
WhatsHap: Weighted Haplotype Assembly
for Future-Generation Sequencing Reads∗

Murray Patterson†,1, Tobias Marschall†,2,3,
Nadia Pisanti4, Leo van Iersel5,

Leen Stougie5,6, Gunnar W. Klau‡,5,6,
and Alexander Schönhuth‡,5

Keywords: algorithms, next generation sequencing, dynamic
programming, combinatorial optimization, haplotypes

∗This work was done while all authors were affiliated with or visiting the Life Sciences
Group at Centrum Wiskunde & Informatica (CWI).
†Joint first authorship.

‡Joint last authorship.
1Laboratoire de Biométrie et Biologie Évolutive (LBBE : UMR CNRS 5558), Université
de Lyon 1, Villeurbanne, France
2Saarland University, Saarbrücken, Germany
3Max Planck Institute for Informatics, Saarbrücken, Germany
4Department of Computer Science, University of Pisa, Italy
5Life Sciences, Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
6VU University Amsterdam, The Netherlands
murray.patterson@univ-lyon1.fr, t.marschall@mpi-inf.mpg.de,
{a.schoenhuth,gunnar.klau}@cwi.nl

1

Abstract

The human genome is diploid, which requires to assign heterozy-
gous single nucleotide polymorphisms (SNPs) to the two copies of
the genome. The resulting haplotypes, lists of SNPs belonging to
each copy, are crucial for downstream analyses in population genet-
ics. Currently, statistical approaches, which are oblivious to direct
read information, constitute the state-of-the-art. Haplotype assembly,
which addresses phasing directly from sequencing reads, suffers from
the fact that sequencing reads of the current generation are too short
to serve the purposes of genome-wide phasing.

While future-technology sequencing reads will contain sufficient
amounts of SNPs per read for phasing, they are also likely to suffer
from higher sequencing error rates. Currently, no haplotype assembly
approaches exist that allow for taking both increasing read length and
sequencing error information into account.

Here, we suggest WhatsHap, the first approach that yields prov-
ably optimal solutions to the weighted minimum error correction prob-
lem in runtime linear in the number of SNPs. WhatsHap is a fixed
parameter tractable (FPT) approach with coverage as the parameter.
We demonstrate that WhatsHap can handle datasets of coverage up
to 20x, and that 15x are generally enough for reliably phasing long
reads, even at significantly elevated sequencing error rates. We also
find that the switch and flip error rates of the haplotypes we output
are favorable when comparing them with state-of-the-art statistical
phasers.

2

1 Introduction

The human genome is diploid, that is, each of its autosomes (non-sex chromo-
somes) comes in two copies. These parental copies are affected by different
single nucleotide polymorphisms (SNPs). Assigning the variants to the copies
is an instrumental step in evolutionary genomics and genetics, as it allows
to, for example, identify selective pressures and subpopulations in popula-
tion studies (The 1000 Genomes Project Consortium, 2010; Francioli et al.,
2014), and to link possibly disease-causing SNPs with one another (Hartl and
Clark, 2007). The corresponding assignment process is referred to as phasing
and the resulting groups of SNPs are called haplotypes. In the meantime,
globally concerted efforts have generated reference panels of haplotypes, for
various populations, which may serve corresponding downstream analyses
(The International HapMap Consortium, 2007, 2010).

There are two major approaches to phasing variants. The first class
of approaches relies on genotypes as input, which are lists of SNP alleles,
together with their zygosity status. While homozygous alleles show on both
chromosomal copies, and obviously apply for both haplotypes, heterozygous
alleles show on only one of the copies, and have to be partitioned into two
groups. For m heterozygous SNP positions there are thus 2m many possible
haplotypes. The corresponding approaches are usually statistical in nature,
and they integrate existing reference panels. The underlying assumption
is that the haplotypes to be computed are a mosaic of reference haplotype
blocks that arises from recombination during meiosis. The output is the
statistically most likely mosaic, given the observed genotypes. Most prevalent
approaches are based on latent variable modeling (Howie et al., 2009; Li et al.,
2010; Scheet and Stephens, 2006). Other approaches use Markov chain Monte
Carlo techniques (Menelaou and Marchini, 2013).

The other class of approaches uses sequencing read data directly. Such
approaches virtually assemble reads from identical chromosomal copies and
are referred to as haplotype assembly approaches. Following the parsimony
principle, the goal is to compute two haplotypes to which one can assign
all reads with the least amount of sequencing errors to be corrected and/or
erroneous reads to be removed. Among such formulations, the minimum
error correction (MEC) problem has gained most of the recent attention. The
MEC problem, which we will formally define in Section 2, consists in finding
the minimum number of corrections to be made to the sequenced nucleotides
in order to arrange the reads into two haplotypes without conflicts. A major
advantage of MEC is that it can be easily adapted to a weighted version
(wMEC), in order to deal with phred-scaled error probabilities. Such phred-
based error schemes are vital in particular for processing long reads generated

3

by future technologies, as these are prone to elevated sequencing error rates.
An optimal solution for the wMEC problem then translates to a maximum
likelihood scenario relative to the errors to be corrected.

In tera-scale sequencing projects, e.g., (Boomsma et al., 2013; The 1000
Genomes Project Consortium, 2010), ever increasing read length and decreas-
ing sequencing cost make it clearly desirable to phase directly from read data.
However, statistical approaches are still the methodology of choice because:
(i) most NGS reads are still too short to bridge so-called variant deserts.
Successful read-based phasing, however, requires that all pairs of neighboring
heterozygous SNP alleles are covered; and (ii) the MEC problem is NP-hard,
and so are all other similar problem formulations.

Most advanced existing algorithmic solutions to MEC (Chen et al., 2013;
He et al., 2010) ironically often benefit precisely from variant deserts, because
these allow to decompose a problem instance into independent parts. A major
motivation behind read-based approaches, however, is to handle long reads
that cover as many variants as possible, thereby bridging all variant deserts.
Hence, the current perception of haplotype assembly is often that it underlies
theoretical limitations that are too hard to overcome.

