web	page	 References	

Arena	3D	
Standalone	free	application.	
Allows	visualizing	biological	
multi-layer	networks	in	3D.	

	 	 http://www.arena3d.org/	
(Pavlopoulos	
et	al.,	2008)	

BioLayout	
Express3D	

Layout,	visualization	and	
clustering	of	large	scale	

networks	in	both	3D	and	2D.	
Supports	both	unweighted	
and	weighted	graphs.	Uses	a	
graphic	render,	so	that	the	
size	of	networks	that	can	be	

processed	is	limited.	

Highly	interactive:	it	is	possible	to	
switch	between	2D	and	3D	

representations,	zoom	in/out,	
rotate	or	move	the	network.	
Markov	Clustering	algorithm	is	
incorporated	and	data	are	

automatically	separated	in	distinct	
groups.	Compatible	with	Cytoscape.	

Offers	different	analytical	
approaches	to	microarray	

data	analysis.	
http://www.biolayout.org	

(Freeman	et	
al.,	2007)	

CellDesigner	
Structured	diagram	editor	
for	drawing	gene-regulatory	
and	biochemical	networks.	

Visual	Representation	of	
Biochemical	Semantics,	Direct	

integration	with	SBML	ODE	Solver	
and	Copasi,	Linkage	to	SBW-
powered	Simulator	modules	

Intuitive	user-interface	helps	
to	draw	a	diagram	with	the	
standard	SBGN	notation	

http://www.celldesigner.org	
(Funahashi	et	
al.,	2008)	

Cytoscape	

Standalone	Java	application.	
Provides	2D	representations	
of	large-scale	networks	(up	
to	hundredth	thousands	of	
nodes	and	edges).	Supports	
directed,	undirected	and	
weighted	graphs,	has	
powerful	visual	styles.	

Highly	interactive:	possible	zoom	in	
and	out	and	browsing	of	the	

network;	organization	of	multiple	
networks	and	possibility	to	

compare	them;	allows	to	select	
subsets	of	nodes/interactions	and	

search	for	active	
subnetworks/pathway	modules;	
incorporates	statistical	analysis	of	
the	network.	Compatible	with	other	

tools.	Allows	to	import	mRNA	
expression	profiles,	gene	functional	
annotations	from	GO	and	KEGG.	

	

Visualization	of	molecular	
interaction	networks	and	
their	integration	with	gene	
expression	profiles	and	other	

data.	Allows	the	
manipulation	and	

comparison	of	multiple	
networks.	Many	plug-ins	are	

available	for	more	
specialized	analysis.	

http://www.cytoscape.org	
(Shannon	et	
al.,	2003)	

E-cell	3D	

Software	platform	to	model,	
simulate	and	analyze	

complex,	heterogeneous	
and	multi-scale	biochemical	

reaction	systems.	

E-Cell	3D	exploits	the	advanced	
graphics	APIs	of	MacOS	X,	however	
this	is	the	only	supported	operative	

system.	3D	networks	can	be	
navigated	using	Nintendo	Wii	

remote	controller.	

Models	stored	in	Systems	
Biology	Markup	Language	
(SBML)	XML	file	can	be	

directly	converted	to	E-Cell	
3D.	
	

http://ecell3d.iab.keio.ac.jp/i
ndex.html	

(Tomita	et	al.,	
1999)	

iPath	

Interactive	Pathways	
Explorer	(iPath)	is	a	web-

based	tool	for	the	
visualization,	analysis	and	

customization	of	the	various	
pathways	maps.	

KEGG	based	overview	maps.	

Extensive	map	customization	
and	data	mapping	

capablities.	All	maps	in	iPath	
can	be	easily	converted	to	
various	bitmap	and	vector	
graphical	formats	for	easy	
inclusion	in	documents	or	

further	processing.	

http://pathways.embl.de	
(Yamada	et	
al.,	2011)	

MapMan	

A	user-driven	tool	that	
displays	large	datasets	onto	

diagrams	of	metabolic	
pathways	or	other	

processes.	

