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List of abbreviations 

AFT Accelerated Failure Time  

AIC Akaike Information Criterion 

ANCOVA Analysis of Covariance 

ARV Average Real Variability 

ASV Average Successive Variability 

AUC Area Under The Receiver Operating Characteristic Curve  

BIC Bayesian Information Criterion 

BMI Body Mass Index  

BP Blood Pressure  

BPV Blood Pressure Variability 

BPVR Blood Pressure Variability Ratio 

CoV Coefficient of Variation, as a blood pressure variability index 

CV Cardiovascular 

FU Follow-up  

GEE Generalized Estimation Equation  

GLM Generalized linear model  

HR Hazard Ratio 

INI Integrated Discrimination Improvement 

KM Kaplan Meier  

LCL Lower Confidence interval 

MAR Missing At Random 

MCAR Missing Completely At Random 

MNAR Missing Not At Random 

NRI Net Reclassification Index 

OR Odds Ratio 

PH Proportional Hazard  

PO Proportional Odds  

ROC Receiver Operating Characteristic  

SD Standard Deviation  

SE Sensitivity 

SP Specificity 

SV Successive Variation 

SVIM  Successive Variation Independent Of Mean  

UCL Upper confidence interval 

VIM Variation Independent Of Mean 

wSD Weighted Standard Deviation  

Some BPV indices are not included in the list.  
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Research Program 

Hypertension remains in 2017 a leading cause of mortality and disability worldwide. A 

number of issues related to the determinants of cardiovascular risk in hypertensive 

patients and to the strategies for better hypertension control are still pending. In such a 

context, aims of my research program were:  

1. To investigate the contribution of blood pressure variability to the risk of 

cardiovascular mortality in hypertensive patients. In this setting, different methods 

for assessing blood pressure variability and different models exploring the link 

between blood pressure variability and outcome were investigated.  

2. To assess the possibility that a hypertension management strategy based on 

hemodynamic assessment of patients through impedance cardiography might lead 

to a better hypertension control over 24 hours than a conventional approach only 

based on blood pressure measurement during clinic visits.  

To these aims, this thesis summarizes data obtained by performing a). An in-depth 

analysis of a study conducted in the Dublin hypertensive population, including 11492 

subjects, and b). The analysis of longitudinal data collected in the frame of BEAUTY 

(BEtter control of blood pressure in hypertensive pAtients monitored Using the 

hoTman® sYstem) study.  

In Dublin study, the proportional hazard Cox model and accelerated failure time models 

have been used to estimate the additional effect of blood pressure variability on 

cardiovascular mortality over and above the effect of increased mean BP levels, with 

an attempt to identify the best threshold values for risk stratification.  

On the other hand, in BEAUTY study, mixed model and generalized estimation 

equation are used for the longitudinal data analysis.  

 

Key words: 

Survival data analysis; Longitudinal data analysis; Clinical trial; ROC curve; Blood 

pressure variability; Hypertension management  
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Part I: Effect of Blood Pressure Variability on Cardiovascular Mortality   

Cardiovascular events may be affected by both mean blood pressure and blood pressure 

variability together with other known or unknown risk factors, among which there is a 

complicated network of casual interactions. The purpose of this study was to explore 

the effect of blood pressure variability on cardiovascular mortality over and above the 

effect of mean BP in the frame of Dublin Study, a study on a large cohort of 

hypertensive individuals living in the city of Dublin, Ireland. 
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1. Introduction to blood pressure variability and related indices  

The measurement of Blood pressure (BP) variability (V) estimates how much office, 

ambulatory or home BP change over a period of time; in this context different BPV 

indices may represent different perspectives in the assessment of BP variability, with 

different applications when considering 24h ambulatory BP recordings or BP changes 

over longer time intervals, such as those among days or visits. Currently, BPV attracts 

growing attention due to the evidence that it might predict cardiovascular (CV) events. 

A pending issue in this context is related to the correlation between BP mean values 

and BP variability, which raises the research question of how much BPV contributes to 

CV event, over and above the contribution given by mean BP levels.  

The first step in exploring this question is to understand how BPV is categorized and 

calculated. The types of BPV, according to the duration of the time window over which 

BPV is computed, can be classified as:  

1. Very short-term BPV (beat-to-beat), mainly caused by increased central sympathetic 

drive, reduced arterial/cardiopulmonary reflex sensitivity, humoral and rheological 

factors, behavioral and emotional factors, activity/sleep alternance and ventilation; 

2. Short-term BPV, calculated within 24 hours. The influencing mechanisms include 

increased central sympathetic drive, reduced arterial/cardiopulmonary reflex sensitivity, 

humoral and rheological factors, behavioral and emotional factors, activity/sleep, 

reduced arterial compliance and improper dosing/titration of antihypertensive treatment;  

3. Mid-term and long-term BPV, measured over a period of days (day-by-day), or 

measured from visit to visit or between seasons. The determining mechanisms include 

reduced arterial compliance, improper dosing/titration of anti-hypertensive treatment, 

reduced adherence to antihypertensive treatment, BP measurement errors, or seasonal 

or weather change. The difference in the responsible mechanisms may also explain how 

different BPV estimates could be predictors of different cardiovascular diseases.  

Ambulatory BP monitoring (ABPM) has been proved to play an important role in 

cardiovascular risk stratification, as well as in the assessment of cardiovascular 

protection through 24h BP control. Also information on BPV, calculated from 24h ABP 

recordings, has been reported to significantly affect cardiovascular health.  

Different BPV indices may represent different perspectives on BP variability 

components. The most commonly employed methods to assess BPV, subdivided 

according to the BPV component explored, include: 

1. Overall variability is an assessment over all the valid BP values as a whole, it reflects 

the absolute or relative dispersion of BP values;  

2. Variability for ordered values, the calculation of which is based on not only the 
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absolute values but also their orders of the measurements. The calculation of ordered 

variability either passes from one value to the next one, or is based on a linear or non-

linear regression or spectral analysis estimated from measurements in time-order, 

therefore, besides the absolute or relative dispersion of BP values, it introduces also the 

component of time, either in a direct way that the calculation included BP changes 

weighted by the time intervals, e.g. time rate, or ARV can also be calculated as mean of 

absolute BP changes weighted by time interval between consecutive readings, or the 

component of time is included in an indirect way, as it reflect how BP changes following 

time, e.g. BP fluctuation within 24h or following different physical and psychological 

change. It is thus a reflection of BP stability over time.  

3. Extreme variability, the calculation of which is based on extreme values, such as the 

maximum or minimum among all the measurements; its major component is the range 

of BP fluctuation.  

4. Drug effect variability, which accesses the efficacy of anti-hypertensive treatments 

on the BPV or BP fluctuation with the presence of treatment. Indices of this kind 

includes two components: one is the natural fluctuation of BP, and two, the fluctuation 

caused by antihypertensive treatment that could not assessed by the previous three 

categories of BPV indices. Instead, indices proposed for the purpose of assessing drug 

effect variability could combine those two components. 

The calculation of the above mentioned variability using various indices are listed in 

Table 1.  

Table 1. List of BPV indices 

Indices Abbreviation and Calculation* Note 

Index for overall variability 

Standard deviation [1] 𝑆𝐷 = √
1

𝑁 − 1
∑(𝐵𝑃𝑖 − 𝐵𝑃̅̅ ̅̅ )

2

𝑁

𝑖=1

 

𝐵𝑃𝑖: i
th BP measurement, in the case of clinic BP 

measurement, it is the mean of ≥2 valid readings.  

𝐵𝑃̅̅ ̅̅ : mean of all BP measurements. 

N: total number of measurements  

Coefficient of variation CoV =100*SD/𝐵𝑃̅̅ ̅̅  Refer to SD.  

Weighted SD[2] 𝑤𝑆𝐷 =
𝑆𝐷𝑑 ∙ 𝑇𝑑 + 𝑆𝐷𝑛 ∙ 𝑇𝑛

𝑇𝑑 + 𝑇𝑛
 

𝑆𝐷𝑑:Daytime SD; 𝑇𝑑: Daytime 

𝑆𝐷𝑛:Nighttime SD; 𝑇𝑛: Nighttime 

Refer to manuscript for the definition of daytime 

and nighttime.  

Blood pressure variability ratio 

[3] 
𝐵𝑃𝑉𝑅 =

𝑆𝐷𝑆𝐵𝑃24ℎ
𝑆𝐷𝐷𝐵𝑃24ℎ

 
𝑆𝐷𝑆𝐵𝑃24ℎ and  𝑆𝐷𝐷𝐵𝑃24ℎ : SD of systolic and 

diastolic BP over 24h hours.  

Index based on ordered BPs  

Average real variability[4] 𝐴𝑅𝑉 =
1

𝑁 − 1
∑ |𝐵𝑃𝑖+1 −𝐵𝑃𝑖|

𝑁−1

𝑖=1

 Refer to note for SD.  
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*All the BPV indices are calculated for an individual subject. Only the calculation of VIM depends on the BP of population level. 

𝐵𝑃𝑖: One BP measurement. For major information, please refer to the original papers. 

Successive Variation[5] 𝑆𝑉 = √
1

𝑁 − 1
∑(𝐵𝑃𝑖+1 − 𝐵𝑃𝑖)

2

𝑁

𝑖=1

 Refer to note for SD. 

Time rate[6] 𝑇𝑅 =
∑ |𝑁−1
𝑖=1 𝑟𝑖|

𝑁 − 1
 

𝑟𝑖 = (𝐵𝑃𝑖+1 − 𝐵𝑃𝑖)/(𝑡𝑖+1 − 𝑡𝑖), where 𝑡𝑖+1, 𝑡𝑖 are 

the time of i+1th and ith measurement. 

Interval weighted SD [7] 𝑖𝑆𝐷 = √
1

∑𝑊𝑖
∑𝑊𝑖(𝐵𝑃𝑖 −𝐵𝑃̅̅ ̅̅ )

2

𝑁

𝑖=1

 

Refer to note for SD. 

𝑊𝑖: time interval between consecutive readings.  

Variance of the absolute second 

differences between successive 

BP [8] 

𝑉𝐴𝐵𝑆2 = ∑(∆𝑑 − ∆𝑑̅̅̅̅ )2
𝑁−2

𝑖=1

 
∆𝑑 = |(𝐵𝑃𝑖+1 − 𝐵𝑃𝑖) − (𝐵𝑃𝑖 − 𝐵𝑃𝑖−1)| 

∆𝑑̅̅̅̅ : mean of ∆𝑑 

Individual residual 

variability[9]  
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =∑(𝐵𝑃𝑖 −𝐵𝑃𝑓)

2

𝑁

𝑖=1

 
𝐵𝑃𝑓 : values from fitted profile based on the fast 

Fourier transform spectral analysis. 

Variability independent of mean 

[10][11] 
𝑉𝐼𝑀 =

𝑆𝐷

𝐵𝑃̅̅ ̅̅ 𝑥
∗ 𝐵𝑃𝑃̅̅ ̅̅ ̅𝑥 

x is estimated from non-linear regression 𝑆𝐷𝑃 =

a ∗ 𝐵𝑃𝑃̅̅ ̅̅ ̅𝑥, P: population(all subjects) 

Successive variation 

independent of mean[12] 
𝑆𝑉𝐼𝑀 =

𝑆𝑉

𝐵𝑃̅̅ ̅̅ 𝑥
∗ 𝐵𝑃𝑃̅̅ ̅̅ ̅𝑥 

x is estimated from non-linear regression 𝑆𝑉𝑃 =

a ∗ 𝐵𝑃𝑃̅̅ ̅̅ ̅𝑥, P: population(all subjects) 

Residual SD[13] 𝑟𝑆𝐷 = √
1

𝑁 − 1
∑(𝑅𝑖 − 𝑅̅)

2

𝑁

𝑖=1

 

Refer to the note of SD. 

𝑅̅ : mean residual estimated by simple linear 

regression with visit.  

Sum of squared difference 

between each clinic BP and the 

trend- predicted BP [8] 

𝑟𝑆𝑆𝑅 =∑(𝐵𝑃𝑖 −𝐵𝑃̂)
2

𝑁

𝑖=1

 𝐵𝑃̂: Trend-predicted mean 

Index on extreme values  

Range[14] Range=Max-Min Max: max(𝐵𝑃𝑖) 

Min: min(𝐵𝑃𝑖) 

Mean: mean(𝐵𝑃𝑖) 

Peak size[12] Peak=Max-mean 

Trough size[12] Trough=Mean-min 

Index of assessing treatment effects on BPV 

Trough/peak ratio[15–17] 𝑇𝑃𝑅 =
Min(𝐵𝑃𝑣1,𝑡 − 𝐵𝑃𝑣2,𝑖)

Max(𝐵𝑃𝑣1,τ −𝐵𝑃𝑣2,τ)
 

𝐵𝑃𝑡 , 𝐵𝑃τ  : t𝑡ℎ   and τ𝑡ℎ   BP measurement at 

visit 1 without treatment (𝐵𝑃𝑣1,𝑡) and at Visit 2 with 

treatment (𝐵𝑃𝑣2,𝑡), both by 24h ABPM.  

Calculation requires 𝐵𝑃𝑣1and 𝐵𝑃𝑣1  measured at 

the same hour of the day of the 24h ABPM.  

Smoothness index[18]  𝑆𝐼 =
𝐵𝑃ℎ̅̅ ̅̅ ̅

𝑆𝐷𝐵𝑃ℎ
 

𝐵𝑃ℎ: mean of BP measured within each of the 24 

hours. 𝐵𝑃ℎ̅̅ ̅̅ ̅ and 𝑆𝐷𝐵𝑃ℎ  are the mean and SD of 

the hourly mean. 

Treatment on variability 

index[19] 
TOVI =

𝐵𝑃𝑣1 −𝐵𝑃𝑣2
𝑤𝑆𝐷

 

24h BP change from visit 1 without treatment 

(𝐵𝑃𝑣1) to Visit 2 with treatment (𝐵𝑃𝑣2);  

wSD: weighted SD at the visit 2 by 24h ABPM.  
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Comments on the BPV indices 

Indices for overall variability 

SD and CoV are the classic BPV indices, while SD is an absolute variation or dispersion, 

CoV is a unitless, standardized measure of relative dispersion, represents a simple way 

to normalize BPV for mean BP levels, and thus is more suitable to provide a direct 

comparison between BPV of day and night, between systolic and diastolic BPV.  

When focusing on 24h BPV, estimates of short term BPV separately computed by 

excluding the day-night BP changes are of particular clinical relevance. This is because 

mean night BP is in general lower than mean daytime BP, and nocturnal BP dipping, 

which quantitatively contributes to overall 24h BPV, has a favorable prognostic impact 

on CV outcome. Indices of short term BPV, not affected by day – night BP changes, 

include: the weighted 24h SD (wSD), ARV, individual residual BPV ( i.e. the power of 

BP spectral components computed after excluding the first two harmonics over 24h 

tracing), or calculation of daytime and nighttime BPV, separately considered.  

Indices based on ordered BPs  

The calculation of BPV indices based ordered BPs either passes from one BP value to 

the next one, or is based on a linear or non-linear regression estimated from 

measurements in time-order. In general, BPV indices based on ordered values are better 

applied for short-term BPV measured by 24h ABPM than for BPV over longer duration. 

This is because that time interval, i.e. how fast the BP changes, is an important factor 

to be considered over a relatively short period of time, however, it becomes less 

meaningful when the measurement interval is long, for example, BP change over 6 

months or 1 years may not truly reflect BP fluctuation. Moreover, BP fluctuates within 

24h reflect the instant BP values while visit-to-visit BP are normally measured in office 

with standard procedure, and thus the average BP values fluctuate within a limited range. 

Adding time interval into the calculation of long-term BPV may thus be an 

overcorrection. 

Indices on extreme values  

BPV based on the extreme values excludes all the other useful values that reflect real 

BP profile and carries the risk of including artefactual outlies. Due to these defects, it 

is not often recommended. If to be used, it may fit only the long-term BPV estimation 

where the BP is usually the average of 3 measurements taken in a standard office 

condition with on-time control by medical personals.  

Indices to assess treatment effects on BPV  

When the study aim includes effect of antihypertensive treatment, BPV indices 

designed for such purpose is required. Smoothness index is more reproducible than 

trough/peak ratios, furthermore, SI provides more reliable and more clinically relevant 

information on the effect of antihypertensive treatment on 24h ambulatory blood 
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pressure. TOVI reflects another perspective in BPV quantification, its numerator is the 

BP change over long term, which reflects the overall fluctuation, while the denominator 

is the weighted SD over 24h, which reflects the fluctuation due to the patient’s own 

physiological feature. In such way, the true fluctuation caused by treatment effect can 

be accessed. Higher smoothness index or TOVI was attributed to stronger BP-lowering 

effect and longer duration of drug action[20]. 

All the indices used for long-term BPV assessment need to be considered with caution 

if the patient changes therapy during the follow-up duration, since in such case the BP 

fluctuations are composed of spontaneous BP fluctuations related to cardiovascular 

control mechanisms, change induced by drugs, and change induced by change of drugs. 

The BP fluctuations reflecting BP reduction by a change in treatment may obviously 

represent a protective feature, and cannot be combined with the degree of spontaneous 

BPV reflecting the interaction between environmental stimulations and the response by 

cardiovascular regulatory mechanisms, because an increase in the latter component 

may represent a risk factor for cardiovascular system.  

Major characteristics and applicable BP types are summarized for each index in Box 1. 

BOX 1. Characteristics of all the previously proposed BPV indices 

Indices BP Type Characteristics 

SD[1] 

ABPM 

HBPM 

OBPM 

- It reflects the dispersion of values around their mean without accounting 

for the BP measurements order 

- It is sensitive to low sampling frequency of ABPM 

CoV 

ABPM 

HBPM 

OBPM 

- It is a standardized, unit-less measure of dispersion 

wSD[2] ABPM 

- Evaluates 24h BPV by excluding the “protective” component 

represented by of day/night changes 

- It focuses on short term BP fluctuations 

BPVR[3] ABPM - May be independent of mean arterial pressure[3] 

ARV[4] ABPM 
- It reflects the time series of ABPM data, accounting for the BP change 

between day and night. 

SV[5] ABPM - Highly correlated with ARV 

TR[6] 

ABPM 

HBPM 

OBPM 

- When the measurement interval of BP is fixed, the time rate is 

determined predominantly by the magnitude of each BP difference, 

particularly in ABPM[6]. 

iSD[7] ABPM - May also fit HBPM or OBPM, but interval may be overestimated.  

VABS2[8] OBPM 
- It is related to the penalty for smooth function estimation (eg, in splines, 

spectral functions, and wavelets)[8]. 

Residual[9]  ABPM 
- It represents the fast BP fluctuations that remain after exclusion of the 

slower components of the 24 h BP profile through spectral analysis 

VIM[10]  HBPM - A strong correlation is noted between VIM and other BPV indices[14]. 
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Use of different indices representing different BPV components has been suggested[21]: 

SD can be calculated also for all BPV types, including the beat-to-beat variability, while 

24h wSD and ARV are better suited for short-term BPV, which is often measured in 24 

hours. For long-term BPV, SD, CoV, VIM and residual are preferred. For different types 

of BPV, the methods of BP Measurement, advantages and disadvantages, choice of BPV 

indices as well as proposed mechanisms have been well summarized (Table 2). In this 

report, a brief summary of the preference and use of those indices is in BOX 2.  

It has been suggested that a suitable BPV index should be easily measurable and 

applicable in clinical practice, should be reproducible; should have defined normalcy 

and interventional thresholds, should be independent contributes to CV risk, should be 

modifiable by treatment; and patients’ prognosis is improved when additional treatment 

targets are set for BPV beyond those for average BP[22]. However, at present, evidence 

for most of these questions is missing, and therefore BPV remains a challenging 

research issue deserving thorough investigation. 

 

OBPM - Most of the studies support the independence of VIM on mean BP 

- It is highly sample-specific and may not be compared across populations 

- It is inappropriate in 24h ABPM because of the cardinal and diurnal 

variation and the highly diverse pattern among individuals 

SVIM[12] 
HBPM 

OBPM 
- Similar to VIM 

rSD[13] 
HBPM 

OBPM 

- The linear assumption of BP values over time should be satisfied. 

- Does not fit for ABPM. 

rSSR[8] 
HBPM 

OBPM 

- It represents the direct estimate of residual (error) variability and does 

not show a variance-mean relationship[8] 

- Subjects should have the same no. of values. 

Range[14] OBPM 
- Easily influenced by outliers 

- Ignore most of the useful BP values  
Peak[12] OBPM 

Trough[12] OBPM 

TPR[15–17] ABPM 

- Easily influenced by outliers 

- Pre-post design required 

- A measurement of extreme values 

SI[18]  ABPM 

- Calculates the homogeneity of BP reduction by treatment throughout 

the 24 hours, by focusing on treatment induced hourly BP changes. 

- A measurement of overall BPV 

TOVI[19] 
OBPM+ 

ABPM 

- Combines information on the reduction of 24-h average BP and on 24h 

BPV after treatment (assessed by wSD), measures the effects of 

antihypertensive treatment on both mean BP levels and BP variability; 

- Pre-post design required. Both ABPM and OBPM are required. 