Here, we present WhatsHap, a fixed parameter tractable (FPT) ap-
proach to wMEC where coverage, that is the number of fragments that cover
a SNP position, is the only parameter. Hence, the runtime of our approach
is polynomial (in fact: linear) in the number of SNPs. A linear-runtime
solution for the wMEC addresses both that future sequencing technologies
generate reads of tens of thousands of base pairs (bp), and that those will
likely suffer from elevated sequencing error rates. A carefully engineered im-
plementation of our algorithm allows the treatment of whole-genome datasets
of maximum coverage up to 20x on the order of hours on a standard work-
station. For datasets of higher coverage, we provide a technique for choosing
a reasonable selection of reads. We compare and evaluate WhatsHap in a
variety of aspects, based on simulated reads of various lengths, all of which
stem from a true genome (Levy et al., 2007). We show that coverage rates
of 10-15x are sufficient for achieving low phasing error rates in haplotype
assembly. We demonstrate that in comparison to state-of-the-art haplotype
assembly approaches, WhatsHap has favorable runtime in particular on
data sets of 10-15x coverage, which is the critical coverage rate. We further
demonstrate that the haplotypes computed by WhatsHap only suffer from
minor amounts of errors. It may be noteworthy that error rates are quite
favorable also in comparison with statistical phasing approaches, which still
constitute the practical state-of-the-art.

4

2 The Weighted Minimum Error Correction

Problem

The input to the MEC problem is a matrix F with entries in {0, 1,−}. Each
row of F corresponds to a fragment/read. Each column of F corresponds
to a SNP position. The “−” symbol, which is referred to as a hole, is used
when a fragment does not contain any information at the corresponding SNP
position. This can be either because the SNP position is not covered by the
read, or because the read gives no accurate information at that position.
Let n be the number of rows (or fragments) of F and m the number of
columns (or SNP positions).

A haplotype can formally be defined as a string of length m consist-
ing of 0’s and 1’s. If h is a haplotype, then the i-th row of F is said to
conflict with h if there is some SNP position j for which h(j) 6= F(i, j)
while F(i, j) 6= −. We say that F is conflict free if there exist two hap-
lotypes h1, h2 such that each row of F does not conflict with at least one
of h1 and h2. Under the all-heterozygous assumption, where all columns
correspond to heterozygous sites, h1 must be the complement of h2. Some
methods need to make this assumption for computational reasons, and this
is why we mention it although our tool does not need it.

The goal of MEC is to make F conflict free by flipping a minimum number
of entries of F from 0 to 1 or vice versa. The weighted variant of MEC,
denoted wMEC, has an additional weight function w as input. This weight
function assigns a non-negative weight w(i, j) to each entry F(i, j) of F .
This weight can reflect the relative confidence that the entry is correctly
sequenced. The goal of wMEC is to make F conflict free by flipping entries
in F with a minimum total weight.

The MEC problem, which is also called minimum letter flip, was in-
troduced by Lippert et al. (2002). Cilibrasi et al. (2005) showed that this
problem is NP-hard even if each fragment is “gapless”, i.e., if it consists of
a consecutive sequence of 0’s and 1’s with holes to the left and to the right.
Panconesi and Sozio (2004) were the first to propose a practical heuristic
for solving MEC. An exact branch and bound algorithm and a heuristic
genetic algorithm were presented by Wang et al. (2005). Levy et al. (2007)
designed a greedy heuristic to assemble the haplotype of the genome of J.
Craig Venter. Bansal et al. (2008) developed an MCMC method to sample a
set of likely haplotypes. In a follow-up, some of the authors proposed a much
faster MAX-CUT-based heuristic algorithm called HapCUT (Bansal and
Bafna, 2008), which they show to outperform (Panconesi and Sozio, 2004;
Levy et al., 2007), while showing similar accuracy to (Bansal et al., 2008) in

5

shorter running time. Very recently, Selvaraj et al. (2013) combine the Hap-
CUT (Bansal and Bafna, 2008) algorithm with proximity-ligation, which
exploits information from “chromosome territories”, to develop a method
which reports good results on whole-genome haplotype reconstruction. He
et al. (2010) proposed an exact dynamic programming algorithm. However,
their algorithm depends exponentially on the length of the longest read,
which means that for practical data this method has to ignore all long reads.
Aguiar and Istrail (2012, 2013) suggested a heuristic approach for MEC which
they show to perform well compared to previous methods. Exact integer lin-
ear programming (ILP) based approaches were proposed by Fouilhoux and
Mahjoub (2012) and Chen et al. (2013). Both methods have difficulties solv-
ing practical instances optimally in a reasonable amount of time. Chen et al.
(2013), for instance, report that they need 31 hours (resp., 12 days) to solve
the HuRef data set with (resp., without) the all-heterozygous assumption.
For this reason, Chen et al. (2013) also propose a heuristic for solving difficult
subproblems. Deng et al. (2013) suggested a different dynamic programming
algorithm for MEC, which is exponential in the maximum coverage of a SNP.

The weighted variant of MEC was first suggested by Greenberg et al.
(2004). Zhao et al. (2005) proposed a heuristic for a special case of wMEC
and present experiments showing that wMEC is more accurate than MEC. In
the next section, we present a dynamic programming algorithm for wMEC,
which is similar in spirit to the approach of Deng et al. (2013), but extends
it to the weighted case and broadens its applicability using techniques from
algorithm engineering.

3 A dynamic programming algorithm for wMEC

We now present the WhatsHap algorithm for solving wMEC. WhatsHap
is an exact dynamic programming approach that solves wMEC instances in
linear time if we assume bounded coverage.

