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Abstract

This dissertation is about Word Sense Induction (wsi), a branch of Nat-
ural Language Processing concerned with the automated, unsupervised
detection and listing of the possible senses that a word can assume rela-
tive to the different contexts in which it appears. To this end, no external
resources like dictionaries or ontologies are used. Among the many ex-
isting approaches to wsi, we focus specifically on modelling the context
of a word through a graph and on running a clustering algorithm on it:
the resulting clusters are interpreted as implicitly describing the possible
senses of the word. Fundamental notions of wsi, basic concepts and some
wsl approaches selected from literature are presented and examined in the
first part of this work.

In the second part, we introduce our threefold contribution. Firstly,
we define and explore a weighted (together with an unweighted) Jaccard
distance, i.e. a distance on the nodes of a positively weighted undirected
graph which we use to obtain second-order relations from the first-order
ones modelled by the graph (e.g. co-occurrences). Moreover, we define
the related notion of gangplank edge, a separator edge with weight greater
than the mean weights of the edges incident to either of its two ends, and
finally a new synthetic interpretation of the curvature on a graph, seen
as the difference between weighted and unweighted Jaccard distances be-
tween node couples. Our Jaccard distance is at the basis of the second
contribution: three novel graph-based clustering algorithms expressly cre-
ated for the task of wsi, respectively the gangplank clustering algorithm,
an aggregative clustering algorithm and a curvature-based clustering algo-
rithm. The third contribution is a novel evaluation framework for graph-
based clustering algorithms for wsi, consisting of two word graph data
sets (one for co-occurrences and one for semantic similarities) and a new
ad hoc evaluation measure built around pseudowords. A pseudoword is
the artificial conflation of two existing words, used as an ambiguous word
whose (pseudo)senses are perfectly known. This enables to evaluate wsr



algorithms on an easily creatable and expandable data set. We carry out
a pseudoword-based evaluation for a number of graph-based clustering
algorithms, including our three proposed systems.

The investigation of how the parameters of a pseudoword affect an
algorithm’s outcomes, the comparison of the scores obtained by different
evaluation metrics together with the detection of their biases, the size of
the clusterings and the trends put in evidence by the hyperclustering step,
the influence of the type of a word graph (based on semantic similari-
ties or co-occurrences) on the output of an algorithm - all these factors,
preceded by the comprehensive description of the task and the definition
of novel concepts and instruments to tackle it, concur to give a deeper
insight into the functioning and pitfalls of graph-based Word Sense In-
duction. We highlight and isolate the elements that determine how the
results of an algorithm look like, discuss their properties and behaviours
in relation to the word graph features and establish the pro and contra
of each algorithm. Our analysis provides an experimental compass that
helps pinpoint the right characteristics required by a clustering algorithm
for the task of Word Sense Induction, and that helps orient the construc-
tion of a word graph. In particular, we have put in evidence the different
syntagmatic versus paradigmatic contrast inherent to word graphs based
on co-occurrences and semantic similarities.
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Introduction

This dissertation is part of the wide field of Natural Language Process-
ing (NLP), and deals in particular with the task of (textual) Word Sense
Induction and Discrimination (wst and wsp). These can be seen as the un-
supervised counterparts of Word Sense Disambiguation, which is backed
by a long and rich history of research, starting at least from [Weaver,
1949]. Only relatively recent developments (from around the 2000s on-
wards) have brought increasing attention to unsupervised approaches,
whose challenges arise from the attempt to use as little information about
the world as possible, instead exploiting patterns that naturally appear in
the natural language. The passage from Word Sense Disambiguation to
Word Sense Induction or Discrimination thus shifts the focus from a clas-
sification problem to a clustering problem.

As common to all approaches to text-oriented NLP, the task of wsi re-
quires that a text be first modelled. Two of the dominating ways to do it
are vector space models and graph models; in our work, we adopted the
latter approach, so that we speak of graph-based wsi. Word graphs, usu-
ally in the form of undirected, weighted graphs, are intuitive and powerful
mathematical structures that allow a meaningful manipulation and repre-
sentation of the relationships between words, linking topological proper-
ties and weighting schemes directly to syntactical and lexical phenomena.
More in detail, the goal of Word Sense Induction is:

Given a word in a corpus, to infer all the possible senses that
such word can assume in the corpus judging from its context
alone.

In our graph-based setting, this goal is achieved by clustering the node set
(the “vocabulary”) of a graph that models the local context of a given word
and implicitly identifying the obtained clusters with the different mean-
ings assumed by that word in the corpus. Numerous graph-based cluster-
ing algorithms have been proposed in literature. We focus especially on
the analysis of three of them, namely the Markov cluster algorithm [van
Dongen, 2000], Chinese Whispers [Biemann, 2006] and MaxMax [Hope



and Keller, 2013]. While the first two rely on the concept of information
flow simulation, the second one takes advantage of the weighted structure
of a word graph to isolate connected subgraphs.

One of the major contributions of this dissertation, outspringing from
the observation of already existing graph-based clustering algorithms, is
the introduction of three novel approaches, revolving around different and
new logics: the gangplank clustering algorithm, an aggregative clustering al-
gorithm and a curvature-based clustering algorithm, all based on the defini-
tion of a weighted Jaccard distance between nodes of a graph (or equivalently,
words in a vocabulary), which is also one of our major contributions. In
the next paragraphs, we will briefly describe these new concepts.

The weighted Jaccard distance is directly inspired by the Jaccard index

|AN B
|AUB]

for any two finite sets A and B, which defines a bounded distance between

sets
_|AnB|

|AUB|

We naturally extend this distance to the case of multisets (sets where each
element has a multiplicity) and adapt it to the node neighbourhoods of
a word graph. The resulting weighted Jaccard distance (and its parallel un-
weighted counterpart) has many interesting and desirable properties and
allows considering the node set as a metric space. We deem it to be a
simple but promising instrument for Word Sense Induction.

The aggqregative clustering algorithm is the most direct application of the
weighted Jaccard distance for wsi, reinterpreting the k-medoids algorithm
but providing it with a medoid-initialization step. It is the only one of our
three algorithms making use of a parameter.

The curvature-based clustering algorithm originates from the interaction
of the unweighted Jaccard distance with its weighted version. Loosely
related to other synthetic definitions of curvature on graphs (e.g. through
the clustering coefficient), it is used to isolate subregions of a word graph
whose elements are brought nearer to each other by the weighted structure
of the graph (i.e. connected by positive curvature), than what appears from
its bare topological structure.

Finally, the gangplank clustering algorithm is the more articulated ap-
proach of the three. It involves the weighted Jaccard distance to derive
a second-order distance graph from an original word graph, and on this
it applies the definition of gangplank: an edge that denotes a local weak
connection between two nodes (i.e. between words). Gangplank edges are




then used as delimiters of semantically autonomous regions (i.e. clusters)
of the word graph, that are identified through cyclical expansion and re-
duction steps around cluster seeds. This algorithm has been developed
with the aim to require as less text pre-processing as possible: the combi-
nation of passage to the second order and local weighted topology helps
deal with the small-world nature of word graphs and the noisy nature of
text word co-occurrences.

The second major contribution of this work lies in the pseudoword
evaluation framework that we present here. Pseudowords, first indepen-
dently sketched in [Gale et al., 1992b, Schiitze, 1992], are artificial con-
flations of two real words that are used to simulate homonymy and poly-
semy. The advantage herein is that their artificial nature permits us to tune
the magnitude of their ambiguity as desired for our evaluation goals. We
compute a fairly large double pseudoword data set, each one consisting of
1225 respectively semantic-similarity and co-occurrence-based ego graphs,
arising from each possible combination of 50 monosemous terms. It is the
largest such data set that we are aware of. On it, we perform both an anal-
ysis of the structure and properties of our pseudowords and an accurate
and comprehensive evaluation of the three aforementioned existing and
of our three novel clustering algorithms. We examine their trends accord-
ing to different parameters of the pseudowords, making many noteworthy
considerations and drawing conclusions about the nature of the function-
ing of the clustering algorithms, the influence of the word graph’s type
and the biases of some evaluation measures. To circumvent the latter, we
define a new evaluation score expressly for the task of homonymy detec-
tion.

Reassuming the previous introduction, the goal of this dissertation is
thus at least threefold: we introduce and expound novel mathematical in-
struments that can prove themselves useful for graph-based wsi; we intro-
duce three novel graph-based clustering algorithms for wsr which exploit
these new techniques and having a different nature than existing ones; and
finally, we introduce two parallel novel pseudoword data set and a related
evaluation framework, on which we perform a thorough comparison of
some existing and our new clustering algorithms, gaining deeper insights
into their functioning, the structure of word graphs and the considered
evaluation measures, thereby defining a new evaluation measure.

This work is subdivided into two main parts, structured as follows.

The first part is concerned with the foundations of wsr and the con-
cepts and instruments at the basis of the second part. Specifically, Chapter
1 introduces the topics and issues of Word Sense Disambiguation, Induc-
tion and Discrimination and sets the background of our work. Chapter 2

3



provides the reader with an overview and a brief insight into some basic
notions concerning word graphs, graph theoretical concepts and signifi-
cance measures that will be used in the second part of the work. Chapter
3 deals with the in-depth description and discussion of some of the ex-
isting clustering algorithms for wsr that form the inspiration of our work,
presenting some practical issues of graph-based wsr.

The second part regards the novelties introduced in this dissertation. In
Chapter 4, we describe the theoretical framework that underlies the novel
mathematical instruments and clustering algorithms for the task of Word
Sense Induction presented in this dissertation, as well as describing their
implementation. Finally, Chapter 5 is dedicated to our novel pseudoword
data set and the pseudoword evaluation framework, and examines the
performances of various clustering algorithms evaluated on it. Chapter 6
closes this work with some final remarks. An appendix presents minor
additions in the form of a small analysis of collapsed pseudowords and
charts about the pseudoword evaluation.



Part 1

Foundations of
Word Sense Induction






Chapter 1

Overview and state of the art

1.1 Description and motivation

In Natural Language Processing, Word Sense Disambiguation (wsp) can
be described as the task that tries to reproduce, at least partially, the way
humans understand natural language: The goal is to assign to each word
or group of words in a discourse its particular meaning in that context
[Manning and Schiitze, 1999, Martin and Jurafsky, 2000]. We remark that
here and thereafter the term word will indicate its most shallow manifesta-
tion, that is, the mere complex of phonetical or graphical signs which can
be isolated from a text and carry some meaning. The obvious obstacle to
this task is that machines do not have any inherent knowledge of natural
languages, and that they actually do not possess knowledge at all; they are
just means to store data and perform operations on them. For this reason,
for example, when the following three sentences are typed in a computer:

1. Let us count to ten!
2. We are going to visit the count’s manor tonight.
3. The first count accused him of having breached the contract.

the word count will be represented in each case as exactly the same
sequence of bits in memory. By contrast, as humans we know that count
has three radically different meanings here:

1. the verb with the meaning to enumerate,
2. the noun used as a title for a nobleman, and

3. the noun used as the legal term meaning a charge in a criminal ac-
tion.



A reader will use all the knowledge he has previously collected prior
to seeing these sentences to distinguish all three intended different mean-
ings. On one side, he will use his native linguistic competence to differ-
entiate the grammatical roles of each of the three occurrences of count. In
the first sentence, count is a verb; this can be deduced from the syntactical
pattern /let us _/ of which it is part. In the second and third sen-
tence, the word count has the role of a noun, which can be inferred both
from the syntactical pattern /the [adj.] -/ and, in the second sen-
tence, from the morphological marking /’ s/ of the genitive case. Being
verbs and nouns two different parts of speech, they also carry different
functions and meanings, or at least express different facets of the same
scene. We could say that on the linguistic level differences are drawn pri-
marily through the recognition of some kinds of patterns or through the
mechanical application of some rules. From a symmetrical point of view,
this replicates the processes that we first have to pick up when we are
learning a new language!. Even if such processes can be algorithmically
simulated by tools like part-of-speech taggers or syntactic parsers [Martin
and Jurafsky, 2000, Chapters 5,13], thus automatically discriminating the
first occurrence of count from the other two, we still need another means
to clarify the different meanings of the two otherwise grammatically iden-
tical nouns. Therefore, on the other side the reader will put to use the
contextual information at his disposal. In the first sentence, since ten is a
number, count will most probably refer to the act of enumerating. In the
second sentence, manor refers to a big estate or a lord’s residence, so that
we can be quite sure that count here has the meaning of nobleman. Also, the
terms visit and tonight immediately bring forth to our mind very peculiar
scenes that we can link to books or movies; further, we could even think of
a particular count. Similarly, in the third sentence, the verb accuse and the
noun contract are revealing of a legal context like a courtroom. In the end,
the process of disambiguation taps from all our previous experiences.

So, we can affirm that the disambiguation of words, that we constantly
perform for any communication in which we take part, is mostly an inter-
play between a straightforward, linguistic recognition process and a more
vague exploitation of previous knowledge about the world (this point will
become more important when discussing about supervised and unsuper-
vised wsp). Besides these two main poles, our comprehension of text
or speech also depends on many other contextual and pragmatic circum-
stances. All such factors have to be emulated or supplied somehow to
an automated system, and the way they are modelled is at the basis of
the differences between the many existing approaches. In this regard, we

ISome of the processes mentioned in this section are studied in Psycholinguistics, for
which [Clark and Clark, 1977] is an introduction.
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already want to remark that this work deals with the lexical ambiguity
among words belonging to the same word class, specifically that of nouns,
more challenging than cross-class syntactic ambiguity.

The motivation for Word Sense Disambiguation is that natural lan-
guages are inevitably and intrinsically ambiguous and vague [De Saussure,
1916]. On the contrary, formal languages (like Java or Python) tend to
be constructed so as to avoid any possible ambiguity, lest the interpreter
perform not intended actions. At any one time, every natural language
possesses only a finite vocabulary, made of words that themselves have
to obey to phonotactical> and morphological rules, further reducing their
possible forms. Still, the possible range of referents and concepts that can
be expressed is unlimited. From this contrast originates the tension in lan-
guage between the need of precise communication, up to the extreme of
one word per concept/referent, and the preservation of economy of com-
munication, since time and memory are limited, up to the extreme of one
single word for every possible concept/referent (cf. [Lyons, 1968]). Since
neither of these two drastic solutions is viable or satisfactory, by staying
in the middle ground the phenomena of polysemy and homonymy will
arise®. A speaker will eventually have to use words with different mean-
ings but sharing the same identical form for some reason (homonymy),
or, conversely, will resort to using the same word with different meanings
in different contexts (polysemy). This is made possible by the fact that
comprehension results not only from merely grammatical or syntactical
features, but is also often mediated by context and other circumstances, as
already discussed above.

More in detail, polysemy designates the fact that the occurrence of a word
can carry different meanings which, even if differentiated or perceived as
independent, come from a common etymological root and were derived
by associations. An example of a polysemous word in English is wood:
as a noun, it can either refer to a forest, enter the wood, to the material, a
door made out of wood, or to an object made out of wood, like an instru-
ment, he plays a wood. We just mention that the same word wood used
as a verb also presents a certain degree of polysemy. Homonymy, on
the contrary, denotes the occurrence of two words spelled (homography)
or pronounced (homophony) the same way, but with different, unrelated
meanings. Homonymy is the casual convergence of non etymologically
related words. An example in English is bow, in its senses of weapon for
shooting arrows, derived from the Proto-Germanic root *bugan, to bend, and

ZPhonotactics is the name of the restrictions of sound combinations that govern the
creation of correct words in a given language. For example, in English it is not possible to
have a word beginning with rk-, whereas e.g. in Georgian this combination is allowed.

3A study on how polysemy arises and is mentally processed can be found in [Kle-
pousniotou, 2002].



front of a ship, derived from bough, itself coming from a different Proto-
Germanic root *bogaz, shoulder*. In general, we could claim that the senses
of homonymous words are more independent from each other than those
of a polysemous word.

The categories of polysemy and homonymy are best suited for common
nouns. Proper nouns, though they share many grammatical characteristics
with common nouns, can show a very different semantic and pragmatic
behaviour®, distinguished by a higher degree of arbitrariness in their us-
age. Similarly to homonymous nouns, many proper nouns have the same
form as a result of casual convergence, sometimes even across languages,
as they tend to undergo only small alterations (like e.g. the case of Milan
as a city in Italy or a personal name in Serbia), and most of the time, being
mere linguistic signs, there is no direct correlation between a referent and
its noun. The peculiarity of a proper noun, though, is that it refers each
time only to one specific instance between its possible referents. For exam-
ple, Milan can refer to either one of the cities with that name in Italy, the
United States, Iran, and so on, but never to the whole group of cities called
Milan. The disambiguation process should then differentiate not only be-
tween different categories of referents like person, location, and so on (this
is the task of Named Entity Recognition and Classification; see [Nadeau
and Sekine, 2007] for a survey), but also between different instances in the
same category. Finally, we notice that nearly every word in a language
might be used as a proper noun without particular restrictions, and for
this reason even native speakers may need extra details to point them to
the intended referent. In the two sentences:

e Yesterday I went to Milan’s birthday.
e I like shopping in Milan.

a reader understands that the first Milan is a person, but may not know
him. At the same time, the reader will understand that the second Milan is
probably a city, but without further context it might not be clear if the city
in Italy or in Tennessee, USA, is intended. Given how much more intricate
the approach to proper nouns is with respect to common nouns, from a
working point of view we could treat nouns as divided in two distinct
lexical classes. Our main aim is to deal with common nouns (more on this
topic in Section 2.1.8 and Section 4.3.1).

Since we have been considering the case of written texts, we would like
to briefly remark that written language behaves quite differently from
speech. Writing systems don’t always specify different pronunciations

4See the etymological dictionary for English [Klein, 1971].
5A discussion on what sets nouns apart from other lexical categories can be found in
[Baker, 2003].
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of the same string of symbols, like e.g. lead (thyming with need), mean-
ing to show the way and lead (rhyming with bed), as the metal (a case of
heterophonic homography), or conversely use different spellings for the
same pronunciation, like e.g. meat and meet (so-called heterographic ho-
mophones).

We can formulate the task of Word Sense Disambiguation as follows:

Task 1. Given a word with more than one possible meanings and its context in a
corpus, to determine a definite sense of that word in that context, possibly using
some kind of external knowledge.

Whether (structured) external knowledge is exploited is the fundamen-
tal divide between the two main paradigms of the supervised and the un-
supervised approach, which will be discussed in Sections 1.2 and 1.3. The
former is called Word Sense Disambiguation proper, and the latter Word
Sense Induction (wsr) or Word Sense Discrimination (again wsp), with
slightly different nuances.

Word Sense Disambiguation is a very complex task, but it is fundamen-
tal for the development of systems that make use of language-based inter-
action, like machine translation, web search engines, question answering,
text and speech generation, and many other applications; see e.g. [Hung
et al., 2005, Carpuat and Wu, 2007, Bhogal et al., 2007, Navigli and Crisa-
fulli, 2010, Plaza et al., 2011].

1.1.1 Word senses: granularity and distribution

The nature of the sense or meaning of words has been at the center of
passionate philosophical and linguistic debates since ancient times, and
is at the basis of the branch of semantics in modern linguistics [Carnap,
1948]. The theoretical definition of word sense is beyond the scope of this
work; instead, in the previous section 1.1 we just referred implicitly to the
common everyday notion of “sense”, and focused on the phenomena of
polysemy and homonymy, which, from a point of view of word usage, are
of more immediate concern to the task of Word Sense Disambiguation. In
the same spirit, in this section we will present some issues with respect to
the representation of word senses in the field of wsp. Ours is a practical
point of view, but we acknowledge the importance of a more theoretical
investigation to better define and direct the efforts and the foundations in
wsD research and more generally in NLP.
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When using some kind of existing knowledge to learn to disambiguate
word senses, e.g. from a corpus where words are tagged with their appro-
priate sense, as is often the case for supervised approaches (see Section
1.2), computational linguists always make use of an explicit or implicit
underlying sense inventory. This choice determines how senses are orga-
nized and when they are considered distinct. Taking the word peach as an
example, a wsp algorithm will behave in different ways whether we decide
that the possible senses of tree and plant are distinct or not; in the latter
case, in the sentence In my garden, I grow both peaches and tomatoes both
peaches and tomatoes will belong to the same class, to whose computational
definition both words’ shared contexts will contribute. Further, the fact
that being a tree implies being a plant, a eukaryote, a living being, and so on,
and, conversely, that a tree might be of genus Prunus or Juglans, raises the
problem of sense granularity. The preference for a fine or a coarse sense in-
ventory, i.e. how much we are willing to differentiate between word senses,
influences the outcome and the scalability of a wsp algorithm, and is not
obviously solved [Palmer et al., 2007]. Additionally, the arbitrariness in the
choice of granularity, and more generally the concept of a sense inventory
as a partition over all possible senses, and of word sense in general, has
been criticized in literature [Kilgarriff, 1997, Hanks, 2000, Kilgarriff, 2007],
and graded representations, in contrast with the binary nature of a parti-
tion, have been proposed [Erk and McCarthy, 2009], and has also been one
of the motivating factors in the development of unsupervised approaches
(see Section 1.3). The issue of choosing an adequate sense inventory has its
importance also in the field of Named Entity Recognition (NER) [Nadeau
and Sekine, 2007], especially for its specific tasks of named Entity Link-
ing and Coreference Resolution, which actually have many elements in
common with wsp [Moro et al., 2014], though they may be inspired by
different theoretical and logical assumptions.

We could regard a sense partition detailed as above as a choice made
on a “vertical” sense axis, because of the hierarchy that in some settings
can be associated to some relations, like”being a tree implies being a plant”.
Besides it, we also envision a “horizontal”, more lexical kind of granular-
ity that stems from polysemy and homonymy, as discussed in Section 1.1.
For example, consulting the lexical resource WordNet® [Miller, 1995] for
the term shelter, we will find at least three meanings, very close to each
other: a structure that provides protection, a protective covering, or the
condition of being protected. The claim that these three senses are truly
perceived as distinct by a speaker, or that they can be distinguished based
on the context of the word shelter, could be and has been argued, and, in
the specific case of WordNet, there have been proposals to extract coarser
polysemic relations from it [Jiamjitvanich and Yatskevich, 2009]. In any

6https ://wordnet .princeton.edu/
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case, the subtlety that we choose to apply to such discriminations is again
very influential on the training and on the efficacy of a wsp algorithm,
and directly depends on the goals and on the domain of the disambigua-
tion task at hand. Actually, we could assert that the issue of granularity
is ingrained in the same definition of the task of Word Sense Disambigua-
tion and can not be separated from it: each formulation of the task gives
different coordinates to the problem. Unsupervised approaches (Section
1.3) are more flexible than supervised ones in this regard. In a sense, su-
pervised approaches are top-down whereas unsupervised approaches are
bottom-down techniques with respect to granularity.

The choice for more or less granularity is also influenced by the skewed
distribution of senses of a given word. The most common case for a pol-
ysemous word is to have one or two primary senses that are considered
as the most typical ones and overshadow the others, which only appear in
more specific and narrower contexts. For semantically related senses, as
those of shelter cited above (if we agree to treat them as distinct), this can
be explained by the fact that each sense is just a particular declination of
a generic concept (in this case of protection). Instead, when talking about
pure homonymy we can acknowledge the tendency of human language
not to overload a single term with too many possible different meanings’,
so that a sense might become predominant over another one over time. In
any case, the skewed distribution of word senses makes it more difficult
for a Word Sense Disambiguation system to detect less-used meanings of
a term, and even more so if its output has a coarse granularity, since the
appearances of the secondary meanings might be more occasional and
fragmented. Again, these argumentations lend themselves to a critique of
the generic concept of word sense.

In the end, the natural skewness of word sense distribution and the
choice of a granularity for the sense inventory are among the major diffi-
culties encountered in wsp, and every approach to it directly or indirectly
tries to find a compromise in their interplay.

1.2 Supervised approaches

In a supervised approach, the goal is to exploit some already existing in-
formation, knowledge or resource to disambiguate a word by explicitly
stating the entity to which it refers. The parallel that first comes to mind
is a dictionary: the entry of a word lists its possible senses, so that, to
disambiguate it, we just have to learn how to link a particular sense to

"Even languages with an extremely high rate of homophones, like Chinese, regularly
develop strategies to solve such ambiguities [Yip, 2000].
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the word’s occurrence that we are considering. In this regard, supervised
wsD can be considered similar to a classification problem (see [Agirre and
Edmonds, 2007, Chapter 7] for a more complete tractation on the subject).
A tagged corpus acts as a dictionary of sorts: each term is labelled with
its correct sense, and machine learning techniques can be used to put la-
bels in correlation with a given set of context features. The set of labels
forms a ground truth that comes from the knowledge of the annotators
and the general consensus between them. A labelling implicitly defines a
sense inventory or taxonomy, with its respective granularity (as discussed
in Section 1.1.1). There are many manually compiled lexical resources that
already give a hierarchically structured ontology, of which one of the most
used is WordNet® [Miller, 1995], defining senses through sets of synonyms,
hypernyms and hyponyms. More encyclopedic resources like Wikipedia’
or DBpedial® are also widely used, along with BabelNet!! [Navigli and
Ponzetto, 2012], which is a semantic network that draws from all the afore-
mentioned resources.

Historically, rule-based approaches like decision lists [Yarowsky, 2000]
have constituted the earliest attempts at Word Sense Disambiguation. How-
ever, now most of the supervised wsp algorithms make use of probabilis-
tic language models. Naive Bayes classifiers [Manning and Schiitze, 1999,
Chapter 7] are very simple and still popular among many other generative
classifiers. Following the introduction of conditional random fields [Laf-
ferty et al., 2001], some Word Sense Disambiguation systems have made
use of this approach (e.g. [Hatori et al., 2008, Li, 2013]). Another success-
ful method which has achieved very high performances is that of support
vector machines (svMm) [Vapnik, 1995], where words are represented in a
vectorial space and separated by a hyperplane. Originally developed for
binary classification, it can be adapted to more than two senses if we con-
sider each sense to be opposed to all others. Some systems using svm
are [Murata et al., 2001, Lee et al., 2004], along with a survey in [Joshi
et al., 2005]. A vectorial word representation, induced by some prede-
fined features, is also at the basis of methods like the k-nearest neighbours
algorithm (on this and other related topics, see [Duda et al., 2001, Chap-
ter 10]) (where k is a parameter that has to be set experimentally), which
has proved to be quite solid and has been used in some works on super-
vised wsp (e.g. [Rezapour et al., 2011]). An interesting approach to Word
Sense Disambiguation is that of neural networks [McCulloch and Pitts,
1943], where artificial neurons are trained to specialize in the recognition
of hidden patterns, like in [Towell and Voorhees, 1998]. Recently, there has
been a resurgence of interest in this field with the advent of the so-called

8https://wordnet.princeton.edu/
9www.wikipedia.org
Onttp://wiki.dbpedia.org/

waw.babelnet.org
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deep learning and word embeddings [Bengio, 2009, Mikolov et al., 2013b];
some attempts have been made to use these techniques for Word Sense
Disambiguation (as in [Wiriyathammabhum et al., 2012]), and they can ac-
tually be used for unsupervised Word Sense Induction, too, as mentioned
in Section 1.3.1. In general, we note that many of the aforementioned clas-
sifying techniques have often been developed in the more generic field of
Machine Learning and later applied to the specific case of wsp. It is also
thinkable to combine many of these classifiers at once and see how much
and how well they agree; this method has been shown to obtain good
results and to improve the scores of the single classifiers. One of these
“aggregative methods” is AdaBoost [Freund et al., 1999].

A critique to supervised approaches is that they are strongly dependent
on their training sets and are prone to overfitting: An algorithm trained
and tested on the same domain will likely not perform as well on an other,
unknown domain. To retrain it, however, new annotated corpora would be
necessary, and obtaining them would be expensive both in terms of time
and costs. Unsupervised approaches try to circumvent these problems
and will be discussed in Section 1.3.

1.2.1 Evaluation

Evaluation for supervised Word Sense Disambiguation is quite straightfor-
ward: the obtained results can be directly compared to the ground truth
at disposal. Nonetheless, how such ground truth should be represented
can be a cause of debate (as evidenced in Section 1.1.1), and consequently
inter-annotator agreement can be low, making the validity of the evalu-
ation questionable. There are some projects that focus on representing
word meanings in a way as unequivocal as possible [Hovy et al., 2006].
However, many problematics still arise which are in common with un-
supervised clustering evaluation, and which regard the interpretation of
different scores and their possible bias. We remand to Section 1.3.3 for a
brief overview.

1.3 Unsupervised approaches

Recalling the Word Sense Disambiguation definition of Task 1, as already
mentioned in Section 1.1 we can present unsupervised Word Sense Dis-
ambiguation in two flavours: either as Word Sense Induction (wsr) or as
Word Sense Discrimination (again wsb).

We define the task of Word Sense Induction as

Task 2. Given a word in a corpus, to infer all the possible senses that such word
can assume in the corpus judging from its context alone.
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Along the same lines, the task of Word Sense Discrimination will be

Task 3. Given a word in a corpus, to assign a sense to each of its occurrences,
based only on the context of the occurrences.

The key difference between Tasks 2 and 3 on one side and Task 1 on the
other side is that no (structured) external knowledge is used to determine
the senses of a word or the sense of an occurrence. External knowledge is
represented by annotated data, knowledge bases, lexical resources and in
general dictionaries and ontologies that are usually compiled by or take
advantage of human annotations, as mentioned in Section 1.2. Instead,
the foundational linguistic and working assumption of unsupervised ap-
proaches is rooted in the basic principle of distributional semantics [Harris,
1954]:

Difference of meaning correlates with difference of distribu-
tion.

The same concept is synthesised in a famous motto by J. R. Firth [Firth,
1957]:

You shall know a word by the company it keeps.

These assumptions imply that each occurrence can have only a single
sense at a time. The advantages of unsupervised approaches over super-
vised ones lie in the fact that they avoid the knowledge bottleneck [Gale et al.,
1992a], the problem that for supervised approaches arises from the neces-
sity to gather and, most relevantly, label enough data to train a Word Sense
Disambiguation algorithm and keep it up to date, taking into account also
the new nuances and entities that could show up over time.

Unsupervised Word Sense Disambiguation systems differ about what
they consider as context and how they model it. Grammatical and syn-
tactical patterns, text formatting, co-occurrences in a specified text unit
and other measurable, objective features can all be combined to describe
the surrounding context of a term. The main point of divergence is then
how words and relations between words are represented: either in a con-
tinuous or in a discrete space. This is reflected by the crucial subdivision
into vector space models and graph-based approaches. What all these methods
have in common is that in the end some clustering algorithm is applied on
the word space: either to partition the global context of a term in subsets
that we interpret as its possible senses (ws1), or to “divide the occurrences
of a word into a number of classes, thus determining for any two occur-
rences whether they belong to the same sense or not” (wsp, after [Schiitze,
1998]). In both cases, senses are not explicitly defined by stating what their
corresponding referents are, but are implicitly defined by a subset of the
context.
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In the following, we are going to focus on these two main approaches
and mention some proposals taken from the vast literature about the sub-
ject. We have decided not to discuss other wsr systems based on proba-
bilistic models or other techniques.

1.3.1 Vector space models

Vector space models of semantics try to represent words as vectors in a
given space. A fixed set of features is assigned to each word depending
on its context, and interpreted as the entries of a vector in a space of corre-
sponding dimensionality. The advantage of using a vector space V, most
of the time of the type R" for some natural number n € I, is its continu-
ity and the fact that it generalizes the original discrete space of words, so
that each point v € V can be seen as a word, defined by the “sum” of its
components. Since R" comes with many possible metrics, this allows to
compute distances in V between words, e.g. through cosine similarity, L,
or Euclidean distance, and so on, and to adopt clustering algorithms like
k-means, unsupervised k-nearest neighbours, and similar ones.

Often, the Euclidean vectorial representation is achieved through a fre-
quency matrix [Turney and Pantel, 2010] which represents the document.
The entries of the matrix are the number of occurrences (frequency) of
a word, a pair of words, or other observed items inside a particular con-
text, like a syntactical or grammatical pattern, a window around the word,
the entire document, and so on. In the example of a word-paragraph
frequency matrix, each row would represent the word through its fre-
quency in each paragraph of the document as a vector v € IN", where n
is the total number of paragraphs. We notice that other, secondary val-
ues, more sophisticated than frequency, can be used in the matrix, such
as TF-IDF score, pointwise mutual information (see Section 2.2.1) and vari-
ants thereof. In any case, a similar matrix will usually be very sparse or
noisy, and smoothing techniques might find an application here. In this
case, e.g. Latent Semantic Analysis (Lsa) [Deerwester et al., 1990] is a
method to reduce the size (the rank) of a frequency matrix through Sin-
gular Value Decomposition (svp): the original matrix M is mapped into
a lower-dimensional matrix which only retains the k biggest eigenvalues
of M, which are those representing the biggest axes of variation among
words, so that only these eigenvalues are later used for the computation
of similarity between words.

Vector space models in general are not limited to unsupervised approaches;
in fact, they can and often are used in conjunction with any machine learn-
ing algorithm [Witten and Frank, 2005, Collobert and Weston, 2008].
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In [Schiitze, 1998] a vector-based context-group discrimination is pro-
posed for Word Sense Discrimination. Here the aim is to cluster a word
space whose elements represent all the contexts of the occurrences of a
word w. Context vectors are themselves obtained from the sum of the sin-
gle word vectors belonging to each context. In the word space of w, vec-
tors are grouped so as to minimize the distances between the elements in
a group, using a centroid, and to maximize the distance between groups.
The centroid of a group is the vector that minimizes the distance from all
elements of the group; it is the group’s “mean vector” and it is used as a
condensed representation of the sense implicitly associated to that group.
We notice that the definition and computation of a centroid is only pos-
sible in a continuous space. The centroid need not truly correspond to a
word in the document.

Another classical approach is that of [Pantel and Lin, 2002], where clus-
tering by committee is introduced. Words are represented by (syntactical)
context features, for which a discounted version of pointwise mutual in-
formation (PMI) is computed and used for the entries of the word vec-
tors. The cosine coefficient of two word vectors is taken as their similarity.
Here all the senses in the document are discovered simultaneously in a
first phase and represented by committees, that is, small clusters of similar
words. Again, centroids are used to represent committees. Committees
originate from clustering the top k most similar elements of each term.
Two threshold values are used to form committees and decide if more
have to be created. Subsequently, each element of the document is linked
to its most similar committees, according to another threshold. This ap-
proach might be seen as the inverse of the previously discussed one of
[Schiitze, 1998], since senses are located first and then the words are as-
signed to them, instead of selecting words for the disambiguation and
inferring senses from their contexts.

A more recent take to vector space models are word embeddings, which are
linked to the concept of neural networks. Language models inspired by
neural architectures like in [Bengio et al., 2003] have received increasing
attention during the last years. The most discussed and debated vecto-
rial representation of words through embeddings has been proposed in
[Mikolov et al., 2013a]. There, real vectors of fixed length are randomly
initialized for each word. Subsequently, a very shallow neural network is
used to recompute each word vector singularly, based on a given context,
e.g. the four preceding and the four following words. The new form of a
vector is used immediately in all computations. In the end, the recursive
nature of such calculations will return word vectors that encode distri-
butional and semantic properties of the word, especially in relation to all
other word vectors. It has been claimed that in some cases word pairs with
very similar relations, such as Italy:Rome and Germany:Berlin, might tend
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to have very similar differences, so that we could obtain
Italy-Rome+Berlin=Germany,

but it is not clear if this fact can be generalized to other examples. The
effectiveness of a vectorial representation through word embeddings de-
pends from the chosen size of word vectors and the function implemented
in the neural network to recompute them, but altogether it looks like a
very solid basis to expand with clustering techniques for wsr [Pelevina
et al., 2016].

1.3.2 Graphs

Graphs are discrete mathematical structures particularly suited to the di-
rect representation of relations between words. Compared to vectorial
space representations, graph-based models focus more on how words are
interconnected, by means of edges, rather than on how words themselves
have to be represented (usually they are just put into a biunivocal relation
with the graph’s vertices: one word corresponds to just one vertex, and
viceversa). This might be interpreted as mirroring the discrete structure
of language, where each word represents a single atomic unit of meaning
and is part of many local substructures that can reveal its different func-
tions and facets in the global discourse. Formally, a graph G is defined as
the couple (V,E), where the vertex set V is any given set (in our case, it
nearly always corresponds to the vocabulary of the corpus), and the edge
set E C V x V is a subset of the Cartesian power of V, representing all the
pairs of connected nodes (see Section 2.1 and in particular Section 2.1.1).

In Word Sense Induction the interest lies in the modelling of relations
between words and their relative distribution rather than in the descrip-
tion of syntactical patterns, so that graphs are usually undirected. We
can distinguish two main types of word graphs: co-occurrence graphs and
semantic similarity graphs (see Section 2.1.8). An obvious strategy to con-
vey the difference in importance between word relations is to employ
weighted graphs. A weight w of G = (V,E) is usually defined as a map-
ping w : E — R™ (again, see Section 2.1.1). This makes graph-based
models more meaningful, but also represents a further challenge, since
many widely adopted graph-theoretical concepts are not well defined in
the weighted case, and sometimes their weighted interpretation is out-
right controversial, like in the case of the clustering coefficient (see Section
2.1.6), as discussed in [Opsahl and Panzarasa, 2009]. A recurring funda-
mental property of word graphs is that they have been shown to be small-
world and scale-free networks [Ferrer i Cancho and Solé, 2001]. Small-world
networks substantially differ from random graphs; they can be defined
through the behaviour of the two parameters of clustering coefficient and
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characteristic path length, as described in [Watts and Strogatz, 1998] (see
Section 2.1.7). Graph theoretical concepts, different types of word graphs
and methods to induce them from text will be discussed more in detail
in Chapter 2, in Section 2.1. Here we are going to briefly present some
graph-based approaches, upon which it will be expanded in Chapter 3.

In [Dorow and Widdows, 2003], following [Widdows and Dorow, 2002],
a co-occurrence word graph is constructed by extracting coordinative pat-
terns (X and Y, X or Y,...) from the text and using them to define edges
between words (Section 3.2). This operation can be performed globally to
model the whole text, but, to disambiguate target word v, only its local
subgraph (its neighbourhood) is taken into consideration. The aim is to
cluster the node set of this subgraph via the Markov Cluster algorithm
(mcL) of [van Dongen, 2000], originally developed in the field of biology,
but adapted to many graph-based tasks (Section 3.1). The mcL algorithm
is based on random walks and on the assumption that denser, more con-
nected regions can be detected by a higher probability of staying there
when starting from one of its nodes. The same denser regions represent
the possible senses that v can have in the document.
A more sophisticated approach called HyperLex was proposed in [Véronis,
2004] (Section 3.4). Again, a co-occurrence graph is built, using paragraphs
as the text units within which to measure co-occurrences. The weights are
distances, or better dissimilarities between word pairs, computed from
their frequency and co-frequency. Given the local co-occurrence graph G
of a possibly ambiguous word v, HyperLex’s aim is to exploit its small-
world property to identify “sense hubs”, i.e. the most important node in a
dense region that likely represents a sense of v. Motivated by the skewed
degree distribution of a small-world graph, it is made the assumption that
the neighbourhood of a hub node in G corresponds to a sense cluster of
v. Progressively identifying hubs and removing their neighbourhoods, the
graph is partitioned into its senses. Some heuristic corrections, based on
thresholds on weights and number of neighbours, are taken to improve
the overall sense induction.
A known and efficient clustering algorithm for wsr that is inspired by mcL
is Chinese Whispers (cw, Section 3.3), which was first described in [Bie-
mann, 2006]. It can be considered a simplified version of McL, similarly
simulating the flow of information in a network. Initially, every node in
a word similarity graph starts as a member of its own class; then, at each
iteration every node assumes the prevalent class among those of its neigh-
bours, measured by the weights on the edges incident to it. This algorithm
is not deterministic and may not stabilize, as nodes are accessed in random
order. However, it is extremely fast and quite successful at distinguishing
denser subgraphs. The resulting clustering is generally relatively coarse.
Besides its use in the field of wsi, cw was also used for language separa-

20



tion and word class induction tasks.

A clustering algorithm that splits the word graph based directly on its
structure is presented in [Hope and Keller, 2013], where it is called Max-
Max (Section 3.5). The originally undirected local co-occurrence graph G is
rewritten as a directed graph H where an edge exists and goes from v to w
if and only if its weight is the maximal one of all the edges departing from
w in G. The derived graph H can then be split into quasi-strongly con-
nected components, which represent different senses of the target word
and may overlap.

We notice that especially the last three methods that we discussed in
this section can not be reinterpreted by means of vector space models.

1.3.3 Unsupervised Evaluation

Evaluation in the field of unsupervised Word Sense Induction and Dis-
crimination is difficult, the same way it is for clustering evaluation in gen-
eral. An internal evaluation'? is not of great interest in our case, since we
want to compare the results of a clustering with a pre-existing notion of
word senses, i.e. we want to make use of external knowledge to produce
a sensible evaluation. To perform this kind of external evaluation, manu-
ally obtained gold truth is required. Here we have to make a distinction
between mere Word Sense Induction and Word Sense Discrimination (de-
fined respectively as Task 2 and Task 3 in Section 1.3). In the latter case,
evaluation is more straightforward: We can easily visualize it as the com-
parison of two different labellings of term occurrences in a document, and
thereby apply standard procedures, such as the computation of precision,
recall and their resulting F-score (see for a reference [Martin and Jurafsky,
2000]). However, the usual F-score and its variants, like the paired F-score
[Artiles et al., 2009], could be biased towards very coarse clusterings, es-
pecially considering the fact that the sense distribution of a word tends to
be skewed in favour of one sense (see Section 1.1.1).

On the contrary, other scores hailing from Information Theory, as in
the case of Normalized Mutual Information'® (M1, Section 2.2.1.1) [Strehl,
2002], show a similar, if opposite behaviour of preferring very fine clus-
terings (see Section 5.4.1.1). This can be seen from how both scores rank
the two standard baselines: the most-frequent-sense baseline (Mrs), which

12We say that an evaluation is internal if it is based only on the same data (elements,
similarity scores, and so on) that were used also for clustering, whereas an external evalu-
ation also exploits further data.

130Often also called V-measure.

21



assigns just the prevalent sense to each occurrence, and the one-sense-per-
word baseline , where each occurrence obtains its own label. Especially the
MFs baseline has proven to be hard to beat, and the F-score in particular
would value it greatly, as opposed to NML.

To account for the bias and a possible randomness in the overlap of the
two compared labellings, other scores like the Adjusted Mutual Informa-
tion (amr1) [Vinh et al., 2009] were proposed (Section 2.2.1.2). There is also
another family of metrics, the BCubed metrics [Bagga and Baldwin, 1998]
(Section 2.2.2), whose principle is to compute a mean of precision and re-
call relative to each element in the clustering. In [Amigé et al., 2009] it is
demonstrated how its properties are ideal under many aspects, but from
experimental evaluation it still seems to be subject to a bias (again, see
Section 5.4.1.1). We can conclude that it is very difficult to strike a balance
in the field of unsupervised clustering evaluation, and the matter remains
quite controversial, as with how fine-grained a clustering should be (see
again Section 1.1.1). For example, going back to the case of evaluation
for Word Sense Induction, given the aforementioned evaluation scorings,
the definition of a ground truth already looks problematic: How can we
define what is a right subdivision in sense clusters of a word’s context?
To this end many strategies have been developed, some with the aim of
creating a synthetic evaluation framework, as in the case of pseudowords
[Gale et al., 1992b, Schiitze, 1992], which will play a major role in Chapter
5.

We will give a more detailed insight into some of the cited evaluation
measures in Section 2.2 and use and discuss them extensively in Chapter 5.

1.3.4 An unsupervised dilemma: parameters and external tools

Here we want to remark a fundamental conceptual issue that is shared by
all unsupervised approaches: the use and tuning of parameters. At the
beginning of this section we stated that unsupervised methods differ from
their supervised counterparts in that they refrain from exploiting any kind
of external knowledge, represented by human-compiled resources. This
independence from outside inputs is parallel to the avoidance of prior as-
sumptions on the discrimination task. For example, a recurrent feature of
unsupervised wsi and wsp clustering algorithms is that they do not need
to specify the number of senses that a word can assume, and consequently
the number of clusters that have to be found. Still, under these theoreti-
cal premises it is often (if not always) the case that unsupervised systems
make a rather generous use of parameters and thresholds. In the case
of an algorithm, a parameter is by definition an arbitrary constant which
characterizes its execution and determines its outcome. Now, we could
argue that parameters are just postponing an informed (and thus super-
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vised) decision to a higher level of the algorithm. Let us take DBscaN
[Ester et al., 1996] as an example: This clustering algorithm is driven by
two parameters, a minimum distance ¢ and a minimum number of neigh-
bours n, which together are used to define an equivalence relation that
produces a clustering. A greater ¢ and a smaller n will ensure that fewer
clusters are found, and viceversa. So, we can actually state that the final
number k of found clusters can be expressed as a (non-linear) function
k(e,n): by tweaking the parameters we control the outcome. The question
arises: how do we decide how to set them? From a strictly unsupervised
point of view, it emerges a basic contradiction: the notion of tuning a pa-
rameter to obtain optimal results implies reasonings that stray from the
mere execution of the algorithm and do involve external knowledge. The
same holds for the concept of thresholds, which are used to shape the re-
sults of a clustering by setting arbitrary or heuristically determined limits.
What we are arguing here is that such parameters and thresholds repre-
sent supervised elements that are imposed on the structure of the data to
be clustered, whereas we would expect a pure unsupervised approach to
discover patterns by tapping exclusively from such structure. Instead, very
often the introduction of (numerous) parameters can be seen just as an un-
intended shift of required external intervention from the training step to
the inference step: from an a priori set up to an a posteriori refinement.

Similar remarks could be made about the application in unsupervised
approaches of supervised tools for linguistic analysis, such as part-of-
speech taggers like TreeTagger [Schmid, 1994] or syntactical parsers like
the Stanford Parser [Manning et al., 2014]. If a wsI system relies on mod-
ules that make use of external resources, it is itself indirectly using the
same resources. Can we still call it unsupervised?

From the perspective stated above, hardly any unsupervised approach
can be considered purely unsupervised. To the best of our knowledge,
there has been little to no debate in the research community about what
we might call the unsupervised dilemma, that we phrase as follows:

Is the use of parameters actually going against the principles
of unsupervised Word Sense Disambiguation, and of unsuper-
vised approaches in general? And how much is it really possi-
ble to avoid the use of any form of external knowledge and at
the same time to get meaningful and interpretable results?