- A measurement of overall BPV 
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Table 2. Types of BPV: Methods of measurement, prognostic relevance, and proposed 

mechanisms (Cited from Parati, Nat. Rev. Cardiol 2013[21]) 

 

BOX 2. Application note of BPV indices for different BP types: Applicable (), 

applicable but not recommended (▼) and Recommended (R) 

BPV type Very short-term  

(Beat-by-beat) 

Short-term Mid-term  

(Day-by-day) 

Long-term  

(Visit-to-visit) Day Night 24 Hours 

BP type - ABPM HBPM OBPM/HBPM 

SD[1] R R R  R  R 

CoV       

wSD[2]    R   

BPVR[3] ▼  ▼ ▼ ▼ ▼ 

ARV[4] R R R  R ▼ ▼ 

SV[5]     ▼ ▼ 

TR[6]       

iSD [7]     ▼ ▼ 

VABS2[8]       

Residual[9]    R   

VIM[10][11]     R R 

SVIM[12]       

rSD[13]       

rSSR[8]       

Range[14]     ▼ ▼ 

Peak size[12]     ▼ ▼ 

Trough size[12]     ▼ ▼ 

TPR[15–17]       

SI[18]    R   

TOVI[19]*    *R   
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2. Review of literature on the role of blood pressure variability on the risk of 

cardiovascular events 

2.1. Discrepancies in previous studies  

The previously published papers are of various designs including different study 

populations (general population/in-hospitalized patients; differences in ethnicity, age 

range, disease situation); they focused on different CV outcomes (all-cause mortality, 

all CV events or other diseases like ischemic/hemorrhagic stroke, peripheral arterial 

disease, coronary event, cardiac events, intima-media thickness and so on); with 

different follow-up duration (6 months -12 years or even longer), adjusting different 

covariates in the statistic models. After all, the choices of BPV indices are very different, 

and in different studies they were taken from ABPM, office, home BP self-measured 

by patients; home BP by nurses. Some studies used only baseline BPV while others 

used BPV quantified during a period of follow-up (which may cause immortal bias[23]). 

Moreover, calculation of BPV in different studies was based on very different numbers 

of BP values measured at different time interval (every 3/6 months, every 1/2year).  

Previously published papers exploring BPV effects independent of the mean have 

mainly followed these approaches: 

1. Cox proportional hazard model including BPV index categorized into a few groups 

( halves[24], quartiles[25–28], quintile[10,29], deciles[10] or per SD increase[13]) 

for the estimation of hazard ratio (HR) for CV outcomes, setting the smallest BPV 

group as reference. Mean BP level as a continuous variable, BP change over time 

or the mean BP categorized into quartile/quintiles levels were adjusted in the model, 

in situation when no significant correlation between BPV and BP were found[24]. 

In a study by Hastie[28], mean time-weighted SBP and DBP were included in the 

model with BPV index (Visit-to-Visit ARV) even when the mean BP is associated 

with BPV index (rho<0.5), however the sample size was big enough to allow 

proper estimation of the regression coefficients (n=14522). Another approach is to 

categorize BPV indices after splitting the population into groups according to 

subjects’ mean BP level, and then assess the impact of differences in BPV on 

outcome for any given mean BP level[30].  

2. Cox proportional hazard model including BPV index as continuous variable for the 

prediction of CV events or time to event, in some cases after testing the correlation 

between BPV and mean BP[31–33] while in some other cases without clear 

indication of correlation tests [34]. In a study by FF Wei[35], multiple regression 



12 

Xiaoqiu Liu | Corso di Dottorato in Epidemiologia e Biostatistica  XXVIII Ciclo 

analysis included both BP level and BPV (beat-to-beat, reading-to-reading, day-to-

day, VIM, ARV, Range) index and then the variance inflation factor were further 

calculated to assess to what extent parameter estimates for BP level and variability 

were affected by collinearity in fully adjusted regression models. In all of these 

analyses the variance inflation factor was <1.31. 

3. Finding BPV indices that are likely to be independent of the average BP level, i.e. 

coefficient of variation, SD independent of mean (VIM) as well as SVIM, ARVIM 

proposed initially by Rothwell[10,12] in 2010. The calculation of them are 

presented in Table 1. After being proposed, VIM has become very popular and well 

accepted, being used in various papers focusing on either home BPV[26,31,36] or 

office BPV[8,35–37]. Most of the studies support the independence of VIM on 

mean BP, in fact, a study by FF Wei et al[35] indicated a nice independence of VIM 

with mean BP measured in beat-to-beat, reading-to-reading, day-to-day. It should 

be noticed that some of the studies estimated the impact of VIM on the CV events 

without adjusting for the mean BP in the Cox model[8,26,31] while some did[10]. 

Not all the studies are in agreement, for example, R Schutte et al[31] found VIM 

decrease with mean BP within a single visit but showed no dependence on overall 

BP obtained in two visits. Note that the calculation of VIM depends on the mean 

of BP from all the subjects of a study, so it is very sample-specific. Furthermore, 

VIM is considered inappropriate in 24h ABPM, according to its proposer P. 

Rothwell, as he replied my question by email: ‘It is difficult to apply the VIM 

concept to ABPM data because of the considerable diurnal variation in BP – and 

the fact that the diurnal pattern varies so much between individuals. It is better to 

use SD - calculated separately for daytime and night and to then simply adjust for 

mean BP in any modelling.’    

4. Some studies have proposed BPV cutoff threshold using arbitrary selection based 

on clinical judgement, for example, the median value, the upper 75% or 99%[38] 

percentile values. Optimal BPV cutoff points were also determined using outcome-

oriented approaches, including the receiver operating characteristic (ROC) 

curve[39] or the log-rank test statistic[7,40]. In their context, an optimal cutoff 

point was defined as the value of the continuous covariate that best separated, using 

statistical criteria, low- and high-risk patients with respect to a cardiovascular 

outcome event. The ROC curve based methods resulted in an area under the AUC 

curve (AUC) close to 0.5 and optimal value in SD in systolic visit-to-visit BPV of 

8.3-8.4 mmHg. Palatini et al[7] found that a nighttime SBP SD of ≥12.2 mmHg, 

and a nighttime DBP SD of ≥7.9 mm Hg were associated with a greater risk of 

cardiovascular events and of all-cause mortality as compared with lower SD values.  

5. Applying various statistical methods to assess the extra impact of BPV on CV 

outcome. For example, generalized R2 statistics were used in the studies by K 

Asayama[26], R Schutte [31] and LJ Mena[41], In a paper by Palatini[7], the net 

reclassification improvement (NRI) and the category-free integrated discrimination 
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improvement (IDI) are calculated. The paper by Chambless[42] evaluated 

improvement in risk prediction models and compared the effectiveness of NRI, IDI, 

c-statistic, the population attributable risk and the ratio of predicted risk in the top 

quintile to the corresponding variables in the bottom quintile.  

As regard to how many readings within 24h ABPM are sufficient to estimate BPV 

without losing prognostic information, Mena et al suggested 48 measures of BP as a 

minimum number of BP readings to assess ARV without meaningful loss of prognostic 

information [41].  

Due to those discrepancies, a meta-analysis or pooled analysis is difficult to conduct. 

Using “Blood pressure variability” and (“Meta-analysis” or “pooled analysis”) as key 

words in PubMed (31/03/2017), 9 Meta-analyses[43–50] on the effect of BPV on CV 

outcomes were found, among which there were 5 on Visit-to-Visit 

BPV[43,46,47,49,50], all aimed at CV events/mortality and all-cause mortality, and the 

included studies overlapped mostly. There were 4 papers on the effect of short term (not 

necessarily 24h) BPV[44–46,48], but with different outcomes of interest, among which, 

only one paper [46] has pooled studies of home BPV on the effect of cardiovascular 

events/mortality and all-cause mortality. One paper concentrated on the heterogeneity 

on the existing literature exploring the value of 24-hour BP variability as a prognostic 

index[48], and the finding indicates a vast diversity among included studies. Among 40 

included studies, 36 different measures of BPV (systolic or diastolic BP, BPV indices) 

and 13 definitions of night- and day-time periods were used. The interpretation and use 

of 24h BPV in clinical practice, as an important prognostic indicator of CV events, is 

hampered by insufficient evidence and divergent methodologies.  

2.2. Results of the peer studies 

Let alone the heterogeneity in previous studies, most of them found a significant 

independent predictive value of BPV on CV outcomes, after adjusting for the impact of 

mean BP. The publication bias cannot be excluded, however, and more studies are still 

needed to define its real clinical importance, on the background of the achieved 

statistical significance. Yet, a relevant predictive effect of BPV independent of the 

means level is not supported by all the studies, i.e., JA. Staessen et al [26,31,35,51,52] 

found only small independent effect of BPV on cardiovascular events in a pooled 

analysis using data from different countries. This study analyzed 24h ABP recordings 

based on different methodological application of 24h ABPM, which may have biased 

the different estimates of BPV obtained from different populations. In 2014, Diaz KM 

et al published a meta-analysis on the relation between visit-to-visit BPV and CV 

disease and all-cause mortality[37]. This meta-analysis included 37 studies, 

representing 41 separate cohorts. Across studies, systolic BPV and diastolic BPV 

showed significant associations with outcomes in 181 of 312 (58.0%) and 61 of 188 

(32.4%) analyses, respectively. Few studies provided sufficient data for pooling risk 
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estimates. For each 5 mm Hg higher SD of systolic BP, the pooled hazard ratio for 

stroke across 7 cohorts was 1.17 (95% confidence interval [CI], 1.07-1.28), for coronary 

heart disease across 4 cohorts it was 1.27 (95% CI, 1.07-1.51), for CV Disease across 

5 cohorts it was 1.12 (95% CI, 0.98-1.28), for CV mortality across 5 cohorts it was 1.22 

(95% CI, 1.09-1.35), and for all-cause mortality across 4 cohorts it was 1.20 (95% CI, 

1.05-1.36). In 2016, SL Stevens et al have published a meta-analysis in which the 

association long term (clinic), mid-term (home), and short term (ambulatory) BPV, 

independent of mean BP, with cardiovascular disease events and mortality has been 

reviewed separately using standardized hazard ratio in prospective cohort studies and 

clinical trials. Increased long term systolic BPV associated with risk of all-cause 

mortality (hazard ratio 1.15, 95% confidence interval 1.09 to 1.22), cardiovascular 

disease mortality (1.18, 1.09-1.28), cardiovascular disease events (1.18, 1.07-1.30), 

coronary heart disease (1.10, 1.04-1.16), and stroke (1.15, 1.04-1.27). Increased mid-

term and short term daytime systolic BPV were also associated with all-cause mortality 

(1.15, 1.06-1.26 and 1.10, 1.04- 1.16, respectively).  

All these meta-analysis focusing on the effect of BPV on CV events are summarized in 

Table 3. 

As regard to the possible threshold of BPV index, most of the studies used data-based 

approach, including an arbitrary value or quartile/tertile/95% percentile, the results of 

which thus are in heaving dependence of their subject feature. There are only few papers 

using outcome-based approach to best separate subjects into lower/higher CV risks. 

The ROC curve based methods resulted in an area under the AUC curve (AUC) close 

to 0.5 and optimal value in SD in systolic visit-to-visit BPV of 8.3-8.4 mmHg[39]. In 

study by P. Palatini[7], they suggested 12.2 mm Hg (Contal’sq=4.15) and 7.9 mm Hg 

(Contal’sq=2.71) for night-time SBP and DBP SDs using log-rank test statistic[40]. To 

my best knowledge, no study has yet reposted estimation of BPV cutoff values using 

ROC approach extended for survival data.  

In conclusion, review of literature does not lead to a definitive answer to the question 

whether BPV can predict CV event independent of BP levels, and if so the predictive 

power. It is not surprising that the current interpretation and use of 24h BPV in clinical 

practice, as an important prognostic indicator of CV events, is still matter of debate, 

being hampered by insufficient evidence and divergent methodologies. 
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Table 3. Previously published meta-analysis of BPV effect on CV events 

Author [ref. no] Included studies  Events  BP type  Risk evaluation and BPV index Results 

K.M Diaz 

2014[37] 

37 studies representing 41 

cohorts.   

CV diseases (stroke, CHD, CVD), 

CVD mortality and all-cause mortality  

Sys and Dias 

OBPM 

Pooled HR per 5mmHg increase of 

systolic SD  

All systolic HR>1 except for CVD  

No enough data for diastolic BPV evaluation 

K.S. Taylor 

2014[38] 

40 cohorts including 36 

different measures of BPV 

and 13 definitions of night- 

and day-time periods 

all-cause mortality, CV mortality, all 

CV events, stroke and coronary heart 

disease 

Sys and Dias 

ABPM 

RR for 5mmHg increase for SD, CoV, for 

1mmHg dipping and for 10mmHg increase 

for morning surge 

Night dipping ~ low risk of CV events 

L.S.Manning 

2015[39] 

7 prospective, observational 

cohorts 

functional post-stroke outcome (death 

or disability)  

Sys and Dias  

OBPM  

Pooled OR per 10-mm Hg increment in 

Systolic SD or CoV 

Systolic BPV ~ poor functional outcome 

C. Tai 2015 [40] 13 cohorts CV events and all-cause mortality Systolic 

VVV 

Pooled HR per 1 mmHg increase in SD or 

1% increase in CoV. 

Systolic VVV is a predictor of CV and all-cause mortality and 

stroke 

S.L.Stevens 

2016 [41] 

23 separate analyses 

(observational cohort or 

clinical trials) 

All-cause mortality and CV diseases 

and mortality  

OBPM  

HBPM 

ABPM 

Standardized HRs for increase in BPV 

(SD, CoV, VIM, and ARV).  

Increased systolic VVV ~ all-cause, CV mortality and CV 

diseases; Increased mid- short-term daytime systolic BPV ~ all-

cause mortality 

J.M. Madden 

2016 [42]  

12 studies (case-control or 

cross-sectional) 

left-ventricular mass index (LVMI) ABPM Correlation coefficient of LVMI withARV, 

SD, wSD, CoV across 24 h/day/night 

periods  

Weak correlation between LVMI and systolic 24h SD, 24h ARV, 

wSD, day SD 

J. Wang 

2017[43]   

23 observational cohort 

studies 

CV diseases (stroke, CHD, CVD), CV 

mortality and all-cause mortality  

OBPM RR for increase in SD and CoV Systolic VVV ~ all-cause mortality, CV mortality, CHD incidence 

and stroke incidence 

Alastair J.S. 

Webb[44] 

14 large randomized 

controlled trials 

new atrial fibrillation OBPM OR for increase in ratio of SD2 between 

treatment/control groups  

Effects of randomized treatment on variability in BP are unrelated 

to risk of new-onset AF. 

Note: CHD: Coronary heart disease; CVD: Cardiovascular disease; HR: Hazard ratio; RR: relative risk or risk ratio; OR: Odds ratio; ~ : associated with
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3. Dublin study -a registry dataset 

3.1. Introduction to Dublin Study  

The Blood Pressure Unit (formerly located at the Charitable Infirmary and now based 

at Beaumont Hospital in Dublin) has been receiving patients who were referred to the 

unit by their family doctors because of an elevated clinic BP; 11291 such patients 

entered into Dublin outcome study during the study period (June 1, 1980 to September 

30, 2002). More than one paper have been published from the dataset of Dublin 

study[53,54]. To be eligible for this study, patients had to be either untreated at baseline, 

or had all antihypertensive drugs discontinued for 1 week before their baseline visit to 

the unit; demographic details and cardiovascular risk factors (sex, age, body mass index, 

smoking status, presence of diabetes mellitus, and history of previous cardiovascular 

events) had to be recorded; The Hospital Ethics Committee approved the study. 

ABPM was performed by validated oscillometric SpaceLabs 90202 and 90207 

monitors (SpaceLabs Inc, USA) set to measure BP every 30 mins throughout the 24-

hour period. Mortality outcome was ascertained by 30 September 2002 by searching a 

national computerized register of deaths for each individual whose name appeared in 

the dabl@ BP database (ECF Medical Ltd, Blackrock, Co. Dublin, Ireland). The death 

certificate of each individual was examined and the cause of death was coded according 

to the World Health Organization’s International Classification of Diseases, 9th 

Revision (ICD-9). Cardiac mortality included myocardial infarction (ICD-9, 4100 to 

4109), heart failure (4280 to 4289), sudden death (7980 to 7989), and chronic coronary 

heart disease (4140 to 4149). Cerebrovascular mortality included stroke (4300 to 4389). 

Cardiovascular mortality was a composite of cardiac mortality, stroke, and other 

vascular deaths. 

3.2. Data management and quality control  

Data quality control mainly focuses on ABPM readings based on the following steps: 

SBP<50mmHg or >300mmHg, DBP<40mmHg or >150mmHg, SBP-DBP<10mmHg 

or >150mmHg were considered as abnormal BP readings and were deleted. As the 

actual bedtime and awakening hours were not available for individual subjects, 

Daytime was defined as the time period between hours [10:00, 22:00) and nighttime 

between hours [24:00, 06:00) (narrow fixed time intervals approach, excluding 

transition times between wake and sleep). BP readings that were registered after 22:00 

of the second day were not considered. After excluding abnormal BP readings, patients 

(n=759) who had less than 20/7 readings for the day/night, or <70% of expected 

readings in 24h, were excluded from this study, following the ESH position paper[55]. 
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Among the remaining subjects, 40 subjects under 18 years at the time of enrollment 

were excluded from this study.  

In the end, 10492 patients were included. Threshold for hypertension diagnose based 

on ABPM are ≥130/80 mmHg for 24h average, ≥135/85 mmHg for daytime average 

and ≥120/70 mmHg for night-time average. Patients with one or more average (24h, 

daytime, night-time) above the threshold value(s) are defined as systolic and/or 

diastolic hypertensive. 

As in Dublin study the BP data are limited to readings obtained by 24h ABPM without 

antihypertensive treatment, the BPV index selection is concentrated on those of overall 

variability and variability based on ordered BPs. Variability on extreme values are not 

considered as it carries the risk of including artefactual outlies. Three measures of short 

term BPV, namely CoV, ARV and wSD for 24h, SD of daytime and nighttime BP 

separately considered. CoV is chosen because it is unitless and it is a standardized 

measurement of the dispersion. wSD provides a weighted average of the daytime and 

nighttime BP SDs, excluding the influence of day-night changes (Figure 1, Left panel), 

while ARV quantifies successive variations from measure to measure. This is 

exemplified in Figure 1, Right panel, where the example (a) has same SD but 

significantly lower ARV than the other. Thus, ARV may able to better reflect the actual 

short term BP variability, and may be less sensitive to the relative low sampling 

frequency of the ambulatory blood pressure monitoring devices. The calculation of 

ARV is not majorly influenced by the night fall in BP, and thus it is an index nicely 

suited to quantify short term 24h BPV. In this report, CoV, ARV, wSD for 24h BPV, SD 

for day and night time BPV, separately considered, are used.  

Multiple regression analysis are used to explore the potential influencing factors of BPV. 

Proportional Cox model and Weibull models are used to assess the effect of different 

BPV indices on the CV mortality. Based on their results, cutoff values are estimated for 

significant BPV indices using receiver extended operating characteristic (ROC) based 

methods. At last, the model fitness is evaluated using Brier score and ROC.  

In this report, SAS 9.3 and R 3.3.2 are used for data management and/or analysis.  

Figure 1. Example data for the calculation of wSD (Left) and ARV (Right) 

Figures cited from [2] (Left) and [4] (Right) 
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3.3. Data analysis /results 

3.3.1. Baseline information 

Out of 11291 subjects in the dataset, 10492 were included into analysis set, among 

whom there were 4914(46.9%) males, 2144(20.4%) smokers, 792(7.5%) individuals 

with diabetes, 1314(12.5%) with previous CV diseases. Mean age was 54.1±14.4 years 

and BMI 27.4 ±4.7 kg/cm2. For systolic and diastolic BP, the threshold values are 

BP>135/85mmHg at day or >120/70mmHg at night or >130/80mmHg over 24h. Only 

both systolic and diastolic BP at day, night and 24h BP are all below threshold values 

are considered as normotensive. 1649 subjects were normotensive, 8843 were 

hypertensive (including 1435 systolic-only hypertensive, 682 diastolic-only 

hypertensive, and 6726 were hypertensive for both systolic and diastolic pressure). 

After a median follow-up of 5.69 years, 502 patients died from CV diseases, including 

130 stroke, 319 cardiac mortality, 53 other CV mortality. Baseline BP and BPV 

information are in Table 4. Compared with patients who died, the censored patients 

were younger, slightly heavier, less males, with less smoking, less diabetes, less 

previous CV diseases, lower BP levels and lower BPV levels. 