Consider the input matrix F of the wMEC problem. Each entry F(i, j) 6=
− is associated with a confidence degree w(i, j) telling how likely it is that
F(i, j) is correctly sequenced and that its fragment i is correctly mapped
to location j. We use such values as a weight for the correction we need
to minimize in the wMEC model. When these weights are log-likelihoods,
summing them up corresponds to multiplying probabilities and, thus, finding
a minimum weight solution corresponds to finding a maximum likelihood
bipartition of the reads/fragments.

Our dynamic programming (DP) formulation is based on the observation
that, for each column, only active fragments need to be considered; a frag-

6

ment i is said to be active in every column j that lies in between its leftmost
non-hole entry and its rightmost non-hole entry. Thus, paired-end reads re-
main active in the “internal segment” between the two reads. Let F (j) be
the set of fragments that are active at SNP position j and let F be the set
of all fragments. The aim is to find a bipartition (R∗, S∗) of F such that the
changes in R∗ and S∗ to make F conflict free have minimum total weight.

Proceeding columnwise from SNP position 1 to m, our approach computes
a DP table column C(j, ·) for each j ∈ {1, . . . ,m}. We say that a bipartition
B′ = (R′, S ′) of all fragments F extends bipartition B = (R, S) of F (j), if
R ⊆ R′ and S ⊆ S ′. We define B(X) to be the set of all bipartitions of X.
Given a bipartition (R, S), we denote B

(
X | (R, S)

)
the set of all bipartitions

of X that extend (R, S), that is,

B
(
X
∣∣ (R, S)

)
:=
{

(R′, S ′) ∈ B(X)
∣∣R ⊆ R′ and S ⊆ S ′

}
.

The basic idea of our dynamic program is as follows: for every bipartition
B = (R, S) of F (j), entry C(j, B) gives the minimum cost of a bipartition
of all fragments F that renders positions 1, . . . , j conflict free and which
extends B. By definition of C(j, B), the cost of an optimal solution to the
wMEC problem then equals minB∈F (m) C(m,B). An optimal bipartition of
the fragments can be obtained by backtracking along the columns of the DP
table up to the first SNP position in F .

To compute the contribution ∆C(j, (R, S)) of column j to the cost C
(
j, (R, S)

)
of bipartition (R, S), we define the following quantities.

Definition 1. For a position j and a set R of fragment indices in F (j),
let W 0(j, R) (resp. W 1(j, R)) denote the cost of setting position j on all
fragments of R to 0 (resp. 1), flipping if required: i.e.,

W 0(j, R) =
∑
i∈R

F(i,j)=1

w(i, j) and W 1(j, R) =
∑
i∈R

F(i,j)=0

w(i, j) .

Hence, given a bipartition (R, S) of F (j), the minimum cost to make
position j conflict free is

∆C

(
j, (R, S)

)
:= min{W 0(j, R),W 1(j, R)}+ min{W 0(j, S),W 1(j, S)} .

Notice that, under the all heterozygous assumption, where one wants to
enforce all SNPs to be heterozygous, the equation becomes

∆C

(
j, (R, S)

)
:= min{W 0(j, R) + W 1(j, S),W 1(j, R) + W 0(j, S)} .

In both cases, we only need the four values W 0(j, R), W 1(j, R), W 0(j, S),
and W 1(j, S) to compute ∆C

(
j, (R, S)

)
. We now proceed to state in detail

our DP formulation.

7

0

1

2

3

1 2

0

1

1 1

0

0

-

-

...

...

...

...

5

3

6

2

1

2

Figure 1: WhatsHap toy example. The small numbers next to the matrix
of entries F denote the flipping weights.

Initialization. The first column C(1, ·) of C is initialized to ∆C(1, ·) as
defined above.

Example 1. Assume F (1) = {f0, f1, f2} with F(0, 1) = 0, F(1, 1) = 1, and
F(2, 1) = 1. Moreover, let w(0, 1) = 5, w(1, 1) = 3, and w(2, 1) = 6. See
Figure 1. Then C(1, ·) is filled in as follows:

C
(
1, ({f0, f1, f2}, ∅)

)
= min{9, 5}+ min{0, 0} = 5

C
(
1, ({f0, f1}, {f2})

)
= min{3, 5}+ min{6, 0} = 3

C
(
1, ({f0, f2}, {f1})

)
= min{6, 5}+ min{3, 0} = 5

C
(
1, ({f1, f2}, {f0})

)
= min{9, 0}+ min{0, 5} = 0

Note that we need consider only half of the 2|F (1)| bipartitions, because
C
(
j, (R, S)

)
= C

(
j, (S,R)

)
for every bipartition B = (R, S) and every SNP

position j.

Recurrence. We compute C(j + 1, ·) from C(j, ·) as follows. When com-
puting costs of bipartitions for F (j + 1) we need only to keep track of the
effect that this has on the bipartition of F (j) through their intersection,
which we denote by F∩j+1 = F (j) ∩ F (j + 1). For a bipartition (R, S) of
F (j + 1) we define R∩j+1 = R∩F∩j+1 and S∩j+1 = S∩F∩j+1. The recursion then
becomes:

C
(
j + 1, (R, S)

)
= ∆C

(
j + 1, (R, S)

)
+ min

B∈B(F (j) | (R∩
j+1,S

∩
j+1))

C(j, B) . (1)

The first term accounts for the cost of the current SNP position, while the
second term accounts for costs incurred at previous SNP positions. The
minimum selects the best score with respect to the first j positions over all
partitions that extend (R, S).