A more thorough investigation of these theoretical matters is beyond the
scope of this work. We will just suggest that the attribute unsupervised
might be seen as referring to the definition of meaning and the way to rep-
resent it rather than to the actual absence of any supervised element at all.
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We conclude noticing that the new methods described in Chapter 4 all
try to make as little as possible use of parameters and external tools, in
the spirit of a pure unsupervised approach.

1.4 Conclusions

The aim of this chapter is to give a brief overview over the general task
of Word Sense Disambiguation and to introduce the complex linguistic
phenomena that motivate it, along with the controversies on the notion
of word sense (Section 1.1). We shortly describe different approaches to
Word Sense Disambiguation, mainly based on whether they make use of
external knowledge (supervised approaches, Section 1.2) or not (unsuper-
vised approaches, Section 1.3), and on how they model word contexts.

The rest of our dissertation, after the introductory notions of Chapter
2, will focus on the definition and implementation of graph-based models
for Word Sense Induction, first reviewing (in Chapter 3) the graph-based
clustering algorithms selected from literature and cited in Section 1.3.2,
from which the novel techniques proposed in Chapter 4 take their inspira-
tion, and finally concentrating on the evaluation step in Chapter 5, where
we will introduce a novel pseudoword evaluation framework.
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Chapter 2

Basic notions

In this chapter we want to introduce the mathematical concepts and in-
struments that form the basis of the discussion in the second part of this
dissertation (Chapters 3, 4, 5). First, Section 2.1 will mostly focus on some
basic definitions and results of graph theory that form the backbone of
graph-based wsrI approaches, and Section 2.1.8 in particular will briefly
deal with the idea of word graph. Section 2.2 gives an overview of some
measures used to assess the significance of the co-occurrence of two terms
and to evaluate the similarity between different clusterings, which will be
used extensively in Chapter 5.

2.1 Graph theoretical and mathematical instruments

In this Section we will describe and give definitions of graph-related and
other mathematical objects and concepts that will be used extensively in
Chapters 4 and 5. For generic references on the subject and basic defini-
tions we point the reader to [Harary, 1969, Berge and Minieka, 1973, Ruo-
honen, 2013]. For more detailed insights on specific touched-upon topics
of this chapter, references will be given in the corresponding section, and
others are to be found throughout this dissertation.

2.1.1 Graph basics
We define a graph G as a couple (V,E) of two sets, where:
V is an arbitrary discrete set and is called the vertex or node set of G;

E is a subset of the Cartesian product V x V and is called the edge set of G.
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The cardinality |V| of the node set is called the order of graph G, and the
cardinality |E| of the edge set is its size. A subgraph G’ = (V',E’) of G
is a graph such that V' C V and E’ C E. In other words, it has either
less nodes (a smaller order) or less edges (a smaller size, and the graph is
sparser) than G, or both.

In this work, we will always assume that V is also a finite set, and thus
G a finite graph. The edge set represents the existing connections between
nodes of G. An element (v,w) of E, with v,w € V, can be interpreted as
giving a direction from node v to node w. If (v,w) € E does not necessarily
imply (w,v) € E, the graph is called directed, meaning that a direction, or
orientation, is associated to each edge. If, on the contrary,

(vw)€e E < (wo)€E,

the graph is called undirected. This means that the edge can be traversed
equally in both directions. Most of the graphs we will consider will be
undirected, and if not said otherwise, a graph will be always assumed to
be undirected.

A node v is said to be adjacent to w if (v,w) € E, and (v,w) is said to be
incident to w. Clearly, adjacency and incidence are symmetrical relations
for undirected graphs. The degree of a node v, written as deg(v), is equal
to the number of nodes adjacent to it, or equivalently of edges incident to
it (in directed graphs, a distinction is made between indegree and outdegree,
counting edges that are respectively incident to the node or originating
from the node and incident to adjacent nodes). The degree can be consid-
ered the most basic measure of centrality on a graph (cf. [Koschiitzki et al.,
2005]): the higher the degree of v, the more connected v is to other nodes
(and the more paths will pass through v; see Section 2.1.2). A node with
degree 0 is called isolated, or a singleton (and it forms its own connected
component, see Section 2.1.2).

A subset V' C V always induces a subgraph G’ of G, that we denote
as G(G'), whose node set is V' and whose edge set is defined as

E'={(vw)€E|lvweV'}.

Analogously, an edge set E' C E induces a subgraph with edge set E/,
whose node set will be

V' ={veV|Iwst(vw) € E'V(wo) € E'}.
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The density § of a graph is the ratio of the size of G, the number of
existing edges |E|, to the number of possible edges on the node set V. In

2
the case of an undirected graph, the latter is (“2/') = M, so that we
have
__ 2|E|
=7 o
VE V]

This value can range from 0 (meaning the graph is totally disconnected,
see Section 2.1.2) to 1, which means that all nodes are connected to each
other. Such a graph is called complete. A complete subgraph of G is often
called a cligue. Many graph theoretical problems revolve around finding
cliques in a graph, and many if not all of them have been proved to be
Nr-hard or extremely difficult to treat (c.f. [Bomze et al., 1999], and [Garey
and Johnson, 1979] for a more general reference).

Another particular graph shape is the star (sometimes called claw): an
n-star is a graph where one single node has degree n — 1 and the other
n — 1 nodes have degree 1.

Weights can be associated to the edges of a graph. We define them
through a weight function or mapping

p:E—R,

which associates a real number to each edge. Usually, we will only con-
sider and assume positive weights, i.e. the case

p: E— R".

A graph provided with a weight function p is called a weighted graph, and
we sometimes refer to the set of all possible weights, the image p(E) of p,
as the weighting scheme of G. The weighted counterpart of the degree, i.e.
the sum of all the weights on the edges incident to a node v, is sometimes
called strength of v and written as s(v).

2.1.1.1 The handshaking lemma

A very basic result about node degrees in a finite undirected graph is
the handshaking lemma or degree sum formula. It states that the sum on the
degrees of all nodes in graph G is equal to twice the size of G:

Y deg(v) = 2|E]|.

veV

This occurs because each edge (v,w) is counted twice: once as incident to
v and once as incident to w.
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The handshaking lemma will be useful for the estimate of time com-
plexities of graph-based algorithms. Its generalization to the sum of a
given power n of the degrees Y <y deg”(v) is much less immediate, even
for n = 2; we will deal with this issue in a very limited way in Section
4.1.2.

2.1.2 Paths and connected components

There exists a path from node v to node w in G if and only if either (v,w) €
E or if there is a subset

Tow = {(v1,w1),(v2,w2),...,(Vnwn)} CE

of n > 2 edges such that

w; =9, fori=1,...n—1, (2.1)
v1 =v and (2.2)
Wy = W. (2.3)

Clearly, if G is undirected, a path from v to w necessarily implies a path
from w to v, namely the same path with reversed order. Intuitively, these
conditions say that we can go from node v to node w traversing edges that
form a continuous path in the graph, respecting their orientations. The
path length of 714, is equal to its cardinality.

We define the path distance between v and w as the minimum path
length among all the paths between v and w, and denote it! as d(v,w). If
there is not any path between v and w, we conventionally set d(v,w) = .
We notice that if G is directed, d(v,w) = d(w,v) does not necessarily hold,
whereas it does for undirected graphs. So, in general, d is not always a
metric on the node set.

A graph is said to be connected if and only if there exists a path between
all pairs of nodes. A connected component of an undirected graph G is a
maximal connected subgraph, i.e. a connected subgraph G’ = (V/,E’) C G
such that for all v € V' and for all w € V\V’ there does not exist any path
between v and w. Connectivity is more complex for directed graphs, with
more specific notions such as weak or strong connectivity, but we will not
delve into them. Just in Section 3.5 we will briefly refer to quasi-strongly
connected components.

IThe notation d(-,-) on a graph is usually intended as the path distance. In Section 4.1.1
we will define a different distance and use subscripts to distinguish different distances.
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Assuming that G is connected and undirected, we define the eccentricity
e(v) of a node v to be the maximum path distance from it to any other
node:

e(v) = maxd(v,w).
weV
Intuitively, the eccentricity of a node is a measure of how peripheral it is
in the graph. The radius® p and the diameter A of G are respectively the
minimum and the maximum eccentricity in the graph:

~ mi d(v,w), 2.4

p = minmaxd(v,w) (24)

A = maxmaxd(v,w). (2.5)
veV weV

The smaller the radius, the more intraconnected the graph; the larger the
diameter, the more dispersed the graph and the more peripheral nodes it
possesses.

2.1.3 Minimum cut

The minimum cut is a graph theoretical concept (with many variants)
that has got particular attention from the field of flow theory on net-
works (about this topic, see [Ford Jr and Fulkerson, 1969]). We introduce
it here because during an early experimental phase we have considered
some minimum cut variants of the novel clustering algorithms described
in Chapter 4, especially for the gangplank clustering algorithm of Sections
4.2.1 and 4.3.2, as detailed in Section 4.3.2.1 (not limited to the case of
disemous terms, like in Chapter 5). Some considerations about its imple-
mentation will be made in Section 5.4.3.

In graph theory, a node cut of a graph G = (V,E) is defined as a subset
K C V such that the subgraph

G\K = G(V\K)

has more connected components (Section 2.1.2) than G [Ruohonen, 2013].
If |K| =1, i.e. K consists of a single node, it is called a cutpoint [Harary,
1969]. An analogous definition is possible for edges, and in that case one
speaks of edge cuts and bridges®. A node cut K that achieves the minimum
cardinality in the set of all possible node cuts of G is called a minimum node
cut and it is not always unique; the same goes for the analogous notion of
minimum edge cut.

20ften written as 8, but we want to avoid confusion with the density of Section 2.1.1.
3This meaning of the term bridge in graph theory has led us to name the weak connec-
tions that will be defined in Section 4.1.4 gangplanks.
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The problem of finding a minimum edge cut is particularly interesting
in the case of a weighted graph. Weights can be reinterpreted as represent-
ing the volume of a flow traversing the graph, possibly through directed
connections in the case of directed graphs (see Section 2.1.1). The notion
of minimum edge cut can then be rephrased as an edge cut of G that has
the minimum possible total sum of weights. The max-flow min-cut theorem
[Dantzig and Fulkerson, 2003] establishes a tight bond between flow the-
ory on networks (see again [Ford Jr and Fulkerson, 1969]) and minimum
cuts: given two nodes in V, a source v and a sink w, the maximum possible
flow that goes from v to w corresponds to the smallest total weight of the
edge cut, i.e. the minimum edge cut, that leaves v and w in two different
connected components. An edge cut naturally induces a node cut: if the
edge (v,w) is in the cut, both nodes v and w will be in the matching node
cut.

Section 4.3.2.1 will deal with the implementation of the minimum cut
variant for the gangplank clustering algorithm.

2.1.4 Matrices associated to graphs

There are two principal kinds of matrices associated to a graph G that
we will consider: the adjacency matrix C and the weighted adjacency ma-
trix A. They are both square matrices of size |V|, where the i-th col-
umn or row refers to the i-th node of G, having indicized its node set as
V = {v1,...,0jy}. By the same logic, the entry corresponding to the i-th
row and the j-th column will refer to the edge (v;,v;). Also, the general
concept of distance matrix can be adapted to graphs.

The simple adjacency matrix C of G = (V,E) has only binary entries:
cij = 1 if and only if node v; is adjacent to v; or equivalently if (v;,v;) € E,
and c;; = 0 otherwise. Of course, if G is undirected C is symmetric (reflect-
ing the symmetry of the adjacency relation). The adjacency matrix reflects
the basic topology of G: the sum of the non-null elements on the i-th row
of C is equal to the outdgree (see Section 2.1.1) of v;, while the sum on the
i-th column corresponds to its indegree. In the case of an undirected graph
they clearly coincide. The adjacency matrix is useful to obtain insights e.g.
on the connectivity and the path lengths of a graph through algebraic op-
erations. For example, the (i,j)-th entry of C?> = C - C corresponds to the
neighbours common to v; and vj, and if it is not zero it consequently tells
us that there exists a path of length at most 2 between the two nodes.

For a weighted graph we can define a weighted adjacency matrix A:
we put

aij = ﬁ(vilvj>l
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where p is the extension to V x V of the weight function p (see Section
2.1.1) such that

p(vi,v;) = p(vi,vj) if (v;,0;) € E (2.6)
p(vi,v;) =0 otherwise. (2.7)

The weighted adjacency matrix does not provide direct information about
node degrees like its unweighted counterpart, but instead on node strengths
(see Section 2.1.1). Still, the interpretation of the entries of A? is similar: a
non-null entry shows that two nodes have common neighbours. On par-
ticular graphs called Markov networks (see Section 3.1), however, under
given conditions the powers of the weighted adjacency matrix represent
the probability of a random walk on G to arrive to a node starting from
another node.

A distance matrix can be associated to any discrete set where a distance
function d has been defined (the notion of distance will be explored more
in detail and in a wider context in Section 4.1.1). In the case of a graph, a
distance function will be a mapping

d:V —R"

satisfying some additional properties. Then, the distance matrix D has
entries
di]‘ = d(Ul',Z)]‘)

if and only if d (vi,v/) < oo, and d;; = 0 otherwise. The most straightfor-
ward distance on a graph is the path distance defined in Section 2.1.2, but
we will also consider other kinds of distances (see e.g. Section 4.1.3).

2.1.5 Node neighbourhoods and ego graphs

Analogously to the more general concept of neighbourhood, as encoun-
tered e.g. on a topological space*, we can define the neighbourhood of a node
v of G as any subgraph G’ = (V',E’) C G such that v € V'. The neighbour-
hood of a node can be used to investigate the local properties of G around
v. In our work, we will always assume that the graph is undirected and
that only a specific kind of neighbourhood is meant, namely the n-th degree
neighbourhood. For any v, it is defined as the set of all nodes at a maximum
distance (see Section 2.1.2) n from v:

N"'"(v) ={w e V |d(vw) < n}.

4[Arkhangel’skii et al.,, 2012] is an introduction to these topics.
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The first-degree neighbourhood of v thus consists of all nodes adjacent to
v and is often simply called its neighbourhood and written just as N(v). It
can be also expressed in terms of the adjacency matrix (see Section 2.1.4)
as

N(vi)) = {vje V |a;=1}.

The subgraph of G induced by N(v) is also called the ego graph or ego-
network of v. For degrees greater than 1, we speak of n-th degree ego
graphs or ego-networks.

Independently from its definition, a neighbourhood N(v) of v is called
open if v ¢ N(v), and conversely closed if v € N(v). If we need to specify
this property in the notation, we will use N(v) for open neighbourhoods
and N(v) for closed ones.

We can see the notion of n-th degree neighbourhood defining a neigh-
bourhood function or mapping

N":V — P(V),

where P (V) is the power set of V, i.e. the set of all its subsets. We can ex-
tend this function to P(V), i.e. to all subsets of V, not limited to singletons.
We define the neighbourhood of a node subset V' C V straightforwardly
as the union of all neighbourhoods of all the elements of V', namely:

N*" (V') = |J N"(v).
veV!

Lastly, we notice that for all degrees n > e(v) (see Section 2.1.2) a node
neighbourhood is constant, as the nodes farthest from v have already been
reached. Moreover, if G is connected we will have N¢®) = V.

2.1.5.1 Generalized adjacency matrices

The concept of weighted and unweighted adjacency matrices seen in Sec-
tion 2.1.4 can be expanded to neighbourhoods of an arbitrary degree as
seen in Section 2.1.5. Using the path distance d defined in Section 2.1.2,
we call n-neighbours of v all elements of the set N"(v). Then, we can de-
fine the n-th degree adjacency matrix C, as having entries ¢, ;; = 1 if and
only if d(v;,0;) < n, and ¢, ;; = 0 otherwise. This way, the fact that ¢, ;; # 0
means that there exists at least one path of length at most n from v; to v;.

Analogously, the n-th degree weighted adjacency matrix A, has en-
tries a,;; = d(v;,0;) if and only if d(v;v;) < n, and a,,;; = 0 otherwise.
We remark that the entries in the diagonal will be equal to 0 because
d(v;,v;) = 0 by definition, without implying the absence of a path or an
infinite distance.
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These definitions imply closed neighbourhoods. If instead we want to
represent open neighbourhoods, for the matrix entries we will also have
to check that the distance is strictly greater than 0, which corresponds to
putting ¢, ;j or a,;; for every i.

The matrices defined in Section 2.1.4 can then be considered as first de-
gree adjacency matrices, and conversely an n-th degree adjacency matrix
might be considered a truncated path distance matrix. The considerations
made in Section 2.1.4 for them can be extended to higher degrees, consid-
ering paths of a given length instead of simple edges.

2.1.6 Clustering coefficient

Density, defined in Section 2.1.1, measures how intraconnected a graph
is on a global level. Observing that cliques or complete graphs have by
definition density 1 and are thus the most possibly dense kinds of graphs,
we might roughly define a dense region in a graph G as a subgraph G’ with
density " in some sense close to 1. If we focus on the single nodes of G, we
can restrict local densities to the densities of first degree closed neighbour-
hoods. Assuming an undirected graph, in terms of the adjacency matrix C
of G = (V,E) (see Section 2.1.4), given v = v; € V the size of the induced
ego graph (see Section 2.1.5) G(N(v)) will be

]IZ\I ZL‘Ql CikCriCij

Oy = 5

(2.8)

The division by 2 comes from the handshaking lemma of Section 2.1.1.1
applied to the ego graph. Then, the local density of v can be written as

5, = 20y .
IN(v)* — |N(v)|

(2.9)

In other words, J; is the ratio of the number of existing edges in the ego
graph of v to the number of possible edges (‘N gv)\)' This quantity is also

called local clustering coefficient and was introduced in [Watts and Strogatz,

Zvevév
vl

the overall local clustering coefficient, which measures how similar to a
clique the graph is around a node on average.

The local clustering coefficient defined by (2.9) of course does not take
into account the possible weighted structure of a graph. Furthermore,
it seems to be biased with respect to the degree of a node [Ravasz and
Barabasi, 2003]: the local density of a node’s neighbourhood tends to be
inversely proportional to that node’s degree.

1998] (see also Section 2.1.7). We can associate to G the mean value
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Formula (2.8), and in particular the third-degree monomial cjckicij,
hints to an alternative definition of (global) clustering coefficient based on
triplets and triangles, first found in [Feld, 1981, Karlberg, 1997]. A triplet
is any connected subgraph of G consisting of exactly three nodes. Only
two kinds of triplets are possible: an open triplet, with two edges, or a
closed triplet, with three edges. The global clustering coefficient (also called
transitivity) is then defined as the density of closed triplets with respect to
all existing triplets. We define this ratio as

K= po (2.10)
where 7 is the total number of triplets in G, and 7p the number of closed
triplets. We can see K as the probability that, given a node v connected
to two other nodes w and z, there exists also a third edge (w,z) (so that it
might also be considered a sort of conditioned local clustering coefficient).
In a complete graph, this probability is 1, as the usual density . On the
other hand, if G is a random graph [Erd&s and Rényi, 1959, Bollobas, 1998],
where any two nodes have an independent probability 0 < p < 1 of being
connected, we will have K = p and moreover, K will tend to 0 as the order
of the random graph increases and its size remains fixed.

In general, the clustering coefficient (2.10) does not arise from a mean
value taken over locally computed coefficients, and thus avoids the degree
bias of the local clustering coefficient. However, again K does not have an
immediate weighted interpretation, and many alternative weighted ver-
sions have been given (see the exhaustive [Opsahl and Panzarasa, 2009],
on which we also based this section), though none has emerged over the
others.

Despite the unclear nature of a weighted version, the clustering coef-
ficient helps identify some peculiar structural properties of a graph. In
particular, it can give a measure of how much a graph differs from a ran-
domly generated one. An interesting and pervasive kind of graph struc-
ture is presented in Section 2.1.7.

2.1.7 Small-world and scale-free graphs

In [Watts and Strogatz, 1998], the authors identified the characteristics of
a particular graph structure which they named small world. Graphs and
networks of this kind appear to be pervasive in the description of natural
or real-world phenomena like social networks or word graphs [Ferrer i
Cancho and Solé, 2001]. Their behaviour differs markedly from that of
random graphs (about this topic see [Bollobds, 1998]), and can be seen as
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intermediate between regular® and random graphs. Many small worlds
are also scale-free, a more general property involving the degree distribu-
tion.

Informally, we can describe a small-world graph as a connected® graph
composed of small, dense subgraphs connected by hub nodes of very high
degree. These hubs embody the popular notion of six degrees of separa-
tion in a social context, originating from the Hungarian novel Ldncszemek
(“Chain links”) [Karinthy, 1929] and successively researched in the fields of
social, computer and mathematical science: each person belongs to some
social group, but every individual in the world can be reached through an
average of six common acquaintances.

More formally, according to [Watts and Strogatz, 1998], a connected
graph G = (V,E) can be identified as a small world observing the values
of two quantities: its characteristic path length L and its overall local clus-
tering coefficient C (already seen in Section 2.1.6 and expressed for a single
node by (2.9)). The characteristic path length L is defined as the mean value
of the path distance (see Section 2.1.2) over all (|‘2/|) possible couples of
nodes (since we assume that G is connected, there is a path between each
node couple). The parameter L presents a global property of G, namely
how closely tied together the graph is, i.e. how far we have to move from
one node to reach another on average. The local clustering coefficient, on
the contrary, measures how much the graph locally resembles a clique.

A small-world graph is then characterized by a small characteristic
path length and a high overall local clustering coefficient: this formalizes
the notion of small, dense regions easily reachable one from another. This
is opposed to the structure of random graphs, where, assuming the same
order and size, but totally random assignment of edges, L is still small
(many shortcuts are randomly created between nodes), but the graph is
locally sparse, so that C is also small. On the other extreme, a regular
graph will be locally relatively highly clustered, sporting a large C, but
will also possess a large characteristic path length, due to the absence of
nodes acting as connectors.

A small world could then be described as actually many small worlds
held together by hub nodes; while removing a random node will not dis-
connect the graph in most cases, removing one of the hubs, on the contrary,
will split the graph in many connected components of medium size.

5A regular graph is defined as a graph whose nodes have all the same degree.
6Tf the graph itself is not connected, each of its connected components might separately
be a small-world graph.
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We remark that the here given definition of small-world graphs does
not take into account the possible weighted structure of a graph, but only
makes a statement about its topological arrangement. In fact, neither the
characteristic path length (see the first part of Section 4.1.1) nor the lo-
cal clustering coefficient (as observed in Section 2.1.6) have a univocal
weighted counterpart. The question if the weighted structure alters the
mere topological nature of small-worldness is an interesting issue, that we
will however unfortunately not address in this work.

Small-world graphs often appear to show a sort of fractal” nature, in
that the smaller, denser regions tend to locally reproduce the global small-
world structure. The expression scale-free [Barabasi and Albert, 1999] de-
scribes this phenomenon: each sublevel of the mathematical structure be-
haves like the whole global structure. In a graph, this is associated to
a particular degree distribution that follows a power law: the probability
that a node of the graph has k connections (i.e. incident edges) is expressed
as

P(k) =k,

with ¢ a parameter typically not much greater than 2. This feature is
completely non-existent in random graphs. It means that only a vanishing
subset of the node set has very high degrees, whereas most nodes have
small degrees and thus are confined to small regions, as already observed
for small-world graphs.

2.1.8 Word graphs

This section will briefly deal with the broad definition of word graph in
its two main versions: the semantic-similarity-based and the co-occurrence-
based word graph. Word graphs are a primitive notion in Word Sense
Disambiguation and Induction that is often taken for granted and left to
the intuition of the reader. Actually, the modelling of a text in a natu-
ral language is a very complex topic that deserves deep attention. Here
we will just sketch some of the themes that will recur in the rest of this
dissertation; for more accurate treatments, we point among others to [Bie-
mann, 2007] and [Biemann and Quasthoff, 2009] (in [Ganguly et al., 2009]).

We will consider word graphs based on raw text (i.e., not organized
in a structure like with HTML or xMmL), either a single document or many
documents in a corpus, written in any natural language. The most sim-
ple and common form of word graph G = (V,E), and the one that we
will adopt throughout this work, is an undirected and usually weighted

7On the fascinating topic of fractals and how they can describe naturally arising struc-
tures, we point to the classic reference of [Mandelbrot, 1977].
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graph (see Section 2.1.1) that identifies the node set V with a portion of
the vocabulary of the corpus, i.e. the set of unique tokens of one or more
particular word classes, eventually lemmatized or normalized to have the
same capitalization, depending if we want to consider the strings in cou-
ples like peach/Peach, peach/peaches, etc. as the same or different words®.
In Section 4.3.1 we will describe more in detail and comment our partic-
ular setting for the implementation of wsr clustering algorithms. For the
present discussion, we simply assume that one node of G corresponds to
one word. What really distinguishes word graphs based on the same node
set V is primarily the way they represent relationships between words (i.e.
the edge set E), and secondarily how these relationships are evaluated.
Here we want to differentiate co-occurrences and (semantic) similarities.

Word graphs based on co-occurrences possess an edge (v,w) between
two words v,w € V if and only if v and w appear at least once in a given
textual unit of a document. A textual unit might take the form of a sen-
tence, a paragraph, a window of size 1, or even a tweet or any other
rather self-contained and recurring portion of the text which is deemed
to be significant. For example, choosing the sentence as the basic textual
unit, a minimal co-occurrence word graph of They eat the peach would have
e.g. (they,eat) as an edge. We immediately notice that some words are
more pervasive than others, such as the, so that in the word graph of a
longer text the node the would have an extremely high degree compared
e.g. to nouns like peach. The reason is that the is a so-called function or stop
word that fulfills a grammatical role and does not really carry a meaning
by itself (for more on this topic, see [Lyons, 1968]). In wsi, since we are
interested in word meanings, this is seen as a good reason to filter out
stop words or to use significance measures that penalize very frequent co-
occurrences. Some sort of significance measure is indeed needed to weight
the importance of the co-occurrence of two words: the fact that an edge
exists is actually a very weak statement, as it does not make a difference
between two words appearing randomly once in the whole corpus or of
one word appearing every time another one appears. In fact, the most
simple significance measure is frequency, but there are also more sophis-
ticated quantities, like mutual information (see Section 2.2.1), TF-IDF or
log-likelihood. Whatever is chosen as the weighting scheme of the word
graph, in the case of co-occurrences we usually speak about first-order rela-
tions: we weigh an edge judging and using data only from the immediate
context surrounding the two involved words.

8Tokenization, lemmatization and part-of-speech tagging are nontrivial tasks of Nat-
ural Language Processing that we will take for granted and not tackle here. A generic
reference about this topic is [Martin and Jurafsky, 2000].
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Word graphs based on semantic similarities (or on similarities, for short)
go a step further. They involve second-order relations between words to
define the edge set and its weighting scheme. Second-order relations are
based on first-order ones to establish not immediately apparent connec-
tions between two terms. For example, the fact that we recognize the two
sentences They eat the peach and The lioness devoured the gazelle as essentially
similar and that we see a commonality between eat and devour is not di-
rectly inferrable from the observed contexts of the two words, but requires
other considerations regarding the syntax of the sentences, the parts of
speech of the surrounding words, and so on (compare the discussion in
Section 1.1). So, the difference with respect to co-occurrence-based word
graphs is that the same significance measures are used not on the words
themselves, but instead on the features that describe those words. This
logic is at the basis of the weighted Jaccard distance that we will present
in Section 4.1.1, which measures the distance of two words according to
their respective node neighbourhoods in a co-occurrence word graph, and
of the semantic-similarity-based ego graphs presented in Section 5.2.1. We are
of course not limited to second-order relations, but could go on comput-
ing relations of the third, fourth or even higher order, albeit their linguistic
and semantic interpretation would not be so clear.

Two word graphs with the same node set V might then have very dif-
ferent edge sets E and weighting schemes. However, they are, in a sense,
complementary. First-order relations like co-occurrences take place on a
syntagmatic, horizontal level: in a sentence, words interact by means of
position and grammatical mechanisms to express a particular meaning.
So, a co-occurrence-based word graph explores the possible and accept-
able combinations that can give rise to a meaningful sentence. On the
other hand, second-order relations belong to a paradigmatic, vertical level’:
they correspond to the associations we make between words that allow us
to substitute one term for another leaving the syntagmatic structure of a
sentence unchanged. For example, the statement The lioness devoured the
gazelle could become The lioness devoured the gnu without altering the gen-
eral sense. Therefore, a similarity-based word graph tries to represent the
semantic relations between words.

Both kinds of graphs have their purposes in Word Sense Induction,
and, while still being both small-world and possibly scale-free graphs,
graph-based clustering algorithms react differently to their structures, as
will be discussed in Section 5.4.4.

9This fundamental distinction was proposed by [De Saussure, 1916]; see also [Lyons,
1968]. Similar considerations are also made in Section 1.1.1.
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2.1.9 Other mathematical instruments
2.1.9.1 Partition lattices and refinements

A discrete lattice'? is a discrete set X provided with a partial order, denoted
as <, i.e. a binary relation between elements of X that satisfies for any
x,y,z € X:

Reflexivity: x < x;
Antisymmetry: x <yandy <x = x=1y;
Transitivity: x <yandy <z = x <z.

Furthermore, for every couple x,y € X of elements, the lattice possesses
also a unique infimum and a unique supremum, denoted respectively as
xVyand x Ay. The infimum of x and y is the largest element z of X such
that z < x and z < y, and viceversa for their supremum. A very simple
discrete lattice is the set of natural numbers IN with the usual ordering:
the infimum of n and m will be min(n,m) and their supremum max(n,m).

If X is a finite, discrete set, we observe that we can associate a lattice
structure to the set of all its possible partitions. A partition'! of X is a
collection of subsets or clusters {Cy,...,C,} such that

1. GCX
2.C#Q

3.CiNC =0
4. U, G=X

forany i,j =1,...,n, i # j. We write the set of all partitions of X as C(X),
and, even if its cardinality is very large!?, we know it will still be finite.
We distinguish two trivial partitions: {X} and {{x1},...,{x}}, where all
clusters are singletons.

The partial order is given by refinement. We say that a partition
K = {Kjy,... Ky} is finer than another partition C = {Cy,...,C,} (and
conversely, C is coarser than K) if every cluster of K is contained in a
cluster of C, namely:

K<C & Vi=1,...mdj=1,...nst KigC]-.

19For an exhaustive discussion about the topic of this section we point to [Gritzer,
2011].

1Often the terms partition and clustering are used interchangeably, even if for the sake
of precision a clustering might be soft or fuzzy (in contrast to a hard clustering) and admit
overlapping clusters (i.e. the third condition of partitions does not need to hold). In this
case the term covering would be more appropriate (see [Arkhangel’skii et al., 2012]).

12The cardinality of the partition set of X, with |X| = N, is given by the N-th Bell or

exponential number [Bell, 1934], which can be expressed by % Yiro ’;{—,
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The refinement clearly satisfies reflexivity, antisymmetry and transitivity,

and since we have
Hal At} <C < {X}

for every partition C, we are granted to have an infimum and a supremum
for every couple of partitions. Indeed, this also grants us to have an infi-
mum and a supremum for every subset of C(X).

The partition lattice C(X) behaves quite differently from the power set
P(X), ie. the set of all subsets of X. As the latter, it is complete, but it
fails to be distributive, i.e. the infimum and supremum operations V and
A are not distributive. This means that refinement as a partial order is not
comparable to union and intersection, which underlie the partial order of

P(X).

We will use the concept of partition lattice and partition refinement
when defining the hyperclustering operator in Section 5.3.2.

2.1.9.2 Mean absolute deviation

The mean absolute deviation (MAD) is a measure of statistical dispersion
(about this topic we remand to [Dixon and Massey Jr, 1957]) that rep-
resents how far the values of an observed random variable stray from a
central index (like e.g. the mean) on average.

If x1,...,x, are n observed real values, we write their mean as

and define the mean absolute deviation from it as
1 n
MAD = EZ‘xi_”"
i=1

i.e. as the average of the absolute values of the differences between mean
value and observations. The only case where the MAD is 0 occurs when
all observations assume the same value. Otherwise, this quantity is not
normalized and its interpretation is susceptible to the magnitude of the
x;’s, but it can be normalized e.g. dividing by .

We will be interested in using the MAD in Section 5.4.4 on the observed

cluster sizes in a clustering, to compare the skewness inherent to each
clustering algorithm.
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2.2 Evaluation and significance measures for WSI

In Section 1.3.3 we briefly touched the issues related to the evaluation
of unsupervised systems for Word Sense Induction. Without further in-
dulging in the theoretical debate, here we want to present and describe in
succinct detail some of the more wide-spread evaluation measures cited in
that section, besides the canonical F-measure of precision and recall (see
[Martin and Jurafsky, 2000]). We will use some of them in our pseudoword
evaluation framework (BCubed, Section 2.2.2; Nm1, Section 2.2.1.1) and in
the creation of our ego graph data sets (LmM1, Section 2.2.1.3; see also Sec-
tions 2.1.5 and 5.2.1). In Sections 5.4.1 and especially 5.4.1.1, based on the
data at our disposal, we will make some considerations about their be-
haviours.

In an unsupervised setting, in the absence of a ground truth known
a priori it is useful to be able to compare two different clusterings of the
same set (in our specific case, a word set modelled in a given way). The
following measures can all be seen as giving an interpretation of what it
means for any two sets to be “similar”.

2.2.1 Mutual Information

Mutual information (mI) is a quantity that arises from the field of Infor-
mation Theory [Cover and Thomas, 1991, Shannon, 2001] and is usually
interpreted in terms of bits or simply as the indicator of how much infor-
mation is shared between two random variables. In other words, mutual
information measures how much a discrete random variable can tell us
about another discrete random variable, and viceversa. The definition of
entropy at the basis of M1 has given rise to a whole family of entropy-based
evaluation metrics, some of which are presented in this section.

Mutual Information between random variables X and Y is based on
the concept of entropy. Mathematically, we define the entropy of X as

H(X) = —)_ Px(x)log Px(x) = —Ep, (log Px), (2.11)

where Py is the probability distribution according to X and Ep, is the ex-
pected value with respect to it. The function H(X) satisfies some desirable
conditions and measures the uncertainty of X, interpreted (if log is the bi-
nary logarithm) as the minimum number of bits necessary to describe all
possible outcomes of X. Using conditional probability distributions, the
conditional entropy H(X | Y) is defined analogously as in (2.11). We note
that conditional entropy is not symmetric, i.e. H(X | Y) # H(Y | X). Now,
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the mutual information between X and Y can be defined as
I(X;Y)=H(X)—H(X|Y), (2.12)

that is, the uncertainty about X reduced by the knowledge about X given
us by Y. It can be shown that by definition

I(X;Y) = H(X) — H(X | Y) (2.13)
=H(Y)—H(Y | X) (2.14)
_ Pxy
= Ep,, <log PXPy) , (2.15)

where Pxy is the joint probability distribution of X and Y, and Px and Py
its marginals. This quantity is absolute, i.e. it depends on the values that X
and Y can assume. We notice that very often in practice, if the mentioned
distributions are not known a priori, their maximum likelihood estimates
are used.

2.2.1.1 Normalized mutual information

It can be shown that I(X;Y) is a metric and that it is not bounded. Thus,
to be better able to compare the degree of mutual information present
between different couples of random variables, it is often practical to use
a normalized version, usually falling in the interval [0,1]. There is not
just a unique possible normalization. However, the one that we will use
in Chapter 5 when performing our pseudoword evaluation follows the
interpretation of [Strehl and Ghosh, 2002]: there it is observed that

I[(X;Y) < min (H(X),H(Y))

and
H(X) = I(X,X),

so that an analogy can be made with the normalization of an inner prod-
uct. For example, on a real Euclidean vector space we can define the inner
product of 7 = (vy,...,v,) and @ = (wy,...,wy,) as - W = Y1, v;w;, and
the norm of a vector as ||| = V7 - @ = V2. The corresponding normal-
ized inner product will be

N@@-@) =

On the same note, the definition of normalized mutual information (NMI) that
we will use is
I(X;Y)

NMI(X;Y) = THORT

(2.16)
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It has the desired property that NMI(X; X) = 1 and is of course symmetric
like I: NMI(X;Y) = NMI(Y; X).

Normalized mutual information, more so than its absolute counter-
part, can be used to compare any two sets, and we are particularly in-
terested in the case of two partitions (or clusterings) of the same space,
where a Nm1 of 0 represents total disagreement and 1 identity. A cluster-
ing C = {Cy,...,Cx} of set V can be represented as an ordered sequence
of labels {1,1,3,5,34, ...}, where the label in position i points to the cluster
C; to which the i-th element of V belongs. These labels can be seen as
the observations of a random variable. The normalization makes the final
score independent from the particular value associated to a cluster.

Homogeneity and completeness Sometimes NM1 is referred to as V-
score, as this is the name of an evaluation measure presented in [Rosen-
berg and Hirschberg, 2007]. However, both measures are one and the
same, as e.g. proved in [Remus and Biemann, 2013]. The definition given
for the V-measure gives nonetheless an alternative interpretation of NmI:
it is the harmonic mean of the homogeneity and completeness scores of a
clustering C with respect to another clustering K (often thought of as the
ground truth). Homogeneity is similar to purity and is defined through
entropy: a clustering C is homogeneous if the conditional entropy of its
clusters with respect to clustering K is zero. This means that the distribu-
tion of the elements in each cluster C € C is skewed towards one cluster
K € K, ie. C contains (nearly) only elements of cluster K. Conversely,
completeness is symmetrical to homogeneity and is based on the condi-
tional entropy H(K|C): this value tells us how much elements of a cluster
K € K are effectively concentrated in a single cluster C € C.

We will discuss the properties and biases of NM1 in Sections 5.4.1 and
5.4.1.1. The implementation of NmI that we use is that found in scikit-learn
[Pedregosa et al., 2011], a Python package.

2.21.2 Adjusted mutual information

A further variant of mutual information used in the field of Word Sense
Induction is adjusted mutual information (amr). It was proposed in [Vinh
et al., 2009, Vinh et al., 2010] and derives from the observation that mutual
information tends to assume high values between clusterings with a large
number of clusters, even if no real information is shared. Therefore, a
correction for chance, using the expected value of mutual information as
an index of centrality, can be introduced and the following new evaluation
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measure is defined as

I(X;Y) — Epy, (I(X;Y))
max (H(X),H(Y)) — Ep,, (I(X;Y))"

AMI(X;Y) =

Again, as for NMm1, this quantity is relative and independent from the exact
values assumed by X or Y.

The definition of an adjusted mutual information was strongly moti-
vated by the evaluation of task 14 on Word Sense Induction & Disambigua-
tion at SemEval-2010 [Manandhar et al., 2010]. There, a bias of F-score and
NMI (which will be discussed in Section 5.4.1.1) was noticed, after which
AMI was employed and a new evaluation (also using BCubed, see Section
2.2.2) was published!®. However, in our pseudoword evaluation frame-
work (described in Chapter 5) we decided to just use Nm1, as the number
of found clusters is quite contained.

2.2.1.3 Lexicographer’s mutual information

The final variant of mutual information that we will consider and put to
use to assess the significance of word co-occurrences or syntactical de-
pendencies (see Section 5.2.1) is the lexicographer’s mutual information, also
called local mutual information (Lmi1) [Kilgarriff et al., 2004, Evert, 2004]. The
quantity defined by the relation (2.12) takes into consideration all the val-
ues assumed by two random variables, and is the expected value over all

elements of the form
Pxy(x,y)

Px (x)Py(y)’
where x and y are observations of their respective random variables. The
quantity (2.17) is called pointwise mutual information (PM1) and measures
how significant the co-occurrent observation of two values assumed by X
and Y is. If X and Y are independent, their rmr is 0: no information is
gained and the co-occurrence of x and y are merely random. On the con-
trary, the higher the rmi1, the more meaningful is their co-occurrence, i.e.
a stronger dependence is implied. Again, maximum likelihood estimates
are used to approximate these probability distributions.

In a text, we might consider the number of times a given word ap-
pears as the value assumed by an underlying random variable, and thus
measure the significance of the co-occurrence of two terms. However, pm1
has been shown to assign too high scores to word pairs with low fre-
quencies: the measure has too few data to give a right estimate and thus
overestimates the co-occurrence. To counterbalance this phenomenon, Lm1

(2.17)

BThis new evaluation can be found at https://www.cs.york.ac.uk/
semeval2010_WSI/task_14_ranking.html.
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is defined as the product of rm1 with the frequency of the observed pair
(x,y). If we denote the frequencies of words v and w by ¢, and ¢y, the
frequency of their co-occurrence by ¢y, and the total number of words in
the text as N, we will write their lexicographer’s mutual information as

c

LMI(v,w) = ¢y log (N Uw ) . (2.18)
CoCw

This way, it will be given much more importance to word pairs that also

appear a significant number of times in the text than to random infrequent

co-occurrences.

2.2.2 BCubed measures

BCubed comprises precision and recall metrics, together with their result-
ing F-score, and its origin can be retraced to the paper by [Bagga and
Baldwin, 1998]. In [Amigé et al., 2009], it is claimed that BCubed satis-
fies many desirable properties, like the rag bag one defined by them, as
opposed to other metrics like the entropy-based ones explored in Section
2.2.1. However, we will also identify some bias of BCubed when comment-
ing our pseudoword evaluation in Section 5.4.1.1.

The BCubed metrics do not take whole clusters as the object to evalu-
ate, but instead take an average over “local” precision and recall scores
associated to each element. Let us assume that C = {Cy,...,C,} and
K = {Kj,..., Ky} are two (not necessarily different) clusterings of a set
V (we will assume that they are partitions and thus overlaps between
clusters are not allowed). For each element v € V, we will denote with

ce(v) €{1,....n} and cx(v) € {1,... m}

the cluster to which v belongs according respectively to C or K. Then, we
can define two symmetrical quantities for each element v:

p(v) = Y. L(cx(w)=ck(v))

CCC (?}) WECCC (v)

and
1

o) = — L 1(cc(w) =ce(v)).

cx(v) wek

e (0)

If our perspective is to take K as representing the (true) classification of
the elements of V to which we compare C, we will conventionally call p(v)
the precision of v and r(v) its recall. However, if we are instead comparing
IC to C, the situation is reversed. In our notation we will consider the first
case.
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The quantity p(v) measures the ratio of elements in the cluster of v
(according to clustering C), including v itself, that also belong to the same
cluster of v according to K. For r(v) the computation is reversed and sym-
metrical, from C to C.

From here, we compute the averages over V of the two quantities:

1

P(C,K) = v Y. p(v), (2.19)
veV
R(C,K) = |1V\ Z‘:/r(v) (2.20)

and call them respectively the BCubed precision and BCubed recall of C
with respect to K (or viceversa, as observed before). The BCubed scores
P and R have an intuitive interpretation: when finding an element v in
a cluster C, P(C,K) will tell us how many other elements in that cluster
belong on average to the same class of v. On the other hand, R(v) will tell
us how many other elements of the class of v we will find in C.

Finally, the BCubed F-score will be the harmonic mean of BCubed pre-

cision and recall:
2P(C,K)R(C,K)

P(C,K) +R(CK)

This quantity is symmetric and unique for each couple (C,K).

F(CK) =

Due to this symmetricity, we can use the BCubed F-score as a generic
similarity measure between two sets, and in particular between two clus-
terings of the same set. We will do this in Chapter 5 and discuss some
properties and biases of BCubed in Sections 5.4.1 and 5.4.1.1. In [Amig6
et al., 2009], BCubed measures are easily extended to the case of soft clus-
terings, i.e. clusterings that are not strictly speaking partitions (see note
11 in Section 2.1.9.1), in which clusters can overlap. We make use of the
implementation of this extended BCubed measures found in the Github
repository [Hromic, 2015].
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Chapter 3

Existing graph-based
clustering algorithms for WSI

In this chapter we will detail the functioning of each of five existing graph-
based approaches and algorithms used for wsr that we selected from lit-
erature, highlighting their stronger points and what might be their weak-
nesses, and introducing the recurring leitmotifs that we encounter in Word
Sense Induction. The final Section 3.6 recapitulates the characteristics of
the examined algorithms and gives the motivations for presenting our
novel clustering algorithms in Chapter 4.

3.1 Markov Cluster Algorithm

The Markov Cluster Algorithm (McL) is a generic clustering algorithm
based on flow simulation originally expounded in [van Dongen, 2000],
where it was first applied in biology for the detection of protein families
[Enright et al., 2002], but subsequently found a great range of applications
wherever graph clustering is needed, including the field of Word Sense
Induction. The pw algorithm in Section 3.2 is one of the systems making
use of it.

MCL is based on what the author calls the graph clustering paradigm: A
random walk in a graph that starts in a dense region (see Section 2.1.1) is
likely to leave that region only after many iterations. From the point of
view of (information) flows in networks (cf. Section 2.1.3), this means that
the flow should be stronger inside a dense region and weaker between
two such regions; if strong flow can be emphasized and at the same time
weak flow deemphasized up to the point of being removed, the natural
cluster structure of the graph will result from the regions still connected
by a flow.
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Inspired by previous notions of combinatorial clustering (for an overview
on this topic see [Levin, 2015]), which determines if two vertices belong
to the same cluster based e.g. on a given number of connections between
them, the mcL algorithm accomplishes to simulate flow by transforming
the graph into a Markov network. A Markov network, or Markov random
field, can be defined as a weighted graph where for every node the weight
sum (i.e. the strength) on its outgoing edges is exactly 1 (see [Kindermann
and Snell, 1980]). We notice that an undirected graph G, like the typi-
cal word graph, can be transformed into a Markov network by making
it directed and rewriting each edge as a couple consisting of an outgo-
ing and an ingoing edge. The Markov Cluster Algorithm is then driven
by an algebraic process on the weighted adjacency matrix M (see Section
2.1.4) of this newly obtained Markov network. This matrix M represents
a Markovian random walk! on the original graph G, taking the weights
of G as a measure of how much one node is attracted to another, i.e. mij
measures the probability that a random walk starting from i will make
a step towards j. The sum over each column of M is 1; such a matrix is
called column stochastic. Clearly, M is no longer symmetric like the original
weighted adjacency matrix A of G, although it is still diagonally similar to
it, i.e. it exists a normalizing matrix A such that M = AA.

The k-th power of M is still a column stochastic matrix. This means that
k

an entry m;; represents the probability that a random walk starting from
node i will wind up in node j after exactly k steps. According to the graph
clustering paradigm, we expect the probabilities inside a dense region to
be higher than between different dense regions. For k — oo the matrix
MF possesses a limit, either in the form of a matrix M* or of a cyclical se-
quence of n matrices M°,...,M;’. Under some very weak assumptionsZ,
verified in practice for every word graph, the limit will be a single ma-
trix. Its columns are all equal, representing the state of equilibrium of
the random walk. This homogenous limit matrix is not meaningful to our
ends, since it simply asserts that eventually every node will be equally
attracted by any other node. To identify the desired natural cluster struc-
ture of the graph, the Mcr algorithm intervenes in the Markov process by
applying an inflating operator I', at some time point k of the random walk
when contrasts in the values of the columns are still sensible, with the aim
of accentuating strong transition probabilities (i.e. strong flows) at the ex-
penses of weaker ones. The operator I'; acts non-linearly on the columns

of MF, taking the r-th power of each entry and rescaling each column to

1A good reference for these kinds of processes is [Norris, 1998].

