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Abstract

Evolution plays a key role in cancer as the result of the accumulation of genetic

alterations, which provide selective advantages to a tumor cell, allowing resistance to

anti-cancer drugs. Unfortunately, however, the identification of the driver mutations

and thus the mechanisms underlying anti-cancer drug resistance (ACDR) still remains

a challenge. We previously demonstrated that lentiviral vectors (LVs), when properly

modified, might integrate near specific genes, alter their expression and induce cancer

or ACDR in vivo and in vitro [1, 2, 3]. The analysis of vector-cellular genomic junctions

in tumor or ACDR cells allowed identifying causative genes of HER2+ breast cancer

cell line using a statistical approach defined Common Insertion Sites (CISs) that

highlight genomic regions targeted at significantly higher frequency than expected by

a random distribution [4, 5, 6]. The reconstruction of cumulative cancer progression

from CIS genes has not been yet addressed and may produce causative gene networks.

The aim of this project is studying anti-cancer drug resistance from exclusive and

co-occurring genes using cumulative cancer progression from cell line CIS genes and

investigating the relation between them.

Bioinformatics tools aimed at inferring cancer progression models, in terms of selective

advantage relation among relevant genomic alteration from cross-sectional data (Next

Generation Sequencing platforms), would allow identifying specific combinations of

targeted drugs to overcome the occurrence of resistance. In a new context of vector

Integration Sites (ISs), I developed an integrated bioinformatics workflow composed of:

(i) an updated and more accurate version of VISPA (Vector Integration Site Parallel

Analysis) [7], a pipeline for automated IS identification and annotation based on a

distributed environment with a simple web based interface; (ii) identification of the

CISs with a sliding window approach developed in [8, 9, 10]; (iii) a new statistical

tool, CAncer PRogression Inference (CAPRI) - [11, 12], to infer selective advantage

relations among various mutational events in cancer cell genomes, mostly in relation

with drug-resistance. The model is based on probabilistic causation and is able to

reconstruct cancer progression Direct Acyclic Graphs (DAGs), involving the CIS genes.

With the use of GeneMANIA1 [13] and Enrichr2 [14, 15], I studied the protein-protein

interaction, Gene Ontology and Pathway relations between selected genes, collecting

and visualizing results in gene networks.

By applying my new method to the published IS dataset from the two cell lines,

I was able to generate progression models involving relevant genes (confirming that

these are not mutually exclusive genes, by Mutex [16]), which are consistent with

previously validated results, confirming the role of PIK3CA-ERBB2 genes in ACDR.

Unfortunately, one of the two cell line has a low quality samples. For this reason,

1http://www.genemania.org
2http://amp.pharm.mssm.edu/Enrichr
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CAPRI was not able to generate the progression DAG. I generated the progression

DAG for the other cell line, BT474, pre-treatment and post-treatment with Lapatinib

respectively. The following step is to investigate the relations between genes, produced

by the model, trying to find some useful new interactions and confirmations for ACDR

studies (i.e. SUMO1-ERBB2-PIK3CA-CSMD3). New insertional mutagenesis data

from lung cancer cell lines aimed to induce ACDR in vivo and in vitro are ongoing

and will allow to validate and/or identify novel cancer progression models, as well as

possible combinatorial therapies.



Preface

In this work I will try to give my contribution to science that I love, to which I have

devoted the last years of my life and that surely will continue to do in the near future.

When I think to this I always remind of the beauty and depth of what Newton said,

talking about his life in relation to nature.

”I don’t know what I may appear to the world, but to myself I seem to have

been only a boy playing on the sea-shore, and diverting myself in now and

then finding a smoother pebble or a prettier shell than ordinary, whilst the

great ocean of truth lay all undiscovered before me.” Isaac Newton

In the era of clinical genomics and personalized medicine, Genetics and Molecular

Biology are becoming the keys for understanding the mechanisms of many of the

human diseases, like cancer and genetic diseases.

Genetics... Wikipedia

”Genetics is the study of genes, genetic variation and heredity in living

organisms. It is generally considered a field of biology, but it intersects

frequently with many of the life sciences and is strongly linked with the

study of information systems.”