8

Example 2 (continued). We extend the example with a second SNP position.
Assume F (2) = {f1, f2, f3} with F(1, 2) = 0, F(2, 2) = 1, and F(3, 2) = 0.
Moreover, let w(1, 2) = 2, w(2, 2) = 1, and w(3, 2) = 2. See Figure 1. Then
C(2, ·) is filled in as follows:

C
(
2, ({f1, f2, f3}, ∅)

)
= min{4, 1}+ min{0, 0}+

min
{
C
(
1, ({f0, f1, f2}, ∅)

)
, C
(
1, ({f1, f2}, {f0})

)}
= 1 + 0 + min{5, 0} = 1

C
(
2, ({f1, f2}, {f3})

)
= min{1, 2}+ min{0, 2}+

min
{
C
(
1, ({f0, f1, f2}, ∅)

)
, C
(
1, ({f1, f2}, {f0})

)}
= 1 + 0 + min{5, 0} = 1

C
(
2, ({f1, f3}, {f2})

)
= min{0, 4}+ min{1, 0}+ min

{
C
(
1, ({f0, f1}, {f2})

)
,

C
(
1, ({f1}, {f0, f2})

)}
= 0 + 0 + 3 = 3

C
(
2, ({f2, f3}, {f1})

)
= min{1, 2}+ min{0, 2}+ min

{
C
(
1, ({f0, f1}, {f2})

)
,

C
(
1, ({f1}, {f0, f2})

)}
= 1 + 0 + 3 = 4

Algorithm engineering. To compute a column, say j, of the DP ta-
ble, we have to go through all bipartitions of the active fragments F (j) =
{f0, . . . , f|F (j)|−1} at SNP position j. Because of the observed symmetry it is
sufficient to store 2|F (j)|−1 entries in column j. We order these entries by a
mapping of indices k ∈ {0, . . . , 2|F (j)|−1 − 1} to bipartitions, using a binary
encoding such that each bit k` in the binary representation of k tells whether
fragment f` is in the first or in the second part of the bipartition. We break
the above mentioned symmetry by assigning f|F (j)|−1 always to the first set.
Formally, this results in the mapping:

B : k 7→
(
{f|F (j)|−1} ∪ {f` | k` = 0}, {f` | k` = 1, ` < |F (j)| − 1}

)
for all k ∈ {0, 1}|F (j)|−1.

Example 3. Assume there is a SNP position j for which F (j) = {f0, f1, f2}.
Then k ∈ {0, 1, 2, 3} and thus C(p, ·) has four entries each one being encoded
in two bits as follows. 00 7→

(
{f0, f1, f2}, ∅

)
, 01 7→

(
{f0, f2}, {f1}

)
, 11 7→(

{f2}, {f0, f1}
)
, 10 7→

(
{f1, f2}, {f0}

)
. Notice that f|F (p)|−1 = f2, as a sort

of pivot, is always in the first part of the bipartition.

For an efficient computation of ∆C

(
j, Bj(k)

)
, we enumerate all biparti-

tions k ∈ {0, . . . , 2|F (j)|−1− 1} in Gray code order. This ensures that at most
one bit is flipped between two consecutive bipartitions. Therefore, in moving
from one bipartition to the next, only one fragment swaps sides and updating

9

the four values W 0(j, R), W 1(j, R), W 0(j, S), and W 1(j, S) can be done in
constant time. As ∆C

(
j, (R, S)

)
can be computed from these values in con-

stant time, and moving from one Gray code to the next can be done in (amor-
tized) constant time using the algorithm from (Mossige, 1977), we conclude
that ∆C

(
j, ·
)

can be computed in O(2cov(j)−1) time, where cov(j) = |F (j)|
denotes the physical coverage at SNP position j.

To efficiently implement the DP recursion, one can compute an interme-
diate projection column as follows. For all B ∈ B(F∩j+1), store

C
(
j, B

)
= min

B′∈B(F (j) |B)
C(j, B′) .

Table C(j, ·) can be filled while computing C(j, ·) without any additional
(asymptotic) runtime expense. Using this precomputed table, Recursion (1)
can be written as

C
(
j + 1, (R, S)

)
= ∆C

(
j + 1, (R, S)

)
+ C

(
j, (R∩j+1, S

∩
j+1)

)
.

The algorithm has a runtime of O(2k−1m), where k is the maximum value
of cov(·), and m is the number of SNP positions. Note that the runtime is
independent of read length.

An optimal bipartition can be obtained by backtracking. To do this
efficiently, we store tables D(j, ·) that store the indices of the partitions that
define the minima in C(j, ·). Formally,

D
(
j, B

)
= argmin

B′∈B(F (j) |B)

C(j, B′) .

Using these auxiliary tables, the sets of fragments that are assigned to each
allele can be reconstructed in O(km) time. To backtrace an optimal biparti-
tion, we need to store the rightmost DP column C(m, ·) and the backtracking
tables D(j, B) for j ∈ {1, . . . ,m−1}, which takes total space O(2k−1m). This
leads to a dramatically reduced memory footprint in practice compared to
storing the whole DP table C.

Backtracking gives us optimal fragment bipartitions (R∗j , S
∗
j) for each po-

sition j. It is then straightforward to derive the two haplotypes h1 and h2

from this as follows:

h1(j) =

{
0 if W 0(j, R∗j) < W 1(j, R∗j)

1 otherwise ,
and

h2(j) =

{
0 if W 0(j, S∗j) < W 1(j, S∗j)

1 otherwise .

10

4 Experimental Results

The focus of this paper is on very long reads and their error characteris-
tics. Since such data sets are not available today, we performed a simulation
study where we simulated long, future-generation reads, and also current-
generation reads, to also compare current and future technologies with re-
spect to read-based phasing. We used all variants, that is SNPs, deletions,
insertions, and inversions, reported by Levy et al. (2007) to be present in
J. Craig Venter’s genome. These variants were introduced into the refer-
ence genome (hg18) to create a reconstructed diploid human genome with
fully known variants and phasings. Using the read simulator SimSeq (Earl
et al., 2011), we simulated current-generation sequencing reads using HiSeq
and MiSeq error profiles, to generate a 2x100 bp and a 2x250 bp paired-end
data set, respectively. The distribution of the internal segment size (i.e.,
fragment size minus size of read ends) was chosen to be 100 bp and 250 bp,
respectively, which reflects current library preparation protocols. Longer
reads with 1 000 bp, 5 000 bp, 10 000 bp, and 50 000 bp were simulated with
two different uniform error rates of 1 % and 5 %. All data sets were created
to have 30x average coverage and were mapped to the human genome using
BWA MEM (Li, 2013).