2 All the components of the graph G have to be regular and ergodic. Here, differently
from Section 2.1.7, a graph is regular if the greatest common divisor of the set of lengths
of all its circuits is 1, and it is ergodic if from every node there is a path to any other node
of the graph (see Section 2.1.2).
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obtain again a column stochastic matrix. Values of r between 0 and 1 have
the effect of increasing the homogeneity, whereas values greater than 1
increase the dishomogeneity, in the sense that the gap between higher and
lower transition probabilities grows. The resulting matrix I',(M*) can be
taken as a new random walk process and iterated again to strengthen the
stronger flows.

The mcL algorithm thus consists of two cyclically repeated phases: an
expansion step, iterating k times the random walk on G, and an inflation
step, dishomogenizing the transition matrix MF taking the r-th power of
its entries and rescaling its columns. It is shown, heuristically for the
generic case and with the aid of mathematical results for specific starting
assumptions, that eventually also the MCL process converges to a matrix
M, an equilibrium state where the remaining non-zero entries represent
the strongest attractions between nodes. The number of necessary itera-
tions for convergence is between 10 and 100. On the basis of theorems
proven in [van Dongen, 2000], the structure of M* corresponds to a (pos-
sibly fuzzy; see footnote 11 in Section 2.1.9.1) clustering of G, determining
which nodes are at the center of dense areas and which nodes are attracted
by them. Usually both parameters k and r are taken to be 2. The granular-
ity of the final clustering is strictly dependent on the value of r: the higher
its value, the more weaker flows are penalized and eventually removed.
For this reason, a higher value of r causes a greater splitting of G and a
more fine-grained clustering.

All in all, the mcL algorithm is very flexible, elegantly defined and
based on strong mathematical foundations. The complexity of its straight-
forward implementation is O(|V|*), where |V| is the number of nodes in
the graph. However, actually used implementations perform a column-
wise pruning of the intermediate matrices, retaining only the c largest val-
ues. The parameter ¢ normally falls between 500 and 1500. Although the
resulting process does no longer coincide with the exact mathematical def-
inition of McL, convergence to a limit is still granted and sped up. The or-
der of its time complexity falls then between O(|V| c2) and O(|V|*log(c))
for very dense graphs. We notice that pruning might introduce a slight
non-deterministic factor to the Markov cluster algorithm if a choice has to
be made between two equally retainable or discardable values: different
runs might yield slightly different results.

The mcr algorithm has found use in many fields of application where
graph clustering is relevant. However, the author reports that its behaviour
can be quite unpredictable when the graph has a big diameter and is very
dense, even if its degrees and weights have a homogeneous distribution.
In such cases, it becomes very susceptible to small variations in the graph
structure and outlier nodes, leading to perturbations in the clustering and
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a greater-than-expected splitting of the supposed natural clusters. Also,
the coarseness of the “natural cluster structure” found by the algorithm
is very finely regulated by the inflation parameter r, which needs to be
set a priori, a fact that is not always obvious, especially when handling
word graphs with unknown patterns. This problematic actually pertains
to the generic issues encountered with the unsupervised nature of cluster-
ing, as discussed in Sections 1.1.1 and 1.3.4, and the need to choose the
best r (alongside the pruning parameter c) just remands to an a posteriori
tuning and to the necessary use of external knowledge. The very generic
nature of McL, despite being one of its strong points, means that its results
applied to Word Sense Induction depend more on the way the underly-
ing word graph was built than on the mathematical intuitions that lead
to its definition. In other words, using the McL algorithm as the last step
in a wsI process requires a big focus on the construction of the context-
modelling word graph. Under this light, we notice that the effectiveness
of the Mcr algorithm on small-world graphs (see Section 2.1.7) has not
been sufficiently investigated. In a small-world graph the proposed graph
clustering paradigm does not seem to hold quite that clearly: the hub
nodes are natural attractors, so that the flow is very likely to move away
from denser regions and to be distributed rather homogeneously in the
graph. The consequence of this would be an inability to detect a cluster
structure, despite the small diameter. In mathematical terms, the infla-
tion step might prove not sufficiently strong to offset the extremely rapid
convergence of a Markov chain to its uniform stationary distribution (cf.
[Tahbaz-Salehi and Jadbabaie, 2007]). Of course, the weight distribution
on edges is an important factor, and again implies that the construction of
the word graph has a notably large impact on the MmcL clusters.

The mcr algorithm has inspired other systems in the realm of wsi, the
most known of which is Chinese Whispers, detailed in Section 3.3.

3.2 Dorow & Widdows

The basic approach presented in [Dorow and Widdows, 2003] (hereafter:
DW) is based on the assumption that the local subgraph of an ambigu-
ous word w in a global word graph will naturally decompose in relatively
independent regions, each of them representing a different sense that w
can assume in the corpus. The paper itself harks back to [Widdows and
Dorow, 2002], where an allegedly unsupervised (actually semi-supervised)
system for lexical acquisition is proposed.
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Instrumental to the execution of the pw method is the way the word
graph is built. The aim is to obtain a weighted similarity word graph (see
Section 2.1.8) from a corpus, exploiting common lexical patterns of co-
ordination and disjunction. In this specific case, only word couples (X,Y)
occurring in the contexts “X and Y” or “X or Y” are considered, and
their number is further reduced by requiring both X and Y to be nouns;
a part-of-speech tagger is used to this purpose. Other patterns of parts
of speech, like verb-noun, where the noun is assumed to be an object, or
noun-noun, where the first noun is assumed to be modifying the second
one, are all possible, but they are discarded because they are not symmet-
ric relations like those based on the co-ordinating conjunctions and and or.
A symmetric relation naturally induces an undirected graph G = (V,E),
where the node set V' corresponds to the vocabulary and the extracted
couples (X,Y) form the edge set E. The weight on the edge (X,Y) is the
number of times X and Y co-occur in one of the contemplated patterns. A
preliminary pruning is applied, leaving each node X linked only to its top
n neighbours, i.e. the n words that co-occur the most with X. The param-
eter n is determined by the user of the algorithm as a way to regulate the
graph’s density. The ratio behind taking into account only co-ordinating
patterns is that they often occur in lists and comparisons between similar
entities, and as such already infer a coarse first stage of semantic equiva-
lence. Restricting the attention only to nouns is also useful to avoid mixing
different relations of more complex types, like the dependence between a
verb and its subject, and instead keeps the focus on finding words whose
referents share common characteristics (cf. Section 4.3.1).

In their previous work [Widdows and Dorow, 2002] the aim is to pro-
duce semantic word classes by gathering a given number m of similar
words around one or more seed words. We call S C V the seed node
subset of the semantic class C. Initially, we put C = S. The algorithm
progressively adds to C the best neighbouring node X from N(C)\C (see
Section 2.1.5), where best means that X maximizes the ratio

IN(X) N N(C)]
NI

This ratio measures how strong the connection of X to the subgraph in-
duced by C is. After having chosen X, the process is repeated considering
C U X as the new set to expand. When m nodes have been added, the algo-
rithm ends. According to the authors, this method is particularly effective
in limiting the risk of “contamination” of a semantic class due to wrong
associations caused by ambiguity. Expanding the semantic class of tree,
we might for example end up merging terms relative both to vegetables
and to industry. The key consideration here is that a polysemous term
like plant will act as a connector between all the different semantic word
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classes to which its senses belong; in the word graph, this means that an
appropriate neighbourhood of the node plant will be disconnected into
disjoint components if the node plant is removed from it. Each of such
components will be interpretable as one of the possible senses of plant.
Selecting an ambiguous term as the next node to add to a given semantic
class could then lead to the introduction in C of conceptually unrelated
words. This is the reason why we can argue about the true unsupervised
nature of the method presented in [Widdows and Dorow, 2002]: There is
the need to choose good “prototypical” terms as seeds, and the quality of
the resulting semantic class will be heavily dependent on this choice.

The prototype theory in semantics and cognitive science [Rosch, 2005]
asserts that among the members of each semantic category, like e.g. that
of plants, there are particular elements that can be defined as more central
than others, in the sense that they are more iconic or better embody the
concept of that category than other ones in the mind of the speaker. In
our example, a tree is a more prototypical plant than moss. On a linguistic
level, we can reinterpret a prototypical element as a word that belongs to
a given semantic class in a less ambiguous way than other members of
the same class. For example, a screwdriver will be more easily ascribable
to the category of tools than a nail, which is also often used to refer to a
body part. Polysemous, hence potentially ambiguous terms can be seen as
hubs in the small-world word graph of a corpus. This intuition has been
expanded into a synthetic definition of curvature for word graphs [Dorow,
2006] (see Section 3.2.1).

The pw method of [Dorow and Widdows, 2003] tries to attack the hubs
of the word graph G locally to induce word senses. Given an ambigu-
ous word w, an appropriate open neighbourhood G, (see Section 2.1.5)
is extracted; subsequently, also all one-degree nodes are progressively re-
moved. Depending on the kind of ambiguity of w, we expect G, to break
down into one or more connected components. In particular, in the case
of homonymy we expect clearly distinct disjoint components with rela-
tively high density, whereas in the case of polysemy we are more likely to
obtain loosely connected dense regions, since the senses of a polysemous
word are often semantically related and distinctions are not as clear-cut
as for homonymy (cf. Section 1.1). For example, wood as the material and
as a forest will probably share at least tree as a common neighbour. To
identify the dense regions corresponding to the semantic spheres of w,
the pw method resorts to using the Markov cluster algorithm (see Section
3.1) with a high inflation parameter r, trying to exploit the fact that the
considered word graph has a rather predictable structure. Noticing that
the sense distribution is often skewed (cf. again Section 1.1), to prevent a
dominant sense from overshadowing less frequent ones, the mcL is run
multiple times on the graph, each time finding the best cluster and then
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removing its elements from G, for subsequent runs of the algorithm, un-
til no further clustering is possible. The obtained clusters will represent
the possible senses of w. Thus the time complexity of this wsr clustering
approach is proportional to that already given for mcL, repeated a certain
number of time on successively smaller graphs. The authors devise to
name each cluster explicitly by aid of an algorithm found in [Widdows,
2003] that exploits the broad-coverage taxonomic structure of WordNet,
going thus one step beyond mere Word Sense Induction into the step of
(supervised) Word Sense Disambiguation.

The intuition behind the pw algorithm could be viewed as the proto-
typical one among graph-based clustering methods for Word Sense Induc-
tion. The different senses of a word will share different contexts, each con-
sisting of terms with numerous interconnections between them, but much
more weakly connected to terms outside that context. These assumptions
are substantially confirmed by the small-world structure of word graphs
[Ferrer i Cancho and Solé, 2001] (see Section 2.1.7). However, we notice
that the ease with which a word graph G can be decomposed into sense
clusters directly depends on how the graph is built. In the case at hand, the
selection criterion of the edge set, based on extracting just co-ordinating
patterns, already creates a partition induced by the particular equivalence
relation “X and/or Y”. This procedure, though, is only viable on very
big corpora, where such restrictive lexical sequences are more likely to ap-
pear in significant numbers. Further, only a fraction of all the nouns will
be represented: in [Widdows and Dorow, 2002] it is reported that only a
quarter of them makes it into the graph, i.e. only the most frequent ones.
More specifically, the authors construct their word graph from the British
National Corpus®, and of around 400000 different noun types therein, the
final graph consist of 99454 nodes connected by 587475 edges. Given these
premises, the inducted senses will be very coarse, and it will not be pos-
sible to disambiguate many less frequent words. Although only two pa-
rameters are at work here, the interaction between them is not clear: the
pruning parameter n regulating the density of the graph requires a big-
ger inflation parameter r to separate the sense clusters, but in general we
might expect a finer clustering for low values of n, because would al-
ready split the graph into many connected components. As always with
parameters, there is no clear ideal choice of n. The authors propose an
evaluation against WordNet senses, but do not provide exact results. It is
questionable how the coarse inducted senses would compare to the very
fine-grained distinctions present in WordNet, and how e.g. the absence of
the corporate sense of apple in WordNet could be handled. Finally, we
remark that the pw method seems most suited to a coarse sense induction

3http: //www.natcorp.ox.ac.uk/
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on very big corpora, and less adequate for discrimination or disambigua-
tion. As is the case with most similarity-based approaches (here inferred
by lexical patterns), the elements of a sense cluster will be in a paradig-
matic relation with the examined ambiguous word and therefore most of
the time not co-occurring with it (see Section 1.1.1 and Section 2.1.8).
As a final remark, we notice that the definition of particular co-ordinating

patterns is heavily language-dependent, and not even easily definable or
even existing in many languages.

3.2.1 Curvature reinterpreted

In [Dorow, 2006] the author introduces the geometrical concept of curva-
ture, redefining and applying it to a graph and subsequently using it for
ambiguity detection and semantic class acquisition. There, curvature is a
quantity associated to a node and identified with its local clustering coef-
ficient. As seen in Section 2.1.6, the clustering coefficient of node w can
be equivalently expressed either in terms of density of its neighbourhood,
or in terms of possible triplets in which w participates with respect to all
possible triplets. Given any two nodes u,v in the neighbourhood of w,
these two points of view allow us to see the clustering coefficient c(w)
as linked to the average distance d between u and v, in the hypothetical
triangle delimited by w, u and v, expressed by the formula

c(w) =2 —d.

So, the larger ¢(w), the smaller the third side uv of the triangle, and thus
the higher the curvature of a space where an equiangular triangle with
side lengths 1, 1 and 2 — ¢(w) can be drawn. This point will become more
understandable when we present the notion of curvature in paragraph
4.2.3. However, here it suffice to say that consequently, the higher its cur-
vature, the more relevantly w is connected to its neighbours. It follows
that a node with low curvature is not particularly tied to any of its neigh-
bours, which could mean that it happens to be a polysemous word: it
acts as a hinge between denser regions that represent some senses. So, re-
moving nodes under a given curvature threshold will fragment the word
graph into different components, that we see as semantically homogenous
regions of the graph. Thus, in [Dorow, 2006] curvature is a way to cluster
the graph and to identify ambiguous words. We are not quite convinced
of this synthetic interpretation of curvature, in that it reduces simply to
considerations of density and does not take weights into considerations,
and still needs a threshold to obtain a clustering.
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3.3 Chinese Whispers

One of the most known and used graph-based algorithms in the field of
Word Sense induction is Chinese Whispers (cw) [Biemann, 2006], for its
speed and relative simplicity. The name is a hint to the children game
where a word is whispered from one participant to another until it comes
to the last one as a different word, transformed by the small distortions
during its transmission. The aim of the algorithm is to simulate the diffu-
sion of the information carried by each node in the network to determine
how it is distributed and what regions share the same information at the
end of the process.

Chinese Whispers is directly inspired by the Markov cluster algorithm
of Section 3.1 and could be considered a simplified version of it. As dis-
cussed there, the cycles of expansion and inflation steps define a sequence
of matrices converging to a limit. Even if the starting transition matrix
of the Markov random field related to word graph G is normally dense,
the new matrices in the sequence rapidly become sparser and sparser. To
further favour the converging process, the possibility to prune the inter-
mediate matrices leaving only values over a given threshold are discussed
in [van Dongen, 2000]. Chinese Whispers brings this to an extreme and
substitutes the inflating operator I', with maxrow: This new operator acts
row-wise instead of column-wise on a matrix M and sets to zero all en-
tries of a row except the largest one. This way, maxrow(M) has exactly
|V| non-zero entries, where V is the node set of the graph G = (V,E),
the same size of the square matrix M, and induces a hard clustering. The
matrix maxrow(M) is then multiplied to the weighted adjacency matrix of
G (see Section 2.1.4) for the expansion step, then maxrow is applied for the
next inflation step, and so on. Convergence is again granted, but instead
of a single process-invariant matrix the limit might be a pair of matrices
that represent an oscillating state of the clustering, in which some nodes
are constantly swapped back and forth between clusters. This, and that of
singleton clusters, is partially avoided by the graph-based definition of the
Chinese Whispers algorithm.

The Chinese Whispers algorithm is run on a weighted, undirected
graph G = (V,E) where weights are intended as similarity scores. Ini-
tially, each node represents its own class. At each iteration of cw, every
node is visited in random order and its new class is computed. A node
w acquires the class that is most represented in its neighbourhood: each
neighbour contributes to the strength of its own class by the weight on the
edge that connects it to w. The class with the highest score between all the
neighbours of w becomes also the class of w. We can see this process as
a majority voting. Each nodes exerts on its neighbours an influence equal
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to the strength of its connections, and information is passed on along the
strongest links. The process is continuous, contrarily to the previously
given matricial definition. This means that during the same iteration a
class is assigned immediately to a node, and this information is used right
away for the rest of the iteration. Homogenous regions tend to appear
rapidly and to stabilize when they expand until reaching the boundary of
other strongly represented regions. The state of balance that gives the final
clustering is attained in few iterations. However, true convergence is often
not reached: it can happen that a node w’s neighbourhood presents a cer-
tain symmetry that makes it equally possible to assign w to either of two
or more clusters. In this case, the algorithm will oscillate back and forth
between these two states, since the final result has to be a hard clustering.
Such situations are however quite marginal in the economy of the whole
clustering, and at that point the process can be ended. We notice that the
simultaneous updating of node classes and the random visit of the graph
make Chinese Whispers a non-deterministic algorithm, like the pruned
version of mMcL, as discussed in Section 3.1. This has as a consequence that
different executions may yield different clusterings.

Because of its nature, time complexity of the cw algorithm is at most
quadratic in the cardinality of G’s node set, as was the case for McL. Ac-
tually, since in each iteration all edges have to be visited at least once to
determine the strongest classes in a neighbourhood, the algorithm has a
time complexity of O(|E|). It can be linear in |V| for a very sparse graph
and quadratic if the graph is complete. In any case, a pretty stable cluster
configuration is reached in relatively few iterations.

Chinese Whispers has been applied to many flavours of Word Sense
Induction and previously tested on many kinds of artificially generated
graphs. A clear example of graph with separate dense regions is the un-
weighted n-partite clique, consisting of two cliques of n nodes intercon-
nected on a 1-to-1 basis. If each clique has () = w edges, between
cliques we will have n edges. The ratio between inner and outer edges of
each clique is thus “5! and grows linearly. Experimental results in [Bie-
mann, 2006] show indeed that as n grows, two clusters are nearly always
reliably identified, whereas the algorithm struggles for small values of n
and often assumes there is only one cluster. Of interest to wsr and NLP
in general is the behaviour of Chinese Whispers on small-world graphs.
In [Biemann, 2006] it is investigated how successful cw is in discrimi-
nating two small-world graphs of equal or very skewed sizes that were
merged along different percentages of the nodes of the smaller graph. As
expected, the more merged, the more difficultly the two components are
recognized, and not surprisingly the more skewed mixtures are the easiest
to solve. This highlights a first tendency of cw to provide a coarse cluster-
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ing and to identify a bigger, central cluster accompanied by smaller ones,
originating from dense and very tightly interconnected marginal regions.
Chinese Whispers has been further tested for different NLP tasks, among
which for Word Sense Induction. The approach of the pw algorithm has
been followed closely (Section 3.2). A global co-occurrence graph is built
from the British National Corpus using all co-occurrences and not just co-
ordinating patterns. Edges are weighted by log likelihood ratio [Dunning,
1993] and pruned if their weight falls under a given threshold. Then, the
open neighbourhood of a given term is extracted and Chinese Whispers
used instead of mMcrL. Comparison with the method described in [Bor-
dag, 2006] show that Chinese Whispers yields results in line with those
of algorithms specifically designed for wsi. In [Biemann, 2007] a more
thorough analysis is conducted and some ways to approximate a deter-
ministic outcome are devised. A hierarchical adaptation of the algorithm
is also presented by means of successive runs of Chinese Whispers on the
biggest cluster in the clustering at each step. Clearly, as with every hierar-
chical approach, the problem is at which level in the hierarchy to stop the
splitting. Moreover, in later works different parameters are introduced to
allow greater control on Chinese Whispers’ clustering process.

Since its conceptual filiation from the Markov cluster algorithm, Chi-
nese Whispers shares many peculiarities with it. It is extremely fast and
easy to implement, and the fact that it found so many usages in NLP bears
testimony to its versatility. Even adding different kinds of parameters
to regulate the output, the basic clustering of Chinese Whispers remains
coarse. One can wonder how this and the information distribution con-
cept cope with the structure of one single dense small-world graph to be
clustered. Since there are hubs, i.e. nodes with very high degree that reach
many other nodes in the graph, it arises the possibility that information
starting from a small and very intraconnected subgraph (possibly a clique)
can propagate extremely quickly to other parts of the graph by means of
the hubs. With a metaphor, if one locally very strongly represented node
class can “conquer” the strategic crucial points of a small-world graph,
which grant access to most of the other nodes, it will have the opportunity
to impose itself on the whole graph, overriding other significantly rep-
resented local classes. We have to ask ourselves is this is a desired effect,
and of course this claim has to be proved experimentally. However, it gives
evidence to the difficulties possibly encountered by Chinese Whispers in
detecting less frequent senses in a co-occurrence or semantical-similarity-
based word graph. This behaviour can be mitigated by pre-processing the
word graph, e.g. pruning it under a given threshold, as it was done in [Bie-
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mann, 2006], and making it sparser. On the contrary, Chinese Whispers
seems to be less sensitive to outliers with respect to MmcL. Of course, these
considerations further illustrate how decisive to the final result the form
of the underlying word graph is.

3.4 HyperLex

HyperLex [Véronis, 2004] is a system especially developed with the task
of Word sense Induction and Discrimination in mind, in particular to or-
ganize a web user’s queries, and explicitly exploits the small-world and
scale-free structure pervasive to word graphs. It comes also equipped with
a visualization tool to explore the clustering; unfortunately, this tool does
not seem to be publicly available.

HyperLex works on a co-occurrence word graph G. Two words are said
to co-occur if they appear in the same paragraph of a text, and they form
a couple of nodes connected by an edge in G. Only nouns and adjectives
are considered, using specific tools for part-of-speech tagging and lemma-
tization. A first pruning leaves out contexts, i.e. paragraphs, containing
less than 4 terms after filtering, all words with less than 10 occurrences
and all co-occurrences with a frequency less than 5, three arbitrarily set
thresholds. A weight, intended as a semantic distance, is assigned to each
edge, corelated to the conditional probability of observing one word when
also the other one appears in a paragraph. This probability is computed by
means of maximum likelihood. A value of 0 means that two words always
co-occur. The resulting weighted, undirected graph G is again pruned re-
moving all edges with a weight above 0.9, another arbitrarily determined
threshold. As is to be expected, G satisfies all the criteria to be considered
a small-world, scale-free graph. It is shown that raw frequency of a word
is directly correlated to the degree of its corresponding node in the word
graph. This can be explained noting that a word which appears very of-
ten is more likely to have more significant similarity scores to other words
than less frequent terms.

As is common to the other approaches examined in this chapter, the
basic assumption of HyperLex is that in the co-occurrence word graph
modelling the context of a target word w, its different senses will form
very dense regions, loosely interconnected between them. In particular,
the starting consideration is that every dense region of this kind will have
a component which rises above the others in terms of degree, and that the
author calls root hub. Thus, reversing this observation, it will be possible
to identify the high-density regions by locating each time the node with
the highest degree, along with its neighbourhood. As an example, let
us suppose that we are examining the local graph G relative to the word
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peach. If we determine that the node fruit has the highest degree in G, we
can isolate it together with all its neighbouring nodes and assume that this
is the first dense region, and consequently the first sense, of peach. The root
hub is seen as the element that holds this component together, the “least
common factor”. Now, with a take similar to that of the pw algorithm of
Section 3.2, removing this subgraph from G means very probably that the
remaining graph does not contain this sense anymore, allowing us to select
the next node with highest degree as the next root hub and to start again
the process. The process is iterated, but some heuristics are introduced to
find sensible candidates for the root hubs towards its end, when most of
the nodes will already have been removed. It is required that a node have
at least 6 neighbours and that its weighted clustering coefficient* be above
a threshold indicated as 0.8 in the paper; both thresholds were determined
experimentally. Further, in the actual implementation of the algorithm
the visit in order of degrees is actually approximated by a visit in order
of frequencies, which were obtained during the text pre-processing step.
At the end of this process, the root hubs, and so the number of sense
clusters, will have been identified. In the subsequent step of the algorithm,
all the nodes are assigned to their nearest root hub to give form to the
sense clusters. Considering target word w as the root of a tree and the
retrieved root hubs as its sons, a minimum spanning tree is computed
over G. Since the weights in the graph represent distances, the distance
between two non-adjacent nodes is just the minimum sum of the weights
on a path connecting them. The used minimum spanning tree algorithm,
like e.g. Kruskal’s [Kruskal, 1956], will then assign each node to its nearest
root hub, possibly correcting incorrect assignments of the first step. The
whole clustering process has time complexity O(|V|+ |E|log |E|). The first
addend comes from the progressive descending visit of the nodes in the
first step, and the second addend amounts to the worst case for Kruskal’s
minimum spanning tree algorithm.

The structure of the so-obtained minimum spanning tree T that de-
scribes all the sense clusters of target word w is used to disambiguate a
co-occurrence of w in the original text. A score s; is associated to each
node v in T relative to a root hub h;: precisely,

1
1 + d(l’ll‘,v)

if v descends from root hub h; and 0 otherwise. The distance function d
is defined again as the minimum weight sum on the path connecting the
two nodes in T. The score is defined so as to be 1 for a root hub. Given
a context of w in the text, each word therein that also appears as a node

Si

4As discussed in chapter 2.1.6, there is no univocally defined weighted version for
the clustering coefficient. HyperLex makes use of one defined by the author in the paper
[Véronis, 2004].
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in T contributes to the score of one of the root hubs of w. In the end, the
root hub that scores highest will determine the sense of w in that context.
HyperLex even takes into account a reliability coefficient to measure how
confident the disambiguation is, which is defined as p = 1 — ﬁ, where
A is the difference between the best and the second best score.

Since one of the goals of HyperLex is to help a web user to organize its
online queries, word graphs for evaluation were induced by Internet pages
where the target word appears. This led the pre-processing step to include
a list of web-specific stop words like menu or home, that introduces too
much noise in the word graph, along with the already present numerous
parameters that regulate the pruning of G and the clustering step of the al-
gorithm. Ten target words which had been reported to be problematic for
human annotators in [Véronis, 1998] were considered. The algorithm was
used to discriminate random contexts of each target word, thereafter com-
puting standard precision and recall scores with respect to the judgment of
a single human annotator. High scores were reported for sense tags with
a reliability score p above 0,5. In general, HyperLex seems to encounter
some difficulties detecting very general uses of a word, as it could be for
home in the expression be home to, which can be used in just about any con-
text, but succeeds in isolating more specific uses with a frequency above
5% of the total occurrences of the target word. How many specific senses
a word will have and their specificity will depend from the kinds and the
specialization of the texts used to build the word graph. To this regard,
we want to briefly express some thoughts about the mathematics behind
HyperLex. We notice that if the root hub detection process is iterated in its
non-approximated form (i.e. degree is used instead of frequency with no
heuristics) until no more clusters can be isolated, an independent dominat-
ing set> of G will be found. From graph theory it is known that such set is
also a minimal dominating set and a maximal independent set. Although the
computation of a minimal dominating set with minimum cardinality is an
Nr-hard problem®, it is possible to define boundaries for its size depend-
ing on characteristics such as the graph’s maximum or minimum degree
and its degree sequences. This means that in principle it is possible to
exactly determine a priori, or at least to approximate very closely, the num-
ber of sense clusters that HyperLex will find when running on the word
graph. At one extreme, if G is complete just one cluster will be returned,
which may be an unwanted result. The pruning in the text pre-processing
step is introduced also to avoid this inconvenient, but since it alters the

5A dominating set of graph G = (V,E) is a subset D of the node set V such that each
other node in V\D is neighbour to a node of D. In other words, the neighbourhoods of the
nodes in D cover the whole node set V. An independent set of G is a subset of V consisting
of not adjacent nodes. For a complete study on these subjects, see [Haynes et al., 1998].
60n the issue of NP problems see [Garey and Johnson, 1979].
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degree distribution of the graph, it is possible to measure its impact on
the number of found clusters; in particular, the higher the thresholds, the
more clusters will be found, even if G remains connected. Apart from
this difficultly controllable side effect caused by parameters (compare Sec-
tion 1.1.1), the definition of this clustering process has as a consequence
that the number, and in practice also the structure, of the sense clusters
is exactly determined by the mere topology of G and is not influenced by
the weighting scheme. Information given by the weights is only used in
the pruning and in the discrimination step; the reassignment of nodes to
the root hubs will largely correspond to their neighbourhoods, with only
minor shifts. This comes out as rather counterintuitive, as weights are
introduced in word graphs with the purpose of revealing more about the
structure of a word’s context, but here they seem to be totally disregarded.
Once again the method used for building the graph, along with the tuning
of many parameters, crucially determines the final result, in ways which
are not always easily predictable.

3.5 MaxMax

Starting from a word co-occurrence model similar to that used by the pw
algorithm seen in Section 3.2, MaxMax [Hope and Keller, 2013] is a soft-
clustering algorithm that exploits the weighting scheme of the word graph
and the topological structure of a derived graph. The algorithm itself is
very simple and boasts a linear time complexity in the number of edges.

The weighted, undirected word graph G is like in [Dorow and Wid-
dows, 2003] obtained from a part-of-speech tagged corpus by extract-
ing nouns appearing in comma-separated lists of noun phrases and co-
ordinating patterns governed by the conjunctions and, nor and or. This
way, though originating from co-occurrences, G simulates a quite sparse
similarity word graph, as discussed in Section 3.2. Log likelihood ratio
[Dunning, 1993] scores measuring the significance of the co-occurrence
between words are used as edge weights.

Given a word w to disambiguate, its open neighbourhood G, is ex-
tracted as w’s local graph from the global graph G. The key point of
MaxMax is the transformation of this pseudo-similarity local graph into
a new unweighted, directed graph that represents semantic dependencies
between words. To this end, a notion of maximal affinity between neigh-
bouring nodes is defined. A node u is said to have maximal affinity to
another node v if the weight on the edge (1,v) is maximal among all the
weights on edges incident to u. The node v is then called a maximal vertex
of u, implying a directed relation from v to u. A node can have more than
one maximal vertex. The principle is to obtain clusters made out of just
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affine nodes. Now, the original graph G, = (V,E) can be rewritten as
the new graph G/, with the same node set V, but retaining only the edges
between maximally affine nodes, directed so as to go out from the respec-
tive maximal vertex. Since G/, is dispossessed of weights, the information
that we can infer from it are merely of a topological kind. In particular,
the aim is to decompose the graph into maximal quasi-strongly connected
subgraphs. A graph is said to be quasi-strongly connected if, for every cou-
ple of nodes v and u, there exists a node z, not necessarily coinciding with
v or u, such that there is a directed path from z to v and from z to u [Ruo-
honen, 2013]. A quasi-strongly connected subgraph of G/, is maximal if
no node or edge of G/, can be added to it keeping it quasi-strongly con-
nected. Every quasi-strongly connected graph has a tree-like structure, in
that it possesses a root node from which every other node can be reached
through a directed path. Thus, a maximal quasi-strongly connected sub-
graph of G/, is determined by all the descendants of a root node, and the
number of root nodes is equal to the number of clusters which represent
the possible senses of w. The identification of root nodes is done algorith-
mically by first reducing every possible bidirected edge to a directed edge
pointed in either one of its two directions. Then, each node in the graph
is marked as a possible root. Iterating on the node set, all the descendants
of a node are marked as non-roots. In the end, the nodes still marked as
roots will be the actual roots of all the maximal quasi-strongly connected
subgraphs of GJ,. It is possible that a node is at the same time the de-
scendant of more than one root, meaning that it belongs to more than one
cluster. Therefore, the clustering of MaxMax can often be fuzzy (see foot-
note 11 in Section 2.1.9.1). Since during the execution of the algorithm
each edge needs to be visited only once both to determine its maximally
affine node and later to label all descendants of a node as non-roots, the
time complexity is linear in the number |E| of edges of G. In practice, this
means that for a connected graph its complexity falls between O(|V]|) (in
a connected component each node has at least one incident edge) and the
worst case O(|V]?).

The root of a MaxMax cluster can be interpreted as its central ele-
ment, in the sense that it attracts the most affinity among all the terms
that co-occur with it and the ambiguous word w. Given its tree structure,
a quasi-strongly connected graph defines a hierarchy. Going up in the tree
structure, the root is the element to which all its descendant words can
be traced back in terms of logical associations (given by maximal affin-
ity). Taking into account the co-ordinating and/or patterns that led to the
construction of G, let us imagine that apple is consistently compared to
pears and peaches, occurring in sequences like apple and pears and apples and
peaches. Peaches themselves might be most often compared to apricots, e.g.
when saying I like the taste of peaches and apricots. We explain this with
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the fact that apricots and peaches are seen as very similar fruits, and that
in turn peaches are compared to apples only in the more generic sense
of fruit. So, here we see again the notion of prototype theory (discussed
in Section 3.2) emerging: apple embodies the protoypical fruit, and (in
the ideal case) MaxMax recognizes this by outlining a quasi-strongly con-
nected subgraph through strong similarity associations. Such associations
are also interpretable as strong flows in the graph, and under this light the
root assumes the role of an attractor node, in a conceptually similar way
to the mcL algorithm of Section 3.1. In fact, the connections between the
McCL algorithm and MaxMax deserve further investigation, which could
highlight if both approaches share the same difficulties. Still, there are
differences, e.g. the fact that MaxMax is purely deterministic, does not
depend on the convergence to a limit nor does it require the tuning of any
parameter.

The previous analysis and motivation of the decomposition into quasi-
strongly connected subgraphs might induce to the consideration that the
use of MaxMax for Word Sense Induction can not be uncoupled from
the underlying word graph used by the authors. In other words, the re-
sults of MaxMax are not so readily interpretable on a pure syntactical
co-occurrence word graph, and the graph building obviously presents the
same criticalities discussed in Section 3.2. On the other side, it does not
appear to be too much dependent on a given weighting scheme, since the
precise scores do not enter in any calculation, and instead only local max-
ima are of importance. One wonders if simple frequency scores could be
as efficient as log likelihood ratio.

The authors report state-of-the-art results in the application of Max-
Max to different wsr tasks: The SemEval-2010 task 14 for Word Sense
Induction and Disambiguation [Manandhar et al., 2010] and the induction
of WordNet senses on the British National Corpus (for which [Pantel and
Lin, 2002] is a reference). We do not wish to enter in the details of the eval-
uation here, for which we point to [Hope and Keller, 2013], but just limit
ourselves to notice that, especially for the SemEval task, the construction
of the word graph is quite laborious in terms of feature extraction and
their relative pruning by means of parameters, and that the goal of the
algorithm actually becomes to discover patterns that substantially have
already been laid out by the graph-building process.

3.6 Final considerations

We concisely summarize the main characteristics of the clustering algo-
rithms presented in this section in Table 3.1.
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System Word graph type Focus Estimated time complexity
Markov Cluster any clustering @) (| V| log(c))
Dorow&Widdows || co-occurrences (patterns) | graph building | k- O <|V\2 log(c))
HyperLex semantic similarities graph building | O (|V| + |E|log (|E|))
Chinese Whispers || semantic similarities clustering O(|E|)

MaxMax co-occurrences (patterns) | graph building | O(|E|)

Table 3.1: Characteristics of clustering algorithms on a word graph
G = (V,E).

In the column labelled as Word graph type we point out the type of word
graph for which the algorithm was principally conceived or to which it
was first applied in the works describing it. With semantic similarities sim-
ilarities we generically denote second-order semantic relations normally
computed from co-occurrences, which are of first order (see Section 2.1.8);
with patterns we mean that only text portions satisfying specific constraints
were considered to extract co-occurrences. In the column labelled as Focus
we want to indicate how much the clustering process using a given algo-
rithm depends on the form of the word graph itself, or in other words, how
much effort is required during the graph-building step with respect to the
actual clustering process. Finally, the Estimated time complexity is directly
reported from the papers in which the respective authors first introduced
the algorithm. For mct, the estimate for its pruned version is given, and ¢
is the number of retained largest values (refer to Section 3.1). Parameter k
in the pw row corresponds to the number of times that McL is run on the
graph; we notice that this estimate is rather high, as it does not take into
account that the algorithm is run on increasingly smaller graphs (refer to
Section 3.2).

The discussion of the five chosen systems Markov cluster algorithm,
Dorow&Widdows, Chinese Whispers, HyperLex and MaxMax gives con-
crete examples of how graph-based Word Sense Induction is conceived
and implemented, and provides a more practical overview of its basic con-
cepts, complementary to the more theoretical discussion of Chapter 1. In
Chapter 4 this theoretical and mathematical background (along with that
of Chapter 2) will be extended to lay out the bases of our novel proposals.
What we want to underline here is the slight prevalence of graph build-
ing in the Focus column. This brings us back to the issue briefly touched
upon in Section 1.3.4: to what extent is the actual clustering, i.e. sense in-
duction step, driven by external tools (part of speech taggers, parsers,...)
and external knowledge about the world (co-ordinating patterns, pruning
thresholds,...)? How prevalent is the pre-processing step with respect to
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actual sense induction? We see as the major crux of the unsupervised task
of wsi the necessity to pass from a raw, first-order representation, i.e. a text
where we can only observe co-occurrences, to some second-order structure
that can represent some kind of lexical semantic relationships. Chapter 4
will thus have the aim to present definitions and instruments which allow
to create a cohesive framework for wsi where text pre-processing is kept
to a minimum and clustering algorithms let a natural partition of the word
graph arise just by exploiting its structure, and not by forcing one on it.
Also, these approaches are developed with the goal to cope with the pe-
culiar small-world structure (see Section 2.1.7) of word-graphs, consisting
of high-density subregions connected by nodes with very high degrees, a
fact that has not always been considered in the systems that we describe in
this section, but which in our opinion greatly impacts clusterings. Further
comments on this matter will be made when examining results on our
pseudoword data sets, in Chapter 5, particularly in Section 5.4.
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Chapter 4

Novel clustering algorithms for
WSI

In this chapter we will present three novel approaches to graph-based clus-
tering algorithms for Word Sense Induction (Section 4.2 gives their generic
descriptions and Section 4.3 details their implementations), along with the
intuitions and mathematical definitions behind them, which will be first
delineated in Section 4.1 as a theoretical background expanding Section 2.1
of Chapter 2. All these algorithms are run on co-occurrence word graphs
with a rather minimal pre-processing and make use of the weighted Jaccard
distance, defined on the graph’s node set, introduced in Section 4.1.1. One
leitmotiv of the systems presented here is the effort to avoid the use of pa-
rameters as much as possible. Instead of acting on the graph by pruning
and reducing it prior to the clustering step, as was common to most of the
approaches examined in Chapter 3, our pre-processing step aims to keep
as much information as possible and to let new one naturally emerge from
the data, in a way that allows our clustering algorithm to exploit it. One
of the challenges that arises is how to treat very dense small-world graphs
preventing the risk of always dumping all the nodes in a single, catch-all
sense cluster. The sections about weighted Jaccard distance and the gang-
plank and aggregative clustering algorithm mainly expand the material
presented in [Cecchini et al., 2015] and [Cecchini and Fersini, 2015].

The basic assumption of this chapter will be that the starting word
graph is built as a co-occurrence word graph (see Section 2.1.8). Of course,
the clustering module of each algorithm can be applied to different kinds
of graphs and weighting schemes than the ones proposed here, and the
interest and possible applications of the instruments developed in Section
4.1 are not limited to the use we make of them in this work.
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4.1 Concepts and instruments

We will first introduce and discuss the concepts and mathematical defini-
tions which lie at the core of all the graph-based clustering approaches that
will be presented later in this chapter. Of central importance is the weighted
Jaccard distance, into whose ramifications we will delve extensively in the
next section. A distance allows us to compute second-order relations and
to perform the clustering on a distance graph or a metric space. Ours is
not the first generalization of the Jaccard coefficient to the weighted case,
but to our knowledge it is the first one applied to a graph and examined
in detail. Later, the simple concept of gangplank edge is also introduced as
a device to identify clusters in the node set of a graph. Each algorithm will
give to these instruments more or less focus, according to the algorithm’s
strategy.

4.1.1 Definition and properties of Jaccard distances on graphs

Given a weighted, undirected graph G = (V,E), we want to define a dis-
tance function d between nodes. Generic edge weights might already give
a measure of how similar two words represented by adjacent nodes are,
but similarities can not be used as a distance function. Similarity is in-
deed the opposite of distance: the more similar two words, the greater
their similarity and the smaller the distance between them, representing
their closeness down to the minimum of 0. Also, when comparing two
non-adjacent nodes v and w in G, there is no clear way to take advantage
of similarity weights. Sometimes the sum of similarity scores on the short-
est path between v and w is used to this end, but we comment that this
quantity is not readily interpretable under different aspects. First of all,
the shortest path in the case of a co-occurrence word graph does not have
a semantic interpretation beyond a path length of 2 (see Section 2.1.2).
It just tells us that a sequence of text units is linked by the pairwise co-
occurrences of two or more words, but apart from that, there is no clear
logical connection. Co-occurrence does not necessarily imply semantic re-
lationships like meronymy or synonymy, and even if this is the case, there
is no way to tell these kinds of relationships apart from one edge in the
path to another. Co-occurrences do not establish followable hierarchies as
is the case for WordNet [Miller, 1995]. Moreover, the sum of similarity
scores is not well defined: similarity does not add up, because it is strictly
local for any pair of elements.

The motivation to define a distance over a graph where some kind of
similarity score is already present in form of edge weights lies in the pos-
sibility of highlighting second-order relations between words. As we did
at the end of Section 3.2, we can argue that two words sharing a semantic
sphere are very likely in a paradigmatic relation (see Section 1.1.1 and Sec-
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tion 2.1.8). This means that they will appear in similar contexts more often
than they appear together in the same context, as they carry out the same
role. In a co-occurrence graph, sharing the same context can be expressed
as “having common neighbours”. We will use this concept to define our
distance function.

We recall the conditions that a real function d : V x V — R has to
satisfy to define a distance, or metric, on V, for any choice of v, w, z:

Positivity: d(v,w) >0

Reflexivity: d(v,w) =0 v =w

Symmetry: d(v,w) = d(w,v)

Triangle inequality: d(v,w) + d(w,z) > d(v,z)

Positivity and symmetry conditions are generally met for any positive
weighting scheme on an undirected graph, and the same goes for reflex-
ivity. However, triangle inequality is the most crucial point. One function
satisfying all these conditions is the Jaccard distance, derived from the Jac-
card coefficient!. It is defined between two finite sets A and B as

|AN B
|AUB|

dj(AB) =1— (4.1)

The Jaccard distance is limited to the interval [0,1]. The Jaccard coefficient

}QSEI measures how much two sets overlap with respect to their combined

total size; in other words, how relevant their common elements are com-
pared with the elements that respectively distinguish A from B. If A = B,
all elements will be in common, so that their overlapping coefficient is 1
and consequently the Jaccard distance 0 (satisfying reflexivity). A coeffi-
cient of 0 is attainable if and only if AN B = @, and the corresponding
distance will reach its maximum value 1. This value can be seen as a limit.
Assume that A and B are of the same cardinality # and that they share just
one element. Then we will have

1 2n-2
2n—1 2n—-1’

dj(AB)=1—

so that for n — co we will have d;(A,B) — 1. This liminal discontinu-
ity between dj(A,B) < 1 and dj(A,B) = 1 leads us to treat the maximum
distance as the infinite distance. This consideration will be used later.

I The same coefficient is sometimes called the Tanimoto coefficient, or alternatively Tani-
moto measure, or even similarity [Tanimoto, 1958].
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Whereas the Jaccard distance obviously satisfies the first three criteria
of a metric, the triangle inequality for it is not so easily deducible from just
simple computations. A way to show it is using the Steinhaus transform
[Clarkson, 2006]. If (X,d) is a metric space with distance d, for any z € X
the Steinhaus transform of d(x,y) is

2d(x,y)
x,z) +d(y,z) + d(xy)

) =

and it holds that (X,d) is again a metric space, that is, d is a metric (this
can be shown with simple algebraic operations). We define the symmetric
difference AAB of two finite sets as the set of the elements that appear in
either of the two sets, but not in both:

AAB = {x|x € (AUB)\(ANB)}.

The quantity |[AAB| then measures how dissimilar two sets are, and is
itself a (non-bounded) metric on a space of finite sets. We have

|AAB| = |AUB|—|ANB| = |A|+|B|—2|ANB]|,

so |AAB| < |AU B|. Further, the symmetric distance is both commutative
and associative (this descends from commutativity and associativity of the
set union operator U) and the empty set is a neutral element for symmetric
difference. So we have AAA = @ and consequently

|AAC| = |(AAB)A(BAC)].
Then, we have the following chain for any three sets A, B and C:
|AAB| = [(AAB)A(BAC)| = |(AAB) U (BAC)| < [(AAB)| + |(BAC)],
showing that the triangle inequality holds. Now, if the Steinhaus trans-

form is applied to |[xAy| setting z = @, using the previously shown prop-
erties of the symmetric difference we will have:

— 2|xAy]
Ay| =
|2y |xAQ| + [yAQ| + |x Ay
_ 2[xAy|
x| + |y| + [xAy]
_ 2xAyl  [xAyl

C 2|xUy|  [xUy]
_ oyl —lxoyl _, Ix0yl
lx Uyl lx Uy|
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Therefore for finite sets the Jaccard distance is the Steinhaus transform of
symmetric difference, and since the latter is a metric, the Jaccard distance
is a metric too, with the advantage of being bounded.

