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Introduction

Navier-Stokes equations are since many years the most important tool for

studying viscous fluids. They are quite well established under a physical

point of view, providing anyway one of the most challenging problems in

Analysis.

During the last century a number of variants of the Navier-Stokes equa-

tions have been proposed, mainly with the goal of describing some nonlinear

phenomena like, e.g. shear thinning, and they got a considerable success in

describing features of some biological fluids, like blood.

Yet, all those fluids, including of course Navier-Stokes, share one com-

mon property: the work expended by the inner forces depends only on first

derivatives of the velocity, as it has to be, at least for simple fluids.

However, starting first from a very general point of view with the pioneer-

ing work of Germain [1], who introduced in a systematic way the concept of

virtual power and its use in the foundations of Continuum Mechanics, and

subsequently with many others, it became clearer and clearer that another

possibile generalization was available, i.e. the second-gradient (not to be

confused with second-grade) fluid. In these fluids the working done by the

inner forces depends also on the second derivatives of the velocity field and

includes the possibility of a “hyperviscosity” analogous to hyperstress coeffi-

cients which appears in the corresponding solid mechanics theories.

These fluids have been considered only as an exercise, or an analytical

variation of the problem, until the work of Fried and Gurtin [4], Giusteri

and Fried [6] and Giusteri-Marzocchi-Musesti [16], [7] and [8], in which some

iii



iv INTRODUCTION

convincing features of physical materials of this type were described and

used. Subsequently, the very important case of isotropic fluids showed that

this generalization leads to what we will call Hyperviscous Navier-Stokes

problem.

In this Thesis we will deal with the general initial and boundary value

problem of such a fluid in a bounded or unbounded domain in three spatial

dimensions, which is still open (even for bounded domains) for Navier-Stokes,

with natural homogeneous boundary conditions.

The plan of the Thesis is the following: in the first chapter we introduce

the second-order fluids through their derivation from the theory of Virtual

Powers. In this chapter the advantages of considering such fluids are pre-

sented, for example the possibility to treat slender bodies moving in viscous

fluids. In the second chapter it is studied the initial boundary value problem

for the hyperviscous Navier-Stokes system, that describes the special class

of fluids derived in such a theory; in particular, we will consider the flow of

these fluids at first in bounded domains and then in exterior domains.

In order to do this, the existence of a solution is proved through the

construction of a suitable Galerkin approximated solution that passes to the

limit thanks to suitable a priori energy estimates which are independent on

the size of the bounded domains, thus allowing also existence in unbounded

domains. In these estimates, the terms which do not appear in the Navier-

Stokes problem will play a crucial role.

The solutions are then proved to be regular, both in time and space, and

unique in their functional spaces.



Chapter 1

Second-gradient fluids

1.1 Virtual Powers

The study of the motion of a deformable body consists in the analysis of

the configurations that such a body assumes in different instants. Thanks

to Continuum Mechanics, we can describe the possible configurations, the

kinematics and dynamics of the bodies in a macroscopical way using a con-

tinuum approach. What happens to an object in motion can be insight by

the mechanical interactions between subbodies of the body we consider or

between the external enviroment due to the forces. A possible approach, once

established the configurations and the kinematics, is to exploit the Principle

of the Virtual Powers, instead of studying forces, in order to write balance

equations in integral form. This kind of approach is not a mathematical trick,

but instead it is the most natural way to write the mechanical laws directly

in weak form, without invoking regularity for setting the balance laws (e.g.

the balance of momentum) and then relaxing it once the problem is written

as a differential problem.

A virtual power has been introduced by many authors. The first who

make this systematically was Germain [1], but we will refere to the definition

by Degiovanni, Marzocchi and Musesti [17], which also allows measures and

sets of finite perimeter as subbodies.

1



2 CHAPTER 1. SECOND-GRADIENT FLUIDS

Definition 1.1.1. Let Ω ⊆ Rn be an open set. We define the collection of

diffused subbodies of Ω as

Θ(Ω) = {ϑ ∈ Cc(Ω) : 0 ≤ ϑ ≤ 1 on Ω} .

Definition 1.1.2. A power of order k ∈ N is a function

P : Θ(Ω)× C∞(Ω;RN)→ R

such that

1. for every v ∈ C∞(Ω;RN), P (ϑ,v) = P (ϑ1,v) + P (ϑ2,v) whenever

ϑ, ϑ1, ϑ2 ∈ Θ(Ω) satisfy ϑ = ϑ1 + ϑ2;

2. for every ϑ ∈ Θ(Ω), P (ϑ, ·) is linear;

3. for every compact set K ⊆ Ω there exists cK ≥ 0 such that for every

ϑ ∈ Θ(Ω) with suptϑ ⊆ K and for every v ∈ C∞(Ω,RN),

|P (ϑ,v)| ≤ cK

k∑
j=0

||∇(j)v||∞,suptϑ,

where ||∇(j)v||∞,S := sup
{
|∇(j)v(x)| : x ∈ S

}
.

It can be proved also the following theorem from [17] that provides us of

an integral representation for the power P . Preliminarly we denote M(Ω)

the set of positive Borel measures finite on compact subsets of Ω. Given an

integer N ≥ 1, we define, for j ≥ 1

Symj :=
{
f : (Rn)j → RN : f is j − linear and symmetric

}
.

We denote with Sym∗j the dual space of Symj.

Theorem 1.1.3. For every power P of order k there exist k + 1 measures

µj ∈M(Ω) and k + 1 Borel maps Tj : Ω→ Sym∗j such that |Tj| = 1 µj−a.e.

and

∀ϑ ∈ Θ(Ω),∀v ∈ C∞(Ω,RN) : P (ϑ,v) =
k∑
j=0

∫
Ω

ϑ〈Tj,∇(j)v〉dµj.

Moreover, the tensor-valued measures Tjdµj are uniquely determined.
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For example, let us suppose that a velocity field and a volumetric den-

sity of forces is defined on a body or on one of its subbodies M , then, by

simplifying the notation, the quantity

P (M,v) =

∫
M

f · v dL n

defines a virtual power of zero order, that is the power of the applied forces.

But if we consider a deformable body, considering only the velocity field is

not enough and this is why we need also gradients of higher order of the

velocity field, as in Theorem 1.1.3.

Having in mind various virtual powers, the inner one (often also called

inner working), the external one, a contact one, which is essential and respon-

sible for contact interactions, and finally an inertial power which represents

à la d’Alembert the contribution of inertia to the lost forces, we can set the

main balance assumption as follows:

Axiom 1.1.4 (D’Alembert Principle). Let be given a mechanical system.

In every inertial reference we have an admissible motion if and only if the

resultant of all the stresses on the system is null.

At this point we can consider an equilibrium problem through balance

equations in integral form, thanks to

Axiom 1.1.5 (Principle of Virtual Powers). For all instants t and for

all subbody M , the motion of a continuous body is such that the total virtual

power of the strain applied to the subbody, both internal and external, vanishes

for every virtual velocity field considered.

where a virtual velocity is a kinematic admissible field with the geometric

constraint on the subbody. The Principle of the Virtual Powers has been

introduced and employed for the first times in [1], [2], where it is proved

that the integral laws of motion for continua is equivalent to the Principle of

Virtual Powers.

Moreover it is important to require also that the model we consider does

not depend on the reference system and hence
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Axiom 1.1.6 (Material invariance). The power spent by the internal

forces on every rigid velocity field is null at each instant.

With the cited principles we have a wide range of possible fluids and

hence, in order to simplify the handling, we have to add some constitutive

axioms, namely some constraints on the state of motion. Moreover it is

important to remark that the setting of the order of the gradient is nothing

but another modelling choice that allows us to explain the forces that are

internal to the material. Moreover, with this kind of approach we can also

analyze different physical situations that otherwise could not be modelled

with a different choice of the order k of the velocity test in the formulation

of the power. In this thesis our attention will be focused on second gradient

fluids.

1.2 Second-gradient fluids

The aim of classical studies of Newtonian fluids is to model viscosity; we

can observe that during a rigid motion we cannot distinguish the behavior of

viscous and ideal fluids. Hence, it is necessary to link the viscous interactions

with the shear between adjacent fluid layers. Such interaction opposes to

the shear and this suggests the idea that the viscous interactions should be

proportional to the symmetric part of the gradient of the velocity field that is

forced to be modified by such interactions. Therefore it is natural to assume

internal power expenditures of first order and hence the velocity field as a

linear form on the Sobolev space H1(Ω;R3), where Ω is the domain in R3.

But in this thesis we choose fields in H2(Ω;R3) and this choice is sup-

ported by some argumentations. In this way the velocity field results contin-

uous and it is possible to consider adherence to one-dimensional structures,

that otherwise could not be done; furthermore it is possible to consider new

boundary interaction with respect to the classical that are assumed; more-

over corresponding PDEs are well posed. For example with fluids of second

gradient we can study a slender body falling in a fluid: without that hypoth-



1.2. SECOND-GRADIENT FLUIDS 5

esis the problem may have no sense. It is of interest, in this way, to study

second-order fluids in L2([0, T ];H2(Ω;R3)), namely also square-summable in

time (see [7], [8]).

When we want to model a fluid, the motion is described by a vector

field in eulerian coordinates, that is the velocity field, and a scalar quantity,

that represents the pressure field; these two fields are the unknown of the

motion. With our choice of modeling the power of internal stresses is of

second gradient, namely

Pint(M,v) =

∫
M

(
T : ∇v + G...∇∇v

)
dL n (1.2.1)

for every subbody M of the body and for every velocity field v. Let us obseve

that the classical choice expects only the first term. With this formulation

we have the Cauchy stress tensor T for the part of first gradient, whereas a

third-order tensor G, called hyperstress, takes in accounting for the second

gradient. It is clear that the only difference with models of first-gradient

fluids is the additional term G...∇∇v, that turns out to be a generalization.

For first-gradient fluids, in correspondence with the internal expediture of

forces, it is defined also the power of external stresses, that is the volumetric

one

Pext(M,v) =

∫
M

ρb · v, (1.2.2)

the power of inertial forces,

Piner(M,v) = −
∫
M

ρa · v (1.2.3)

and the contact power

Pc(M,v) =

∫
∂M

t · v. (1.2.4)

Hence, for second-gradient fluids to be balanced (see Germain [1]) it is natural

to add to contact powers another term, called hypertraction

Pc(M,v) =

∫
∂M

m · ∂v
∂n

; (1.2.5)

vectors t andm hence represent the traction and hypertraction on the bound-

ary surface.
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1.2.1 Balance equation of virtual powers and boundary

conditions

At this point, if we apply the principle 1.1.5, we get that for all virtual

velocity v and for all subbody M of the body, for a second-gradient fluid the

balance

Pint(M,v) = Pext(M,v) + Piner(M,v) + Pc(M,v)

holds, whence we deduce the integral form∫
M

T : ∇v+

∫
M

G...∇∇v =

∫
M

ρ(b−a) ·v+

∫
∂M

(
t · v +m · ∂v

∂n

)
. (1.2.6)

By this new balance equation we can deduce a new macroscopic balance

law, namely

div (T− divG) + ρb = ρa (1.2.7)

instead of divT+ ρb = ρa. Moreover, the term at the boundary is no longer

t(n) = Tn, but now it is replaced by the conditions

t = Tn− (divG)n− div (Gn)− 2K (Gn)n, m = (Gn)n, (1.2.8)

where K is the mean curvature of the boundary ∂M .

It is worth remarking that this theory, as stressed by Fried and Gurtin

in [4], is independent of constitutive relations and hance we can use it both

for fluid and solid materials. Actually, the theory we are interested in is

that of incompressible fluids, expecially at small-length scales, so the density

of the fluid is constant and we can give a costitutive equation, namely the

solenoidality of the velocity field; therefore, we can express the stess in the

form

T = T0 − P I,

where T0 is the residual stress and P represents the pressure; moreover the

hyperstress has the form

G = G0 − I⊗ π,

where G0 is the residual hyperstress in its first two indices and π is the

hyperpressure.
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As in [4], the free energy imbalance can be written as a dissipation in-

equality

T0 : D + G0
...∇∇v ≥ 0,

where D is the symmetric part of the gradient of velocity, and if considered

linear isotropic relations, Fried and Gurtin assumed{
T0ij = 2µDij = µ(vi,j + vj,i),

G0ijk = η1vi,jk + η2(vk,ij + vj,ik − vi,rrδjk),
(1.2.9)

where we notice that in addition to the viscosity µ, there are other two

coefficients η1 and η2.

In this way we get a new flow equation, that for second-gradient fluids,

that is

ρa = ρb−∇p+ µ∆v − ζ∆∆v (1.2.10)

with

p := P − divπ and ζ := η1 − η2.

We can observe that (1.2.10) is the classical Navier-Stokes equation for in-

compressible material with an additional term proportional to ∆∆v with the

coefficient ζ, called hyperviscosity. The dissipation inequality gives us two

conditions on the viscosity and the hyperviscosity, namely µ > 0 and ζ > 0;

we can also introduce the length

L :=

√
ζ

µ
, (1.2.11)

called effective thickness of the lower-dimensional objects.