Based	on	Java	and	hence	cross	
platform.	

	 http://mapman.gabipd.org/	
(Thimm	et	al.,	

2004)	

Medusa	

Open	source	Java	
application.	Provides	2D	

representation	of	networks	
up	to	a	few	hundred	nodes	

and	edges.	Uses	non	
directed,	multi-edge	

connections,	allowing	the	
simultaneous	

representation	of	more	than	
one	connection	between	

two	bioentities.	
	

Highly	interactive:	allows	the	
selection	and	analysis	of	subsets	of	
nodes.	A	text	search	can	be	applied	
to	find	nodes.	Medusa	has	its	own	
text	file	format	not	compatible	with	

other	visualization	tools	or	
integrated	with	other	data	sources.	

Shows	multi-edge	
connections,	each	line	
representing	different	

concepts	of	information.	It	is	
optimized	for	PPI	data	as	

taken	from	STRING.	

https://sites.google.com/site
/medusa3visualization/	

(Hooper	and	
Bork,	2005)	
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Ondex	

Standalone	freely	available	
open	source	application.	

Provides	2D	representations	
of	directed,	undirected	and	
weighted	networks.	Handles	

large	scale	networks	of	
hundred	thousands	of	
nodes	and	edges	and	
supports	bidirectional	

connections.	Different	types	
of	data	are	separating	in	
different	disks-circles	

interconnected	between	
each	other.	

Various	filters	allow	to	selectively	
add	or	remove	connected	nodes	
from	the	display.	A	tree-like	sub-
graph	can	be	extracted	from	a	

given	node	and	the	most	important	
nodes	at	any	level	can	be	

determined.	A	filter	is	available	to	
import	microarray	expression	level	

data.	Data	may	be	imported	
through	many	databases,	among	

which	are	TRANSFAC,	Gene	
Ontology	and	KEGG.	

Ability	to	combine	
heterogeneous	data	types	
into	one	network.	Suitable	
for	text	mining,	sequence	

and	data	integration	
analysis.	

http://www.ondex.org/	

(Koehler	et	
al.,	2005,	

Kohler	et	al.,	
2006,	Skusa	
et	al.,	2005)	

Osprey	

Standalone	application	
running	under	a	wide	range	
of	platforms.	Provides	2D	

representations	of	directed,	
undirected	and	weighted	
networks.	Not	efficient	for	
large-scale	network	analysis	
but	provides	various	layout	
options	and	ways	to	arrange	
nodes	in	different	geometric	

distributions.	

Provides	several	features	for	
functional	assessment	and	

comparative	analysis	of	different	
networks	together	with	network	

and	connectivity	filters	and	dataset	
superimposing.	Also	allows	to	
cluster	genes	by	GO	Processes.	

Data	can	be	loaded	either	by	using	
different	text	formats	or	by	
connecting	directly	to	several	

databases.	

Various	filtering	capabilities	
render	Osprey	a	powerful	

tool	for	network	
manipulation.	The	key	
feature	is	the	ability	to	

incorporate	new	interactions	
into	an	already	existing	

network.	

http://tinyurl.com/osprey1/	
(Breitkreutz	
et	al.,	2003)	

Pajek	

Standalone	Windows	
application.	Offers	2D	and	
pseudo3D	representations,	
supports	single,	directed	
and	weighted	graphs.	
Suitable	for	large	scale	

networks	with	thousands	or	
million	of	nodes	and	

vertices.	Great	variety	of	
layout	options.	Separates	
data	into	layers,	allowing	
the	display	of	hierarchical	
relationships.	Can	handle	
dynamic	graphs	and	reveal	
how	networks	change	over	

time.	
	

Highly	interactive,	many	clustering	
methods.	Allows	decomposition	of	
a	large	network	into	several	smaller	
networks	and	detection	of	clusters	

in	them.	
It	has	its	own	input	file	format,	not	
compatible	with	commonly	used	
formats;	not	connected	with	any	

biological	data	sources.	

Variety	of	layout	algorithms	
facilitating	exploration	and	
pattern	identification	within	

networks.	

http://pajek.imfm.si/	
(Batagelj	and	
Mrvar,	1998)	

PathVisio	

Pathway	analysis	and	
drawing	software	to	draw	
edit	and	analyze	biological	
pathways.	Experimental	

data	can	be	easily	visualized	
on	pathways	and	relevant	
pathways	that	are	over-
represented	in	a	data	set	

can	be	easily	found.	

