
PDDL+ Planning with Temporal Pattern Databases

Wiktor Piotrowski, Maria Fox,
Derek Long, Daniele Magazzeni

Department of Informatics,
King’s College London,

United Kingdom

Fabio Mercorio
Department of Statistics

and Quantitative Methods,
CRISP Research Centre,

University of Milan-Bicocca, Italy

Abstract

The introduction of PDDL+ allowed more accurate repre-
sentations of complex real-world problems of interest to the
scientific community. However, PDDL+ problems are no-
toriously challenging to planners, requiring more advanced
heuristics. We introduce the Temporal Pattern Database
(TPDB), a new domain-independent heuristic technique de-
signed for PDDL+ domains with mixed discrete/continuous
behaviour, non-linear system dynamics, processes, and
events. The pattern in the TPDB is obtained through an ab-
straction based on time and state discretisation. Our approach
combines constraint relaxation and abstraction techniques,
and uses solutions to the relaxed problem, as a guide to solv-
ing the concrete problem with a discretisation fine enough to
satisfy the continuous model’s constraints.

1 Introduction

Automated planning is continuously evolving to tackle chal-
lenging problems emerging from various fields of science.
The standardised planning language, PDDL (McDermott et
al. 1998), has evolved accordingly to allow modelling of
new concepts and constructs, and subsequently enable fur-
ther research. PDDL+ (Fox and Long 2006) extended the
language to include processes and events.

PDDL+ enabled modelling of hybrid systems (mixed dis-
crete/continuous domains), and planning with PDDL+ do-
mains has been gaining substantial research interest in the
recent years. Problems set in hybrid systems are noto-
riously difficult to solve. Non-linear system dynamics,
high branching factors, and vast search spaces can render
even state-of-the-art heuristic planners ineffective. Hybrid
systems have also been the subject of research in Model
Checking for many years. Striking similarities between
model checking and automated planning allowed symbi-
otic growth of both fields, through knowledge transfer of
approaches and techniques (e.g. (Bogomolov et al. 2014;
Bryce et al. 2015)).

One of the approaches successfully used in both planning
and model checking is the Pattern Database (PDB)(Culber-
son and Schaeffer 1998). A Pattern Database is a look-up ta-
ble indexed by a subset of the state and containing a precom-
puted heuristic value that reflects the cost of solving the cor-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

responding subproblem. In planning, PDBs are considered
one of the most successful classes of heuristics for classical
planning problems (Edelkamp 2014), while model checking
approaches rely on PDBs for handling hybrid systems.

We build on research conducted in both fields to develop
the Temporal Pattern Database (TPDB), a new domain-
independent heuristic method that enables tackling com-
plex planning problems containing non-linear dynamics and
mixed discrete/continuous behaviour. The TPDB combines
time and state abstraction with constraint relaxation, and
uses the solutions to the relaxed problems as a guide to solv-
ing the concrete problems.

To further improve the efficiency and performance, we
also introduce the Partial Temporal Pattern Database. It is a
downscaled variant of the TPDB, which operates in the same
manner, and uses the same mechanics to guide the search as
the full TPDB. Our heuristic prunes a substantial part of the
search space, reducing the execution time.

We implemented the Temporal Pattern Database heuris-
tic into DiNo (Piotrowski et al. 2016), a discretisation-based
heuristic planner, able to cope with non-linear dynamics and
full PDDL+ semantics. The new extension is called DiNo-
TPDB. To the best of our knowledge, it is the first extension
of the PDB heuristic to temporal hybrid planning domains.

We begin by discussing related work in section 2. Next, in
section 3, we give a background on DiNo and its discretised
setting. Section 4 describes, and formally defines, the Tem-
poral Pattern Database heuristic. Experimental results and
comparison against other planners are shown in section 5.
Section 6 concludes the paper and describes future research.

2 Related Work

The Pattern Databases (PDBs) are a successful class of
abstraction heuristics, originating from classical planning
(Culberson and Schaeffer 1998). They have since been
used to solve a variety of problems (Edelkamp 2002; 2014;
Haslum et al. 2007; Sievers, Ortlieb, and Helmert 2012).
While PDBs in planning are applied to propositional do-
mains, research in model checking has concentrated on
using PDBs for hybrid systems (Bogomolov et al. 2012;
2013). PDBs in planning applications work by obscuring
part of the states’ variable set, model checking approaches
exploit PDBs by abstracting the continuous state variables.