Additionally, we have to provide the problem with the boundary condi-

tions; a common choice for this problem (see [4]) is

v = 0 and m = −µ` ∂v
∂n

on ∂M,

where ` ≥ 0 is a material length that takes into account the adherence of the

fluid to the boundary.
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In [5] is presented a particular model of viscous, incompressible and

isotropic fluids. As already mentioned, the constraint of incompressibility,

namely of constant mass density, leads to the constraint div v = 0. In this

model the main assumption is that T0 and G0 are linear and isotropic func-

tions of respectively D and ∇∇v. As a consequence, we have that such a

model is quite general, since these are the only two assumptions. These hy-

pothesis leads to T0 = 2µD, that is the well-known form for the residual

stress, whereas for i, j, k = 1, . . . , N , where N is the dimension of the space,

and

G0ijk = η1vi,jk + η2(vk,ij + vj,ik − vi,ssδjk) + η3(vk,ssδij + vj,ssδik − 4vi,ssδjk),

that contains also the form assumed by Fried and Gurtin in [4] by setting

η3 = 0. From the dissipation inequality it is possible to obtain

T0 : ∇v = 2µD : ∇v ≥ 0

and

G0
...∇∇v = η1vi,jkvi,jk + η2(vk,ijvi,jk + vj,ikvi,jk − vi,ssvi,jj)− 4η3vi,ssvi,jj ≥ 0

whence the inequalities µ ≥ 0 and ζ = η1 − η2 − 4η3 ≥ 0 are deduced.

What is the main reason to considering this special class of fluids in

addition to the classical models?

1.2.2 Applications of second-gradient fluids

A first application we mention is that proposed by Giusteri and Fried in [6].

Here a new slender-body theory is introduced and it can be applied to flat

bodies, elongated bodies or point-like spherical particles. In particular, the

hyperviscous regularization presented above is a tool to find a solution for

the flow past a translating particle and such a solution well approximates the

classical solution for a point-like sphere.

In [7] and [8] Giusteri, Marzocchi and Musesti analyze the free fall prob-

lem. The model consists in the free fall, due to gravity, of a slender rigid
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body Σ, in a viscous fluid that occupies all the space; the initial state of both

the fluid and the rigid body is quiet.

An application in which the advantage of using the second-gradient theory

is apparent is that of fluid in a cylinder dragged by the motion of a wire (see

[16]).

If the fluid flows between two coaxial cylinders of radii R1 < R2 and

the velocity of the inner cylinder is U along the axis ez, with the outer at

rest, then the classical theory for viscous fluids (with viscosity µ) with such

boundary conditions, gives the solution

u(r) = U
logR2 − log r

logR2 − logR1

. (1.2.12)

If we want to model a wire, namely setting R1 = 0, this has no limit. In

this case the second-gradient theory helps us providing the solution

u(r) = α1 + α2I0

( r
L

)
+ α3 log

( r
L

)
+ α4K0

( r
L

)
(1.2.13)

where αi, i = 1, . . . , 4 are constants depending on the radii R1 and R2, the

constant L is given by the definition (1.2.11), revised in the light of Musesti’s

arguments in [5], and I0 and K0 are the Bessel functions. Now we can

compute the solution in R1 = 0, since, under condition α3 = α4, the quantity

lim
r→0

(
log
( r
L

)
+K0

( r
L

))
is finite.
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Chapter 2

The Hyperviscous

Navier-Stokes IBVP

2.1 Preliminaries

Definition 2.1.1. Let K a bounded domain. We define exterior domain the

interior of the complement of K.

The following inequality is proved in Crispo and Maremonti [9] and it is

similar to Gagliardo-Nirenberg inequality. We recall the result below.

Let first

Ŵm,p(Ω) =
{
u ∈ L1

loc(Ω) : Dau ∈ Lp(Ω), |a| = m
}
.

Theorem 2.1.2. Let Ω be an exterior domain of Rn and w be in Ŵm,p(Ω)∩
Lq(Ω), p ∈ [1,+∞], q ≥ 1. Then, for k ∈ {0, 1, . . . ,m− 1}

||Dkw||r ≤ c1||Dmw||ap||w||1−aq , (2.1.1)

where the constant c1 is independent of w and

1

r
=
k

n
+

(
1

p
− m

n

)
a+

1− a
q

,

with a ∈ [ k
m
, 1] either if p = 1 or if p > 1 and m − k − n

p
/∈ N ∪ {0}, while

a ∈ [ k
m
, 1) if p > 1 and m−j− n

p
∈ N∪{0}. The result also holds if q = +∞;

11
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however, in the case k = 0 and mp < n the following additional condition is

required: w tends to zero at infinity or w ∈ Lq′(Ω) for some finite q′ ≥ 1.

A similar result holds for bounded domains:

Theorem 2.1.3. Let Ω be a bounded domain of Rn and w be in Ŵm,p(Ω) ∩
Lq(Ω), p, q ∈ [1,+∞], q ≥ 1. Then, for k ∈ {0, 1, . . . ,m− 1},

||Dkw||r ≤ c1||Dmw||ap||w||1−aq + c2||w||q, (2.1.2)

where the constants c1 and c2 are independent of w and

1

r
=
k

n
+

(
1

p
− m

n

)
a+

1− a
q

,

with a ∈ [ k
m
, 1] either if p = 1 or if p > 1 and m − k − n

p
/∈ N ∪ {0},

while a ∈ [ k
m
, 1) if p > 1 and m − j − n

p
∈ N ∪ {0}. The result also holds

for Ω = Rn, with c2 = 0. In this case if q = +∞, k = 0 and mp < n

the following additional condition is required: w tends to zero at infinity or

w ∈ Lq′(Ω) for some finite q′ ≥ 1.

Theorem 2.1.4 (Poincaré inequality). For all p ∈ [1,+∞) and for every

bounded domain Ω we have

∀u ∈ W 1,p
0 (Ω) : ||u||p ≤ max

{
1,

(n− 1)p

n

}
(Ln(Ω))

1
n

n∏
j=1

||Dju||
1
n
p . (2.1.3)

The following theorem from [15] is a foundamental property about reflex-

ive spaces:

Theorem 2.1.5 (Kakutani’s Theorem). Let X be a reflexive space and

{xh}h∈N be a bounded sequence in X. Then there exist x ∈ X and a subse-

quence {xhk}k∈N of {xh}h∈N such that xhk ⇀ x.

2.2 Formulation of the problem

Let Ω ⊆ R3 be a possibly unbounded domain of class C4. Let be given

f ∈ C([0, T ];L2 (Ω)) and the solenoidal initial datum u0 ∈ H2
0 (Ω).
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The problem we want to take into consideration is described by the fol-

lowing system, where u is a time-dependent vector field, the velocity, and p

is a time-dependent scalar field, the pressure:



∂u

∂t
+ (∇u)u+∇p = ν∆u− τ∆∆u+ f in (0, T )× Ω

div u = 0 in (0, T )× Ω,

u(0, x) = u0(x) in Ω

u(t, x) =
∂u

∂n
(t, x) = 0 on ∂Ω

lim
|x|→∞

u(t, x) = 0

(2.2.1)

which is the classical incompressible Navier-Stokes equations with kine-

matical viscosity ν and with the additional hyperviscous term τ∆∆u, where

τ > 0.

We want to study the existence and uniqueness of solutions for this sys-

tem, precisely regular solutions that we will define soon, first in a bounded

domain Ω and then to extend the argument also in the case in which Ω is an

exterior domain.

2.2.1 Hydrodynamic spaces

Let Ω be a domain in R3. We will denote with || · ||p the classical Lp-norm

and with || · ||m,p the Wm,p (Ω)-norm for m > 0, where it is understood that

W 0,p (Ω) = Lp (Ω) and where we set as usual Wm,2 (Ω) := Hm(Ω). We know

that

||u||pm,p =
m∑
i=0

||∇iu||pp.

Definition 2.2.1. For all p ∈ [1,∞) we denote with Wm,p
0 (Ω) the closure in

Wm,p(Ω) of C∞c (Ω). We also set Wm,2
0 (Ω) := Hm

0 (Ω).

In particular we know from [12] that, if the domain is bounded, then the

norm ||u||m,p is equivalent to the norm ||∇mu||p.
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Definition 2.2.2. Let us introduce the sets

Gq (Ω) :=
{
v = ∇π ∈ Lq (Ω) , for some π ∈ W 1,q

loc (Ω)
}
,

Cdiv (Ω) := {ϕ ∈ C∞c (Ω) and divϕ = 0} .
(2.2.2)

Then we define Jq (Ω) as the completion of Cdiv (Ω) with respect to the Lq (Ω)-

norm and the space Jm,q (Ω) as the completion of Cdiv (Ω) with respect to the

Wm,q (Ω)-norm.

Let us also observe that J0,q (Ω) is nothing but the space Jq (Ω). In [10]

it is proved that Jq(Ω) and Jm,q(Ω) coincide with the following sets

Jq (Ω) :=
{
v ∈ Lq (Ω) and (v,∇π) = 0, for all π ∈W 1,q′

loc (Ω) with ∇π ∈ Lq′ (Ω)
}
,

Jm,q (Ω) :=
{
v ∈Wm,q (Ω) and (v,∇π) = 0, for all π ∈W 1,q′

loc (Ω) with ∇π ∈ Lq′ (Ω)
}
,

(2.2.3)

where
1

q
+

1

q′
= 1 with q > 1.

In the same work [10], it is proved proved that

L2 (Ω) = J2 (Ω)⊕G2 (Ω) . (2.2.4)

Now we can state the definition of regular solution.

Definition 2.2.3. We say that (u, p) is a regular solution to problem (2.2.1)

if, for all η ∈ (0, T ), we have

• u ∈ C ([0, T ); J2(Ω)) ∩ L2((η, T ); J2,2(Ω) ∩H4(Ω));

• ut,∇p ∈ L2((η, T );L2(Ω));

• u satisfies equation (2.2.1) a.e. in (t, x).

2.3 The Hyperviscous Stokes problem

In order to prove the existence of the solutions of our problem we need to

introduce the analogous of the Stokes problem, that is the one with the addi-

tional bilaplacian of u; we will call it the Hyperviscous Stokes problem. As in

the Stokes problem, we drop the non-linear term of the Navier-Stokes system

and moreover we consider the stationary case. Under these assumptions the

system becomes
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

∆∆u− α∆u+∇p = f

div u = 0

u(x) = 0, on ∂Ω
∂u

∂n
(x) = 0, on ∂Ω

(2.3.1)

for some u ∈ W 2,2
0 (Ω), p ∈ L2 (Ω), f ∈ L2 (Ω) and where we put α :=

ν/τ ≥ 0 and with p and f we mean the original ones divided by τ . Let us

notice that α can vanish: indeed, this is the particular case in which in the

equation the laplacian disappears, whereas the term of the fourth order, i.e.

the bilaplacian, that characterize our problem, is always present.

2.3.1 Sobolev spaces

Equivalent norms

Before dealing with our problem we show the equivalence between some

norms. Indeed, since we are concerned with m = 2 and p = 2 with regard to

(2.2.3), we will need to know that

Theorem 2.3.1. Given a bounded domain Ω and a vector field v ∈ H2 (Ω)

with v =
∂v

∂n
= 0 on ∂Ω, then

||v||22,2 = ||v||22 + ||∇v||22 + ||∆v||22. (2.3.2)

Proof. The first step is to prove that the norms ||∇∇v||2 and ||∆v||2 coincide.

Suppose first that v ∈ C∞c (Ω). By the boundary conditions we can deduce

that∫
Ω

|∆vk|2 =

∫
Ω

∑
i,j

∂2vk
∂x2

i

∂2vk
∂x2

j

= −
∫

Ω

∑
i,j

∂3vk
∂x2

i∂xj

∂vk
∂xj

=

=−
∫

Ω

∑
i,j

∂3vk
∂xj∂x2

i

∂vk
∂xj

=

∫
Ω

∑
i,j

∂2vk
∂xj∂xi

∂2vk
∂xj∂xi

=

∫
Ω

|∇∇vk|2

(2.3.3)

where vk is the k-th component of v, therfore∫
Ω

|∆v|2 =

∫
Ω

|∇∇v|2.
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Then, we show the result for a function v ∈ H2
0 (Ω). Since H2

0 (Ω) is the

completion of C∞c (Ω) with respect to the H2 (Ω)-norm, there exists a se-

quence (vh)h∈N ⊆ C∞c (Ω) such that vh −→ v in H2
0 (Ω); this fact implies

||v− vh||2,2 → 0 and in turn also ||∇∇v−∇∇vh||2 → 0; hence, from (2.3.3),

we get also the convergence ||∆v −∆vh||2 → 0 and, since ||∆vh||2 → ||∆v||2
and ||∇∇vh||2 → ||∇∇v||2, we finally get ||∆v||2 = ||∇∇v||2 for a vector field

v ∈ H2
0 (Ω). From the definition of H2-norm, we get the claim.

Definition 2.3.2. Let Ω be a domain and u, v two vector fields in H2
0 (Ω).

Let us denote by D(u, v) the bilinear form

D (u, v) :=

∫
Ω

∆u ·∆v + α

∫
Ω

∇u : ∇v. (2.3.4)

Remark 2.3.3. Given a bounded domain Ω, the norm induced by D (u, v),

namely

D (u, u) =

∫
Ω

|∆u|2 + α

∫
Ω

|∇u|2 = ||∆u||22 + α||∇u||22, (2.3.5)

is equivalent to the H2
0 (Ω)-norm.