We wish to apply the Jaccard distance on a word graph G. As sets,
we will consider the first-degree closed neighbourhoods of the nodes. For
v € V we write N(v) (see Section 2.1.5). Then, similarly to (4.1), we can
write: _ _
N NN (@w)|

[N(2) UN(w)]

for any two nodes v, w in V. We are using closed instead of open neigh-
bourhoods so that dj(v,v) be defined and to avoid some counterintuitive
behaviours, as will be shown later. From a lexical point of view, the neigh-
bourhood of a node represents the context of its corresponding word, pro-
saically defined as all the words co-occurring with it in some text unit.
The idea is to define the distance of two words as a quantity propor-
tional to their shared contexts. The Jaccard distance is able to capture
the overlapping of two contexts and has the advantage of being bounded.
As mentioned before, dj is a second-order relation between the nodes of
the graph: two nodes can have common neighbours, and so a non-1 Jac-
card distance, even if they are not adjacent. Let us suppose that a corpus
contains the terms peach and apple. It is possible that both appear in sen-
tences such as Johnny likes eating peaches/apples or Apples/Peaches grow on
trees’>. Their Jaccard distance is then more significative than their mere
raw co-occurrence frequency or frequency-based similarities, which might
be quite low if not enough sentence of the type Johnny likes peaches more
than apples are present. So, what d; does is taking an already existing lo-
cal measure of the correlation of two words (such as the aforementioned
frequency or log likelihood) and generalizing it to find deeper analogies.
On the contrary, if two words v and w never appear together and they do
not even share any neighbour, their neighbourhoods will be disjoint and
dj(v,w) = 1. The fact that their neighbourhoods do not overlap means
that v is not reachable from w. This is a further motivation of why we can
regard two nodes at distance 1 as “infinitely distant”.

di(v,w) =1 4.2)

Observation 4.1.1. Before delving into the properties of the Jaccard dis-
tance on graphs, we first need to make a subtle formal observation. The
function d; as we defined it on the node set V' is a distance actually only
on the node neighbourhood set of G, but not on its node set. In Section
2.1.5 the neighbourhood function N is defined as N : V. — P(V), i.e. it
is a function associating a node to a certain subset of the node set. Conse-

%In these examples we are taking into account lemmatization: peach and peaches are
treated as the same token, since they have the same root. See also Section 4.3.1.
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quently, we have N(V) C P(V). Now, by our definition the function
dj : N(V) x N(V) — [0,1]

is a distance on the image N(V) of the neighbourhood function on V.
On the node set V, the reflexivity condition is not satisfied. As Lemma
4.1.8 tells us, two distinct nodes in a clique have distance 0, and Lemma
4.1.7 gives a general condition for this phenomenon. So, if we were to
be completely formally correct, to speak of a distance we should consider
the quotient space V/ ~, defining the equivalence relation induced by
neighbourhoods
v~w< N(v) = N(w).

Otherwise, dj on V is what is called a pseudometric [Arkhangel’skii et al.,
2012]. From a practical point of view, however, this does not alter the way
we will treat and use d; and its weighted variant in the argumentations
that follow. Therefore, we will still refer to a metric and its metric space
instead of pseudometric and pseudometric space.

We present some easy results that characterize our Jaccard distance on
graphs in terms of path lengths and graph diameter. The first identifies
which node pairs are at a finite length.

Lemma 4.1.2. Given a graph G = (V,E), for any v and w in V, we have:
di(v,w) <1 dp(vw) <2,

where dy, is here and thereafter the path distance between v and w, defined in
Section 2.1.2. If the nodes are in different connected components, d,(v,w) is set
to be co.

Corollary 4.1.3. For any v,w € V, we have
di(v,w) <1< ve N(N(w)).
Corollary 4.1.4. If G has diameter A < 2, we have dj(v,w) < 1 forallv,w € V.

Since we are handling only finite graphs, we can find a minimum and
a maximum node degree A, and Ay, Then we can give slightly stricter
bounds for d;j on G based on node degrees.

Lemma 4.1.5. Given a finite graph G = (V,E), for all vw € V such that
dp(v,w) < 2 we have

1

< <1-—
0<d(ow) <1 degv+degw+1 <

1
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Corollary 4.1.6. Given a graph G = (V,E), for all v,w € V such that d,(v,w) <

2 we have
1

0<dj(rw) <1 ————<
e TV

1
We can also give a necessary and sufficient condition for two nodes to
have distance 0.

Lemma 4.1.7. Given a graph G = (V,E), for all v,w € V we have dj(v,w) = 0
if and only if v and w are adjacent and there exists an automorphism ¢ of G such
that ¢p(v) = w and p(w) = v.

Lemma 4.1.7 formalizes the notion of indistinguishability in the graph
structure that is represenetd by a null distance. For reference on graph
endo- and automorphisms, see [Cameron, 2004]. However, in [Erdds and
Rényi, 1963] it is shown that as the size of the node set of G increases,
it becomes less probable that G possesses a non-trivial automorphism.
Therefore, without loss of generality, we can assume that distances on a
word graph are always strictly greater than 0.

Some results can be given for particular graphs. We illustrate two
extreme cases here.

Lemma 4.1.8. If G = (V,E) is complete (a clique), the distance d; between any
two nodes is 0.

Clearly, a clique satisfies the conditions of Lemma 4.1.7, since every
node is adjacent to any other and every permutation on the node set is an
automorphism. Further, Lemma 4.1.8 implies that the more interconnected
a subgraph of G is, the closer to 0 we expect the distance between any two
of its nodes to be. This observation roughly describes the high-density
regions that should correspond to the senses of a word in its local graph
(as is discussed especially for the algorithms in Sections 3.1, 3.2 and 3.4).

Lemma 4.1.9. If G = (V,E) is an n-star (see Section 2.1.1), let k € V be the

central node and vy, ...,v,_1 the peripheral nodes. Then dj(kv;) = ”T*Z and

dj(vi,v;) = %for ij=1,...m—1,i#]j.

This lemma describes the Jaccard distance on one of the sparsest con-
nected subgraphs that can be found in a connected graph, a star. When
n > 6, the central node will be more distant from the peripheral nodes
than the peripheral nodes between each other, and the quantity d;(k,v;)
tends to 1 as n increases. In a small-world graph, the neighbourhood of a
hub roughly assumes a star-like shape. As the degree of the hub increases,
the central node will become more and more distant from its neighbours,
whereas the peripheral nodes will stay at a constant distance. This can
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be interpreted with the fact that as k co-occurs with every node, its occur-
rences are of lesser and lesser importance to determine the senses of the
n;’s. We note that if we did not take open neighbourhoods in our defini-
tion of distance, the central node would have a distance of outright 1 from
the peripheral nodes. In general, any node with degree 1 would have dis-
tance 1 from its single neighbour. We do not want this to happen, as the
co-occurrence of two terms is after all still a sign of correlation, as weak as
it may be. This point will become more relevant when we introduce the
weighted Jaccard distance.

The Jaccard distance that we have discussed until now does not take
into account the weighted structure of G and just uses the graph’s topol-
ogy. However, the weighting scheme of a word graph is fundamental in
modelling the strong or weak relationships between words: a single co-
occurrence may be random, but reiterated co-occurrences might be a sign
of more significant connections. Hence, the basic topological structure of
G should be markedly altered by edge weights, and a distance that we de-
fine on it should take into consideration the weighted landscape. To this
end, we introduce a weighted version of the Jaccard distance on G [Cecchini
et al., 2015]. The key move here is to treat node neighbourhoods not just as
sets, but as multisets. A multiset is an unordered set where each element is
allowed to appear more than once (see e.g. [Aigner, 2012]). In other terms,
a multiset M is a set where each element e has an associated multiplicity
me: M can be written as a set of couples (e,m,). The cardinality of a mul-
tiset is then the sum of all the multiplicities of its elements. We could see
any element not in M as having multiplicity 0. In this setting, ordinary
sets are multisets where each element has mutliplicity either 0 or 1. We
will denote the set underlying a multiset M as M*. The intersection of two
multisets A, B is again a multiset C such that

C = {(v,min(my 4,myp)) | v € (A*NB")};
analogously, their union is
C = {(v, max(mya,myp)) | v € (A" UB*)}.

The quantity m, 4 is the multiplicity of element v in multiset A, which
is 0 if v ¢ A*. Union and intersection between multisets remind of the
greatest common divisor and the least common multiple of the prime fac-
torizations of two numbers.

Now, it comes natural to model the weighted neighbourhood of a node
v € V as a multiset where the multiplicity of each element is the weight on
the edge connecting it to v. Precisely, the open weighted neighbourhood
(see Section 2.1.5) N“(v) of v is defined as

N¥(0) = {(w,p(vw)) | w € N(v)}. (4.3)
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The function p : E — R™ defines the edge weights in G. We note that
multiplicities in a multiset are positive numbers, so we are only consid-
ering weight mappings with positive values. The multiset union and in-
tersection as previously defined give us a measure of the importance of
a common neighbour of the two nodes: if it appears e.g. at least 3 times
with both, it will be more significant than another one appearing 10 times
with one but only once with the other. In the latter case, the discriminative
power of that term will be lower, as it may be just a “companion word”
of the first node. What definition (4.3) is missing is the central node v to
make it a closed neighbourhood, and the problem is what multiplicity to
assign it. One possible reasoning is that if v ever appears in the neighbour-
hood of w, its multiplicity in N“(v) N N¥(w) should be not smaller than
the weight on the edge (v,w), interpretable as the importance of v from
the external perspective of w. Thus 11, . (,) should be higher than p(v,w)
to keep this value in the intersection (where we take the least multiplici-
ties). At the same time, the multiplicity of v in the union N“(v) U N¥(w)
should be a measure of the relative importance (in terms of weight) of v in
the induced subgraph. We put this importance in relation to the weights
on the edges incident to v, and consider their maximum to represent the
influence of v in the graph. So, in the end we define the automultiplicity

Mo = wréllgé) p(UIW)

and define the closed weighted neighbourhood of v as
N¢(v) = N¥(0) U{(v,m,)}. (44)

The weighted Jaccard distance between v and w is then, analogously to
(4.2),

IN“(v) N N“(w)|
IN“(0) UN®(w)|
The function d‘]" is still a distance. This follows from the remark that we
can rewrite a multiset as a set, if we substitute the element (e,m,) with

m, different elements labelled ej,e», ... e, (Observation 4.1.1 still applies
here).

(4.5)

di (vw) =1~

Weighted versions of the Jaccard coefficient have already been pro-
posed in literature. One appears in [Grefenstette, 1994] and is the most
similar to our definition. The main difference, though, lies in the fact
that the author considers vectors of weighted (in contrast to binary ab-
sent/present) features of different kinds (co-occurrences or syntactical de-
pendencies) associated to a word, but no weight is associated to the consid-
ered word itself (as in the case of our automultiplicity, which is necessary
in our setting). Moreover, the weights used in the computation are a mix-
ture of a “global” and a “local” score assigned to each feature “depending
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upon how many different objects with which it associates, and how often it
appears” [Grefenstette, 1994, p. 48]. Another version proposed in [Strehl,
2002], called extended Jaccard similarity, generalizes the interpretation of the
Jaccard coefficient as a vectorial operation and reformulates intersections
and unions of feature sets as sum of norms and products between vectors
(for a vectorial interpretation of our Jaccard distance see Section 4.1.2), by
analogy with the cosine similarity, but it seems to us that it does not have
an intuitive interpretation, especially on graphs. However both versions,
like ours, coincide with the basic Jaccard coefficient when no weights are
considered. In fact, similarly to what was discussed for the clustering
coefficient (Section 2.1.6), there does not exist a unique weighted gener-
alization of Jaccard coefficient. Our definition is at the same time very
generic and straightforward and well suited to the case of a graph.

The behaviour of d‘]" is less predictable than it was for d;, which we
can now see as the special case of df when p() = 1(), the function that
maps everything to 1. Lemma 4.1.2 and its corollaries and Lemma 4.1.7,
if the automorphism preserves the weighted structure, still hold for the
weighted case, but general reasonings about boundaries and particular
graphs are more difficult to make. Lemma 4.1.8 does not necessarily hold,
as we now show.

Example. Consider the clique K,,, n > 2, where the weights are 1 every-
where apart from a single edge (s,t) with weight k > 2. We have the
automultiplicities m; = m; = k, and m, = 1 for every other node. We can
compute d{'(s,t) = 0 and also d{' (v,w) = 0 for v,w # s, v,w # t. This is
immediate, as these node pairs share the exact same neighbourhoods. On

% for v # s, v # t. This distance

tends to 07 for a fixed k as n increases and to 1~ for a fixed n as k increases.
This observation shows that distances on the most homogenous of graphs
are warped by a single different edge weight: s and t are effectively set a
little bit apart from the rest of the graph by their stronger connection. On
one hand, a small perturbation will be overwhelmed by a massive amount
of connections, but on the other hand s and t will be drawn away from the
rest of the graph as their link grows stronger.

the contrary, df (s,v) = df'(t,v) =

Example. If we instead suppose that the weights on all edges are g > 1,
apart from the n — 1 edges incident to a single node s, whose weights are
k > g, we will have d?’(v,w) = 0 for v,w # s and d}"(s,v) = k_Tq for v # s.
For a fixed g and a growing k, we observe again how s becomes more and
more distant from the rest of the graph. This distance is independent from
the size of the clique, but the gap is still mitigated by the strength of the
other edges.
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We stress that it is not always the case that df (v,w) > dj(v,w). The
contrary is possible, and we will explore this fact in Section 4.2.3.

In the following discussion we will be using the weighted Jaccard dis-
tance arising from a given similarity weighting scheme on a co-occurrence
graph as a way to model word contexts and to compute their semantic
closeness, defined as the number of shared contexts.

4.1.2 Vectorial representation and implementation of Jaccard
distances

We can define both Jaccard distances on a graph in terms of simple and
weighted adjacency matrices (see Section 2.1.4 for definitions) and opera-
tions between row and column vectors.

Representations and computations are slightly more straightforward
in the case of the unweighted Jaccard distance. We consider the adjacency
matrix C of G = (V,E), where entries can only be 1 if two nodes share
an edge and 0 otherwise. Since we will use mostly undirected graphs,
we assume C to be symmetric. We write the column relative to the i-th
node of V (or, equivalently, row) as C;. Each column vector represents the
(unweighted) open neighbourhood of the i-th node. To represent closed
node neighbourhoods, we take C = C+ I, where I is the identity matrix;
this formally corresponds to adding self-loops to each node. Given C, we
can write the quantities [N (i) U N(j)| and |N(i) N N(j)| for each couple of
nodes i, j in terms of column vectors, namely:

ING@)NN(j) =G- G, (4.6)
) _ 4 A . .~ A
ING)UN()| = Y (i +6j) —Ci-C = |G+ G|, - Ci- G (4.7)
=1
=[Gl + Gl - &+ &, (48)

where |[|-||; is the 1-norm or ¢;-norm, and the dot is the vectorial scalar
product. Then, relation (4.6) means that each entry of C? = C - C repre-
sents the number of neighbours common to i and j. Moreover, by Lemma
4.1.2 each non-zero entry of 2 represents two nodes with non-infinite,
less than 1 Jaccard distance.

To express the weighted Jaccard distance we need the weighted adja-
cency matrix. We denote it with A. As with C, we assume A to be sym-
metric. Again, we denote with A; the i-th column of A, representing the
open weighted neighbourhood N“(i) of node i: the entry a;; is the weight
on the edge (7,j), and if a;; = 0, the j-th node does not appear in i’s neigh-
bourhood. However, to compute the weighted Jaccard distance we have to
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consider closed neighbourhoods. To this end we define the diagonal ma-
trix M, where m;; = max(A;) if i = j, and 0 otherwise. The columns of the
matrix A = A + M then represent exactly the closed neighbourhoods de-
fined in (4.4). Then, the fact that the scalar product A; - A]- of two columns
is different from 0 tells us that nodes i and j have common neighbours,
but not heir exact number. The weighted Jaccard distance necessitates a
slightly less compact notation than its unweighted counterpart:

Vi o

IN“(0) NN ()| = ) (min(ag i) = [min(A;4))], (49)
k=1
Vi o

IN“()) UN(j)| = ) (max(a,a)) = ||max(A;,A))],, (4.10)
k=1

where the maximum and the minimum of two vectors are taken pairwise
on their elements. This definition is very similar to the one proposed in
[Grefenstette, 1994].

We can now present a first algorithmic implementation of the com-
putation of weighted and unweighted Jaccard distance on a graph. We
assume that the nodes have been indicized with values from 1 to |V|. We
start with the simple, unweighted Jaccard distance.

The time complexity of algorithm 1 depends on the matrix multiplica-
tion on line 3, whose time complexity can range from O(|V]3) of a naive
implementation to the nearly quadratic O(|V[**) of the fastest known
algorithm (cf. [Blaser, 2013, Le Gall, 2014]). The real complexity also de-
pends on how sparse the graph, and consequently the matrix is. The
algorithm also needs to compute the 1-norm of each column vector (line
5), an operation performed with time complexity O(|V|). Then, the actual
computation of the distance in line 11 has to be performed at most ("2/‘)

times, for a complexity of O(|V[?). This gives a combined complexity ly-
ing between O(|V|?) and O(|V ).

However, this complexity might be reduced using Lemma 4.1.2. For
each node v, we have just to consider all its neighbours at a path distance
of at most 2, i.e. its second degree closed neighbourhood N?(v) (see Sec-
tion 2.1.5 for notation). In the following we will call the elements of N?(v)
the 2-neighbours of v. If A,y is the maximum degree in G, each v € V
will have at the very most deg(v) (Apmax — 1) + 1 2-neighbours. We subtract
1 from Ay;4x because we do not want to count v multiple times. To write
a second degree adjacency matrix C;, where c;; # 0 implies that there is
a path with length no greater than 2 between nodes i and j (see Section
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Algorithm 1 Unweighted Jaccard distance computation

Input Simple adjacency matrix C of an undirected graph G = (V,E)

Output Matrix D representing Jaccard distance

1: D=1 > Distance matrix initialized as all-ones matrix
28=0 > List of column 1-norms
3 C=(C+1)?> > Square matrix representing closed neighbourhoods
4: forie {1,2,...,|V]} do > Compute column 1-norms
5: S; = ):'V‘ Cki
1 k=1 1

6: S=8U {Si}

7: end for

8 foriec{12,...,|V|} do

9. forje{i+1,|V|} do > We exploit symmetry
10: if CAl']' 75 0 then

11: dij=dji=1- s{éﬁ > Compute distance
12: end if
13: end for
14: end for

15: return D

2.1.4), we will need at most

(Apax — 1) Z (deg(v) + 1) = (Dmax — 1)(2|E[ + |V])

veV

look-up operations with a limited depth-first search?, because of the hand-
shaking lemma (see Section 2.1.1.1). We remark that A,y is an extremely
high bound for degrees in the graph, especially for scale-free graphs (see
Section 2.1.7), for which only few nodes reach very high degrees. To make
the number of look-up operations more precise, we note that for each node
v we are looking at at most }_,,c n(») deg(w) nodes. Repeated over all nodes
in the graph, we will have at most

Y. Y deg(w) =Y deg?(v) (4.11)

veV weN(v) veV

look-up operations. Lower and upper bounds for this quantity are

4|E)? ) ( |E| )
< deg(v) < |E| (2 +|V|-2

3For an overview of basic graph algorithms see [Even, 2011].
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when |V| > 2, as proved in [de Caen, 1998]*. An optimal, albeit quite
impractical estimate of sum of squared degrees can be found following
the results in [Abrego et al., 2009]. In general, for a fixed |V|, only the
complete graph with |E| = (‘g') achieves the maximum sum value of
|V] (V| — 1), a cubic polynomial expression. This means that the time
complexity for building the second degree adjacency matrix C; is most
of the time subcubical in the number of nodes, and, assuming that G is
connected, linear in the best case of a path or cycle graph with |V| nodes
and respectively |V| — 1 or |V| edges.

Now, for each non-zero entry c,;; of C; we can compute the Jaccard
distance through the relations (4.6) and (4.8). Both operations use a time
complexity O(|V]), as already mentioned. In the end, if we perform these
operations the minimum necessary number of times, that is, for the non-
zero entries in the upper triangular submatrix of C; (we notice that C; is
also symmetric), we will have a total complexity T bounded by

E* |V
s|Ef < T < 0@ + [EVE -2 V),

which brings to an upperly very inflated estimation of time complexity of
O(|EP*) < T < OQIEP + [E||V]*), (4.12)

recalling that (4.11) was an upper bound in the first instance. In the best
case, the algorithm will run in quadratic time; in the worst possible case
of a complete graph, it will have complexity O(|V|*), but we notice that
if this happens, we can avoid computations, since all distances are 0 by
Lemma 4.1.8. Very probably the overall complexity will be considerably
less than O(|V|?) if the graph is sparse enough.

This second implementation, based on a depth-first search, is perhaps
better than Algorithm 1 if we know that the graph is relatively sparse,
as we can expect from a small-world graph, where most nodes have only
few local connections (represented by a high local clustering coefficient, as
seen in Section 2.1.6), but a general low density (cf. Section 2.1.7).

“A similar complexity estimate can also be obtained using a limited depth-first
search algorithm like that of [Korf, 1985], using as average branching degree the graph’s
mean degree. A better upper bound, making use of |E| and |V| minimum and max-
imum degrees of the graph, along with other two bounds using neighbour connectiv-
ity, is found in [Das, 2004], but their form does not change the conclusions of our dis-
cussion. Another good, but unwieldy upper bound is that of [Székely et al., 1992]:

2

Yocy deg?(v) < (ZUGV deg(v)) . However, it is incomparable to the one we use here.
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The algorithm and the considerations for the weighted case are not so
different from what we have already seen for the unweighted one. The
1-norm of a column vector takes again a time complexity of O(|V|), as
min and max operations (4.9) and (4.10) equally do. However, the entries
of A? are not interpretable as cardinalities of the union of two node neigh-
bourhoods, so that we can not resort to matrix multiplication. We have
to perform operations (4.9) and (4.10) for each of the (‘Z') node couples,

resulting in a total time complexity of O(|V|*). Alternatively, also in this
case we can use the same second degree adjacency matrix C, defined for
the unweighted Jaccard distance and obtain the same final time complex-
ity estimates of (4.12).

4.1.3 Distance graph and node metric space

A distance defined on a graph allows us to consider its node set as a metric
space and to build its ensuing distance graph. If G = (V,E) is a graph with
a distance d on V, then by definition (V,d) is a metric space®. We define the
global distance graph D¢ 4 as the weighted complete graph on the node
set V with d as its weight function p. In other words, the weights of D¢ 4
are the distances between nodes of G (and we observe that the distance
matrix defined in Section 2.1.4 is the weighted adjacency matrix of the
distance graph). We can define a sparser, non-complete version of Dg 4 if
we just take edges whose weight lies under a given threshold. In the case
when we consider the weighted Jaccard distance dj, we are not interested
in distances equal to 1, as we already observed how they are like infinite
distances to us. So we can define the finite distance graph [A)Gld] = (V,E4,),
where
(vw) € Eg; & d(vw) <1

for all v,w € V. This distance graph is not necessarily complete, but by
definition we have |E| < ‘Ed]‘. The inequality is strict if G is not complete
and has a connected component with 4 or more elements. For Lemma
4.1.2, the number of edges increases with respect to G as we create new
links between a node v and all the nodes at a path distance of 2. The exact
number of new edges is given, using the vectorial interpretation of Section
4.1.2, by the quantity

APy

2

the number of non-zero entries in the upper triangular submatrix of C2

(which is symmetric), for which a generous upper bound was already pre-
sented in the form of (4.11).

=V,

5Actually a pseudometric space, recalling Observation 4.1.1
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Using Lemma 4.1.2, we can claim:

Corollary 4.1.10. Given a graph G = (V,E), for any v and w in V, its finite
distance graph DG,d;J will be complete if and only if G has diameter A < 2.

For the sake of lighter notation, we will write D instead of DG,d to refer
to the finite distance graph of G when the context is clear.

As a final remark, we note that the same vectorial interpretation al-
ready seen in Section 4.1.2 for the Jaccard distances allows us to consider
an embedding of (V,d) in the Euclidean space R!VI, where a node vin V is
represented by the column vector of the adjacency matrix (with self-loops)
corresponding to N(v). For Observation 4.1.1, we have to allow that two
nodes can be represented by the same vector. On the generic space vector
space R" we can generalize the weighted Jaccard distance as

Wiy g iz min(x;,yi)
GED =1~ 5 max(xi) “1

for each X, € R"\{0}. The limit for (¥,;j) — 0 is 1. It is interesting to
notice that expression (4.13) is bounded to [0,1] only in the first quadrant,
where all vectors correspond to nodes of a graph with positive weights.
Otherwise, d‘]" is not bounded, and all points have distance 1 from the
origin. However, we just want to point out this generalization and will
not further examine the properties of this distance on a vector space, ab-
stracted from the original construction with multisets..

4.14 Gangplanks

Suppose that we have a co-occurrence word graph G = (V,E) and that we
have computed its corresponding finite distance graph D := D 4, based
on a given distance d on V. The graph D will be much denser than G, since
we are now considering second-order relationships between nodes in ad-
dition to those arising from first-order ones like co-occurrences, as seen
in Section 4.1.3. In Section 4.1.1 we show how df’ effectively reshapes the
landscape of the word graph to account for the greater or lesser strengths
of correlations. Now, starting from this observation we want to define a
way to let the borders between different denser regions emerge naturally
in the general case of an undirected, weighted graph G.

We introduce the notion of gangplank edge. We can imagine, as can
be the case in Venice, a gangplank connecting the opposite sides of a big
puddle or even of a canal separating two small islands; the same way we
want a gangplank edge (in short: gangplank) to be a weak connection be-
tween two dense and individually strongly intraconnected subgraphs. We
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chose this name because bridge is already used in graph theory to denote
another situation, namely an edge whose removal would disconnect the
graph (see Section 2.1.3); however, removing a gangplank does not neces-
sarily creates two distinct connected components. Its nature is purely local
and pertinent to the neighbourhoods of the two involved nodes.

Definition 4.1.11. (Gangplank edge) Given a weighted graph G = (V,E) with
positive weight function p : E — R and an edge e = (v,w) € E, we say that
e is a gangplank if it satisfies

1
p(v,w) > max (d = ) p degw ) p(w,z)). (4.14)

zeN(v zeN(w)

In other words, we say that an edge is a gangplank if its weight is
strictly greater than the mean weight of both its two ends. If we picture
e = (v,w) as connecting the two “halves” of N(v) U N(w), we want to
consider e a gangplank if it is keeping v and w apart rather than bringing
them together. We remark that this definition has a sensible interpretation
only in the case of positive weights. Moreover, it is defined in the case of
a graph whose edge weights represent distances (the smaller, the better).
We can always obtain such a graph e.g. building the distance graph of any
graph, as seen in Section 4.1.3. Of course, we can also reverse the definition
when weights are meant to be similarities (the greater, the better).

Definition 4.1.12. (Gangplank edge for similarities) Given a weighted graph
G = (V,E) with positive weight function p : E — R and an edge e =
(v,w) € E, we say that e is a gangplank if it satisfies

)3 P

zeN

p(v,w) < min < ) p(w,z)). (4.15)

zeN(w)

deg w

Gangplanks inform us of stray or random connections that arise from
the data, but that when compared to the others in the context of a word are
of much lesser significance. The intuition is that they can be used to outline
the denser regions of the word graph that will represent the sense clusters
of the target word to be disambiguated. The clustering algorithm that we
will present in Section 4.2.1 will exploit this idea. Here we present an
algorithm that labels the edges of a graph as gangplanks or not, according
to a specific distance on V. The labelling is defined by a binary matrix I
with an entry 74, = 1 if edge (v,w) is a gangplank, and 4, = 0 otherwise.

The computation of the weight mean for a single node v has a time
complexity of O( deg(v)). Repeating this for each node has a total cost of

O( ) deg(v)) = O(|E]),

veV
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Algorithm 2 Gangplank edges computation

Input Undirected graph G = (V,E) with weight function p : E — R*

Output Binary matrix I' representing gangplanks

I'=0 > Gangplank matrix initialized as zero matrix
S=0 > Mean weight for each node
forv e Vdo

So = @ YweN(o) P(0,W) > Mean weight for a node

S=8U{sy}
end for
for (v,w) € E do
if p(v,w) > max(sy,5,) then > Gangplank condition
Yow =1
end if
: end for
: return T’

R AN L o e

=

for the handshaking lemma (see Section 2.1.1.1). In addition, we have to
test each edge by checking an inequality: in total, we have O(|E|) opera-
tions, and this is also the overall time complexity.

4.2 The clustering algorithms

We will now present our three graph-based clustering algorithms, making
use of the concepts developed in the previous sections. Here we define
them in their general forms, leaving the details of their implementations
for wsi tasks to Section 4.3.

421 Gangplank clustering algorithm

In this section we will describe the core of the gangplank clustering al-
gorithm in its most general from. It was first presented in [Cecchini and
Fersini, 2015]. Its implementation for wsi tasks, which makes full use of
the instruments developed in previous sections, will be detailed in Section
43.2.

Suppose that we have a graph G = (V,E) where each edge has been
labelled as gangplank or non-gangplank. Formally, we achieve this by
saying that there is a function ¢ : V. x V. — {0,1} defined on the Cartesian
product of the node set that yields 1 if the edge is a gangplank and 0
otherwise (this includes a node pair which is not connected by an edge).
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In this setting it is not important what form the starting graph has or what
similarity score and distance were used to finally apply Definition 4.1.4
of a gangplank edge: we will just focus on the clustering step. In this
sense, ¢ could actually be any binary edge labelling function, to which we
conventionally refer as gangplank labelling function.

Given g, we define the gangplank degree in G of a node v as

_ ZZUEN(;(U) g(v,w)

Geg o (4.16)

Y6 (v)

The subscript G means that the interested object is computed only with
regard to graph G. This allows us e.g. to restrict our attention to a sub-
graph H = (V',E’) C G: the quantity yy(v) for v € V' considers only
the neighbourhood Np(v) = Ng(v) NV’, and similarly for deg,,. When
it is clear to which graph we refer, we will just write (v) for ease of no-
tation. The ratio of gangplank to non-gangplank edges exiting a node is
a measure of its isolatedness: a node with a great oy does not have many
significant connections to other nodes and is rather marginal in the word
graph. On the contrary, a node with low 7 is likely to lie in the midst of
one of the connected regions that we want to identify. The first, stricter
objective of our clustering algorithm is to find the coarsest partition of G
(that is, of its node set) that consists only of connected subgraphs with
no gangplanks. In such a partition, gangplanks only appear as intercon-
necting edges between clusters, bridging (or better gangplanking) them. Of
course, it is unfeasible to scan through all 2/V! possible partitions of V
to find the one that interests us. We also notice that a partition with a
minimal number of clusters might not be unique. Instead, the algorithm is
going to expand and define the clusters from particular seed nodes follow-
ing some heuristical intuitions, and the end result will be further loosened
by requiring that the partition consists of subgraphs with few gangplank
interconnections and a greater number of gangplank intraconnections.

The first assumption is that, most probably, the node at the heart of a
cluster will have the cluster’s lowest value of . Therefore, the algorithm
starts by selecting the node w of G with the least -y as the seed of the first
cluster; if there is a tie, the seed is randomly chosen among the candidates.
Then we introduce a cycle of expansion and reduction steps that will iter-
atively define a subgraph K of G. Initially, we will set the cluster K = {w}.
We define the set of already clustered nodes Q, for which it will initially
hold Q = @, and denote our partition as C, which will equally start as the
empty set.
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Expansion: We consider the subgraph induced by K and its neighbours,
ignoring any node that we may have previously included and dis-
carded in this expansion-reduction cycle (see next step), or that has
already been clustered by the algorithm. If S C V is the subset of
discarded nodes, this means that we are considering the subgraph
G(K') induced by®

K = N{K)\(SUQ).
Thereafter, we pass to the reduction step. If it happens that K’ = K,
i.e. there are no unseen nodes by which we can expand the subgraph,
we break the cycle and consider K as a cluster of our partition C. The
nodes in K will be added to Q.

Reduction: During the reduction step, all nodes that bring gangplank
edges to G(K') will be progressively discarded, until no more gang-
planks are left in the subgraph. We compute ¢k for the nodes of
our subgraph and start by taking out the node with greater gang-
plank ratio among them. We denote it by ¢;. Then, we update the
7 scores for the remaining nodes in G(K')\{g1} and if there are still
gangplanks left, i.e. equivalently a node g» has a 7y score greater than
0, we remove it too from our subgraph. This process is repeated
until there are no more gangplank edges left in G(K")\{¢1,82, .-},
i.e. equivalently y = 0 for all nodes left in G(K’). Our only restraint
is that the seed node will never be discarded. Then we add the set
{41,82,...,90} of o discarded nodes to the set S. Prior to the first
iteration of the reduction step in this cycle, S will be empty. Finally,
we go back to another expansion step.

Ties can ensue when choosing which node to remove. If two nodes
have the same <y score, we regard, in order of importance: the least
degree in G(K’), the absence of a connection to w, the greatest weight
on such connections, the greater score ;. If the tie still persists, all
offending nodes will be removed, as they are undistinguishable in
this sense. Of course, these are not the only criteria that might be
used. Since we want G(K') to stay connected, if by removing the
nodes we obtain more than one connected component, we will retain
only the component of w and discard all other nodes.

Each cycle defines a cluster. At the end of each cycle, the algorithm
selects a yet unclustered node in V\Q that has the least g, and starts
repeating the expansion and reduction steps anew. The set of discarded
nodes S is specific to each run of the cycle: if a node had been discarded
for a previous cluster, it can still be considered again for a later one. We

6We notice that, for the definition given in Section 2.1.5, if K has more than one element
N(K) or even N(K) will always contain K.
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expect to identify the bigger clusters first and to detect singletons last. We
notice that the definition of the algorithm is unaffected by the connected-
ness of G: given a seed node, the cluster relative to it will naturally be
confined to its connected component. In the end, the partition C will have
at least as many clusters as there are connected components in G.

The expansion of a subgraph of G might be slightly reminding of per-
colation theory [Bollobas and Riordan, 2006], where we treat gangplanks

as closed edges and the subgraph grows following only open edges. The

ratio E,ﬁgf]g@) of gangplank edges to the totality of edges in G could be
used in a maximum-likelihood way as the probability p of an edge being
closed, and there might be relations between the behaviour of the algo-
rithm and its percolation properties that deserve investigation. However,
we note that just considering non-gangplank nodes for clustering gives

totally different results, as will be discussed below.

The requisite that each cluster be a subgraph with no gangplanks is
quite strict, and may lead to a very fragmented clustering full of single-
tons of the kind K = {z}. Unless z appears as the lone member of its
connected component, it is always the case of a node that just happens
to not have non-gangplank connections to any of the found clusters, so
that the algorithm also ignores any other meaningful link it might have.
This side effect further depends on the choice of the seed nodes, which is
done through the heuristic of ¢’s computation, and is also determined by
the hard-clustering nature of the gangplank algorithm. A soft-clustering
version is thinkable and could solve this problem, and will be described
later as a variant. With these considerations in mind, we can regard the
clusters of C as the homogeneous nuclei of a coarser (see Section 2.1.9.1)
clustering C’ O C around which stray nodes are recompacted, this time
allowing gangplank edges to be present in the clusters. We define thus a
recompacting step. The first singleton z to be reassigned to a cluster will
be the one with lower 7, that is, the least isolated of the singletons and
the one which we can most knowledgeably reassign.

Recompacting: For each cluster C € C such that |C| > 1, we compute the
ratio xc of gangplank edges among all the edges connecting z to C.
Formally:

_ Leecs(@2)

Kc
YveC doz
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The quantity a,, is the entry in the adjacency matrix A of G (see
Section 2.1.4): it is 1 if there is an edge between v and z and 0 oth-
erwise. The greater xc for a given cluster, the more easily z can
be embedded in C. So, we define Cy,x = argmax._.kc and re-
assign z to Cyy. Formally, we are considering the new clustering

C = (C\{{z},Cax }) U {Ciax U {z}}.

Algorithm 3 Recompacting algorithm

Input Undirected graph G = (V,E), function ¢ : V x V. — {0,1}, clus-
tering C of V, 0 € N

Output Coarser clustering ¢ oC

1: for K € C do

2: if |K| < 6 then

3: C =C\{K}

4: for v € K do

5: Cinax,p = argmaxee 72262 £ (a”l;i”)

6: end for

7: for v € K do

8: C =C\{Chaxn} > Clusters to be updated are removed
9: Cimax,o = Cimaxo U {0} > The node is reassigned
10: end for
11: for v € K do
12: C=CU{Cuaxp} > Clustering is updated
13: end for

14: end if

15: end for

16: return C = C > The clustering has now been updated

After a singleton has been reassigned, we will choose the one with
second lowest ¢ as the next one, and so on, until no more unreassigned
nodes are left. This way, each subsequent reassignment will take into ac-
count the new composition of the clusters. The final output will be a
clustering C’ of V where every cluster has at least 2 elements and the
amount of internal gangplanks is minimized. Possible ties are broken con-
sidering, in order of importance: the absolute number of non-gangplank
connections, the size of the cluster, and finally by random choice.

This step in the gangplank algorithm could see the introduction of the
only parameter envisaged for it, and precisely of a threshold 6 that deter-
mines the size of the clusters that have to be broken up and whose nodes
will be reassigned to bigger clusters.
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Algorithm 4 Basic gangplank clustering algorithm

Input Undirected graph G = (V,E), function g : V x V. — {0,1} for the
computation of v

Output Clustering C of V

LC=0
2Q0=0 > The set of already clustered nodes
3: while Q C V do

4: w = argmin,_, 7¢()
5: K ={w} > The new, seeded cluster
6: S=0 > Set of discarded nodes
7. N =N(K)\(QUSUK) > Viable neighbours of K
8: while V' # @ do > Checking if new nodes can be added
9: K=KUN
10: while Jv € K\{w} s.t. yx(v) > 0 do > Looking for gangplanks
11: U = argmax,y r,,y Yk(v) > Possible ties need to be broken
12: K =K\{u}
13: S=SuU{u} > Update discarded nodes
14: end while
15: N = N(K)\(QUSUK) > Look for new viable neighbours
16: end while
172 C=CU{K} > Add the cluster to the clustering
18: Q=QUK > Remember clustered nodes
19: end while
20: return K

The basic gangplank algorithm without recompacting step is schema-
tized in Algorithm 4, and the recompacting step in Algorithm 3. The
threshold 6 is 1 in the basic version, as discussed for the recompacting
step. The soft-clustering variant is not shown.

The time complexity T of Algorithm 4 is not immediately assessable.
In the worst case, we claim that T is roughly approximable by a complexity
between

O(|E| + [V[1log [V]) < T < O(|V|(|E| +|V|log|V])). (4.17)

This estimate is probably very generous and far from the optimal one,
which actually depends on the density and the diameter of G.
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The key consideration is that, like for Algorithm 2, the computation of
¢ for each node in G is O(|E|), following from the handshaking lemma
(see Section 2.1.1.1). Their sorting (to choose the lowest score) has a com-
plexity of O(|V|log(|V])). Therefore, in each subgraph ¢ = (v,e) C G we
need a number of operations in the order of O(|e| + |v|log |v|) to compute
and sort the local 7, to choose which node to remove. Then, updating
the remaining 7’s has a cost equivalent to the degree in g of the removed
node. If we were to remove every node (which would terminate the ex-
pansion and reduction step cycle for that cluster), we would have again to
perform a total of O(|e|) operations. Now, of course O(|E| + |V|log|V|)
is an upper bound of the required complexity for each cluster of the fi-
nal partition C. We note that, having a seed node v, we can perform the
expansion step at most €(v) times, where €() is the eccentricity of a node
(see Section 2.1.2). Since the eccentricity is maximized by the graph diam-
eter A, we know that the expansion-reduction cycle can be performed at
most A times for each node. The expected number of nodes that we add
to ¢ at each expansion step depends on the density J of the graph, and
is 8(|V| — |v]). So each cluster will require O(A(|E| + |V|log|V|+5|V]))
steps. The final number of found clusters, and subsequently of performed
expansion-reduction cycles, is difficult to estimate, but it is surely much
less than |V|. All these observations lead us to the already mentioned pre-
sumed overall time complexity (4.17).

The recompacting step requires a number of operations equal to the
sum of the degrees of the nodes to be reassigned, and then the sorting of
the gangplank ratio for each cluster. These numbers will be small and the
total complexity will be much less than O(|E|), if not negligible at all.

We end the description of the algorithm with three considerations and
a soft-clustering variant.

The first consideration is that the initial “pure” clustering C obtained
performing the expansion and reduction steps is not necessarily the same
one that would be found by directly removing all gangplank edges from G,
and ends up being actually quite different. Consider the situation depicted
in Figure 4.1. The gangplank algorithm that we described would give us
the clustering {{A,B,C},{D,E,F}} in two expansion-reduction cycles. In
the first cycle, if E is selected as the first seed node, in the first expansion
step the only gangplank edge in G({C,D,E,F}) will originate from C. Thus
C will be removed. Then, in the second expansion step A will be added
but immediately removed, and we will obtain the first cluster {D,E,F}, fol-
lowed by {A,B,C}. The same clusters result when choosing B as the first
seed node. If, however, we were to just cancel the non-gangplank edges,
we would get a unique cluster {A,B,C,D,E,F}, because we had no clear
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Figure 4.1: A toy graph G. Red edges are gangplanks.

means for ignoring the stray edge (C,E). In general, clusters consisting of
connected components with respect to gangplank edges will be sensibly
bigger and are likely to contain many gangplank edges when seen as sub-
graphs of G. Going back to the digression about percolation theory, it is
plausible to think, and would be interesting to prove, that the gangplank
ratio of G is always above its percolation threshold, and thus that remov-
ing all gangplank edges still would not disconnect G.

The second consideration is that, like the previously discussed Hy-
perLex (Section 3.4) and MaxMax (3.5) and unlike mcL (3.1) or Chinese
Whispers (3.3), the gangplank algorithm is deterministic. Its outcome is
completely determined by the gangplank function g, which is itself de-
termined by the underlying weighting scheme. The only undetermined
choices that might occur depend on how the graph G or the clustering C
is indexed by the system. Otherwise, the decisions to break the ties, pre-
sented earlier as random, actually choose the node or the cluster with the
lowest index. If indexings do not change between different runs, the result
will always be the same.

The third consideration, somewhat tied to the deterministic nature of
the algorithm, is that the clustering is not so strongly dependent on the
used weighting scheme. In fact, the gangplank function measures the rel-
ative strength and weakness between edges, so that their exact values are
not needed in further computations.

Finally, let us briefly detail a soft-clustering variant of the algorithm.
To allow overlapping clusters, we can ignore the set Q of already clustered
nodes during the expansion step. This way it would be possible for K
to include nodes that already belong to a previously found cluster. This
leaves the problem of how each seed node should be chosen: if we also

93



relax the constraint of choosing a not yet clustered node as a seed, we risk
discovering many times the same cluster, or finding nearly identical clus-
ters. To prevent this, a suitable candidate could be taken, as for the basic
version, from still unclustered nodes, or at least from nodes at distance 2
or more from an already expanded seed.

In the present work, we do not evaluate this soft-clustering variant of
the gangplank algorithm, which remains as a theoretical possibility to be
expanded and investigated in the future. We just point out that evalua-
tion for soft-clusterings might require different measures than for hard-
clusterings; of the three scores that we use in our pseudoword evaluation
framework (see Section 5.3), only BCubed is suited to this task.

4.2.2 Aggregative clustering algorithm

Again, in this section we will describe the general functioning of our ag-
gregative’ clustering approach, as first presented in [Cecchini et al., 2015].
Its implementation for wsi tasks, as that of the other here presented algo-
rithms, will be detailed in later sections.

Given a finite metric space (V,d) of any kind, where d is its metric
function, we can apply any clustering algorithm that relies on a distance,
such as the k-means, k-medoids or the k-nearest neighbours algorithms.
Our aggregative approach is inspired by them and it is in fact the less
graph-based of our proposed methods, due to its vectorial interpretation
(see Section 4.1.2). We could describe our aggregative algorithm as a k-
medoids algorithm (based on the original work by [Lloyd, 1982]; see also
[Kaufman and Rousseeuw, 1987]) without a fixed initial k. In fact, our
parameter is not the number of clusters, but the radius o, which is used
in the first iteration to initialize the starting medoids, letting them arise
from the distribution and relative density of the elements in V. The radius
ultimately determines the granularity of the final clustering. A bounded
distance like d; of Section 4.1.1 is of help here, since it allows us to better
grasp the consequences of choosing a given value for ¢. With regard to
subsequent iterations, the algorithm behaves like a version of the usual
k-medoids algorithm and consists of two repeated steps: the reassignment
of nodes to clusters and the recomputation of cluster medoids.

"Here and thereafter we will use the term aggregative instead of agglomerative, more
commonly seen in literature. In fact, the latter implies a hierarchical clustering and the
recursive merging of smaller clusters, like in [Brown et al., 1992]. Our approach instead
lacks the notion of hierarchy and gathers, aggregates points around more central elements.
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A medoid of a discrete subset Q of V is defined as an element of Q
with the least mean distance from all other elements of Q, or equivalently,
whose sum of distances to the other elements of Q is minimal. Thus, a
medoid can be defined as the discrete approximation of a mean value:
for example, in a Euclidean space RY with the norm as its distance, the
medoid of a discrete subset Q C RY is the element closest to the point of
RY representing the mean element, which may not lie in Q. With respect
to k-means algorithms, working with medoids allows us to generalize this
kind of partitioning algorithms to any kind of metric space and distance,
keeping the focus on the elements we want to cluster and the distance that
binds them, rather than on the Euclidean vectorial space where we might
embed those elements. Besides this, a medoid readily provides us with a
possible most significative representant of a cluster.

Formally, we define the medoid y of set Q as

p =argmin Y _ d(q,p). (4.18)
7€Q  peQ

Similarly to the gangplank clustering algorithm 4.2.1, we choose the
first seed element w, the one that starts the algorithm, by some appropriate
criterion, or even randomly. The first cluster K is initialized as K; = {w},
and w represents K; = {w} as its trivial medoid. After w, every other
element of V is visited. For the first visited element v, there are two possi-
bilities:

e we have d(w,v) < 0, i.e. the two elements are close enough to be part
of the same cluster. We assign v to Kj, so that now K; = {w,v}.

e Otherwise, if d(w,v) > o, the node v is taken as the seed of the
new cluster Kj, initialized as K, = {v}, and is defined as its current
medoid.

Subsequently, each further element will be compared to the two seeds, and
o will determine if it will become part of an existing cluster or form a new
one. The generic (re)assignment step for element v is as follows:

Reassignment: Let C = {Kj, ..., K,} be the clusters found up to this mo-
ment. Let y;, i = 1,...,n be their respective medoids. We look for
the element

Umin = argmind (v,u;),
Hi
that is, the medoid closest to v according to distance d. We recognize
two possible cases:

e If we have d(v,pipin) < 0, we will assign v to the corresponding
cluster K.
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e Else, if d(v,ptyin) > 0, it means that v is not close enough to any
of the medoids, so that we create a new cluster K, 1 = {v},
defining v = p,,41 as its current medoid.