Table 4. Baseline information 

Variables Systolic Mean (SD) Diastolic Mean (SD) 

24h Mean (mmHg) 139.4(17.3) 82.8(11.3) 

Day Mean (mmHg) 145.3(18.1) 87.4(12.1) 

Night Mean (mmHg) 128.2(18.7) 74.2(12.0) 

24h ARV (mmHg) 10.2(2.6) 8.1(2.0) 

24h wSD (mmHg) 11.7(3.4) 8.9(2.4) 

24h CoV 8.4 (2.2) 10.8(2.9) 

Day ARV (mmHg) 10.4(3.2) 8.2(2.6) 

Day SD (mmHg) 12.3(4.1) 9.1(2.9) 

Day CoV 8.4(2.6) 10.6(3.3) 

Night ARV (mmHg) 9.4(3.5) 7.7(2.9) 

Night SD (mmHg) 10.5(4.3) 8.4(3.2) 

Night CoV 8.2(3.2) 11.4(4.4) 

In general, all the systolic BPV indices have greater values than diastolic BPV, except 

for CoV, which is a standardized measure of dispersion of BPV. Both systolic and 

diastolic BPV following a trend that day BPV is slightly higher than 24h BPV, 24h BPV 

is higher than night BPV, except for diastolic CoV at night time that is higher than day 

and 24h BPV, this could be caused by the very small night diastolic BP. 
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3.3.2. Variables associated with BPV 

Linear regressions are performed to identify variables which could be potentially 

associated with BPV, including age, BMI, gender, previous CV disease, diabetes and 

smoking. After identification of age, BMI, gender and previous CV disease as covariate, 

generalized linear regression is applied to check the association of mean BP with BPV, 

adjusting for the above covariates (Table 5). Although the systolic and diastolic mean 

BP values were all strongly correlated with the corresponding BPV, the coefficients 

were always very small. Almost all the BPV values increased with age, average of 

corresponding BP levels and smoking, except for the opposite trend or inconsistency in 

CoV; all the BPV values estimated for 24h or daytime seem to be higher in females, 

but higher in males when estimated for nighttime. Effect of BMI and previous CV 

diseases are not consistent. 

Table 5. The coefficients from multivariable linear regression 

  Mean SBP‡ Mean DBP‡ Age‡ Smoke BMI Gender Previous CV 

Systolic 24h wSD 0.07  0.06 0.46‡ -0.02‡ -0.32‡ -0.08 

24h ARV 0.05  0.05 0.19† -0.01† -0.27‡ 0.15† 

24h CoV -0.01  0.05‡ 0.36‡ -0.01† -0.19‡ -0.05 

Day SD 0.07  0.08 0.19 -0.04‡ -0.47‡ -0.03 

Day ARV 0.05  0.06 0.06 -0.04‡ -0.44‡ 0.17 

Day CoV -0.01  0.06‡ 0.14* -0.03‡ -0.30‡ 0.03 

Night SD 0.06  0.04‡ 1.06‡ -0.02* 0.03 -0.32* 

Night ARV 0.04  0.04‡ 0.35‡ 0.03‡ 0.17* -0.10 

Night CoV -0.02  0.03‡ 0.86‡ 0.02† 0.05 -0.25† 

Diastolic 24h wSD  0.05 0.02‡ 0.43‡ 0.02† -0.03 -0.12 

 24h ARV  0.04 0.01‡ 0.25‡ 0.03‡ -0.13† 0.09 

 24h CoV  -0.06 -0.02‡ 0.53‡ 0.03‡ -0.08 -0.14 

 Day SD  0.05 0.02‡ 0.28† -0.00 -0.18† 0.09 

 Day ARV  0.05 0.01‡ 0.20† 0.01* -0.40‡ 0.11 

Day CoV  -0.06 0.02‡ 0.31‡ 0.00 -0.20† -0.10 

Night SD  0.05 0.00 0.75‡ 0.05‡ 0.51‡ -0.21* 

Night ARV  0.04 0.00 0.30‡ 0.05† 0.45‡ 0.07 

Night CoV  -0.08 -0.00 1.01‡ 0.07‡ 0.71‡ -0.28* 

Gender: Female=0, Male=1; *p<=0.05; †p<=0.01 ‡:p<=0.001. 

Self-regulation in human body allows BP to vary relatively freely within a threshold, 

beyond which the BP becomes hard to increase or decrease. e.g. within the frame of, 

say, 120-160 mmHg, the BP may vary in a large range, but it is a lot more difficult for 

the very low BP values to decrease further or for the very high BP values to increase 

further. Thus, it is expected that the BP values of a subject with mean BP within the 

frame could be considered as normal, a subject with mean BP below the frame would 

have his BP values left skewed (mean<mode) and a subject above with BP values right 
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skewed (mean>mode). However, what about the BPV estimates in patients with lower 

or higher mean BP levels? Are they also skewed or normally distributed? Are they 

smaller or bigger than the BPV estimates obtained in patients with BP around average 

level? Currently, among the large number of studies which have been designed to 

explore the effects of BPV on targeted outcomes, some explored the relationship 

between mean BP and BPV[31–33], while others did not pay much attention to this 

aspect[34].  

In order to better explore this issue, the mean 24h SBP and DBP were divided into 

quartiles: 1st quartile (≤127/75 mmHg), 2nd quartile (127-137/75-82), 3rd quartiles (137-

150/82-89 mmHg), and 4th quartile (≥150/89 mmHg), respectively. The number of 

patients in each quartile is 2623. The distribution of 24h wSD, ARV and CoV are 

presented in Table 6. 

BP variability represented by all the above indices increased with mean BP levels, and 

its variance and interquartile range also increased with the mean BP. All indices showed 

increasing trends with BP quartiles except for diastolic CoV. The variance, e.g. the 

standard deviation of the BPV increases not only with the increase in mean BP, but also 

with the increase in the BPV. wSD and ARV among mean BP subgroups show right 

skewness however without any significant trend, as they could all be considered as 

normally distributed. 

Table 6. Distribution of mean BP and BPV in the quartiles of 24h BP 

  SBP         DBP         

Variable rank Mean SD Range Min Max IQR Q1 Q3 Skew Mean SD Range Min Max IQR Q1 Q3 Skew 

mean24h 1 119.3 6.3 39.3 88.0 127.3 8.3 115.9 124.2 -1.2 69.2 4.4 23.8 51.1 74.9 6.2 66.6 72.8 -0.9 

 2 132.5 2.9 10.1 127.3 137.4 4.9 130.0 135.0 0.0 78.6 2.1 7.2 74.9 82.1 3.5 76.8 80.4 -0.1 

 3 143.1 3.5 12.2 137.4 149.7 5.9 140.1 146.0 0.1 85.7 2.2 7.8 82.1 89.9 3.6 83.8 87.5 0.2 

 4 162.7 11.5 73.7 149.7 223.4 14.3 154.0 168.3 1.4 97.7 6.9 48.7 89.9 138.6 8.6 92.5 101.0 1.4 

ARV_24h 1 8.9 2.0 19.1 4.3 23.4 2.4 7.6 10.0 1.0 7.6 1.8 16.0 3.4 19.4 2.3 6.2 8.5 1.0 

 2 9.7 2.2 17.6 3.8 21.4 2.7 8.2 10.9 1.0 8.0 1.9 14.8 3.6 18.5 2.3 6.7 9.0 1.0 

 3 10.4 2.4 22.5 4.8 27.3 2.9 8.8 11.7 0.9 8.2 1.9 16.8 3.3 20.0 2.3 6.9 9.2 1.1 

 4 11.7 2.7 18.4 5.5 23.9 3.5 9.7 13.2 0.7 8.8 2.1 20.1 3.8 23.9 2.6 7.3 9.9 1.2 

wSD 1 9.9 2.6 39.0 4.6 43.5 3.2 8.2 11.3 1.7 8.1 2.1 19.5 3.6 23.1 2.5 6.7 9.2 1.1 

 2 11.1 2.9 20.9 4.4 25.2 3.6 9.0 12.6 0.9 8.7 2.2 17.5 4.1 21.6 2.8 7.1 9.9 1.0 

 3 12.0 3.2 26.0 5.2 31.2 4.2 9.7 13.9 1.0 9.0 2.3 17.3 4.0 21.2 2.9 7.4 10.3 1.0 

 4 13.7 3.7 26.8 5.0 31.9 4.6 11.1 15.7 1.0 9.6 2.5 18.7 3.8 22.5 3.2 7.8 11.0 0.8 

cv_24h 1 8.3 2.1 31.3 3.8 35 2.6 6.8 9.4 1.7 11.7 2.9 27.3 5 32.4 3.6 9.7 13.2 1.1 

 2 8.3 2.2 17.4 3.2 20.6 2.7 6.8 9.5 0.9 11.1 2.8 22.6 5.2 27.8 3.6 9 12.6 1 

 3 8.4 2.2 18.5 3.5 21.9 2.9 6.8 9.7 1.1 10.6 2.7 21.4 4.6 26 3.4 8.7 12.1 1 

 4 8.4 2.2 17.6 3.2 20.9 2.8 6.9 9.6 1 9.9 2.6 21 3.2 24.3 3.4 8.1 11.4 0.9 

In conclusion, the preliminary explorations indicate that as mean BP increase, BPV 

increases both in its mean value and in its variance, remaining normally distributed, 



21 

Xiaoqiu Liu | Corso di Dottorato in Epidemiologia e Biostatistica  XXVIII Ciclo 

confirming previous work by Mancia et al[56].  

3.3.3. Impact of BPV on mortality  

Cox model 

Cox Proportional Hazard (PH) model is used to estimate the hazard ratios (HR) for the 

increase in CV mortality by the various BPV indices. The hazard function for failure 

time T for an individual i (i=1,2,…N) and survival function are:  

ℎ(𝑡) = ℎ0(𝑡)exp (𝛽
′𝑋𝑖) 

𝑆(𝑡, 𝑋) = [𝑆0(𝑡)]
exp (𝛽′𝑋𝑖) 

ℎ0(𝑡) is a function of time only, which is left arbitrary but is assumed to be the same 

for all subjects. exp (𝛽′𝑋𝑖) is a quantity which depends on the individual covariates 

only through the regression coefficients. The covariates are assumed to be constant in 

time in the basic Cox model.  

The Cox model is a semi-parametric model since it does not specify the form of ℎ0(𝑡). 

It does, however, specify the hazard ratio for any two individuals with covariate vector 

𝑥1 and 𝑥2. The estimates from Cox model are obtained by maximizing the partial 

likelihood function, it estimates the “beta” coefficients considering the baseline hazard 

as a nuisance. The Cox PH model assumes that the HR is constant over time, ℎ̂(𝑡, 𝑋) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × ℎ0(𝑡, 𝑋) . Or equally speaking, that hazard for one individual is 

proportional to the hazard for any other individuals, where the proportionality is 

constant and independent of time, as shown in the formula, 𝐻𝑅 = exp ∑ 𝛽𝑖(𝑋𝑖1 −
𝑝
𝑖=1

𝑋𝑖2), which involves no time. From the survival function we can derive this function, 

log[−log𝑆(𝑡, 𝑥)] = log[𝛽𝑥] + 𝑙𝑜𝑔[−𝑙𝑜𝑔𝑆0(𝑡)] 

which indicate a constant distance from the log(-log) of the baseline survival function. 

Under the PH assumption, log[−log𝑆(𝑡, 𝑥1)]  and log[−log𝑆(𝑡, 𝑥2)]  would both 

exhibit a constant distance from the reference cumulative hazard 𝑙𝑜𝑔[−𝑙𝑜𝑔𝑆0(𝑡)] and 

would therefore be parallel. 

In order to apply the basic Cox model, a few assumptions should be satisfied: 

1. Non-informative censoring.  

2. Hazard function can be expressed by this formula:ℎ(𝑡) = ℎ0(𝑡)exp (𝛽
′𝑋𝑖), where the 

covariates are assumed to be constant in time. 

3. Independent variates affect the hazard in a multiplicative way, or equivalently, affect 

the logarithm of the hazard in an additive way in the whole follow up period. 

(Proportional hazard).  

4. The covariates (e.g. treatment group and gender) have independent effects on the 

hazard rate. In other words, there is no interaction between x1 and x2. In this case, the 
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treatment should have the same effect on males and females. However, this assumption 

can be relaxed by introducing an interaction term.  

5. In a model with continuous covariates or covariates with multiple categories, the 

model assumes that the baseline log hazard is added to the same constant factor 𝛽 for 

every increase of one unit in the value of X. If this is undesirable, alternative coding 

should be adopted for the variables.  

6. Log-linear assumption: when a raw value of a quantitative variable is included in the 

model, a constant linear increase (or decrease) in the log hazard is assumed. (i.e. 𝛽′𝑋𝑖is 

linear. But the log hazard between two comparative groups stays constant- PH 

assumption). 

Three models are used to test the impact of BPV on CV mortality in Dublin study. Basic 

model is unadjusted, included only a BPV index as independent variable; the adjusted 

model is adjusted by age and BMI and stratified by sex, smoking and previous 

cardiovascular diseases. The full model contains the same stratification as in adjusted 

model and adjustment includes not only age and BMI, but also, in addition, the 

corresponding mean SBP, mean DBP and nocturnal fall, which is calculated as the ratio 

of night/day mean BP. Hazard ratio (HR) is calculated as one SD increase in mean and 

BPV for CV mortality (Table 7).  

Most of the systolic and diastolic mean BP and BPV indices for day, night, 24h showed 

significant association with the CV mortality in the unadjusted models; with one 

standard deviation increase, the risk of CV mortality increased up to 82% percent. The 

association was weaker or absent in the adjusted model. Whereas in full model, when 

the mean systolic and diastolic BP of 24h, Day, Night and one of their corresponding 

BPV indices were included in the same model, all systolic BPV indices lost statistical 

significance and all mean SBP of 24h, day, night maintained their predictive effect. On 

the other hand, for diastolic BP and BPV, when mean BP and corresponding BPV 

indices were included in the same model, 24h DBP, day DBP, night BPV lost statistical 

significance, while night DBP, 24h wSD, 24h ARV, day ARV, day SD, 24h CoV and 

day CoV showed significant predictive effect for CV mortality. However the estimated 

increase of CV mortality risk was very small, for one standard deviation increase in 

these BPV indices, the risk of CV mortality increased by about 3-14%. Attention needs 

to be paid to the HR values estimated for diastolic BP, which are smaller than 1. This 

could be caused by the adjustment of the corresponding systolic BP. Indeed, in the case 

of increasing values of SBP, a reduction in DBP may imply a wider pulse pressure 

which is known to carry an increased risk of cardiovascular complications. This might 

partly explain the reduced HR in full model analysis when adjusting for SBP values and 

for BPV estimates.  
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Table 7. HR and 95% Confidence interval of Cox models for BPV estimates 

   Basic model Adjusted model Full model# 

Systolic 24H Mean 1.64[1.52-1.77]‡ 1.29[1.19-1.39] ‡ 1.38[0.22-1.56] ‡ 

  ARV 1.52[1.42-1.63] ‡ 1.09[1.01-1.18] ‡ 1.01[0.93-1.11] 

  wSD 1.47[1.37-1.58] ‡ 1.11[1.02-1.20] † 1.01[0.92-1.11] 

  CoV 1.27[1.18-1.37] ‡ 0.98[0.90-1.07] 1.01[0.93-1.10] 

 Day Mean 1.43[1.32-1.55] ‡ 1.21[1.11-1.31] ‡ 1.29[1.15-1.46]‡ 

  ARV 1.40[1.30-1.50] ‡ 1.07[0.99-1.16] 1.02[0.94-1.11] 

  SD 1.46[1.37-1.57] ‡ 1.11[1.03-1.21]* 1.05[0.96-1.14] 

  CoV 1.33[1.24-1.43] ‡ 1.03[0.95-1.12] 1.05[0.96-1.14] 

 Night Mean 1.82[1.69-1.95] ‡ 1.38[1.28-1.49] ‡ 1.54[1.36-1.74]‡ 

  ARV 1.31[1.22-1.40] ‡ 1.10[1.00-1.16] 1.00[0.93-1.08] 

  SD 1.23[1.14-1.32] ‡ 1.03[0.96-1.12] 0.96[0.88-1.04] 

  CoV 1.01[0.93-1.10] 0.91[0.84-1.00] 0.96[0.87-1.05] 

Diastolic 24H Mean 0.99[0.91-1.09] 1.14[1.05-1.25]† 0.84[0.73-0.95]* 

  ARV 1.34[1.25-1.44] ‡ 1.14[1.07-1.22] ‡ 1.13[1.05-1.21] ‡ 

  wSD 1.33[1.24-1.43] ‡ 1.17[1.09-1.25] ‡ 1.14[1.06-1.23] ‡ 

  CoV 1.30[1.21-1.39] ‡ 1.12[1.04-1.21]† 1.13[1.05-1.22]† 

 Day Mean 0.85[0.78-0.93] 1.08[0.99-1.18] 0.85[0.74-0.97]* 

  ARV 1.27 [1.18-1.36] ‡ 1.12[1.05-1.20] ‡ 1.11[1.04-1.20]‡ 

  SD 1.33[1.23-1.43] ‡ 1.15[1.08-1.24] ‡ 1.13[1.05-1.22]‡ 

  CoV 1.34[1.26-1.44] ‡ 1.13[1.05-1.22]† 1.12[1.04-1.21]† 

 Night Mean 1.22[1.13-1.33] ‡ 1.22[1.12-1.32] ‡ 0.82[0.72-0.94] * 

  ARV 1.18[1.09-1.27] ‡ 1.09[1.01-1.17] * 1.07[0.98-1.15] 

  SD 1.14[1.05-1.23] ‡ 1.10[1.02-1.19] * 1.08[0.99-1.17] 

  CoV 1.06[0.97-1.15] 1.05[0.95-1.13] 1.09[0.99-1.19] 

#: hazard ratio for one standard deviation in mean BP estimated in the full model is adjusted for the corresponding day or night SD 

or wSD. The HRs adjusted with corresponding ARV are similar (not shown). *p<0.05; †p<0.01 ‡:p<0.001; Basic model: unadjusted. 

Adjusted model: adjusted for age, BMI and stratified by sex, smoking and previous cardiovascular diseases. Full model: adjusted 

for age, BMI, the corresponding mean SBP, DBP and nocturnal fall, stratified by sex, smoking and previous cardiovascular diseases. 

All the models use standardized BPV indices (per 1 SD increase) for Hazard ratio with 95% confidence interval for CV mortality. 

SD: standard deviation, ARV: Average real variability, wSD, Weighted SD. Hazard ratio calculated per unit increase (Not shown) 

are all very similar to the result above.  

3.3.4. Accelerate Failure Time Models 

Using the non-parametric (Log-rank test) or semiparametric (Cox PH model) model 

can exempt us from specifying the hazard function completely. The utility of the 

proportional hazards models stems from the fact that a reduced set of assumptions is 

needed to provide the hazard ratios, which are easily interpreted and clinically 

meaningful. However, when the hazard function has a known parametric form the use 
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of a fully parametric model is useful to better address the goal of the analysis, in 

particular for prediction aims. Those models have some advantages[57], in particular, 

full maximum likelihood is used to estimate the parameters; the coefficients can have a 

more intuitive clinical interpretation; fitted values from the model can provide a direct 

estimates of survival time (and residuals). 

Brandon et al[58] have summarized several classes of parametric models: (1) 

parametric proportional hazards model which takes the form of the Cox model but 

assumes a parametric form of the baseline hazard; (2) the additive hazards model where 

the predictors affect the hazard function in an additive manner instead of multiplicative; 

and (3) the Accelerated Failure Time (AFT) model, which is most similar to 

conventional linear regression. In this section, AFT model will be discussed.  

A proportional hazards model estimates the hazard rate (event per time) and assumes 

that the effect of a covariate is to multiply the hazard by some constant. AFT model 

provides an alternative to the commonly used proportional hazards models, it assumes 

that the effect of independent variables is to multiply the survival time by some constant, 

usually called as acceleration factor or time ratio 𝜃  [59]. AFT models are 

predominantly full parametric, i.e. a probability distribution is specified for log(𝑇0), 

and the interpretation of 𝜃 in AFT models is straightforward: e.g. event of interest in 

the relevant life history of an individual happens 𝜃 as fast as that in the reference group. 

Under the AFT model, the expected survival time, median survival time of reference 

group are 𝜃 times as much as those of compared group. Attention needs to be paid that 

this does not necessarily mean that the hazard function ℎ(𝑡|𝜃) is always 𝜃 times as 

high. 

In full generality, the accelerated failure time model can be specified as[60]:  

 ℎ(𝑡|𝜃) = 𝜃ℎ0(𝜃𝑡) 

𝑓(𝑡|𝜃) = 𝜃 𝑓0(𝜃𝑡) 

𝑆(𝑡|𝜃) = 𝑆0(𝜃𝑡) 

𝜃 denotes the joint effect of covariates, typically 𝜃 = exp (𝛽1𝑥1+. . +𝛽𝑃𝑥𝑃) (doesn’t 

include the error term), 𝜃 > 0, 𝑡 ≥ 0. The procedure Proc LifeReg in SAS fits data into 

models by the following equation[61]: 

𝑦 = 𝛽0 + 𝛽1𝑥𝑖1+. . +𝛽𝑃𝑥𝑖𝑃 + 𝜎𝜖𝑖 

where 𝛽 is the regression coefficient of interest, 𝜎 is a scale parameter and 𝜖 is the 

random disturbance term, usually assumed to be an independent and identically 

distributed (i.i.d.) variable N (0,1) with some density function 𝑓(𝜖). All subjects share 

the same 𝜖. These models are equivalent to AFT models when the log of the response 

time is the quantity being modeled, in such case, 𝑦 = log(𝑇𝑖) = 𝛽0 +

𝛽1𝑥1+. . +𝛽𝑃𝑥𝑃 + 𝜎𝜖𝑖.  Taking the logarithm is in line with the fact that the survival 
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times are always positive. This reduces the AFT model into regression analysis 

(typically a linear model) where 𝛽0 + 𝛽1𝑥1+. . +𝛽𝑃𝑥𝑃 represents the fixed effects, and 

𝜎𝜖𝑖 represents the noise.  