Indeed, by the previous argument it follows

D (u, u) = ||∆u||22 + α||∇u||22 ≤ C
(
||u||22 + ||∇u||22 + ||∇∇u||22

)
= C||u||22,2.

(2.3.6)

Then, by the Poincaré inequality 2.1.4, we obtain

||u||22,2 = ||u||22 + ||∇u||22 + ||∇∇u||22 ≤ CΩ

(
||∇u||22 + α||∆u||22

)
= CΩ [D (u, u)]

(2.3.7)

for some constant CΩ.

2.3.2 Existence, uniqueness and regularity of solutions

for the Hyperviscous Stokes problem

In order to study the existence of solutions for the Hyperviscous Stokes prob-

lem, first of all let us notice that its weak formulation is

D (u, v) = (f, v) (2.3.8)
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for all v ∈ J2,2 (Ω). In fact, the weak formulation is∫
Ω

∆u ·∆v + α

∫
Ω

∇u : ∇v −
∫

Ω

p div v =

∫
Ω

f · v (2.3.9)

and since the vector field v is solenoidal, it coincides with (2.3.8).

Theorem 2.3.4. Let Ω be a bounded domain of class C4 and let f ∈ J2 (Ω).

Then, there exists a solution u ∈ J2,2 (Ω) of the problem

D (u, v) = (f, v) for every v ∈ J2,2 (Ω) .

Proof. The linear functional v 7→ Lv = (f, v) is continuous in J2,2 (Ω); in-

deed, using Hölder inequality and the definition of H2
0 -norm, we have

|Lv| = |(f, v)| =
∣∣∣∣∫

Ω

f · v
∣∣∣∣ ≤ ||f ||2||v||2 ≤ ||f ||2||v||2,2, (2.3.10)

hence the functional is also continuous in the space J2,2 (Ω). From Remark

2.3.3 it is clear that L is also continuous with respect to the D(·, ·)-norm.

Then by the Riesz’ representation theorem we have that there exists one

and only one element u ∈ J2,2 (Ω) such as Lu = D(u, v), for every v ∈
J2,2 (Ω).

Remark 2.3.5. The same result can be proved for a datum f ∈ L2 (Ω). In

fact, from (2.2.4), we can decompose f as (f −∇π) +∇π where f −∇π ∈
J2 (Ω) and ∇π ∈ G2 (Ω). In this way, replacing ∇p with ∇p̃ = ∇ (p− π), we

are in the same situation as in the previous theorem.

Now we recall an important result by Amrouche and Girault in [11] that

can be summarized in the following

Theorem 2.3.6. Given Ω a bounded domain of class C3,1 and f ∈ L2(Ω).

Then, there exists a unique solution u ∈ H4 (Ω) and p ∈ H1 (Ω) (p up to

an additive constant) of the problem (2.3.1) with α = 0 and the following

inequality

||u||4,2 + ||p||1,2 ≤ C||f ||2, (2.3.11)

holds, where C is a constant depending on Ω.
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Following the reasoning of the above paper, it is not difficult to show that

a similar result holds also for ∆∆− α∆ instead of ∆∆. It is worth noticing

that ∆u ∈ L2(Ω) in this case and is therefore homogeneous to f . We will

therefore assume that (2.3.11) holds also for α ≥ 0.

At this point, we need to recover the pressure field. Let us recall the

following result [10]:

Lemma 2.3.1. Let v ∈ L2
loc (Ω) such that∫

Ω

v · ϕ = 0, for all ϕ ∈ Cdiv (Ω) . (2.3.12)

Then there exists a function p ∈ W 1,2
loc (Ω) such that v = ∇p.

The existence of a solution u for the Hyperviscous Stokes problem can be

obtained by choosing

v = f −∆∆u+ α∆u

and using Lemma 2.3.1. In this way we recover our equation

∆∆u− α∆u+∇p = f (2.3.13)

that has a unique solution u ∈ H4(Ω), p ∈ H1(Ω) (p up to an additive

constant).

Definition 2.3.7. Let P : L2(Ω)→ J2(Ω) and P⊥ : L2(Ω)→ G2(Ω) denote

respectively the projection of L2(Ω) on J2(Ω) and the projection of L2(Ω) on

G2(Ω), so that

w = Pw + P⊥w

and

∀ w ∈ L2(Ω) : (Pw, P⊥w) = (Pw,∇πw) = 0

hold.

Let us observe that we can decompose f ∈ L2(Ω) as Pf + P⊥f and that

we can write P⊥f = ∇pf ; hence, if we set π = p− pf , we finally obtain

∆∆u− α∆u+∇π = Pf. (2.3.14)
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Since all the terms are square-summable (we just proved with Theorem 2.3.6

that u ∈ H4(Ω) and so ∆∆u ∈ L2(Ω)) and and since by definition of J2(Ω)

we have P (∇π) = 0, we can apply the operator P to the latter equation in

order to get

P∆∆u− αP∆u = P (Pf). (2.3.15)

Let us observe that we do not lose generality if we consider f ∈ J2(Ω), by

redefining the pressure, in the regularity results due to Amrouche and Girault

and so, in this case, P (Pf) = f .

2.3.3 Eigenvalue problem for the Hyperviscous Stokes

problem

Now we want to consider the weak form of the eigenvalue problem for the

Hyperviscous Stokes operator. It consists in finding functions u ∈ J2,2 (Ω),

with u 6= 0, and numbers λ such that

∀v ∈ J2,2 (Ω) : D (u, v) = λ (u, v) . (2.3.16)

The set of the eigenfunctions correspondent to an eigenvalue λ constitutes

a linear subspace of the principal space J2,2(Ω). So, we can introduce a

subspace of J2,2 (Ω) linked to the differential operator

L u = P∆∆u− αP∆u, (2.3.17)

restricted to the fields where u =
∂u

∂n
= 0 on ∂Ω. Then, let us introduce the

subspace of J2,2 (Ω) given by the domain of L

DL (Ω) =
{
u ∈ J2,2 (Ω) : P∆∆u− αP∆u ∈ J2 (Ω)

}
; (2.3.18)

clearly, the constraint of solenoidality on u is preserved also after applying

the operator L ; this subspace is endowed with the following norm and scalar

product

||u||L =
√
D (u, u), (u, v)L = D(u, v). (2.3.19)
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Proposition 2.3.8. The operator L : DL (Ω)→ J2 (Ω) verifies

∀u, v ∈ DL (Ω) : (L u, v) = (u,L v) = D(u, v). (2.3.20)

Proof. Since u, v are solenoidal and vanish at the boundary and considering

the Helmholtz decomposition of the bilaplacian of w

∆∆w = P∆∆w +∇π∆∆w, (2.3.21)

we have∫
Ω

P∆∆u · v =

∫
Ω

(∆∆u−∇π∆∆u) · v =

∫
Ω

∆∆u · v =

=

∫
Ω

u ·∆∆v =

∫
Ω

u · (∆∆v −∇π∆∆v) =

∫
Ω

u · P∆∆v
(2.3.22)

whence, since the laplacian is self-adjoint, u, v ∈ H2
0 (Ω) and since a similar

result holds for the term P∆u, we deduce that the operator L is self-adjoint

too, namely

(L u, v) =

∫
Ω

(P∆∆u− αP∆u) · v =

∫
Ω

u · (P∆∆v − αP∆v) = (u,L v) .

(2.3.23)

Moreover

(L u, v) =

∫
Ω

(P∆∆u− αP∆u) · v =

=

∫
Ω

(∆∆u−∇π∆∆u) · v − α
∫

Ω

(∆u−∇π∆u) · v =

=

∫
Ω

∆∆u · v − α
∫

Ω

∆u · v =

∫
Ω

∆u ·∆v + α

∫
Ω

∇u : ∇v = D(u, v),

(2.3.24)

that completes the proof.

Theorem 2.3.9. The operator L : DL (Ω) → J2 (Ω) is invertible with

continuous inverse L −1 : J2 (Ω)→ J2,2 (Ω). Moreover, the operator L −1 is

self-adjoint, namely

∀u, v ∈ J2 (Ω) :
(
L −1u, v

)
=
(
u,L −1v

)
.
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Proof. For all f ∈ J2 (Ω) let us set L −1f = u where u ∈ J2,2 (Ω) is the

solution of the problem L u = f with u =
∂u

∂n
= 0. Then, by using Schwarz

inequality and the definition of H2-norm, we have

||u||2L = D(u, u) = (L u, u) = (f, u) ≤ ||f ||2||u||2 ≤ ||f ||2||u||2,2 (2.3.25)

and remembering that the D(·, ·)-norm and the H2-norm are equivalent,

there exists a positive constant K such that ||u||2,2 ≤ K||u||L , so that

||f ||2||u||2,2 ≤ K||f ||2||u||L (2.3.26)

and thus we have

||u||L ≤ K||f ||2. (2.3.27)

We can also write this last equation as

||L −1f ||L ≤ K||f ||2 (2.3.28)

which gives us the continuity of L −1. Finally, let f, g ∈ J2 (Ω); since

L −1f,L −1g ∈ DL (Ω) and since by Proposition 2.3.8 we know that the

operator L is self-adjoint, we have(
f,L −1g

)
=
(
L L −1f,L −1g

)
=
(
L −1f,L L −1g

)
=
(
L −1f, g

)
, (2.3.29)

hence also the operator L −1 is self-adjoint.

At this point it is useful to recall the Rellich-Kondrachov Theorem from

[12] pag. 168.

Theorem 2.3.10. Let Ω be a bounded domain in Rn and let Ωk be the in-

tersection of Ω with a k-dimensional plane in Rn. Let j ≥ 0 and m ≥ 1 be

integers, and let 1 ≤ p < ∞. If mp > n, then the following imbedding is

compact:

W j+m,p (Ω)→ W j,q
(
Ωk
)
if 1 ≤ q <∞.

1

1The theorem verifies ad additional condition (the cone condition, see [12]) which is

verified by our assumption ∂Ω ∈ C4.
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To fit this theorem to our situation we must choose k = n = 3, j = 0,

q = m = p = 2 that is in agreement with the hypothesis mp > n. So the

imbedding W 2,2 → L2 is compact and since J2,2 is a closed subspace of W 2,2

also the imbedding J2,2 → L2 is compact. In this way we proved the theorem

Proposition 2.3.11. The operator L −1 : J2 (Ω)→ J2,2 (Ω) is compact.

Then, since the operator L is compact and self-adjoint we can deduce

the classical properties of its eigenvalues and eigenvectors. The study of

the eigenvalue problem for the Hyperviscous-Stokes can be reduced to the

eigenvalue problem for the compact operator L −1 in J2. The operator L −1

admits in J2,2 a basis of eigenvectors {ak} corresponding to the eigenvalues

{µk}:
L −1ak = µkak (2.3.30)

with lim
k→∞

µk = 0.

By applying the operator L to both members (2.3.30), we get

L ak =
1

µk
ak (2.3.31)

where
1

µk
= λk and lim

k→∞
λk = +∞; we can choose the basis in J2,2 and

orthonormal in J2, thus (ak, aj) = δkj and [(∆ak,∆aj) + α (∇ak,∇aj)] =

λkδkj; obviously, the eigenfunctions {ak} satisfy

ak =
∂ak
∂n

= 0 on ∂Ω.

Remark 2.3.12. For all k ∈ N we have ak ∈ H4(Ω). Indeed, it is enough to

apply the Theorem 2.3.6 to show such regularity on the eigenfunctions.

2.4 Existence of regular solutions for the weak

Hyperviscous Navier-Stokes problem

In the following section we will present some theorems necessary in order to

prove the central theorem of the thesis, which is the following
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Theorem 2.4.1. For all u0 ∈ J2,2(Ω) there exists at least one regular solution

(u, p) to problem (2.2.1) on (0, Tu0). Moreover,

u ∈ C ([0, Tu0); J
2,2(Ω)) ∩ L2 (0, Tu0 ;H

4(Ω)) ;

ut,∇p ∈ L2 (0, Tu0 ;L
2(Ω)) .

(2.4.1)

We want to apply the method of Galerkin approximations to (2.2.1) and

hence we consider the previously found basis of eigenfunctions {ak} in J2,2 (Ω)

and orthonormal in J2 (Ω). We will look for an approximate solution of the

form

um(t, x) :=
m∑
k=1

cmk (t)ak(x) (2.4.2)

where the coefficients cmk ∈ C1 depend only on t; so, by deriving with respect

to time, we obtain

umt (t, x) :=
m∑
k=1

ċmk (t)ak(x), (2.4.3)

where umt :=
∂um

∂t
and the dot is the time derivative.

We impose that for all m ∈ N the coefficients {cmk (t)} are solutions of the

ODE Cauchy problem{
(umt , ak) + (P∆∆um − αP∆um, ak) + ((∇um)um, ak) = 0, t > 0

cmk (0) := (u0, ak) , k = 1, . . . ,m

(2.4.4)

that is the weak form of (2.2.1) taking ak ∈ J2,2 (Ω) as test function and

with f = 0. Since λk is an eigenvalue of the operator L = P∆∆−αP∆, we

have

(P∆∆um − αP∆um, ak) = cmj [(∆aj,∆ak) + α (∇aj,∇ak)] = cmj λjδjk = λkc
m
k

(2.4.5)

and since um and umt can be written in the form (2.4.2) and (2.4.3), the

system (2.4.4) has the form{
ċmk (t) + λkc

m
k + Aijkc

m
i c

m
j = 0,

cmk (0) := (u0, ak) , k = 1, . . . ,m
(2.4.6)
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with Aijk = ((∇ai)aj, ak).
We notice also that

||∆ak||22+α||∇ak||22 =

∫
Ω

|∆ak|2+α

∫
Ω

|∇ak|2 = (∆ak,∆ak)+α (∇ak,∇ak) = λk

(2.4.7)

and that

(∆u0,∆ak) + α (∇u0,∇ak) = λk (u0, ak) .