Provides	a	basic	set	of	features	for	
pathway	drawing,	analysis	and	
visualization.	Additional	features	

are	available	as	plugins.	

Plugins	extended	
functionalities	and	can	also	

be	customized	for	an	
advanced	use.	

http://www.pathvisio.org	
(Kutmon	et	
al.,	2015)	

Pathway	
Tools	

A	tool	to	guide	the	user	
through	creation,	editing,	
querying,	visualization,	and	

analysis	of	Pathway	
Genome	Databases	

Wide	diffusion	in	different	research	
communities.	

Pathway	Tools	Omics	
Viewers	allow	-omics	

datasets	to	be	graphically	
painted	onto	three	system-
level	diagrams:	a	diagram	of	
the	full	metabolic	network	of	
the	organism,	a	diagram	of	
the	full	regulatory	network	
of	the	organism,	and	a	

diagram	of	the	full	genome	
of	the	organism.	

It	can	also	depict	data	from	
multiple	-omic	data	types	
simultaneously,	such	as	

mixing	gene-expression	and	
metabolomics	data	on	one	

diagram.	

http://bioinformatics.ai.sri.c
om	

(Karp	et	al.,	
2010)	

PIVOT	

Java	application	free	for	
academics.	Projects	in	2D	

and	uses	single	non	directed	
lines	to	show	relationships	

Allows	the	expansion	of	the	
network,	to	highlight	dense	areas	
of	the	map,	to	visualize	a	subarea	
of	a	big	network.	Many	features	

Best	suited	for	visualizing	
PPIs	and	identifying	

relationships	between	them.	
http://acgt.cs.tau.ac.il/pivot/	

(Orlev	et	al.,	
2004)	



	 20	

between	bioentities.	No	
limits	in	the	size	of	data	

presented.	

help	to	navigate	and	interpret	the	
interaction	map,	and	to	connect	
remote	proteins	to	the	displayed	

map	through	graph-theory	
algorithms.	Configured	to	work	
with	proteins	from	human,	yeast,	
Drosophila	and	mouse,	links	to	
external	web	information	pages.	

ProMeTra	

An	open	source	framework	
that	provides	visualization	
methods	for	multi-omic	

datasets.	

The	integration	of	genomic	and	
transcriptomic	datasets	originating	

from	different	services.	

Format	SVG	is	used	to	
facilitate	the	visualization	of	

the	results	of	complex	
functional	genomics	

experiments.	

http://fusion.cebitec.uni-
bielefeld.de	

(Neuweger	et	
al.,	2009)	

Tulip	

Standalone	free	application.	
Allows	generic	visualization	
of	extremely	large	networks	

and	supports	3D	
visualization.	

	 	
http://tulip.labri.fr/TulipDru

pal/	
(Auber,	2004)	

VANTED	

Standalone	free	application.	
Supports	combined	

visualization	of	abundance	
data,	networks	and	

pathways.	

	 	
https://immersive-

analytics.infotech.monash.ed
u/vanted/	

(Junker	et	al.,	
2006)	

Table 2 Visualization tools focused on interaction networks 
	
An interesting cloud-based, community driven resource (GenomeSpace, 
http://www.genomespace.org) has been recently presented (Qu et al., 2016). Through the 
implementation of workflows, GenomeSpace aims to make the use of integrative analysis 
accessible to non-programmers. 

 

Integration of -omic data into models 
The statistical and machine learning approaches to data integration illustrated above provide a first 

attempt to identify the biochemical pathways perturbed in different patients and statistical 

correlations with drug responses. Identifying recurrent mutations in cancer reveals widespread 

lineage diversity and mutational specificity, but fails to deliver a system-level understanding of the 

molecular mechanisms behind the emergence of different phenotypes (Chang et al., 2016). On the 

other hand, network biology approaches that apply topological and graph theory concepts to 

biological networks statistically inferred from -omic data or reconstructed according to a priori 

knowledge are important for understanding the structure and properties of the integrated cellular 

network and its modular structure, with the ultimate aim of understanding its organizational 

principles (Barabasi et al., 2011). Enrichment of network modules, which integrate -omic data with 

known or pre-defined molecular scaffolds, allows the identification of the portions of the network 

that are most active under a given condition (International Cancer Genome Consortium, 2015). 