Molecular Biology... William Astbury in Nature 1961

”...not so much a technique as an approach, an approach from the viewpoint

of the so-called basic sciences with the leading idea of searching below the

large-scale manifestations of classical biology for the corresponding molecu-

lar plan. It is concerned particularly with the forms of biological molecules

and [...] is predominantly three-dimensional and structural which does not

mean, however, that it is merely a refinement of morphology. It must at

the same time inquire into genesis and function.”

I am an engineer, a computer scientist, but the last years I have learned also ge-

netics and molecular biology, useful to produce a comprehensive framework, described
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in this thesis, to investigate some aspects related to breast cancer. Given my back-

ground, I think that my support to genetic and clinical research will be useful to build

new solutions in Bioinformatics, with new methods, algorithms and tools.
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Chapter 1

Introduction

Cancer is a group of diseases involving abnormal cell growth with the potential to

invade or spread to other parts of the body. Many treatment options for cancer

exist. The primary ones include surgery, chemotherapy and radiation therapy. Which

treatments are used depends on the type, location and grade of the cancer as well

as the patient’s health and preferences. Surgery is the primary method of treatment

for most cancers and may play a role in prolongation of survival. It is typically an

important part of definitive diagnosis and staging of tumors, as biopsies are usually

required. In localized cancer, surgery typically attempts to remove the entire mass

along with, in certain cases, the lymph nodes in the area. For some types of cancer this

is sufficient to eliminate the cancer. Radiation Therapy involves the use of ionizing

radiation in an attempt to either cure or improve symptoms. It works by damaging

the DNA of cancerous tissue, killing it. Chemotherapy is the treatment of cancer with

one or more cytotoxic anti-neoplastic drugs (chemotherapeutic agents) as part of a

standardized regimen. While surgery and radiotherapy are the primary treatment

used for local and non-metastatic cancers, anti-cancer drugs (chemotherapy, hormone

and biological therapies) are the choice currently used in metastatic cancers.

Cancer is a disease of evolution [34, 35, 36, 37], see Figure 1.1. Its initiation and

progression is caused by dynamic somatic alterations to the genome manifested as

point mutations, structural alterations, DNA methylation and histone modification

changes [38, 39]. A cell, through mutations, acquires the ability to ignore anti-growth

signals from the body, this cell may thrive and divide, and its progeny may eventually

dominate part of the tumor. This clonal expansion can be seen as a discrete state of

the cancer’s progression, marked by the acquisition of a set of genetic events. Cancer

progression can then be thought of as a sequence of these discrete steps, where the

tumor acquires certain distinct properties at each state. Resistance to chemotherapy

and molecularly targeted therapies is one of the major issues now in cancer research.

The mechanisms of resistance share many features, such as alterations in the drug

target, activation of survival pathways and ineffective induction of cell death [40].
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Figure 1.1: The founding clone in the primary tumor in AML1 contained somatic
mutations that are all recurrent in AML and probably relevant for pathogenesis; one
subclone within the founding clone evolved to become the dominant clone at relapse
by acquiring additional mutations, including recurrent mutations [17]. This plot can

be created with FishPlot R package [18].

1.1 Gene Therapy: Insertional Mutagenesis

A lot of strategies have been devised in order to identify the culprits of drug resis-

tance [41, 42] including association between the genomic mutation landscape and the

sensitivity/resistance profiles of clinical cases, in vivo and in vitro induction of sponta-

neous resistance upon chronic drug administration/exposure. The main disadvantages

of these strategies are the difficulty to distinguish between driver and passenger mu-

tations on a subset of known genes [43].