Now we show some estimates on the initial term, namely

Theorem 2.4.2. The following inequalities hold for some positive constant

Cα

||um(0)||22 ≤ Cα||u0||22, (2.4.8)

α||∇um(0)||22 + ||∆um(0)||22 ≤ Cα
(
||u0||22 + ||∇u0||22 + ||∆u0||22

)
(2.4.9)

||∇um(0)||22 ≤ Cα
(
||u0||22 + ||∇u0||22 + ||∆u0||22

)
(2.4.10)

and

||∆um(0)||22 ≤ Cα
(
||u0||22 + ||∇u0||22 + ||∆u0||22

)
(2.4.11)

hold.

Proof. Preliminarly we need to prove that cmk (t) = ckk(t). Remembering the

second equality of (2.4.4), we can observe that if we equate the terms of order

m in (2.4.2), we have

m = 1 u1(0) = c1
1(0)a1 = (u0, a1)a1

m = 2 u2(0) = c2
1(0)a1 + c2

2(0)a2 = (u0, a1)a1 + (u0, a2)a2

m = 3 u3(0) = c3
1(0)a1 + c3

2(0)a2 + c3
3(0)a3 = (u0, a1)a1 + (u0, a2)a2 + (u0, a3)a3

(2.4.12)

so that by induction cmk (0) = ckk(0).

Now, since

um(0) =
m∑
k=1

cmk (0)ak, (2.4.13)



2.4. EXISTENCE OF REGULAR SOLUTIONS 25

while for the initial datum we have in L2(Ω)

u0 =
∞∑
k=1

(u0, ak)J2,2ak =
∞∑
k=1

[(∆u0,∆ak) + α(∇u0,∇ak)] ak =

=
∞∑
k=1

λk(u0, ak)ak =
∞∑
k=1

λkc
k
k(0)ak,

(2.4.14)

where we used the identity cmk (t) = ckk(t); since the basis {ak} is orthonormal

in J2(Ω), we get

||um(0)||2 =

∫
Ω

m∑
k=1

cmk (0)2 ≤
∫

Ω

∞∑
k=1

ckk(0)2 ≤ Cα

∫
Ω

∞∑
k=1

λ2
kc
k
k(0)2 = Cα||u0||2,

that gives (2.4.8).

Now, we can observe that our problem can be rewritten as

P∆∆u− αP∆u+
α2

4
u = f +

α2

4
u (2.4.15)

hence, ak are also the eigenfunctions of the operator

P∆∆− αP∆ +
α2

4
I := A 2,

and λ′k = λk +
α2

4
are the correspondent eigenvalues. Therefore(

A 2u0, ak
)

= λ′k(u0, ak) (2.4.16)

and hence

(A u0,A ak) = λ′k(u0, ak). (2.4.17)

We deduce also (A aj,A ak) = λ′jδjk and ||A ak||22 = λ′k.

Then, by applying the operator A to both sides of (2.4.13), we get

A um(0) =
m∑
k=1

cmk (0)A ak =
m∑
k=1

(u0, ak)
λ′k
λ′k

A ak =
m∑
k=1

(A u0,A ak)
A ak
||A ak||22

(2.4.18)

and then

||A um(0)||22 =
m∑
k=1

(A u0,A ak)
2 ||A ak||22
||A ak||42

=
m∑
k=1

(
A u0,

A ak
||A ak||2

)2

≤

≤
∞∑
k=1

(
A u0,

A ak
||A ak||2

)2

= ||A u0||22.

(2.4.19)
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Rewriting the last inequality we find

||∆um(0)||22 + α||∇um(0)||22 +
α2

4
||um(0)||22 ≤ ||∆u0||22 + α||∇u0||22 +

α2

4
||u0||22

(2.4.20)

whence we deduce (2.4.9), (2.4.10) and (2.4.11).

2.4.1 Energy relations

Theorem 2.4.3. Let {ak} ∈ J2,2 (Ω) so that um ∈ J2,2 (Ω). Then for all

m ∈ N the following equalities

a)
1

2

d

dt
||um||22 + ||∆um||22 + α||∇um||22 = 0, t > 0, (2.4.21)

b)
1

2

d

dt
(||∆um||22 + α||∇um||22) + ||P∆∆um||22 + α2||P∆um||22+

−2α (P∆∆um, P∆um) + ((∇um)um, P∆∆um)− α ((∇um)um, P∆um) = 0,

(2.4.22)

c)
1

2

d

dt

(
||∆um||22 + α||∇um||22

)
+ ||umt ||22 + ((∇um)um, umt ) = 0. (2.4.23)

hold. Moreover, ||um||22 is not increasing in time.

Proof. a) If we multiply (2.4.4) for cmk (t) and sum on k, we have

m∑
k=1

cmk (umt , ak)+

m∑
k=1

cmk (P∆∆um − αP∆um, ak)+

m∑
k=1

cmk ((∇um)um, ak) = 0

and by linearity we can also write(
umt ,

m∑
k=1

cmk ak

)
+

(
P∆∆um − αP∆um,

m∑
k=1

cmk ak

)
+

(
(∇um)um,

m∑
k=1

cmk ak

)
= 0

that is, remembering (2.4.2),

(umt , u
m) + (P∆∆um − αP∆um, um) + ((∇um)um, um) = 0. (2.4.24)

The first term is

(umt , u
m) =

(
d

dt
um, um

)
=

1

2

d

dt
||um||22,
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while the second one is, after some easy calculation and for (2.4.7),

(P∆∆um − αP∆um, um) = (∆um,∆um) + α (∇um,∇um) =

= (cmk )2λk = ||∆um||22 + α||∇um||22.

Finally, the last term of (2.4.24) vanishes: indeed, for u ∈ J1,2(Ω) with

u = 0 on ∂Ω,

div(u⊗ u) = (div u)u+ (gradu)u (2.4.25)

holds, hence we get∫
Ω

(∇u)u · u =

∫
Ω

div((u⊗ u)u)−
∫

(u⊗ u) : ∇u = −
∫

Ω

(∇u)u · u,

(2.4.26)

whence ∫
Ω

(∇u)u · u = 0. (2.4.27)

Hence we obtain

1

2

d

dt
||um||22 + ||∆um||22 + α||∇um||22 = 0, t > 0. (2.4.28)

By this identity, since

1

2

d

dt
||um||22 = −

(
||∆um||22 + α||∇um||22

)
, (2.4.29)

we see that the kinetic energy of the approximating term ||um||22 is not

increasing in time.

b) Now, if we multiply (2.4.4) by λkc
m
k (t) and if we sum on k, we have, as

in the previous case,

m∑
k=1

λkc
m
k (umt , ak)+

m∑
k=1

λkc
m
k (P∆∆um − αP∆um, ak)+

m∑
k=1

λkc
m
k ((∇um)um, ak) = 0.

The first term, remembering (2.4.7), is given by

m∑
k=1

λkc
m
k (umt , ak) =

=
m∑
k=1

(∆ak,∆ak) c
m
k (umt , ak) + α

m∑
k=1

(∇ak,∇ak) cmk (umt , ak) =

=

(
d

dt
∆um,∆um

)
+ α

(
d

dt
∇um,∇um

)
=

1

2

d

dt
||∆um||22 +

α

2

d

dt
||∇um||22;
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while the second term, since P∆∆ak − αP∆ak = λkak, by (2.3.31) is

m∑
k=1

λkc
m
k (P∆∆um − αP∆um, ak) =

=

(
P∆∆um − αP∆um,

m∑
k=1

(λkak) c
m
k

)
=

=

(
P∆∆um − αP∆um,

m∑
k=1

cmk (P∆∆ak − αP∆ak)

)
=

= (P∆∆um − αP∆um, P∆∆um − αP∆um) =

= ||P∆∆um||22 + α2||P∆um||22 − 2α (P∆∆um, P∆um) ;

the last term, since again P∆∆ak − αP∆ak = λkak, becomes

m∑
k=1

λkc
m
k ((∇um)um, ak) = ((∇um)um, P∆∆um − αP∆um) .

Collecting all terms, we obtain the second identity

1

2

d

dt

(
||∆um||22 + α||∇um||22

)
+ ||P∆∆um||22 + α2||P∆um||22+

−2α (P∆∆um, P∆um) + ((∇um)um, P∆∆um)− α ((∇um)um, P∆um) = 0.

(2.4.22)

c) Finally, if we multiply (2.4.4) for ċmk (t) and if we sum on k, we have,

remembering (2.4.3),

(umt , u
m
t ) + (P∆∆um − αP∆um, umt ) + ((∇um)um, umt ) = 0.

The first term is simply

(umt , u
m
t ) = ||umt ||22;

while the second is

(P∆∆um − αP∆um, umt ) = (P∆∆um, umt )− α (P∆um, umt ) =

= (∆um,∆umt ) + α (∇um,∇umt ) =
1

2

d

dt
||∆um||22 +

α

2

d

dt
||∇um||22

and the third remains unchanged. Hence, we get

1

2

d

dt

(
||∆um||22 + α||∇um||22

)
+ ||umt ||22 + ((∇um)um, umt ) = 0, (2.4.23)

which completes the proof.
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Remark 2.4.4. We can observe that in the case with f not null such relations

are different, but this is not a problem for our aim. Following the calculations

above we can find the following energy relations. The first one reads

1

2

d

dt
||um||22 + ||∆um||22 + α||∇um||22 = (f, um) (2.4.30)

and considering that (f, um) ≤ 1

2
||f ||22 +

1

2
||um||22, we can also obtain

d

dt
||um||22 + 2||∆um||22 + 2α||∇um||22 ≤ ||f ||22 + ||um||22 (2.4.31)

and moreover
d

dt
||um||22 ≤ ||f ||22 + ||um||22. (2.4.32)

Hence, integrating it from 0 to t, with t ∈ [0, T ], and using (2.4.8) and

(2.4.64) that will be proved next, we get

||um(t)||22 ≤ ||um(0)||22 +

∫ t

0

||f ||22 +

∫ t

0

||um||22 ≤

≤ Cα||u0||22 +
∣∣∣∣ ||f ||2∣∣∣∣2L2(0,T )

+ CαT ||u0||22
(2.4.33)

whence

||um(t)||22 ≤ Cα(1 + T )||u0||22 +
∣∣∣∣ ||f ||2∣∣∣∣2L2(0,T )

, (2.4.34)

that replaces the calculations in which we will use ||um||22 not increasing.

The second energy relation becomes

1

2

d

dt
(||∆um||22 + α||∇um||22) + ||P∆∆um||22 + α2||P∆um||22+

−2α (P∆∆um, P∆um) + ((∇um)um, P∆∆um)− α ((∇um)um, P∆um) =

= (f, P∆∆um − αP∆um).

(2.4.35)

Considering that, by Young’s inequality,

(f, P∆∆um − αP∆um) ≤ cε||f ||22 + ε||P∆∆um||22 + εα||P∆um||22
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with ε < α, we come up also to

1

2

d

dt

(
||∆um||22 + α||∇um||22

)
+ (1− ε)||P∆∆um||22 + α(α− ε)||P∆um||22+

−2α (P∆∆um, P∆um) + ((∇um)um, P∆∆um)− α ((∇um)um, P∆um) ≤ cε||f ||22.
(2.4.36)

The third energy relation is

1

2

d

dt

(
||∆um||22 + α||∇um||22

)
+ ||umt ||22 + ((∇um)um, umt ) = (f, umt ). (2.4.37)

whence

d

dt

(
||∆um||22 + α||∇um||22

)
+ ||umt ||22 + 2 ((∇um)um, umt ) ≤ ||f ||22. (2.4.38)

Anyway, for simplicity, from now on we will consider the case with van-

ishing f .

2.4.2 Functional estimates

Let us prove now some estimates which we will need later. The first inequality

we want to prove is given by the

Proposition 2.4.5. Let Ω be a Lipschitz domain in R3 and u ∈ H2
0 (Ω).

Then, there exists a constant C̃ independent of the domain such that

||∇u||3 ≤ C̃
(
||∇u||

1
2
2 ||∆u||

1
2
2 + ||∇u||2

)
. (2.4.39)

Proof. In order to prove (2.4.39) we choose the inequality given in theorem

2.1.3, since it is valid for bounded domains and it is enough to put c2 = 0

to recover the case of exterior domains; then we take w = Diuk (for all

i, k = 1, 2, 3, namely Diuk is each component of the gradient ∇uk), n = 3,

k = 0, r = 3, m = 1, p = 2, a = 1/2, q = 2. So, we obtain

||Diuk||3 ≤ c1

(
||Diuk||

1
2
2 ||Dj(Diuk)||

1
2
2

)
+ c2||Diuk||2 ≤

≤ c1

(
||∇uk||

1
2
2 ||∇∇uk||

1
2
2

)
+ c2||∇uk||2

(2.4.40)

and hence, summing all the components that form the gradient and by re-

defining the constants c1 and c2, we get

||∇u||3 ≤ c1

(
||∇u||

1
2
2 ||∇∇u||

1
2
2

)
+ c2||∇u||2 (2.4.41)
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Finally, in theorem 2.3.1 we proved that ||∇∇u||2 = ||∆u||2 and thus, setting

C̃ := max{c1, c2}, we get (2.4.39).