Nevertheless, by relying on a static conceptualization of the network, while ignoring its integrated 

dynamics in state space, also these methods fail to provide a mechanistic understanding of the 

disease, which would be desirable to reliably predict individual drug response. 
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The mechanistic understanding of a system requires the integration of these data under 

mathematical and relational models that can describe dynamically the relationships between their 

components. Two main computational frameworks allow to predict the phenotype that emerges 

from a given biological network structure: kinetic modeling and constraint-based modeling. 

Kinetic modeling allows estimating the evolution in time of the concentration of each network 

component in a reacting system (such as metabolites, transcripts or proteins). The transition from 

one state of the network to the following one is determined by the interaction with the other 

network components and by rate law equations. The traditional way of modeling the time evolution 

of the molecular populations in a reacting system is to use ordinary differential equations (ODEs). 

However, when more appropriate, an approach that considers stochastic fluctuations can be applied.  

An example of data integration into kinetic modeling is provided by the kinetic model of glycolysis 

in yeast (Teusink et al., 2000) and Plasmodium falciparum (Penkler et al., 2015). Each glycolytic 

enzyme was kinetically characterized and the parameters of kinetic equations (for example, 

Michaelis–Menten) were chosen to best fit the experimental kinetic data; the resulting rate laws 

incorporated into the model. The difficulty in obtaining kinetic parameters and their appropriateness 

for in vivo situations makes it difficult if not impossible to scale-up traditional kinetic models to 

large (genome-wide) networks. A recent paper (Bordbar et al., 2015) integrated metabolic profiling 

data obtained from the plasma of different patients into a whole-cell, metabolic kinetic model of a 

red blood cell (that includes 55 transport and 87 intracellular reactions). The models allowed to 

identify individuals at risk for a drug side effect and protective genetic variations, proving the 

feasibility and usefulness of “personalized” kinetic models, whose use will accelerate discoveries in 

characterizing individual metabolic variation. Still, routine integration of -omic data into kinetic 

modeling remains a problematic task that is awaiting improved methodologies. 

On the contrary, constraint-based modeling is a framework well suited for metabolic network 

modeling and multi-omic data integration, which is capable of providing a deeper understanding of 

metabolic functions than data alone (Hyduke et al., 2013). Constraint-based modeling relies on the 

idea of excluding phenotypes that do not abide by the imposed constraints, iteratively restricting the 

space of possible phenotypes until getting the most plausible one(s) (Bordbar et al., 2014). 

Fundamental assumption of this kind of techniques is a pseudo-steady state for internal metabolites 

concentrations. As compared to kinetic modeling, constraint-based modeling has the substantial 

advantage of not requiring any knowledge on kinetic parameters governing reaction rates. Recent 

developments of constraint-based models account for gene expression reconstructions that use 

approximate stoichiometric relationships between the level of enzymes and their cognate catalysed 
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fluxes to compute feasible, optimal and spatially resolved states describing the cellular composition 

at the molecular level (O'Brien and Palsson, 2015). 

 

Multi-omic data integration into genome-scale constraint-based models 
The starting point for multi-omic data integration, within the constraint-based framework, is the 

description of the entire metabolism of a given organism as a network. This goal is attainable thanks 

to the increased access to genome sequencing and annotation techniques. Moving from functional 

gene annotation, a metabolic reaction can be associated to each metabolic gene, that is, the reaction 

catalyzed by the corresponding enzyme. Once the identified reactions are grouped by metabolite, a 

genome-wide metabolic network is obtained. According to this paradigm, several genome-wide 

reconstructions are today available for different organism, from micro-organisms to human. An 

example is provided by Recon2 (Thiele et al., 2013) and HMR (Mardinoglu et al., 2013), which 

encompass virtually all the reactions that in principle can occur in human metabolism, and are 

therefore considered as generic reconstructions. Genome-wide generic reconstructions can be 

customized on specific cell types or tissues (or even patients) by exploiting several kinds of -omic 

data and appropriate algorithms (for a review see (Yizhak et al., 2015)). The so-obtained specific 

network represents the sub-network that is known to be active in a given cell, according to its 

transcriptome, proteome, metabolome and fluxome (Agren et al., 2012). 