Regarding the fixed effects, we can write the following formula: 

𝑇𝑖 = exp (𝛽0 + 𝛽1𝑥1+. . +𝛽𝑃𝑥𝑃) ∙ exp (𝜎𝜖𝑖) 

Thus the survival time can be seen to be multiplied by a constant effect exp (𝛽) which 

is referred to as acceleration factor or time ratio[59], in another word, the covariate 

influences the survival time by a constant. Thus, if T0 is an event time sampled from 

the baseline distribution corresponding to values of zero for the vector of covariates xp, 

then the AFT model specifies the event time as: 

𝑇 = exp (𝛽0) ∙ exp(𝛽𝑝𝑥𝑝) ∙ exp (𝜎𝜖𝑖) = 𝑇0 exp(𝛽𝑝𝑥𝑝) 

log(𝑇) = 𝛽𝑝𝑥𝑝 + log(𝑇0) 

It shows that the moderated life time T is distributed such that 𝑇𝜃 and the unmoderated 

life time T0 have the same distribution, the effect of the covariates in an AFT model is 

to change the scale, and not the location, of a baseline distribution of failure times[61]  

When holding other covariates fixed, change of the covariate k from 0 to 1 (from one 

group to another) or increase in k by one unit, the corresponding survival time T1 and 

T2 are: 

 

Where 𝑐1 and 𝑐1  are two constant related by 𝑐2 = 𝑐1 ∗ 𝑒
𝛽𝑘 . The corresponding 

survival functions are: 

 

Since 𝜖1 = 𝜖2, and 𝑐2 = 𝑐1 ∗ 𝑒
𝛽𝑘, we have 

 

Therefore, the survival time corresponding with one unit increase are in relationship 

as 𝑡2 = 𝑒
𝛽𝑘𝑡1. When 𝛽𝑘 is small, 

𝑡2−𝑡1

𝑡2
= 𝛽𝑘. Therefore, the coefficient 𝛽𝑘 can be 

interpreted as the percentage increase or decrease in the average or median survival 

time over one unit change in covariate k. The exponential of 𝛽 is hazard (or odds) 
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ratio of survival if calculated as exp(𝛽) and of death if calculated as exp(-𝛽). 

As regards to the noise term, different distributional forms of ϵ imply different 

distributional forms of T0, i.e. different baseline distributions of the survival time. 

Depending on how 𝜖  is distributed, the AFT model can be specified for different 

distribution of baseline survival time, as shown in Table 8. 

Table 8. The distribution of error term and survival time in AFT models 

Distribution of 𝜖 Distribution of T SAS Lifereg 

Extreme values (2 par.) Weibull Dist=weibull (Default) 

Extreme values (1 par.) Exponential Dist=exponential 

Log-gamma Gamma Dist=gamma 

Logistic Log-logistic Dist=llogistic 

Normal Log-normal Dist=lnormal 

Exponential and Weibull distribution 

The simplest AFT model is the exponential model where T at z = 0 (usually referred to 

as the baseline) has exponential distribution with constant hazard exp(-𝛽0). For the 

estimation of log (𝑇𝑖) = 𝛽0 + 𝛽1𝑥𝑖1+. . +𝛽𝑃𝑥𝑖𝑃 + 𝜎𝜖𝑖 , this distribution assumes that 𝜎 

in set to be 1 and 𝜖 has a standard extreme value distribution, indicates that the events 

occur continuously and independently at a constant average rate. Automatically we 

have proportional hazards models.  

ℎ(𝑡) = 𝜆 = 𝑒−(𝛽𝑥) 

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡 (𝜆 > 0) 

𝑆(𝑡) = 𝑒−𝜆𝑡 

Therefore, if we increase the value of one covariate by one unit from xk to xk+1 while 

holding other covariate values fixed, then the ratio of the corresponding hazards, HR, 

is equal to 𝑒𝛽𝑘, or equivalently, 𝛽𝑘  can be interpreted as the increase in log-hazard as 

the value of covariate zk increases by one unit. 

Exponential distribution can be considered as a particular case of Weibull distribution, 

or vice versa, Weibull can be considered as a generalized exponential distribution.  The 

probability density function of a Weibull random variable is  

 

Where k>0 is the shape parameter and 𝜆 > 0 is the scale parameter of the distribution. 

When k=1, Weibull distribution is the exponential distribution, or equally speaking, for 

the estimation of log (𝑇𝑖) = 𝛽0 + 𝛽1𝑥𝑖1+. . +𝛽𝑃𝑥𝑖𝑃 + 𝜎𝜖𝑖 , the distribution 𝜎𝜖  has a 

standard extreme value distribution with the scale 𝜎 together with shape parameter k 

need to be estimated. In Weibull model, 
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𝑆(𝑡) = 𝑒−(𝜆𝑡)
𝑘  

ℎ(𝑡) = 𝜆𝑘(𝜆𝑡)𝑘−1  

𝑓(𝑡) = ℎ(𝑡)𝑆(𝑡) = 𝜆𝑘(𝜆𝑡)𝑘−1  

Weibull model allows the hazard form to change with time through the exponent k-1. 

𝑘 {
< 1  ℎ(𝑡) ↑
> 1 ℎ(𝑡) ↓
= 1 ℎ(𝑡) = 𝑐

} 

The function of the linear predictor 𝛽′𝑥 can also be in other form instead of exponential, 

but exponential is preferable as it takes on positive values and no constraints on the 

values of 𝛽 is required. The Weibull regression model can be considerd as a parametric 

member of the class of PH regression models, where the baseline hazard function is 

specified to have a form containing a function of time, 𝜆(𝑡, 𝑥) = 𝜆0(𝑡)𝑔(𝑥). The 

coefficient has the interpretation that it is the increase in log-hazard or decrease of log 

survival time when the value of covariate increases by one unit while other covariate 

values being held unchanged. 

The Weibull distribution (including the exponential distribution as a special case) can 

be parameterized as either a PH model or an AFT model, and is the only family of 

distributions to have this property. The results of fitting a Weibull model can therefore 

be interpreted in either framework.  

In Cox PH model: 𝐻𝑅 =
ℎ(𝑡,𝑥1)

ℎ(𝑡,𝑥2)
=
ℎ0(𝑡)exp (𝛽

′𝑥1)

ℎ0(𝑡)exp (𝛽′𝑥2)
= exp [𝛽′(𝑥1 − 𝑥2)] 

𝑆(𝑡, 𝑋) = [𝑆0(𝑡)]
𝑒𝛽𝑥 

log[−log𝑆(𝑡, 𝑥)] = log (𝛽𝑥) + 𝑙𝑜𝑔[−𝑙𝑜𝑔𝑆0(𝑡)] 

In Weibull Model: 

𝐻𝑅 =
ℎ(𝑡, 𝑥1)

ℎ(𝑡, 𝑥2)
=
𝜆𝑘(𝜆𝑡)𝑘−1exp (𝛽′𝑥1)

𝜆𝑘(𝜆𝑡)𝑘−1exp (𝛽′𝑥2)
= exp [𝛽′(𝑥1 − 𝑥2) 

𝑆(𝑡) = 𝑒−(𝜆𝑡)
𝑘𝑒𝛽𝑥  

log[−log𝑆(𝑡, 𝑥)] = 𝛽𝑥 + 𝑘𝑙𝑜𝑔𝜆 + 𝑘𝑙𝑜𝑔𝑡 

Under the PH assumption, log[−log𝑆(𝑡, 𝑥1)]  and log[−log𝑆(𝑡, 𝑥2)]  would both 

exhibit a constant distance from the reference cumulative hazard 𝑙𝑜𝑔[−𝑙𝑜𝑔𝑆0(𝑡)] and 

would therefore be parallel. While if Weibull model is suitable, the plot of 

log[−log𝑆(𝑡, 𝑥)] obtained in two subgroups should give approximately two parallel 

lines (linearity) when no time-dependent covariates present. The slope of the line 

provide a rough estimate of k and the difference between two intercepts corresponds to 
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the quantity 𝛽′(𝑥1 − 𝑥2). 

Considerations from the Weibull regression model:  

1. The log[-log(s(t))] is linear with log(t).  

2. The shape of the hazard is monotonous, depend on k, and is the same for all the 

subgroups.  

3. The effect of the covariates is to act multiplicatively [×exp (𝛽)] on the hazard function, 

and the hazard ratio between two subgroups is a constant. The effect on survival 

function is exponential. 

4. The effect of each covariate on the constant HR is multiplicative, for a unit change 

in X, HR is multiplied by a factor exp(𝛽). 

Lognormal distribution  

A lognormal distribution is a continuous probability distribution of a random variable 

whose logarithm is normally distributed. Given a log-normally distributed random 

variable X and two parameters μ and σ, which are, respectively, the mean and standard 

deviation of the variable’s natural logarithm, then the logarithm of X is normally 

distributed, and we can write X as 𝑋 = 𝑒𝑥𝑝 (𝜇 + 𝜎𝑧) , with z as standard normal 

variable. This relationship is true regardless of the base of the logarithmic or 

exponential function. On a logarithmic scale, μ and σ can be called the location 

parameter and the scale parameter, respectively.  

The log-normal model simply assumes that 𝜖 =N(0,1). Shape of lognormal distribution 

is similar to the log-logistic distribution and yields similar model results, however, it is 

neither a proportional hazards model nor a proportional odds model. 

𝑆(𝑡) = 1 − Φ[log(𝜆𝑡)/𝜎]  

ℎ(𝑡) = 𝑓(𝑡)/𝑆(𝑡) 

𝑓(𝑡) = (1 √2𝜋⁄ 𝜎𝑡) 𝑒−[log(𝜆𝑡)]
2/2𝜎2 

Log-logistic distribution (proportional odds models) 

The log-logistic distribution is the probability distribution of a random variable whose 

logarithm has a logistic distribution, it is similar in shape to the log-normal distribution 

but has heavier tails. The log-logistic distribution provides the most commonly used 

AFT model, in which the disturbance term 𝜖 has a standard logistic distribution. It can 

exhibit a non-monotonic hazard function which increases at early times and decreases 

at later times.  

𝑆(𝑡, 𝑥) =
1

1 + (𝜆𝑡)𝑘exp (𝛽𝑥)
 

𝑓(𝑡, 𝑥) = 1 − 𝑆(𝑡, 𝑥) =
(𝜆𝑡)𝑘exp (𝛽𝑥)

1 + (𝜆𝑡)𝑘exp (𝛽𝑥)
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ℎ(𝑡) =
𝜆𝑘𝑡𝑘−1

1 + 𝑘𝑡𝑘
 

An empirical check on the suitability of the log-logistic model for the analysis of a data 

set in the presence of covariates is the log odds function, as odds of failure is:  

Odds =[
𝐹(𝑡,𝑥)

1−𝐹(𝑡,𝑥)
] = (𝜆𝑡)𝜂exp (𝛽′𝑥) 

𝑂𝑅 = exp [𝛽′(𝑥1 − 𝑥2)] 

log {
𝐹(𝑡, 𝑥)

1 − 𝐹(𝑡, 𝑥)
} =  𝛽′𝑥 + 𝑘𝑙𝑜𝑔𝜆 + 𝑘𝑙𝑜𝑔𝑡 

which shows to be linearly related to log(t). Thus if the survival time follows a log-

logistic distribution, plot log(odds) against log(t) should be linear with slope k. In fact, 

log-logistic model is the only one to satisfy both the AFT and PO assumption. In log-

logistic model, the hazard function is 𝜆(𝑡) =
𝜆𝑘(𝜆𝑡)𝑘−1exp (𝛽′𝑥)

1+𝜆𝑘(𝜆𝑡)𝑘−1exp (𝛽′𝑥)
, the shape of which 

depends on the k. 

Summary of considerations from the log-logistic regression model: 

1. The shape of the odds is monotonous and depends only on k.  

2. The effect of the covariates is to act multiplicatively on the odds function, and the 

odds between two subgroups (odds ratio) is a constant. 

3. The effect of each covariate on the constant 𝑂𝑅 is multiplicative, for a unit change 

in x, odds ratio 𝑂𝑅 is multiplied by a factor exp(𝛽) 

Table 9. Some parametric failure time models for a homogeneous population of individuals 

(number of parameters in brackets) 

Note: discrepancy in symbols: 𝜆(𝑡) is the hazard and p is shape parameter, which are represented as h(t) 

and k in this thesis. 

Table 9 below is the summarized by Marubuni and Valsecchi in their book <Analyzing 

survival data from clinical trials and observational studes>[62], which provides the 
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probability density function, survival function and hazard function in some AFT models. 

John P. Klein and Melvin L. Moeschberger have also made a summary of those 

functions over various distributions in their book <survival analysis techniques for 

censored and truncated data>, 2nd edition, Springer 2003[63] 

Performance of Semi-parametric and parametric models 

Depending on the shape of the baseline hazard function, there might be models for 

which it is equivalent to assume both PH and AFT models. In fact the Weibull model 

(including exponential model obviously) has the feature of being both proportional 

hazards and AFT, and log-logistic model being both proportional odds and AFT. 

If the only basic assumption of proportional hazards is not met, parametric models are 

suitable alternative models to be used. A simulation study showed that whether PH 

assumption is met or not, the log-logistic model is the best fitted model[64]. Studies 

have indicated that under certain situations when the shape of the survival time is 

determined, the parametric models are more powerful and efficient than Cox’s 

regression model in predicting the median survival time or the probability of a given 

individual surviving for at least a predefined time[65].  

However, evidence from literature suggests that when the primary concern is to 

evaluate the effect of covariates, little is to be gained by moving from semi-parametric 

models, like the Cox model, to the parametric models, i.e. Cox, Weibull and log-logistic 

models give same view of how the prognostic factors influence survival, although 

among many studies have resorted to various models at the same time [59,66–69], 

sometime the result could be very different using Cox and AFT models[69]. The choice 

of the model should not be based on which gives a favorable P value, but on a proper 

evaluation of the distributional assumptions. It should be noted that there is no 

distribution that provides a perfect fit, and it is possible that more than one distribution 

may fit the data well[58]. 

A general model including all the above distribution as special cases can be used to 

discriminate which models are more suitable to fit the data. Such a model is the 

generalized F distribution discussed by Kalbfleisch and Prentice (1980)[70]. The 

method is computationally complicated and in practical applications might have little 

ability to discriminate among alternative models. 

Even with the evidence that little is to be gained by moving from Cox model to the 

parametric models in evaluating the effect of covariates, for the purpose of efficiency 

and survival prediction, AFT models are applied in this report.   

Application of the parametric distribution to a dataset  

There are some methods based on which we choose one parametric distribution versus 

others as listed below.  

1. The applicability of the model to a data set can be empirically checked through plots 
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of KM survival estimation (e.g. proc lilfetest in SAS).  

- If T is exponential, then S(t) = exp(-𝜆t)), so log(S(t)) =-𝜆t, the log(S(t)) vs t plot 

is a straight line on time with slope= -𝜆 and intercept=0.  

- If T is Weibull, given that 𝑆(𝑡) = 𝑒−𝜆𝑡
𝑘
, so 𝑙𝑜𝑔[−𝑙𝑜𝑔𝑆(𝑡)]=log(𝜆)+klog(t), 

which is a straight line with slope k and intercept log(𝜆) on log(t). A k=1 

indicates that the simpler exponential model could be used. In the PH Cox 

model, it would be enough it the curves are parallel. 

- For log-logistic, the plot of log((1-s(t))/s(t)) against log(t) should be a straight 

line with slope k. 

- Qualitative and explicit forms for f(t), S(t), and ℎ(t) from KM estimation.  

2. How well a model fits the data:  

1) log-likelihood can be used to compare model fitness;   

2) Distributions with multiple parameters defining their shape may have a better 

fit, but if parsimony is desired, it would be better to rely on a penalized metric 

provided by model selection indices such as the Akaike information criterion 

(AIC) or Bayesian information criterion (BIC) to choose which distribution 

gives the best fit with the fewest parameters among candidate distributions. 

These indices allow for numeric comparison which is less subjective than 

comparing graphs. 

3) Brier score, c-statistics and some other methods could be better choices for 

model discrimination and calibration. Related content will be discussed later.  

4) If an exponential model fits the data well, then the regression coefficient 

estimates by Cox model or by parametric model should be approximately on 

the same size by absolute value, but opposite in sign but). In fact, a 

proportional hazards model outputs the regression coefficient estimated in 

log-hazard form ( 𝛽𝑘 ), and a parametric model outputs the regression 

coefficients estimated in log-survival form. If the Weibull model is a 

reasonable model for the data, the regression coefficients not only have 

opposite signs (except possibly for the intercept) but also have different 

magnitude as compared with Cox model estimation(depending on whether 

𝑘> 1 or 𝑘 < 1).  

Parametric models in Dublin data 

Bshazard package is used for the non-parametric estimate of the baseline hazard 

function and its 95% confidence interval, with data-driven smoothing[71] (Figure 2, 

left). In Dublin data it showed as a constant increase with time, although limited within 

a very small range from 0.007-0.01. Log[-log(S)] vs. Log(t) plot (Figure 2, right) shows 
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an almost straight line, indicating that the exponential and Weibull distribution are 

suitable for these data. The Weibull distribution is chosen for this report for the purpose 

of precision.  

Figure 2. the Hazard function and Log[-log(S)] vs. Log(t) in full dataset 

Hazard Function (Time Interval=1 Year) Log[-log(S)] vs. Log(t)

 

Based on those, three parametric models (exponential, Weibull and log-logistic model) 

are used preliminarily for the estimation of HR of CV mortality per a SD increase in 

BPV measured by different indices. Weibull model seems to fit the Dublin data better 

from the log-likelihood values and the other model assessing methods including the SE 

of coefficient, AIC (data not shown). Furthermore, all the estimations of shape 

parameter in Weibull distribution are all bigger than 1, thus Weibull distribution is 

prefered than exponential. The results of Weibull model are in Table 10.  

Table 10. Parametric Weibull model analysis per SD increase in diastolic BPV indices 

Index LLH 𝛃 LCL(𝛃) UCL(𝛃) Exp[𝛃[𝐋𝐂𝐋, 𝐔𝐂𝐋]] P AIC 

24hARV -1965 -0.09 -0.16 -0.03 0.91[0.86-0.97] 0.0029 3952 

24hwSD -1964 -0.11 -0.17 -0.04 0.90[0.84-0.96] 0.0011 3950 

24h CoV -1965 -0.11 -0.17 -0.04 0.90[0.84-0.96] 0.0019 3951 

Day ARV -1973 -0.10 -0.16 -0.03 0.91[0.85-0.97] 0.0023 3969 

Day SD -1972 -0.12 -0.18 -0.05 0.89[0.83-0.95] 0.0004 3965 

Day CoV -1972 -0.11 -0.18 -0.05 0.89[0.84-0.95] 0.0007 3967 

Note: LLH: Log-likelihood; LCL: lower 95% confidence interval; UCL: Upper 96% confidence interval. 

The model covariate is the same as those in Cox full model, whereas the strata are classes in Weibull 

model.   

In Weibull models, the probability of survival or event in a given time frame can be 

estimated for each individual, the exp(β) is interpreted as survival time ratio or exp(-β) 

as HR of event per one unit change, in the case of Dublin study, one SD increase in 

BPV, after adjusting for the corresponding mean systolic and diastolic BP, night fall, 

age, gender, smoking, BMI, previous CV diseases and diabetes. For one standard 

deviation increase in BPV, the survival time is reduced to about 89-91%, which is in 

line with the results estimated by Cox PH model with HR around 1.11-1.34. 
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3.3.5. Find the optimal threshold values in survival data 

In the contest of Dublin data, a BPV index with its value v bigger than the potential 

cutoff value c is defined as positive or otherwise as negative if v≤ c. Sensitivity (SE) at 

c are defined as the probability of having positive BPV given that the subject died 

(𝑆𝐸 = 𝑃(𝑉 > 𝑐|𝑀 = 1)) and specificity (SP) as the probability of having negative 

BPV given that the subject survived a given time (𝑆𝑃 = 𝑃(𝑉 ≤ 𝑐|𝑀 = 0)). A common 

approach to separate patients into higher and lower risk groups would be the receiver 

operating characteristic (ROC) curves based approaches like Youden Index, 

concordance probability and Euclidean Distance Formula as indicated in Figure 3. 

Youden index, J= SE +SP –1, rang= [-1, 1], indicated as J(cJ) in Figure 3. 