The AAAI-17 Workshop on
Symbolic Inference and Optimization

WS-17-14

930

Over the years, there have been various restricted ap-
proaches in planning for dealing with hybrid domains (Mc-
Dermott 2003a; Penberthy and Weld 1994; Li and Williams
2008; Coles et al. 2012; Shin and Davis 2005; Fernández-
González, Karpas, and Williams 2015; Scala et al. 2016),
though none of them use PDB heuristics. Furthermore, these
planners have significant limitations either in terms of scal-
ing, handling PDDL+ features, or using a different mod-
elling language altogether. More recent attempts at deal-
ing with PDDL+ domains include using SMT solvers such
as SMTPlan+ (Cashmore et al. 2016), an efficient planner
handling all aspects of PDDL+, though limited to nonlinear
polynomials. UPMurphi (Della Penna et al. 2009) can rea-
son with the full PDDL+ feature set and non-linear dynamics
but suffers from scalability issues. DiNo (Piotrowski et al.
2016) extends UPMurphi, and alleviates scalability issues
with the Staged Relaxed Planning Graph+ heuristic, specifi-
cally designed for PDDL+ domains.

Currently, due to the complexity of PDDL+ domains, all
planners focus on finding a feasible solution only.

3 PDDL+ Planning through Discretisation

DiNo (Piotrowski et al. 2016) and UPMurphi (Della Penna
et al. 2009) are discretisation-based planners, that approx-
imate the continuous dynamics of systems in a discretised
model using uniform time steps and step functions. The use
of a discretised model and a finite-time horizon ensures a fi-
nite number of states in the search for a solution, which can
be validated against the original continuous model through
the validator VAL (Howey, Long, and Fox 2004).

In order to plan in the discretised setting, PDDL+ models
are translated into finite state temporal systems, as formally
described in the following. The notation is inspired from
(Piotrowski et al. 2016).
Definition 1. Concrete State. Let P = {p1, ..., pm} be a
finite set of discrete variables and V = {v1, ..., vn} be a set
of real variables. A state s is a triple s = (p(s), v(s), t(s)),
where p(s) = (p1(s), ..., pm(s)) ∈ Z

m composes the dis-
crete part of the state, v(s) = (v1(s), ..., vn(s)) ∈ R

n com-
poses the continuous part of the state, and t(s) is the value
of the temporal clock in state s. We also denote with vi(s)
(pi(s) respectively) the value of variable at the i-th position
in v(s) (p(s) respectively).

Here only real variables and temporal clock are discre-
tised, according to the Discretise & Validate approach (Della
Penna, Magazzeni, and Mercorio 2012).
Definition 2. Δ−Action. A Δ-action updates the state dur-
ing the search. It can be of three types: an instantaneous
PDDL action, a snap action (Long and Fox 2003), or a time-
passing action, tp.

Borrowing from (Hoffmann 2003), we also denote the set
of action preconditions as pre(Δa), and the set of action
effects as eff(Δa).
Definition 3. Finite State Temporal System (FSTS).
Let a Finite State Temporal System S be a tuple
(S, s0,ΔA,D, F, T) where S is a finite set of states, s0 ∈ S
the initial state, ΔA is a finite set of Δ-actions and D =

{0,Δt} where Δt is the discretised time step. F : S×ΔA×
D → S is the transition function, i.e. F (s,Δa, d) = s′ iff
applying a Δ-action Δa with a duration d to a state s yields
a new reachable state s′. T is the finite temporal horizon.

Note that d can be 0 to allow for concurrent plans and
instantaneous actions. In fact, d will equal Δt only in the
case of the tp action. The finite temporal horizon T makes
the set of discretised states S finite.

A solution to a planning problem (i.e. a trajectory) is a
path in the FSTS transition graph from a reachable state, and
ending with a goal state. Therefore, a solution to a planning
problem is a trajectory starting with the initial state.
Definition 4. Trajectory. A trajectory, π, in an FSTS
S = (S, s0,ΔA,D, F) is a sequence of states, Δ-
actions and durations ending with a state, i.e. π =
s0,Δa0, d0, s1,Δa1, d1, ..., sn where ∀i ≥ 0, si ∈ S is a
state, Δai ∈ ΔA is a Δ-action and di ∈ D is a duration. At
each step i, the transition function F yields the subsequent
state: F (si,Δai, di) = si+1.

Given a trajectory π, we use πs(k), πa(k), πd(k) to de-
note the state, Δ-action, and duration at step k, respectively.
The length of the trajectory, based on the number of ac-
tions it contains, is denoted by |π| and the duration of the
trajectory is denoted as π̃ =

∑|π|−1
i=0 πd(i) or, simply, as

π̃ = t(πs(n)). All states in any trajectory are reachable
from states preceding them in the sequence, more formally
we define reachable states in the following.
Definition 5. Reachable States. Let S =
(S, s0,ΔA,D, F, T) be an FSTS. A state si ∈ S is
reachable from state sj ∈ S iff there exists a trajectory π in
S s.t. πs(k) = si and πs(l) = sj , where k ≤ l and l ≤ T .
Therefore, the finite set of states reachable from state s ∈ S
is denoted Reach(s). Conversely, Reach−1(s) is the set of
all state from which s is reachable.