To avoid confounding results by considering positions of wrongly called
SNPs, we always used the set of true positions of heterozygous SNPs that
were introduced into the genome. We extracted all reads that covered at least
two such SNP positions to be used for phasing. Next, we pruned the data
sets to target coverages of 5x, 10x and 15x by removing randomly selected
reads that violated the coverage constraints until no more such reads exist.
The resulting sets of reads were finally formatted into matrix-style input,
needed as input for most haplotype assembly approaches. In our case, weights
correspond to phred-scaled error probabilities. That is, for example, a weight
of X corresponds to probability 10−(X/10) that the corresponding matrix entry
(0 or 1) is wrong due to a sequencing error.

Comparison of WhatsHap to other methods

To our knowledge, no other methods exist that can solve instances of wMEC
with very long reads to optimality in practice. However, there is a fairly
mature body of research and resulting implementations that solve the un-
weighted MEC problem, both heuristically and exactly. Here we compare
WhatsHap in unit weight mode to three state-of-the-art exact methods,
namely the dynamic programming approaches of He et al. (2010) and Deng
et al. (2013) and the integer-linear-programming based method by Chen et al.

11

(2013).
We ran all methods on a 12-core machine with Intel Xeon E5-2620 CPUs

and 256GB of memory. We compared the runtime of these three methods
against ours, for chromosome 1 of J. Craig Venter’s genome (Levy et al.,
2007) of our simulated reads dataset. Since all other methods are restricted
to the unweighted case, we ran WhatsHap with unit weights for this ex-
periment. We ran each method under the assumption that the haplotypes
contain only heterozygous positions (all-het, for short). On a side remark,
note that WhatsHap does not require the all-het assumption and that run-
ning it without this assumption allows one to use it for genotyping. Here,
however, we solely focus on phasing.

Table 1 shows the runtimes of the four tools for coverages 5x, 10x, and
15x. Runtimes for the general case, in which haplotypes may also contain
homozygous positions, are given in the supplementary material. We observe
that the method by He et al. (2010) cannot solve but one instance within the
time limit of 5h and the memory limit. The runtimes of both WhatsHap
and the DP approaches by Deng et al. (2013) are low for low coverages
with a slight advantage for Deng et al. (2013). However on coverage 15x
WhatsHap finally is significantly faster, which we attribute to the benefits
of algorithm engineering—note that our runtime is O(n2k), where n is the
number of SNP’s and k is the maximum coverage, while Deng et al. (2013)’s
runtime is O(nk2k). The loss of the factor k is due to the benefits of our
algorithm engineering (“Gray code”, see Section 3). The ILP approach by
Chen et al. (2013) runs significantly longer than the fast DP approaches on
coverages 5x, 10x, and 15x. Interestingly, however, the running time of the
ILP does not seem to be affected by the coverage. This trend continues
and holds even for the full, unprocessed dataset. We attribute this to the
effective preprocessing of Chen et al. (2013), which precedes the ILP and is
not applied before running the DP approaches. Some of the preprocessing
rules, for example, duplicate row removal, apply only in the unweighted case,
and hence can only speed up unweighted approaches. As we find the weighted
case to be superior—see the subsection “Benefits of Weights” below for more
details—we refrained from implementing these rules also in WhatsHap,
although they may lead to further improvements for WhatsHap in Table 1.

Accuracy of WhatsHap

The accuracy performance is summarized in Figure 2. There, the percentage
of chromosome 1 that could not be phased due to missing information (un-
phasable positions: y-axis) is plotted against the percentage of positions in
the haplotypes predicted that are affected by errors. We display these per-

12

Data set Chen et al. He et al. Deng et al. WhatsHap
Coverage 5
2 x 100 (HiSeq) 445.8s 965.2s 0.3s 1.8s
2 x 150 (MiSeq) 679.9s - 0.4s 2.5s
1 x 1000 (1%) 716.9s - 0.5s 2.8s
1 x 5000 (1%) 771.2s - 0.6s 3.8s
1 x 10000 (1%) 313.9s - 0.5s 3.7s
1 x 50000 (1%) 56.7s - 0.4s 3.3s
Coverage 10
2 x 100 (HiSeq) 452.8s - 3.2s 5.5s
2 x 150 (MiSeq) 646.2s - 5.3s 8.1s
1 x 1000 (1%) 706.5s - 9.6s 11.0s
1 x 5000 (1%) 679.9s - 10.3s 15.4s
1 x 10000 (1%) 288.8s - 9.7s 15.6s
1 x 50000 (1%) 80.6s - 7.1s 13.6s
Coverage 15
2 x 100 (HiSeq) 479.5s - 377.8s 62.6s
2 x 150 (MiSeq) 629.1s - 708.5s 101.7s
1 x 1000 (1%) 720.5s - 3701.5s 192.6s
1 x 5000 (1%) 709.9s - 2623.5s 271.9s
1 x 10000 (1%) 296.0s - 1443.6s 276.9s
1 x 50000 (1%) 108.1s - 440.5s 230.8s

Table 1: Runtimes in CPU seconds for haplotype assembly approaches in the
unweighted all-het case on chromosome 1 of J. Craig Venter’s genome. A ‘-’
stands for an unsuccessful run, either because it exceeded the time limit of
5 CPU hours, or it exceeded all of the available memory.