After every element in V has been seen for the first time, we will have
obtained a primitive clustering C. The elements that were defined as their
respective medoids during the reassignment step will probably not yet
satisfy condition (4.18). For this reason, we recompute the medoids; in
a sense, we are recentering the clusters, finding for each its own better
representant.

Medoid recomputation: For each cluster in C = {Kj, ... K, }, we redefine
its medoid as
i = argmin Z d(v,w),

veK; weK;

fori=1,...n.

After this first recomputation, the k-medoids part ofthe algorithm starts.
We will again visit every element in V in random order and repeat the
reassignment step. While many elements will still be close to their own
medoids, and while many medoids might actually have not changed at all,
others that found themselves at the border of a cluster might be shifted.
In any case, the number of clusters will always stay the same.

The algorithm proceeds iterating a reassignment step and a medoid
recomputation step. The goal is to reach a stable configuration where
medoids, and consequently their corresponding clusters, do not need to be
readjusted anymore. The algorithm stops when the set of lastly computed
medoids is equal to the set of medoids in the previous iteration. It is pos-
sible, as was similarly the case for Chinese Whispers (Section 3.3), that the
limit of the process is not a single configuration, but two or more cyclically
repeated configurations. This is even more probable in our case, as we are
using medoids instead of means: smaller changes in the reassignments
might also change the best option among similar medoid candidates, even
if they are equivalent for the composition of the clusters. Therefore, we
elect to alternatively stop the algorithm after a fixed given number of iter-
ations.

It is also possible to add a recompacting step, in the spirit of the one
described by Algorithm 3 for the gangplank clustering algorithm. In this
case, the role of the relative number of gangplank connections will be
played by distance: each node is reassigned to the cluster represented by
the medoid closest to it.
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Different runs of the aggregative clustering algorithm that we just de-
scribed will yield possibly different outputs if the first seed element is
chosen randomly. If, on the other hand, there is a definite choice criterion,
differences in the outputs of different runs will depend on the order in
which elements of V are visited. Apart from these two remarks, the algo-
rithm is deterministic: given the same seed element and the same vising
order, it will always behave the same way. Since we are assuming that
V is a discrete set, a sensible choice for ¢ lies in [diy,dmax], Where dyi,
and d,, are respectively the minimum and maximum distance between
elements of V. We remark that the lower bound is more relevant than the
upper bound, as the latter is influenced by outliers and can be dispropor-
tionately greater than the mean values assumed by d on V, whereas d,,,
is more telling of the distribution of the graph. Here distribution is meant
in an abstract way: we picture a dense region as a subset of V in which
the mean distance is relatively low.

Also, we remark that the number of possible clusterings is limited by

the finite sequence
A= {d,dy, ... di},

1<i< (‘g'), dr < diyq, of all the values that d assumes on V. The ele-
ments of A give a set of thresholds around which a change of ¢ also gener-
ates a new clustering. If (V,d) is obtained from a graph G = (V,E), as dis-
cussed in Section 4.1.3, the cardinality of A and the difference d,5x — dyin
can be seen as indicators of the homogeneity of G’s degree distribution.
The choice of radius ¢ can be made dependent on this distribution: we
can choose to use a given percentile of the set A. For example, the 75th
percentile would produce a certain coarseness and the resulting cluster-
ing would be coarser than using the 20th percentile. This way, if the ag-
gregative clustering algorithm is performed on different graphs, fixing a
percentile of A will also fix a given granularity, independently from the
graph.

We show the functioning of our proposed aggregative algorithm in
Algorithm 5.

To estimate the time complexity of Algorithm 5, we assume that dis-
tances have already been computed for each couple of elements in V.
Then, suppose that we have found m medoids; this number will never
change. In each reassignment step, every node will be compared to each of
the m medoids, for a complexity of O(m |V|). The medoid recomputation
step is more expensive: in each cluster K; we have to perform |K;| (|K;| —1)
operations, i.e. adding |K;| — 1 elements for each node in K;. Since our
clustering is a partition of V, we have the relation } ;" ; |K;| = |V|. There-
fore, since we know that Y7, |K;|* < |V|?, at each iteration we will have
a maximal overall time complexity of O(|V|?).
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The total complexity also depends on radius ¢: the smaller, the more
fragmented the clustering will be, meaning that the cost of the reassign-
ment step increases and that of medoid recomputation decreases, with
some equilibrium point in between. In the end, Algorithm 5’s complexity
will oscillate between linear and quadratic in the cardinality of V.

Algorithm 5 Aggregative clustering algorithm

Input Metric space (V,d), radius ¢, maximum number of iterations L,y

Output Clustering C of V

1:C=0
2 M=M ={} > The sets of new and old medoids
3 M= MU{w} > Choice of first seed medoid
4 Ky = {w} > Initialize first cluster
5: count =0 > Initialize iterations” counter
6: while M’ # M or count < I, do
7: forv e V do > Assignment step
8: mo=argmin;_y 1 d(v,H;)
0: if d(v,uy) < o then
10: Ky = Ky U {v} > Assign node to cluster
11: else
12: K41 = {0} > Initialize new cluster
13: M= MuU{v} > Add new medoid
14: end if
15: end for
16: C = Uiz, m1Ki} > The found clustering
17: M = > Save current medoids before recomputation
18: fori=1,...,|M|do > Medoid recomputation step
19: pi = argmin, . Ycx, d(0,w)
20: end for
21: count = count +1

22: end while
23: return C

4.2.3 Curvature-based algorithm

In this section we will describe our third and last proposed algorithm, in-
spired by the concept of synthetic curvature. The approach of [Dorow, 2006],
already discussed in Section 3.2.1, also conceptually revolves around cur-
vature. However, we can point out some important differences. First, in
[Dorow, 2006] curvature is a quantity associated to the nodes of a graph,
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whereas we associate it to edges; second, there, semantic clustering is
achieved by pruning nodes under a given curvature threshold, whereas
we aim to decompose the graph based on regions with similar curvature;
third, in [Dorow, 2006] it is defined in terms of local clustering coefficient
(see Section 2.1.6), whereas we tie it to the notion of distance. These differ-
ences will become clear in the following. We will first present an overview
of the geometrical concept of curvature to give a better insight into the
motivations of our curvature-based clustering algorithm, and then go into
the details of the algorithm. The implementation of this curvature-based
algorithm will be discussed in Section 4.3.4.

Curvature is a geometric notion which measures to what extent a sur-
face differs from the flat Euclidean plane, i.e. a Euclidean space with only
two dimensions. The fact that not all surfaces possess the same geometric
properties was probably first indirectly discovered around the XVIth cen-
tury by mathematicians trying to prove the famous Euclid’s fifth postulate,
the parallel postulate [Euclid, 1956]. This axiom of Euclidean geometry
states:

If two right lines AB, CD meet a third line AC, so as to make
the sum of the two interior angles BAC, ACD on the same side
less than two right angles, these lines being produced shall
meet at some finite distance.

Equivalently, the same axiom can be expressed as:

Given a line AB and a point C, there exists only one other line
CD passing through C and not intersecting AB, namely the one
such that BAC and ACD are two right angles.

We call CD the line parallel to AB through C.

This assertion is however not true on every surface. There exist ge-
ometrical spaces where the Euclidean parallel postulate does not hold,
called non-Euclidean geometries. The unintentional discoverer of such alter-
native axiomatic systems is thought to be Saccheri®, an Italian mathemati-
cian who, attempting to prove the parallel postulate, could not actually
find valid arguments against two different ways of negating it (although
he believed to have found them). Only much later it was discovered that
those two negations lead to different geometries: the one of spaces locally
behaving like a sphere, where no parallel lines exist, and the one of hy-
perbolic surfaces’, where a line can have infinite other parallel lines. Dif-
ferential geometry provides the link between such intrinsic properties of a

SWe point to [Boyer and Merzbach, 1989] for an excellent overview of this period in
the history of Mathematics.
9The form of a saddle is a rough approximation of a hyperbolic surface.
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surface and their definitions in form of an intrinsic, computable quantity
called Gaussian curvature [Griffiths and Harris, 1978]. The sign, positive,
negative or null, of curvature, invariantly characterizes the three men-
tioned surface families: sphere-like surfaces have positive curvature, hy-
perbolic surfaces have negative curvature and the familiar Euclidean plane
has zero curvature.

Another way to express curvature is to consider two points X and Y
on a surface embedded in a vector space that is also a metric space with
distance d. Then, we choose a direction other than XY (the one of the
line'” passing through x and y) and represent it with vector 7. We start
tracing two half-lines in that direction from both X and Y. We distinguish
three possible cases:

1. the distance between the two lines never changes, so they are effec-
tively parallel and we are on a Euclidean plane with no curvature;

2. the distance between the two lines lessens, so they converge and
eventually intersect. We are on a spherical surface with positive cur-
vature;

3. the distance between the two lines increases and they diverge. We
are on a hyperbolical surface with negative curvature.

If we denote with dy = d(X,Y) the initial distance and with
dy = d(X +3t,Y +3t), teRT,

the distance between the two corresponding points of the half-lines, de-
fined through parameter ¢, we can define the quantity

A(X)Y) =do —dy. (4.19)
We discern again three possible cases:

i. Ay = 0 for all values of t. We are in case 1.

ii. There exists a f such that A; > 0: the two lines intersect and we have
again case 2.

iii. There exists a t such that A; < 0: the two lines diverge and this
condition falls in with case 3.

19A line through X and Y can be defined as all the points of the form X(t — 1) + Yt,
where t € R.
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So we can put the fact of finding zero, positive or negative curvature
into relation to the difference between distances in the expected, standard
case (plane, zero curvature) and in the case of the actual surface we are
considering. Following this reasoning allows us to give a synthetic defini-
tion of curvature; that is, we have extrapolated one aspect of the geometric
notion and abstracted it, so that we can apply it to spaces that can not be
directly related to surfaces. The synthetic point of view is more interested
in the qualitative rather than quantitative aspects. In our case, we are par-
ticularly interested in the definition of curvature for a weighted graph,
whose node set is a discrete space. A survey about synthetic Ricci curva-
ture (closely tied to Gaussian curvature), which highlights many concepts
behind this research field, is [Villani, 2016].

Our aim is to define a curvature on a weighted, undirected graph
G = (V,E). To achieve this with a subtractive approach like that repre-
sented by the quantity in (4.19), we have first to understand what case we
want to treat as the standard, flat structure (our Euclidean plane), com-
pared to which another structure is considered to be curved. In Section
4.1.1 we define the Jaccard distance d; on node neighbourhoods and its
weighted counterpart d}’. As we already observed, the unweighted dis-
tance d; does not consider the weighted structure of the graph and is
based just on the topology of G, that is, it takes into account just if any
two nodes are adjacent or not. The neighbourhood of each node is treated
as a word bag where only the binary variable of absence or presence of
a term counts, and where we neglect the strength of the correlation be-
tween two nodes. From another point of view, we are using vectors with
binary entries (as was discussed in Section 4.1.2; see also Section 2.1.4).
In a sense, with d; we are making the naive assumption that each word
appears independently from the others and with uniform probability. Un-
der this light, we can consider d; as the standard, zero-curvature case: we
are not considering anything else than the underlying, topological struc-
ture of the graph. On the contrary, distance df’ assigns to each node in
a neighbourhood its relative importance with respect to the central node.
The result is very often different from what we obtain through d;: two
nodes v and w tend to be nearer under dj’ than under dj if the weighted
structure of G values the connections between common neighbours of v
and w heavily, and viceversa, d}’ separates them if the same connections
are less relevant than the connections of v and w with other nodes. This
leads us to propose as curvature between two nodes v and w on a generic
weighted, undirected graph G the difference

E(v,w) = dj(v,w) —dy (v,w). (4.20)
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Hence, a positive curvature = represents a stronger bond between two
words, whereas a negative or null one might point out to the fact that v
and w co-occurred randomly. We remark that this concept of curvature,
as for the Jaccard distances of Section 4.1.1, is not tied to the presence or
absence in G of an edge between v and w.

The quantity Z is a priori bounded to the interval [—1,1] if weights are
positive (see the remark on generalizing d}’ in Section 4.1.2), and repre-
sents a new weight function & : V x V. — [—1,1] on G. We can express
it explicitly in terms of node neighbourhoods, combining definitions (4.2)
and (4.5), as'!

_IN4() nR4@)] _ [N(2)

Elow) = = - — = i
IN“(0) UN“(w)|  [N(v) N

A vectorial interpretation is possible using the relations (4.6), (4.8), (4.9)
and (4.10) of Section 4.1.2.

We observe that there are just two cases in which Z(v,w) will be zero:
either

e v and w have disjoint neighbourhoods, so that
dj(v,w) =dj (v,w) =1,
or
o the weights in both neighbourhoods are all equal.

Given our considerations, the new weight function E implicitly defines
a clustering of V. We only retain the set E of edges defined by a positive
curvature, i.e.
E;y ={(vw) |vweV,E(vw) >0}

and define the graph G = (V,E;). The graph G is not necessarily a
subgraph of G, as a priori we have that E; ¢ E. We take the connected
components of G to be our clusters.

We can represent distances in the graphs by means of distance matrices
D and D respectively for the normal and weighted Jaccard distance on
G, as discussed in Section 2.1.4 and Section 4.1.2. The complexity of this
step is estimated by (4.12). Then, the matrix

[1]

(G)=D-D¥
represents all the curvatures in G. The associated matrix

ET(G) = {max(;;,0) | &;j € E(G)},

e observe that & can be generalized as the difference of any couple of real functions
on V x V, especially when one represents a weighted version of the other.
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where we substitute all negative curvatures with 0’s, corresponds to the
weighted adjacency matrix of G, (see Section 2.1.4). Computing the differ-
ence of the two matrices has a complexity of at most O(| V]Z), but just con-
sidering non-zero entries'? of D we can reduce it (confront the discussion
in Section 4.1.3). From E7(G) it is possible to retrieve all the connected
components of Gy. Algorithms to find the connected components of a
graph can run in linear time O(|E;| + |V|) [Hopcroft and Tarjan, 1973].
Therefore, the procedure we just described for curvature-based cluster-
ing has an overall, less-than-quadratic with respect to V, time complexity
smaller than O(|V|* + |V|), to which we have to add the one coming from
the computation of the Jaccard distances on G.

It is possible that our curvature-based clustering algorithm produces a
very fragmented partition of V with many singletons. As was proposed
for the gangplank and the aggregative clustering algorithm, we can sub-
sequently perform a recompacting step similar to that of Algorithm 3. We
treat all clusters whose size falls under a given threshold 6 (typically 2, so
singletons) as single unities to reassign to bigger clusters. If C* is the set
of clusters such that |C| > 6 for all C € C" and K is a cluster to reassign,
we look for

Cimax = argmax max E(v,w),

CeC+ veK,weC

that is, the cluster that is connected to K by the edge with maximal curva-
ture. Clearly, this maximal curvature will be non-positive, since all positive
curvatures are already defining the clusters. We reassign small clusters
progressively: it is possible for Cy,y to be initially empty for a cluster K
if there are no edges between K and any C. We iterate over the clusters
we want to reassign until we find a Cy,,, for one of them, and then check
again for the remaining ones. As the bigger clusters grow, each smaller
cluster will find its final destination. In the extreme case that all clusters
are too small, we will take the trivial clustering {V'}.

4.3 Algorithm implementations for WSI

Section 4.1 revolves around the theoretical and conceptual groundings
upon which the three algorithms presented in Section 4.2 are based. While
the gangplank, the aggregative and the curvature-based algorithm can
each be used on every generic graph for which the right prerequisites are

12Given that the Jaccard distance is non-negative by definition, if an entry of D is equal
to 0 we know that the corresponding entry of Z(G) will be non-positive.
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|(Word fittering) [Pre-processing|

Graph construction

lN eighbourhood’s subgraph g

‘Word cloud of target word w‘ <~ Word filtering

lWeighted Jaccard distance

|Word cloud’s metric space| «—_ |Distance graph|

lAGG/CURV GP WSI
-
lCluster labelling
Discriminated original text] WSD

Figure 4.2: General rough framework of the implementation of the novel
graph clustering algorithms for wst proposed in this chapter. AGG, cUrv
and Gr are respectively the aggregative, the curvature-based and the gang-
plank clustering algorithms.

satisfied, they have been all first conceived with the task of Word Sense In-
duction in mind. We will now give the common framework for their spe-
cific implementation, following the layout seen in [Cecchini and Fersini,
2015], exemplified in Figure 4.2.

4.3.1 Pre-processing

There are a number of operations that have to be performed on a raw,
unstructured text to transform it into a suitable word graph on which a
clustering algorithm can be run. Here we will give a brief overview of
these pre-processing steps.

The starting point for our graph-based approach to Word Sense In-
duction is a co-occurrence word graph G extracted by a given data set of
text documents, as discussed in Section 2.1.8. The graph G = (V,E) is
weighted and undirected. In the simplest case, we take the weight func-
tion to be the raw frequency, assessing the number of times two words
co-occur in the same text unit, but other significance measures (log likeli-
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hood ratio, normal or adjusted mutual information,...) can be employed
(for some of them, see Section 2.2). The goal is to link to each edge (v,w) of
G a quantity ideally proportional to the significance of the co-occurrences
of v and w: the higher the weight, the more significant their co-occurrence.

The context for which significance is measured is tied to a particular
text unit, which can be any recurring portion of a textual data set, rang-
ing from a fixed-size window around a word to an entire paragraph. Of
course, other kinds of contexts are possible. We assume that the text is
already subdivided in the chosen text units. For some documents, such
as a collection of tweets, this is rather trivial. However, in the following,
we will take the sentence as our basic text unit, without loss of generality.
The problem of sentence boundary detection presents its own challenges
(a survey for English is [Read et al., 2012]), but there are well established
and reliable unsupervised systems, such as [Kiss and Strunk, 2006], that
come to our aid.

The most interventional action in our graph-building step is the use of
a part-of-speech tagger (like TreeTagger [Schmid, 1994] or ARk tweet POs-
tagger [Owoputi et al., 2013]) to keep only certain grammatical classes of
words as nodes in our graph. Usually, we want to retain only open-class
words, in particular nouns and verbs. Members of so-called open classes
are considered to carry meanings and/or refer to semantic entities. On
the contrary, the role of most members of closed classes, like determiners or
prepositions, is that of function words, joining and completing syntagms
so that an utterance becomes grammatically correct. The traditional word
classes for English are nouns, verbs, adjectives, adverbs, prepositions, con-
junctions, pronouns, determiners (articles) and interjections. The first four
are considered to be open classes; the second four closed classes; and in-
terjections constitute a factually very heterogenous class which defies a
clear definition. The role of interjections, compared to other classes, is
much less related to the syntactical structure of a sentence than to its ex-
pressive, pragmatical aspects. Most wsI approaches focus on the four cited
open classes. Still, among them nouns and verbs appear to play a more
prominent role in conveying information and referring to real or abstract
entities, whereas adjectives and adverbs have the secondary function of
modifying nouns and verbs'®>. Thus, many approaches restrict their at-
tention just to nouns and verbs, and between the two, nouns are often
deemed more relevant to the disambiguation task. Another reason is that
often nouns present a simpler morphology than verbs, even in very flec-

BHere we are presenting a rather classical point of view relative to English and related
languages, like others in the Indo-European family, or languages with a similar structure.
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tional languages, testifying their relative smaller complexity. Of course,
the notion of part of speech varies across different languages, and distinc-
tions between word classes can get blurred at times even in the same lan-
guage. For a general introduction to these topics, see [Lyons, 1968].

More relevant Less relevant
Nouns Adjectives Pronouns Interjections
Verbs  Adverbs  Conjunctions

Prepositions

Determiners

Table 4.1: Word classes sorted by relevance for wst. Nouns are highlighted
as the most relevant class.

Wrapping up all previous considerations, we will assume that in the
general case our word graph G represents sentence-level co-occurrences
between members of noun and verb classes, and that weights correspond
to raw frequencies. We found adjectives to be not enough significant and
in particular to lower the quality of the clusterings: most of the more
frequent adjectives, like good or strange, have too rarefied meanings and
co-occur with too many nouns. In fact, they act like stop words!4, but are
much more difficult to identify, hence our decision. We lemmatize words,
i.e. reduce all words to a common lemma independent from possible in-
flections, and do not keep the distinction between lowercase and upper-
case letters. The Jaccard distances that we will make use of are already
some sorts of similarity scores; like likelihood ratios or mutual informa-
tion, they are in fact computed based on some kinds of frequencies, which
are the only information that we can extract directly from a text. Comput-
ing graph Jaccard distances on top of other similarity measures might blur
the whole process by adding yet another layer of representation to our wst
system, but we do not completely exclude this possibility.

This particular setting is nearly identical to that of [Cecchini and Fersini,
2015], where tweets instead of sentences were selected as text units. We
will adopt it for the sake of a concrete example, although many other
choices are equally viable.

The word graph G = (V,E) we define is a global model of our data set.
As stated in Tasks 2 and 3 in Section 1.3, the target of our disambiguation
is each time a given word w € V, on which we focus our attention. In
graph terms, the context of w is any appropriate subset N C V such that
w € N. The most natural choice in our setting, and the one that was also
adopted e.g. by the pw and HyperLex algorithms, is to take the open first-
degree neighbourhood N(w) of w in G (see Section 2.1.5). In [Cecchini

14Gee Section 2.1.8.
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et al., 2015] and [Cecchini and Fersini, 2015] this open neighbourhood is
called word cloud, a more colourful terminology we might also use later
on. We are interested in the relationships between words in w’s context
that determine a subdivision of N(w) in sense clusters, i.e. clusters implic-
itly defining a particular sense or usage of w in the data set. Our way to
gauge such relationships is the weighted Jaccard distance of Section 4.1.1
on the subgraph induced by N(w), also called w’s ego graph. Including
w in its own neighbourhood would warp this induced subgraph, in that
the maximum path length between any two nodes would be 2, altering
the computation of the Jaccard distance. We want to consider relation-
ships between w’s neighbours reflecting w’s senses, not between w and its
neighbours. In this perspective, w is the common element that does not
provide further useful information for discriminating between senses.

We also notice that extracting a local subgraph of w from the global
word graph does not yield the same result as building a word graph di-
rectly from the context of w. In the latter case, we might lose informa-
tion (in the form of frequency) about word pairs co-occurring together in
sentences where w does not appear. Even if such co-occurrences are not
directly related to w, they nonetheless tell us something about the bonds
between the involved words. Some connections inherited from the global
graph G might not even be present in a locally built context graph. There-
fore we prefer using the global word graph as our knowledge base whence
to extract local contexts each time, where we will be able to apply our clus-
tering algorithms. This will be the premise in the following Sections 4.3.2,
4.3.3 and 4.3.4 detailing the clustering step.

After a clustering of the word cloud has been obtained, the labelling
and discrimination step may follow, sketched in Section 4.3.5. This last
step briefly addresses what can be formally defined as Word Sense Dis-
crimination.

4.3.2 Gangplank algorithm implementation

As explained in Section 4.3.1, we are choosing a target word w € V for
disambiguation and running the gangplank clustering algorithm on the
induced subgraph G, = G(N(w)). Algorithm 4 requires a gangplank
labelling function ¢ : N(w) x N(w) — {0,1}. Since we want to use
second-order relations (context overlap) that may not be present in form
of mere co-occurrences, we will compute gangplanks on the finite distance
graph of G, = G(N(w)). Schematically:

1. Given co-occurrence graph G = (V,E), we choose a word w to dis-
ambiguate;
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2. we induce the subgraph G, = G(N(w)) from its open first-degree
neighbourhood;

3. we compute the finite distance graph D, = Dg,a¢ (Section 4.1.3)
according to the weighted Jaccard distance d} on G, (Section 4.1.1);

4. we define the gangplank labelling function g on Dy, as g(v,w) = 1 if
(v,w) is a gangplank in Dy, (Section 4.1.4) and g(v,w) = 0 otherwise;

5. we finally run the gangplank clustering algorithm on D, according
to g;

6. we possibly perform a recompacting step (Algorithm 3).

We illustrate this process through the example of a very simple graph.
In Figure 4.3 we show the small initial graph G, (which is isomorphic to
that in Figure 4.1) that has been extracted from the global graph G. Its
distance graph, where gangplank edges are marked in red, is shown in
Figure 4.3b.

o ) (b) Its finite distance graph Dy,. Red
(a) The initial weighted graph Gy. edges are gangplanks.

Figure 4.3: A small graph and its corresponding distance graph. Red
edges are gangplanks.

The exact distances between nodes of G, which are the edge weights
in Dy, used to compute the gangplank labelling g, are shown in Table
4.3, while each node’s open neighbourhood as a multiset from which g is
derived is shown in Table 4.2. From there, we see e.g. that

N“(A)NNY(F) ={(A2),(C1),(F2)}, (4.21)
N“(A)UNY(F) ={(A2),(B2),(C1),(E5),(F5)}, (4.22)
with cardinality respectively 5 and 15, resulting in a distance of

5 10 2
w _ - =
df(AF)=1— =1 =3
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Node | Open neighbourhoods as multisets Cardinality
A [ {(A2),(B2),(C1), (F2)} 7
B | {(B2)(A2),(C1)} 5
C | {(CA),(a1),(B1),(D3),(F1)} 9
D {(D3),(C3), (E1)} 7
E {(E5), (D), (F,5)} 11
F {(E)5),(A2),(C1),(E5)} 13

Table 4.2: The open neighbourhoods of each node in graph G, of Fig-
ure 4.3 represented as a multiset, together with their cardinalities, in the
notation of (4.4) in Section 4.1.1.

Node | A B C D E F

A - 2/7 2/3 12/13 7/8 2/3
B - 8/11 10/11 1 4/5
C - 2/5 8/9 16/19
D - 7/8 8/9
E - 2/7
F —

Table 4.3: Distances between nodes of G, = edge weights of D,, of Figure
4.3.

Figure 4.4 shows how Algorithm 4 runs on D,, step by step. Here, no
recompacting step is necessary, since all clusters have cardinality at least
2. We notice that, even if A, B and C form a clique, C is drawn outwards
towards D, and indeed the fact that (B,C) is a gangplank edge ultimately
makes the algorithm decide to detach C from A and B. We remark again
that if we had just removed all gangplank edges, the graph would have
stayed connected and we would not have recognized the stronger bounds
between some of the node couples.

4.3.2.1 Minimum cut variant

In Section 2.1.3 the concept of minimum cut for a weighted graph was
introduced. Applying it to the gangplank clustering algorithm, we want
to find a minimum node cut M on the distance graph D, relative to tar-
get word w as a preliminary step before actually running the algorithm.
We are motivated to do this in an attempt to remove nodes that act as
connectors between denser regions of the graph and thus might cause the
algorithm to merge clusters that should be kept distinct. The gangplank
clustering algorithm resumes then as normal on the graph

Do \M = Dy, (V\M).
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&7

(a) A is chosen as the seed node of
the first cluster. D is highlighted for
having the greatest value .

(c) C is removed. The tie at the level
of 7y score, degree and connection to
A is broken by the greater weight on
AE, 7/8 against 2/7 of AB . E is the
next node to be removed.

(e) No further expansion is possible.
The first cluster is {A,B}.

=

(b) D is removed and C is selected as
the next node to remove for having
the greatest value of .

=

(d) E is removed. A new, closer
tie ensues between B and F. For
the same reasons of step 4.4c, F
is selected to be removed because

2/3>2/7.

(f) The final clustering C =
{{A,B} {C,D} {E,F}} of the graph
at the end of the algorithm.

Figure 4.4: An example run of the gangplank algorithm on the distance
graph of the small graph of Figure 4.3. The quantity < is the gangplank

degree (4.16) of Section 4.2.1.



We do not perform the cut if D, is complete, as this would mean to remove
all but one node. After the clustering, each node of M that was removed
from D, is reassigned to the cluster to which it is connected with the
smallest gangplank degree (4.16) in Dy, similarly to the process described
by Algorithm 3. Our implementation of a minimum cut algorithm is that
found in Python’s package NetworkX [Schult and Swart, 2008], which is
based on [Esfahanian, 2012]. Clearly, even if we chose to associate this
variant to the gangplank algorithm, it is possible to use the minimum
cut as a preliminary step for any of the other clustering algorithms we
described in this chapter.

4.3.3 Aggregative algorithm implementation

Our aggregative algorithm is run on a metric space. As pointed out in Sec-
tion 4.1.3 (with the caveat of Observation 4.1.1), we know that the weighted
Jaccard distance df’ defines a metric space on any given weighted graph.
Having chosen w as the target word to disambiguate, we again consider
the subgraph G, = G(N(w)) induced by its neighbourhood and conse-
quently the metric space (Gu,df) (or, equivalently its distance graph D)
on which we can run Algorithm 4.3.3.

For the practical part, we use the simple implementation of the k-
medoid algorithm found in [Bauckhage, 2015]. The only novelty with
respect to the general case described in Section 4.2.2 is that we fix a cri-
terion for choosing the starting node in the medoid initialization step: As
the seed of the first cluster we take the node w with highest degree in G,.
The motivation for this is the consideration that such a node is roughly
speaking “more central” in the graph. Besides the notion of degree as
a centrality measure!® (as observed in Section 2.1.1), we observe that the
greater w’s neighbourhood, the more neighbours it will also have in the
finite distance graph of G,. In the metric space, we can imagine this as
a probably more densly populated region. Starting there, we envision to
capture already in the initialization step the core of one of the bigger clus-
ters. Of course, the clustering’s granularity depends on the radius ¢. Since
Jaccard distance is bounded, we can choose a ¢ in the interval [0,1], know-
ing that o = 1 leads to the trivial clustering C = {N(w)}. As N(w) is a
discrete set, a sensible choice for ¢, as discussed in Section 4.2.2, lies in
[dminAmax), where dyi, and dpu,y are respectively the minimum and maxi-
mum distance between nodes in Gy,.

15For a general discussion over centrality measures in a graph, see [Koschiitzki et al.,
2005].
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Let us take the graph G, of Figure 4.3a. Its distances in Table 4.3 define
the corresponding metric space. Here, we can choose a ¢ in [2/7,12/13].
More precisely, the distance sequence (see Section 4.2.2) is

A 222 8 4167 8 10 12
B {7' 573711"5719"879"11" 13’ b
with 11 elements, meaning that we have 9 possible non-trivial cluster-
ings of Gy linked to the eight possible choices of the type 0; € [d;,dit1),
i =1,...,9 where d, is the i-th element in A. Our starting point will always
be C, which has degree 4. The mean distance is 0.74, a possible value for
04, which we will use in our example. Figure 4.5b shows the clustering
process in this case. Figure 4.5 shows all possible clusterings of G.

Interestingly, we notice that the middle values of o, 03, 04, 05, 06 all
yield the same clustering, corresponding to the one already found by the
gangplank clustering algorithm in section 4.3.2. On the basis of this obser-
vation, we might see this clustering as the stablest configuration for G,.
We also remark a shift from two possible bipartitions of G, obtained with
o7 on one side and with og or 09 on the other side, preluding to the trivial
clustering for any o > 12/13.

We know that we will find a single cluster if ¢ is greater than the
maximum path distance from C (its eccentricity, see Section 2.1.2), which is
8/9. This corresponds to cases 0g and 9. For ¢y the clustering is identical
to that found with the gangplank clustering algorithm in Figure 4.4.

Node | A B C D E F

A - 1/4 1/5 5/6 5/6 2/5
B - 2/5 4/5 1 3/5
C - 2/3 2/3 1/2
D - 1/2 3/5
E - 3/5
F _

Table 4.4: Unweighted Jaccard distances between nodes of the graph in
Figure 4.3.

4.3.4 Curvature algorithm implementation

As laid out in Section 4.3.1, we run the curvature clustering algorithm
of Section 4.2.3 on the word cloud G, induced by the neighbourhood of
a given node w in the global word graph G. The subgraph inherits the
weights (raw frequencies) of G, so that we can compute the local weighted
and unweighted Jaccard distances and obtain the edge curvatures.
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(a) The aggregative clustering ob-
tained with oy € [2/7,2/5) after 2

iterations.

(c) The aggregative clustering ob-

tained with o7 € [7/8,8/9), after 3
iterations.

(e) The trivial clustering obtained
with o > 12/13, after 4 iterations.

(b) The aggregative clustering ob-

tained with o0», 03, 04, 05, 0g, ie.
o € [2/5,7/8), after 3 iterations.

o
® o
o o)
o
(d) The aggregative clustering ob-

tained with og and o0y, ie. o €
[8/9,12/13), after 4 iterations.

(f) The other trivial clustering ob-

tained with o < 2/7, after 1 itera-
tion.

Figure 4.5: All possible clusterings of the graph of Figure 4.3a, as we let o
vary. The respective medoids are the integrally coloured nodes.

We will take again the example of the graph G, seen in Figure 4.3a.
The weighted Jaccard distances are shown in Table 4.3. Table 4.4 presents

their weighted version.



Pairwise subtracting the entries of Table 4.4 from those of Table 4.3, we
have the sign of the curvatures in Table 4.5:

Node | A B C D E F
A + - - - -

B - - 0 -

C + - -

D - -

E +
F

Table 4.5: Curvature signs between nodes of the graph in Figure 4.3.

So Gy naturally decomposes into its positively curved components
{A,B},{C,D} and {E,F}, that were already found by the gangplank al-
gorithm (Section 4.3.2) and by the majority of values for o with the ag-
gregative approach (Section 4.3.3).

4.3.5 Discrimination

After the senses of a target word w have been induced in the form of a
sense clustering C of its neighbourhood, we can also go a step further and
discriminate the occurrences of w in our data set. This is the proper Word
Sense Discrimination part in the pipeline shown in Figure 4.2, according
to Task 3 of Section 1.3. Ideally, C identifies |C| = i different senses. Still,
some of the clusters might just represent common word associations with
no discriminative power. We formalize this consideration through Algo-
rithm 6.

Algorithm 6 Discrimination step

Input Word w, sentence S with w, sense clustering C of Gy,

Output Sense cluster Cgs identifying w in S

Cs=0 > Initialize the cluster
c=0 > Initialize the overlap
for C € C do
if [SNC| > oA |C| > |Cg| then
Cs=C
c=|SNC|
end if
end for
return Cg

DR AN L S e
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Algorithm 6 treats the sentence S as a word bag {s1,...,s,}, without
taking into account word order. In general, we might argue that word
order is not determinant in defining the meaning of a word in a sentence.
In fact, word order is governed by the syntactical and grammatical rules
of a given language and may vary arbitrarily. Moreover, we are not in-
terested in the exact relations between the entities referred to in S: e.g.,
if the peasant bows before the king or the king bows to the peasant, either way
bow is used for a courteous greeting. So, we just want to compare S to
each cluster C; of KC and see for which one we obtain the absolute greatest
overlap |S N C;|. Alternatively, we might also consider the Jaccard coeffi-

cient [SOGi| or similar ones, to measure a relative overlap. A motivation
ISUC|/ ’ p-

for this could be that we do not want bigger clusters to be too important
or dominant in the discrimination process. However, a relative overlap
favours too much smaller clusters, which may well be the less significant
ones. Further, as discussed in Section 1.1.1, the sense distribution of a
word tends to be very skewed towards one more popular sense, so that a
bigger cluster might capture this trend. Part of these considerations de-
pends on how the pre-processing step was performed. In our case, we
assume to remove every function word and retain only nouns and verbs.
If, on the contrary, every word were kept, we would risk obtaining a big
catch-all clustering which monopolizes discrimination, as function words
are so pervasive. For all these reasons, and especially in our setting, we
prefer leaning towards an absolute overlap.

We select Cs = argmax.. |S N C| as the implicit sense representation
to associate to w in sentence S. If there is a tie, we choose the bigger of the
possible clusters, on the ground that it likely identifies the most common
sense, and if the tie persists, we just pick one randomly. This way, if V
is the vocabulary of our data set, that is, the set of word forms that we
consider distinct!® for the purposes of our Word Sense Induction process,
we are generically defining a mapping

lw: P(V) — P(N(w)) U{D}.

Sentence S in fact induces a particular subset SNV of V, and a cluster
of C is a subset of w’s neighbourhood. We can see the final result as an
expansion of S through words associated to a given meaning of w. In an
unsupervised setting, we can not achieve more without resorting to exter-
nal knowledge bases: we are just explaining a word through associations
to other words seen in the data set. We observe that not every cluster of C
will surface in the image of £. Some word associations might be spurious

16For example, peach and peaches are considered the same if we use lemmatization dur-
ing pre-processing; cf. Section 2.1.8 and Section 4.3.1.
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and their appearance always outnumbered by more significant sense clus-
ters, so that in the end the effective number of different senses of w in the
data set might be sensibly inferior than |C|.

As a final comment, we can think of performing an actual disambigua-
tion, i.e. linking each discriminated occurrence of w to a knowledge base
where its sense is explicitly described, by means of an algorithm similar
to the one we used for discrimination. This time, we would compare the
combined context of a sense of w to the entries of a knowledge base, trying
to determine the best match. However, here we will not delve deeper into
this question, just pointing out among the others to [Moro et al., 2014], a
work that has tackled a similar task.

4.4 Conclusion

The new graph-based clustering algorithms presented in this chapter have
been outlined in their general forms (Section 4.2), with a robust under-
lying theoretical foundation (Section 4.1), and detailed in their actual im-
plementation for the Word Sense Induction task (Section 4.3), with basic
examples of their functioning. In the next chapter we will propose an eval-
uation framework based on pseudowords, putting to use the algorithms
presented in this chapter and comparing their results to those of the algo-
rithms examined in Chapter 3. We will try to establish how an algorithm’s
performances are influenced by a given wsi task and other factors, like the
type of word graph.
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Chapter 5

Pseudoword evaluation
framework

In this chapter we will present a new pseudoword evaluation framework
consisting of two different word graph data sets, one based on co-occurrences
and the other on semantic similarities (see Section 2.1.8), on which we will
compare the performances of the graph-based clustering algorithms for
wsl seen in Chapters 3 (apart from HyperLex) and 4. First, we will in-
troduce the concept of pseudoword, how it came to be and how it is used
for the evaluation of Word Sense Induction algorithms (Sections 5.1 and
5.2). Generally, as noted in Section 1.3.3, the evaluation of unsupervised
systems bears many difficulties and pitfalls that derive from the unsuper-
vised nature of clustering itself. Contrarily to a classification problem,
clustering works with no clear guidelines apart from the goal to reveal
some kind of patterns in the data. This makes it difficult to find an evalu-
ation framework capable of highlighting what a clustering algorithm has
really accomplished or not, without the risk of overrating trivial baselines.
Pseudowords have been introduced to circumvent some of such problems,
offering a way to obtain an objective and self-contained evaluation.

On a more practical level, in our opinion current wst and wsp chal-
lenges, such as e.g. those of SemEval 2010 [Manandhar et al., 2010], present
some shortcomings. A fundamental problem is the vagueness regarding
the granularity (fine or coarse) of the senses that have to be determined
(see Section 1.1.1). As a consequence, the definition of an adequate eval-
uation measure becomes difficult, as many of them have been shown to
be biased towards few or many clusters (cf. Section 5.4.1.1). Further, small
data sets often do not allow obtaining significant results. Pseudoword
evaluation, on the contrary, presents a framework where the classification
task is well characterized and gives the opportunity to define an ad hoc
evaluation measure, at the same time automating the data set creation.
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For these reasons, for now we are not interested in evaluating the wsr
clustering algorithms described in Chapters 3 and 4 on other data sets like
the SemEval ones: The great variability of the contexts of the target words
would not allow us to easily interpret the qualities of the algorithms, and
further, we are first interested in observing the behaviours of the algo-
rithms for a well defined task, i.e. homonymy detection, before passing
to other tasks. Our objective is to have a solid base for the relative com-
parison of algorithms and we deem their absolute scores of secondary im-
portance, since every unsupervised evaluation possesses its own internal,
not immediately generalizable logics. Conversely, we do not consider for
evaluation systems that appear in SemEval runs, on one hand because of
the practical difficulty to retrieve them, and on the other hand because we
believe that the selection of algorithms presented in this work sufficiently
covers a range of different clustering behaviours.

The second part of this chapter (Sections 5.3 and 5.4) tackles the follow-
ing research questions, in the spirit of our work on graph-based clustering
algorithms: What are the limitations of a graph-based pseudoword evalu-
ation for homonymy detection? How does the structure of a pseudoword
ego graph (see Section 5.2.1 and Section 2.1.5) depend on its components?
How do different clustering strategies compare on the same data set, and
what are the most suited measures to evaluate their performances?

5.1 Pseudowords

A pseudoword is an artificial lexical construct used to help in the creation of
data sets for the evaluation of Word Sense Induction clustering algorithms.

Pseudowords were independently first proposed by [Gale et al., 1992b]
and [Schiitze, 1992]. The underlying idea is to treat usually two, but some-
times three or more, different words in a given data set as one and the
same word: we treat the occurrences of the first word as if they were also
occurrences of the other word. From the point of view of Word Sense
Induction, where we are interested in modelling a word’s context, this is
equivalent to joining the contexts of both words. We are effectively cre-
ating a new, non-existent word from the conflation of two distinct terms,
a pseudoword which potentially carries all the senses of its original com-
ponents. A pseudoword is thus an artificial lexical object that is the mere
sum of its parts. An example might be banana_door: this pseudoword en-
compasses all and only the meanings of banana and door. So, if our data
set included the sentences

e This afternoon I ate a banana.
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e Remember to close the door!

we would treat banana and door as instances of the same fictive word ba-
nana_door.

We are using the graphical convention of writing A_B to denote the
pseudoword arising from words A and B, instead of the hyphenated A-
B, because the latter would apparently refer to an existing entity!. We
remark that a pseudoword is not a compound word: e.g. air-crew is a
particular kind of crew distantly related to the notion of air, but it does not
comprise the sense of air itself, nor is every crew an air-crew. However,
the pseudoword air_crew would just be the union of all the senses of air
together with those of crew, and nothing else.

If we denote the context of a word v generally as C(v), we identify the
context of v_w with

C(v-w) = C(v) UC(w).

In the previous example, following the guidelines for context modelling
of Section 4.3.1, we would have:

C(banana) = {afternoon,eat}
C(door) = {close,remember}
C(banana_door) = {afternoon,close,eat,remember}.

In Section 1.3 we discuss how, from the perspective of distributional
semantics, word senses are determined by a word’s context. It follows im-
mediately that the senses of a pseudoword proceed from the union of the
senses of its components, and that consequently a pseudoword roughly
simulates ambiguity. Pseudowords bring two main advantages to wsr:

1. they allow greatly expanding data sets of ambiguous words using
only few building blocks and no human intervention;

2. knowing the sense distribution of the components translates into
knowing the sense distribution of a pseudoword.
With regard to the first point, we observe that if we have n words with
known distributions, there are (3) pseudowords that can be generated
from them, for a nearly quadratic increase of available terms.

The second point is crucial for the evaluation frameworks that have
been proposed in the past and for the one that we want to propose: it
means that, knowing the sense distribution of words v and w, we already
know the ideal clustering of the context of v_w and that we can use this

Many languages use, under different forms, the strategy of compounding words (a
simple juxtaposition is very frequent, whereas hyphenation is typical of English orthogra-
phy), as it happens e.g. for play-group or air-crew (also written playgroup and aircrew). For
a general overview see [Scalise and Vogel, 2010]. For the specific case of English, [Lieber
and Stekauer, 2009] is a rather exhaustive reference.
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information to gauge the performance of a wsr algorithm on v_w. De-
spite the potentialities we have shown, before better defining the setting
of pseudoword evaluation in Section 5.2 there are also issues that we need
to confront.

We recall from Section 1.1 that proper homonymy arises when two se-
mantically and etymologically unrelated senses are expressed by the same
spoken or written sign, i.e. word, such as count in the sense of a nobleman,
as opposed to the act of enumerating. This word is ambiguous because we
can not assign it a meaning without first having some clarifying context.
At the opposite side of the ambiguity spectrum lie polysemous words,
whose different senses are more or less strictly related to each other and
often revolve around a common concept. Combining random words will
generate pseudowords that fall in between these two extremes. If v and w
only possess unrelated senses, v_w will be equivalent to a case of proper
homonymy. Sometimes, however, some kind of overlap between the se-
mantic spheres of v and w is likely to exist, up to the ultimate point that
the senses of v_w are blurred and not easily distinguishable anymore. For
example, using two near-synonyms like door and gate will produce a pseu-
doword which is substantially equivalent to any one of its components.
On another note, door and window will surely share an important amount
of contexts, as they both express a metaphorical or architectural concept
of opening in a building, and the resulting pseudoword will probably rep-
resent this more abstract notion. Even if the previous statement about
the knowledge of a pseudoword’s sense distribution still remains true, we
notice that haphazardly mixing words will possibly yield rather unpre-
dictable and unwanted results, in the sense that is not clear how to define
the general type of ambiguity that a pseudoword simulates a priori. As we
perform the process of pseudoword creation with three or more compo-
nent words, this issue naturally sharpens.

A study of [Nakov and Hearst, 2003] shows that the performances of
wsD algorithms used to disambiguate the senses of totally random pseu-
dowords act as an “optimistic” upper bound with respect to the same per-
formances on true polysemous words: while pseudowords might not be a
case of perfect homonymy, their senses are still easier to separate in most
cases, as they lack the usual kind of correlation between sense categories
and sense distributions of a real polysemous term. Introducing some sorts
of restriction, like requiring a minimum frequency for each component
or taking components with similar distributions, we can obtain a pseu-
doword nearer to the real case, and in fact a drop in the disambiguation
performances is noted. From a set-theoretical point of view, the quality
of a pseudoword greatly depends on the cardinality of the intersection
C(v) N C(w). The smaller its cardinality, the better v_w will approximate a
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case of homonymy. This point will be further investigated in Section 5.3.1.
Essentially, we can claim that on the scale between clear-cut homonymy
and fuzzy polysemy random pseudowords lie closer to the former; on the
other hand, the more words are combined together, the more we approach
the latter.

An attempt to steer the process of pseudoword creation towards a more
realistic imitation of polysemous words is devised and put in practice in
[Pilehvar and Navigli, 2013, Pilehvar and Navigli, 2014], themselves draw-
ing inspiration from [Otrusina and Smrz, 2010]. Here the objective is to
produce pseudoword molds of existing words with an arbitrary degree
of polysemy, not necessarily limited to two senses. The method of both
works relies on the semantic mapping found in WordNet?>. There, the
different senses of a term are identified by certain sets of synonymous
words and expressions (lexemes), also called synsets. For example, peach
will have a meaning similar to peach tree, Prunus persica in some contexts
and to smasher, stunner, ... in others. Each lexeme in a synset has its own
synsets, and there are also other kinds of relationships, like meronymy,
hyperonymy, and so on. A word described by just one synset is consid-
ered to be monosemous. This structure makes it possible to explore the
ensuing lexical tree graph in many directions and even to define a path
distance on it, admitting all or just some relationships as valid steps. A
pseudoword in [Pilehvar and Navigli, 2013] is constructed as the double
of any polysemous word w and consists of the sum of one monosemous
term for each sense of w conforming to its WordNet entry. Each such term
has to be as close as possible to the synsets of the original word according
to a given distance on the lexical tree: a crawl on WordNet recursively tries
to find a monosemous exponent for each synset related to w, and uses it
as one pseudosense of the final pseudoword.