Theorem 2.4.6. Let Ω be a possibly unbounded domain and let be given

u ∈ J2,2 (Ω) and w ∈ J2 (Ω).

Then, an estimate on the generic trilinear term ((∇u)u,w) is

|((∇u)u,w)| ≤ c
(
||∇u||62 + ||∇u||42

)
+

1

2

(
||∆u||22 + ||w||22

)
. (2.4.42)

Proof. Applying Young’s inequality, Hölder’s inequality, Sobolev’s inequality

and (2.4.39), we get

|((∇u)u,w)| ≤ ||(∇u)u||2||w||2 ≤
1

2
||(∇u)u||22 +

1

2
||w||22 ≤

≤ 1

2
||∇u||23||u||26 +

1

2
||w||22 ≤

c

2
||∇u||23||∇u||22 +

1

2
||w||22 ≤

≤ c

2

[
C̃
(
||∇u||

1
2
2 ||∆u||

1
2
2 + ||∇u||2

)]2

||∇u||22 +
1

2
||w||22 ≤

≤ cC̃2
(
||∇u||2||∆u||2 + ||∇u||22

)
||∇u||22 +

1

2
||w||22 =

= k||∇u||32||∆u||2 + k||∇u||42 +
1

2
||w||22 ≤

≤ k

2
||∇u||62 +

1

2
||∆u||22 + k||∇u||42 +

1

2
||w||22 ≤

≤ c
(
||∇u||42 + ||∇u||62

)
+

1

2

(
||∆u||22 + ||w||22

)
,

(2.4.43)

having set the constants c := max{k/2, k} that is independent of the Lebesgue

measure of the domain Ω. The proof is complete.

Theorem 2.4.7. The inequality

||(∇u)u||22 ≤ c̃
(
||∆u||22 + ||∇u||22

)2
+ c||u||42 (2.4.44)

holds.

Proof. By using Hölder’s inequality, we have∫
|u|3 =

(∫
|u|6
) 1

4
(∫
|u|2
) 3

4

(2.4.45)
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whence we easy get

||u||3 ≤ ||u||
1
2
6 ||u||

1
2
2 . (2.4.46)

Then, by using the previous inequality, once again Hölder’s inequality, Young’s

inequality and the following Sobolev Embedding Theorem in the formsH2
0 (Ω) ⊆

W 1,6
0 (Ω) and H1

0 (Ω) ⊆ L6(Ω), we get

||(∇u)u||22 ≤ ||∇u||26||u||23 ≤ ||∇u||26||u||6||u||2 ≤

≤ k(||u||22 + ||∆u||22)||∇u||2||u||2 ≤
k

2
(||u||22 + ||∆u||22) (||∇u||22 + ||u||22) ≤

≤ c̃ (||∆u||22 + ||∇u||22)
2

+ c||u||42,
(2.4.47)

that is the claim.

2.4.3 A priori estimates and inequalities for solutions

Let um be defined by (2.4.2). We list and prove some a priori estimates for

the approximating solutions. But before we need the following

Remark 2.4.8.

||P∆v||22 ≤ ||∆v||22. (2.4.48)

Proof. Since by definition ∆v = P∆v +∇π∆v holds with P∆v ∈ J2(Ω) and

∇π∆v ∈ G2(Ω), we get

||∆v||22 =

∫
Ω

|∆v|2 =

∫
Ω

|P∆v|2 +

∫
Ω

|∇π∆v|2 + 2

∫
Ω

P∆v · ∇π∆v =

= ||P∆v||22 + ||∇π∆v||22 ≥ ||P∆v||22.
(2.4.49)

Theorem 2.4.9. The inequality

d

dt
(||um||22 + ||∇um||22 + ||∆um||22) +

+||∇um||22 + ||∆um||22 + ||P∆∆um||22 + ||umt ||22 ≤

≤ cα (||∇um||62 + ||∇um||42)

(2.4.50)
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holds and in particular also

d

dt
(||um||22 + ||∇um||22 + ||∆um||22) ≤ cα (||∇um||62 + ||∇um||42) , (2.4.51)

where cα > 0 and is independent of the size of Ω.

Proof. Let us consider a positive integer M > 1 + α + 4α2; if we sum M

times (2.4.21) with (2.4.22) and (2.4.23), we obtain

1

2

d

dt

(
M ||um||22 + 2α||∇um||22 + 2||∆um||22

)
+

+αM ||∇um||22 +M ||∆um||22 + α2||P∆um||22 + ||P∆∆um||22 + ||umt ||22 =

= 2α (P∆∆um, P∆um)− ((∇um)um, P∆∆um) +

+α ((∇um)um, P∆um)− ((∇um)um, umt ) .

(2.4.52)

By estimating each term of the right-hand side with its absolute value and

neglecting the term ||P∆um||22, we have

d

dt
(M ||um||22 + 2α||∇um||22 + 2||∆um||22) +

+2αM ||∇um||22 + 2M ||∆um||22 + 2||P∆∆um||22 + 2||umt ||22 ≤

≤ 4α |(P∆∆um, P∆um)|+ 2 |((∇um)um, P∆∆um)|+

+2α |((∇um)um, P∆um)|+ 2 |((∇um)um, umt )| .

(2.4.53)

Now we also have that, using Cauchy-Schwarz inequality and Young inequal-

ity,

4α |(P∆∆um, P∆um)| ≤ 4α||P∆∆um||2||P∆um||2 ≤

≤ 4α

(
1

8α
||P∆∆um||22 + 2α||P∆um||22

)
,

(2.4.54)

whence, using (2.4.48),

4α |(P∆∆um, P∆um)| ≤ 1

2
||P∆∆um||22 + 8α2||∆um||22. (2.4.55)

Then, estimating each term at the right-hand side using (2.4.42) and (2.4.48),

we have

|((∇um)um, P∆um)| ≤ c
(
||∇um||62 + ||∇um||42

)
+ ||∆um||22, (2.4.56)
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|((∇um)um, P∆∆um)| ≤ c
(
||∇um||62 + ||∇um||42

)
+

1

2

(
||∆um||22 + ||P∆∆um||22

)
(2.4.57)

and

|((∇um)um, umt )| ≤ c
(
||∇um||62 + ||∇um||42

)
+

1

2

(
||∆um||22 + ||umt ||22

)
. (2.4.58)

Hence,

d

dt
(M ||um||22 + 2α||∇um||22 + 2||∆um||22) +

+2αM ||∇um||22 + 2M ||∆um||22 + 2||P∆∆um||22 + 2||umt ||22 ≤
≤ 2c(2 + α) (||∇um||62 + ||∇um||42) + (2 + 2α + 8α2)||∆um||22+

+
3

2
||P∆∆um||22 + ||umt ||22

(2.4.59)

and therefore

d

dt

(
M ||um||22 + 2α||∇um||22 + 2||∆um||22

)
+

+2αM ||∇um||22 + 2(M − 1− α− 4α2)||∆um||22 +
1

2
||P∆∆um||22 + ||umt ||22 ≤

≤ 2c(2 + α)
(
||∇um||62 + ||∇um||42

)
.

(2.4.60)

Therefore, we can conclude that there exists C > 0 such that

d

dt

(
M ||um||22 + 2α||∇um||22 + 2||∆um||22

)
+

+2αM ||∇um||22 + 2(M − 1− α− 4α2)||∆um||22 +
1

2
||P∆∆um||22 + ||umt ||22 ≤

≤ C
(
||∇um||62 + ||∇um||42

)
.

(2.4.61)

holds with C = 2c(2 + α). Then, defining k as the minimum of all the

coefficients in the left-hand side of the previous inequality, we get

d

dt
(||um||22 + ||∇um||22 + ||∆um||22) +

+||∇um||22 + ||∆um||22 + ||P∆∆um||22 + ||umt ||22 ≤

≤ C

k
(||∇um||62 + ||∇um||42) .

(2.4.62)

Finally, setting cα :=
C

k
, we have (2.4.50) and, in particular, (2.4.51).
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Theorem 2.4.10. The inequalities

||um(t)||22 + 2

∫ t

0

(
||∆um(τ)||22 + α||∇um(τ)||22

)
dτ ≤ Cα||u0||22, (2.4.63)

||um(t)||22 ≤ Cα||u0||22, (2.4.64)∫ t

0

(
||∆um(τ)||22 + α||∇um(τ)||22

)
dτ ≤ Cα

2
||u0||22, (2.4.65)

hold; in particular also∫ t

0

||∇um(τ)||22dτ ≤
Cα
2α
||u0||22, (2.4.66)

∫ t

0

||∆um(τ)||22dτ ≤
Cα
2
||u0||22 (2.4.67)

hold.

Proof. Integrating (2.4.21) from 0 to t, we have

1

2

(
||um(t)||22 − ||um(0)||22

)
+

∫ t

0

(
||∆um(τ)||22 + α||∇um(τ)||22

)
dτ = 0

(2.4.68)

and by (2.4.8), we obtain the inequality

||um(t)||22 + 2

∫ t

0

(
||∆um(τ)||22 + α||∇um(τ)||22

)
dτ = ||um(0)||22 ≤ Cα||u0||22.

(2.4.63)

Moreover, from (2.4.63) we get (2.4.64), (2.4.65), (2.4.66) and (2.4.67).

As a direct consequence we can estimate the term∫ t

0

(
||∇um(τ)||42 + ||∇um(τ)||22

)
dτ (2.4.69)

with a bound independent of m.

Theorem 2.4.11. The following estimate∫ t

0

(
||um(τ)||22 + ||um(τ)||42

)
d τ ≤ Cα

2α
||u0||22

(
1 + αCα||u0||22

)
, (2.4.70)

holds for every t > 0, where Cα is a positive constant.
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Proof. By integrating by parts, we have∫
Ω

|∇um|2 = −
∫

Ω

um ·∆um ≤ ||um||2||∆um||2 (2.4.71)

and taking its square, we find

||∇um||42 ≤ ||um||22||∆um||22. (2.4.72)

Now, by integrating it in time and by using (2.4.64) and (2.4.67), we get∫ t

0

||∇um(τ)||42d τ ≤
∫ t

0

||um(τ)||22||∆um(τ)||22d τ ≤

≤ Cα||u0||22
∫ t

0

||∆um(τ)||22d τ ≤
C2
α

2
||u0||42.

(2.4.73)

Then, using such estimate and (2.4.66), we obtain∫ t

0

(
||∇um(τ)||22 + ||∇um(τ)||42

)
d τ ≤

∫ t

0
||∇um(τ)||22d τ +

∫ t

0
||∇um(τ)||42d τ ≤

≤ Cα
2α
||u0||22

(
1 + αCα||u0||22

)
,

(2.4.74)

that is the claim.

Theorem 2.4.12. The nonlinear term satisfies

(∇um)um ∈ L2(0, T ;L1(Ω)). (2.4.75)

Proof. By using Hölder’s inequality, we have

||(∇um)um||21 =

(∫
Ω

|∇um||um|
)2

≤ ||um||22||∇um||22 (2.4.76)

that integrated in time and by using (2.4.64) and (2.4.66) is∫ t

0

|(∇um(τ))um(τ)||21d τ ≤
∫ t

0

||um(τ)||22||∇um(τ)||22d τ ≤
C2
α

2α
||u0||42

(2.4.77)

whence we have the claim.
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Theorem 2.4.13. For all u0 ∈ J2,2(Ω) there exists Tu0 > 0 such that

the quantities ||∆um||22 + ||∇um||22 and ||(∇um)um||22 exist and are bounded

in [0, Tu0 ]. Conversely, we can also say that for all T > 0 there exists

u0 ∈ J2,2(Ω) with ||∆um||22 + ||∇um||22 small enough such that there exists

the solution um in [0, T ].

Moreover

um ∈ L∞([0, Tu0 ]; J
2,2(Ω)) ∩ L∞([0, Tu0 ]; J

1,2(Ω)), (2.4.78)

whence

um ∈ L∞([0, Tu0 ];W
1,6
0 (Ω)), (2.4.79)

and

(∇um)um ∈ L2(0, Tu0 ;L
2(Ω)). (2.4.80)

Proof. Now, let us take (2.4.23) and using Hölder, Cauchy-Schwarz, Young

inequality and (2.4.44), we have

||umt ||22 +
1

2

d

dt
(||∆um||22 + α||∇um||22) = − ((∇um)um, umt ) ≤

≤ |((∇um)um, umt )| ≤ || (∇um)um||2||umt ||2 ≤

≤ ||(∇u
m)um||22
2

+
||umt ||22

2
≤

≤ c̃

2
(||∆um||22 + ||∇um||22)

2
+
c

2
||um||42 + ||umt ||22

(2.4.81)

whence, by redefining the constants, we deduce

d

dt

(
||∆um||22 + ||∇um||22

)
≤ k

[(
||∆um||22 + ||∇um||22

)2
+ ||um||42

]
(2.4.82)

for a positive constant k and by (2.4.64), we have

d

dt

(
||∆um||22 + ||∇um||22

)
≤ k

(
||∆um||22 + ||∇um||22

)2
+ kα||u0||42 (2.4.83)

for some positive constants kα and k.