Gene therapy [44, 45] is the therapeutic delivery of genetic material into patient’s

cells (Figure 1.21) to treat disease. The first attempt, an unsuccessful one, at gene

therapy (as well as the first case of medical transfer of foreign genes into humans

not counting organ transplantation) was performed by Martin Cline on 10 July 1980

[46]. Cline claimed that one of the genes in his patients was active six months later,

though he never published this data or had it verified and even if he is correct, it’s

unlikely it produced any significant beneficial effects treating β-Thalassemia. After

extensive research on animals throughout the 1980s and a 1989 bacterial gene tagging

trial on humans, the first gene therapy widely accepted as a success was demon-

strated in a trial that started on 14 September 1990, when Ashanthi DeSilva was

treated for ADA-SCID [47]. Here at SR-Tiget, we treat several pathologies, such as

Metachromatic Leukodystrophy (MLD) [19, 48], Wiskott Aldrich Syndrome (WAS)

[49], Mucopolysaccharidosis type 1 (MPS1) [50], β-Thalassemia [51, 52]. To delivery

1http://www.yourgenome.org/facts/what-is-gene-therapy
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the therapeutic material we use generally Lentiviral Vectors (LV) that are based on

HIV virus, but rendered harmless. Integration into host genome, the distinctive fea-

ture of retroviral vectors, should be considered as a double-edged sword when it comes

to gene therapy [53]. Genomic integration ensures the stability of transgene (material

that has been transferred naturally, or by any of a number of genetic engineering tech-

niques from one organism to another) and persistent transgene expression in daughter

cells following genome replication and cell division, but its randomness results in the

risk of insertional mutagenesis by potentially disrupting tumor suppressor genes or

activating oncogenes [54].

Figure 1.2: How gene therapy works: the therapeutic lentiviral vector inserts the
new gene into a cell. If the treatment is successful, the new gene will make a

functional protein to treat a disease.

Insertional mutagenesis refers to mutation of an organism produced by the in-

sertion of additional DNA material into the organism’s preexisting DNA [55]. This



28 1. Introduction

process leads to the deregulation of genes in the neighborhood of the insertion sites

and causes a perturbation of the cell phenotype, that can result into the rise of can-

cer. On the other hand, insertional mutagenesis is a forward genetic approach that

has been used for the functional identification of novel genes involved in the pathogen-

esis of human cancers [1]. The use of LVs (contrary to Retroviral Vectors, γ-RV) and

toxicity studies have allowed to obtain vectors now much safer and therefore able to

be engineered perfectly for both behaviors (to treat a single-gene disease or to induce

cancer). Thus is now possible to induce insertional mutagenesis in vitro, to study

some interesting paths of cancer related diseases, like anti-cancer drug resistance.

1.2 Retrieving Vector Integration Sites

Analyzing the integration profile [6] of lentiviral vectors (Integration Sites, IS) is crucial

in determining their potential genotoxic effects and also important for mutagenesis

screenings. These IS act as molecular tags, enabling the detection of lentiviral vectors

insertion through methods such as linear amplification-mediated (LAM)-PCR [56].

Sequence reads that contain the IS must be mapped to the human genome. For this

reason we should have a custom pipeline, compliant with the new big data standard

and simple to use, also for non computer scientists.

1.3 Cancer Progression Models

The identification of highly targeted genome areas allow us to identify the driver

resistance genes. With these, to investigate in more detail the biology and function,

we want to try to reconstruct the clonal progression over time. This technique can be

implemented with many algorithms, which allow us to create relationships between

genes and display the network obtained in terms of graphs, but will be discussed

later in the thesis. The generation of the progression graph will be very helpful to

begin a study of enrichment on the relationships between genes, to confirm the results

obtained and to open new areas for consideration [57].

1.4 Computational Requirements

Right now (at SR-Tiget) we have a lot of data available, that it is not only related

to cancer, notable, both the management that the analysis of this huge amount of

FASTQ generated by Illumina HiSeq sequencing platforms, are becoming increasingly

complex and costly. We are now in the big data era, datasets are growing rapidly, for

this reason we are now scaling to Cluster architectures and design or optimize each

software/tool to have the best performances in terms of time and space.
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Figure 1.3: The Big Data era, WordCloud.