The family of -omic data that can most naturally be incorporated into genome-wide networks is 

fluxomic data. Constraint based models allow indeed to specify the boundaries for the flux allowed 

for a given reaction. Constraints on nutrient intake and secretion fluxes (exchange reactions in the 

constraint-based terminology) are determinant in reducing the space of possible phenotypes.  

The incorporation of transcriptome data to further constrain the flux distribution solution space is 

less straightforward. The main approaches are: (a) the switch approach (e.g. GIMME and iMAT), 

using on/off reaction fluxes based on threshold expression levels; (b) the valve approach (e.g. E-

Flux and PROM): regulate reaction fluxes according to relative gene/protein expressions (Saha et 

al., 2014). See (Blazier and Papin, 2012) for a recent review. 

Paradoxically, metabolite profiling may be the kind of -omic data that can most-difficulty be 

integrated into genome-wide models (as reviewed in (Topfer et al., 2015)). However, several 

algorithms, such as the INIT and tINIT (Agren et al., 2014, Agren et al., 2012) have been proposed 

as an effective strategy to extract the portions of a generic GW model that is active in a given tissue 

or cell type, according to heterogeneous biological evidence, including metabolome. Based on 

proteome, or on trascriptome when the former is not available, INIT assigns weights to the reactions 

in the HMR according to their different levels of evidence in the specific tissue or cell type. A 
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unitary weight is also assigned to demand reactions (reactions that remove metabolites from the 

network) according to detected metabolites to impose the capability to accumulate a set of 

metabolites. An optimization process is then performed with the aim of maximizing as much as 

possible the reactions fluxes with a high weight (since the corresponding enzymes have a high 

expression level) while minimizing the others. Reactions that carry flux in the obtained optimal flux 

distribution are assigned to the tissue or cell specific model. 

A more complex approach for integrating quantitative proteomic and metabolomic data with 

genome-scale metabolic network models, called integrative omics-metabolic analysis (IOMA), was 

also proposed (Yizhak et al., 2010), which requires a mechanistic model of reaction rates. To 

evaluate the predictive performance of IOMA, the authors applied it to predict metabolic flux for 

red blood cells (RBC) for which a detailed kinetic model is available. Remarkably, they 

demonstrated the advantages in the use of both proteomics and metabolomics to infer metabolic 

flux, as compared to inputting only one of the sources.  

Once an active network is obtained according to the different integration algorithms, Flux Balance 

Analysis (FBA) is then typically applied to determine the flux distribution that maximizes or 

minimize a specified objective.  

Data integration and human health 

The integration of different -omic data, without the aid of computational models, has allowed 

identifying biomarkers of different human diseases. We focus here on the next step: how integration 

of data into models may improve system-level understanding of human diseases and in perspective, 

may help in defining novel drug targets and better therapeutic regimens.  

Applications to metabolic diseases 
Genome-wide metabolic networks find their natural application in the study of metabolic diseases. 

In the simplest case, inborn error of metabolism (IEM) can be easily simulated by ‘deleting’ the 

reaction catalyzed by the enzyme coded by the defecting gene. Metabolic biomarkers can then be 

predicted by monitoring the change in their feasible exchange flux (Shlomi et al., 2009). Indeed, 

Recon 2 predicted 54 reported biomarkers for 49 different IEMs, with an accuracy of 77% (Thiele 

et al., 2013). However, metabolic network modeling has also been successfully applied to the 

investigation of more complex metabolic diseases, such as diabetes. As an example, the integration 

of transcriptome data and metabolic pathways, through pathways enrichment analysis has supported 

the identification of reporter metabolites that allow to distinguish non-alcoholic fatty liver disease 

from healthy patients (Mardinoglu et al., 2014).	
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Varemo and colleagues (Varemo et al., 2015) elucidated metabolic alterations in skeletal myocytes 

associated with type-2 diabetes at a system level, by generating cell-type-specific RNA-sequencing 

(RNA-seq) data for human myocytes and studying the correlation of this data with proteome data 

for myocytes from the Human Protein Atlas. Then, the authors constructed a comprehensive 

myocyte genome-wide model using these data and mapped transcriptional changes related to type-2 

diabetes on the myocyte genome-wide model. An extensive transcriptional regulation in type-2 

diabetes emerged, particularly around pyruvate oxidation, branched-chain amino acid catabolism 

and tetrahydrofolate metabolism, connected through the down-regulated dihydrolipoamide 

dehydrogenase. 