In this way, setting ϕ(t) := ||∆um||22 + ||∇um||22, we get

dϕ(t)

dt
≤ k̃α

(
ϕ(t)2 + 1

)
(2.4.84)
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with k̃α := max
{
k, kα||u0||42

}
. By solving it, we can deduce

arctgϕ(t) ≤ arctgϕ(0) + k̃αt (2.4.85)

which leads to

ϕ(t) ≤ tg
(

arctgϕ(0) + k̃αt
)
, (2.4.86)

that, remembering (2.4.9), is

||∆um||22 + ||∇um||22 ≤ tg
(

arctg(Cα(||u0||22 + ||∇u0||22 + ||∆u0||22)) + k̃αt
)
,

(2.4.87)

whence we get (2.4.78) and as a consequence also (2.4.79).

We can notice that the solution exists for

arctg(Cα(||u0||22 + ||∇u0||22 + ||∆u0||22)) + k̃αt <
π

2
(2.4.88)

whence we have

Tu0 <
1

k̃α

(π
2
− arctg

(
Cα(||u0||22 + ||∇u0||22 + ||∆u0||22)

))
. (2.4.89)

Finally, by recovering (2.4.44), (2.4.64) and by using (2.4.87), we get

||(∇um)um||22 ≤ c̃(||∆um||22 + ||∇um||22)2 + c||um||42 ≤

≤ c̃
(

tg
(

arctg
(
Cα
(
||u0||22 + ||∇u0||22 + ||∆u0||22

))
+ k̃αTu0

))2
+ kα||u0||42

(2.4.90)

that, integrated in time, gives, for some constant h(u0),∫ t

0

||(∇um)um||22 ≤ Tu0h(u0), (2.4.91)

which is (2.4.80) and completes the proof.

Let us remark that we can also obtain∫ t

0

||(∇um)um||2 ≤ Tu0h(u0), (2.4.92)

for a positive constant h(u0).
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As a consequence of (2.4.87), we have

||∇um(t)||22 ≤ c1(t) (2.4.93)

and

||P∆um(t)||22 ≤ ||∆um(τ)||22 ≤ c1(t) (2.4.94)

in [0, Tu0) for a positive time-dependent function c1(t), whose expression is

given by

c1(t) := tg
(

arctg(Cα(||u0||22 + ||∇u0||22 + ||∆u0||22)) + k̃αt
)
. (2.4.95)

Theorem 2.4.14. The inequality∫ t

0

(
||∇um(τ)||22 + ||∆um(τ)||22 + ||P∆∆um(τ)||22 + ||umτ (τ)||22

)
dτ ≤ c2(t) (2.4.96)

holds. In particular ∫ t

0

||P∆∆um(τ)||22dτ ≤ c2(t) (2.4.97)

and ∫ t

0

||umτ (τ)||22dτ ≤ c2(t) (2.4.98)

hold in [0, Tu0) for a time-dependent positive function c2(t), whose expression

is given in (2.4.102).

Proof. Let us integrate (2.4.50) from 0 to t, namely

||um(t)||22 + ||∇um(t)||22 + ||∆um(t)||22+

+

∫ t

0

(
||∇um(τ)||22 + ||∆um(τ)||22 + ||P∆∆um(τ)||22 + ||umτ (τ)||22

)
dτ ≤

≤ ||um(0)||22 + ||∇um(0)||22 + ||∆um(0)||22 + cα

∫ t

0

(
||∇um(τ)||62 + ||∇um(τ)||42

)
dτ.

(2.4.99)

By (2.4.8), (2.4.10) and (2.4.11), we have∫ t

0

(
||∇um(τ)||22 + ||∆um(τ)||22 + ||P∆∆um(τ)||22 + ||umτ (τ)||22

)
dτ ≤

≤ C̃α
(
||u0||22 + ||∇u0||22 + ||∆u0||22

)
+ cα

∫ t

0

(
||∇um(τ)||62 + ||∇um(τ)||42

)
dτ.

(2.4.100)
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Now, by applying a direct consequence of (2.4.87), we obtain∫ t

0

(
||∇um(τ)||22 + ||∆um(τ)||22 + ||P∆∆um(τ)||22 + ||umτ (τ)||22

)
dτ ≤

≤ C̃α
(
||u0||22 + ||∇u0||22 + ||∆u0||22

)
+

+cα

∫ t

0

tg3
(

arctg(Cα(||u0||22 + ||∇u0||22 + ||∆u0||22)) + k̃αTu0

)
d τ+

+cα

∫ t

0

tg2
(

arctg(Cα(||u0||22 + ||∇u0||22 + ||∆u0||22)) + k̃αTu0

)
dτ ≤ c2(t),

(2.4.101)

where we set

c2(t) := C̃α (||u0||22 + ||∇u0||22 + ||∆u0||22) +

+cα

[
tg3
(

arctg(Cα(||u0||22 + ||∇u0||22 + ||∆u0||22)) + k̃αTu0

)
+

+ tg2
(

arctg(Cα(||u0||22 + ||∇u0||22 + ||∆u0||22)) + k̃αTu0

)]
t;

(2.4.102)

in this way we get, for t ∈ [0, Tu0), inequalities (2.4.96), (2.4.97) and (2.4.98).

Let us observe that (2.4.63), (2.4.93), (2.4.94), (2.4.96) estimate the quan-

tities

||um(t)||22, ||∇um(t)||22, ||P∆um(t)||22,

||um(t)||22 + 2

∫ t

0

(
||∆um(τ)||22 + α||∇um(τ)||22

)
dτ,

∫ t

0

(
||∇um(τ)||22 + ||∆um(τ)||22 + ||P∆∆um(τ)||22 + ||umτ (τ)||22

)
dτ

with ||u0||2, ||∇u0||2, ||∆u0||2 that are quantities independent of m and of the

size of the domain Ω.

2.4.4 Equicontinuity of the sequence {um}

Theorem 2.4.15. The sequence

{um} ⊂ C
(
[0, Tu0);L

2(Ω)
)

is equicontinuous.
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Proof. We consider the Fourier series of a generic ψ ∈ J2 (Ω), that is

ψ(x) =
∞∑
k=0

ψkak(x) (2.4.103)

where {ak}k∈N is the orthonormal basis already defined in (2.3.30) and the

ψk are its Fourier coefficients.

Then, if we multiply equation (2.4.4) by ψk and we sum on k = 0, . . . , µ,

we get

µ∑
k=0

ψk (umt , ak)+

µ∑
k=0

ψk (P∆∆um − αP∆um, ak)+

µ∑
k=0

ψk ((∇um)um, ak) = 0,

(2.4.104)

that is

(umt , ψ
µ) + (P∆∆um − αP∆um, ψµ) + ((∇um)um, ψµ) = 0, (2.4.105)

since we put ψµ =

µ∑
k=0

ψkak, the partial sum of the Fourier expansion.

Then, integrating it from s to t and applying the Foundamental Theorem

of Calculus, we obtain

(um(t)− um(s), ψµ) =

∫ t

s

[(αP∆um − P∆∆um, ψµ)− ((∇um)um, ψµ)] dτ

(2.4.106)

for all µ ∈ N and s, t ≥ 0.

At this point, considering the absolute value of (2.4.106) and using Cauchy
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inequality, Hölder inequality and (2.4.92), we get

|(um(t)− um(s), ψµ)| ≤

≤
∫ t

s

|(αP∆um − P∆∆um, ψµ)− ((∇um)um, ψµ)| dτ ≤

≤ ||ψµ||2
∫ t

s

(||αP∆um − P∆∆um − (∇um)um||2) dτ ≤

≤ ||ψµ||2
∫ t

s

(||αP∆um||2 + ||P∆∆um||2 + || (∇um)um||2) dτ ≤

≤ C||ψµ||2
[∫ t

s

||P∆um||2dτ +

∫ t

s

||P∆∆um||2dτ +

∫ t

s

Tu0
h(u0)dτ

]
≤

≤ C||ψµ||2

[
(t− s) 1

2

(∫ t

s

||P∆um||22dτ
) 1

2

+ (t− s) 1
2

(∫ t

s

||P∆∆um||22dτ
) 1

2

+

+ (t− s)Tu0
h(u0)

]
(2.4.107)

where C := max {1, α}. At this point it is appropriate to observe that

we can deduce an inequality similar to (2.4.96) also by the integration from

s to t; in particular we can say that, integrating (2.4.50) from s to t for all

s, t > 0, we have∫ t

s

d

dt

(
||um||22 + ||∇um||22 + ||∆um||22

)
dτ+

+

∫ t

s

(
||∇um||22 + ||∆um||22 + ||P∆∆um||22 + ||umτ ||22

)
dτ ≤

≤
∫ t

s

cα
(
||∇um||62 + ||∇um||42

)
dτ ≤

≤
∫ t

0

cα
(
||∇um||62 + ||∇um||42

)
dτ

(2.4.108)

and so, since ||um(t)||22 is not increasing in time for (2.4.29),

||um(t)||22 + ||∇um(t)||22 + ||∆um(t)||22+

+

∫ t

s

(
||∇um||22 + ||∆um||22 + ||P∆∆um||22 + ||umτ ||22

)
dτ ≤

≤ ||um(s)||22 + ||∇um(s)||22 + ||∆um(s)||22 +

∫ t

0

cα
(
||∇um||62 + ||∇um||42

)
dτ ≤

≤ C̃α
(
||u0||22 + ||∇u0||22 + ||∆u0||22

)
+

∫ t

0

cα
(
||∇um||62 + ||∇um||42

)
dτ

(2.4.109)
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whence we can find an estimate similar to (2.4.100), that is∫ t

s

||P∆∆um||22dτ ≤

≤
∫ t

0

cα
(
||∇um||62 + ||∇um||42

)
dτ + C̃α

(
||u0||22 + ||∇u0||22 + ||∆u0||22

)
(2.4.110)

leading to an analogous of inequality (2.4.96), whence∫ t

s

||P∆∆um||22dτ ≤ c2(t). (2.4.111)

Now, applying (2.4.64) and (2.4.94) integrated from s to t and (2.4.111), we

have

|(um(t)− um(s), ψµ)| ≤

≤ C||ψµ||2

[
(t− s)

1
2 (t− s)

1
2

(∫ t

s
c1(τ)2d τ

) 1
2

+ (t− s)
1
2 c2(t)

1
2 + (t− s)Tu0h(u0)

]
.

(2.4.112)

Dividing by ||ψµ||2 and taking the sup on the space S of functions ψµ, we

get

sup
ψµ∈S

|(um(t)− um(s), ψµ)|
||ψµ||2

≤

≤ C

[
(t− s)

1
2 (t− s)

1
2

(∫ t

s

c1(τ)2d τ

) 1
2

+ (t− s)
1
2 c2(t)

1
2 + (t− s)Tu0h(u0)

]
.

(2.4.113)

We can now observe that the right-hand side does not depend on m but

only by constant terms like ||u0||22, ||∇u0||22, ||∆u0||22; furthermore, each term

is multiplied by (t−s) which tends to 0 when t→ s and so all the right-hand

side tends to 0 when t→ s:

||um(t)− um(s)||2 ≤ g(t− s)→ 0, as t→ s. (2.4.114)

In this way we proved that the sequence

{um} ⊂ C
(
[0, Tu0);L

2(Ω)
)

is equicontinuous.
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2.4.5 Existence of a weak limit of {um}

In this section we want to prove the existnce of a weak limit of the approxi-

mating sequence um.

With Theorem 2.1.5 we will be able to find a subsequence of the approxi-

mated solution and its time-derivative, in order to end up to their convergence

in L2(Ω). But before

Theorem 2.4.16. Let v ∈ W 4,p(Ω) with Ω ⊆ Rn with n ≥ 3 an exterior

domain of class C4. If v =
∂v

∂n
= 0 on ∂Ω and p ∈ (1,+∞), then there exist

two constants c0 and c1 independent of v such that

||D4v||p ≤ c0||∆∆v||p + c1||v||p. (2.4.115)

Moreover, c1 = 0 if the domain Ω is Rn or if it is bounded.

Proof. Let us consider a regular cutoff function h with support in the sphere

of radius R > 2 diam(Rn \Ω) such that h = 1 for |x| ≤ R/2. Set H := 1−h,

ϕ := ∆v and φ := H∆v.

Clearly, φ satisfies

∆φ = H∆∆v − ϕ∆h− 2∇ϕ · ∇h, in Rn.