1.5 Aim of this Work

Unfortunately, the identification of driver mutations and thus the mechanisms under-

lying anti-cancer drug resistance (ACDR) still remains a challenge. My laboratory

previously demonstrated that lentiviral vectors (LVs), when properly modified, might

integrate near specific genes, alter their expression and induce cancer or ACDR in

vivo and in vitro [1, 3]. The analysis of vector-cellular genomic junctions in tumor

or ACDR cells allowed identifying causative genes of HER2+ breast cancer cell line

using a statistical approach defined Common Insertion Sites (CISs) that highlight ge-

nomic regions targeted at significantly higher frequency than expected by a random

distribution. The reconstruction of cumulative cancer progression from CIS genes has

not been yet addressed and may produce causative gene networks. The aim of this

project is studying anti-cancer drug resistance from exclusive and co-occurring genes

using cumulative cancer progression from our cell line CIS genes and investigating the

relation between them.
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Chapter 2

State-of-the-Art

2.1 Integration Site Retrieval Tools

Integration site retrieval is the analytical process to identify unambiguous genomic

loci in the reference genome where the virus is integrated. In literature there are not

so many integration site retrieval pipelines. The major used are: Mavric [58], SeqMap

[59], QuickMap [60] and VISPA [7]. All available pipelines have been specifically

designed to analyze DNA fragments generated by linear-amplification (LAM) mediated

PCR [56], a technique used to retrieve and amplify DNA fragments containing the

junctions between the integrated proviral and the cellular genome, see Appendix A.

The DNA fragments generated with this method have length up to 3,000bp (base

pair) and contain the proviral long terminal repeat (LTR), the flanking genomic DNA

and a linker cassette (LC). LAM-PCR products are then reamplified by PCR with

fusion primers containing a specific 8-nucleotides sequence (barcode) that acts as a

tag to allow sample recognition after multiplexing. Barcoded fragments are then

purified, quantified, grouped into pools and sequenced with either Illumina MiSeq

or HiSeq platforms. As a result of this procedure, the sequencing reads contain not

only the genomic fragment needed for IS identification, but also viral and artificial

sequences that must be trimmed out before alignment to the reference genome. Finally,

sequencing reads must be processed by a bioinformatics pipeline that yields the final

list of annotated ISs.

Figure 2.1: General IS retrieval pipeline.

Usually, a generic IS pipeline is represented in Figure 2.1 and it is composed of
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few essential steps. First of all a good practice is to check the quality of Illumina

MiSeq or HiSeq FASTQ. Immediately after checking the quality of the run, if it is

good, the next step is to process data starting from the cut of the adapters, which

are for sequencing or amplification (i.e. LAM-PCR) processes. Awarded the cleaned

genomic sequence, it is necessary align it to the reference genome using an aligner

(such as BLAST, Bowtie, BWA, GEM), then to perform some filters to remove bad

quality mapped reads and the final annotation for gene names of integration sites.

As reported before, in [7] with the first version of our pipeline at SR-Tiget (VISPA),

we obtained good performances in terms of true positive rate (TPR) against the false

positive rate (FPR) at various threshold settings, compared to the other three tools.

We used a test set of sequences generated in silico to (1) reduce the computational

time, since most of the published IS tools are available with limit in file transfer and

with a priori unknown resource allocation, and (2) to compute statistical assessment,

since assessing false positive values and thus compute statistical measures requires

to have reference IS known a priori (same dataset of [7] for input test sequences in

FASTA file format).
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Figure 2.2: Evaluation of VISPA related to the other IS analysis tools. (A) Overall
strategy for reliability assessment, from the generation of the simulated dataset to

the final results.

We exploited the two most used NGS aligners, BWA [61] and GEM [62], as ref-

erence to verify the genomic mappability of the test sequences in the target genome,

thus allowing the classification of each sequence as a repetitive element or not. The

evidence of multiple best matches in the alignment is provided in the output SAM

file [63] by the tags AS (alignment score) and XS (suboptimal alignment score). The

classification of each sequence as repeat or unique position in the genome can be iden-

tified with two tags (XS/AS) that highlights the homology ratio between the best

alignments. By applying a threshold to the homology ratio, is possible to separate

the test sequences in two groups: IS to accept and IS to reject (because identified as

repeats).
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Genomic Distribution of Simulated Loci

Figure 2.3: Genomic distribution of the 283 randomly selected loci. Each point
represents a locus in the genome and its color refers one of the three categories

(“RMSK” for repeat marker group, random or observed).