Following from Definition 1, each state s contains the
temporal clock t, and t(s) counts the time elapsed in the
current trajectory from the initial state to s. Furthermore,
∀si, sj ∈ S : F (si,Δa, d) = sj , t(sj) = t(si)+d. Clearly,
for all states s, t(s) ≤ T .
Definition 6. Planning Problem. In terms of a FSTS, a
planning problem P is defined as a tuple P = (S, G) where
G ⊆ S is a finite set of goal states. A solution to P is
a trajectory π∗ where |π∗| = n, π̃ ≤ T, π∗s (0) = s0 and
π∗s (n) ∈ G.

4 Temporal Pattern Database

Temporal Pattern Database extends the PDB to cope with
temporal information and continuous variables.

In Fig.1 we show a graphical representation of TPDB-
based planning. Initially, the PDDL+ domain and problem
are both discretised, according to the D&V approach, using
time and state abstraction (see Sec. 4.1). Notice that we also
use a goal and action relaxation to avoid mismatches be-
tween temporal clocks and the time discretisation (see Sec.
4.1). Then, we synthesise a TPDB for the abstract PDDL+
domain and problem as discussed in Sec. 4.2. Once the

931

Figure 1: Outline of TPDB-based Planning

TPDB has been generated, we can solve the original PDDL+
planning problem by performing a concrete search using a
fine-grained discretisation Δt. Specifically, the TPDB is
queried for each explored concrete state to provide the next
promising action which is likely to be on the path to the
goal. The action is then applied to the concrete state and
the process is repeated for the subsequently explored state.
Effectively, the TPDB guides the concrete search to explore
only the promising areas of the search space based on solu-
tions found in the relaxed and abstracted setting. Finally, if
the solution resulting from the concrete search is not valid,
the discretisation should be refined and the process repeated.

4.1 Building the TPDB

The TPDB maintains the simplicity of the look-up table
structure and is generated during the preprocessing stage.
Search in abstract and relaxed space is conducted, and the
results are compiled into the TPDB.

Abstraction. The abstraction is two-fold: time abstraction
and state abstraction. Time abstraction works by scaling the
concrete time-step Δt up to the abstract time step Δt#, us-
ing abstraction function φ.

Definition 7. Time Abstraction. A time abstraction is a
function φ : D → D# which scales the time step up, where
D = {0,Δt} and D# = {0, φ(Δt)}, i.e. φ(Δt) = c∗Δt =
Δt# where c ∈ R≥1 is a scalar constant.

Time abstraction is used in the FSTS transition function
when using the time-passing action, i.e. F (s, tp,Δt#).
While time abstraction only concerns the discretised time
step, the state abstraction function reduces the precision of
all continuous variables v(s), where s ∈ S, to a given value.

Definition 8. State Abstraction and Abstract State. The
State Abstraction is a function ψ : S × R

+ → S# where
S is a finite set of concrete states, S# is a finite set of ab-
stracted states and R

+ is the set of positive real numbers.
Then an Abstract State s# = ψ(s, q) s.t. the abstracted val-
ues v#(s#) are computed as follows: ∀v ∈ v(s) : v# =
(v + q/2)− ((v + q/2) mod q).

In practice, function ψ reduces the precision of real vari-
ables v(s) for a concrete state s ∈ S and q ∈ R

+ and yields
an abstract state s# ∈ S#, i.e. ψ(s, q) = s#. For example,
applying state abstraction ψ(s, 0.05) to a state s containing a

variable v1 ∈ v(s), where v1 = 12.34567, yields an abstract
state s# with real variables scaled to precision of 0.05, i.e.
v#1 = 12.35. Applying ψ(s, 2) yields the abstracted variable
v#1 = 12.

Discretising continuous system dynamics through step
functions can sometimes under- or over-approximate the
values of continuous variables (depending on the equations).
This can be seen in the non-linear generator domain, where
in the discretised model, the planner slightly overestimates
the amount of fuel added to the generator (compared to val-
ues in the continuous model).

A concrete state s and an abstract state s# are corre-
sponding to each other if they agree on the discrete part of
their state variables, and the continuous part of s# equals to
the continuous part of ψ(s, q).

Choosing precision for the state abstraction is crucial for
the Temporal Pattern Database. On the one hand, choosing a
coarser precision for real variables will shrink the size of the
TPDB (each abstract state will correspond to a larger num-
ber of concrete states). On the other hand, choosing finer
precision will make the heuristic estimates more accurate.
When choosing the precision value, one should aim to bal-
ance the two aspects.

Relaxation. When the TPDB is built, the problem is re-
laxed. The relaxation is applied to goal conditions and action
durations. Both of these relaxation methods are designed to
alleviate issues caused by the coarse abstract discretisation.

Goal relaxation is applied to account for the rigid con-
straints which can cause problems when working with ab-
stract discretisation. The coarse dicretisation can cause cer-
tain values to be eliminated from the domains of durative
actions and process time-dependent effects.