13

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Errors [%]

0

20

40

60

80

100

Un
ph

as
ab

le
 p

os
iti

on
s

[%
] HiSeq 2x100

MiSeq 2x250
Length 1000

Length 5000

Length 10000

Length 50000

5x
10x
15x

Figure 2: Performance of phasing human chromosome 1 with 68 184 heterozy-
gous SNPs in total using different simulated data sets and different coverages.
The unphasable positions percentage (y-axis) gives the fraction of the SNP
positions that could not be phased due to not being covered by reads that
span more than one SNP position. The x-axis shows the percentage of all
SNPs that were not unphasable but wrongly phased by the algorithm, either
because of a flip error, a switch error, or due to being reported as an ambigu-
ous position by WhatsHap. Length 1 000, 5 000, 10 000, and 50 000 refer to
reads of this length from a hypothetical sequencer with an error rate of 1%.
HiSeq/MiSeq refers to using error profiles specific to these instruments dur-
ing read sampling. Data sets are pruned to three different target coverages
(5x, 10x, 15x) encoded by different symbols in the plot (see legend).

14

centage rates for all datasets and all coverages. For the “future-generation”
reads, we show results for a sequencing error rate of 1% and note that we
provide a detailed phase error analysis also for higher sequencing error rates
(5%). A respective plot (analogous to Figure 2) can be found in the supple-
ment.

We call a SNP position uncovered if it is not covered by any read in the
data set. We denote a break as two consecutive SNP position that are not
physically bridged by any read in the dataset. Finally, we define the number
of unphasable positions to be the number of uncovered SNP positions plus
the number of breaks—we are, of course, aware of the fact that breaks do not
one-to-one refer to SNP positions, but to positions in between two consecutive
SNP positions (which overall amount to the number of SNP positions minus
one). We neglect this here for the sake of simplicity—note that breaks and
uncovered positions never interfere with one another such that our counting
scheme is not ambiguous.

We further distinguish between three classes of errors:

1. Flip errors, which are errors in the predicted haplotypes that can be
corrected by flipping an isolated 0 to a 1 or vice versa. As an example,
consider the correct haplotype pair to be 000|111, while the prediction
is 010|101: the second position is then affected by a flip error.

2. Switch errors are two consecutive SNP positions whose phase has been
mistakenly predicted, and which cannot be interpreted as flip errors.
For example if the correct haplotype is 000111|111000 and the predicted
haplotype is 000000|111111, then we count one switch error between
positions 3 and 4.

3. Ambiguity errors are SNP positions where flipping 0 and 1 does not
lead to decreasing the (w)MEC score. One can expect an error for half
of these positions, because they are, effectively, phased randomly.

The x-axis displays the sum of all such errors over the overall amount of SNP
positions.

Figure 2 shows that, while current-generation sequencing reads (HiSeq
and MiSeq) still leave substantial amounts of positions unphasable, long
reads dramatically decrease the number of unphasable positions. One further
notices that error rates are very favorable (only between 0.1 and 0.25 % of
positions are affected by phasing errors), when comparing them to error rates
that can be achieved by statistical phasers, which usually amount to at least
1%, see, e.g. O’Connell et al. (2014) (Table 1 on “unrelated individuals”) for
evaluations of such methods. It is further noteworthy that higher sequencing

15

Data set unphasable switch flip ambi
uw/w uw/w uw/w

2 x 100 (HiSeq) 48994 8 / 11 59 / 65 16 / 2
2 x 250 (MiSeq) 40097 11 / 12 58 / 63 14 / 1
1 x 1000 (1%) 37588 3 / 6 57 / 61 8 / 0
1 x 1000 (5%) 37645 14 / 11 72 / 71 6 / 0
1 x 5000 (1%) 12693 32 / 34 103 / 100 14 / 0
1 x 5000 (5%) 12697 27 / 27 99 / 101 7 / 0
1 x 10000 (1%) 5826 28 / 27 96 / 111 36 / 0
1 x 10000 (5%) 5871 41 / 40 107 / 111 15 / 0
1 x 50000 (1%) 972 27 / 30 116 / 123 51 / 0
1 x 50000 (5%) 998 34 / 35 115 / 122 28 / 6

Table 2: This table shows the number of unphasable positions, switch errors,
flip errors and ambiguous positions, across the different datasets, at coverage
15x. For each of these error categories, numbers for solving the unweighted
(uw) and weighted (w) case are given.

error rates do not lead to drastic effects in these statistics, for the weighted
case (see a detailed analysis in “Benefits of Weights” below). Furthermore,
we find that the importance of high coverage is rather limited. Phasing error
rates do not increase drastically after having reached a coverage of 10-15x
such that one can conclude that such coverage rates are sufficient for next-
and future-generation sequencing read-based haplotype assembly.

Benefits of Weights

WhatsHap solves the weighted MEC, but is also able to solve the un-
weighted MEC. To assess the significance of using weights, the number of
phasing errors resulting from solving the weighted/unweighted case are dis-
played in Table 2. In all cases, the number of ambiguous positions is smaller
for the weighted case; these are positions where a SNP cannot be haplotyped
due to equal scores for both alternatives. Adding weight information thus
helps resolving these “tie” cases. Each of these no-longer-ambiguous posi-
tions can now either be phased correctly or incorrectly, where random phasing
leads to an expected amount of errors that equals half of the amount of am-
biguous positions. Therefore, the number of errors (flip or switch) slightly
increases for the weighted case. When comparing the number of added errors
to the number of resolved ambiguities, it becomes apparent that the major-

16

ity of these ambiguities are indeed resolved correctly. As an example, see
1 x 50000 (1%), where 51 no-longer-ambiguous positions compensate for 10
more flip or switch errors. As one can expect that one out of two ambiguous
positions result in an error, the loss of ambiguous positions outweighs the
increase in flip/switch errors. In an overall count, where half of the ambigu-
ous positions count as errors, we obtain a relative reduction of nearly 10%
of the errors (27+116+51/2

30+123
× 100%) in this case. This positive effect applies in

all cases, and in particular for the long reads with elevated sequencing error
rates (5%), and also applies for the data sets of lower coverage (data not
shown).