Setting

F := H∆∆v − ϕ∆h− 2∇ϕ · ∇h (2.4.116)

we get the equation ∆ψ = F and for the Calderón-Zygmund Theorem we

have the bound

||D2ψ||p ≤ c||F ||p. (2.4.117)

Now, since D2φ = D2ψ and since

D2φ = HD2∆v +D2H∆v+2∇H · ∇∆v =

=HD2∆v − ϕD2h− 2∇ϕ · ∇h
(2.4.118)
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we obtain

||HD2∆v||p − ||D2H∆v + 2∇H · ∇∆v||p ≤

≤ ||HD2∆v +D2H∆v + 2∇H · ∇∆v||p ≤ c||F ||p; (2.4.119)

therefore

||HD2∆v||p = ||H∆D2v||p ≤

≤ c||F ||p + ||D2H∆v + 2∇H · ∇∆v||p ≤

≤ c||F ||p + ||D2H∆v||p + 2||∇H · ∇∆v||p. (2.4.120)

Then, setting

ϕ̂ := D2v and φ̂ := Hϕ̂,

we have that φ̂ satisfies the identity

∆φ̂ = ϕ̂∆H +H∆ϕ̂+ 2∇H · ∇ϕ̂ =

= H∆D2v − ϕ̂∆h− 2∇ϕ̂ · ∇h := F̂ , in Rn (2.4.121)

Similarly to the previous case, we can say that also the bound

||D2ψ̂||p ≤ c||F̂ ||p (2.4.122)

holds. Then, since D2φ̂ = D2ψ̂ and since

D2φ̂ = ϕ̂D2H +HD2ϕ̂+ 2∇H · ∇ϕ̂ =

= D2HD2v +HD4v + 2∇H · ∇D2v =

= HD4v −D2vD2h− 2∇D2v · ∇h
(2.4.123)

we get, analogously,

||HD4v||p − ||D2HD2v + 2∇H · ∇D2v||p ≤ c||F̂ ||p (2.4.124)

whence, by using the definition of F̂ and the estimate (2.4.120), after having
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redefined the constants, it holds

||HD4v||p ≤ c||F̂ ||p + ||D2HD2v + 2∇H · ∇D2v||p =

= c||F̂ ||p + ||D2vD2h+ 2∇D2v · ∇h||p ≤
≤ c||H∆D2v − ϕ̂∆h− 2∇ϕ̂ · ∇h||p + ||D2vD2h+ 2∇D2v · ∇h||p ≤
≤ c||H∆D2v||p + c||ϕ̂∆h+ 2∇ϕ̂ · ∇h||p + ||D2vD2h+ 2∇D2v · ∇h||p ≤

≤ c2||F ||p + c||D2H∆v||p + 2c||∇H · ∇∆v||p+
+c||ϕ̂∆h+ 2∇ϕ̂ · ∇h||p + ||D2vD2h+ 2∇D2v · ∇h||p =

= c2||F ||p + c||∆vD2h||p + 2c||∇∆v · ∇h||p+
+c||D2v∆h+ 2∇D2v · ∇h||p + ||D2vD2h+ 2∇D2v · ∇h||p ≤

c||F ||p + c′ (||∆vD2h||p + ||∇∆v · ∇h||p +

+||D2v∆h||p + ||∇D2v · ∇h||p + ||D2vD2h||p + ||∇D2v · ∇h||p)
(2.4.125)

so that

||HD4v||p ≤ c||F ||p + c′ (||∆vD2h||p + ||∇∆v · ∇h||p +

+||D2v∆h||p + ||∇D2v · ∇h||p + ||D2vD2h||p + ||∇D2v · ∇h||p) .
(2.4.126)

Let now k be a regular cutoff function with support in the sphere B2R

with radius 2R and such that k(x) = 1 for |x| > (3/2)R and such that

k +H = 1. Setting σ := kv, with

σ = 0 and
∂σ

∂n
= 0 on ∂(Ω ∩B2R),

the function σ satisfies the identity

∆∆σ = k∆∆v+v∆∆k+2∆v∆k+4∇k·∇∆v+4∇v·∇∆k+4∇∇v·∇∇k := G,

(2.4.127)

in Ω.

LetD be a bounded domain of class C4. Then, for all solutions inW 4,p(D)

of (2.4.127), for Douglis and Nirenberg (see [18]), the following estimate holds

||D4σ||p ≤ c2||G||p + c3||σ||p ≤ c2||G||p + c3||v||p. (2.4.128)

It follows that

D4σ = kD4v + vD4k+ 4D2vD2k+ 4Dk ·D3v + 4Dv ·D3k, in Ω, (2.4.129)
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and taking into account the properties of the cutoff functions H and k, the

estimates (2.4.126) and (2.4.128) and by definition of F , we obtain

||D4v||p ≤ ||kD4v||p + ||HD4v||p ≤ c||∆∆v||p+

+
4∑
|α|=1

dα||DαkD4−αv||p+
4∑
|α|=1

dα||DαhD4−αv||p+
2∑

α=1

eα||DαhD2−αv||p+c3||v||p.

(2.4.130)

At this point we can consider the inequality of the Theorem 2.1.3 (see [9]),

valid also in exterior domains, with r = q = s = p = 2 and we apply

it to the first, second and third derivatives of v in the second member of

(2.4.130); then, by applying Young’s inequality and bringing the norm of the

fourth derivatives of v to the first member with a small coefficient, we get

the thesis.

Theorem 2.4.17. The inequality

||∆∆um||22 ≤ K̃(||P∆∆um||22 + ||P∆um||22 + ||(∇um)um||22 + ||umt ||22)

(2.4.131)

holds in [0, Tu0 ].

Proof. Let us consider the Helmholtz decomposition of the bilaplacian of a

function um, namely

∆∆um = P∆∆um +∇π∆∆. (2.4.132)

By integrating it and testing with P∆∆um, we get∫
Ω

∆∆um ·P∆∆um =

∫
Ω

P∆∆um ·P∆∆um+

∫
Ω

∇π∆∆ ·P∆∆um; (2.4.133)

by using once again (2.4.132) and considering that P∆∆um ∈ J2(Ω) and

∇π∆∆ ∈ G2(Ω) we obtain∫
Ω

∆∆um · (∆∆um −∇π∆∆) = ||P∆∆um||22, (2.4.134)
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hence

||∆∆um||22 −
∫

Ω

∆∆um · ∇π∆∆ = ||P∆∆um||22 (2.4.135)

and then, by applying Cauchy-Schwarz and Young’s inequality, we get

||∆∆um||22 = ||P∆∆um||22 +

∫
Ω

∆∆um · ∇π∆∆ ≤

≤ ||P∆∆um||22 + ||∆∆um||2||∇π∆∆||2 ≤
≤ ||P∆∆um||22 + ε||∆∆um||22 + C||∇π∆∆||22

(2.4.136)

that leads to

(1− ε)||∆∆um||22 ≤ ||P∆∆um||22 + C||∇π∆∆||22, (2.4.137)

whence

||∆∆um||22 ≤ K(||P∆∆um||22 + ||∇π∆∆||22), (2.4.138)

where K := max

{
1

1− ε
,
C

1− ε

}
. Finally, by applying the results of Am-

rouche and Girault (Theorem 2.3.6, see [11]) with αP∆um− (∇um)um− umt
instead of f , we obtain

||∆∆um||22 ≤ K(||P∆∆um||22 + ||αP∆um − (∇um)um − umt ||22) ≤
≤ K̃(||P∆∆um||22 + ||P∆um||22 + ||(∇um)um||22 + ||umt ||22)

(2.4.139)

where K̃ is a positive constant and where we used Hölder inequality, Young’s

inequality.

Let us observe that the inequality just proven depends on the size of

the domain Ω. The regularity results of Amrouche and Girault [11] do not

avoid the dependence of the constants on the measure of the domain, but it

could be possible that such result is still valid, following, for example, the

arguments of Heywood [3] also for the fourth derivatives: the norm ||∇∇u||22
is bounded by some other terms multiplied by a constant that depends only

on the regularity of the domain but not on its measure.

Theorem 2.4.18. There exists a weak limit u of {um} such that

u ∈ L2(0, Tu0 ;H
4(Ω) ∩ J2,2(Ω)); ut ∈ L2(0, Tu0 ;L

2(Ω)).
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Proof. From Theorem 2.1.3 (in [9]) with the choice r = p = q = 2, k =

3, m = 4, a = 3/4, we get for the subsequence um(t)

||D3um||2 ≤ c1||D4um||3/42 ||um||
1/4
2 + c2||um||2 (2.4.140)

and hence

||∇∇∇um||2 ≤ c1||∇∇∇∇um||3/42 ||um||
1/4
2 + c2||um||2. (2.4.141)

Using Young’s inequality we get

||∇∇∇um||22 ≤ c1||∇∇∇∇um||22 + c2||um||22 (2.4.142)

and using Theorem 2.4.16 and Theorem 2.4.131 we get

||∇∇∇um||22 ≤ ĉ1||∆∆um||22 + ĉ2||um||22 ≤
≤ k(||P∆∆um||22 + ||P∆um||22 + ||(∇um)um||22 + ||um||22 + ||umt ||22),

(2.4.143)

for a positive constant k.

Moreover, integrating it from 0 to Tu0 and by applying (2.4.97), (2.4.98),

(2.4.91) and (2.4.94), (2.4.64) integrated from 0 to Tu0 we get∫ Tu0

0

||∇∇∇um||22 ≤ k0, (2.4.144)

for a positive constant k0 dependent on Tu0 , ||u0||2, ||∇u0||2 and ||∆u0||2.

We can apply Theorem 2.4.16 and Theorem 2.4.131 also to the term

||∇∇∇∇um||22 in order to obtain∫ Tu0

0
||∇∇∇∇um||22 ≤

∫ Tu0

0
(ĉ3||∆∆um||22 + ĉ4||um||22) ≤

≤
∫ Tu0

0
k(||P∆∆um||22 + ||P∆um||22 + ||(∇um)um||22 + ||um||22 + ||umt ||22) ≤ k̃0,

(2.4.145)

for a positive constant k̃0 dependent on Tu0 , ||u0||2, ||∇u0||2 and ||∆u0||2.

Now, from (2.4.64), the subsequence {um(t)}m∈N is bounded because∫ Tu0

0

||um(τ)||22dτ ≤ Tu0Cα||u0||22, (2.4.146)
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whence ∣∣∣∣∣∣||um(t)||2
∣∣∣∣∣∣2
L2(0,Tu0 )

≤ Tu0Cα||u0||22 (2.4.147)

so that

{um(t)} ⊂ L2(0, Tu0 ;L
2(Ω)). (2.4.148)

Moreover, considering (2.3.3), we get∣∣∣∣∣∣||um(t)||4,2
∣∣∣∣∣∣2
L2(0,Tu0 )

=

∫ Tu0

0

||um(τ)||24,2 dτ =

=

∫ Tu0

0

(
||um(τ)||22 + ||∇um(τ)||22 + ||∆um(τ)||22+

+||∇∇∇um(τ)||22 + ||∇∇∇∇um(τ)||22
)
dτ

(2.4.149)

and remembering (2.4.64), (2.4.66), (2.3.3), (2.4.67), (2.4.144) and (2.4.145),

we come up to∣∣∣∣∣∣||um(t)||4,2
∣∣∣∣∣∣2
L2(0,Tu0 )

≤ CTu0 (||u0||2, ||∇u0||2, ||∆u0||2). (2.4.150)

At this point, observing that both u0 is given and square integrable, we

deduce

{um(t)} ⊂ L2(0, Tu0 ;H
4(Ω)); (2.4.151)

we notice also that J2,2(Ω) ⊂ H2(Ω) and hence

{um(t)} ⊂ L2(0, Tu0 ;H
4(Ω) ∩ J2,2(Ω)). (2.4.152)

Finally, we notice that also umt (t) is bounded in L2(Ω); in fact, by (2.4.98)∣∣∣∣∣∣||umt (t)||2
∣∣∣∣∣∣2
L2(0,Tu0 )

=

∫ Tu0

0

||umτ (τ)||22dτ ≤ c (2.4.153)

and hence

{umt (t)} ⊂ L2(0, Tu0 ;L
2(Ω)). (2.4.154)

Then, by applying theorem 2.1.5 we deduce the existence of (umk )k∈N and(
umtk
)
k∈N such that

umk
L2

⇀ u, umtk
L2

⇀ ut,

with

u ∈ L2(0, Tu0 ;H
4(Ω) ∩ J2,2(Ω)) and ut ∈ L2(0, Tu0 ;L

2(Ω)). (2.4.155)
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2.4.6 Compactness properties of {um}

In this section we want to prove that {um(t)} is relatively compact in an

appropriate space. Before continuing we need the following Lemma proved

in [13]

Lemma 2.4.1. A subset K in C(0, T ;X) is relatively compact if and only if

• K is equicontinuous;

• for all t ∈ [0, T ], the set K(t) := {u(t) : u(t) ∈ K} is relatively compact

in X.

Theorem 2.4.19. The sequence {um(t)} is relatively compact in C(0, Tu0 ; J2(Ω)).

Proof. We can apply Lemma 2.4.1 setting X = J2(Ω) and K = {um(t)}.
The equicontinuity of {um(t)} was proved in the previous section. We now

have to prove that, for all t ∈ [0, Tu0 ], the set

K(t) :=
{
uj(t) : uj(t) ∈ {um(t)}

}
is relatively compact in J2(Ω).

Actually, we already know that umh
L2

⇀ u, so that, we have to prove that

umh
L2

−→ u.

If we fix t, considering (2.4.64), (2.4.93) and (2.4.94), we get

||um(t)||2,2 ≤ c

with c independent of m. Therefore the sequence {um(t)} is bounded in the

reflexive space H2(Ω) and by applying theorem 2.1.5 we get that {um(t)}
admits a subsequence that converges weakly in H2(Ω). Moreover, {um(t)}
converges strongly in J2(Ω) ⊆ L2(Ω), that is what we wanted to show.

Applying Lemma 2.4.1, we conclude that for all t ∈ [0, Tu0 ] the sequence

{um(t)} is relatively compact in C(0, Tu0 ; J
2(Ω)). Hence {um(t)} converges

strongly in C(0, Tu0 ; J
2(Ω)).
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2.4.7 Continuity in time

Theorem 2.4.20. The limit function u of um is continuous in t = 0, namely

lim
t→0
||u(t)− u0||2 = 0.