The following example should clarify the matter. Con-
sider a durative action whose continuous effect is vi(s)+ =
Δt, for some numeric variable vi(s) ∈ s. If vi is part of the
goal condition, then the value of vi(s) needs to be a mul-
tiple of Δt for the problem to be solvable. To compensate
for this issue in the abstract space, we set bounds of size
Δt# + 1 on each numeric goal condition v(sG) which ac-
count for the discrete transitions between states. The value
of the concrete numeric goal lies in between the upper and
lower bound, i.e. lb(sG) ≤ v(sG) and ub(sG) ≥ v(sG).
The size of the bounds was chosen to contain two multiples
of Δt#, surrounding the concrete goal condition value so
that it accounts for both increasing and decreasing effects.

Definition 9. Goal Relaxation. The goal relaxation
is a function ζ : G → G that, for each goal state
sG ∈ G computes the set of relaxed goal states re-
sulting from sG by applying the relaxation to each
variable of the continuous part as follows ∀vi(sG) ∈
v(sG), v(sG) = (v1(sG), . . . , vi(sG), . . . , vn(sG))
where vi(sG) ranges within {lb(vi(sG)), ub(vi(sG))}
with lb(vi(sG)) = vi(sG) − (vi(sG) mod Δt#) and
ub(vi(sG)) = vi(sG) + (Δt# − (vi(sG) mod Δt#))

In simple terms, function ζ amends any goal condition on
vi(sG) ∈ v(sG) s.t. any value between the lower bound
lb(vi(sG)) and upper bound ub(vi(sG)), satisfies the goal

932

condition on vi(sG).
In the case of propositional goal conditions, we relax the

numeric preconditions of actions which achieve those goal
conditions in the similar manner as Def. 9.

Definition 10. Action Precondition Relaxation. Extending
the ζ function defined in Def. 9, by abuse of notation, we
apply the function to the set of actions, such that: ζ : ΔA →
ΔA. Numeric action preconditions are relaxed such that: if
∃pi(sG) ∈ p(sG)∩ eff(Δa),then v = ζ(v), ∀v ∈ pre(Δa)
with Δa ∈ ΔA and sG ∈ G.

Example: Let pk be a propositional fact in the goal state
sG, i.e. pk ∈ p(sG), and let ai be a Δ-action with precon-
dition pre(ai) = {vj = 10} and effect eff(ai) = {pk}.
Then, the action precondition relaxation would modify the
precondition of ai such that pre(ai) = {vj ≥ lb(vj), vj ≤
ub(vj)}.

Action Duration Relaxation. Another issue which arises
from a coarse time discretisation, is to do with durative ac-
tions. A coarse abstract time step Δt# can render some ac-
tion a inapplicable if its fixed duration d(a) /∈ D#, or if its
maximum flexible duration dmax(a) < Δt#.

Definition 11. Action Duration Relaxation. The action du-
ration relaxation is an action which expands the domain of
action durations in the abstract space η : D# → D#, where
D# = {0,Δt#} and D# = D# ∪ R

+.

Simply, action durations are no longer bound to multiples of
Δt# but can have any duration, subject to d(a) ≤ dmax(a).

4.2 Temporal Pattern Database

Using the abstraction and relaxation functions, we define the
Abstract FSTS and the Abstract Planning Problem which, in
turn, form the basis of the Temporal Pattern Database. The
Abstract FSTS and Abstract Planning Problem are, in fact,
both relaxed and abstracted by functions ζ, η, φ, and ψ.

Definition 12. Abstract FSTS. Let S =
(S, s0,ΔA,D, F, T) be a FSTS, then an Abstract FSTS
S# is a tuple (S#, s0,ΔA,D#, F#, T) where S# is a
finite set of abstract states under state abstraction ψ, s0
is the initial state, ΔA is a finite set of Δ-actions under
relaxation ζ, and D# = {0,Δt#} ∪ R

+ is a set of relaxed
abstract action durations. F# : S# ×ΔA×D# → S# is
a transition function, and T is a finite temporal horizon.

Definition 13. Abstract Planning Problem. Let P =
(S, G) be a planning problem, then an abstract planning
problem is a tuple P# = (S#, G), where S# is an Abstract
FSTS, and G = ζ(g) is the relaxed set of goal conditions
under relaxation ζ.

The Temporal Pattern Database is a structure which maps
abstract states to actions applicable in the relaxed state
space. A TPDB is built by using the Abstract FSTS and
transition function F# to generate the subsequent abstract
states, until the abstract goal state is found, or the finite
temporal horizon T is reached. The latter meaning that the

bounded abstract problem is unsolvable with the current pa-
rameters, prompting a refinement of the abstract time step
Δt# and/or an increase of the temporal horizon.

Formally, we define the TPDB as follows1.

Definition 14. Temporal Pattern Database (TPDB). Let
P# = {S#, G} be an abstract planning problem, S# =

(S#, s0,ΔA,D#, F#, T) be an Abstract FSTS, and R# =
Reach(s0) ∩

⋃
sG∈G Reach−1(sG). Then a Temporal Pat-

tern Database is a finite map TPDB, from R# to ΔA such
that ∀s# ∈ R# there exist k, such that πs(k) ∈ G, and a
trajectory π such that πs(0) = s#, ∀t < k ∃d# ∈ D# :

πs(t+ 1) = F#(πs(t), TPDB(πs(t)), d#) and π̃ ≤ T .