5 Conclusions and Further Work

The increased length of future-generation sequencing reads comes with ob-
vious advantages in haplotype assembly, because it allows to link ever more
SNP positions based on read information alone. However, future-generation
reads may also be subject to elevated sequencing error rates, which can re-
sult in elevated phasing error rates. Here, we have presented WhatsHap,
a dynamic programming approach for haplotype assembly that specifically
addresses the combination of long reads and higher sequencing error rates.
WhatsHap is the first exact approach for the weighted MEC problem, which
aims at statistically sound handling of sequencing errors, with runtime linear
in the number of SNPs, which is essential for processing long reads.

While our approach handles datasets with possibly long reads, it can only
deal with limited coverage. Although WhatsHap can handle coverage as
large as 20x on a standard workstation, and larger coverage does not seem
to significantly improve the quality of the predicted haplotypes as shown in
our simulation study, a number of possible ways to cope with higher coverage
are under investigation. A first possibility is a divide and conquer heuristic
approach that operates on high coverage portions of the matrix by (i) (ran-
domly/suitably) splitting the fragments into as many subsets as necessary to
make each one of them a slice of limited coverage, (ii) solving each slice sep-
arately using the dynamic programming approach, and finally (iii) merging
the resulting super-reads and applying iteratively the method again. Another
possibility is to just properly select reads up to the manageable coverage and
to discard the rest.

In the literature there are several graph representations of haplotype data
(the fragment conflict graph defined in (Lancia et al., 2001) and many of its
variants), and consequently the optimization problems we have mentioned
are seen there as finding the minimum number of graph editing operations

17

that make the graph bipartite. In particular, for the conflict graph variant
used in (Fouilhoux and Mahjoub, 2012), the MEC problem turns out to be
equivalent to finding the Maximum Induced Bipartite Subgraph (MIBS). It
follows that our dynamic programming approach for MEC can be generalized
to a FPT approach for MIBS where the parameter is the pathwidth of the
graph.

In this work we have concentrated on assembling SNP haplotypes from
reads of a sequenced genome. As a next step we will integrate predictions
from statistical phasers into our approach. In some sense, the super-read ob-
tained from a slice, mentioned above, can be viewed as a reference haplotype
from a reference panel for an existing population. Hence, reference haplo-
types can be seamlessly integrated into this merging step (iii) for a hybrid
approach. Hybrid methods are the future of sequencing data analysis, and
the field is already moving quickly in this direction (Delaneau et al., 2013;
He et al., 2013; He and Eskin, 2013; Selvaraj et al., 2013; Yang et al., 2013;
Zhang, 2013).

In addition, haplotyping mostly refers to only SNPs for historical reasons
(The International HapMap Consortium, 2007, 2010). To fully characterize
an individual genome, however, haplotyping must produce exhaustive lists
of both SNPs and non-SNPs, that is, larger variants. This has become an
essential ingredient of many human whole-genome projects (Boomsma et al.,
2013; The 1000 Genomes Project Consortium, 2010). In this paper we fo-
cused on SNPs variants and we identify the integration of non-SNP-variants
as a challenging future research direction.

Lastly, we used prior knowledge of the true SNP positions in the genome
in our simulation study. But since our method only scales linearly in the
number of SNP positions, one could conceivably also use the full raw read
input, to produce a “de novo” haplotype. Since SNPs comprise roughly 5%
of positions, and the runtime of our method is on the order of 10 minutes
on average (for sufficient 15x coverage), such a de novo haplotype could
be generated in about 3 hours. The heterozygous sites of this constructed
haplotype then correspond to the SNP positions. It hence follows that this
tool could be used for SNP discovery, and perhaps for larger variants as well.

Author Disclosure Statement

No competing financial interests exist.

18

Acknowledgments

Murray Patterson was funded by a Marie Curie ABCDE Fellowship of ERCIM.
Leo van Iersel was funded by a Veni, and Alexander Schönhuth was funded by
a Vidi grant of the Netherlands Organisation for Scientific Research (NWO).

References

D. Aguiar and S. Istrail. Hapcompass: A fast cycle basis algorithm for
accurate haplotype assembly of sequence data. J. of Comp. Biol., 19(6):
577–90, 2012.

D. Aguiar and S. Istrail. Haplotype assembly in polyploid genomes and
identical by descent shared tracts. Bioinformatics, 29(13):i352–i360, 2013.
doi: 10.1093/bioinformatics/btt213.

V. Bansal and V. Bafna. HapCUT: an efficient and accurate algorithm for
the haplotype assembly problem. Bioinformatics, 24(16):i153–159, 2008.

V. Bansal, A. Halpern, N. Axelrod, and V. Bafna. An MCMC algorithm for
haplotype assembly from whole-genome sequence data. Genome Research,
18(8):1336–1346, 2008.

D. Boomsma, C. Wijmenga, E. Slagboom, M. Swertz, L. Karssen, A. Abdel-
laoui, K. Ye, V. Guryev, M. Vermaat, and F. van Dijk. The Genome of
the Netherlands: design, and project goals. European Journal of Human
Genetics, 2013. doi: 10.1038/ejhg.2013.118.

Z.-Z. Chen, F. Deng, and L. Wang. Exact algorithms for haplotype assembly
from whole-genome sequence data. Bioinformatics, 29(16):1938–45, 2013.

R. Cilibrasi, L. van Iersel, S. Kelk, and J. Tromp. On the complexity of
several haplotyping problems. In R. Casadio and G. Myers, editors, Pro-
ceedings of the Fifth International Workshop on Algorithms in Bioinfor-
matics (WABI), volume 3692 of Lecture Notes in Computer Science, pages
128–139, Berlin, 2005. Springer.

O. Delaneau, B. Howie, A. Cox, J. Zagury, and J. Marchini. Haplotype
estimation using sequencing reads. Am. J. of Human Genetics, 93(4):
687–696, 2013.