Maximizing J is equal to maximizing the area under the ROC curve (AUC) for an 

indicator variable obtained by dichotomizing the continuous biomarker. Optimal 

probability cutoff is where J is maximum; 

Concordance probability Cc=SE*SP, range= [0,1], indicated as CZ(cCZ) in Figure 

3. The concordance probability for binary classification can be expressed as a 

rectangular area with width and length being the SE and SP associated with a 

cutoff on continuous X, such that its vertex (1-SP, SE) lies on the ROC curve. 

Optimal probability cutoff is where Cc/the rectangle is maximum [72];  

Euclidean Distance D = Sqrt ((1-SE)2 + (1-SP)2), range=[0,1], also called as the 

point-to-(0,1), indicated as ER(cER) in Figure 3. Optimal probability cutoff is at 

where D is minimum. 

Figure 3. Cut-point finding methods background: ROC-based functions[73] 

 

Note: Youden index J(cJ) is the thick line segment. Concordance probability CZ(cCZ) is the area of the 

dotted rectangle and Euclidean distance ER(cER) is the thin line segment.  

Concerning the area under the curve (AUC), its first development come from 

applications to diagnostic testing in radiology[74], it can be defined as the area under 
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ROC curve, the plot of sensitivity vs ‘one minus specificity’ for all possible cut-off 

values. This definition has been shown to be equivalent to defining AUC as the c 

statistics, which is probability that a given diagnostic test (or predictive model in this 

report) assigns a higher probability of an event to those who actually have (or develop) 

events[74]. The bigger the AUC, the better a biomarker performs in detecting an event.  

Major problem of ROC with survival data 

Dealing with time-dependent variable  

In the regular setting with no time-dependent binary outcome and no censoring, the SE 

and SP given a certain predictor value are fixed. But it is not the case of survival data 

because SE and SP could vary with the change of time and censoring, and so does the 

ROC curve. When extending ROC curve to the case of failure time outcome, the interest 

could be to understand whether there will be the development of a disease/mortality or 

not within a given time point of clinic interest. Rather than a simple binary outcome, 

Yi=1, a survival time can be viewed as a time-varying binary outcome by focusing on 

the counting process representation Ni(t)=1(Ti≤t). Under the setting of cumulative 

definition of case/dynamic definition of control[75], at any fixed time t, the entire 

population is classified as either case or a control on the basis of vital status at time t. 

Each individual plays the role of a control for time t<T, but then contributed as a case 

for later time, t>T.   

The sensitivity and specificity can be defined using Bayes’ theorem and KM estimation 

of survival function as: 

𝑃{𝑋 > 𝑐|𝐷(𝑡) = 1} =
{1−𝑆(𝑡|𝑋 > 𝑐)}𝑃(𝑋>𝑐)

1−𝑆(𝑡)
, 𝑃{𝑋 ≤ 𝑐|𝐷(𝑡) = 0} =

𝑆(𝑡|𝑋≤𝑐)𝑃(𝑋≤𝑐)

𝑆(𝑡)
 

where S(t) is the survival function S(t) = P(T > t) and S(t| X > c) is the conditional 

survival function for the subset defined by X > c, c is the potential threshold value. This 

formula is simple but limited by one possibility that it does not guarantee that SE or SP 

are monotone[75]. While the estimation using nearest neighbor estimation (NNE) of 

the bivariate distribution provided by Akritas [76] does not have this limitation: 

𝑃{𝑋 > 𝑐|𝐷(𝑡) = 1} =
[1−𝐹𝑥(𝑐)]−𝑆𝑚(𝑐,𝑡)

1−𝑆𝑚(𝑡)
, 𝑃{𝑋 ≤ 𝑐|𝐷(𝑡) = 0} = 1 −

𝑆𝑚(𝑐,𝑡)

1−𝑆𝑚(𝑡)
  

where 𝐹𝑥(𝑐) = 𝑃(𝑥 ≤ 𝑐) is the distribution function of X, 𝑆𝑚(𝑐, 𝑡) is an estimator of 

the conditional survival function characterized by a smooth parameter m. Furthermore, 

NNE estimator allows the situation when censoring process depends on the diagnostic 

marker.  

Cumulative/dynamic definition is most appropriate when a specific time t is important 

and scientific interest lies in discriminating between subjects who die prior to a given 

time t and those that survive beyond, which is also been used in this report.  

In 2005, Heagerty et al has proposed the incident definition of case/dynamic definition 
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of control [77]. A subject can play the role of a control for an early time, t≤Ti , but then 

play the role of case when t= Ti. This dynamic status parallels the multiple contributions 

that a subject can make to the partial likelihood function. Here, incident sensitivity and 

dynamic specificity are defined by dichotomizing the risk set at time t into those 

observed to die and those observed to survive, sensitivity measures the expected 

fraction of subjects with a marker greater than c among the subpopulation of individuals 

who die at time t, while specificity measures that fraction of subjects with a marker less 

than or equal to c among those who survive beyond time t. Incidence sensitivity and 

dynamic specificity have some appealing characteristics relative to the alternative 

definitions. First of all, those definitions are based on classification of the risk set at 

time t into cases and controls, and are therefore a natural companion to hazard models. 

Second, the definitions easily allow extension to time-dependent covariates by 

introducing a time-varying marker. Finally, use of incident sensitivity and dynamic 

specificity allows both time-specific accuracy summaries and time-averaged 

summaries that directly relate to a familiar global concordance measure. In this 

paper[77], Heagerty has been adopted the global summary of a cutoff value as 𝑐 =

𝑝(𝑀𝑗 > 𝑀𝑘|𝑇𝑗 < 𝑇𝑘), which indicates the probability that a subject who died at earlier 

time has a larger value of the marker. With the assumption that observations 𝑀𝑗 , 𝑇𝑗  and 

𝑀𝑘, 𝑇𝑘  are independent, plus that T is continuous such that 𝑝(𝑇𝑗 = 𝑇𝑘) = 0 , the 

summary 𝑐 = 𝑝(𝑀𝑗 > 𝑀𝑘|𝑇𝑗 < 𝑇𝑘) is a weighted average of the area under time-

specific ROC curves. In many applications no a-prior time t of clinical interest is 

identified, and a global accuracy summary is desired. A substantive application that 

demonstrates use of cumulative/dynamic ROC curves for a Cox regression model can 

be found in Fan et al[78]. 

Etzioni et al[79] have adopted an alternative definition of time- dependent sensitivity 

and specificity considering incident cases/static controls, which is not discussed here as 

it is less appropriate to the setting of evaluating predictively of risk of disease onset 

over some fixed period[80]. 

Dealing with censored data 

Time-dependent SE and SP also need to, inevitably, cope with censored data, non-

parametric estimation of SE and SP can be derived following the setting of cumulative 

definition of cases and dynamic definition of controls. A direct estimation by weighting 

is originated from the consideration that subjects with observed status (cases or controls) 

are ‘selected’ from the censoring process and can be weighted to represent the subjects 

that are censored[81]. An inverse weighting is defined as 1/G(t), G(t) is survival 

probability S(t)=P(c>t) (censored time>t), which is monotonously decreasing. For a 

case i,   𝑇𝑖 < 𝑡  and for a control j,  𝑇𝑗 < 𝑡 , 𝐺(𝑇𝑖) > 𝐺(𝑇𝑗) , and thus the inverse 

weighting 1/𝐺(𝑇𝑖) < 1/𝐺(𝑇𝑗). This means: 

Considering 1/𝐺(𝑇𝑗), the bigger is t, the higher probability that the censored data 

would otherwise turned to be cases.  
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Considering 1/𝐺(𝑇𝑖) < 1/𝐺(𝑇𝑗), the observed controls underwent greater chance 

of being censored during follow-up and need greater magnification than cases to 

represent censored data that would otherwise turned to be controls.  

The probability G(t) can be obtained by KM or lifetable method on the whole sample 

subjects regardless of the test result of the grouping factor, e.g. treatment effect 

(Marginal weighting) or on the two subsets defined by the grouping factor (Conditional 

weighting).  

Another direct approach would be to impute the disease status of censored subjects in 

terms of probability that the subject is a case or a control; give the available information 

on the survival time and its marker value. The survival function is estimated separately 

for treatment groups using KM method, and then the imputation is performed separately 

using the survival functions[81].  

In summary, the principal concept of direct estimation is based on an inverse probability 

weighting scheme applied to the counts of the groups of disease-free and diseased 

subjects, and originates from the consideration that subjects with observed status are 

selected from the censoring process and can be weighted to represent the subjects that 

are censored. There are also indirect estimation by imputation or by Bayes theorem, 

which relies on writing SE and SP in terms of quantities that are estimable from the 

available data in the presence of censoring, and on plugging-in the estimates. Those 

two approaches have been proved to be equivalent[81].  

In the paper by M. Rota et al[73], Euclidean Distance Formula, together with Youden 

J-statistics and concordance probability have been compared for their performance on 

cut-off value selection in the case of censored failure time outcome under direct 

estimation by marginal weighting setting. Euclidean Distance Formula approach is 

considered as having the best performance, as its estimation of the cutoff values in 

simulated datasets are less biased. Between Youden J-statistics and the concordance 

probability, X. Liu[72] suggested the latter, as the area representing Cc rectangle is 

always covered by the area under ROC curve (AUC), the estimation of cutoff values 

by concordance probability is always smaller than or equal to that by J index. When the 

two cutoff estimations are the same, the variance by Youden J-statistics may be much 

larger than that of concordance probability. Nevertheless, all those three approaches are 

being used in Dublin data for cut-off selection.  

3.3.6. Optimal cutoff values for Dublin BPV indices  

Considering previous analyses results, BPV indices that seem to have an association 

with CV mortalities are diastolic BPV estimated in 24h and daytime (24h/Day diastolic 

SD, wSD, ARV and Cov), as they were previously observed to have a significant impact 

on risk of CV mortality. Thus only for those BPV indices cutoff values are to be 

estimated. In Dublin data, the median follow-up duration was 5.69 years, considering 
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the clinic convenience, here in this report, the meaningful time point τ has been 

considered as 5 years, i.e. BPV thresholds estimated for the risk of 5-year CV mortality. 

The best cutoff values are also been estimated for 10-year CV mortality, which shown 

to be very similar to those for 5 years and the results are not discussed in this thesis. 

The threshold values are being estimated under the setting of accumulative definition 

of cases/dynamic definition of controls, as it is more suitable when scientific interest 

lies in discriminating between subjects who die prior to a given time t and those that 

survive beyond. 

Figure 4. ROC curve of the selected BPV indices on 5-Year CV mortality 

Table 11. Estimated cutoff values of diastolic BPV and ROC related statistics  

BPV Methods Cutoff value P(BPV>c) SE SP Youden Cc Euclidean 

24hARV Youden 9.52  20.57% 0.32  0.81  0.13  0.26  0.70  
 Euclidean 8.18  42.73% 0.53  0.59  0.12  0.31  0.62  

wSD Youden 9.66  30.93% 0.44  0.71  0.15  0.32  0.63  
 Euclidean 8.97  41.60% 0.54  0.60  0.14  0.32  0.61  

CoV 24h Youden 10.98 42.19% 0.59  0.60  0.19  0.35  0.57  

 Euclidean 10.98 42.19% 0.59  0.60  0.19  0.35  0.57  

Day ARV Youden 9.57  23.58% 0.35  0.78  0.13  0.27  0.69  
 Euclidean 8.52  37.11% 0.47  0.64  0.11  0.30  0.64  

Day SD Youden 9.40  38.68% 0.53  0.63  0.16  0.33  0.60  

 Euclidean 9.32  39.90% 0.54  0.62  0.16  0.33  0.60  

CoV Day Youden 11.64  30.91% 0.44  0.71  0.15  0.31  0.63  
 Euclidean 10.81  39.58% 0.52  0.62  0.14  0.32  0.61  

Note: P(BPV>c) are the percentage of patients whose BPV values were above the estimated cutoff values. 

Cc: Concordance probability. 

ROC curve of the selected BPV indices on 5-Year CV mortality are in Figure 4. Only 

BPV calculated for 24h are presented as examples. The AUC for day BPV are similar, 

all around 0.60. Tables 11 shows the results of the estimated cutoff values in different 

BPV indices, their SE, SP and ROC curve related statistics. Since the cutoff values 

proposed by concordance probability function are all equal to those proposed by 

Euclidean distance, only results of Euclidean distance are shown, which are always 
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smaller than those proposed by Youden J statistics, except for the CoV24h. This could 

be explained by the above mentioned paper by X. Liu[72] that the estimation of cutoff 

values by concordance probability is always smaller than or equal to that by J index. In 

fact, in Dublin study, the Youden J statistic classifies only patients with top 20-42% 

BPV values as high risk group, while Euclidean distance takes a much higher 

percentage of patients (37-42%) as having higher risk of CV mortalities. Both Youden 

J statistic and Euclidean distance tends to choose higher specificity over sensitivity, 

although this tendency is less obvious for the Euclidean distance estimation.  

Cutoff values proposed by Euclidean distance and Youden J statistics are used in Cox 

PH full model and Weibull full model to estimate HR and Survival between subjects 

whose BPV were below/above the cutoff values (Table 12). HRs are bigger than those 

estimated per one standard deviation increase, the 95% CI are also wider, the survival 

time estimated by Weibull full model is in agreement.  

Table 12. The classification matrix of observed and estimated outcome in 5 years 

BPV Cutoff Group* 
Observed outcomes Estimated outcomes^ 

Cox HR Weibull Survival 
Alive Death Censored Death  Alive 

24hARV Youden 0 4088  183  4063 274.2  8059.8    

  1 1428  111  619 136.7  2021.3  1.42(1.10-1.82) 0.68(0.49-0.95) 

 Euclidean 0 2826  115  3068 174.7  5834.3    

  1 2690  179  1614 236.4  4246.6  1.45(1.13-1.85) 0.69(0.49-0.95) 

wSD Youden 0 3494  146  3607 222.3  7024.7    

  1 2022  148  1075 188.7  3056.3  1.52(1.20-1.94) 0.61(0.44-0.85) 

 Euclidean 0 2876  120  3131 181.8  5945.2    

  1 2640  174  1551 229.0  4136.0  1.40(1.09-1.78) 0.70(0.51-0.98) 

CoV 24h Youden & 

Euclidean 

0 6065 3081  117 171.9  5893.1    

 1 4427 2435  177 245.8  4181.2  1.39(1.16-1.68) 0.65(0.47-0.90) 

Day ARV Youden 0 3883  169  3966 254.2  7763.8    

  1 1633  125  716 155.1  2318.9  1.59(1.25-2.03) 0.55(0.39-0.76) 

 Euclidean 0 3077  132  3389 202.6  6395.4    

  1 2439  162  1293 208.4  3685.6  1.48(1.16-1.88) 0.60(0.44-0.83) 

Day SD Youden 0 6434 3022  118 180.8  6253.2    

  1 4058 2494  176 228.4  3829.6  1.60(1.25-2.04) 0.55(0.40-0.77) 

 Euclidean 0 6306 2946  115 175.8  6130.2    

  1 4186 2570  179 233.0  3953.0  1.69(1.24-2.03) 0.56(0.40-0.77) 

CoV Day Youden 0 7249 3657  140 165.2  7083.8    

  1 3243 1859  154 249.1  2993.9  1.48(1.17-1.88) 0.61(0.44-0.84) 

 Euclidean 0 6339 3177  112 165.2  6173.8    

  1 4153 2339  182 249.1  3903.9  1.60(1.26-2.05) 0.55(0.40-0.77) 

Note: *Group=0 contains subjects whose BPV were below the cutoff values; Group=1 contains subjects 

whose BPV were above the cutoff values. ^Number of estimated deaths are calculated by conditional 

weighting, HR are estimated using the full Cox model and survival time using full Weibull model.  
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In the search of the best-possible cutoff that can best separate subjects into higher and 

lower risk of CV mortality, the Euclidean distance and concordance probability yield 

almost identical estimation of cutoff values for each BPV indices, however the Youden 

index provides different estimation that is bigger in values.  

Nevertheless, the KM survival curves between groups classified by Youden index and 

Euclidean distance show very similar trends, as shown by ARV 24h as an example in 

Figure 5 (Left). Youden index is preferred as it identifies higher cutoff values, and thus 

separate only subjects with very high BPV values, who carries higher risk of mortality 

from the rest of the group. Once the selection method is been decided, we can round 

the cutoff values into integer numbers as a suggestion for the possible clinical practice. 

KM survival curves between 24h BPV subgroups classified by Youden cutoff value are 

presented in Figure 5(Right). The 5-year survival was about 0.97-0.98 and 0.94-0.95, 

respectively for the low/high risk groups, classified by all the four diastolic BPV indices. 

Figure 5. KM curves of 5-year survival of ARV thresholds estimated by Youden J 

statistics and Euclidean methods (Left) and of all 24h BPV index thresholds by 

Youden J statistics (Right) 

 

Figure 6.Survival curve by KM, Cox and Weibull in subjects by CoV cutoff groups 

 

Youden J statistics in this report is considered as the best candidate, due to the fact that 
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The estimated survival curves by the PH Cox model and Weibull using CoV 24h cutoff 

value as single predictor together with KM curve are presented as an example in Figure 

6. The survival curves are tightly clustered following the same trend, indicating a nice 

fit of those two models, at least when BPV considered as a single predictor. 

Effect of diastolic BPV on CV mortality is weak, borderline, and tightly associated with 

the other covariates including mean BP levels, setting up the Euclidean cutoff values 

that label almost half the population as high risk may dramatize the effect of BPV on 

CV mortality; on the other side, Youden selection, which has better specificity, is more 

concentrated on subjects whose BPV was on the top of the pyramid, who might be 

really bearing an increased risk of CV mortality. 

The above selection of BPV cutoff is based on the conditional survival probability 

estimated using KM methods and a single predictor, i.e., the BPV index. Considering 

the fact the subjects with elevated BP levels have also high risk of CV death, regardless 

of the BPV levels, it would be important to know if the same cutoff values could apply 

for patients of all BP levels. Taking advantage of the large sample size of Dublin study, 

the total of 10492 subjects were then divided into four subgroups according to their BP 

levels, including Normotensive Group: 1649 normotensives, SysHT Group: 1435 

systolic-only hypertensives, DiaHT Group: 682 diastolic-only hypertensives, and 

Sys&Dia HT Group: 6726 hypertensives for both systolic and diastolic pressure. Cox 

models (full model with a term G indicting the subgroups replacing mean BP) are 

performed to test if the effect of these preselected BPV indices, 24h ARV, wSD, 24h 

CoV, Day ARV, Day SD, Day CoV, all diastolic, are similar between the subgroups. 

AUCs are also estimated in those 4 subgroups.  

All the interaction terms of G with BPV as continuous variable or as categorical are not 

significant, indicating that the BPV effect is not found to be different in the subgroups. 

HRs estimated by full Cox model between Youden J estimated cutoff groups are not 

significant for most of the subgroups except for sys&dia HT group (Table 13), however, 

this could be caused by the greater sample size of this subgroup, as compared with the 

others. Furthermore, the absolute value of AUC are all small (only a bit better than the 

random toss of coins) and differences between AUCs from those subgroups are all small.  

Table 13. Estimated AUC and HR of diastolic BPV indices in the four BP groups 

  24h ARV wSD 24h Cov Day ARV Day SD Day Cov 

Normotensive AUC 0.49 0.51 0.54 0.47 0.48 0.60 

n=1649 HR 0.82[0.24-2.78] 1.73[0.78-3.84] 1.90[0.90-4.01] 1.58[0.67- 3.73] 1.32[0.61-2.83] 2.39[1.17-4.87] 

SysHT  AUC 0.49 0.52 0.57 0.50 0.52 0.57 

n=1435 HR 1.69[0.85-3.34] 1.35[0.68-2.68] 1.28[0.67-2.46] 1.80[0.89- 3.61] 2.65[1.39-5.06] 1.46[0.79-2.72] 

DiaHT AUC 0.61 0.65 0.68 0.66 0.61 0.69 

N=682 HR 0.67[0.12-3.80] 0.98[0.16-6.07] 2.91[0.52-16.4] 1.17[0.22-6.35] 1.28[0.29-5.69] 1.84[0.41-8.25] 

Sys&Dia HT AUC 0.60 0.60 0.60 0.59 0.61 0.63 

N=6726 HR 1.42[1.07-1.89] 1.60[1.20-2.12] 1.45[1.09-1.93] 1.61[1.21-2.13] 1.59[1.18-2.14] 1.45[1.09-1.93] 
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3.3.7. Future research possibilities for BPV cutoff selection  

Previous analysis indicates a strong increase of CV mortality risk per one standard 

deviation increase in the selected diastolic BPV indices (Table 9, of Cox/AFT), as 

estimated by both Cox PH model and AFT models, however, the predictive ability in 

BPV is weak, as seen by the AUC example in Figure 4, and both Youden and Euclidean 

estimation of SE and SP are low; this could be attributed, at least partially, by the study 

limitations, which will be discussed in the discussion section, and by the low incidence 

of CV mortality (≈3% in 5 years), which could be related to both high false negative 

proportion and high false positive proportion.  

Multiple cut-offs 

In future study, we could consider further not just separating subjects into two groups 

but into multiple groups, like that of the mean BP levels (normotensive, prehypertension, 

Stage 1 and Stage 2 hypertension).  