Informally, a TPDB stores all abstract state-action pairs
which exist on some trajectory to the relaxed goal.

4.3 Partial TPDB

PDDL+ planning problems often have high branching fac-
tors and long temporal horizons. Exhaustively traversing the
search space to build the full TPDB, even with a coarse dis-
cretisation and relaxation, can be very time- and memory-
consuming. The added overhead is in most cases redundant,
as most of the search space is never explored during the con-
crete search, thus the TPDB is never queried for the majority
of its elements. Because we are only concerned with finding
a feasible solution to the given problems, generating a full
TPDB is often unfeasible, as the time to build the TPDB can
disproportionately outweigh the run time of concrete search.

A solution to this issue is generating a Partial Temporal
Pattern Database, pruning parts of the abstract search space
and significantly reduces TPDB build time. Intuitively, once
a goal state sG has been reached (i.e. sG ∈ Reach(s0)),
a partial TPDB can be synthesised by collecting all the en-
countered (state,action) pairs, reachable from s0, that are on
some path to the single goal state sG (i.e. Reach−1(sG)).

It can be seen as a river, that originates from a single
source s0, then it grows by branching in several streams,
it receives water from several tributaries, and finally ends in
the mouth (i.e., goal state sG). A partial TPDB would con-
sider all streams generated from the source that are able to
reach the mouth. Conversely, all the tributaries originating
from outside the river would be discarded.

Figure 2: Building the Partial TPDB

We generate the Partial Temporal Pattern Database by
limiting the abstract search to one relaxed goal state sG ∈ G,

1Our TPDB notation was inspired by (Della Penna, Magazzeni,
and Mercorio 2012)

933

and by accepting subsets of the intersection of the set of
abstract states reachable from the initial state (Reach(s0)),
and the set of states from which one goal state is reachable
(Reach−1(sG)).
Definition 15. Partial Temporal Pattern Database (TPDB).
Let TPDB= {(R#,ΔA)} be a Temporal Pattern Database
as in Def. 14, then a Partial Temporal Pattern Database
TPDBpart = {(R#

part,ΔA)} is a map from R#
part to

ΔA where R#
part ⊆ (Reach(s0) ∩ Reach−1(sG)), s0 is

the initial state and sG ∈ G is a single goal state.

In the TPDB implementation in DiNo, Depth-First Search
algorithm (DFS) is used to determine the goal state for
which a Partial TPDB will be generated.

4.4 Concrete search with TPDB guidance

The concrete search algorithm is guided by the TPDB gen-
erated in the preprocessing stage. The TPDB is queried for
every dequeued state. Each of these states is abstracted (us-
ing state abstraction) and passed to the TPDB to find a cor-
responding abstract state and a suggested action. There are
3 possible outcomes when querying the TPDB:

1. Time-passing (tp) is returned, Pruning Jump is performed.
2. A Δ-action is returned (other than tp).
3. No action is returned, in which case BFS is executed.

The entire algorithm for the full concrete search through
TPDB guidance is shown in Alg. 4.1. For sake of com-
pleteness, we also provide the workflow of point 2 in Fig. 3,
where the TPDB returns a valid Δ-action.

Figure 3: Process of generating new states via TPDB
(in concrete search)

Pruning Jump. Pruning Jump is a mechanism used in
conjunction with the TPDB to skip parts of the search space
which are likely to yield unpromising states. Rather than
exploring the generated states and assessing their heuristic
values, the search algorithm chooses to advance time. Prun-
ing Jump is triggered by the suggestion from TPDB (line 3
in Alg. 4.1). If the TPDB answers a query with the time-
passing action (line 8), the Pruning Jump is executed. It
iteratively advances time in the concrete search by a total
duration of abstract time step Δt# (line 10). Time passing
is applied in increments of the concrete time step Δt, on the
previously generated state (line 11) as, due to coarse dis-
cretisation, it is possible for an adverse happening, missed

Algorithm 4.1: Concrete Search Algorithm with Prun-
ing Jump and TPDB guidance

Data: s ∈ S = Currently explored state;
a ∈ ΔA = Δ-action;
tp ∈ ΔA = time-passing Δ-action;
isV alid(s) = true if no constraints are violated in s;

1 Q := ∅s := s0;
2 while s /∈ G do
3 abest := TPDB(s) � returns suggested action querying

the TPDB;
4 if isV alid(s) then
5 if abest = ∅ then
6 for ssucc ∈ Successors(s) do
7 enqueue(Q, ssucc);

8 else if abest = tp then
9 i := 0;

10 while i < Δt# do
11 s := F (s, tp,Δt);
12 if ¬isV alid(s) then
13 break;

14 enqueueFront(Q, s);
15 i := i+Δt;

16 else
17 � Generate state through TPDB suggested action;
18 s := F (s, abest, 0);
19 enqueueFront(Q, s);

20 s := dequeue(Q);

in abstract search, to occur in concrete search (e.g. an event
prohibiting achieving goal conditions). Thus after each tran-
sition of Δt, a validity check is carried out on the resulting
state s′ (line 12). If the goal state is no longer reachable, the
Pruning Jump stops (line 13) and the search restarts from the
last enqueued state (lines 20 & 2). States generated during
each iteration of the Pruning Jump are added to the front of
the queue (line 14), helping to avoid lengthy backtracking.