To create a simulated dataset of IS we first downloaded the human reference

genome (hg19 GRCh371, from chromosome 1 to chromosome Y) from UCSC, and

the annotated database of repeat masker regions. Then we selected 283 genomic

locations (Figure 2.3) as surrogate of IS following three categories:

1. 120 IS randomly selected in the genome, exploiting MS excel in the range of each

chromosome length obtaining a comparable number of loci for each chromosome

(between 4 and 5 loci for each chromosome)

2. 132 IS randomly selected within the repeat masker annotation dataset: we de-

cided to include IS derived by an annotation database of low complexity and

repeats regions to add regions with potentially multiple matches in the genome.

3. 31 IS randomly selected from a patient of our MLD clinical study [19].

1UCSC, http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips
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Figure 2.4: Density plot of the sequence lengths for the test dataset.

For each IS, we extracted from the reference genome the first 3,000bp starting from

the locus to both orientations (forward and reverse) obtaining two reference sequences

that share the same IS, thus retrieving a set of 566 sequences. We then cut each of

the 566 sequences with the enzyme Tsp, that is one of the enzymes used in MLD and

WAS clinical trials and that recognizes the genomic sequence AATT, simulating what

we can observe in a real case IS dataset. We only discarded cut sequences shorter

than 20 bp (Figure 2.4 for sequence length distribution). We finally obtained a test

set composed by 253 IS with relative remaining sequences for a total amount of 455

sequences.

For example, in our dataset of 455 sequence, using a threshold for the homology

ratio of 90% (that means that two alignments are considered repeats if and only

if the ratio between the alternative alignment and the best alignment is >=0.9 or

90%), we retrieved a number of 449 IS to accept and 6 IS to rejects because repeats.

Thinking on a real dataset, and on the human genome (that is composed for an half of

repetitive elements [22]) we must discard, up to now, a relative huge part of the total

IS. This is one of the major issue of integration site analysis. A sequence is labeled

as discarded if it is not returned as mapped IS (or directly discarded); on the other

hand, each sequence, returned as IS, is tagged as matched if the chromosome and the

genomic position are correct (with a tolerance in the position of +/-2bp), otherwise

it is classified mismatched/wrong. To evaluate the performances of all the four tools,



2. State-of-the-Art 35

labeling:

• True positive values (TP) are all sequences returned by a tool as IS that we

labeled as IS

• False positive values (FP) are all returned IS that we labeled as repeats and

all mismatched IS

• False negative values (FN) are all returned repeats that we labeled as IS

• True negative values (TN) are all returned repeats (discarded sequences)

that we classified as repeats

Given the previous definitions and P as the group of positives and N the group of

negatives, it is possible to define:

• True Positive Rate (TPR) or Sensitivity or Recall:

TPR =
TP

P
=

TP

(TP + FN)
(2.1)

• Specificity (SPC) or True Negative Rate:

SPC =
TN

N
=

TN

(FP + TN)
(2.2)

• False Positive Rate (FPR):

FPR =
FP

N
=

FP

(FP + TN)
= 1− SPC (2.3)

• Positive Predictive Value (PPV) or Precision:

PPV =
TP

(TP + FP )
(2.4)

The Receiver Operating Characteristic (ROC), or ROC curve, is a graphical plot

that illustrates the performance of a binary classifier system as its discrimination

threshold (homology) is varied.

Since TPR is equivalent to sensitivity and FPR is equal to 1− specificity, the ROC

graph is sometimes called the sensitivity vs (1 − specificity) plot. Each prediction

result or instance of a confusion matrix represents one point in the ROC space.
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Specificity (SPC)

Homology (%) VISPA Mavric SeqMap QuickMap

20 0.37 0.222 0.889 0.148

30 0.37 0.222 0.889 0.148

40 0.37 0.222 0.889 0.148

50 0.37 0.222 0.889 0.148

60 0.625 0.313 0.875 0.25

70 0.667 0.417 0.833 0.25

80 0.889 0.556 0.778 0

90 1 0.833 0.667 0

100 1 1 0.6 0

Table 2.1: Specificity data for all IS tested tools.