Taking horoscope as an example, in [Pilehvar and Navigli, 2013] its rela-
tive pseudoword is forecast_diagram, synthesizing the two meanings distin-
guished by WordNet. This allows us to obtain a ground truth for algorithm
evaluation directly from the data already at our disposal, with no need for
human sense tagging. In our example, instead of gathering contexts for
horoscope and tagging each occurrence with either of its two senses, we can
just combine the contexts of forecast and diagram. If w has three or more
senses according to WordNet, we will have to combine the needed number
of pseudosenses. Pilehvar’s pseudowords modelled on Gigaword [Parker
et al., 2011] have found use e.g. in [Baskaya and Jurgens, 2016].

Zhttp://wordnetweb.princeton.edu/perl/webwn; [Miller, 1995]
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The pseudocontexts that we gather depend on the data set. If our data set
does not contain forecast or diagram, or if any of these terms is not frequent
enough, we will not be able to make a mold of horoscope on it. The system
presented in [Pilehvar and Navigli, 2013], while claiming to model poly-
semy very accurately and providing useful pseudoword recipes, entirely
depends on an external and human-compiled resource such as WordNet.
It does not take into account that its sense distinctions might be too fine-
grained or not relevant for the data set at hand, as was discussed for pro-
tection in Section 1.1.1. Essentially, it superimposes a lexical model on an a
priori unknown data set. This brings us to another issue of pseudowords:
where does the prior knowledge about its two components come from?
In our unsupervised setting we prefer avoiding the use of external knowl-
edge bases, and in Section 5.2 we will instead resolve to use a bottom-up
approach to obtain our building blocks. Here, we just disclose that the
difference between our work and [Pilehvar and Navigli, 2013] lies in the
focus on algorithm comparison through pseudowords rather than on the
definition of construction rules for pseudowords.

5.2 Pseudoword evaluation description

In Section 5.1 we have pointed out how randomly merging two words v
and w to obtain a pseudoword v, might result in unwanted side-effects.
One of them is that the number of senses of vy, is not always clearly pre-
dictable. To keep the complexity of such lexical interactions as low as
possible, we want to limit ourselves to the simplest case of pseudoword,
namely: the combination of two monosemous terms. This way, our aim
is to simulate a disemous (i.e. possessing two senses) case of homonymy.

Our motivation is that homonymy is usually more clear-cut than generic
polysemy: the senses will be more distinguishable in terms of contexts,
and their respective distributions will be independent from each other
with good approximation. On the contrary, the senses of a polysemous
words tend to have more intricate relationships and the line between one
and the other is often hazy (cf. Section 1.1). WordNet's fine-grainedness is
an example of how some subtle distinctions between different meanings
may appear arbitrary at times. For this reason, we deem that the efficacy
of a wsr algorithm should first be measured in the case of a well-defined
homonymy before being tested in a more fine-grained and vague circum-
stance. Homonymy recognition itself is relevant for many tasks like lexical
substitution, where the ability to distinguish completely different senses
and uses is more important than the subtle distinction between facets of
the same meaning. Also, we do not want our evaluation to depend on
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the subjective granularity of an external lexical resource. For example, the
sense distinctions in WordNet might not be mirrored in our data set, and
conversely, some unforeseen senses might be observed.

Therefore, we will only deal with pseudowords composed of terms
that are as unambiguous as possible, namely terms that in our data set are
found to possess only one single sense. To explain how we define them,
we have to outline the generic setting of a pseudoword evaluation in the
following sections, before going into the details of our implementation in
Section 5.3.

But first, we point out to another work where pseudowords play a ma-
jor role as a means to evaluate a wsr algorithm, namely [Bordag, 2006]
(which we also cite when discussing Chinese Whispers in Section 3.3).
Effectively, our pseudoword evaluation framework bears many common
traits with the one presented there. However, we remark some relevant
differences. The most important one is that in [Bordag, 2006] the evalua-
tion is “subjective”, i.e. the triplet-based algorithm defined by the author
is evaluated against itself: the sense-identifying clusters yielded by the
algorithm for two words v and w are compared to those yielded by the
same algorithm for the pseudoword v_w. On the contrary, as will be dis-
cussed in Section 5.2.2, for each pseudoword we set an objective ground
truth and measure the ability of any given clustering algorithm to retrieve
it. To this end, we also restrict the nature of our pseudowords (cf. Section
5.2.1), whereas in the cited paper combinations of more than two words,
possibly of different lexical categories (cf. Section 4.3.1), and ambiguous
components are admitted, and the context-defining terms of a word are
not lemmatized as in our case. We can affirm that the pseudoword eval-
uation framework presented in this chapter, while describing a generic
method for algorithm evaluation, is more focused on the task of graph-
based homonymy detection rather than on the generic assessment of the
validity of an algorithm, while at the same time it can surely be seen as
an expansion of [Bordag, 2006] from the point of view of the pseudoword
data sets. In particular, we note that we also consider semantic similari-
ties alongside mere co-occurrences (see again Section 5.2.1) to build pseu-
doword ego graphs. Finally, as already stated in 5.1, a data set analysis
is performed that takes into account not only the consequences, i.e. the
scores obtained by the algorithms, but also the causes, i.e. the structure
variation of pseudoword ego graphs.
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5.2.1 Evaluation setting: word graphs and distributional
thesauri

Our corpus is a combination of the Leipzig Corpora Collection® (Lcc)
[Richter et al., 2006] and the Gigaword corpus [Parker et al., 2011], and
consists of 105 million English newspaper sentences. The corpus has been
parsed using the Stanford Parser [De Marneffe et al., 2006] to extract syn-
tactic dependencies. Following the approach found in JoBimText* [Bie-
mann and Riedl, 2013], such dependencies are used for the computation
of a term-context frequency-weighted version of pointwise mutual infor-
mation called lexicographer’s mutual information (LmI) (see Section 2.2.1.3)
that allows us to obtain a similarity score between any two words. The
goal is to create a first-order and second-order distributional thesaurus for
each word w in the corpus, i.e. rankings of words from the most to the least
similar to w according to the LmM1 computed either for syntactical contexts
or co-occurrences. A word in the second-order distributional thesaurus of
w does not necessarily co-occur with w in a sentence of the corpus. We
notice that words are lemmatized and the difference between lowercase
and uppercase letters is kept.

First we build co-occurrence ego graphs (see Sections 2.1.5 and 2.1.8).
For a given term w, its first-order distributional thesaurus will use the lexicog-
rapher’s mutual information to rank every word that co-occurs with w in a
sentence. Based on these rankings, we choose a number N of significantly
(syntagmatically) similar words to consider for each such distributional
thesaurus. Then, for every word w, we build the graph G, with the N
highest ranked entries in its thesaurus as its node set V, so that |[V| = N.
An edge will be drawn between u,v € V if u is part of the first N entries
of v’s thesaurus or, viceversa, v appears in the first N entries for u. We
notice that both conditions will not necessarily be satisfied at the same
time, but LMI is symmetric and in either cases the score will be the same.
Knowing this, we define a weight mapping on G, by setting the weight
of (u,v) equal to the respective LMI score. The graph G, is then called
the weighted ego graph of w. We remove w from G, for the same reasons
that lead us to work with open neighbourhoods as word clouds in Section
4.3.1. We might use some extra care to exclude stop words®, which are
already penalised by the pmr1 part of LM, but which however keep appear-
ing in the distributional thesaurus because of their high frequency.

Shttp://corpora.uni-leipzig.de
ww . jobimtext.org
5See again the considerations in Section 2.1.8.

124



We pass to the second order using the LMI on the first-order relations
given by the syntactical dependencies, and build a second-order distribu-
tional thesaurus which can be interpreted as representing a semantic simi-
larity word graph. With a procedure analogous to that used for building
co-occurrence-based ego graphs, this time we build (semantic) similarity-
based ego graphs.

Whichever its form, a semantic-similarity or co-occurrence-based ego
graph G, can be clustered to induce the word senses of w in form of sense
clusters, as for the general process detailed in Section 4.3.1. We consider
a word w to be monosemous with respect to a given clustering algorithm if
the clustering of G, yields a single cluster. As mentioned in Section 5.1,
we refer to this approach as being bottom-up because it principally relies
just on instruments already present in our evaluation setting and does not
introduce new ones from outside. However, additionally we check that w
has a single synset in WordNet. This double criterion is quite strict and,
while the external look-up is not indispensable to our setting, it is helpful
for avoiding the bias coming from algorithms which favour a coarse clus-
tering.

To create our pseudoword ego graph data sets, we have chosen to take
only nouns (cf. the discussion in Section 4.3.1) as the components of our
pseudowords. All elements in the second-order distributional thesauri will
also be only nouns, to allow us to compare their syntactic dependencies,
whereas we do not restrict ourselves to any particular word class in the
case of co-occurrences.

We divide all the nouns in the corpus into 5 logarithmic frequency
classes, based on the frequency of the most common noun in the corpus,
i.e. year, which appears a total of 6179666 times. We take the binary log-
arithm of this value, approximately 22.6, and assign the frequency class
of a word according to where its logarithmicized frequency falls with re-
spect to its quintiles®. For example, if a word w appears 10000 times in
the corpus, the binary logarithm is approximately 13.3 and w will belong
to frequency class 3. Conversely, a member of frequency class 3 will have
a frequency between ca 526 and 12077. In general, the member of one of
our frequency classes is expected to be 23 times as frequent in the corpus
as a member of the next-lower class.

For each frequency class, we extracted random candidates and retained
only 10 of them which were found to be monosemous by the above-
mentioned criteria. In the end, we obtained 50 suitable words. The num-
ber of their combinations, and thus of different pseudowords, amounts

The quintiles are the four values that divide a quantity in five parts: in this case, they
are the multiples of ca 4.52, i.e. 4.52, 9.04, 13.56 and 18.08.
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to (520) = 1225. We then proceeded to compute all their respective ego
graphs. For v and w, we substituted all their occurrences in the corpus
with v_w and went normally through the previously described steps to
get a semantic-similarity and a co-occurrence-based ego graph Gy,. We
remark that this graph-building process has to be performed separately
for each pseudoword, as we want to merge only two contexts at a time.
That is, for v_w we want to consider the generic words u and z as possible
entries of the distributional thesaurus, whereas u_z would not have any
sensible interpretation as part of the pseudoword’s context. We limited
the size of all distributional thesauri, and consequently the order of ego
graphs, to N = 500 nodes, be they of regular words or pseudowords. For
very infrequent terms, it is possible that G, will be of smaller order.

5.2.2 Structure of a disemous pseudoword and evaluation goal

A pseudoword v_w constructed with the criteria explained in Section 5.2.1
will bear the two respective senses of v and w. Looking at the graph Gy,
this translates into being able to tell if a node u belongs to either ego graph
G, or Gy, or if it can be found in both.

More formally, we denote the node sets of G, G, and Gy, respectively
as V,, V,, and V,,,, and we write

VZ; - Vz; N va
V! = Vi 1 Vi

The sets V and V,, thus represent all the terms in the reduced distribu-
tional thesauri of respectively v and w that also appear in Gy,. We need
this precaution because not every element of V,, and V;, will necessarily
appear in Gy,. Now we can express the pseudoword’s ego graph node set
Vow as

Vow =aUBUyUY, (5.1)
where
w=V\V,
=V\V!
JB Z;)\ U/ (52)
y=V,NV,

6 = Vo \ (Vo U V).

Elements in « are nodes in V,, that are specific only to v, and analogously
elements in § can be found only in w’s distributional thesaurus and not
in v’s. The set 7 gathers elements common to both components v and w
and gives a measure of how much the two words overlap. The last set ¢
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contains all the terms that appear only in the combined context of v and w.
It is indeed possible that such words are not significant enough to appear
in v’s or w’s reduced distributional thesaurus, but the merge lets them
gain enough importance to appear in the first 500.

As is to expect, the set J is always of very small size. For the purposes
of evaluation, we can not take its elements into consideration, as they show
no immediate connection to v or w. The same can be said for the nodes
in 7, which act as neutral elements and do not influence the evaluation
process. However, later o will be useful for studying the behaviour of
the clustering algorithms in relation to the overlap of the pseudoword’s
components. In the end we will identify « and B as the desired underlying
partition7 of V. We define the ground truth clustering as

T = {wp}

and the goal of the evaluation is to compare it to the clustering C obtained
by a given algorithm, or more precisely, to

¢ ={C\{yust|cecl, (5.3)

i.e. the clustering C deprived of all the neutral and unrelated elements.
Figure 5.1 illustrates this situation.

We can now state the goal of pseudoword-based evaluation more pre-
cisely:

Evaluation goal 1. Given:
e two different words v and w and their ego graphs G, and Gy,

o the pseudoword v_w resulting from their combination and its corre-
sponding ego graph Gy,

e a graph-based clustering algorithm %,
e a measure i for clustering comparison,

we want to assess how well the clustering 2A(Gy,y) = C coincides with the
desired ground truth clustering 7 = {«,8}, defined on the basis of relation
(5.1), by means of the score

n(C.T),
with C’ defined by (5.3).

“If v # @ or & # @, we are actually considering a non-exhaustive partition or a sub-
partition, i.e. a collection of disjoint, non-empty subsets whose union is not necessarily the
whole set.
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Figure 5.1: The partition of a pseudoword’s ego graph, with « = {A,B,C},
B = {D,EF}, v = {GH}, 6 = {I}. Therefore, the ground truth
clustering is 7 = {{AB,C}{D,E,F}}. If we had another clustering
¢ = {{A,B,D,G,H}{CEF,I}}, for evaluation purposes we would just
consider C' = {{A,B,D},{C,E,F}}.

The choice of the evaluation metric y is very delicate and can introduce
a certain bias, as is discussed in Section 1.3.3 and in Section 5.4.1.1. We
will not remain confined to one in particular, but instead we will use both
BCubed (Section 2.2.2) and ~nm1 (Section 2.2.1.1). Besides these two, we
will also define a new, ad hoc measure for this evaluation setting, that we
will call Tor2 and that will be explained in the next section.

5.2.2.1 Collapsed pseudowords

Looking back at partition (5.1) of the node set of G, we observe that
it is entirely possible that either « = @ or B = @ holds. This means
equivalently that we have either V, C V, or conversely V) C V.. We
observe this case when all the words in the distributional thesaurus of one
word are also already present in the distributional thesaurus of the other
one: one word totally dominates and overshadows the other one. If we
assume the case & = @, then w will be the dominant word and G, will
mostly or totally collapse to a near-copy of Gy. Therefore, Gy loses its
interest as a potential disemous word and no real Word Sense Induction
can be performed on it.

Definition 5.2.1. We call a collapsed pseudoword a pseudoword v_w for
which, in the notation of (5.1), either &« = @ or B = @ holds.
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We decided to discard all collapsed pseudowords among the 1225 we
constructed. This phenomenon is apparently linked to the difference in
frequency classes between the components of a pseudoword (see Section
5.2.1 for our definition of frequency class). Postponing a deeper analysis
of pseudowords to Section 5.3.1, we show the trend for our corpus in Fig-
ure 5.2, once for semantic-similarity-based pseudoword ego graphs and
once for co-occurrence-based pseudoword ego graph, and the exact break-
down in Table 5.1 (further details about collapsed pseudowords in our
data set are presented in Appendix A). Interestingly, we learn that, among
all 1225 pseudowords, none collapses both for semantic similarities and
co-occurrences.

0.8 BT

.
0.7 0.7
0.6 0.6
.
0.5 0.5
.
0.4 0.4
.
0.3 0.3
.
0.2 . 0.2

0.1 0.1

. .
0.0 0.0
11 22 33 44 55 12 23 34 45 13 24 35 14 25 15 11 22 33 44 55 12 23 13 45 34 14 24 35 25 15

(a) Distribution of collapsed ego (b) Distribution of collapsed ego
graphs for similarities, ordered ac- graphs for similarities, ordered ac-
cording to frequency classes. cording to percentages.

0.9 0.9

0.8 : 0.8

0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 ° . 0.1

B T T P T BT R C I TR VR B T P T N T VN

(c) Distribution of collapsed ego (d) Distribution of collapsed ego
graphs for co-occurrences, ordered graphs for co-occurrences, ordered
according to frequency classes. according to percentages.

Figure 5.2: The distribution of collapsed pseudowords by frequency class
combination.
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Collapsed pseudowords
FC combinations | Similarities Co-occurrences

11 - -

22 - -

33 - -

44 - -

55 - -

12 - -

23 - -

34 20 -

45 2 1

13 - -

24 32 1

35 43 13

14 28 9

25 52 35

15 72 84
Total 249 143

Table 5.1: Breakdown of collapsed pseudowords by frequency class (¥c)
combination and ego graph type.

Frequency classes are labelled from 1 to 5 from least to most common,
and a combination of them is written in the form 12, 25, and so on. Fre-
quency class combinations are ordered from the most balanced ones on
the left, starting with components of the same class as in 11, 22 etc., up
to the most unbalanced combination 15 on the right. As expected, we
see that the percentage of collapsed pseudowords grows with their un-
balancedness, reaching its peak just over 0.7 for semantic-similarity-based
ego graphs and nearly 0.9 for co-occurrences. Symmetrically, no ego graph
collapses when both components belong to the same frequency class. The
rate of collapsed pseudowords also depends on the class of the most fre-
quent component, but is overall much lower for co-occurrence-based ego
graphs. We see two reasons for this behaviour. The first one is that we
base the rankings in our distributional thesauri on Lm1, which is itself pro-
portional to the co-occurrence frequency of two words or of a word and a
context (Section 2.2.1.3 and Section 5.2.1). If a word belongs to frequency
class 5, the generic entry in its distributional thesaurus will have in average
a greater LMI score than the generic entry of a word of lesser frequency.
Therefore, when the contexts of the two components are merged, the most
frequent word will tendentially outclass the terms specific to the less fre-
quent word, and this effect will be the more prominent the greater the
gap between frequency classes. The second reason comes from the obser-
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vation that this phenomenon is slightly less evident when co-occurrences
are involved; this is because co-occurrences are first-order relationships in
contrast to the second-order nature of similarities computed from syntac-
tic dependencies: for any given term w, there will be less words that share
w as a neighbour than words that share the same (syntactic/semantic) con-
text as w. We see a parallel with the discussion in Section 4.1.3, where we
show that the number of edges in the finite distance graph of G is sub-
stantially always greater than the original number of edges of G.

We know that for frequency class combinations of the form 11, 22 and
so on we have 45 pseudowords each, and 100 in all other cases. The num-
bers of Figure 5.2 mean that for our specific corpus we will be left with
just around 30 or 20 meaningful pseudowords in the most unbalanced
case, so that we will actually deal with around 1000 valid pseudowords in
our evaluation framework. Among these ones, we foresee many skewed
distributions of « and B, usually biased, as discussed before, towards the
most frequent component, and we will show in Section 5.4 how they im-
pact the algorithms’ performances.

Despite pseudowords being often criticized for their supposed artifi-
cialness and for not obeying the true sense distribution of a proper pol-
ysemic word, we note that a similar skewedness is very realistic in the
case of homonymy, where sense distributions tend to be dominated by a
most frequent sense (MFs). In coarse-grained Word Sense Disambiguation
evaluations, the MFs baseline is often in the range of 70% - 80% [Nav-
igli et al., 2007], not unlike as for the pseudowords we present here. In
view of this, we believe that the presence of collapsed pseudowords is a
general behaviour, not restricted to nor arising only from our corpus. In
fact, pseudoword data sets constructed from any large enough corpus will
present this phenomenon, as the absolute frequency gap between more
and less common terms will increase with the size of the corpus, accord-
ing to Zipf’s law [Zipf, 1935], leading to some terms being dominant over
the others. We still include collapsed pseudowords in our data sets in-
stead of discarding them altogether, because we deem them interesting to
the end of data set analysis and, further, even if they are not suited to
our homonymy detection task, they might still be used for other kinds of
algorithm comparisons and evaluations.
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5.2.3 The Top2 evaluation metric

When stating the Evaluation goal 1 in Section 5.2.2, we leave the evaluation
measure p undefined. Since its choice is instrumental in highlighting the
strengths and weaknesses of the clustering algorithms, alongside the well-
known BCubed and NM1 metrics we decide to develop one that specifically
takes into account the nature of our disemous pseudoword ego graphs.
Basically, we exploit the fact that we know what the ground truth looks
like and that it always consists of exactly two clusters.

Our intention is to penalize clusterings that stray too far from this bi-
partition, rewarding however an algorithm which manages to concentrate
the most significant information in two clusters, even if its clustering is
otherwise rather dispersive. Our new measure is called Tor2 and is in-
spired by normalized mutual information in its alternative interpretation
(see Section 2.2.1.1). We define TOP2 as the average of the harmonic means
of homogeneity and completeness of the two clusters that better represent
the two original components of the pseudoword.

We will use the setting and the notation detailed in the Evaluation
goal 1 of Section 5.2.2. Let C denote a clustering of pseudoword v_w’s ego
graph obtained by algorithm 2. We define

C, = argmax|CNa| and C, =argmax|CNp|, (5.4)
CeC ceC

the two clusters of C that have the greatest overlap with v’s and w’s dis-
tributional thesaurus respectively; C, and C, are the best approximations
of  and B, defined in (5.2). In a sense, we are reducing the clustering C to
its subset {C,,Cy}. As usual, we want arg max to yield just one element:
if there is a tie, we will choose randomly.

We define the precision or purity p,(C) of a cluster C with respect to
component v, and analogously py,(C) with respect to w, as

_ [CNa _lenp
po(C) = i and p,(C) = c| (5.5)
and the recall or completeness ¢,(C) or ¢, (C) as
(@) = S and eufo) = S50 ©0

We notice that the (5.6) are always well defined, since we chose to discard
collapsed pseudowords (see Definition 5.2.1) and therefore we always have
la|,|B| # 0. Additionally, by definition (5.4) these values will be always
greater than 0.
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For both clusters C, and Cy, we compute the harmonic mean of purity
and completeness with respect to the component they are representing.
We write the harmonic mean of two positive real numbers x,y € R as
h(x,y) and remember that

2
+
C

h(x/]/) st

T-
y

So, given & (py(Cy),c0(Cy)) and h (pw(Cuw),cw(Cw)) we define the TOP2

score as their macroaverage

h(po(Co),co(Co)) +h (Pw(CW)/Cw(Cw))‘
2

tor2(C,,Cyy) = (5.7)
Notice that in (5.7) the first cluster is always valued with respect to v, and
the second one with respect to w.

We notice that following the definition of representative clusters of
(5.4) can lead to the unfortunate case C, = C,, where the algorithm con-
centrates and confuses all the information about the two distinct senses of
the pseudoword in a single cluster; we denote this catch-all cluster as Cyy.
However, we want to penalize this behaviour: as a N f = @, we also want
to impose C, N C,, = @ s0 as to have comparable clusterings {a,5} on one
side and {C,,Cy} on the other. To this end we also consider the second
best matches for (5.4), which we denote respectively as C,, and C,. More
precisely, C;, meets the conditions

ICNal < |C,Na| < [CyNal

for any C € C, C # C,. The conditions for Cl, are expressed analogously.
Now we have two possible reduced clusterings to consider, namely either
{C],Cow} or {Cyu,C},}. The final TOP2 score is then defined as the better
of these two cases:

10P2(Cyry) = max (1or2(C,,Cy),10r2(Cy,Cl)) - (5.8)

If C, or C), holds just a fraction of the nodes relative to v or w, both its
purity and completeness will suffer and the macroaverage will be lower
than computing ToP2 just for Cyy.

The other case to take into account is when the algorithm produces
only one cluster, i.e. when C = {C}. As we can not resort to second
best representative clusters, we look at the clustering {C,®} and put the
harmonic means h (p,(2),c,(@)) and h (pw(D),c(D)) equal to 0. We as-
sociate C to the component it best represents: to v if

ICNal > |CNp|
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and to w if
ICNBl>|CNal.

If there is a tie, we will choose randomly. According to this choice, we will
compute either

tor2(C,Q) = h (€o(C),po(C))
or )

C
2
),pw(C

Tor2(@,C) = (Cw(Cz,pw( ) .
Thus, even if the overlap between C and e.g. « were nearly perfect and we
had

B (co(C),po(C)) = 1

(precision can not be one as f # @ and B C C), the Tor2 score would
never be higher than 1. This means that monocluster clusterings are char-
acterized by scores not greater than 0.5.

The TOP2 score is an ad hoc evaluation metric that penalizes two kinds
of clusterings in particular: those that are very fragmentary and that
evenly distribute elements among their clusters on one hand, and those
with a very skewed distribution, which tend to group all elements in one
huge cluster, on the other hand, up to the extreme of the trivial clustering
(see the final discussion of Section 5.4.4). They will both get low scores:
the former because of the generally low recall of its clusters, despite an
expectedly higher precision, and the latter because even if one representa-
tive cluster performs very well in terms of precision and recall, the other
one will possess much less significant information, and their average will
not be optimal. As shown in the previous paragraph, the extremely un-
balanced trivial clustering is guaranteed to obtain a score lower than 0.5,
intuitively representing that only half of the objective has been achieved. A
perfect score of 1 is reachable by a clustering C if and only if |C| = 2 and
it exists a refinement of C containing 7 = {a,f} as a subset. Expressly
basing the score Tor2 on the two best clusters of C assures that we can
avoid the proved or alleged bias towards clustering granularity present
for other evaluation systems like mutual information variants or BCubed,
as discussed in Section 5.4.1.1.

5.2.3.1 Generalization of TOP2

In an evaluation framework where different known degrees of homonymy
or polysemy are known, the Tor2 evaluation metric (5.7) can be general-
ized to a TOPN score, with N > 2. In this case, we will have N compo-
nents v1,v2, . ..,uN of a pseudoword, and retrieving the best representative
cluster for each component follows analogous definitions as (5.4), and the
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final score is again the macroaverage of harmonic means. Cases of the
form Cy, = Cvj can also be solved analogously, even if this might involve a
comparison between (much) more than two alternatives, as was for (5.8),
and in the worst cases the need to retrieve a third or even further less best
choice for the representative cluster. The constant trait of TOPN remains
that an incomplete clustering will be penalized in the sense that, if just
n < N clusters are found, its score will never be greater than §; < 1, giv-
ing an immediate measure of the clustering’s shortcomings. This is again
achieved setting the harmonic means of missing clusters equal to 0.

5.3 Evaluation implementation, techniques and data
set analysis

In this section we will present results pertaining to our two pseudoword
data sets. We recall the scheme of the Evaluation goal 1 in Section 5.2.2
and first of all introduce the ingredients of our evaluation framework.

Stemming from the corpus described in Section 5.2.1, we have 50 monose-
mous words evenly distributed among 5 frequency classes that will serve
as Componen’cs8

Frequency class 1: ackee, barque, bobolink, bufflehead, carryall, enonymus, leatherette,
pennywhistle, pneumococcus, tautog

Frequency class 2: afro, barman, catsup, dimwit, grosgrain, hyperthyroidism,
philanderer, southerly, tranquilliser, yellowcake

8Here we give a short definition for each of the more uncommon terms we use in our
evaluation. They are taken from the free online lexicon The Free Dictionary, available at
www.thefreedictionary.com.

ackee: A tropical African tree and its fleshy fruit
barque: Variant of bark; a boat or sailing ship
bobolink: An American migratory songbird
bufflehead: A small North American diving duck
carryall: A large receptacle used to carry things from one place to another
catsup:  Variant of ketchup
dimwit: A stupid person
euonymus: A genus of trees or shrubs
grosgrain: A heavy ribbed silk or similar for trimming clothes
leatherette: Imitation leather made from paper or cloth
pennywhistle: An inexpensive fipple flute of cheap materials
philanderer: A man who has short sexual relationships with many women; womanizer
southerly: A storm or wind coming from the south
tailwind: A wind blowing in the same direction as the course of an aircraft or ship
tautog: A dark-coloured, edible fish found along the North American Atlantic coast
wedlock: The state of being married
yellowcake: Semirefined uranium ore
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Frequency class 3: astrologer, bullfight, curio, flamboyance, hairpiece, light-
bulb, showtime, tailwind, ugandan, wedlock

Frequency class 4: artistry, heartache, heartbreak, marshmallow, pillow, relia-
bility, reptile, shawl, tequila, tofu

Frequency class 5: ailment, beer, clothing, courage, credibility, dioxide, gar-
ment, paycheck, psychologist, treasurer

As mentioned in Section 5.2.1, we select these components by first
checking if their ego graphs are partitioned into just one single cluster.
To do this, we use a fine-grained version’ of Chinese Whispers (Section
3.3). We further verify that also WordNet!? lists only one sense for the
selected terms. Inspecting other lexical resources like the Oxford English
Dictionary [Stevenson, 2010], even in its online edition'!, or The Free Dic-
tionary'?, confirms the monosemous nature of the chosen components.
Combined, they give rise to 1225 pseudowords. Looking at Table 5.1,
we have to discard a total of 249 collapsed pseudowords for semantic-
similarity-based ego graphs and 143 for co-occurrence-based ego graphs.
This brings the actual count of pseudowords used in our evaluation down
to respectively 976 and 1082 pseudowords. A further analysis about col-
lapsed pseudowords is reported in Appendix A.

We will evaluate and compare the performances of the following clus-
tering algorithms (in parentheses the acronyms by which we will refer to
them):

e Markov cluster algorithm (mcr; Section 3.1)

— We use the parameter 2 for the number of expansion steps, but
run the algorithm both with 1.4 and with 2 as the inflation pa-
rameter. Lower values yield less fragmented clusterings. We
iterate the process up to 100 times to assure convergence.

e Chinese Whispers (cw; Section 3.3)

— Our version of the algorithm is the most basic one, without
parameters, described in [Biemann, 2006].

e MaxMax (MM; Section 3.5)

— We implement the version described in [Hope and Keller, 2013].

°In particular the implementation found in http://maggie.lt.informatik.
tu-darmstadt.de/jobimtext/documentation/sense-clustering/ with param-
eters: -n 200 -N 200.

Ohttp://wordnetweb.princeton.edu/perl/webwn; [Miller, 1995]

HUpttps://en.oxforddictionaries.com/

12www.thefreedictionary.com
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e Gangplank clustering algorithm (Gp; Sections 4.2.1 and 4.3.2)

— We orient ourselves on the basic version described in [Cecchini
and Fersini, 2015]. Further, we set the restriction that the algo-
rithm does not cluster complete connected components of the
ego graph. We also implement the recompacting step for sin-
gletons. In Section 5.4.3 we will briefly consider a variant using
a minimum cut (see Section 2.1.3 and Section 4.3.2.1).

o Aggregative clustering algorithm (AGG; Sections 4.2.2 and 4.3.3)

— We focus on the value 0.97 for radius ¢, which yielded good
results for the tweet data set used in [Cecchini et al., 2015], but
also have a run which implements a variable radius using the
75th percentile of the distance set A. We also implement the
recompacting step for singletons.

e Curvature-based clustering algorithm (CURrv; Sections 4.2.3 and 4.3.4)

— We base the curvature on the Jaccard distance expounded in
Section 4.1.1. We also implement the recompacting step for sin-
gletons.

We also introduce a secondary level of clustering that we call hyperclus-
tering, that can be applied to any of the previous algorithms and is useful
for recompacting fragmented clusterings. It is detailed in Section 5.3.2. A
one-cluster-per-word baseline (BsrL), grouping all nodes of a word graph
into a single cluster, will also be used as a benchmark.

The evaluation metrics of which we will make use are:
e Normalized mutual information (Nm1, Section 2.2.1.1)
e BCubed (Section 2.2.2)

e TOP2 (Section 5.2.3)

Results will be given in Section 5.4 with respect to each clustering algo-
rithm and to parameters that summarize the structure of the pseudowords,
as will be explained in 5.3.1, and there will also be a further in-depth dis-
cussion of results in Appendix B.

5.3.1 Pseudoword analysis

In this section we will get more insight into the pseudowords that we
compose from our corpus and with which our clustering algorithms will
have to deal. In Section 5.2.2.1 we present data about the issue of collapsed
pseudowords. Since they are extreme, unmeaningful cases that we will not
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use in our evaluation, the following statistics do not consider them. We
will use three main parameters deriving from the node set representation
of (5.1) and compare semantic-similarity-based to co-occurrence-based ego
graphs. We will denote a generic pseudoword with v_w and its ego graph
with Gyyp.

The first aspect that we will examine is the balance, or conversely the
skewedness, of a pseudoword. We deem it to be represented by the ratio

- (15

We notice that p is always greater than 1. In other words, we consider all
nodes that specifically belong to just one of the two components of v_w,
i.e. the elements contained in the sets & or B, and measure the ratio of
the most represented component to the least represented one (this ratio
is well defined because we excluded the case of collapsed pseudowords

of Definition 5.2.1). If a pseudoword’s ego graph is perfectly balanced,

% = %" = 1. Otherwise, a value p will tell us that for every word of the

smaller component G, contains p of the larger one. We take the mean
of these ratios for each of the 15 different frequency classes, and show
the results in Figure 5.3: once for semantic similarities and once for co-
occurrences, first ordered from less to more unbalanced frequency class
(e.g., 14 is more unbalanced than 22) and then reordered from smaller to
greater values of the ratio.

We evidence the general, expected trend to have more unbalanced
words when quite different frequency classes (Fc) get mixed. Conversely,
combinations of components in the same Fc are mostly very balanced. The
dominance of some terms in Fc 5 makes 55 stick out as the more unbal-
anced of the most balanced combinations. In any case, the situation for
semantic similarities and co-occurrences is nearly the same: In both cases
the combinations 25, 15 and 14 are among the most unbalanced ones, with
25 and 15 reaching the respective maxima. The latter combination, despite
having been deprived of many collapsed pseudowords, still has extremely
skewed pseudowords. We notice that already a ratio of 100, in a network
of around 500 elements (also counting sets -y and ¢ for simplicity), implies
that the weakest component is represented by about 5 nodes, and a ratio
of 2 already means that two thirds of the network belong to the strongest
component. So, more than half of our pseudowords are quite unbalanced
towards one pseudosense. When this happens, our starting assumption is
that a clustering algorithm will be biased towards the dominant term: in
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Figure 5.3: The mean ratio p of the most represented component to the
least represented component (either |a| / |B| or |B| / |a|; y-axis) in similar-
ity and co-occurrence pseudoword ego graphs, by frequency class combi-
nation (x-axis).

practice, we expect it to find tendentially only one big, or even just a single
cluster. We recall that we define the TOP2 score in Section 5.2.3 especially
to penalize such eventualities, whereas in Section 5.4.1.1 we will see that
BCubed seems to be insensible to such skewedness.

We note that co-occurrence-based ego graphs seem to be generally
slightly more balanced than the equivalent semantic-similarity-based ones,
but also that the gap between the two more unbalanced combinations and
the remaining ones is more pronounced than for semantic similarities. For
semantic similarities, there are 6 Fc combinations (34, 24, 14, 15, 35, 25)
with a score over 100, but for co-occurrences there are only 3 (14, 25, 15).
However, in the latter case they reach much higher ratios than for seman-
tic similarities. We explain this fact again (cf. Section 5.2.2.1) remarking
that co-occurrences are sparser than syntactic relationships, and thus that
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LMI scores (see Section 2.2.1.3 and Section 5.2.1) tend to be more evenly
distributed and components have a lesser tendency to predominate one
over the other. The extreme value of class 15 for co-occurrences is not
statistically significative, as it is based on only few (16) pseudowords (see
Table 5.1), while the scores for other classes in Figure 5.3d are in line with

those seen in Figure 5.3c. The jumps in the higher values on the rightmost

side of Figures 5.3c and 5.3d come from the computation of ratio % or %

on a finite, discrete node set.

Figure 5.4 shows the mean cardinality of the node set  per frequency
class combination and relative to the total size of the ego graph. More
precisely, given a network G = (V,E), we consider the ratio

7]

K 1%k

The set 7, in the notation of (5.1), consists of the terms that are common
to the distributional thesauri of v and w and its size measures the overlap
of v and w. The more similar the meanings of the two components, the
larger we expect the overlap to be. In the case of the pseudoword beer_
tequila, for example, 305 nodes, more than half of the total 492 nodes in its
semantic-similarity-based ego graph, are found in the distributional the-
sauri of both beer and tequila, for a k score of 0.62; the same number rises to
332 on 484 for co-occurrences (and the pseudoword collapses, so that the
resulting score x = 0.69 has not been considered for the statistics shown).
In Figures 5.4a and 5.4b a pattern is clearly visible: the higher the mean
frequency class and the greater the smaller member of the frequency class
combination, the more terms the two components have in common (with
the exception of 44). Figures 5.4c and 5.4d show a roughly linear increase.

Again, as for p, co-occurrence ego graphs present higher values, due to
the fact that syntactical dependence relations are more specific than mere
co-occurrences. Two terms might share many common contexts even if
they fulfill different semantic roles: co-occurrences imply a generally less
strict bond than semantic similarities.

The generic trend of higher-frequency combinations to have a rela-
tively bigger v is directly related to the frequency of the single compo-
nents. With a simplistic reasoning, the more frequent a term, the richer
its distributional thesaurus, and the richer two distributional thesauri, the
more probable that their elements will overlap at a higher degree. Very
unbalanced words are likely to have relatively smaller v’s: the unrelated-
ness of the two components is both the cause of the prevalence of the most
frequent one and of a negligible overlap.
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Figure 5.4: Mean relative overlap x given by the number of nodes common
to both components || with respect to the total number of nodes (y-axis),
by frequency class combination (x-axis).

Finally, we show how the node set § behaves relatively to the total size
of Gy in Figure 5.5, i.e. the ratio %. The set 6 represents the unknown
terms in the distributional thesaurus of v_w, i.e. those that appear neither
in the reduced distributional thesaurus of v nor in that of w, and that we
can not therefore relate to either. The ratios are overall smaller, but com-

parable to those obtained with x for +.

No particular rationale appears from the graphs, apart from a slight
negative correlation to the graphs of 7: word combinations with many
overlapping elements apparently let fewer unrelated terms slip in. It looks
sensible that a greater overlap between two components is mirrored by a
network with many common terms, whereas two unrelated components
may lead to some stray term to be highlighted and have a combined Lm1
score that allows it to appear in Gy,. If ¥ represents relatedness, we might
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Figure 5.5: Mean ratios of nodes ||, appearing only in the pseudoword
v_w’s ego graph but in neither of the distributional thesauri of v or w, rela-
tive to the total number of nodes (y-axis), by frequency class combination
(x-axis).

consider § as an indication of unrelatedness, with some caution. This is
evident for semantic similarities, and even for co-occurrences, although
in the latter case this phenomenon is nearly non-existent. Co-occurrence-
based networks seem to be more stable: as already stated, more words
share more contexts with more evenly distributed frequencies, so that it
is particularly improbable that an external term gains a greater score than
another term already present in v’s or w’s distributional thesaurus. Again:
Co-occurrences imply a generally less strict bond than syntactical depen-
dencies.

The analysis we conducted in Section 5.2.2.1 and in this section on col-
lapsed and regular pseudowords, based on the decomposition of the node
set V of the ego graphs as in (5.1), reveal that our pseudoword data set rep-
resents a good variety of artificial words that simulate real homonymy. As
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expected, we evince that there are two main aspects which shape a pseu-

doword’s structure: the interaction between different frequency classes,

represented by the balance parameter p = max (%,%), and the correla-

tion of its two components, represented by the relative overlap x = % We

can visualize these two parameters as the axes of a graph that summarizes
the salient characteristics of each pseudoword, in both cases of semantic-
similarity and of co-occurrence-based ego graphs, shown in Figure 5.6.

The nearer to the origin (0,0), the more desirable the structure of a
pseudoword: both components are balanced and the overlap is small, so
that it is probably easier to distinguish and separate the two pseudosenses.

5.3.1.1 Examples of parameter computations

We will exemplify the computations of the pseudoword parameters seen
in the previous section with two very different pseudowords: the already
mentioned beer_tequila and barque_pennywhistle. The word beer is of fre-
quency class 5, tequila of frequency class 4, and both barque and penny-
whistle belong to frequency class 1. For the first couple we expect a large
overlap, while the second couple looks unrelated. We will first examine
their parameters in the semantic-similarity-based data set.

The pseudoword beer_tequila is unbalanced in favor of beer: the set a
contains 139 words like

{Heineken, tofu, sirloin, soft-drink, fajita,...},

mostly about beer brands, food and beverages, while , for tequila, has
only 15, with a more restricted range:

{Beam, vermouth, Burgundy, Sauvignon, ...}.

The balance parameter is then

139 15
= —— | = . 27) =09.
0 max( 15 ,139> max(0.11,9.27) = 9.27,

very far from 1 and demonstrating the skewness of this pseudoword.

As already mentioned in Section 5.3.1, the set v is very large here,
with cardinality 305, for a high relative overlap x = 332 = 0.62. The set
contains terms such as

{broth, tapa, syrup, roast, lobster, bourbon,...}.

The set 6 of new words has 33 elements, including terms not directly
related to food or beverages, like
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{detergent, petroleum, shampoo, Jjulep,...}.

The behaviour of this pseudoword changes in the co-occurrence-based
data set, where the high frequency class of beer and the very similar senses
of the two components make it collapse. Out of 485 nodes, the common
terms in <y are 332, more than for the semantic-similarity-based ego graph,
for an overlap of x = 0.68, but || = 0 and |é| = 0, so that this ego graph is
a near-replica of the first-order distributional thesaurus of beer. We notice
that the terms in « and the common terms in 7y approximately repeat the
same themes as in the semantic-similarity-based ego graph, as respectively
in

{Oktoberfest, Schlitz, license, belgian-style,...}
and
{produce, gallon, drunk, distilled, go, lunch,...}

The pseudoword barque_pennywhistle is more balanced than beer_tequila
in the semantic-similarity-based data set, a fact due to the same, low fre-

quency class of both components: we have 37 words for barque, among
which

{ship, yacht, plane, Fock, sailboat, galleon, .. .},
and 96 for pennywhistle, among which
{kazoo, organ, horn, tuba, concertina, solo,...},

for a balance parameter p = 2.60. There is no overlap: the set 7 of
words common to both distributional thesauri is empty, so that x = 0,
as could be expected from words referring to two such dissimilar objects.
Still, we have 11 terms in J. Terms like bell or the imitative twang might be
put in relation both with the nautical sphere (the ship’s bell, the sound of
a tight rope) and with sounds and musical instruments. Other terms like
poetry are more difficult to interpret.

Passing to co-occurrences does not change the picture much. The ego
graph is even more balanced now: 109 nodes for barque against 108 for
pennywhistle, obtaining p = 1.01. For barque we have e.g.

{participate, 179-foot, brig, aircraft, Sodano,...},
and for pennywhistle

{musical, jazz, most, drum, pipe, balladeer, ...}
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We note two things. First, the word most, normally considered a stop
word (see Sections 2.1.8 and 4.3.1), testifies the more noisy nature of co-
occurrence-based ego graphs (we also recall from Section 5.2.1 that our
co-occurrence ego graphs can be composed of any kinds of word classes);
second, the nature of co-occurrences is shown by the apparently out-of-
place Sodano, the name of a former Cardinal Secretary State of the Vati-
can, which appears because of the barque of St. Peter, a metaphor for the
Catholic Church.

The remaining 6 nodes of the few total 223 nodes (due to the low
frequency classes of both components) of the network belong to v, for a
vanishing relative overlap of ¥ = 0.03, in line with x = 0 for semantic-
similarity-based ego graphs. The common words are

{same, way, time, own, more, include},

which can be considered stop words (e.g. same) or very generic ones
(e.g. time).

5.3.2 Hyperclustering

Each clustering algorithm has its own position on the scale of granular-
ity: some tend to produce fine-grained clusterings with many clusters,
independently from the structure of the clustered set, while others tend
to coarse-grained clusterings with few clusters. The spectrum of gran-
ularity on a set V has two natural extremes: on one side the partition
{V'}, where no distinctions are made, and on the other side the partition
{v1,02, .. O] }, where each element of V constitutes its own cluster. If a
clustering is strictly defined as a partition, all possible clusterings of V are
represented by a lattice, with the partial ordering given by partition re-
finement (see Section 2.1.9.1). We denote this lattice with C(V') and notice
that it behaves quite differently from the power set P(V) of all subsets of
V. We can see C(V) as a hierarchy, with its supremum {V'} at its top and
the infimum {v1,0,, .. .,U|V|} at its bottom.

The aim of hyperclustering is to define a process by which the same
algorithm that produced a clustering C reuses it to build a sequence of
coarser clusterings. Starting from C, if < represents the ordering by re-
finement, we want to define an operator Hyp such that

C < Hyp(C).

The iterated application of Hyp will move the clustering upwards in the
hierarchy of C(V), up to a maximal element that may or may not be the
supremum. We want Hyp to recompact C, preserving its clusters as build-
ing blocks that are combined to form new, bigger clusters. This way, we
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can exploit the natural higher precision of smaller clusters to improve the
overall recall of C without losing information about the already found as-
sociations. With what may resemble a pun, the operator Hyp “clusters the
clusters of a clustering”.

To perform a clustering on C = {C1,Cy,...,C,} we first have to rep-
resent the clusters C; as nodes of a graph and to define edges connecting
them. We will call the resulting graph the hypergraph'®> H = (W,F) of C.
For the node set we simply define W = C. The edges and their weights
depend on the structure of the graph G = (V,E) of which C is a clustering.
We set

(CZ-,C]-) eF & H(U,ZU) €E stoveC,we C]

In other words, two nodes of H are linked if there exists an edge in G
linking any two elements of their two corresponding node subsets. This
condition is by itself quite weak, especially if we think about the distance
graphs defined in Section 4.1.3: A word graph over a large corpus will
have many connections, so that H will most probably be very dense too.
Therefore, we want to give a weighted structure to H. To do this, we
consider all edges connecting C; to C; (we could see it as taking the bi-
partite subgraph of G induced by C; and C;) and take their mean weight.
Formally, we define the interconnecting edge set

I(Ci,C]') = {(v,w) €E | veC,we C]'}, (5.9)

and subsequently the weight mapping

1

[1C,C))] Y, rplow),

(v,w) GI(C,‘,C]')

where p : E x E — R is the weight mapping associated to G. The new
weight mapping of H
p:CxC—R"

preserves weights either as similarities or distances, if they are respectively
similarities or distances for G.