The most straightforward approach is a data-based classification of BPV into tertiles or 

quartiles and the compared the HR. Bersabé R, Rivas T have derived a general equation 

to compute multiple cut-offs on a single predictor in order to classify individuals into 

more than two ordinal categories[82]. The equation is derived from the multinomial 

logistic regression model, which is an extension of the binary logistic regression model 

to accommodate polytomous outcome variables. From this analytical procedure, cut-

off values are established at the predictor values at which an individual is as likely to 

be in category j as in category j+1 of an ordinal outcome variable: higher or lower than 

these value means the increased probability of failure or mortality. Paper applied this 

approach has been published[83]. However methodological studies are still required to 

evaluate the pro and cons of this approach and to extend it to survival data when 

censoring and time to event to be considered. Furthermore, this approach does not apply 

to the survival data which contains only binary outcome.  

A possibility that one might consider, based on the previous analysis result that cutoff 

values estimated by Youden J statistic (cJ) and Euclidean distance (cE) are very different, 

to divide subjects into three subsets by both cJ and cE . i.e. subjects from the full dataset 

are divided into 3 risk groups, with lower risk group having BPV<= cE , media risk 

group with cE <BPV<= cJ  and high risk group with BPV> cJ . This approach could be 

limited by sample size, as the high risk group composes only a small proportion of the 

whole sample and then has a higher hazard, this could cause small effective sample size, 

i.e. number at risk, at study end or even during the follow up period, and also small 

number of failure, particularly when the incidence is low. The limitation of sample size 

can also occur to the median risk group, if cJ and cE .are close.  

Prediction based on multiple risk factors  

Another research possibility would be the combination of multiple predictors, for 
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example, in Dublin study, a comprehensive predictor can combine high/median/low BP 

levels and high/(median/)lower BPV levels, or even more with age and gender 

considered. The estimation of BPV indices within BP subgroups could also be 

considered as a combination, as in such case the BP level is considered, although only 

very roughly. The combination of different BPV indices that reflect different 

perspectives of the BP variability can also be considered. The concept of multiROC R 

package has been proposed previously[84], where a diagnostic rule is created from 

multiple tests, and the threshold of an individual component contained in the rule is 

varied to create the curve. The rule will typically consist of a Boolean expression (i.e. 

containing ‘and’, ‘or’) of different tests related by algebraic operators as the 

components of the expression. Each component of the rule is fixed at a diagnostic 

threshold except for one, which varies over all of its possible values and the 

corresponding SE and SP are plotted. ROC has been extended to the case when that 

score is a linear combination of several factors, usually the sum of predictors time their 

coefficients estimated individually from a logistic regression model[85,86]. A similar 

method has also been applied in survival study[87], significant risk predictors have been 

selected from potential risk factors using Cox PH model, and then a risk score is 

calculated as a sum all the significant predictors time their coefficients (𝑠𝑐𝑜𝑟𝑒 =

𝛽1𝑥1 + 𝛽2𝑥2 +⋯). The risk score is then used to divide subjects into groups (3 or more). 

However, in the condition of combined risk factors, attention should be paid for the 

possible correlation among them.  

3.3.8. Model fitness in survival data  

The performance of predictive survival models can be assessed from two perspectives: 

discrimination and calibration. Discrimination quantifies the ability of the model to 

correctly classify subjects into one of existing categories (for instance, event and non-

event). Calibration describes how closely the predicted probabilities agree numerically 

with the actual outcomes. Good discrimination of a model does not automatically imply 

good calibration or vice versa. If a choice is to be made as to which one should receive 

the primary focus, Harrell[88] suggested the good discrimination if preferred. This is 

motivated by the fact that recalibration is always possible which is not true for 

discrimination.  

Characteristics of some performance measures are summarized by Steyerberg et al[89] 

and DA. Harrison et al have overviewed a variety of measures of model 

performance[90]. As regard to the predictive performance of survival models, there are 

traditional measures include: 

1. Brier score[91] to indicate overall model performance (calibration) 

2. R2 statistics and Generalized R2[26] (discrimination). 

3. Overall c index, or concordance statistics introduced by Harrell[88] as a natural 
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extension of the ROC curve area to survival analysis[92–94], viewed through the 

Mann–Whitney statistic. (discrimination) 

4. Goodness-of-fit statistics[95] (calibration).  

5. Likelihood ratio test. 

When the study interest is to assess the impact of a new predictor on clinic outcomes, 

the interest lies on how much the predictive power has been increased by adding this 

new predictor into a model which includes previous identified predictors. In such regard, 

methods listed above can also be used, while net reclassification improvement (NRI), 

and integrated discrimination improvement (IDI), being newly proposed, and net 

benefit etc. only applies to compare the predictive power of a new model or method 

with the old one. 

AUC  

The improvement in AUC for a model containing a new marker is defined simply as 

the difference in AUCs calculated using a model with the marker of interest and another 

one without. While it has been used for quantifying improvements over the last few 

decades, several studies have analyzed the limitations of this metric including lack of 

clinical relevance and difficulty in interpretation of small magnitude changes[96,97]. 

This limitation can be best seen in the example of high density lipoprotein (HDL) and 

Framingham Risk Score (FRS). When models with and without HDL were analyzed 

with AUC regarding effect of HDL of modifying FRS, HDL was found not to have a 

statistical significant effect. However, when analyzed in terms of outcomes, HDL was 

found to be a significant predictor of heart disease and thus should affect FRS[98]. This 

is also the case of BPV as a predictor for the CV mortality in this report. Also, This 

improvement of AUC between new and old models is often very small in magnitude; 

for example, Wang et al. showed that the addition of a biomarker score to a set of 

standard risk factors predicting CVD increases the model AUC only from 0.76 to 

0.77[87]. MS Pepe et al have shown simple examples in which enormous odds ratios 

are required to meaningfully increase the AUC[99]. 

NRI 

To assess and quantify the predictive ability of a new risk factor, a new model that 

includes the new risk factor can be constructed and then compared with the old model 

that contains the same covariates but this new risk factor. Pencina et al in 2008[100] 

has proposed net reclassification index (NRI) that attempts to quantify how well a new 

model reclassifies subjects as compared to an old model, typically this comparison is 

between an original model (e.g. hip fractures as a function age and sex) and a new 

model which is the original model plus one additional component (e.g. hip fractures as 

a function of age, sex, and weight). Consider an outcome that is a binary or ordinal and 

define upward movement (up) as a change of event in subject into higher category based 

on the new model and downward movement (down) as a change in the opposite 
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direction. If D denotes the event indicator, the estimators for the four probabilities 

comprising the NRI are: 

 

The NRI can be calculated as: 

NRI = [P(up|D=1) − P(down|D=1)] − [P(up|D=0) − P(down|D=0)] 

Calculation of NRI is category-based and easily influenced by the relationship between 

category cut-offs and event rate[101]. Thus a category free approach has been proposed, 

and been further modified and extended to survival analysis, with all probabilities 

estimated using the Kaplan-Meier approach[101]. Assuming that out of n individuals, 

nU are reclassified upwards and nD downwards:  

 

NRI calculated in all the study subjects is equal to the sum of NRI within event group 

and NRI within non-event group. Unlike the previous formula, this formula does not 

depend on the number or even existence of risk categories as it assumes probabilities 

of event among those reclassified upwards or downwards that would be obtained 

pooling all individuals with the same reclassification. The authors have suggested two 

version of NRI, one with category that should be used if categories are already 

established in the field and one without categories that can be used universally 

(recommended). Furthermore, the category-free NRI has been commented by the 

authors that it is not affected by event incidence and thus can be compared across 

different studies.  

Pencina et al[100] have also defined a new concept intergrated discrimination 

improvement (IDI), 𝐼𝐷𝐼 = (𝑃̂𝑛𝑒𝑤 − 𝑃̂𝑜𝑙𝑑) − (𝑃̂𝑛𝑒𝑤
′ − 𝑃̂𝑜𝑙𝑑

′ )where 𝑃̂ is the mean of the 

new/old model based predicted probabilities of an event for those who develop 

events,𝑃̂′ is the new/old model based predicted probabilities of an event for those who 

don’t develop events.  

Chambless et al [42] have extended NRI into survival data following paper by adding 

the parameter t into the formula, and IDI(t) = 𝑅𝑛𝑒𝑤
2 (𝑡) − 𝑅𝑜𝑙𝑑

2 (𝑡), where the R2 is the 

proportion of variance explained by the model.  
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However, although the use of NRI and IDI has become increasingly popular, many 

articles have criticized those approaches, claiming that their use is not always safe 

[102,103]. NRI is considered as not adequately account for clinically important 

differences in shifts among risk categories, and the category-free NRI can mislead 

investigators by overstating the incremental value of a biomarker, even in independent 

validation data. When investigators want to test a null hypothesis of no prediction 

increment, the well-established tests for coefficients in the regression model are 

superior to the net reclassification index[86]. Hilden et al have shown that even the best 

probabilistic model can be improved on according to IDI and NRI, a model where the 

real marker was added was outperformed in terms of IDI and NRI by prediction models 

that added a random noise variable. If IDI and NRI are used to measure gain in 

prediction performance, then poorly calibrated models may appear advantageous, a 

poor prognostician can outperform a good prognostician [102], this means that spurious 

results may arise, and overconfident risk predictions appear advantageous. 

Generalized R2 

Measures of explained variation, such as the coefficient of determination (R2) in linear 

models, are helpful in assessing the explanatory power of a model. In survival analysis, 

these measures help quantify the ability of prognostic factors to predict a patient's time 

until death. In the censored data setting, the definition of such a measure is not 

straightforward; P.D. Allison has discussed a "generalized" R2 statistic that is based on 

the likelihood-ratio statistic (LRT) for testing the global null hypothesis[104]. It is 

calculated as 1–exp[-(LRT/n)], where LRT=(-2logL0)–(-2logLp), n is the number of 

sample size, logL0 is the log-likelihood for the null model without covariates, logL1 is 

the log-likelihood for the fitted model with p covariates, both logL value are given in 

Model Fit Statistics and the LRT test given in Global Tests table by PHREG procedure. 

Note that this generalized R2 does not have a "proportion of variation explained by the 

model" interpretation. Allison states, ‘R-square does not tell you anything about how 

appropriate the model is for the data’ and ‘It's just a statistic between 0 and 1 that is 

larger when the covariates are more strongly associated with the dependent variable’. 

Although the generalized R2 is commonly recommended for the Cox model, its 

sensitivity to the proportion of censored values is not often mentioned. In fact, the 

expected value of R2 decreases substantially as a function of the percent censored, with 

early censoring having a greater impact than later censoring. Simulations show that 

complete data R2 values from the Cox model are very close to those from a similar 

linear model. However, average R2 values can decrease by 20% or more (e.g., R2 from 

0.5 to 0.4) with heavy censoring (e.g., 50% censoring) compared to complete data[105].  

Asayama et al[26] have used generalized R2 to evaluate the additional risk explained in 

Cox regression by adding BPV to models already including the mean systolic level and 

covariates. The formula is similar to that proposed by PD Allison: 



46 

Xiaoqiu Liu | Corso di Dottorato in Epidemiologia e Biostatistica  XXVIII Ciclo 

 

where n is the number of participants, ln L(x2) and ln L(x2) are the log likelihood 

statistics of the full model and the basic model, respectively, and χ2 is the likelihood 

ratio chi-square. 

Brier score  

Brier score was firstly proposed by GW. Brier in 1950[106], it measures the mean 

squared difference between the predicted probability assigned to the possible outcomes 

for subject i and the actual outcome. Therefore, the lower the Brier score is for a set of 

predictions, the better the predictions are calibrated. Note that the Brier score, in its 

most common formulation, takes on a value between 0 and 1, since this is the largest 

possible difference between a predicted probability (which must be between 0 and 1) 

and the actual outcome (which can take on values of only 0 and 1). In the original (1950) 

formulation of the Brier score, the range is double, from 0 to 2. The Brier score is 

appropriate for binary and categorical outcomes that can be structured as true or false, 

but is inappropriate for ordinal variables which can take on three or more values (this 

is because the Brier score assumes that all possible outcomes are equivalently "distant" 

from one another). 

𝐵𝑆 =
1

𝑁
∑(𝐸𝑡 − 𝑂𝑡)

2

𝑁

𝑡=1

 

𝐸𝑡 is the probability that was expected by the model while 𝑂𝑡 is the actual observed 

outcome, N is the sample size.  

The Brier score can be decomposed into 3 additive components: Uncertainty (the 

variance of the actual overall probability, or in another word, the actual probability 

changes), Reliability (how close the predicted probability change with the actual 

probability, in subset or overall), and Resolution (how close the subsets of actual 

probability change with the actual overall probability)[107]  

Some of those methods will be applied in Dublin study to assess the model fitness and 

the additional effect by including also BPV indices into the model.  

3.3.9. Assessing model fitness in Dublin study  

The full Cox model excluding BPV is considered as the old model, to be compared with 

the new model, which is exactly the full Cox model, using AUC and Brier score.  

Brier score calculated using Weibull model is very similar to those obtained in Cox 

model. Although NRI and IDI are much criticized for being prone to a false significant 

increase in predictive model, the values are all very small (around 0.003) with P value 
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bigger than 0.05. It could be considered thus that although BPV seem to have significant 

influence on the CV mortality, the incremental information added by introducing this 

BPV indices into the models is very small. On the other hand, “the fact that markers 

with very large effect sizes is needed to increase the AUC does not automatically imply 

that small increases are sufficient and likely to translate into meaningful gains in clinical 

performance”[108]. In fact, although many above mentioned statistics such as AUC 

have been accused of being insensitive to new information, the possible truth that many 

people are beginning to realize is that the incremental information offered by a new 

marker is very often disappointingly small, particularly when it is added to an already 

well-calibrated clinical data[102]. In any case, as both hazard ratio and AUC are purely 

statistical measurements, it would be difficult to decide which one is more informative 

when the results seem to be inconsistent. Decision analysis including costs and benefits 

are being proposed[109], however, how to evaluate the costs and benefits are too 

complicated and many remain unknown.  

Table 14 Model fitness 

Methods  BPV as continuous var 
BPV as categorical var below/above cutoff 

value, for 5-year survival 

  old model Full model Delta Old model Full model delta 

AUC CV 24h 0.8178 0.8204 0.0026 0.8227 0.8270 0.0043 

 ARV 24h 0.8178 0.8197 0.0019 0.8227 0.8251 0.0024 

 wSD 0.8178 0.8206 0.0028 0.8227 0.8265 0.0038 

 Day CV 0.8230 0.8272 0.0042 0.8180 0.8261 0.0081 

 ARV Day 0.8230 0.8270 0.0039 0.8180 0.8266 0.0086 

 SD day 0.8230 0.8273 0.0043 0.8180 0.8272 0.0092 

Brier score CV 24h 0.8833  0.8838  0.0005  0.9265  0.9268  0.0003  

 ARV 24h 0.8833  0.8839  0.0006  0.9265  0.9268  0.0003  

 wSD 0.8833  0.8839  0.0006  0.9265  0.9268  0.0003  

 Day CV 0.8833  0.8837  0.0004  0.9265  0.9269  0.0004  

 ARV Day 0.8833  0.8837  0.0004  0.9265  0.9270  0.0005  

 SD day 0.8833  0.8838  0.0005  0.9265  0.9270  0.0005  

Likelihood Ratio test  0.001 for all except 0.00 for wSD 0.00 for all except 0.001 for cv day 
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4. Discussion on Dublin Study  

The main focus of this thesis is to understand the effect of BPV on the risk of CV 

mortality. A thorough literature search has been conducted on the proposed indices that 

can quantify BPV, and on previously published papers on the effect of BPV on CV 

outcomes. Despite of the great effort from researchers in recent decades on the 

mechanism, classification, measurement and evaluation of BPV, and after all, the 

possible effect that it might impose on the cardiovascular system, no clear or convincing 

answer has been established to this question. This discrepancy could be partially caused 

by the complexity in the BPV mechanism and the different research designs that has 

been discussed previously.  

A detailed summary of classification and calculation of previous proposed BPV indices 

has been presented, among which three widely accepted and most representative ones 

(average real variability, coefficient of variation and (weighted) standard deviation) are 

chosen to quantify the BPV from Dublin study. 24h SD or CoV are not used because 

they include also the day-night fall as a major component, which is considered as a 

protective factor for CV system. 10492 subjects with sufficient ABPM measurements 

were included into data analysis, who had similar age, BMI and percentage of female, 

smoking, diabetes, previous CV diseases as compared with the rest of the subjects. The 

median follow-up was 5.69 years, and 502 died of CV mortality.  

Semiparametric PH Cox model and parametric Weibull model have been used in this 

report for the estimation of hazard ratio or survival time following one standard 

deviation increase in the BPV indices. In a fully adjusted model where the 

corresponding mean SBP, DBP and other covariates are being adjusted, only diastolic 

BPV measured in 24h and daytime (i.e. 24h ARV, 24h wSD, 24h CoV, Day ARV, Day 

SD, Day CoV) are found to have significant impact on the hazard and survival time. 

With an increase of one standard deviation, the risk of CV mortality increased by about 

11-14%, in correspondence, the expected survival time decrease by about 9-11%.  

This study has confirmed that the 24h and daytime BPV is an independent CV mortality 

predictor, although diastolic BPV seem to be more valuable in the prediction than 

systolic BPV. Indeed, this is different from many other studies but it is not the only one 

which reported diastolic predictive power. The reason for the diastolic superiority over 

systolic is not clear, and not discussion will be addressed in this regard. Furthermore, 

not all the diastolic BPV are valuable, i.e. only the 24h and day time BPV are proven 

to be independent predictors. Variables that could introduce significant impact on the 

probability of CV mortality include age, gender (favoring females), BMI, previous CV 

diseases, nocturnal fall and smoking. Diabetes has no predictive effect.  

BPV prognostic effect is not completely homogeneous across the population, as it is an 

effective predictors for subjects who were diastolic hypertensive patients or both 



49 

Xiaoqiu Liu | Corso di Dottorato in Epidemiologia e Biostatistica  XXVIII Ciclo 

systolic and diastolic hypertensive patients (by AUC or the Cox PH model), however, 

this could also be caused by different sample sizes in HT subgroups. This result is in 

line with the data of Hansen[51].  

A binary threshold for each effective BPV indices is also proposed for the 5-year 

survival, under the cumulative case and dynamic control definition and inverse 

weighting. The AUC is about 0.6 for all, when a single BPV is considered as the only 

predictor. The best threshold values estimated by Youden index are 9.52 mmHg for 24h 

ARV, 9.66 mmHg 24h wSD, 10.98 for 24h CoV, 9.57 mmHg for Day ARV, 9.40 mmHg 

for Day SD and 11.64 for Day CoV. Patients being considered by those threshold as 

having higher BPV (high CV risk as well) made up about 20-42% of all the subjects. 

Non-parametric Kaplan Meier method together with Cox and Weibull models are used 

to predict the survival curve. The selected thresholds are better to be rounded to integer 

if applied in clinical practice. 

The outcome oriented selection of cutoff values based on extended ROC has its strength 

as it best combines sensitivity and specificity, instead of an arbitrary choice of the 75% 

percentile values or so on. The selection is based on BPV values only, without 

considering other covariates, for example, mean BP levels, however, the high BPV has 

its prognostic values only in diastolic hypertensive or both systolic and diastolic 

hypertensive patients. This could be important in clinical practice. 

Based on the results of this report, we could see that the BPV and BP are closely 

associated, for example, BPV can be calculated directly using the mean (CoV). 

Although the regression coefficients of mean BP on BPV from the multiple regression 

(Table 4) are very small, and the HRs with BPV increase are also significant, the added 

predictive effect of BPV on CV mortality is very small, and it is very difficult to be 

separated from the effect of mean BP. 

This study has the following limitations: 

1. ABPM was recorded in an interval of every 30 minutes, which is considered as an 

under-sampling that may have led to inaccuracy in estimating BPV[110]. However, 

this may not lead to any systematic error and, if any, it may have led to an under-

estimation of BPV impact on the CV mortality.  

2. ABPM cannot be standardized by individual activities during the measurement, 

which is considered as an important limitation, as a healthy, active person may have 

had bigger BPV than who stays in bed for the whole day. This could create a heavy 

background noise when estimating the effect of BPV on certain outcomes.  

3. Survival analysis is often under the assumption of non-informative censoring, e.g. 

censoring is independent of failure time. In Dublin study, we can assume the non-

informative censoring, since we only have administrative censoring at the end of 

follow-up. However, we do not know if all the censored patients were actually all 

alive by the study end, as national computerized register of deaths offers a coverage 
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only within Ireland. We cannot exclude the possibility that subjects emigrated from 

Ireland after study recruitment to study end, and this piece of information was not 

made available to us. Thus they can be considered to be in the set at risk for a longer 

time than they actually were. This is a limitation of the study and can results in an 

underestimation of mortality and overestimation of survival. 

4. Lack of information on antihypertensive treatment or any other treatment that may 

affect cardiovascular system during the follow-up period. Ambulatory BP readings 

were all obtained in the untreated condition; therefore, the study result cannot be 

extrapolated to prognostic importance of BPV under antihypertensive treatment. 