Jozefczuk and colleagues (Jozefczuk et al., 2012) analyzed network features of hepatic steatosis, 

another common metabolic disease. The authors generated gene-set enrichment and over-

representation analysis through the pathway database integration system ConsensusPathDB. 

Network analysis of expression data of steatosis samples versus control revealed several pathways 

and functional modules of the disease, on which a first model prototype of steatosis related 

processes was developed. The prototype model included a minimal network, comprising a 

regulatory network (based on the transcription factor SREBF1) linked to a metabolic network of 

glycerolipid and fatty acid biosynthesis (including the downstream transcriptional targets of 

SREBF1). As the glutathione pathway was among the pathways enriched in steatosis versus control, 

the authors mapped mRNA expression data to a kinetic model of the glutathione synthesis pathway, 

focusing on a subset of complete pathways, rather than all genes of the genome. Then, Jozefczuk 

and co-authors extended this approach to other pathways important for liver regulation and 

functioning, such as fatty acid biosynthesis, fatty acid metabolism, bile acid pathway, 

gluconeogenesis, urea cycle, glycolysis, tricarboxylic acid cycle, and glyoxalate shunt. An object-

oriented, comprehensive, multi-pathway, multi-tissue in silico platform to investigate hepatic 

metabolism and its associated deregulations has been constructed The SteatoNet model ability to 

effectively describe biological behavior has been proven by its ability to identify metabolic flux 

alterations previously identified experimentally in liver patients and animal models (Naik et al., 

2014). 

Applications to cancer research 
Besides metabolic diseases, modeling of metabolic networks finds a large application in cancer 

research, where alterations in metabolism have been identified as a major hallmark of cancer 

(Hanahan and Weinberg, 2011, Alberghina et al., 2014, Yizhak et al., 2015). FBA - typically 

exploited to predict physiologically relevant growth rates or the rate of metabolite production as a 

function of the underlying biochemical networks (Lewis et al., 2012, O'Brien et al., 2015) - is 
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particularly useful to investigate the metabolic reprogramming performed by cancer cells (Jerby and 

Ruppin, 2012). FBA allows to identify, given a specified nutrient availability the distribution of 

metabolic flux across the various pathways that maximize growth. In fact, enhanced growth 

indistinctly characterizes cancer cells and can be regarded as their ‘purpose’. To this aim, the 

Human Metabolic Atlas offers a collection of tissue-specific reconstructions for both health and 

tumor tissues, obtained with the INIT algorithm, starting from the generic human reconstruction 

HMR and from -omic data in public databases such as the Human Protein Atlas (Uhlen et al., 2010). 

The Human Metabolic Atlas also includes functional personalized GEMs for six Hepatocellular 

carcinoma (HCC) patients (Agren et al., 2014). Agren et al. (Agren et al., 2014) identified strong 

differences among the six HCC patients and simulated the effect of potential antimetabolites, by 

blocking the reactions that the corresponding metabolite engages in. They identified potential 

antimetabolites with antiproliferative or cytotoxic effect against HCC tumors for all six patients. 

Among these potential antimetabolites, they experimentally evaluated the effect of an L-carnitine 

analog on HepG2 cell proliferation, confirming their genome-scale modeling predictions.  

In 2015, Asgari and colleagues (Asgari et al., 2015) used the human metabolic model Recon1 as a 

scaffold to reconstruct tissue-specific models with the E-Flux method, which maps gene expression 

data into a genome-wide model by constraining the maximum possible flux through the reactions. 

Then, through FBA, the authors computed the reaction fluxes between normal and corresponding 

cancer cells in their subsystems. They found that the distribution of increased and decreased 

metabolic fluxes was unrelated to the significantly up- and down-regulated metabolic genes of the 

associated cancer. Thus, they demonstrated that expression pattern of all metabolic genes (and not 

just significant up- and down-regulated ones) plays a key role in metabolic rewiring of cancer cells. 