In essence, if the TPDB indicates that time-passing action
is the most promising from the current state s, and no ad-
verse happenings occur between the corresponding abstract
state s# at time t(s#) and the subsequent abstract state s′#
at time t′ = t(s#) + Δt#, the time can be advanced by
the abstract time discretised variable Δt# in the concrete
search. The number of iterations in a Pruning Jump is de-
termined by the duration of the abstract and concrete time
steps, i.e. Number of iterations = Δt#/Δt.

Effectively, the Pruning Jump acts as an adaptive time dis-
cretisation mechanism which helps in mitigating state explo-
sion by skipping unpromising areas of the space.

Back-up Search Strategy. As a back-up strategy, if no
corresponding state is found in the TPDB, the search is for-
warded through breadth-first search, querying the TPDB for
every visited state. If a corresponding state is found, the
search is continued through the suggested actions again.

The back-up search strategy has been devised to account
for situations when the TPDB fails to provide a feasible next
step. This can occur for three reasons:
• TPDB-suggested action is inapplicable in concrete search

934

LINEAR GENERATOR
NON-LINEAR
GENERATOR

ADVANCED LINEAR
SOLAR ROVER

ADVANCED
NON-LINEAR

SOLAR ROVER
POWERED DESCENT

VERTICAL
TAKE-OFF

CAR

DiNo-T DiNo-S SMTPlan+ POPF UPM DiNo-T DiNo-S SMTPlan+ UPM DiNo-T DiNo-S UPM DiNo-T DiNo-S UPM DiNo-T DiNo-S UPM DiNo-T DiNo-S UPM DiNo-T DiNo-S UPM

1 0.38 0.34 0.04 0.01 140.50 0.54 3.62 0.04 X 0.38 0.54 X 0.40 298.44 X 0.56 0.68 0.18 0.46 130.34 9.86 1.04 24.02 0.34
2 0.34 0.40 0.04 0.01 X 0.88 0.78 0.06 X 0.44 140.24 X 0.42 X X 0.58 1.04 0.74 0.32 X 202.22 1.72 90.34 0.74
3 0.36 0.50 0.04 0.05 X 1.50 2.86 0.09 X 0.42 X X 0.42 X X 6.30 1.88 2.98 0.32 X X 2.72 191.76 1.16
4 0.38 0.60 0.05 0.41 X 2.44 59.62 0.18 X 0.48 X X 0.50 X X 27.48 3.52 7.18 0.34 X X 3.50 240.74 1.64
5 0.38 0.74 0.08 6.25 X 3.62 1051.84 0.40 X 0.44 X X 0.46 X X 40.46 2.88 30.08 0.34 X X 3.64 286.82 1.96
6 0.38 0.88 0.12 120.49 X 5.78 X 0.95 X 0.54 X X 0.50 X X 97.46 3.14 126.08 0.36 X X 5.46 359.72 2.10
7 0.38 1.00 0.21 X X 8.90 X 2.34 X 0.56 X X 0.54 X X 522.44 5.26 322.16 0.36 X X 7.70 365.18 2.46
8 0.36 1.16 0.43 X X 13.94 X 5.79 X 0.70 X X 0.72 X X 444.78 3.82 879.52 0.38 X X 7.78 405.90 2.44
9 0.36 1.38 0.96 X X 25.02 X 14.09 X 0.56 X X 0.56 X X 527.32 1.58 974.60 0.40 X X 7.80 461.60 2.60

10 0.36 2.00 2.41 X X X X 34.53 X 0.68 X X 0.68 X X 535.18 2.26 X 0.42 X X 10.04 389.82 2.44
11 0.40 1.84 7.46 X X - - - - 0.70 X X 0.72 X X 10.06 11.24 X - - - - - -
12 0.40 2.06 28.58 X X - - - - 0.66 X X 0.66 X X 9.72 42.24 X - - - - - -
13 0.40 2.32 107.57 X X - - - - 0.70 X X 0.70 X X X 14.90 X - - - - - -
14 0.40 2.46 503.80 X X - - - - 0.74 X X 0.72 X X X 61.94 X - - - - - -
15 0.38 2.88 X X X - - - - 0.78 X X 0.78 X X X 19.86 X - - - - - -
16 0.42 2.94 X X X - - - - 0.82 X X 0.82 X X X 80.28 X - - - - - -
17 0.40 3.42 X X X - - - - 0.88 X X 0.66 X X X 2.94 X - - - - - -
18 0.40 3.54 X X X - - - - 0.90 X X 0.92 X X X X X - - - - - -
19 0.42 3.76 X X X - - - - 0.98 X X 0.94 X X X X X - - - - - -
20 0.42 4.26 X X X - - - - 1.16 X X 0.92 X X X X X - - - - - -