F. Deng, W. Cui, and L.-S. Wang. A highly accurate heuristic algorithm for
the haplotype assembly problem. BMC Genomics, 14(Suppl 2):S2, 2013.

19

D. Earl, K. Bradnam, J. St.John, A. Darling, D. Lin, J. Fass, H. O.K.Yu,
B. Vince, D. Zerbino, M. Diekhans, and N. Nguyen. Assemblathon 1: A
competitive assessment of de novo short read assembly methods. Genome
Research, 2011. doi: 10.1101/gr.126599.111. DOI: 10.1101/gr.126599.111.

P. Fouilhoux and A. Mahjoub. Solving VLSI design and DNA sequencing
problems using bipartization of graphs. Comp. Optim. and Appl., 51(2):
749–781, 2012.

L. Francioli et al. Whole-genome sequence variation, population structure
and demographic history of the dutch population. Nature Genetics, 2014.
doi:10.1038/ng.3021.

H. Greenberg, W. Hart, and G. Lancia. Opportunities for combinatorial
optimization in computational biology. INFORMS J. on Computing, 16
(3):211–231, 2004.

D. Hartl and A. Clark. Principles of Population Genetics. Sinauer Associates,
Inc., Sunderland, Massachusetts, 2007.

D. He and E. Eskin. Hap-seqX: expedite algorithm for haplotype phasing
with imputation using sequence data. Gene, 518(1):2–6, 2013.

D. He, A. Choi, K. Pipatsrisawat, A. Darwiche, and E. Eskin. Optimal algo-
rithms for haplotype assembly from whole-genome sequence data. Bioin-
formatics, 26(12):i183–i190, 2010.

D. He, B. Han, and E. Eskin. Hap-seq: an optimal algorithm for haplotype
phasing with imputation using sequencing data. J. Comp. Biol., 20(2):
80–92, 2013.

B. Howie, P. Donnelly, and J. Marchini. A flexible and accurate genotype
imputation method for the next generation of genome-wide association
studies. PLoS Genetics, 5(6):e1000529, 2009.

G. Lancia, V. Bafna, S. Istrail, R. Lippert, and R. Schwartz. SNPs prob-
lems, complexity and algorithms. In Proceedings of the 9th Annual Euro-
pean Symposium on Algorithms (ESA), pages 182–193, London, UK, 2001.
Springer-Verlag.

S. Levy, G. Sutton, P. Ng, L. Feuk, A. Halpern, B. Walenz, N. Axelrod,
J. Huang, E. Kirkness, and G. Denisov. The diploid genome sequence of
an individual human. PLoS Bio, 2007. DOI: 10.1371/journal.pbio.0050254.

20

H. Li. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. Technical Report 1303.3997, arXiv, 2013.

Y. Li, C. Willer, J. Ding, P. Scheet, and G. Abecassis. MaCH: using se-
quence and genotype data to estimate haplotypes and unobserved geno-
types. Genet Epidemiol, 34:816–834, 2010.

R. Lippert, R. Schwartz, and G. Lancia. Algorithmic strategies for the sin-
gle nucleotide polymorphism haplotype assembly problem. Briefings in
Bioinformatics, 3(1):23–31, 2002.

A. Menelaou and J. Marchini. Genotype calling and phasing using next-
generation sequencing reads and a haplotype scaffold. Bioinformatics, 29
(1):84–91, 2013.

S. Mossige. An algorithm for Gray codes. Computing, 18:89–92, 1977.

J. O’Connell, D. Gurdasani, O. Delaneau, N. Pirastu, S. Ulivi, et al. A general
approach for haplotype phasing across the full spectrum of relatedness.
PLoS Computational Biology, 2014. DOI: 10.1371/journal.pgen.1004234.

A. Panconesi and M. Sozio. Fast hare: a fast heuristic for the single indi-
vidual SNP haplotype reconstruction. In I. Jonassen and J. Kim, editors,
Proceedings of the Fourth International Workshop on Algorithms in Bioin-
formatics (WABI), volume 3240 of Lecture Notes in Computer Science,
pages 266–277, Berlin, 2004. Springer.

P. Scheet and M. Stephens. A fast and flexible statistical model for large-scale
population genotype data: Applications to inferring missing genotypes and
haplotypic phase. American Journal of Human Genetics, 78:629644, 2006.

S. Selvaraj, J. Dixon, V. Bansal, and B. Ren. Whole-genome haplotype
reconstruction using proximity-ligation and shotgun sequencing. Nature
Biotechnology, 31:1111–1118, 2013.

The 1000 Genomes Project Consortium. A map of human genome variation
from population-scale sequencing. Nature, 467(7319):1061–1073, 2010.

The International HapMap Consortium. A second generation human haplo-
type map of over 3.1 million SNPs. Nature, 449:851–861, 2007.

The International HapMap Consortium. Integrating common and rare ge-
netic variation in diverse human populations. Nature, 467:52–58, 2010.

21

R.-S. Wang, L.-Y. Wu, Z.-P. Li, and X.-S. Zhang. Haplotype reconstruction
from SNP fragments by minimum error correction. Bioinformatics, 21(10):
2456–2462, 2005.

W.-Y. Yang, F. Hormozdiari, Z. Wang, D. He, B. Pasaniuc, and E. Eskin.
Leveraging reads that span multiple single nucleotide polymorphisms for
haplotype inference from sequencing data. Bioinformatics, 29(18):2245–
2252, 2013.

Y. Zhang. A dynamic Bayesian Markov model for phasing and characterizing
haplotypes in next-generation sequencing. Bioinformatics, 29(7):878–885,
2013.

Y.-T. Zhao, L.-Y. Wu, J.-H. Zhang, R.-S. Wang, and X.-S. Zhang. Haplotype
assembly from aligned weighted SNP fragments. Computational Biology
and Chemistry, 29:281–287, 2005.

22