Consistently, rather than differential expression of specific genes, 7 subsystems (out of 13 common 

to all considered cancer cells) appear to be responsible for the Warburg effect: glutamine 

metabolism, nucleotides, glycolysis, oxidative phosphorylation, pentose phosphate pathway, TCA 

cycle and pyruvate metabolism. Therefore, the Warburg effect appears to be a consequence of 

metabolic adaptation. 

GEMs indeed represent a valuable tool to investigate the rationale behind metabolic events 

associated with cancer like the Warburg effect (Shlomi et al., 2011). In this regard, Shlomi and 

colleagues inserted a solvent capacity constraint to the genome-scale human metabolic 

reconstruction Recon1 (Mo et al., 2007) to show how aerobic glycolysis emerges as the best 

strategy for growth. Along similar lines, (Vazquez, 2010)	used a reduced flux balance model of 

ATP production constrained by the glucose uptake capacity and by the solvent capacity of cell’s 
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cytoplasm, to demonstrate that the Warburg effect is a favorable catabolic state for rapidly 

proliferating cells with high glucose uptake capacity. 

When studying metabolic plasticity and the ability of cells to adapt to changing environmental 

conditions, “core models” may be a valuable alternative to GEMs by allowing to highlight the more 

relevant properties of the network (Cazzaniga et al., 2014). Di Filippo and colleagues extracted and 

manually curated, from the corresponding GEMs in the Human Metabolic Atlas, specific constraint-

based core models for liver, breast and lung tumors. A core model reconstructed starting from the 

original general human metabolic network was used as a reference. The three tumor models showed 

common metabolic properties reported in different kind of tumors: down regulation of respiratory 

chain, enhanced glycolytic flux, stimulated utilization of glutamine via reductive carboxylation. 

Metabolic flux distribution among the three tumors was significantly different. Reactions that were 

present in the reference model, but absent in the tumors models were isolated. Their insertion into 

the cancer models resulted in a less cancerous phenotype and, vice versa, their deletion from the 

generic models lead to a more cancerous phenotype. A group of reactions in particular was 

identified to be critically responsible for the reversion of tumor models towards less cancerous 

phenotypes (Di Filippo et al., 2016). The group includes the transport of phosphates from cytosol 

and mitochondrion, whose role for the correct functioning of the respiratory chain was indeed 

demonstrated in literature (Palmieri, 2004). The metabolic advantages provided by particular 

metabolic events as compared to alternative phenotypes may also be investigated by comparing 

ensembles of flux distributions consistent with alternative strategies (Damiani et al., 2014). 

The workflow of constraint-based data integration approaches to cancer is schematically illustrated 

in Figure 5. 
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Figure 5 Workflow of constraint-based data integration approaches to cancer. Workflow from 
the extraction and curation of a model from the generic human metabolic map (top-right box), to its 
customization according to -omic data (following the arrows downstream of top boxes), to its flux 
balance analysis to estimate fluxes and other approaches (such as the ensemble approach) to explore 
the space of possible phenotypes, to the simulation of possible drug targets (bottom box). For each 
process some references are reported as an example. 

Conclusions  

Integration of different -omic technologies allows to better extract hidden information in each data set 

allowing an unprecedented precision in the definition of the molecular phenotype of patient-derived 

samples. Correlation of these high-resolution molecular phenotypes to the clinical outcome provides 

precious indications for the development of novel stratification procedures to be used in the choice 

of the more appropriate therapeutic regimen. Integration of (multi)-omic data into mathematical 

models of diseased networks – notably metabolic networks – allows ex-post examination of patients 

data collections. These personalized models provided the proof-of-principle of their ability to 

identify fragility points and to design appropriate personalized therapeutic regimens. As technical 

improvements and reductions in cost make it easier and easier to collect -omic data and more 

powerful and efficient computational methods are devised, it will be possible to apply this 

workflow in real time and use it as a guide in the design of a patient’s personalized therapy, 

enabling the customization of medical care to the specific phenotype of each patient rather than 

providing a single, conventional treatment. 
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