We express the clustering C over G = (V,E) (more precisely over its
node set V) obtained through algorithm 2 as 2(G). We also denote the
hypergraph relative to C as H(C) to put in evidence the clustering from
which it originates. Then, we define the hyperclustering of C as

Hyp(C) = A(H(C)) = A(H(A(G))) (5.10)

3Despite some similarities, our definition of hypergraph is different than the common
graph-theoretical concept that goes by the same name, namely that of a graph G = (V,E)
whose edges can be generic subsets of V. See [Berge and Minieka, 1973] for more details
about the subject.
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The operator Hyp(-) = A(H(-)) defines the hyperclustering Hyp(C) =
{Q1,...,Qm}, which directly induces a new clustering over G. Namely,
the sets defined as

CeQ;

form a new partition = {Kj,...,K,} of V, which is by definition a
coarsening of C. To ease notation, we identify K with Hyp(C), and can
therefore write C < Hyp(C).

Hyperclustering is a recursive process: we can use the same clustering
algorithm to cluster over and over the hyperclustering that it obtained in
the previous step. Of course, we could write the rightmost side of (5.10)
as

B(H(A(G))),

i.e. using an algorithm different than the first one to perform the hyper-
clustering step. However, sticking to the same one guarantees the coher-
ence of the associations made at a higher level with respect to the initial
ones. Since we do not have to stop at the first level of hyperclustering, we
can write

Hyp*(C) = Hyp(Hyp(C)) = A(H(A(H(A(G)))))
and more generally
Hyp"*!(C) = Hyp(Hyp"(C))
Hyp’(C) =¢
for any n € IN. We have naturally
Hyp"*(C) > Hyp"(C).

The sequence

{Hyp'(C), Hyp*(C), ...}
has a limit. The coarsest graph-based clustering over G obtainable by it-
erating Hyp over G coincides with the set of connected components of G.
We note that the hypergraph of a connected component of G is itself con-

nected, and that the number of connected components of H (see Section
2.1.2) is the same as G.

Indeed, let G’ = (V',E’) be a connected component of G. If

C={C1,Ca...,Cu}
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is a partition of V’, if n = 1 the hypergraph will have just one node and
be trivially connected. If n > 1, for any cluster C; there will exist a node
w ¢ C;. For any two nodes v € C; and w € C;, i # j, by definition of con-
nectedness (see Section 2.1.2) there exists a path up = v,uy, ..., up,ui = w
of length t between v and w. Each uy lies in a given cluster, and the path
traverses at least two different clusters, C; and C;. If k is such that u; € C,
and uy, 1 € Cs with v # s, then I(C,,Cs) contains (ug,uyyq) and H(C) has
the edge (C,,Cs). Repeating this for every such couple uy, 1.1 in the path,
we find that H(C) also contains a path from C; to C;. Repeating this for
any couple of clusters, we proved that H(C) is also connected.

5.3.2.1 Hypergraphs with two nodes

If a clustering has only two clusters, its hypergraph will have two nodes.
This case is rather anomalous. As discussed in the previous Section 5.3.2,
if and only if both nodes belong to the same connected component the hy-
pergraph will also have an edge between them. If this is the case, we have
two choices: either merge the two clusters or leave them separated. This
choice is not particularly significative, as their merge is the supremum of
the partition lattice, a trivial clustering. With only two nodes and one edge,
the algorithms cw and MM will find one cluster, while McL will oscillate.
Instead, the three algorithms Gr, AGG and curv that we introduce respec-
tively in Sections 4.2.1, 4.2.2 and 4.2.3 all make use of weighted Jaccard
distance (Section 4.1.1). When they are iterated on such a hypergraph, the
Jaccard distance between the two nodes will forcibly be 0. Respectively for
each algorithm, the edge will be counted as a gangplank and Gp will keep
the nodes separated; any radius ¢ greater than 0 will make AGG merge the
two nodes, and if we are using a percentile to determine ¢, since 0 is not
a valid value we can arbitrarily set a greater one and get the same result;
for curv there will be a null curvature and the two nodes will be kept
separated.

As hyperclusters are already condensed clusters, we will not perform
any recompacting step (as described e.g. by Algorithm 3) during hyper-
clustering.

5.4 Results

In the following section we will present and compare the main results on
the two pseudoword ego graph data sets, in relation to the algorithms and
the evaluation measures laid out in Section 5.3 and to the hypercluster-
ing detailed in Section 5.3.2. We will first sum up all the mean scores
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for each frequency class combination in the double Tables from 5.5 to 5.8,
along with the mean number of clusters in Tables 5.9 and 5.10, where the
highest scores are always highlighted. All scores, apart from the numbers
of clusters, are shown in percentages, ranging from a minimum of 0 to a
maximum of 100. In Appendix B we will also show and comment some
additional charts portraying how algorithms and evaluation scores behave
with respect to the balance and relative overlap parameters p and x dis-
cussed in Section 5.3.1.

Throughout this section we will refer to a clustering obtained directly
from an ego graph as the basic clustering (and consequently will speak
of basic clusters), opposed to its hyperclustering (and consequently hyper-
clusters), and will use the following notation for algorithms and evaluation
measures:

McL2:  Markov cluster algorithm, expansion 2, inflation 2

McL14: Markov cluster algorithm, expansion 2, inflation 1.4

CwW: Chinese Whispers
MM: MaxMax
GP: gangplank clustering algorithm

AGGY7: aggregative clustering algorithm, o = 0.97

AGG75P: aggregative clustering algorithm, o = 75th percentile of set A
CURV: curvature-based clustering algorithm

BSL: one-cluster-per-word baseline

BC-F:  BCubed F-score (harmonic mean of BCubed precision and recall)
NMI:  normalized mutual information

TOP2:  TOP2 score, valuing the two best clusters

NOR:  basic clustering

HYP:  hyperclustering

5.4.1 Overall mean scores and numbers of clusters

Firstly, we display the overall scores achieved by each clustering algo-
rithm in both cases of semantic-similarity and co-occurrence-based ego
graphs. The numbers in Tables 5.2 and 5.3 represent the mean scores over
all pseudowords together with their 95% confidence interval. The best
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mean scores for each evaluation measure are highlighted. As we point
out in Section 5.3.1, we do not consider collapsed pseudowords for any
score computation in our evaluation framework. We write side by side the
scores achieved by a basic clustering and its corresponding hypercluster-
ing. The highest scores are highlighted.

BC-F NMI TOP2
NOR HYP NOR HYP NOR HYP

MCL2 678+12 765409 394416 275+17 67115 562417
mcLl4 930+06 91.0+0.7 530+£26 363+28 724+18 612419
Ccw 947+05 851407 532427 05+£04 739+16 405405
MM 188+05 759408 2734+09 379+18 39.74+08 672+15
AGG97 68.8+11 851407 426+18 02+03 676+t13 412404
AGG75P b58.8+1.2 81.6+07 399418 142+17 661+14 41.2+1.6
CURV 702+10 7034+1.0 49+£03 474+03 346+10 342+1.0
GP 55.04+12 784+08 3044+14 359+20 586+12 645+14
BSL 85.1+0.7 - 0.0%+0 - 41.14+04 -

Table 5.2: Overall mean scores over all pseudowords in the semantic-
similarity-based ego graph data set, for all clustering algorithms, both for
basic clusterings and their respective hyperclusterings. For each evalua-
tion measure, the best score (respectively for normal clustering and hy-
perclustering) achieved by an algorithm is boldfaced. Underlined values
show an improvement from the normal clustering to the hyperclustering.
The 95% confidence interval is also reported for each mean value.

Similarly, Table 5.4 shows how many clusters were found by each clus-
tering algorithm on average, and compares these numbers with the re-
duced sizes of the respective hyperclusterings.

The two tables already reveal the tendencies of each evaluation mea-
sure, and in particular the opposite extremes of BCubed and nmMm1. They
become particularly apparent when comparing the scores of basic cluster-
ings to those of hyperclusterings, using Table 5.4 as an additonal clue. We
notice the correlation between the very low, nearly minimal mean size of
clusterings produced by Chinese Whispers (oscillating between 1 and 2 for
semantic similarities and slightly finer for co-occurrences) and very high
BCubed scores on both data sets. Conversely, MaxMax is by far the finest,
most fragmented system, only matched by McL with parameters (2,2) in
the case of co-occurrence-based ego graphs, reaching in many cases 40, 50
or more miniclusters, and achieving the lowest BCubed scores. In the ta-
bles from 5.5 to 5.10 this behaviour will be examined more in detail. From
a more general point of view, we see that this situation is almost reversed
when considering the NmI score: now, MaxMax becomes one of the best
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BC-F NMI TOP2
NOR HYP NOR HYP NOR HYP

MCL2 353407 457+10 94403 85+03 334405 34.6+0.7
mcrLl4d 691+£09 772407 54+£03 40+02 393£0.7 356+09
CcwW 88.7+05 90.34+04 414+04 01£00 256+11 349407
MM 352407 51.0+£07 111+04 58+03 3424+06 36.7+0.7
AGG97 50.3+08 815407 111+£05 39+04 41.7+0.6 399408
AGG75P 559+0.7 826+06 101+£05 38+04 428+0.7 380409
CURV 77509 775409 48+03 45+£03 358+1.0 353410
GP 582420 769+10 42404 21+£03 3544+05 40.6+05
BSL 90.5+0.4 - 0.0+0 - 38.8+0.5 -

Table 5.3: Overall mean scores over all pseudowords in the co-occurrence-
based ego graph data set, for all clustering algorithms, both for basic clus-
terings and their respective hyperclusterings. For each evaluation mea-
sure, the best score (respectively for normal clustering and hypercluster-
ing) achieved by an algorithm is boldfaced. Underlined values show an
improvement from the normal clustering to the hyperclustering.

performers, and the best for hyperclustering on semantic-similarity ego
graphs and for co-occurrences. With regard to nMi, it seems illuminating
how our trivial one-cluster-per-word baseline BsL always produces a null
score, whereas its BCubed scores are among the highest ones.

Despite the biases we will put in evidence in Section 5.4.1.1, Chinese
Whispers emerges as the best system for semantic-similarity-based ego
graphs. Its high Tor2 score reflects the fact that, even if it often conflates all
elements into one single cluster, its average two clusters represent the two
pseudosenses quite faithfully. This is also mirrored in the drop of scores
for its hyperclustering: once the peak has been reached, performances can
only decline, and more so if we mostly obtain a single hypercluster. The
MCL and aggregative variants also perform analogously.

For co-occurrences, the picture is not so distinct and we do not have a
clear winner, although the aggregative clustering algorithm with variable
radius based on the 75th percentile and the gangplank clustering algo-
rithm seem to perform slightly better than the others. Aided by the more
dispersive nature of co-occurrence word graphs, reflected in the analyses
of Sections 5.2.2,5.2.2.1 and 5.3.1, and by the bias discussed in 5.4.1.1, our
trivial baseline outclasses all other algorithms in terms of BCubed mea-
sure, and has an average ToP2 score. Incidentally, we notice that similar
TOP2 scores are due to its bounded nature, in that it evaluates just two
clusters and is capped to 1/2 for maximally skewed clusterings.
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Similarities Co-occurrences
NOR HYP NOR HYP
MCL2 18.7+0.8 78403 |502+09 38.8=+0.6
mcrLl4 29401 1.6+00|141+03 9.0£03
CW 20+01 11+00| 40+01 1.1+£0.0
MM 438+08 50401 |429+06 83+0.2
AGGY97 54402 10+£00| 79+02 19+0.0
AGG7hr 6.8+02 104+00]| 65402 1.84+0.0
CURV 104+03 97+03| 87+02 81+02
GP 75+£02 254+00| 634+£03 20+0.1
BSL 1 1 1 1

Table 5.4: Overall mean numbers of clusters over all pseudowords for
all clustering algorithms, comparing basic clusterings and their respective
hyperclusterings. The 95% confidence interval is also shown for each mean
value.

In the case of co-occurrences we see that hyperclustering can indeed
help better focus a basic clustering, as in all cases for BCubed measure
and in half of the cases for Tor2 the scores improve, independently from
the fine-grainedness of an algorithm. This principally tells us two facts:
it backs up the impression that co-occurrence clustering is a harder task
to tackle, and it reveals that all systems we selected essentially produce
skewed clusterings consisting of few bigger agglomerations and a host of
smaller clusters. This might be tied to the small-world nature of word
graphs (see Section 2.1.7).

We will delve deeper into the single clustering algorithms in Section
5.4.2, observing their detailed behaviours for frequency class combinations
and pseudoword parameters.

5.4.1.1 Measure biases

Given the previous observations, we claim to have gathered further evi-
dence of the biases of BCubed measures and Nm1.

BCubed measures (see Section 2.2.2), due to their nature as averages
over all single clustered elements, stress the similarity between the in-
ternal structures, i.e. the distribution of elements inside each cluster, of
two clusterings and disregard their external structures, i.e. their respec-
tive sizes and the distribution of cardinalities among clusters. The fact
that many pseudowords in both our data sets are very unbalanced (in the
sense explored in Section 5.3.1) and that e.g. cw tends to produce coarse
clusterings originates extremely high BCubed scores for this algorithm,
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as this measure does not give enough relevance to the smaller one of the
two ground truth clusters. In fact, if the algorithm manages to find only

one cluster, the BCubed score is the same as for the one-cluster-per-word

trivial baseline, which itself corresponds to the value % (in the no-

tation of identity (5.1)); the more skewed the pseudoword, the higher this
value. The same considerations are valid for MmcL with parameters (2,1.4)
and less pronouncedly for the aggregative clustering algorithm with ra-
dius ¢ = 0.97. We might argue that if a pseudoword is nearly collapsed
onto one single component, a high BCubed score effectively recognizes
this and rewards the algorithm for not being too fragmentary. Still, we
want an algorithm to isolate both components, and we deem that Tor2 is
better suited to evaluate this in the case of clear-cut homonymy:.

We exemplify the bias of BCubed by taking the pseudoword lightbulb_
wedlock as an example in the case of the semantic-similarity-based ego
graph data set. Its balance parameter p (see Section 5.3.1) is 6.2, so it is
quite unbalanced in favour of lightbulb, which has 403 exclusive elements
in &« compared to the 65 for wedlock in B, which is still a not negligible num-
ber. The relative overlap « is nearly zero, because there is only one word
common to their respective distributional thesauri. With such premises,

cw fails to tell the difference and produces only one cluster; nonetheless,

it obtains a very high BCubed score of 0.86 = % = |“|‘i|| ok Conversely,

TOP2 assesses a score of 0.45, smaller than %, as defined in Section 5.2.3.

On the other hand, nmI tendentially penalizes a small number of clus-
ters too heavily!4, and it seems sometimes quite difficult to interpret, as
its variations are too brisk; in general, though, NM1 seems more adher-
ent to the desired kind of evaluation (as discussed in Section 5.2.3) than
BCubed. Still, this briskness does not take account of the skewness of a
pseudoword at all. We see this by the example of two pseudowords, in the
case of semantic-similarity-based ego graphs, with very different balance
parameters: paycheck_reptile, fairly balanced with p = 2.0 (160 terms for
paycheck, 322 for reptile), and artistry_bufflehead, with a very high p = 35.62
(413 terms for artistry and only 13 for bufflehead). We will consider the algo-
rithm AGG75P and its hyperclustering. For paycheck reptile, 2 good clusters
are found, for an excellent NM1 score of 0.96; for artistry_bufflehead, the
clustering is quite fragmented and yields 9 clusters that score a Nm1 of
0.28. Now, both hyperclusterings are greatly condensed to one single hy-
percluster. Then, for both the Nmr score is exactly 0, as is always the case
when one single cluster is found. However, the Top2 score behaves differ-
ently: in the first case we obtain 0.39, while in the second one 0.48. Despite

14This bias is also discussed at length in [Li et al., 2014].
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being both under the threshold of } (see again Section 5.2.3), the higher,
second one mirrors the intuition that it is “less wrong” to assign a single
cluster to a very unbalanced sense distribution (like for artistry_bufflehead)
than to a more uniform one (like for paycheck_reptile).

Moreover, in a global comparison like those of Tables 5.2, 5.3 and 5.4,
we remark e.g. that the two versions of the aggregative clustering algo-
rithm (again in the case of semantic-similarity-based ego graphs), though
both having hyperclusterings which gravitate around a single cluster, have
their NMr scores for hyperclustering separated by a huge gap: 0.2 against
14.2. This is not really justified by a huge difference in their hypercluster-
ing quality, but comes instead from the fact that, as we claim, normalized
mutual information is too much influenced by small differences in size
between the compared clusterings and too susceptible to outliers.

5.4.2 Detailed scores for frequency class combinations

In the following Tables 5.5-5.10, each square shows the mean scores of
each algorithm for the respective combination of frequency classes. We re-
member that frequency classes are sorted from 1, least frequent, to 5, most
frequent (see Section 5.2.1). Their combinations will be denoted by the
juxtaposition of two numbers: so, e.g. 34 represents all the pseudowords
with one component in the third and the other in the fourth frequency
class. Given the observations about collapsed pseudowords in Section
5.2.2.1 and the pseudoword analysis in Section 5.3.1, we can regard the
left-upper to middle region (11, 12, 22,..., but also 33 and so on) of each
table as referring to the more balanced pseudoword ego graphs, while
conversely the rightmost side (15, 25, 35,..., but also 55) is characterized
by a greater unbalance. From time to time we will speak of balanced and
unbalanced regions of the table.

Tied to this rough subdivision, as a first general consideration we no-
tice that BCubed scores generally improve for the hyperclusterings, espe-
cially on the unbalanced regions of the tables. We expect this from the bias
towards the baseline discussed in Section 5.4.1.1. The fewer the clusters
and the more unbalanced a pseudoword, the more the clustering aligns
to our trivial baseline. Normalized mutual information also follows its
already evidenced general trend of scores decreasing from the more bal-
anced (finer clusterings) to the more unbalanced (polarized, coarser clus-
terings) side of the table. Nonetheless, we notice that all three scores, Bc-F,
NMI and ToP2 tend to agree, particularly on more balanced pseudowords.
Also the TOP2 score tends to drop in the unbalanced regions, albeit not
as sharply as Nm1. This is a consequence of the more polarized cluster-
ings:
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we have lesser significant clusters among which to choose the repre-
sentative clusters defined by (5.4) and their purity and completeness scores
are worse than for balanced pseudowords.

Semantic-similarity-based ego graphs In this paragraph we refer to Ta-
ble 5.5 for the three algorithms taken from literature, to Table 5.6 for our
proposed algorithms and to Table 5.9 for the number of found clusters.
Among basic clusterings, Chinese Whispers regularly obtains the best
scores for most combinations, and is followed closely by the mcL variants,
especially the more balanced one with inflation parameter 1.4. Going to
hyperclusterings, cw loses its leadership to McL14, and the general drop in
TOP2 scores is more marked for cw than for other systems, notably in the
balanced regions, due to the propensity to be reduced to a single cluster.
Overall, it is interesting to notice that the three scores are slightly more
concordant for basic clusterings than for hyperclusterings. In terms of
TOP2 scores, the two MCL variants are comparable to the two aggregative
variants and alternatively best each other. We notice that the aggregative
clustering algorithm is doing better on the balanced regions when using a
variable radius (dependent on the distance distribution) than when using
the fixed value 0.97. A similar trend persists for its hyperclustering. This
is mirrored by the numbers of clusters they respectively find. AGG97 finds
fewer clusters for unbalanced pseudowords dominated by components in
the 4th or 5th frequency class: in such ego graphs nodes are mostly tied
to the dominant component and closer to each other, so that 0.97 becomes
a higher threshold than the 75th percentile over all distance values. The
situation is clearly reversed for more balanced pseudowords. The fixed ra-
dius also causes AGG97 to flatten on 1 hypercluster, whereas AGG75p often
maintains approximately two distinct hyperclusters. The gangplank clus-
tering algorithm appears rather stable, both in terms of clustering sizes
and scores, across all regions of the table, and places itself between the
two extreme behaviours of cw and MaxMax. Its performances are decid-
edly improved by hyperclustering, especially Tor2 scores in the balanced
region, and its stability persists in the reduced number of clusters. This
behaviour looks positive for our task of homonymy detection with a fixed
number of pseudosenses, but consequently suffers the skewedness of un-
balanced pseudowords. A similar pattern is observed for the curvature-
based clustering algorithm curv, which preserves nearly the same clus-
tering size in its hyperclustering, and also maintains constantly low Tor2
scores. At the same time, it shows a trend to find more clusters when high-
frequency components are involved. We can explain this with the fact that
in such cases the ego graph is more polarized around some very frequent
words with separated positive-curvature regions around them. Finally,
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1 2 3 4 5
BC-F NMI TOP2 | BC-F NMI TOP2 | BC-F NMI TOP2 | BC-F NMI TOP2 | BC-F NMI TOP2
Mmcr2 | 84 711 844 | 718 563 777 |525 406 684 |770 166 584 |585 132 499
MmcLl4 | 926 719 797 | 89.7 67.6 81.1 874 640 834 |99.0 359 655 | 98.0 263 550
cw 947 79.6 85.6 | 942 784 87.0 |91.8 730 868 |[989 306 636 |994 29.7 614
MM 37.0 455 50.8 | 268 39.7 464 176 325 402 | 170 112 425 13.2 103 37.7
BSL 725 0.0 355 | 758 0.0 382 | 815 0.0 416 | 984 0.0 479 | 983 0.0 441
McL2 | 652 533 714 | 523 428 643 |768 211 638 | 595 95 422
Mmcrl4 | 882 635 804 |84 583 79.0 | 982 432 684 | 978 129 385
cw 924 745 86.8 | 875 596 788 |982 272 609 |985 109 49.6
MM 22.7 389 408 163 33.6 348 169 131 453 | 125 9.0 286
BSL 73.8 0.0 372 | 764 0.0 38.0 | 974 0.0 464 | 98.0 0.0 437
MmcrL2 | 46.0 385 568 |781 278 657 | 612 10.6 46.0
McrLl4 | 835 499 750 | 977 418 66.1 | 973 13.2 44.1
cw 843 434 699 |975 258 593 |977 9.1 494
MM 127 310 284 | 178 154 431 124 9.6 293
BSL 76.6 0.0 38.1 96.5 0.0 454 | 975 00 433
McL2 | 849 689 839 758 531 773
mcrl4 | 939 693 780 | 963 689 79.1
cw 96.0 819 864 | 96.8 69.5 80.5
MM 214 40.0 417 | 182 331 396
BSL 772 0.0 36.6 | 828 0.0 39.6
MmcL2 | 752 565 814
MmcLl4 | 96.6 789 86.5
cw 96.9 769 855
MM 17.6 357 38.8
BSL 81.0 0.0 402

(a) Scores of the basic clusterings.

1 2 3 4 5
BC-F NMI TOP2 | BC-F NMI TOP2 | BC-F NMI TOP2 | BC-F NMI TOP2 | BC-F NMI TOP2
Mmcr2 | 792 380 625 |751 374 663 | 668 308 605 |843 119 427 | 780 133 458
McLl4 | 91.2 66.2 76.1 84.8 368 59.1 83.7 206 530 |989 319 653 |983 9.0 483
cw 725 0.0 359 | 757 03 373 | 815 0.1 37.8 | 984 28 492 | 983 0.0 434
MM 81.8 616 783 |813 559 789 |730 398 729 |[693 115 532 |71.7 126 455
BSL 725 0.0 355 | 758 0.0 382 | 815 0.0 416 | 984 0.0 479 |983 0.0 441
McrL2 | 71.6 385 663 | 665 319 614 |8.1 153 480 | 752 83 34.1
Mmcrl4 | 81.1 278 546 | 814 267 535 |982 414 681 | 979 89 399
cw 73.8 04 35.7 | 763 04 35.7 | 974 0.0 464 | 98.0 0.0 438
MM 84.7 609 825 |769 468 769 |693 135 521 70.1 71 358
BSL 73.8 0.0 372 | 764 0.0 380 974 0.0 464 | 98.0 00 437
McL2 | 634 297 621 853 202 518 | 757 7.7 397
MmcLl4 | 799 198 503 | 97.7 390 648 | 975 64 426
cw 76.6 0.1 369 |95 1.2 46.1 97.5 18 443
MM 737 403 729 |714 188 569 |676 68 399
BSL 76.6 0.0 38.1 96.5 0.0 454 | 975 00 433
McL2 | 84.6 50.0 686 | 823 358 586
MmcLl4 | 93.8 675 769 | 949 63.2 772
cw 772 0.0 36.6 | 828 0.0 399
MM 844 698 849 | 809 534 768
BSL 772 0.0 36.6 | 828 0.0 39.6
MmcL2 | 774 353 65.6
MmcLl4 | 954 749 839
cw 81.0 0.0 402
MM 844 60.2 815
BSL 81.0 0.0 402

(b) Scores of the hyperclusterings.

Table 5.5: Mean scores per frequency class combination over the semantic-
similarity-based ego graph data set of the three clustering algorithms from
literature, for basic clustering and hyperclustering. The best values are
highlighted.



AGG75P
AGGY7
CURV
GP

BSL

AGG75P
AGGY7
CURV
GP

BSL

1 2 3 4 5
BC-F NMI  TOP2 BC-F NMI  TOP2 BC-F NMI  TOP2 BC-F NMI  TOP2 BC-F NMI TOP2
76.1 63.6 75.8 71.8 613 77.4 60.5 47.5 73.5 443 144 55.8 43.0 13.7 515
734 65.1 77.5 64.0 56.2 73.1 55.0 46.0 70.1 77.5 24.6 62.3 584 129 529
56.9 8.8 43.3 68.5 5.6 38.9 732 49 38.2 69.1 3.6 29.3 835 45 206
70.6 575 76.4 623 464 71.7 50.8 349 62.4 498 84 43.2 469 75 369
725 0.0 355 758 0.0 38.2 81.5 0.0 41.6 98.4 0.0 479 98.3 0.0 441
AGG75P | 73.7 63.3 78.7 64.8 53.2 74.3 451 17.0 59.5 403 94 384
AGG97 | 62.0 55.6 70.9 582 49.0 69.8 775 275 65.0 634 79 427
CURV 70.6 54 39.9 71.8 5.2 38.1 675 28 252 748 33 239
GP 60.4 47.3 72.7 55.5 40.4 67.0 51.6 9.7 45.2 481 68 357
BSL 73.8 0.0 37.2 764 0.0 38.0 974 0.0 46.4 98.0 0.0 43.7
AGG75P | 64.0 49.6 72.2 459 204 57.6 42.6 103 415
AGG97 | 56.8 45.1 67.5 76.6 29.8 64.1 63.6 9.6 46.1
CURV 70.0 5.6 38.0 764 4.1 30.1 748 31 235
GP 532 36.1 65.8 46.3 13.3 479 434 78 365
BSL 76.6 0.0 38.1 96.5 0.0 454 97.5 0.0 433
AGG75p | 70.7  53.5 71.1 632 474 699
AGG97 | 86.4 70.0 80.2 80.7 574 759
CURV 63.0 7.8 43.3 659 55 38.0
GP 69.2 482 69.5 59.8 37.8 64.3
BSL 772 0.0 36.6 82.8 0.0 396
AGG75p | 70.2 553 759
AGG97 | 814 653 817
CURV 694 43 407
GP 59.4 43.7 70.1
BSL 81.0 0.0 402

(a) Scores of the basic clusterings.

1 2 3 4 5
BC-F NMI  TOP2 BC-F NMI  TOP2 BC-F NMI  TOP2 BC-F NMI  TOP2 BC-F NMI TOP2
756 219 53.4 76.7 11.6 429 81.9 20.7 441 89.4 20.8 442 91.8 10.7 27.6
725 0.0 355 758 0.0 38.2 815 0.0 41.2 984 28 49.2 98.3 0.0 441
56.9 8.7 434 68.6 5.3 38.2 733 44 36.9 69.1 3.6 29.4 83.7 45 207
88.1 70.1 83.9 83.3 56.1 78.7 74.1 39.8 68.6 76.0 84 46.8 743 71 399
725 0.0 355 758 0.0 38.2 81.5 0.0 41.6 98.4 0.0 479 98.3 0.0 441
AGG75? | 754 17.1 49.1 743 11.1 43.1 88.9 22.3 43.2 855 19 215
AGG97 | 73.8 0.0 37.2 764 0.1 37.7 974 0.0 46.4 98.0 0.0 437
CURV 708 49 39.2 71.8 45 37.6 675 2.8 25.2 75.0 33 246
GP 82.1 57.3 81.3 78.1 47.6 75.7 77.1 89 46.9 772 56 392
BSL 73.8 0.0 37.2 764 0.0 38.0 974 0.0 46.4 98.0 0.0 43.7
AGG75p | 77.3 113 45.3 894 16.8 40.5 88.7 51 275
AGGY7 | 76.6 0.0 38.1 96.5 0.0 454 975 0.0 433
CURV 704 5.0 37.7 765 3.9 29.3 749 3.0 230
GP 719 40.2 72.7 739 152 51.0 727 81 422
BSL 76.6 0.0 38.1 96.5 0.0 454 97.5 0.0 433
AGG75p | 77.3 17.8 47.9 79.5 10.1 388
AGG97 | 772 0.0 36.6 82.8 0.0 396
CURV 63.1 78 43.4 659 54 378
GP 89.0 65.3 79.4 80.5 46.1 70.9
BSL 772 0.0 36.6 82.8 0.0 396
AGG75pP | 76.2 8.6 41.0
AGG97 | 81.0 0.0 402
CURV 694 43 407
GP 80.2 525 75.5
BSL 81.0 0.0 402

Table 5.6: Mean scores per frequency class combination over the semantic-
similarity-based ego graph data set of our three proposed clustering al-
gorithms, for basic clustering and hyperclustering. The best values are

highlighted.

(b) Scores of the hyperclusterings.



the most surprising behaviour is that of MaxMax. Its basic clustering is by
far the worst system together with curv: it tends to score quite low, con-
fronted with the other algorithms, for all three evaluation measures. This
is surely connected to its extreme fragmentation, as it very often finds
above 40 clusters. Even if the precision of each is high, the recall is at its
lowest, and TOP2 can not find two clusters that are representative enough.
The scenario totally changes when we introduce hyperclustering: then, the
number of clusters becomes sensible and MaxMax often achieves the best
scores, especially for NmM1 and Top2. This means that MM adapts particu-
larly well to hyperclustering and that the highly precise smaller building
blocks are effectively combined in meaningful bigger entities.

As a final comment, we might argue that the criterion for identifying
monsemous terms explained in Section 5.2.1 making use of the Chinese
Whispers clustering algorithm creates a bias towards it in our evaluation
framework. While this may be partially true, we add the look-up in Word-
Net for this reason, and other clustering algorithms still achieve compa-
rable or better results than cw. We will also see that the picture is fairly
different for co-occurrence-based ego graphs.

Co-occurrence-based ego graphs In this paragraph we refer to Table 5.7
for the three algorithms taken from literature, to Table 5.8 for our pro-
posed algorithms and to Table 5.10 for the number of found clusters. At
a first glance, scores for co-occurrence-based ego graphs are dominated
by the trivial baseline performance. Further, there is a bigger discrepancy
here between Bc-F and TOP2 scores. We note that cw, while being mostly
aligned to the baseline (mostly due to its small number of clusters) and
thus having the second-best Bc-F scores, is more often than not outclassed
by the other algorithms in terms of Tor2. The reason is that its clusterings
consists of one catch-all cluster that covers around 95% of the nodes in an
ego graph, while the remaining terms are split amongst a handful of micro
clusters, and the already discussed bias of BCubed measures does not pe-
nalize this clustering structure. Otherwise, all other systems seem to settle
inside a relatively homogenous range of values, with the aggregative vari-
ants usually rising slightly above the others, with a prevalence of AGG75p.
As far as TOP2 scores go, we notice a generalized expected tendency of
scores decreasing progressively from the balanced to the more unbalanced
regions. Only the gangplank clustering algorithm seems to improve a bit
when more frequent components are involved. For the rest, most individ-
ual considerations for semantic-similarity-based ego graphs remain still
valid for co-occurrences; we just note that scores are everywhere lower,
as discussed in Section 5.4.1. After hyperclustering, the picture remains
substantially unvaried, after we register a further general lowering of all
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1 2 3 4 5
BC-F NMI TOP2 | BC-F NMI TOP2 | BC-F NMI TOP2 | BC-F NMI TOP2 | BC-F NMI TOP2
mcr2 | 420 132 431 |37.6 108 38.0 | 394 62 342 | 353 3.6 303 | 376 3.7 403
MmcLl4 | 61.3 6.3 41.1 63.2 5.0 458 | 744 4.0 464 | 709 22 302 | 768 51 371
MM 496 171 422 | 40.7 134 39.7 | 383 73 39.2 | 347 3.7 28.0 | 369 3.7 327
cw 699 7.1 383 | 805 44 344 | 925 32 259 1958 0.3 7.3 98.7 0.1 128
BSL 719 0.0 344 | 835 00 420 | 944 0.0 46.7 | 989 0.0 479 |99.7 0.0 489
Mcr2 | 341 115 358 | 349 100 339 |342 79 31.0 | 369 49 298
McLl4 | 60.5 4.8 433 | 675 5.0 40.5 | 65.8 4.6 388 | 776 4.6 340
MM 350 13.8 356 | 346 118 335 |342 87 345 | 362 51 303
cw 81.8 3.1 325 | 871 34 304 | 927 28 20.2 | 970 5.7 226
BSL 83.0 0.0 38.2 | 883 0.0 36.8 | 94.7 0.0 419 | 98.0 0.0 44.0
McrL2 | 340 11.0 329 |320 112 30.1 354 74 306
McLl4 | 69.6 54 34.0 | 664 64 371 | 772 6.8 431
MM 327 13.7 279 |317 132 306 |334 81 345
cw 85.6 3.3 25.1 884 3.3 232 | 946 57 244
BSL 86.7 0.0 283 | 89.6 0.0 329 | 958 0.0 403
Mcr2 | 314 151 328 | 332 11.8 349
MmcLl4 | 59.2 85 35.1 719 7.7 39.8
MM 311 185 329 | 31.6 143 356
cw 84.7 5.0 267 | 8.1 77 315
BSL 86.8 0.0 273 90,5 0.0 355
MmcrL2 | 334 161 319
Mmcrl4 | 73.0 7.8 33.7
MM 305 19.2 324
cw 85.1 43 272
BSL 86.8 0.0 276

(a) Scores of the basic clusterings.

1 2 3 4 5
BC-F NMI TOP2 | BC-F NMI TOP2 | BC-F NMI TOP2 | BC-F NMI TOP2 | BC-F NMI TOP2
MmcL2 | 51.7 12,5 443 | 469 99 40.1 | 481 5.6 373 | 454 3.0 28.1 53.8 3.7 339
mcLl4 | 66.1 5.0 393 | 714 4.0 45.0 | 82.0 3.3 416 | 819 1.6 225 |81 33 218
MM 643 9.2 49.0 | 56.3 69 47.2 | 53.1 37 40.8 | 499 24 255 | 571 24 259
cw 71.7 0.1 345 | 83.0 0.2 41.6 | 941 0.1 371 |983 0.1 30.1 99.5 0.0 429
BSL 719 0.0 344 | 835 0.0 420 | 944 0.0 46.7 | 989 0.0 479 |99.7 0.0 489
McL2 | 422 104 382 | 454 9.0 35.6 | 43.6 6.8 334 | 515 43 287
Mmcrl4 | 689 35 424 | 756 3.8 384 | 770 34 333 | 8.3 32 287
MM 495 6.2 429 | 481 55 38.5 | 493 47 33.8 | 553 29 278
cw 83.0 0.1 372 | 8.3 0.0 355 | 944 03 353 | 978 02 397
BSL 83.0 0.0 382 |883 0.0 368 |94.7 0.0 419 |98.0 0.0 44.0
McrL2 | 452 101 313 | 401 9.7 31.8 | 493 6.7 344
McLl4 | 743 37 326 | 745 46 35.7 | 847 47 349
MM 464 6.2 33.2 | 459 6.6 352 | 525 4.0 342
cw 86.6 0.1 28.0 | 895 0.1 322 |96 01 364
BSL 86.7 0.0 283 | 89.6 0.0 329 | 958 0.0 403
Mcr2 | 39.1 141 348 | 437 112 356
MmcLl4 | 706 6.2 335 | 777 59 375
MM 464 98 39.5 | 487 85 36.6
cw 86.8 0.0 275 904 0.0 353
BSL 86.8 0.0 273 1905 0.0 355
MmcrL2 | 471 149 335
MmcLl4 | 769 50 333
MM 48.7 122 374
cw 86.7 0.0 277
BSL 86.8 0.0 27.6

(b) Scores of the hyperclusterings.

Table 5.7: Mean scores per frequency class combination over the co-
occurrence-based ego graph data set of the three clustering algorithms
from literature, for basic clustering and hyperclustering. The best values

are highlighted.



AGG75P
AGGY97
CURV
GP

BSL

AGG75P
AGGI7
CURV
GP

BSL

1 2 3 4 5
BC-F NMI  TOP2 BC-F NMI  TOP2 BC-F NMI  TOP2 BC-F NMI  TOP2 BC-F NMI TOP2
53.1 13.1 55.1 51.5 10.9 50.3 55.7 6.6 449 66.9 4.6 40.5 559 3.7 363
33.5 194 43.0 43.0 124 45.3 595 6.6 46.9 591 4.8 39.7 436 34 312
53.1 6.8 45.1 68.6 5.6 46.4 80.7 4.7 43.2 920 1.8 139 91.0 35 185
481 53 40.9 45.0 5.0 371 277 45 28.0 573 25 34.7 737 07 379
719 0.0 344 83.5 0.0 42.0 944 0.0 46.7 98.9 0.0 47.9 99.7 0.0 489
AGG75p | 509 84 47.3 50.9 8.0 43.0 639 9.0 42.0 56.0 54 352
AGG97 | 51.8 8.9 46.4 58.0 75 45.1 564 9.5 42.8 452 6.0 34.1
CURV 719 4.6 42.8 781 39 391 825 6.0 37.3 841 51 293
GP 496 57 36.9 292 72 31.0 62.7 5.1 38.2 86.0 0.7 41.1
BSL 83.0 0.0 38.2 88.3 0.0 36.8 94.7 0.0 419 98.0 0.0 44.0
AGG75p | 50.0 8.0 38.5 60.9 122 39.6 53.6 73 345
AGG97 | 55.7 6.4 38.7 54.8 124 40.5 453 88 346
CURV 757 39 329 784 47 34.5 794 5.0 340
GP 385 58 28.5 63.5 6.2 36.6 883 09 399
BSL 86.7 0.0 28.3 89.6 0.0 329 95.8 0.0 40.3
AGG75P | 59.3 184 42.6 529 172 454
AGG97 | 525 19.2 40.9 412 19.5 435
CURV 76.0 5.2 32.3 740 55 382
GP 60.7 7.1 34.5 81.0 25 367
BSL 86.8 0.0 27.3 90.5 0.0 355
AGG75p | 474 222 452
AGG97 | 347 261 416
CURV 685 6.0 363
GP 819 14 295
BSL 86.8 0.0 276

(a) Scores of the basic clusterings.

1 2 3 4 5
BC-F NMI  TOP2 BC-F NMI  TOP2 BC-F NMI  TOP2 BC-F NMI  TOP2 BC-F NMI TOP2
68.3 4.2 44.0 77.8 4.1 50.4 91.8 34 47.4 89.2 3.0 31.0 90.1 2.7 357
58.7 1.7 51.4 75.0 4.4 53.3 91.1 4.6 49.2 87.2 3.1 31.9 937 19 385
53.1 6.7 45.1 68.6 5.5 46.5 80.9 45 43.1 921 17 139 91.1 18 135
59.1 2.7 47.5 67.8 2.3 46.4 69.7 22 441 792 1.2 40.6 879 08 437
719 0.0 344 83.5 0.0 42.0 944 0.0 46.7 98.9 0.0 47.9 99.7 0.0 489
AGG75P | 791 2.7 41.8 86.0 1.4 36.9 85.1 3.2 30.7 871 1.6 320
AGG97 | 79.0 27 425 855 1.8 379 84.7 33 314 862 1.7 347
CURV 719 44 429 782 3.5 39.1 825 5.0 35.2 842 4.0 259
GP 705 25 43.3 662 2.8 42.2 795 23 40.3 920 04 421
BSL 83.0 0.0 38.2 88.3 0.0 36.8 94.7 0.0 41.9 98.0 0.0 44.0
AGG75p | 845 2.0 31.0 83.0 4.7 33.6 81.8 24 332
AGGY7 | 843 22 31.0 81.0 6.7 37.0 824 2.0 345
CURV 757 3.7 329 786 44 34.2 794 4.7 337
GP 694 22 35.7 781 39 37.7 920 05 397
BSL 86.7 0.0 28.3 89.6 0.0 329 95.8 0.0 40.3
AGG75pP | 79.8 134 447 757 5.6 38.6
AGG97 | 76.2 12.8 45.5 762 52 412
CURV 76.7 4.8 33.2 740 54 382
GP 756 4.8 36.5 858 0.8 36.6
BSL 86.8 0.0 27.3 90.5 0.0 355
AGG75p | 722 6.8 39.7
AGG97 | 741 46 391
CURV 685 6.0 364
GP 835 14 295
BSL 868 0.0 276

(b) Scores of the hyperclusterings.

Table 5.8: Mean scores per frequency class combination over the co-
occurrence-based ego graph data set of our three proposed clustering al-

gorithms, for basic clustering and hyperclustering. The best values are

highlighted.



1 2 3 4 5
NOR HYP | NOR HYP |NOR HYP |NOR HYP | NOR HYP
MCL2 7.7 3.9 16.9 8.3 295 108 9.9 4.7 28.7 122
mcLl4 | 2.3 1.8 3.6 17 5.0 17 14 14 28 15

cw 2.0 1.0 2.7 1.2 3.0 1.3 1.3 1.0 1.5 11 1
MM 20.0 3.4 36.7 4.8 52.3 5.8 36.7 53 524 6.1
BSL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Mmcr2 | 221 105 | 294 119 9.7 44 242 104
mcLl4 | 3.8 1.7 49 1.9 1.6 1.5 22 15

cw 3.0 1.2 29 1.3 1.3 1.0 1.2 10 2
MM 45.8 4.5 55.0 5.4 36.8 5.2 504 5.8
BSL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

mcL2 | 31.8 114 9.3 44 244 101
mcLl4 | 4.6 1.7 1.6 1.5 21 14

cw 2.6 1.2 1.3 1.0 1.2 11 3
MM 59.7 55 35.5 4.8 49.7 63
BSL 1.0 1.0 1.0 1.0 1.0 1.0

MCL2 6.6 3.2 141 64
MmcrLl4 | 1.7 1.7 21 18

cw 1.9 1.0 1.8 11 4
MM 35.5 35 443 45
BSL 1.0 1.0 1.0 1.0

MCL2 15.8 8.0
MmcrLl4 | 21 1.8

cw 1.8 1.0 5
MM 464 4.2
BSL 1.0 1.0

(a) Number of clusters for the three algorithms taken from literature.
1 2 3 4 5
NOR HYP NOR HYP NOR HYP NOR HYP NOR HYP
ace75e | 44 16 | 58 15 | 76 20 | 83 22 | 95 22
AGG97 | 49 10 |74 10 |92 10 |25 1.0 |58 10
corv | 87 85 |78 72 [105 91 |117 115 |130 119 1
cp 54 22 |73 25 |87 28 |73 23 |75 24
BSL 1.0 1.0 10 10 |10 10 |10 10 1.0 1.0
AGG75P | 57 16 | 69 1.8 | 80 21 89 20
AGG97 | 85 1.0 |87 10 |26 10 | 46 10
curRv | 67 60 | 89 77 |120 115 |145 138 2
GP 78 27 |80 27 |67 22 |75 22
BSL 10 10 |10 1.0 |10 10 1.0 1.0
AGG75P | 6.7 1.7 7.9 2.1 87 20
AGG97 | 8.1 10 |28 10 | 47 10
CURV 9.9 8.4 11.0 10.5 131 124 3
Gp 86 27 |76 24 |83 26
BSL 1.0 1.0 1.0 1.0 1.0 1.0
AGG75P | 3.6 14 52 16
AGE97 | 23 10 | 28 10
CURV 7.6 7.5 109 105 4
GP 61 20 |71 23
BSL 1.0 10 1.0 1.0
AGG75P | 44 1.6
AGGI7 28 1.0
CURV 11.0 106 5
GP 72 23
BSL 1.0 1.0

(b) Number of clusters for our three novel algorithms.

Table 5.9: Comparisons of mean number of found clusters on the semantic-
similarity-based ego graph data set, for the basic clustering (NOR) and
its first hyperclustering (Hyr), for all discussed algorithms, in the same
notation of Tables 5.5 and 5.6.



the scores. The only algorithms gaining something, not always consis-
tently, are cw, especially when less-frequent components are involved, Gp,
MM and AGG97. We notice that systems that were cluster-wise more stable
across frequency class combinations for semantic similarities, like Gp, now
tend to vary more their clustering sizes, and to produce less clusters in
the unbalanced regions. This mirrors the more pronounced character of
collapsed pseudowords in the case of co-occurrences, already detected in
Section 5.2.2.1 and further examined in Appendix A: ego graphs are ten-
dentially more balanced, but unbalances are starker than for semantic sim-
ilarities. Finally, looking at the number of clusters, we notice the extremely
high numbers for mcL2, which surpasses MaxMax as the finest clustering
algorithm, and in particular how they behave after hyperclustering: while
MM falls back to more reasonable clustering sizes, those of mcL2 are still
very high. We want to see a sort of paradigmatic difference in the clus-
tering approach: whereas mMcL isolates denser regions, MaxMax congregates
the nodes in certain types of subgraphs. Such difference is accentuated
by the hyperclustering: MaxMax goes on condensing its clustering, while
MCL retains its divisive nature.

5.4.3 Example of Clusterings

We briefly want to show the differences between the basic clusterings of
our six systems (MCL, CW, MM, AGG, GP, CURV) and their variants on the
ego graph of a same pseudoword, in order to give a small direct insight
into their nature. We will also briefly look at the effects of hypercluster-
ing. As our example, we chose the semantic-similarity-based ego graph
of euonymus_carryall, a combination of two words belonging to the lowest
frequency class 1. Its network is connected and consists of 366 nodes and
has a density of 0.344, quite below the global mean (which is 0.45); this is
due to the rarity of such words. The network is balanced, with a ratio p
(see Section 5.3.1) between euonymus and carryall of 1.09. The baseline has
here a BCubed F-score of 0.67, a Tor2 score of 0.31 and of course a NMmI of
exactly 0.