Table 1: Run time in seconds for each problem in our test suite (”X” - planner ran out of memory). Labels: DiNo-T = DiNo
with Partial TPDB, DiNo-S = DiNo with SRPG+, UPM = UPMurphi

• Discrepancies in continuous state variables, larger than
the state abstraction (ψ) value, between the abstract states
in the TPDB and the abstracted concrete states.

• Triggered events and processes, uncaught in the abstract
search due to coarse discretisation, changed the state vari-
able values beyond the scope of variables in the TPDB.
In those cases, uninformed search (BFS) is applied until

a new concrete state, with a corresponding abstract state in
the TPDB (or the goal), is found (lines 5-7 in Alg. 4.1).

Because of the discretised search space and the temporal
horizon, the DiNo-TPDB search is complete (subject to Δt).

5 Evaluation
We evaluate the Temporal Pattern Database implementa-
tion, and compare the results against other planners capa-
ble of handling the same class of PDDL+ domains. This
includes DiNo-SRPG+, UPMurphi, and SMTPlan+. For the
Linear Generator, we also compare against POPF (Coles et
al. 2010) since it can handle the sub-class of PDDL+ re-
quired for this domain. For DiNo-TPDB, DiNo-SPRG+ and
UPMurphi, the concrete search was conducted under dis-
cretisation 1, for all domains. For the abstract search in
DiNo-TPDB, the abstraction settings are as follows: Car -
Δt# = 4, ψ = 4; Powered Descent - Δt# = 2, ψ = 4;
Vertical Take-Off - Δt# = 5, ψ = 5. For all other do-
mains: Δt#=10, ψ=5. The values were based on default
UPMurphi/DiNo-S settings. We used the partial TPDB for
our heuristic guidance. Tab. 1 shows the results of experi-
ments. Run times for DiNo-TPDB are the combined times
of the concrete search and generating the TPDB. All results
were obtained on a machine with 8-core Intel i7 CPU, 8GB
RAM and Ubuntu 14.04 OS. Where possible, the solutions
were validated by VAL. For Powered Descent and Vertical
Take-Off, the validation was done via ad-hoc scripts, as sys-
tem dynamics equations proved too complex for VAL. All
test domains are available at https://goo.gl/CFAybW.

Generator. The generator domain (Howey and Long
2003) is a well-established test domain for PDDL+ planners.
There are two versions of the domain, linear and non-linear.
In the linear version, the generator’s fuel level increases lin-
early when refueling, whereas the non-linear version of the
domain models the flow rate using Torricelli’s Law.

Advanced Solar Rover. The Advanced Solar Rover is
an extended version of the Solar Rover introduced in (Pi-
otrowski et al. 2016). In comparison, the advanced version
increases the role of batteries in the domain, they can be used
more often, and some of the problem instances can actually
be solved using batteries alone, rather than solely relying on
the future sunexposure event to provide energy for the rover.
This increases the branching factor and the search space.

Vertical Take-Off. Vertical Take-Off domain models the
initial stages of flying a tilt-wing rotor plane. The plane has
to lift off and transition into fixed-wing flight above a given
altitude and distance from the take-ff point without crashing.
The plane can tilt its wings relative to the fuselage, which af-
fects the rate of change in the plane’s horizontal and vertical
velocity, the latter is also affected by gravity at all times.

Powered Descent. The domain (Piotrowski et al. 2016)
models a lunar descent module making a controlled landing
on a given celestial body without crashing (modelled using
Tsiolkovsky Rocket Equation (Turner 2008)).

Car. The Car domain (Fox and Long 2006) models an
vehicle which has to accelerate and travel a precise distance
before coming to a complete stop.

The results show that the partial TPDB heuristic enriches
DiNo, and allows it to solve more constrained and complex
problems. We notice that DiNo-TPDB does particularly well
with domains heavily relying on the Theory of Waiting (Mc-
Dermott 2003b). In those cases the Pruning Jump signifi-
cantly prunes the search space, improving the performance.
Overall, DiNo-TPDB either outperforms or is competitive
on all domains in our test suite. DiNo-TPDB outperforms
its predecessor (DiNo-SRPG+) on all but one test domain.

However, DiNo-TPDB needs improvement for the Pow-
ered Descent and Car domains. Powered Descent is very
time-sensitive and there are major discrepancies between
concrete and abstract states in the TPDB, inducing signif-
icant backtracking. In the car domain, the numeric values
have very different rates of change, generating mismatches
between theoretically corresponding states. As a result,
DiNo-TPDB makes heavy use of the back-up strategy.