5. Lack of information on cholesterol level or other risk factors at the baseline and 

during the follow-up.  

6. For the estimation of the cut-off values, only the binary categories of BPV indices 

have been estimated, without taking into account of the other covariates which may 

also have impact on cardiovascular mortalities. Strictly speaking, this may not be 

considered as a limitation but rather a choice, just like the threshold of BP does not 

depend on age or other factors but only on itself. In fact, exploration of the 

interaction between BP level and BPV level has been performed and not evidence 

of estimating a cutoff based on the level of mean BP was found.  

In conclusion, the aim of this report is to explore the added predictive effect of BPV on 

CV mortality over and above the effect of mean BP levels. To this aim, semiparametric 

Cox PH model and Parametric Weibull models are applied. 24h and daytime diastolic 

BPV are found to be predictive for CV mortality after being adjusted for other possible 

covariates, including the corresponding mean systolic and diastolic BP levels. The best 

cutoff values for the considered BPV estimates have been selected for 5-year survival. 

However, although an increased BPV does independently predict the risk of 

cardiovascular mortality, the effect is marginal and tightly associated with that of 

elevated mean BP and other covariates, it does not add more predictive power to the 

cardiovascular mortality.  
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Part II. Blood Pressure Control in a Randomized Clinical Trial- Comparing 

Conventional with Impedance Cardiography Based Strategies 

A prospective randomized clinical trial was conducted to assess the possibility that a 

hypertension management strategy based on hemodynamic assessment of patients 

through impedance cardiography might lead to a better hypertension control over 24 

hours than a conventional approach only based on blood pressure measurement during 

clinic visits. 
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1. BEATUY Study 

BEAUTY ( BEtter control of blood pressure in hypertensive pAtients monitored Using 

the hoTman® sYstem) study is a multicenter prospective randomized parallel group 

study, testing if the HOTMAN® System, a novel impedance cardiographic device, 

together with a predefined algorithm of drug selection, may help the physician to better 

control blood pressure (BP) in patients with uncontrolled resistant hypertension. 

Uncontrolled resistant hypertension was defined as having office systolic (S) BP>140 

mmHg and/or day SBP > 135 mmHg by Ambulatory BP monitoring (ABPM) while 

taking at least 2 types of drugs. Patients were randomized to Integrated Hemodynamic 

Management (IHM)-guided drug adjusted treatment (n=83) vs. classical clinically 

adjusted drug treatment (control, n=84). The BP measuring performed during all the 

visits are in Figure 1. ABPM was performed at baseline, which was the second visit 

(V2) and study end at visit 6 (V6), while office (O) BPM and Hotman measurements 

were performed during every visit (from V2 to V6). In IHM groups, the hemodynamic 

data were referred to the doctors immediately, together with 2007 ESH Guidelines, to 

guide antihypertension treatment while in control groups it was sealed and the drug 

selection followed only 2007 ESH Guidelines.  

Daytime SBP by ABPM on treatment was the primary endpoint and the longitudinal 

office BP data are also considered with great importance for the BP reduction profile 

during follow-up visits. BP 

values measured at the time 

of Hotman parameters 

collected at baseline and on 

treatment were also 

compared as exploratory 

analysis, due to its intrinsic 

limitation for BP measuring 

as a hemodynamic monitor.  

We have evaluated 315 patients with uncontrolled hypertension, among whom 148 

patients who did not fulfill inclusion criteria were excluded, the remaining167 patients 

who had uncontrolled hypertension verified by ambulatory BP measurements were 

randomized to IHM-based treatment management (n=83) or to conventional treatment 

management (n=84) in five European Hypertension Excellence centers. At study end, 

156 patients, including 79 from control group and 77 from IHM group, on whom 

ABPM was performed at both V2 and V6 and were included in the analysis. They all 

had 5 office BP measuring while only 119 patients had at least one Hotman 

measurements. 

Patients were well randomized with demographic data similar between the IHM and 

Figure 1. Test flow of BEAUTY study by visit 
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control groups. The baseline information is summarized in Table 1. 

Table 1. Demographics of randomized subjects 

  Total N IHM Control 

Sex Male 102 53 (64) 49 (58) 

Female 65 30 (36) 35 (42) 

Age (Ys)   64 (11) 62 (12) 

BMI ≤24.9 32 16 (19) 16 (19) 

25-29.9 66 38 (46) 28 (33) 

≥30 69 29 (35) 40 (48) 

SBP (mmHg) Day SBP  150 (12) 150 ( 12) 

Night SBP  130 (14) 133 ( 15) 

24h SBP  143 ( 11) 145 ( 12) 

Office SBP  157 ( 20) 156 ( 15) 

Home SBP   151 ( 16) 149 ( 12) 

Note: data are number (percentage) for categorical variables and mean (standard deviation) for 

continuous variables. 
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2. Introduction of longitudinal data 

A longitudinal study refers to an investigation where participant outcomes, possible 

treatments or exposures are collected at multiple follow-up times. Each longitudinal 

response reading can be represented as: Yijp, where ith represents the subjects, i=1, …, 

N; jth represents the occasions, j=1, …, n; and pth variables or the predictors. The data 

matrix can be written as: 

(

𝑌𝑖1
𝑌𝑖2
⋮
𝑌𝑖𝑛𝑖

) = (

𝑋𝑖11
𝑋𝑖21
⋮

𝑌𝑖𝑛𝑖1

  

𝑋𝑖12
𝑋𝑖22
⋮

𝑌𝑖𝑛𝑖2 

 

⋯
⋯
⋱
⋯

 

𝑋𝑖1𝑃
𝑋𝑖2𝑃
⋮

𝑌𝑖𝑛𝑖𝑃

)(

𝛽1
𝛽2
⋮
𝛽𝑃

)+ (

𝑒𝑖1
𝑒𝑖1
⋮
𝑒𝑖𝑛𝑖

) 

In a linear model, the probability density function for Y, denoted by f(y), is the classical 

bell shaped curve, centered at 𝑢𝑖𝑗 = 𝑋𝑖𝑗𝑝
′ 𝛽𝑝  with constant variance 𝜎𝑗

2 . 𝑒𝑖𝑗  is 

normally distributed at (0, 𝜎𝑗
2), the data can be written as: 

𝑌𝑖𝑗 = 𝑋𝑖𝑗𝑝
′ 𝛽𝑝 + 𝑒𝑖𝑗 

In a longitudinal study, exposures are recorded prospectively at multiple follow-up 

visits in each subject before the key clinical event occurs or within a predefined follow-

up period, thus the orders and amounts of exposures can be well recorded, the recall 

bias can be alleviated. In addition, incident events are recorded and the timing of each 

event can be correlated with recent changes in patient exposure and/or with previous 

chronic exposure. Patterns of change in outcomes and/or exposure are observed in 

individual levels.  

The analysis of longitudinal data is challenged by following characteristics:  

1. Analysis of correlated data. Statistical analysis of longitudinal data require methods 

that can properly account for the within-subject correlation of response 

measurements.  

2. Time-varying covariates. Although longitudinal designs offer the opportunity to 

associate changes in exposure with changes in the outcome, the direction of 

causality can be complicated by “feedback” between the outcome and the exposure. 

i.e., a drug influences health, on the other hand, a patient’s current health status 

may influence the drug exposure or dosage in the future.  

3. Participant loss to follow-up. Missing data are a common occurrence in a 

longitudinal study and can have a significant effect on the conclusions that can be 

drawn from the data. Understanding the reasons why data are missing can help 

analyzing the remaining data. 
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a) Missing completely at random (MCAR): when the events that lead to any 

particular data-item being missing are independent both of observable 

variables and of unobservable parameters of interest, and occur entirely at 

random, the analyses performed on the data are unbiased; however, data are 

rarely MCAR. 

b) Missing at random (MAR) is when missing is related to a particular variable 

in the dataset, but it is not related to the value of the variable that has missing 

data. An example of this is accidentally omitting an answer on a questionnaire; 

the observed values are not necessarily a random sample of the responses. 

Statistical inferences about the mean response could yield valid estimates but 

are sensitive to any misspecification of the joint distribution of the responses. 

c) Missing not at random (MNAR): data that is missing for a specific reason, the 

value of the variable that's missing is related to the reason it's missing (e.g. 

certain question on a questionnaire tend to be skipped deliberately by 

participants with certain characteristics). In situation of MNAR, any 

assumption made about the missing process are not verifiable 
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3. Exploring BEAUTY Data 

Exploratory analysis of longitudinal data seeks to discover patterns of systematic 

variation across groups of patients, as well as aspects of random variation that 

distinguish individual patients, thus longitudinal data have two aspects that require 

modeling: 1). The mean response over time and 2). The covariance among repeated 

measures on the same individuals.  

3.1. Pre/Post Analysis 

Let Xi = 0 denotes control group; and Xi = 1 an exposure or intervention group, for each 

subject i, a baseline measurement is denoted as Yi0 and a follow-up measurement Yi1. 

Follow-up only analysis considers only Yi1 when fits the model while change analysis 

fits the difference between Yi1 −Yi0; a better approach is to use analysis of covariance 

(ANCOVA), setting the grouping and Yi0 as covariance[111]. When the selection of 

treatment or exposure is not randomized, ANCOVA analysis can control for 

“confounding due to indication”, or where the baseline value Yi0 is associated with a 

greater/lesser likelihood of receiving the treatment Xi = 1 (Table 2). 

Table 2. The different approaches of pre-post analysis in a longitudinal study 

Follow-up only:   Yi1 = β0 + β1Xi + ei 

Change analysis:  (Yi1 −Yi0) = β*
0 + β*

1Xi + e*
i 

ANCOVA:       Yi1 = β**
0 + β**

1 Xi + β**
2 Yi0 + e**

i 

Table 3. Comparing the daytime SBP in control and IHM group using the 3 methods 

Follow-up only: Yi1 =134.5-0.0075IHM  

 Mean S.E 95%CI  

Control 134.5 1.41 [131.7, 137.3]  

IHM 134.5 1.37 [131.8, 137.2]  

Difference -0.0075 1.96 [-3.89, 3.87] p=0.75 

Change analysis: Yi1 –Yi0= –15.4+0.38IHM 

 Mean S.E 95%CI  

Control -15.4 1.63 [-18.62, -12.15]  

IHM -15.8 1.69 [-19.12, -12.40]  

Difference in change 0.38 2.34 [-4.25, 5.01] P=0.84 

ANCOVA: Y= 95.36+0.26dsbpv2-0.09IHM 

 estimate S.E Z value/Wald test p 

Intercept 95.36 12.48 58.42 <0.0001 

Day SBP at V2(Yi0) 0.26 0.08 9.95 <0.0016 

IHM -0.09 1.89 0.00 0.96 
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When treatment is randomized, Frison and Pocock[112] showed that β1 = β*1 = β**1, 

each approach can provide a valid estimate of the average causal effect of treatment. 

However, the most precise estimate of β1 is obtained using ANCOVA, and that final 

measurement analysis is more precise than the change analysis when the correlation ρ 

between baseline and follow-up measurements is less than 0.50. This results from 

var(Yi1 − Yi0) = 2σ2(1− ρ) , which is only less than σ2 when ρ > 1/2. 

As shown in Table 3, the three approaches showed similar results, as BEAUTY is a 

randomized study, baseline day SBP was supposed to be equal in both groups. The 

effect of IHM for day-time SBP at study end is almost neglectable, coefficient=−0.09 

by ANCOVA, indicating very similar daytime SBP by study end in both groups.  

3.2. Modelling the means  

3.2.1 Analyzing response profile 

The primary goal of profile analysis is to make inference about the population 

regression parameters, β. Response profile analysis assumes no specific time trend, 

instead, the times of measurement are regarded as levels of a discrete factor; it allows 

arbitrary patterns in the mean response over time and arbitrary patterns in the 

covariance of the responses. As a result, this method for longitudinal analysis has a 

certain robustness since the potential risks of bias due to misspecification of the models 

for the mean and covariance are minimal.  

Table 4. Response profiles of the office SBP at baseline and follow-up visits  

Effect Group visit Estimate Standard Error DF t Value Pr > |t| 

Intercept   155.09 1.98 154 78.49 <.0001 

Group IHM 
 

3.42 2.81 154 1.22 0.2261 

visit 
 

3 -11.00 1.80 154 -6.11 <.0001 

visit 
 

4 -17.20 2.14 154 -8.04 <.0001 

visit 
 

5 -16.46 2.34 154 -7.03 <.0001 

visit 
 

6 -17.19 2.07 154 -8.32 <.0001 

Group *visit IHM 3 -1.73 2.56 154 -0.67 0.5011 

Group *visit IHM 4 0.77 3.04 154 0.25 0.7996 

Group *visit IHM 5 -2.43 3.33 154 -0.73 0.4676 

Group*visit IHM 6 -4.03 2.94 154 -1.37 0.1723 

The response profile of office SBP at each follow-up visit in IHM and control groups 

are shown in Table 4. The effect of visit, e.g. visit 3, -11.0 is the expected average SBP 

decrease from baseline to visit 3 in control patients. The interaction term, e.g. 

IHM*visit3, is that IHM has an additional 1.73 decrease of office SBP in IHMs as 

compared to controls, it is an omnibus comparison of the effect of both time and 
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grouping. When the profiles are parallel and there is scientific interest in the main effect 

of time and/or group, the tests of the main effects require the model excluding the 

group*time interaction. In the case of BEAUTY study, the result with or without 

interactive term didn’t change majorly.  

Analyzing response profile is only applicable when all individuals are measured at the 

same set of occasions and the number of occasions is usually small. However, even in 

case where the number of repeated measures is relatively small, there are two obvious 

drawbacks of the analysis of response profile:  

1. Test of the null hypothesis of no group*time interaction is a global test and provides 

only a broad assessment of whether the mean response profile is the same in different 

groups. The rejection of null hypothesis does not indicate the specific ways in which 

the mean response profile differs (visits or groups) and thus requires additional analysis.  

2. The times of measurement are regarded as levels of a discrete factor, by completely 

ignoring the time order of the repeated measurement, the analysis of response profiles 

fails to recognize that they can be considered as observations of some continuous, 

underlying response process over time. 

From another perspective, the normalization rate of office SBP (<140 mmHg) at each 

follow-up visit indicated in Figure 3, can be considered as a snap of response profile. 

Between the IHM and control group, the figure shows no clear difference in the 

normalization rate. 

Figure 3. Normalization rate of office SBP by visit (<140mmHg) 

 

3.2.2 Parametric curves 

When the number of occasions increases and/or when the repeated measures are 

irregularly timed, analyzing response profile becomes much less appealing, while the 

fitting of parametric or semi-parametric curves to longitudinal data can be used to 

describe how the mean response changes over time, which can be a relatively smooth, 

monotonically increasing or decreasing pattern.  

The results of parametric curves in office SBP between the IHM and control groups are 
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shown in Table 5. It appears that mean office SBP in both groups had significant 

declined overtime (-3.53mmHg in controls and -4.40mmHg in IHM patients per visit), 

however, there is no discernible difference between IHM and control groups in the 

constant rate of SBP decreasing (p=0.1971). 

The parametric curves provide a very parsimonious description of the mean response 

as an explicit function of time, i.e., the time effect is linear, as a result, there is no 

necessity to require that all individuals in the study have the same set of measurement 

times, nor even the same number of repeated measurements. It can dramatically reduce 

the number of model parameters. Fitting a parsimonious model for the mean response 

has greater power than an analysis of response profile, e.g. Akaike information criterion 

(AIC) =6324.2 using profile analysis while AIC=5680.9 in parameter analysis in the 

case of BEAUTY study. The reason for the greater power is that the tests of covariate 

effect focus only on a relatively narrow range of alternative hypotheses, in this case, 

the effect of visit and the effect of grouping; while in the response profile analysis, each 

visit had its effect and interactive terms with grouping. However, when each subject 

has a variable number of outcomes due to missing data, then mixed model regression 

methods is considered as a better choice than those two methods. 

Table 5. Parametric linear model of the office SBP at baseline and follow-up visits 

Effect Group Estimate Standard Error DF t Value Pr > |t| 

Intercept 
 

156.55 2.35 154 66.77 <.0001 

Group IHM 5.23 3.34 154 1.57 0.1194 

visit 
 

-3.53 0.47 154 -7.51 <.0001 

visit*Group IHM -0.87 0.67 154 -1.30 0.1971 

3.3. Modelling the Covariance and correlation 

Given that the variability of the difference in two observations is 𝑉𝑎𝑟(𝑌𝑖2 − 𝑌𝑖1) =

𝑉𝑎𝑟(𝑌𝑖2) + 𝑉𝑎𝑟(𝑌𝑖1) − 2𝐶𝑜𝑣(𝑌𝑖1𝑌𝑖2) = 𝜎1
2 + 𝜎2

2 − 2𝜌12𝜎1𝜎2 and the variance of two 

independent observations is: 𝑉𝑎𝑟(𝑌𝑖2 − 𝑌𝑖1) = 𝑉𝑎𝑟(𝑌𝑖2) + 𝑉𝑎𝑟(𝑌𝑖1) = 𝜎1
2 + 𝜎2

2, thus, 

providing the correlation among repeated measures in the same subject is positive, the 

variability of the within-individual difference is always smaller than the variability of 

the between individual differences. 

If we further assume that the variance of the response is constant (over time in the 

longitudinal design, and across groups in the cross sectional design), with 𝜎1
2 = 𝜎2

2 =

𝜎2, then the variance of the within-individual differences is simply 2𝜎2(1 − 𝜌), while 

the between-individual differences is 2𝜎2.  

The covariance between two responses at different occasions Yij and Yik is denoted by:  

𝜎𝑗𝑘 = 𝐸{(𝑌𝑖𝑗 − 𝜇𝑖𝑗)(𝑌𝑖𝑘 − 𝜇𝑖𝑘)} 
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𝜇𝑖𝑗=E(Yij), 𝜇𝑖𝑘=E(Yik) are the expectation or mean of Yij and Yik. It depends not only on 

the degree of dependence between them but also on their units of measurements. 

Correlation between Yij and Yik is denoted by:  

𝜌𝑗𝑘 =
𝐸{(𝑌𝑖𝑗−𝜇𝑖𝑗)(𝑌𝑖𝑘−𝜇𝑖𝑘)}

𝜎𝑗𝜎𝑘
,  

where 𝜎𝑗 and 𝜎𝑘 are the standard deviations of Yij and Yik. Correlation is a measure of 

linear dependence that is free of the scales of the measuremeant of Yij and Yik, by 

definition, it takes values between -1 and 1. The two variables can be uncorrelated 

without being independent since this correlation measures only linear dependence. 

When ρjk>0 it shows that between-subject variation is greater than within-subject 

variation. In the extreme ρjk=1 and Yij=Yik implying no variation for repeated 

observations taken on the same subject. 

Approaches to model the covariance among repeatedly measured responses include: 

1. Unstructured covariance: it allows any arbitrary pattern of covariance among the 

repeated measures. With n repeated measures, the n variances at each occasion and 

the 𝑛 × (𝑛 − 1)/2 pairwise covariances are estimated. It is only applicable when 

all individuals are measured at the same set of occasions. When the occasions are 

numerous, the number of covariance could be very large and the estimates are likely 

to be unstable. 

Figure 2. Some example structures for modelling the covariance 

Unstructured (type=UN) compound symmetry (type=CS) 

Cov(𝑌𝑖) =

(

 
 
 

𝜎1
2 𝜎12 𝜎13 … 𝜎1𝑛

𝜎21 𝜎2
2 𝜎23 … 𝜎2𝑛

𝜎31 𝜎22 𝜎3
2 … 𝜎3𝑛

⋮ ⋮ ⋮   ⋱    ⋮
𝜎𝑛1 𝜎𝑛2 𝜎𝑛3 … 𝜎𝑛2

)

 
 
 

 
Cov(𝑌𝑖) = 𝜎

2

(

  
 

1 𝜌 𝜌 … 𝜌

𝜌 1 𝜌 … 𝜌

𝜌 𝜌 1 … 𝜌
⋮ ⋮ ⋮ ⋱ ⋮
𝜌 𝜌 𝜌 … 1

)

  
 

 

Toeplitz (type=TOEP) Auto-regression (type=AR(1)) 

Cov(𝑌𝑖)

= 𝜎2

(

 
 

1 𝜌1   𝜌2   … 𝜌𝑛−1
𝜌1 1  𝜌1     … 𝜌𝑛−2
𝜌2
⋮

𝜌𝑛−1

𝜌1  1     …

⋮       ⋮      ⋱
𝜌𝑛−2 𝜌𝑛−3 …

𝜌𝑛−3
⋮
1 )

 
 

 

Cov(𝑌𝒊)

= 𝜎2

(

  
 

1 𝜌  𝜌2   … 𝜌𝑛−1

𝜌 1  𝜌     … 𝜌𝑛−2

𝜌2

⋮
𝜌𝑛−1

𝜌  1     …

⋮       ⋮      ⋱
𝜌𝑛−2 𝜌𝑛−3 …

𝜌𝑛−3

⋮
1 )

  
 

 

2. Covariance pattern models involves two strategies:  

A. idea borrowed from time series data, which arises from studies with a small 

number of individuals and a large number of repeated measures (a reversed situation 

with longitudinal data). This idea is, the correlations decay as the time separation 
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increases, quite often, the correlation among repeated measures is expressed as an 

explicit function of the time separation, e.g., auto-regression pattern, banded pattern, 

exponential pattern.  