Proof. By definition, we know that

um(0) =
m∑
k=1

cmk (0)ak

and now we also know that the sequence {um(t)} converges to u(0); moreover,

by (2.4.4),
m∑
k=1

cmk (0)ak = u0

so we get the following equality in L2(Ω):

u(0) = u0. (2.4.156)

By considering (2.4.114) with m → ∞, s = 0 and applying (2.4.156) to it,

we get

||u(t)− u0||2
t→0−−→ 0. (2.4.157)

2.4.8 Regularity in space and in time

Theorem 2.4.21. The solution (u, p) of (2.2.1) verifies

u ∈ C([0, Tu0); J
2,2(Ω)) ∩ L2(0, Tu0 ;H

4(Ω))

ut,∇p ∈ L2(0, Tu0 ;L
2(Ω)).

(2.4.158)

Proof. Let us consider again (2.4.4) integrated from 0 to Tu0 , we get∫ Tu0

0

(umt + P∆∆um − αP∆um + (∇um)um, ak) dt = 0 (2.4.159)

We proved that the sequence {um(t)} converges strongly to u(t) in

C(0, Tu0 ; J
2(Ω)) and by the fact that

∀ϕ ∈ J2(Ω) : (P∆∆v, ϕ) = (∆∆v, ϕ),
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we get ∫ Tu0

0

(ut + ∆∆u− α∆u+ (∇u)u, ak) dt = 0; (2.4.160)

so, u satisfies the following integral equation:∫ Tu0

0

(ut + ∆∆u− α∆u+ (∇u)u, ψ) dt = 0, (2.4.161)

for all functions ψ := h(t)φ(x) with h(t) ∈ C∞c ([0, Tu0)) and φ ∈ Cdiv(Ω).

Since {ak} is a basis of J2,2(Ω), orthonormal in J2(Ω), for all φ ∈ Cdiv(Ω) ⊆

J2(Ω) we can write φ =
∞∑
k=1

ck(t)ak(x).

In order to recover the pressure, we apply Lemma 2.3.1 to v = ut +

∆∆u− α∆u+ (∇u)u; the hypotheses are satisfied, since Ω is bounded and

for regularity results,

ut + ∆∆u− α∆u+ (∇u)u ∈ L2
loc(Ω).

Moreover, from (2.4.161), we have∫ Tu0

0

∫
Ω

(ut + ∆∆u− α∆u+ (∇u)u) · ψ dx dt = 0, (2.4.162)

that is, also∫ Tu0

0

[∫
Ω

(ut + ∆∆u− α∆u+ (∇u)u) · φ(x) dx

]
h(t) dt = 0. (2.4.163)

By the arbitrariness of h, we get∫
Ω

(ut + ∆∆u− α∆u+ (∇u)u) · φ(x) dx = 0 (2.4.164)

for all t > 0. Applying Lemma 2.3.1, there exists a function p ∈ W 1,2
loc (Ω)

such that

ut + ∆∆u− α∆u+ (∇u)u = ∇p

for all t > 0 and for a.e. x ∈ Ω such that (u, p) is a solution to problem

(2.2.1).

At this point we need the following result (see [14]):
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Lemma 2.4.2. Suppose that

u ∈ L2(0, Tu0 ;H
4(Ω) ∩H2

0 (Ω)) and ut ∈ L2(0, Tu0 ;L
2(Ω)).

Then, u coincides a.e. in t ∈ [0, Tu0) with a function u ∈ C([0, Tu0);H
2
0 (Ω)).

Hence, by applying this Lemma with J2,2(Ω) instead of H2
0 (Ω), we ob-

tain that our solution u coincides a.e. in t ∈ [0, Tu0) with a function in

C([0, Tu0); J
2,2(Ω)). So

u ∈ C([0, Tu0); J
2,2(Ω)) ∩ L2(0, Tu0 ;H

4(Ω))

ut,∈ L2(0, Tu0 ;L
2(Ω)).

(2.4.165)

Moreover, also

∇p ∈ L2(0, Tu0 ;L
2(Ω)). (2.4.166)

Indeed, since

∇p = ut + ∆∆u− α∆u+ (∇u)u,

and we already proved in (2.4.155) that u, ut,∇u,∆u,∆∆u ∈ L2(0, Tu0)

with values in their respective spaces. We have also to prove that (∇u)u ∈
L2(0, Tu0 ;L

2(Ω)). Indeed, it is a direct consequence of (2.4.80). Thus, we

obtain (2.4.166).

In this way the of the existence of a regular solution for the Hyperviscous

Navier-Stokes initial boundary value problem is completed.

2.5 Exterior domains

In this section we want to establish the existence of regular solutions also

for exterior domains. The argument will use what has been done in the

previous sections for bounded domains. It is important to observe that all

the estimates found in the previous sections do not depend on the measure

of the domain, so they are still valid also for this case, with the exception

of (2.4.131). In this case, even if theorem 2.3.6 is proven only for bounded

domains, a similarity argument shows that the estimate holds for a solution
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in an arbitrary large domain with the same constant if the claim is replaced

by the weaker form

||∆∆u||2 + ||∇p||2 ≤ C||f ||2.

Therefore this estimate is also independent of the size of the domain.

To recover (2.4.131) it is sufficient to observe that ||u||2, ||∇u||2, ||∆u||2
have been already estimated independently of the domain, while ||∇∇∇u||2
can be estimated by ||∆∆u||2 and ||u||2 by means of (2.4.142) and Theorem

2.4.16.

In the passage to exterior domains we follow the arguments of Heywood

in [3].

Let Ω be an exterior domain with enough regular boundary. Let us define

the bounded domains

Ωh := Ω ∩Bh(0)

where Bh(0) is the ball centered in 0 and with radius h, such that

Ωh ⊂ Ωh+1 and Ω =
⋃
h∈N

Ωh.

Now we take the initial datum u0 in J2,2(Ω) and a sequence of initial velocity

functions {αh} in J2,2(Ω) with suptαh ⊂ Ωh, with

||∇αh||2 ≤ ||∇u0||2 and ||∆αh||2 ≤ ||∆u0||2

and ||∇αh −∇u0||2 → 0 and ||∆αh −∆u0||2 → 0 as h→∞.

At this point let us consider a solution uh of the initial boundary value

problem (2.4.4) in [0, Tαh ]×Ωh with the initial velocity αh. It is not restrictive

to consider the boundary conditions uh =
∂uh

∂n
= 0 on ∂Ωh for some h big

enough.

Since ||∇αh||2 + ||∆αh||2 ≤ ||∇u0||2 + ||∆u0||2, all the solutions of the

sequence
{
uh
}

exist on the interval [0, Tαh), verify the inequalities (2.4.93),

(2.4.94), 2.4.96 in (0, Tαh) × Ωh with Tu0 ≤ Tαh and hence the intervals do

not tend to zero as h→ +∞.
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Now, let us consider a subsequence
{
uhk
}

weakly convergent in L2(0, T ′u0 ;H2(Ωl))

and its derivatives
{
uhkt
}

weakly convergent in L2(0, T ′u0 ;L2(Ωl)) for every l

and every T ′u0 < Tu0 . Then, (2.4.93), (2.4.94), (2.4.96) hold for the limit u

and all its derivatives.

Hence we can deduce all the facts proved in the case of bounded domain,

as an analogous result of Theorem 2.4.20 and Theorem 2.4.21 for some instant

T ′u0 < Tu0 , in particular ut + ∆∆u − α∆u + (∇u)u ∈ L2(0, T ′;L2(Ω)) and

once again, as in Theorem 2.4.21, it can be proved the existence of a function

p(t, x) with∇p ∈ L2(0, T ′u0 ;L
2(Ω)) such that ut+∆∆u−α∆u+(∇u)u = ∇p.

Finally, following the reasoning of Heywood [3] it can be shown that

lim
t→0

u(t) = u0 strongly in J2,2(Ω).

In this way we proved the existence of a regular solution in exterior do-

mains on an interval (0, Tu0).

2.6 Uniqueness of the regular solutions

In this section we want to prove the uniqueness of the regular solution for the

problem (2.2.1), set either in bounded domains or in exterior domains. The

existence of solutions for such problem is ensured by the former sections.

First of all we will need to prove the following

Theorem 2.6.1. Let Ω be an open (bounded or exterior) domain of R3. Let

u0 ∈ J2,2(Ω). Then, for some Tu0 > 0 we have

u ∈ L∞
(
0, Tu0 ;L

3(Ω)
)
∩ L∞

(
0, Tu0 ; J

1,2(Ω)
)
.

Proof. At first we can deduce from the hypothesis that u ∈ J1,2(Ω) too. Let

us prove that it is also in L3(Ω).

We need to use once again the interpolation inequality from Crispo and

Maremonti ([9]) with the choice k = 0, r = 3, p = q = 2, m = 2 and a = 1/4

and hence we obtain

||u||3 ≤ c1||∇∇u||
1
4
2 ||u||

3
4
2 + c2||u||2 (2.6.1)
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for some constants c1 and c2, independent of u and with c2 that vanishes for

bounded domains. Then, by applying (2.4.78) we have the claim.

Now, we can state the proper uniqueness theorem, that is the following

Theorem 2.6.2. Given Ω a (bounded or exterior) domain of R3. For all

u0 ∈ J2,2(Ω) and f ∈ C([0, Tu0 ];L
2(Ω)), the regular solution (u, p) of problem

(2.2.1) on (0, Tu0) is unique.

Proof. Let both (u1, p1) and (u2, p2) be regular solutions of the problem

(2.2.1); hence, both of them verify equations:

∂u1

∂t
+ (∇u1)u1 +∇p1 = ν∆u1 − τ∆∆u1 + f

∂u2

∂t
+ (∇u2)u2 +∇p2 = ν∆u2 − τ∆∆u2 + f.

(2.6.2)

Taking the difference between the two and setting u := u1 − u2 and p :=

p1 − p2, we get

∂u

∂t
+ (∇u1)u1 − (∇u2)u2 +∇p = ν∆u− τ∆∆u (2.6.3)

where u is still in J2,2(Ω). Then, by adding and subtracting the term (∇u1)u2,

taking the scalar product of the whole equation with u and integrating it in

Ω, we obtain∫
Ω

∂u

∂t
·u+

∫
Ω

(∇u1)u·u−
∫

Ω

(∇u)u2 ·u+

∫
Ω

∇p·u = ν

∫
Ω

∆u·u−τ
∫

Ω

∆∆u·u

(2.6.4)

that, since div u = 0 and for an argumentation similar to (2.4.26), leads to

1

2

d

dt
||u||22 +

∫
Ω

(∇u1)u · u = −ν||∇u||22 − τ ||∆u||22 (2.6.5)

and, taking to the right the nonlinear term, we have

1

2

d

dt
||u||22 + ν||∇u||22 + τ ||∆u||22 = −

∫
Ω

(∇u1)u · u ≤

≤
∫

Ω

|(∇u1)u · u| ≤
∣∣∣∣∣∣|∇u1| |u|2

∣∣∣∣∣∣
1
.

(2.6.6)
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Let us estimate term on the right∣∣∣∣∣∣|∇u1| |u|2
∣∣∣∣∣∣

1
≤ (c1||∇∇u||2 + c2||u||2) ||u||2||∇u1||2 ≤

≤ c̃ (c1||∇∇u||2 + c2||u||2) ||u||2
(2.6.7)

where, to estimate |∇u1| we used Theorem 2.6.1 and to estimate one of the

two |u|, we used the fact that for Morrey’s Theorem

W 2,2
0 ↪→ L∞

||u||∞ ≤ c1||∇∇u||2 + c2||u||2.
(2.6.8)

Let us observe that c2 = 0 in the case of bounded domains.

Then, setting c := c̃c1 and c := c̃c2 and using (2.6.6), we get

1

2

d

dt
||u||22 + ν||∇u||22 + τ ||∆u||22 ≤

≤ c||∇∇u||2||u||2 + c||u||22 ≤

≤ c ε||∇∇u||22 + cMε||u||22 + c||u||22 =

= c ε||∆u||22 + cMε||u||22 + c||u||22

(2.6.9)

where we used Young’s inequality with a coefficient ε such that ε := c ε� 1

and (2.3.3).

Finally, we have

1

2

d

dt
||u||22 + ν||∇u||22 + (τ − ε)||∆u||22 ≤ (cMε + c) ||u||22 (2.6.10)

whence, setting C := cMε + c, we obtain

1

2

d

dt
||u||22 ≤ C||u||22; (2.6.11)

by applying Gronwall’s Lemma we get u = 0, namely u1 = u2 and hence,

since ∇(p1 − p2) = 0, also p1 = p2 up to a constant.



Conclusions

In conclusion we proved existence, uniqueness and regularity of the solution

for the hyperviscous Navier-Stokes problem that models the motion of a fluid

at first in a bounded domain and then in an exterior domain. Our results

show that the regularity of the solutions imply continuity in space up to

second derivatives. In particular, the continuity of the velocity is suitable

for pointwise conditions. This may allow future applications of this second-

gradient model to problems where the velocity is prescribed on thin structures

like in the case of bodies that fall in a viscous fluid.
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[1] P. Germain. La méthode des puissances virtuelles en mécanique des mi-
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