935

6 Conclusion

We presented Temporal Pattern Database (TPDB), a novel
domain-independent heuristic capable of handling complex
non-linear PDDL+ models exhibiting both discrete and con-
tinuous behaviour. The TPDB stores pairs of abstract states
and actions, and uses a solution to the abstracted and re-
laxed version of the original problem, as guidance to solv-
ing the concrete problem. We have also introduced the Par-
tial TPDB, a scaled down variant of the TPDB. We have
empirically shown that the DiNo-TPDB is competitive on
benchmark domains and outperforms other PDDL+ plan-
ners. The heuristic combines and extends approaches used
in automated planning and model checking, and it is an im-
portant step in PDDL+ planning. Future research will focus
on automating the process of selecting the discretisation and
abstraction settings.

References

Bogomolov, S.; Frehse, G.; Grosu, R.; Ladan, H.; Podelski,
A.; and Wehrle, M. 2012. A Box-Based Bistance Between
Regions for Guiding the Reachability Analysis of SpaceEx.
In Computer Aided Verification, 479–494. Springer.
Bogomolov, S.; Donzé, A.; Frehse, G.; Grosu, R.; John-
son, T. T.; Ladan, H.; Podelski, A.; and Wehrle, M. 2013.
Abstraction-Based Guided Search for Hybrid Systems. In
Model Checking Software. Springer. 117–134.
Bogomolov, S.; Magazzeni, D.; Podelski, A.; and Wehrle,
M. 2014. Planning as Model Checking in Hybrid Domains.
In AAAI.
Bryce, D.; Gao, S.; Musliner, D. J.; and Goldman, R. P.
2015. SMT-Based Nonlinear PDDL+ Planning. In AAAI,
3247–3253.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT. In
ICAPS.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In ICAPS, 42–
49.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012.
COLIN: Planning with Continuous Linear Numeric Change.
Journal of Artificial Intelligence Research (JAIR) 44:1–96.
Culberson, J. C., and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence 14(3):318–334.
Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrigila,
B. 2009. UPMurphi: A Tool for Universal Planning on
PDDL+ Problems. In ICAPS 2009. AAAI.
Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012.
A Universal Planning System for Hybrid Domains. Appl.
Intell. 36(4):932–959.
Edelkamp, S. 2002. Symbolic Pattern Databases in Heuristic
Search Planning. In AIPS, 274–283.
Edelkamp, S. 2014. Planning with Pattern Databases. In
Sixth European Conference on Planning.
Fernández-González, E.; Karpas, E.; and Williams, B. C.
2015. Mixed discrete-continuous heuristic generative plan-

ning based on flow tubes. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, 1565–1572.
Fox, M., and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. Journal of Artificial In-
telligence Research 27:235–297.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In AAAI,
volume 7, 1007–1012.
Hoffmann, J. 2003. The Metric-FF Planning System:
Translating“Ignoring Delete Lists”to Numeric State Vari-
ables. Journal of Artificial Intelligence Research 20:291–
341.
Howey, R., and Long, D. 2003. VAL’s Progress: The Au-
tomatic Validation Tool for PDDL2. 1 Used in the Interna-
tional Planning Competition. In Proc. of ICAPS Workshop
on the IPC.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Auto-
matic Plan Validation, Continuous Effects and Mixed Initia-
tive Planning Using PDDL. In ICTAI 2004, 294–301. IEEE.
Li, H. X., and Williams, B. C. 2008. Generative Planning for
Hybrid Systems Based on Flow Tubes. In ICAPS, 206–213.
Long, D., and Fox, M. 2003. Exploiting a Graphplan Frame-
work in Temporal Planning. In ICAPS, 52–61.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL - The Planning Domain Definition Language.
McDermott, D. V. 2003a. Reasoning about Autonomous
Processes in an Estimated-Regression Planner. In ICAPS,
143–152.
McDermott, D. V. 2003b. Reasoning about Autonomous
Processes in an Estimated-Regression Planner. In ICAPS,
143–152.
Penberthy, J. S., and Weld, D. S. 1994. Temporal Planning
with Continuous Change. In AAAI, 1010–1015.
Piotrowski, W.; Fox, M.; Long, D.; Magazzeni, D.; and Mer-
corio, F. 2016. Heuristic Planning for PDDL+ Domains. In
IJCAI, 3213–3219.
Scala, E.; Haslum, P.; Thiebaux, S.; and Ramirez, M. 2016.
Interval-Based Relaxation for General Numeric Planning. In
ECAI.
Shin, J.-A., and Davis, E. 2005. Processes and Continu-
ous Change in a SAT-based Planner. Artificial Intelligence
166(1):194–253.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
Implementation of Pattern Database Heuristics for Classical
Planning. In SOCS.
Turner, M. J. 2008. Rocket and Spacecraft Propulsion: Prin-
ciples, Practice and New Developments. Springer Science &
Business Media.

936