B. Many models for the variance assume that the variance does not change as a 

function of time, i.e. compound symmetry, as called as exchangeable model, has 

constant variance among all the repeated measures data. 

When the number of occasions is relatively small and all individuals are assured at the 

same set of occasions, it may be reasonable to allow the covariance matrix to be 

arbitrary, with all its elements unconstrained. 
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4. Modelling longitudinal data 

Mixed effects model has its basic premise that there is natural heterogeneity across 

individuals in the study population, it focuses initially on the regression relationship 

restricted to observations on a single individual, makes specific assumptions that the 

variations in observations are attributable to two kinds of variations: within-subjects 

variation (i.e. blood pressure fluctuation) and between-subjects variation (i.e. gender, 

randomization arms). The between-subject variation, determining how the average for 

sub-population differs across distinct values of covariates, forms fixed effects; while 

the within-subjects variations attributed by the natural heterogeneity are the random 

effect. When parameters assumptions are made regarding the within- and between- 

subject components of variation, maximum likelihood method is used to estimate the 

regression parameters β and the variance components θ (fixed /random), that maximizes 

the joint probability of the response variables evaluated at the observed values.  

In contrast with mixed model, which is often referred to as “subject-specific models”, 

another approach of modelling longitudinal data is “population-average models”, the 

generalized estimating equation (GEE), which combines the generalized linear model 

with a marginal model. The methods rely solely on assumptions on the mean response 

over the population and avoids making assumptions on the distribution of the vector of 

responses. A distinctive feature is that the GEE separately models the mean response 

(the goal) and the within-subject association among the repeated responses (a nuisance 

characteristic of the data and must be accounted for to make correct inference about the 

changes in the population mean response). This separation ensures that the coefficients 

have interpretation that does not depend on the assumptions made on the within-subject 

association; specifically the coefficients describe the effects of covariates on the 

population mean response.  

4.1 Linear Mixed model  

The primary assumptions underlying a linear mixed model are: 1.the data are normally 

distributed (Gaussian); 2. The means (expected values) of the data are assumed to be 

linear in terms of a certain set of parameters. 

4.1.1. Fixed and Random effect  

In a longitudinal study, due to natural heterogeneity in the population, the deviation 

between individual observations, Yij , and the individual linear trajectory E(Yij)=βi,0 + 

βi,1 Xi,j is the within-subject variation: 

 E(Yij) =βi,0 + βi,1﹒Xij   
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 Yij = βi,0 + βi,1﹒Xij + Ɛij ,where Ɛij ~N(0,σ2) 

The variables that don’t change throughout the duration of the study, e.g. treatment, 

gender, cause the between-subject variation, which is indicated by variation in the 

intercepts var(βi,0) (i.e. Grouping) and in slopes var(βi,1)(i.e. time): 

(
𝛽𝑖,0
𝛽𝑖,1
) ~ N [(

𝛽0
𝛽1
) , (

𝐷00 𝐷01
𝐷10 𝐷11

)] 

Where the D00 represent the variance of intercept, D11 represent the variance of slope, 

and D01, D10 represent the covariance between intercept and slope. D01= D10. D01= 

D10=0 indicates no correlation between intercept and slope, i.e., the initial value doesn’t 

affect how the rate of its changes with time, i.e. the slope. 

Considering the deviation of individual observation from the population trajectory, bi,0 

= (βi,0 – β0) and bi,1= (βi,1 – β1), the model can be written as: 

Yij = β0 + β1﹒Xij + bi,0 + bi,1 ﹒Xij + Ɛij 

A more general form is: 𝑌𝑖𝑗 = 𝛽𝑋𝑖𝑗
′ + 𝑏𝑖𝑍𝑖𝑗

′ + 𝜀𝑖𝑗,    𝜀~𝑁(0, 𝑅) 

𝛽𝑋𝑖𝑗
′  is the fixed effects, β is the systematic variation, determining how the average for 

sub-population differs across distinct values of covariates, Xij; it assumed to be the same 

for all the subjects and have population-averaged interpretation. b and Ɛij are the random 

effect, representing the deviation of individual trajectory from the population average 

intercept and slope respectively, after the effects of covariates have been accounted for. 

It is a multilevel model, and generally the covariates in fixed effect matrix Zij are 

assumed to be a subset of all the variables in random effect matrix Xij, where p is the 

total number of variables in Xij , q is the total variables in the subset, thus q < p. The 

coefficient of covariate k for subject i is given as (β1 + bi,k) if k ≤ q, and is βk if q < k≤ 

p (when the random effect of this variable does not exist in the subset). That is to say, 

in a linear mixed model some regression parameters may vary among only some 

individual subjects while some are common among all the subjects. This is presented 

in the linear trajectory figure as each subject of one particular covariate, e.g. control 

group, has their own intercept while may share the same slope. Such case is called a 

random intercept model, a special case of general linear model, assuming parallel 

trajectories. Another model assumes random intercept and slope, the subjects are 

assumed to be have their own intercept and slope, the variation includes both that 

between individual and common intercept, and that between individual and common 

slope.  

4.1.2. Variance and covariance of the response 

With the inclusion of random effects, the covariance among the repeated measures can 

be expressed as functions of time, and the between- and within- subject variability can 

be extinguished. For a random intercept model, the marginal variance of each response 
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𝑌𝑖𝑗, the covariance and correlation of 𝑌𝑖𝑗, 𝑌𝑖𝑘 are:  

𝑉𝑎𝑟(𝑌𝑖𝑗) = 𝑉𝑎𝑟(𝛽𝑋𝑖𝑗
′ + 𝑏𝑖 + 𝜀𝑖𝑗) = 𝜎𝑏

2 + 𝜎2 

𝐶𝑜𝑣(𝑌𝑖𝑗, 𝑌𝑖𝑘) = 𝜎𝑏
2 , 𝐶𝑜𝑟𝑟(𝑌𝑖𝑗, 𝑌𝑖𝑘) =

𝜎𝑏
2

𝜎𝑏
2 + 𝜎2

 

Cov(𝑌𝑖) =

(

  
 

𝜎𝑏
2 + 𝜎2

𝜎𝑏
2

𝜎𝑏
2

𝜎𝑏
2

𝜎𝑏
2 + 𝜎2

𝜎𝑏
2

𝜎𝑏
2

𝜎𝑏
2

𝜎𝑏
2 + 𝜎2

⋯
⋯
⋯

𝜎𝑏
2

𝜎𝑏
2

𝜎𝑏
2

⋮                   ⋮                   ⋮ ⋱ ⋮
𝜎𝑏
2            𝜎𝑏

2                 𝜎𝑏
2 ⋯ 𝜎𝑏

2 + 𝜎2)

  
 

 

For mixed model assuming random intercept and slope, the variance and covariance are 

also function of time:  

𝑉𝑎𝑟(𝑌𝑖𝑗) = 𝑔11 + 2𝑡𝑖𝑗𝑔12 + 𝑡𝑖𝑗
2𝑔22 + 𝜎

2 

  𝐶𝑜𝑟𝑟(𝑌𝑖𝑗 , 𝑌𝑖𝑘) = 𝑔11 + (𝑡𝑖𝑗 + 𝑡𝑖𝑘)𝑔12 + 𝑡𝑖𝑗𝑡𝑖𝑘𝑔22 

𝐶𝑜𝑣(𝑌𝑖𝑗) = 𝑍𝑖𝐺𝑍𝑖
′ + 𝜎2𝐼𝑛𝑖 

Table 6 is the analysis result of office SBP from BEAUTY study assuming random 

intercept (Model 1) and random intercept and slope (Model 2). The interpretation is 

simply, taking model 1 as example, the intercept 𝛽0 =158.65 is an estimate of the mean 

office SBP among the controls, who had their mean SBP declines 3.98 mmHg per visit. 

While at baseline, office SBP in IHM patients were 5.44 mmHg higher than controls 

and during the follow-up, also decreased faster, the decrease was 0.88mmHg per visit 

lower than that in controls, however, not significantly different. Since the focus is on 

the population averaged SBP, the individual random effect is not calculated here. Model 

assuming random intercept is slightly better than the other one, for it has a slightly 

smaller AIC and smaller SE.  

Table 6. Different assumptions in mixed models for office SBP 

𝐸(𝑌𝑖𝑗|𝑋𝑖𝑗) = 𝛽0 + 𝛽1 ∙ 𝑉𝑖𝑠𝑖𝑡 + 𝛽2 ∙ 𝐼𝐻𝑀 + 𝛽3 ∙ 𝑉𝑖𝑠𝑖𝑡 ∙ 𝐼𝐻𝑀 

 Model 1: random intercept Model 2: random intercept and slope 

Effect 𝛽 SE t Value Pr > |t| 𝛽 SE t Value Pr > |t| 

Intercept 158.65 2.22 71.62 <.0001 158.65 2.43 65.43 <.0001 

visit -3.98 0.46 -8.69 <.0001 -3.98 0.49 -8.19 <.0001 

IHM 5.44 3.15 1.73 0.0850 5.44 3.45 1.58 0.1156 

visit*IHM -0.88 0.65 -1.34 0.1799 -0.88 0.69 -1.27 0.2062 

Although it is not the case for BEAUTY data, inference using linear mixed models can 
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be quite sensitive to the specific random effects assumptions. When a model assumes 

random intercept and fix slope, and the comparison of treatment groups over time 

becomes statistically different, it may naively lead to rejection of the null hypothesis. 

This is because the model assumes that slopes do not vary among individuals but data 

could clearly suggest between subject variations in slopes (the observed individual 

trajectory showing much crossing over each over, and indicating random varying slope). 

4.2 Generalized Estimating Equations (GEE) 

Generalized Estimating Equation (GEE) is regression approach dealing with 

longitudinal data; it can be considered as the generalized linear marginal models, as it 

combines the generalized linear model (GLM) with a marginal model. In GEE approach, 

two models are specified: a regression model for the mean response and a model for 

the within-subject correlation. Like marginal model, the focus of the GEE is on 

estimating the average response over the population, i.e. population-averaged effects 

rather than the regression parameters that would enable prediction of the effect of 

changing one or more covariates on a given individual. 

GEE includes two components: Random component is such that the response can be 

any distribution of the response that suits GLM, e.g., binomial, multinomial, normal, 

etc.; Systematic component is the linear predictor of any combination of continuous 

and discrete variables. The assumptions underlying the analyses performed by GEE are: 

1. The responses are correlated or clustered within subjects, but each subject is 

independent of others. Thus they are marginal means µij = E[Yij]: The β keeps the 

same interpretation as in the independent data models; 

2. Correlation is “nuisance” variation, that is, although it must be taken into account 

for inference on β, it is not of scientific interest, and the efficiency of estimation of 

correlation parameters is not an issue; 

3. The homogeneity of variance does not need to be satisfied; 

4. Errors are correlated among the repeated measurements; 

5. Covariance structures are specified a priori, e.g. independent, unstructured; 

exchangeable, auto-regression order 1. 

To build up a GEE model, the following marginal model needs to be assumed:  

1. The conditional expectation of mean of each response, 𝐸(𝑌𝑖𝑗|𝑋𝑖𝑗) = 𝜇𝑖𝑗, is assumed 

to depend on the covariates through a know link function. 𝑔(𝜇𝑖𝑗) = 𝜂𝑖𝑗 = 𝑋𝑖𝑗
′ 𝛽 

2. The conditional variance of each Yij, given the covariates, is assumed to depend on 

the mean according to 𝑉𝑎𝑟(𝑌𝑖𝑗) = 𝜙𝜐(𝜇𝑖𝑗) , where 𝜐(𝜇𝑖𝑗)  is a known “variance 
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function (of the mean 𝜇𝑖𝑗 )” and 𝜙 is a scale parameter that may be known or may 

need to be estimated. For balanced longitudinal designs, a separate scale parameter, 𝜙𝑗 , 

could be estimated at each occasion; alternately, the scale parameter could depend on 

the times of measurement, with 𝜙(𝑡𝑖𝑗)  being some parametric function of 𝑡𝑖𝑗 . In 

practice, a limitation of many of the implementations of the GEE approach in widely 

available software is that they assume the scale parameter ϕ is time-invariant. The 

restriction on the scale parameter makes the GEE approach unappealing for analyzing 

longitudinal data when the response variable is continuous and the variance of the 

repeated measurements is not constant over the duration of the study.  

3. The conditional within-subject association among the vector of repeated responses, 

given the covariates, is assumed to be a function of the means, 𝜇𝑖𝑗 and an additional 

set of association parameters, 𝛼. For example, the components of 𝛼 may represent the 

pairwise correlations or log odds ratio among the repeated responses.  

The first two components specify the mean and variance of 𝑌𝑖𝑗 following the standard 

generalized linear model formulation, and the third extends generalized linear model to 

longitudinal data. Next step is to extrapolate from marginal model to GEE approach.  

The GEE estimator of 𝛽 for marginal models arise from minimizing: 

∑(𝑦𝑖 − 𝑢𝑖𝛽)
′𝑉𝑖
−1(𝑦𝑖 − 𝑢𝑖𝛽)

𝑁

𝑖=1

 

A minimum of this function must solve the following generalized estimating equations:  

∑𝐷𝑖
′𝑉𝑖
−1(𝑦𝑖 − 𝜇𝑖) = 0

𝑁

𝑖=1

 

It can be inferred that GEE depends on both the association parameters set, 𝛼, and the 

coefficient 𝛽. Therefore, two-stage estimation procedure is required:  

1. Given current estimates of 𝛼 and 𝜙, Vi , the covariance matrix is estimated, and 

an estimate of 𝛽 is obtained as the solution to the generalized estimating equation 

given by ∑ 𝐷𝑖
′𝑉𝑖
−1(𝑦𝑖 − 𝜇𝑖) = 0

𝑁
𝑖=1 .  

2. Given the current estimate of 𝛽, estimates of 𝛼 and 𝜙 are obtained based on the 

standardized residuals 𝑒𝑖𝑗 = (𝑌𝑖𝑗 − 𝜇̂𝑖𝑗)/√𝑣(𝜇̂𝑖𝑗).  

It usually iterates between step 1 and step 2 until convergence has been achieved. At 

the end, two models are specified: First a regression model, the form of which is flexible, 

i.g. linear model (or logistic regression model, log linear model, or any generalized 

linear model). Second a correlation model in which the within-subject correlation is 

specified, serving for the purpose of obtaining the weight that are applied to the vectors 

of each cluster in order to obtain the regression coefficient estimates; also this 

correlation model can provide model-based standard errors for the estimated 
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coefficients. Unlike mixed-effects models, GEEs belong to a class of semiparametric 

regression techniques because they rely on specification of only the first two 

components (mean and the covariance). 

GEE has two important robustness properties: First, the estimated regression 

coefficients, 𝛽̂, which are almost as precise as the maximum likelihood estimation, are 

broadly valid estimates that approach the correct value with increasing sample size 

regardless of the choice of correlation model. The correlation model is used simply to 

weight observations and a good correlation model choice can lead to more precise 

estimation of regression coefficients than a poor choice. Second, the correlation choice 

is used to obtain model-based SEs and these do require that the correlation model choice 

is correct in order to use the SEs for inference. A standard feature of GEE is the 

additional reporting of empirical SEs which provide valid estimates of the uncertainty 

in 𝛽̂ even if the correlation model is not correct. Therefore, the correlation model can 

be any model, including one that assumes observations are independent. GEE approach 

can be applied equally to continuous responses as the discrete responses. 

GEE estimation of office SBP assuming unstructured covariance is presented in Table 

7. 

Table 7. GEE analysis modeling the office SBP at V6  

𝑌𝑖𝑗 = 𝛽0 + 𝛽1 ∙ 𝑣𝑖𝑠𝑖𝑡 + 𝛽2 ∙ 𝑔𝑟𝑜𝑢𝑝 + 𝛽3 ∙ 𝑔𝑟𝑜𝑢𝑝 ∙ 𝑣𝑖𝑠𝑖𝑡 

Parameter 
 

Estimate SE 95% Confidence Limits Z Pr>|Z| 

Intercept 
 

159.65 2.08 155.5745 163.7251 76.78 <.0001 

Group IHM  5.43 3.46 -1.3639 12.1930 1.57 0.1174 

Visit 
 

-4.19 0.43 -5.0252 -3.3486 -9.79 <.0001 

Visit*Group IHM -0.88 0.69 -2.2301 0.4842 -1.26 0.2074 

The interpretation of the linear GEE result is similar to that of linear mixed model, the 

intercept =159.65 is the estimated mean SBP value in controls at baseline, IHM at 

baseline were 5.43 mmHg higher SBP than controls; as SBP in controls decreased 4.19 

mmHg per visit, the IHM decreased 0.88 mmHg more (5.07 mmHg in average) per 

visit, however the rates of decreasing cannot be considered as significantly different. 

Two standard error estimates are provided with GEE: a model-based standard error that 

is valid if the correlation model is correctly specified; and an empirical standard errors 

which are valid even if the correlation model is not correct provided the data contain a 

large number of independent clusters. Estimation with GEE does not involve a 

likelihood function, rather it is based on the solution to regression equations that only 

use models for the mean and covariance. 

4.2 Summary of mixed model and GEE  

Mixed model and GEE are quite different analytic approaches which arise from 
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different assumptions about the joint distribution of Yi and the source of correlation 

among the repeated measures on the same individuals. The basic premise of mixed 

model is that there is natural heterogeneity across individuals, a subset of regression 

parameters are assumed to vary across individuals. Conditional on the random effects, 

it is assumed that the repeated measurements for any given individual are independent 

observations, the correlation among repeated measurements arises from their sharing 

of common random effect. Linear mixed model is very flexible in accommodating any 

degree of imbalance in longitudinal data, coupled with the ability to account for the 

covariance among the repeated measurements in a relatively parsimonious way. It does 

not require the same number of observations on each subject nor that the measurements 

be taken at the same set of measurement occasions. Those models are particularly well 

suited for inherently unbalanced longitudinal data. 

In contrast, GEE makes inferences about population means, which are modelled 

conditionally only on the covariates and not on unobserved random effects or on 

previous responses. A distinctive feature is that the regression models for the mean 

responses and the models for the within-subject associations are specified separately. 

This separation ensures that the marginal model regression coefficients does not depend 

on the assumption made for the within-subject association. Specifically, the coefficients 

describe the effects of covariates on the population mean response. The summary 

comparison of mixed model and GEE is listed in Table 8. 

Table 8. Summary comparison of linear Mixed model and GEE 

 Mixed model GEE 

Basic premise Natural individual heterogeneity Inference on population means 

Estimation Maximum likelihood estimation Marginal model 

Generalized estimation equation 

Components Between/within-subject variance 

Fixed effect and random effect 

Regression model and covariance 

model are specified separately 

Time varying 

covariates 

Time is considered as a 

covariate, having its (linear) 

effect on the response 

Marginal model without consideration 

of time-dependence; defining time-

varying covariance pattern 

SE estimation SE not robust to model 

misspecification 

Model based SE is vulnerable to wrong 

covariance model 

Empirical SE remains robust, if the 

sample is large 

Inference Subject-specific interpretation Population means 

Preferred study 

type/ example 

Subject-specific effect of a 

treatment 

Potential reduction in mortality in the 

population given a treatment 

As both the linear mixed model and GEE count on the marginal mean response, they 

stay quite robust in dealing with missing data as long as the data are MCAR or MAR. 

However, mixed model assumes that, the population characteristics 𝛽 is shared by all 

individuals and it explicitly distinguishes between fixed and random effect, it is not 
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only possible to estimate parameters for mean response changes in the population, but 

also can predict how individual response trajectories change over time. This is of 

interest when the focus of inference is on the individuals rather than the population, and 

distinguishes mixed model from GEE. 
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5. Discussion on BEAUTY Study 

As this study results have been reported in full details over the use of antihypertensive 

drugs, the ABPM BP comparison and adverse events between the two randomized 

groups, this thesis is concentrated in the statistical perspectives on longitudinal data 

analysis. SBP values measured in office at each follow-up visit were estimated by both 

mixed model and GEE to understand the effect of different treatment approaches over 

time, the results of both approaches support the significant SBP decrease over the 

follow-up duration, however the decrease was found to be similar between control and 

IHM groups at each visit. We didn’t find a better or faster BP decreasing effect 

promoted by Hotman hemodynamic monitoring. The normalization rate of office SBP 

(<140mmHg) also indicated similar results. The BPV from ABPM at baseline (Visit2) 

and study end (Visit6) are also calculated and compared between the two groups, no 

difference were found using the t-test (results are not shown).   

In conclusion, those findings show that easy-to-do non-invasive monitoring of 

hemodynamic parameters associated with a predefined algorithm of drug selection does 

not contribute to improved BP control in European Hypertension Excellence Centers 

and induce similar reductions in 24h and daytime ambulatory BP and in office SBP, as 

compared to conventional clinical drug selection in patients with uncontrolled 

hypertension.  
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