Chinese Whispers finds two clusters, which seem to correspond on one
hand to the sense of plant, as in

{nandina, hemlock, reed, iris, ...},
and on the other hand to the sense of transportable container, as in
{can, receptacle, scarf, compartment,...}.

As a consequence, all scores rate very high, respectively 0.97 for BCubed
F-score, 0.90 for M1 and 0.99 for Tor2.

163



2 3 4 5
NOR HYP | NOR HYP |NOR HYP | NOR HYP | NOR HYP
Mc12 | 23.0 174 | 434 335 | 571 441 535 409 | 469 36.6
McrLl4 | 89 6.2 14.3 9.8 15,5 10.0 14.6 9.5 116 7.0
MM 16.9 2.7 36.8 7.0 489 102 | 46.1 9.3 39.7 7.8
cw 4.5 1.1 4.9 1.1 4.6 1.2 4.5 1.6 28 1.1
BSL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
McL2 | 53.0 417 |572 441 |511 394 | 454 355
MmcL14 | 149 9.3 15.1 9.3 14.4 8.8 122 78
MM 47.3 9.1 495 101 | 447 8.9 387 75
cw 4.3 1.1 4.0 1.0 3.9 1.3 30 12
BSL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MmcrL2 | 59.0 464 | 542 416 | 466 36.1
MmcrL14 | 153 9.9 149 9.3 124 7.7
MM 50.0 102 | 46.0 8.8 392 73
cw 3.8 1.0 3.7 1.1 31 11
BSL 1.0 1.0 1.0 1.0 1.0 1.0
McrL2 | 519 399 | 484 376
MmcLl4 | 14.4 8.5 143 9.6
MM 46.4 8.0 405 7.6
cw 3.5 1.0 35 1.0
BSL 1.0 1.0 1.0 1.0
MmcL2 | 495 377
MmcrLl4 | 144 9.6
MM 412 73
Ccw 39 1.0
BSL 1.0 1.0

(a) Number of clusters for the three algorithms taken from literature.

1 2 3 4 5
NOR HYP NOR HYP NOR HYP NOR HYP NOR HYP
AGG75P | 3.6 1.6 6.7 1.8 8.9 1.7 6.4 1.9 51 1.7
AGG97 9.7 1.9 9.9 2.0 8.5 2.0 7.5 1.9 6.7 15
CURV 9.7 9.6 11.1 10.7 8.9 8.1 8.3 75 72 6.6
GP 5.1 2.0 7.4 22 12.0 2.8 7.2 2.1 46 1.6
BSL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
AGG75p | 7.4 1.8 8.6 1.7 6.7 1.9 52 1.7
AGG97 7.8 19 74 1.9 75 1.9 70 1.7
CURV 10.0 9.7 7.9 7.4 8.8 7.9 81 74
GP 7.1 2.2 11.3 2.9 6.0 1.9 28 13
BSL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
AGG75P | 8.6 1.8 6.7 1.8 52 1.8
AGG97 7.1 1.9 7.3 1.9 71 1.8
CURV 7.8 7.3 8.3 7.7 79 75
GP 9.6 2.5 5.2 1.8 21 12
BSL 1.0 1.0 1.0 1.0 1.0 1.0
AGG75pP | 5.8 2.0 4.9 1.8
AGG97 7.7 1.9 79 1.8
CURV 7.5 6.7 87 83
GP 5.2 1.8 24 1.2
BSL 1.0 1.0 1.0 1.0
AGG75P | 46 18
AGG97 82 1.7
CURV 8.1 7.7
GP 1.7 12
BSL 1.0 1.0

(b) Number of clusters for our three novel algorithms.

Table 5.10: Comparisons of mean number of found clusters on the co-
occurrence-based ego graph data set, for the basic clustering (NOR) and
its first hyperclustering (Hyr), for all discussed algorithms, in the same
notation of Tables 5.5 and 5.6.



The gangplank algorithm gives us 8 clusters. Their precision is quite
high and it is possible to distinguish carryall-type clusters like

{apartment, package, sheeting, canopy},

and euonymus-type one, although the distinction between two clusters
of the same type is not always clear, like for the plant-related terms of

{clethra, tree, spiraea} and
{loosestrife,gilt,multiflora,bugger, leucothoe, ...}

The gangplank scores are: BCubed F-score 0.70, nm1 0.61, Top2 0.78.

After hyperclustering, we get 3 more clear-cut clusters, similar to those
obtained by cw. One is just a micro cluster of three terms with no rele-
vance. Scores improve consequently: BC-F 0.94, NMI 0.80, Tor2 0.90.

Here we want very briefly to consider the effects of the minimum cut
described in Section 2.1.3 and in Section 4.3.2.1 on the gangplank clus-
tering algorithm. The basic clustering has only 5 instead of the 8 of the
regular version, and the scores are slightly inferior: BCubed F-score 0.70,
NMI 0.55 and Tor2 0.71. The smaller clustering size is due to the more ho-
mogenous nature of the two “halves” of the minimum cut. Nonetheless,
gangplanks will tendentially always split a graph; in this case, we have
three clusters pertaining to euonymus:

{fern, cranberry,birch, shrubbery, cypress,bougainvillea, ... },
{yam, apple, rose, tree, leat, baguette},
{lawn, abelium,multiflora,buckthorn,clethra,...}.

and two to carryall:

{gilt, PDA,diamond, apartment, style,Cruiser,duffle, ... },
{restraint, pouch, gear, rucksack,binder, flask, ...}

We deem the smaller recall coming from their relative balance the cause
of worse scores with respect to the regular algorithm.

The hyperclustering is compressed in two clusters which clearly and
mostly correctly correspond to the two pseudosenses, and the scores im-
prove accordingly but, since its quality depends on the quality of its build-
ing blocks, they remain still slightly inferior than for the regular gangplank
version: BCubed F-score 0.90, Nmr1 0.73 and Tor2 0.88.

We could conclude this parenthesis observing that for our task, the
simulation of homonymy detection for disemous words, the inclusion of
the minimum cut as a step prior to the actual clustering will mostly not
improve performances significantly. Applied to the particular case of ego
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graphs of disemous pseudowords, this variant forces an algorithm to pro-
duce at least two distinct clusters (the two connected components resulting
from the cut). If, in the best scenario, the minimum cut already identifies
the two ground truth clusters « and B, the clustering algorithm should not
split the two connected components any further. In a sense, the minimum
cut variant puts to a test the fragmentary nature of the given clustering
algorithm. If a clustering algorithm has a penchant for splitting a set, it
will obtain probably more precise clusters on the two halves of the cut,
with the risk of them being smaller and with less recall, while a coarse-
grained clustering algorithm like cw will not need it. In a less bipolarized
situation (a word with more than two possible senses), however, a mini-
mum cut might be useful (although computationally more expensive) as
a sort of pre-processing step to improve the purity of very blurred clusters.

The Markov cluster algorithm with parameters (2,2) returns a more
fragmented result, with 11 clusters. Some of them appear to be very spe-
cific, like

{bike, humvee, skateboard, car, Cruiser},
together with a pair of singletons like

{wheel} or
{look}.

We can still separate euonymus from carryall, but recall penalizes the
scores and we have a BCubed F-score of 0.73, a NMI of 0.63 and a Tor2 of
0.84: in this case higher than Gr, but worse than Gr’s hyperclustering.

When using 1.4 as the inflation parameter, though, McL nearly acts as
the hyperclustering of the version with inflation parameter 2. We retrieve
just 2 clusters where the two pseudosenses are clearly distinct, and we
obtain extremely high scores: BCubed F-score 0.97, nm1 0.9, Tor2 0.92. Its
hyperclustering stays unvaried.

MaxMax takes the tendency of the more fragmented mcL version even

further and produces 21 clusters, some of them consisting only of two or
three terms, like

{pack, equip} and
{style, lash, look},
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and overall with very restricted meaning areas. The biggest cluster
comprises 56 elements. Despite the very high precision, its scores are the
lowest ones between basic clusterings, with a BCubed F-score of 0.34, a
NMI of 0.48 and a Tor2 of 0.47. In denser networks its clustering tends
to be even more dispersed. However, the hyperclustering causes here a
major improvement. The clustering are condensed in 3 clusters, with the
carryall sense split among one bigger and one smaller cluster:

{humvee, bike, car, cart,Cruiser, skateboard, .. .},
{lawn, eraser,moss, brush, reed, grass, wedge, ...} and
{eyeglass, overalls, cap,parka, sweater, .. }

This new clustering reaches a BCubed F-score of 0.62, a Nm1 of 0.37
and a Tor2 of 0.66. It is remarkable how normalized mutual information
unpredictably decreases, despite the evident overall better look. MaxMax’
hyperclustering is capable of achieving even better improvements than for
euonymus_carryall.

Between the two aggregative clustering variants, one with variable ra-
dius (AGG757P) and the other with a fixed radius of 0.97 (AGG97), the latter
has a more dispersed clustering, with 6 clusters against the 3 found by the
former. This is explained by the fact that the ego graph of euonymus_car-
ryall is very balanced, so that distances are more homogenous, producing
a very high 75th percentile. The clusters of AGG97 are quite balanced and
the Tor2 score is still quite good: 0.72, compared to a BCubed F-score
of 0.63 and a Nmr1 of 0.67. Precision is good, but the pseudosenses are
split among the clusters. AGG75r is more focused, with only one smaller
spurious cluster pertaining to carryall:

{humvee, bike, car, cart,Cruiser, skateboard, .. .},
{lawn, eraser,moss, brush, reed, grass, wedge, ...} and
{eyeglass, overalls, cap,parka, sweater, .. }

This variant thus obtains indeed much better results: BCubed F-score
0.93, nm1 0.82, Tor2 0.90.

The two respective hyperclusterings also behave differently: AGG97
merges everything in one big cluster, because of its high fixed radius, while
AGG75P, by its own definition, will always find at least two different clus-
ters in a hypergraph with at least three nodes and different weights on its
edges.

The curvature-based clustering algorithm identifies 9 clusters. Their

distribution is very skewed: there are two bigger clusters with respectively
283 and 29 terms:
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{equip, apple, twig, style, lunchbox, toothpick, pachysandra, ...},
{nandina, brake,wheel, rosebush, poppy, ... }.

The rest is subdivided among the remaining miniclusters. The clusters
appear quite confused, and scores are consequently: BCubed F-score 0.61,
NMI 0.06, Tor2 0.42. The scores are substantially unvaried for the hyper-
clustering, since the only change is that two minor clusters are merged,
namely:

{cultivar,gizmo,daylily,weed, boxwood, hibiscus} to
{rucksack, restraint, leaf,brooch, tree, bulb, button—downs}.

5.4.4 Conclusions

Even if we observe some clustering algorithms excelling at some evalua-
tion measure more than others, in the end we are effectively not able to
proclaim one of them as the “overall best wsi clustering algorithm”. How-
ever, the analysis on both the semantic-similarity and on the co-occurrence-
based ego graph data sets of the algorithms’ behaviours in Section 5.4.2
(and in Appendix B), and the insight into the nature of their clusterings
given in Section 5.4.3, allow us to make some final considerations about
the functioning and the desired properties of a clustering algorithm for
the specific task we have chosen to study.

First, we want again to address the possible bias towards Chinese
Whispers in our evaluation framework, already discussed in Section 5.4.2.
We have observed that cw is on average the most coarse-grained among
our systems. We acknowledge that coarse-grainedness is an advantage
in our evaluation framework: In fact, in the ideal case we want an algo-
rithm to produce exactly two clusters, and the Tor2 score penalizes out-
puts which deviate too much from this ideal number. Therefore, it is true
that Chinese Whispers manages to achieve very good TOP2 scores, albeit
at the expense of stability: the variance of its scores, as shown e.g. in
Figure B.2 in Appendix B, is the highest in our evaluation framework. In
Appendix B we refer to this fact as the swim or sink property of coarse algo-
rithms: very often they ignore smaller or not well-represented differences
and conflate all elements into just one cluster.

On the other hand, more fine-grained clustering algorithms might be
more sensitive to minor subregions in a word graph and be stabler in terms
of score variance, but their lack of focus and more dispersed clusterings
give them inferior average scores; the best example for this is MaxMax.
Considering the semantic-similarity-based ego graphs, the curvature-based
clustering algorithm is also stably floating around low scores. However,
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we recognize somewhat different splitting behaviours that we want to
summarize using the mean absolute deviation (MAD), a measure of disper-
sion (see Section 2.1.9.2), together with the mean number of clusters (Table
5.4) in a clustering. We apply the MAD to the cardinalities of the clusters
in a given clustering, and for each algorithm we take the mean of the
MAD scores of all its clusterings on either data set!®>. The mean absolute
deviation tells us how unbalanced the distribution of elements in a cluster-
ing is with respect to a hypothetical uniform clustering where all clusters
are of equal size. The higher the MaD, the more skewed the clustering:
this means that there will be few very big clusters counterposed to many
smaller clusters. In Table 5.11 we show the MAD values for our algorithms
on both data sets. The mean number of clusters, instead, tells us how frag-
mented a clustering is. Figure 5.7 graphically shows the position of our
algorithms with respect to these two statistics, which we will comment
comparing them to the respective Tor2 scores.

Similarities Co-occurrences

MCL2 51.8 13.0
McL14 92.0 54.6
Ccw 66.6 160.5
MM 10.6 12.4
AGGY97 66.3 59.4
AGG75P 50.7 69.6
CURV 80.8 90.8
GP 40.6 12.2
BSL 0 0

Table 5.11: Average values of the mean absolute deviations for each clus-
tering algorithm over both ego graph data sets.

We observe for example that curv, though only relatively fine-grained,
has quite high mean absolute deviation values, much higher than Max-
Max, which however suffers from an extremely high fragmentation. On
the contrary, Gp is more balanced, because, although having a higher maD,
it is less fine-grained, which lends to its clustering more compactness than
the two other aforementioned systems. However, at the same time, It is
exactly this same compactness that is detrimental to its TOP2 scores, since
the recall of its representative clusters will be relatively low: We know that
in most cases of homonymy one term is prevalent, as discussed in Section
1.1.1.

15We could have normalized the MAD score with respect to number of total clustered
elements. However, since the order of our ego graphs is nearly constant, we left the
absolute mean deviations. The same goes for the mean number of clusters.
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We claim that the best clustering shape that can be obtained by an al-
gorithm for the task of homonymy detection, and more generally of Word
Sense Induction, is one that admits a pronounced, even if not exasper-
ated, degree of skewness without being too much fragmented, i.e. with
too many clusters. In the charts of Figure 5.7, this would correspond to a
rather undefined region towards their bottom center-right quarter, where
the best systems tend to concentrate (compare Tables 5.2 and 5.3), espe-
cially in Figure 5.7b (AGG75P, AGG97, McL14 and CURV). As a matter of fact,
cw’s performances suffer on the co-occurrence-based ego graph data set
(Figure 5.7b) because its good shape seen on the semantic-similarity-based
data set is lost, or, in other terms, because while its mean clustering size
remains stably low, its MAD value gets too high.

An interesting factor emerges from hyperclustering: we might call it
the scalability, or conversely rigidity, of a clustering algorithm. Namely, we
already noticed how MaxMax’s hyperclustering markedly improves with
respect to its basic clustering. At the same time, we observe that MaxMax’s
hyperclustering greatly rescales the size of the basic clustering. On the
contrary, the basic clusterings of McL2 and especially of the curvature-
based algorithm are largely unaffected by hyperclustering. This hints to
different properties of the algorithms, particularly when noting that mcr2
is as fragmented as MM on the co-occurrence-based data set (cf. Table 5.10).
In the notation of Section 5.3.2, we express this ratio as

L
= Hyp)] = o1

and summarize its values for each algorithm in Table 5.12.

Similarities Co-occurrences

MCL2 2.5 1.3
McLl4 1.9 1.7
Ccw 1.8 3.5
MM 9.3 5.6
AGGY97 53 4.3
AGG75P 3.8 3.9
CURV 1.1 1.1
GP 3.1 2.6

Table 5.12: Mean ratios of the number of clusters in a basic clustering to
the number in its hyperclustering, for each algorithm, over both ego graph
data sets. The lower ratios for each category are highlighted.
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We already mentioned this behaviour in Section 5.4.2. We can say that
the closer to 1 is {, the greater the invariance of an algorithm with respect to
hyperclustering. This invariance is surely tied to coarseness, albeit it does
not directly depend on it. We might claim that clustering algorithms with
low invariance and a relatively great fragmentation, like MM or Gp, benefit
the most from hyperclustering. This is due to fact that the algorithm is
capable of rescaling itself and efficiently use its relatively small and limited
basic clusters as building blocks for more significant clusters.

Conversely, we recognize a generic turning point in terms of coarse-
ness beyond which hyperclustering ceases to be useful: When a clustering
is already coarse enough, i.e. close to the supremum of the partition lattice
(see Section 5.3.2), the hyperclustering precipitates this coarseness, lower-
ing its quality and the associated scores. Chinese Whispers is a clear exam-
ple thereof: on the semantic-similarity-based ego graph data set (compare
Table 5.9) its hyperclustering very often, if not always coincides with the
trivial baseline, and indeed its scores drastically reduce, especially for the
more balanced pseudowords.

The type of an ego graph, either based on semantic similarities or on
co-occurrences, influences the values of the mean absolute deviation and
to a much lesser extent the ratio ¢ defined by (5.11): different clustering
algorithms react differently to first-order or second-order relations. As we
have stressed many times throughout the analysis of the previous sections,
co-occurrence-based word graphs represent more unpredictable, generally
less significant connections between words than semantic-similarity-based
word graphs. They are also more subject to noise in the form of words
with little relevance to wsr (cf. Table 4.1) or even punctuation, depend-
ing on the pre-processing that was performed on the original raw text.
Co-occurrence word graphs in our data set are sensibly denser than their
semantic-similarity-based counterparts and their small-world nature (see
Section 2.1.7) is more pronounced, and this is a cause of generally more
fragmented and more blurred clusters, corresponding to overall lower
scores. In such a setting, we can distinguish a disadvantage for cluster-
ing algorithms that rely on the abstract concept of information flow, like the
MCL variants or cw, compared to others that are based on distance, like
the AGG variants, or that just check some local properties, like MM or CURY,
especially for the more balanced pseudowords (compare Tables 5.7 and
5.8). We see a reason for this in the fact that co-occurrences have a local
essence, and that we can not as easily associate them semantic reasonings
as with semantic similarities, as an information flow implies, but we rather
observe that the emerging syntactical relations (see also Section 1.1.1 and
Section 2.1.8) possess a different nature.
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Chapter 6

Conclusions

The goal of the present dissertation is to describe various graph-based ap-
proaches to Word Sense Induction and to carry out a comparison between
them.

In the first part of the dissertation, consisting of Chapters 1, 2 and 3,
the task of Word Sense Induction (wsI) as the unsupervised counterpart
of Word Sense Disambiguation is laid out in its theoretical foundations.
The problem of distinguishing the possible, different senses that a given
word can assume in different contexts originates from intrinsic properties
of language and human thinking; the issues that we encounter in this task
have sparked large and still-lasting debates in various fields, primarily lin-
guistics and philosophy, with ramifications also in the broader spectrum
of cognitive sciences, like psychology or even neuroscience. The notions of
word and sense are complex, and there is not always consensus about their
definitions. Different perspectives about such matters have given rise to
different approaches to wst even in the area of Computer Science, where
some kind of compromise has to be reached between the theoretical dis-
cussion and the actual implementation of automated systems that identify
the possible meanings of string tokens in a text. In this regard, in Chapter
1 we make a more subtle distinction between two kinds of Word Sense In-
duction tasks: Word Sense Induction proper, concerned with the detection
and implicit definition of the senses of a word, and Word Sense Discrimi-
nation, oriented towards the labelling of a word’s occurrence with one out
of some given senses. In both cases, such operations need and are based
on the modelling of word contexts. We recognized two main paradigms
in literature when coming to this: models using vector spaces to represent
semantics, and graph-based models. We deem graphs to be particularly
suited to the direct representation of relationships between words and to
the interpretation of a word as an atomic unit which is part of many dif-
ferent local substructures (semantic, syntactical, or of other kinds), and in

173



this work we focus on graph-based approaches to wsr. We remark that,
independently from its concrete implementation, Word Sense Induction
principally relies on clustering a data set, with the assumption that each
cluster implicitly defines a sense of the examined word.

Chapter 3 more concretely investigates how graph-based approaches to
wsI have been implemented in literature so far, by the examples of five sys-
tems: the Markov cluster algorithm [van Dongen, 2000] (McL), originally
developed in the field of biology but of general purpose; the approach by
[Dorow and Widdows, 2003], based on the detection of particular syntac-
tical patterns that put words into reciprocal relation and making use of
MCL to perform the clustering step; Chinese Whispers [Biemann, 2006],
which simulates the flow of information through the graph to determine
the “sense class” of each node; HyperLex [Véronis, 2004], which defines a
significance measure to evaluate the co-occurrence of words and exploits
the semantic dominance of some nodes over the others; and finally Max-
Max [Hope and Keller, 2013], identifying a word’s possible senses with
directed subgraphs possessing particular properties. We established two
core principles that are common to most of the aforementioned cluster-
ing algorithms, and to graph-based wsr1 approaches in general: first, after
the global document has been modelled as a word graph, the senses of a
given word are induced with respect to a local subgraph, which acts as
a neighbourhood of that word; second, the detection of the sense clusters
hinges on the assumption that there are “denser” regions in the subgraph,
semantically interpretable as groups of terms revolving around a com-
mon meaning. This expectation is justified by the nature of word graphs.
Since these are structures that model a natural phenomenon like language,
their characteristics are much different from those of random graphs, and
have actually been shown to have small-world properties and also to be
scale-free (see Section 2.1.7). Besides the different angles from which the
examined approaches try to deal with this fact, we notice a general ten-
dency of focusing on the word graph building step rather than on the final
clustering and sense-inducing step. Further, many algorithms rely on pa-
rameters and thresholds, which are by definition arbitrary constants that
characterize the execution and determine the outcome of an algorithm. We
see a basic contradiction: the notion of tuning a parameter to obtain opti-
mal results implies reasonings that stray from the unsupervised paradigm
of Word Sense Induction and involve external knowledge. The same holds
for the concept of thresholds, which are used to shape the results of a clus-
tering by setting arbitrary or heuristically determined limits. What we are
arguing here is that such parameters and thresholds represent supervised
elements that are imposed on the structure of the data to be clustered,
whereas we would expect a pure unsupervised approach to discover pat-
terns by tapping exclusively from such structure. Instead, very often the
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introduction of parameters can be seen just as an unintended shift from an
a priori supervised set up to an a posteriori supervised refinement. These
considerations are the basic motivations that brought us to present, in the
second part of this work, definitions and instruments which allow to create
a cohesive framework for wsr where text pre-processing is kept to a mini-
mum, and clustering algorithms let a natural partition of the word graph
arise just by exploiting its structure, not by forcing one on it. Also,we have
the goal to cope with the already mentioned peculiar small-world struc-
ture of word-graphs, which in our opinion greatly impacts the outcomes
of clustering algorithms.

The main contribution of Chapter 4, which presents and greatly ex-
pands the material of [Cecchini et al., 2015] and [Cecchini and Fersini,
2015], is the definition and exploration of mathematical instruments that
we deem useful for the analysis of graphs, especially in the field of wsr.
The weighted Jaccard distance (together with its more straightforward un-
weighted counterpart) of Section 4.1.1 is an adaptation and a generaliza-
tion of the Jaccard index to the node set of an (undirected) weighted graph.
Our aim is to obtain a second-order relation that represents the distance
between the contexts of two words on the basis of first-order relations, e.g.
simple co-occurrences with their frequencies, which are possibly modelled
by a word graph. To this end we treat closed first-degree neighbourhoods
of the nodes as multisets, to take into account the weighted structure of the
graph beyond its mere topology. The weighted Jaccard distance enables us
to abstract a word metric space from a word graph and to perform the clus-
tering and sense-inducing step from there, deducing both syntagmatic and
paradigmatic information from the text. We have provided many exam-
ples and minor results that prove the desirable properties of our weighted
Jaccard distance. In addition, we define gangplank edges, that is, edges that
represent a weak, random connections in a word graph and that are thus
used to outline denser regions of the graph. Finally, the observation that
weighted and unweighted Jaccard distances delineate different structure
levels of the word graph leads us to give a novel synthetic definition of
curvature for a weighted graph, adapting the classical geometrical notion
to the case of a discrete space. Our distance-based curvature allows to re-
veal denser subregions of the graph. We also discuss the implementation
and time complexities of all defined instruments.

The weighted Jaccard distance, gangplank edges and the definition of
curvature are at the base of the three novel clustering algorithms for wst
introduced in this dissertation. We describe and discuss both their generic
functioning and their principles, and their actual implementation in our
Word Sense Induction framework, going from the raw text pre-processing
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step to the induction and later the discrimination of word senses. The dif-
ferent parts of this pipeline and the involved techniques (like the compu-
tation of Jaccard distances) form a series of modules that can be combined
in a flexible way or included in already existing ws1 systems.

The three algorithms are the gangplank clustering algorithm, an aggrega-
tive clustering algorithm and a curvature-based clustering algorithm. The first
one exploits the second-order relations obtained by the weighted Jaccard
distance on a word graph and employs the gangplank edges to identify
the borders between subgraphs possessed of significant intraconnections
and thereby defining word senses. The aggregative approach is a variant
of a k-medoid clustering algorithm on the metric word space derived from
a word graph by means of the weighted Jaccard distance, and applies a
prior initialization step to assess the number of clusters and to ascertain
the medoids that will act as their seeds. The curvature-based approach
identifies the senses of a word with the subgraphs of that word’s local
word graph induced by node couples with positive (spherical) curvature.
The logic which is common to all these three methods is that they focus
on the properties of edges or more generally node couples, which corre-
spond either to first-order or second-order relations between words; such
properties are used to detect regions of the word graph that are denoted
by strong, significant internal connections.

The contribution of Chapter 5 is to provide two novel data sets of word
ego graphs based on pseudowords. A pseudoword is the artificial conflation
of two existing words: this construct simulates a case of homonymy and
polysemy in a controlled setting and allows to perform evaluation and
comparisons of different graph-based wsi clustering algorithms with per-
fect knowledge of the ground truth. Each one of our two data sets consists
of 1225 word ego graphs, each relative to one of the possible combinations
of 50 selected monosemous words and thus acting as the word graph of a
disemous (i.e. with exactly two senses) word. One data set represents rela-
tions between words by means of semantic similarities computed through
the lexicographer’s mutual information (Section 2.2.1.3), and the other one
by means of simple sentence co-occurrences. The monosemous compo-
nents of the pseudowords and the contexts needed to create the ego graphs
are extracted from a large database containing more than 100 million sen-
tences in English. To our knowledge, the pseudoword data sets presented
here are the largest ones of their kind.

We use the two data sets as the backbone of our proposed pseudoword
evaluation framework. In this context, we perform a thorough analysis of
the properties of the pseudowords, figuring out the dynamics that dic-
tate the structure of a pseudoword ego graph and how these interact with
the mechanisms of a clustering algorithm. Specifically, on our data sets
we make a reciprocal comparisons of the results of three algorithms from
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literature (mcr, Chinese Whispers and MaxMax) and of our three pro-
posed algorithms (gangplanks, aggregative and curvature-based), and in
the process we devise two new instruments: a hyperclustering step (Sec-
tion 5.3.2), which recursively condenses an already existing clustering and
helps recompact a fragmented one; and the Tor2 evaluation score (Section
5.2.3), which we use alongside Nm1 and BCubed measures and which we
developed expressively to evaluate the task of homonymy detection for
disemous words.

The investigation of how the parameters of a pseudoword affect an
algorithm’s outcomes (Section 5.3.1 and Appendix B), the comparison of
the scores obtained by different evaluation metrics together with the de-
tection of their biases (see Section 5.4.1.1), the sizes of the clusterings and
the trends put in evidence by the hyperclustering step (Sections 5.4.2 and
5.4.4), the influence of the type of a word graph (based on semantic simi-
larities or co-occurrences) on the output of an algorithm - all these factors,
preceded by the comprehensive description of the task and the definition
of novel concepts and instruments to tackle it, concur to give a deeper
insight into the functioning and even on the pitfalls of graph-based Word
Sense Induction. Namely, in Section 5.4 we highlight and isolate the el-
ements that determine how the results of an algorithm look like, discuss
their properties and behaviours in relation to the word graph features and
establish the pro and contra of each algorithm.

Most notably, different clustering algorithms react differently to first-
order or second-order relations. In particular, the data set analysis in Sec-
tions 5.2.2.1 and 5.3.1 and in Appendix A shows how co-occurrence-based
word graphs represent more unpredictable, generally less significant con-
nections between words than word graphs based on semantic similarity.
Co-occurrences are also more subject to noise in the form of words with lit-
tle relevance to wst or even punctuation, depending on the pre-processing
that was performed on the original raw text (cf. Section 4.3.1). At the
same time, co-occurrence word graphs in our data set are sensibly denser
than their semantic-similarity-based counterparts and their small-world
nature (cf. Section 2.1.7) is more pronounced, this being a cause of gener-
ally more fragmented and more blurred clusters, corresponding to overall
lower scores. In such a setting, we can distinguish a disadvantage for clus-
tering algorithms that rely on the abstract concept of information flow, like
the McL variants or Chinese Whispers (cf. Sections ??), compared to others
that are based on the concept of distance, like the AGG variants (cf. Section
4.2.2), or that just check some local properties, like mm (cf. Section 3.5) or
CURV (cf. Section 4.2.3), especially for the more balanced pseudowords. We
see a reason for this in the fact that co-occurrences have a local essence,
and that we can not as easily associate them semantic reasonings (like
those implied by an information flow) as for similarities, but we rather
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observe that the emerging syntactical relations possess a different nature
and are in a complementary syntagmatic versus paradigmatic relation (see
Section 1.1.1 and Section 2.1.8), mirrored by the complementary relation
between Word Sense Discrimination and Word Sense Induction. Even if
they are often used as synonyms (as e.g. in [Navigli, 2009]), this disser-
tation puts in evidence the need to approach these tasks with different
instruments.

As a final remark, we want to highlight the paramount importance
of text pre-processing in the outcome of wsi clustering algorithms. This
determinant step is often not given enough relevance, even if it greatly in-
fluences text modelizations, a fact that indirectly emerges from our work.
In the light of this, besides believing that this connections needs further in-
vestigation, we think that it might be useful for wsr evaluation campaigns
or frameworks to be performed not only on a shared data set, but also on
the same given type of structure.

We envision different possible future developments and hooks for the
material presented in this work. The first, obvious one is to expand the
pseudoword data set, acquiring many more components to combine and
refining the division in frequency classes, besides also considering addi-
tional weighting schemes for the ego graphs. In connection to this, we
could perform a more detailed, graph theoretical analysis of the charac-
teristics of the pseudoword ego graphs, with the aim to further investigate
the representation of raw text and word contexts. Another immediate di-
rection is the extension of our examined and proposed algorithms to the
task of Word sense Discrimination, of which we only mention an imple-
mentation. Finally, from a more technical point of view, taking inspiration
from hyperclustering as a recursive and self-contained way to produce
new clusterings from existing ones, we conceive of exploring the imple-
mentation of consensus clustering (see e.g. [Goder and Filkov, 2008, Ghaemi
et al., 2009]) for the algorithms we have taken into consideration, as a way
to let the best features of each emerge. Of course, this will involve the fur-
ther tuning of the synthetic distance-based notion of curvature for a graph
and the extensive study of its theoretical and practical implications.
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Appendix A

Analysis of collapsed
pseudowords

Here we present some further comments and data about collapsed pseu-
dowords, expanding the discussion of Section 5.2.2.1. As noted there,
while some of the dominant or dominated components appear in pseu-
dowords of both data sets, no pseudoword collapses both for semantic-
similarity-based and co-occurrence-based ego-networks.

Each one of the component words listed in Section 5.3 contributes to
49 different pseudowords. Still, some components have a greater tendency
to originate a collapsed pseudoword. In the case of similarity-based ego-
networks, we observe that all 50 components occur in at least one col-
lapsed pseudoword, from a maximum of 27 times for courage (frequency
class 5) to a minimum of 1 for heartache (fC 4), 1ightbulb (fc 3) and
tequila (FC 4). On the contrary, in co-occurrence-based pseudoword
ego-networks only 39 component words are involved in a collapsed pseu-
doword: beer (¥c 5) is the most present one (26 times). In the following
tables we summarize the number of times each component participates in
a collapsed pseudoword (Table A.1) and the presence of each frequency
class (Fc) in collapsed pseudowords (Table A.2).

Table A.2 confirms the observations about collapsed pseudowords of
Section 5.2.2.1: the components that most destabilize a pseudoword’s ego-
network are mostly of the highest frequency class, and the victims of this
process are the least frequent terms. Of course, only half (rounded down)
of the involved components dominate their respective pseudoword ego-
networks. Table A.3 highlights these components together with the ratio
of dominated pseudowords to generic pseudowords they appear in, and
their respective frequency classes.
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Participating components
Nr. collapsed pseudowords | Similarities Co-occurrences

27 courage(b) -

26 - beer(b)

24 ailment(b) clothing(b)

20 beer(5), -
psychologist(5)

19 clothing(b), -
credibility(b)

18 pillow(4), tofu(4) -

17 southerly(2) -

15 reliability(4) -

14 dioxide(b), -
treasurer(5)

13 pneumococcus(l), -
ugandan(3)

12 ackee(l), bullfight(3), ailment(5), barque(l),
dimwit(2), euonymus(1), tautog(l)
hyperthyroidism(2)

11 barman(2), bobolink(l), courage(5),
carryall(l), shawl(4), credibility(b),
tautog(l) leatherette(l),

psychologist(5)

10 barque(l), garment(5) bobolink,
bufflehead(l),
carryall(l),
garment(b), paycheck(5),
pneumococcus(1)

9 pennywhistle(l) catsup(2), dioxide(5),
treasurer(b)

8 euonymus(1), tranquilliser(2)

leatherette(l),
showt ime(3),
tailwind(3),
tranquilliser(2)

7 artistry(4), hyperthyroidism(2),
bufflehead(l) reliability(4)

6 astrologer(3), -
catsup(2),
philanderer(2)

5 curio(3), grosgrain(?), -
heartbreak(4),
yellowcake(2)

4 marshmallow(4), grosgrain(2),
wedlock(3) pennywhistle(l)

3 flamboyance(3), reptile(4)
hairpiece(3)

2 afro(2), paycheck(5), ackee(l), afro(2),
reptile(4) barman(2), bullfight(3),

curio(3), hairpiece(3),
showt ime(3),
southerly(2),
tailwind(3), ugandan(3)

1 heartache(4), dimwit(2),
lightbulb(3), flamboyance(3),
tequila(4) philanderer(2),

tequila(4)

Table A.1: Components involved in collapsed pseudowords by number
of occurrences. Frequency classes are indicated for each component in
parentheses.



Number of collapsed pseudowords
FC of a component | Similarities Co-occurrences
5 23 22
4 6 2
3 4 2
2 5 3
1 12 10

Table A.2: Number of collapsed pseudowords with a component of a given
frequency class.

Ratio of collapsed pseudowords
Component (Fc) | Similarities =~ Co-occurrences
courage (b) 0.55 0.22
ailment (5) 0.49 0.24
psychologist (5) 0.41 0.22
beer (5) 0.41 0.53
credibility (5) 0.39 0.22
clothing (5) 0.39 0.49
pillow (4) 0.37 -
tofu (4) 0.37 -
reliability (4) 0.31 0.14
dioxide (5) 0.29 0.18
treasurer (5) 0.29 0.18
shawl (4) 0.22 -
garment (5) 0.20 0.20
artistry (4) 0.14 -
heartbreak (4) 0.08 -
paycheck (5) 0.04 0.20
reptile (4) 0.04 0.06
tequila (4) 0.02 -

Table A.3: Dominant components of collapsed pseudowords and percent-
ages of pseudowords dominated by them. The components are ordered
by their percentages in the semantic-similarity-based data set.

Indeed, all 10 terms in frequency class 5 appear as highly frequent
dominant words both for similarities and co-occurrences; in both cases
the six most predominant terms belong to that class. For similarity ego-
networks, the only terms of frequency class 4 not appearing in the list are
heartache and marshmallow. As collapsed pseudowords are rarer for
co-occurrence-based ego-networks, in that case only 2 terms of frequency
class 4 cause a collapse, which are maybe surprisingly not pillow or
tofu, the strongest Fc 4 terms for similarity-based ego-networks.
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Appendix B

Pseudoword evaluation results
with respect to word
parameters

In this appendix we will comment the behaviours of the chosen clustering
algorithms with respect to the parameters which define a pseudoword in-
troduced in Section 5.3.1. We will not show every single result for every
combination of data sets, algorithms, evaluation measures and parameters,
as this would be too dispersive. Instead, we will focus on some selected
cases to support the evidence already gathered with the analysis of the
preceding sections.

The following charts give a visual confirmation of the trends analyzed
in Section 5.4.2. Tables B.1-B.2 and B.3-B.4 report, once in the form of
a “point cloud” and once in the form of lines with error bars (showing
means and variances over a 15-fold partition of the data set), the scores of
respectively Chinese Whispers and MaxMax on the similarity-based ego-
network data set, with respect to the balance parameter

& é)

B

introduced in Section 5.3.1. Here we actually take the values log(p) to have
a better scale in the graphs. Tables B.5-B.6 use the same parameter, but re-
fer to the aggregative clustering algorithm with variable radius (at the 75th

percentile of distance values; see Section 4.2.2) on the co-occurrence-based
data set.

p = max(
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Figure B.1: Chinese Whispers scores (y-axis) as a scatter plot with respect
to the logarithmized balance parameter p of the pseudowords (x-axis) on
the similarity-based ego-network data set. The basic clustering is in blue,
the hyperclustering in red.
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Figure B.2: Chinese Whispers scores (y-axis) as error bars with respect to

the logarithmized balance p of the pseudowords (x-axis) on the similarity-
based ego-network data set.
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ego-network data set. The basic clustering is in blue, the hyperclustering

arithmized balance p of the pseudowords (x-axis) on the similarity-based
in red.

Figure B.3: MaxMax scores (y-axis) as a scatter plot with respect to the log-
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Figure B.4: MaxMax scores (y-axis) as error bars with respect to the log-

arithmized balance p of the pseudowords (x-axis) on the similarity-based
ego-network data set.



The greater p, the more unbalanced a pseudoword; this means that
points and error bars on the left side of the charts refer to more balanced
words than on the right side. For higher values of p pseudowords get
quite sparser (also because of collapsed pseudowords), and we observe
more variability on the right sides of the charts as well. This parallels the
subdivisions of the Tables in Section 5.4.2 in balanced and unbalanced re-
gions and the distribution shown in Table 5.3.

Tables B.1a-B.2a and less markedly B.5a-B.6a, relative to the BCubed
F-score, are the only ones where we see an increase in the score as p also
grows. However, due to the fact that the hyperclustering of Chinese Whis-
pers is nearly always reduced to one single cluster, in B.1a-B.2a this trend
actually corresponds to the trivial one-cluster-per-word baseline and fol-
lows the structural insensibility of BCubed measures discussed in Section
5.4.1.1. Otherwise, with respect to NmM1 and TOP2, we again acknowledge
a general drop in performances tied to the unbalancedness between the
components of a pseudoword on both data sets, while it is more evident
for similarity-based ego-networks. A reason for this is that co-occurrence-
based ego-networks are noisier: co-occurrences represent generally less
significant bonds between words than semantic similarities, so that cluster-
ing algorithms are already influenced by this sort of inconsistence and the
effect of unbalancedness has lesser impact on their overall performances.

We notice that scores for basic clusterings and hyperclusterings are
likely to converge as p grows, even if they diverge for lower values. This is
because unbalanced pseudowords attract unbalanced, coarser clusterings,
and so hyperclusterings often do not add a perceptible enough level of
condensation. Finally, we note that Chinese Whispers, and tendentially
coarse-grained clustering algorithms like McL with parameters (2,1.4),
show a greater variance in their scores than other systems. We could call
this a swim or sink attitude of an algorithm: In the task we have chosen,
many evaluation measures would reward very coarse clusterings, and we
define the TOP2 score (see Section 5.2.3) exactly to lessen this effect and
penalize trivial clusterings. This leads to more oscillating scores, where in
one case a very coarse clustering is in line with the skewed composition
of an ego-network, but in another case nearly coincides with the trivial
baseline and is therefore penalized.

Tables B.7-B.8 and B.9-B.10 show the scores of respectively the gang-
plank and the curvature-based clustering algorithm, the former on the
similarity-based and the latter on the co-occurrence-based data set, with
respect to the relative overlap ratio
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Figure B.5: Scores (y-axis) for the aggregative clustering with variable ra-
dius as a scatter plot with respect to the logarithmized balance p of the
pseudowords (x-axis) on the co-occurrence-based ego-network data set.
The basic clustering is in blue, the hyperclustering in red.
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Figure B.6: Scores (y-axis) for the aggregative clustering with variable ra-

dius as error bars with respect to the logarithmized balance p of the pseu-
dowords (x-axis) on the co-occurrence-based ego-network data set.



introduced in Section 5.3.1. The higher x, the more common lexicon (based
on the reduced distributional thesauri) is shared by the two components of
a pseudoword. Analogously to p, pseudowords in both our data sets tend
to have rather small overlaps, so that their distribution for higher values of
k is rather sparse, and sparser than for p. This behaviour is apparent from
the denser concentration of points in the left half of the charts in B.7 and
B.9. As already discussed, this concentration is slightly less pronounced
in B.9, because in our co-occurrence data set words overlap more, due to
frequent common lexical elements.

The general trend is comparable to what happened for p: all scores de-
crease as the relative overlap increases. The only possible exception can be
again by part of the BCubed F-score, which rewards trivial, monocluster
clusterings. All in all, the picture is nearly the same as for the balance pa-
rameter. The more irregular curve of the error bar plots and the rightmost
spikes, like in B.10c, are not significantly interpretable and are caused by
the marked sparsity of pseudowords in those regions. Still, in terms of
TOP2 score we can claim that the greater the overlap, the more the basic
clustering concords with its hyperclustering, up to the extreme case of the
curvature-based clustering algorithm, where there is small to no differ-
ence. We look for the reason of this again in the more blurred structure of
pseudowords with similar components, for which clusterings tend to be
coarser and therefore the hyperclustering does not alter the pre-existing
situation too much.
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Figure B.7: Scores (y-axis) for the gangplank clustering as a scatter plot
with respect to the relative overlap x of the pseudowords (x-axis) on the
similarity-based ego-network data set. The basic clustering is in blue, the

hyperclustering in red.
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Figure B.8: Scores (y-axis) for the gangplank clustering as error bars
with respect to the relative overlap x of the pseudowords (x-axis) on the
similarity-based ego-network data set.
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Figure B.9: Scores (y-axis) for the curvature-based clustering as a scatter
plot with respect to the relative overlap «x of the pseudowords (x-axis) on
the co-occurrence-based ego-network data set. The basic clustering is in
blue, the hyperclustering in red.



1.0 T T T T

0.8 R

0.6 ]

0.2 ]

00 L L L L
0.0 0.2 0.4 0.6 0.8 1.0

(a) BCubed F-score

1.0 T T T T

0.6 1

0.4} 1

0.0 0.2 0.4 0.6 0.8 1.0

1.0 T T T T

0.8} 1

0.4

0.2}

0.0 0.2 0.4 0.6 0.8 1.0
(c) ToP2 score
Figure B.10: Scores (y-axis) for the curvature-based clustering as error bars

with respect to the relative overlap x of the pseudowords (x-axis) on the
co-occurrence-based ego-network data set.
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Questa storia é iniziata una nebbiosa e gelida alba di gennaio di quattro anni fa fra le
risaie di Vercelli. Oppure, ancora prima in una piccola aula in via Festa del Perdono a
un esame di glottologia. I due catalizzatori del mio dottorato sono stati il professor G.
Ferrari (ho ancora il libro...) e la professoressa L. Biondi, che devo ringraziare di cuore
per la loro gentilezza e disponibilita, e per aver fatto iniziare il ping pong che mi ha fatto
capitare in Bicocca.

Un ringraziamento speciale va innanzitutto alla professoressa E. Messina che mi ha
accolto nel suo laboratorio. Presto la quiete meditativa del minp 2 ha lasciato il posto
ai compagni d’avventura. Grazie a Macca per tutte le dritte e i pranzi puntuali, e grazie
alle ragazze, Debora/Méhcoa e Pikaks1/Kouxonn (sorry, in the end it was a futile battle
against IXIEX to display devanagari correctly) per avermi sopportato cosi eroicamente,
specie nelle concitate fasi finali (e anche in trasferta a Lisbona). A questo punto, sono di-
sposto a chiudere un occhio su qualche cartolina mancante! E come avrei potuto farcela
senza le strigliate e la guida della Betta, che ci ha tenuti tutti in riga? La riuscita del mio
dottorato la devo in buona parte a lei.

Sul versante germanico, voglio esprimere la mia gratitudine all’ex capitale del Gran-
ducato d’Assia per avermi accolto cosi bene in un altro gelido giorno di gennaio. Rin-
grazio tutto il gruppo dell’tt, Dr. Alexander, Benjamin, Dr. Bonaventura (e il kebab del
giovedi), Eugen (und die wichtigen Kuchenpausen), Gerold, Dr. Martin, Steffen, Sarah,
Seid. E un grazie sentito al professor C. Biemann, l’altra pietra angolare di questo dot-
torato. E infine un pensiero anche ai giocatori di Magic del Paladin’s Place, ai Lilien e
all’atmosfera surreale della primavera tedesca.

Ma non si vive di sola universita! Visto che nelle altre tesi non ho messo nessun ringra-
ziamento, qui devo recuperare. Un grazie disordinato, enorme e multiforme va a tutti
gli amici e le amiche: gli svizzeri, i nerd, i matematici, gli erasmi, i norvegesi, i giocatori,
perché no i trekker georgiani, e chi piti ne ha piti ne metta, chi vedo di piti e chi vedo
di meno, a cui ho provato mille volte a spiegare cosa stessi combinando fra ennellepi e
vuessei, ma non so mica se ¢ stato pit1 facile che con le proiezioni di superfici algebriche.

E poi dovro anche ringraziare quei due li che mi sono stati sempre, ma proprio sempre
accanto, in tutti i momenti, tristi e divertenti. Le parole non bastano, quindi la smetto
subito.

E infine...

HaHmaa ryifIsr raaT TyyaaixaHngaa 6aspiaanaal by spTHUI 4yTyyH XOTO/, TAaHMJIIIC-
Haac XOMIII Y 3yPX3HJ MUHb OpIICOOp O6aitHa.

E ora, avanti!