Sensitivity (TPR)

Homology (%) VISPA Mavric SeqMap QuickMap

20 0.946 0.785 0.682 0.956

30 0.946 0.785 0.682 0.956

40 0.946 0.785 0.682 0.956

50 0.946 0.785 0.682 0.956

60 0.948 0.788 0.667 0.957

70 0.944 0.79 0.661 0.955

80 0.944 0.791 0.657 0.948

90 0.94 0.793 0.653 0.949

100 0.938 0.793 0.651 0.949

Table 2.2: Sensitivity data for all IS tested tools.

False Positive Rate (FPR) or 1-SPC

Homology (%) VISPA Mavric SeqMap QuickMap

20 0.63 0.778 0.111 0.852

30 0.63 0.778 0.111 0.852

40 0.63 0.778 0.111 0.852

50 0.63 0.778 0.111 0.852

60 0.375 0.678 0.125 0.75

70 0.333 0.583 0.167 0.75

80 0.111 0.444 0.222 1

90 0 0.167 0.333 1

100 0 0 0.4 1

Table 2.3: False Positive Rate (FPR) or 1-SPC data for all IS tested tools.
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ROC analysis provides tools to select possibly optimal models and to discard sub-

optimal ones independently from (and prior to specifying) the cost context or the

class distribution. ROC analysis is related in a direct and natural way to cost/benefit

analysis of diagnostic decision making. In this case, to select the best pipeline, using

the Equations 2.1, 2.2, 2.3 and 2.4, we obtain the Tables 2.1, 2.2 and 2.3 useful to plot

the ROC curve.

Figure 2.5: ROC curve of VISPA, Mavric, SeqMap and QuickMap.

Pipeline CPU time User Interface Paired-End Repeats

Mavric 30m web no no

SeqMap 30m web no no

QuickMap 1h web no no

VISPA 30m web/bash no no

Table 2.4: General Overview of the tested pipelines: test done on simulated reads
described before.

We also analyzed all mismatches in relation to the reference genomic position for

a distance >2bp (Figure 2.6). Since VISPA did not report any mismatches, we only

reported here results from MAVRIC, SeqMap and QuickMap. All tests demonstrated

that VISPA is highly reliable and that the internal parameters chosen are well balanced

to obtain precise results with high levels of sensitivity and accuracy. Moreover in Table
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2.4 we summarized also the performance results in time and the possibility to handle

paired-end2 and repeats data.

Mismatch Comparison among IS Tools Mismatches Analysis

Figure 2.6: Mismatch Analysis: (A) Box-plot of the distances in terms of genomic
position (bp) between each mismatched IS and the reference IS, for each tool
(Mavric, SeqMap and QuickMap). (B) Binning the genomic distances of the

mismatched IS in intervals, each point accounts for the sum of IS for each bin,
comparing the three tools.

2.1.1 A New Improved Version of VISPA

Compared with the other pipelines, VISPA has good performance in terms of precision

(correctly identified integrations) and recall (number of integrations obtained), but at

present lacks of important features.

The standard of Illumina sequencing platforms (MiSeq and HiSeq) now includes

the use of paired-end mode. This technique requires that the DNA strand is sequenced

from both directions, generating two FASTQ, one called R1 (5’-3’) and the other R2

(3’-5’). Aligners, such as BWA, already provide the paired-end alignment mode, which

uses both sequences to greatly improve the final alignment. This feature is therefore

essential, to refine the accuracy and to be especially compatible with the current

standard.

In terms of performance, however, taking more and more present that we are going

through the era of the Big Data, VISPA, like other tools, needs a lot of improvements

to make it much faster. Especially the management of HiSeq runs (which on aver-

age generate compressed FASTQ of ∼60GB, and about 180M of reads) is virtually

impossible, both for the space occupied by temporary files, both from the time of

calculation.
2Paired-end sequencing allows users to sequence both ends of a fragment and generate high-quality,

alignable sequence data. Paired-end sequencing facilitates detection of genomic rearrangements and
repetitive sequence elements, as well as gene fusions and novel transcripts. Taken from Illumina.
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The Graphical User Interface (GUI) in Galaxy, although it allows interfacing

VISPA with many NGS tool, is very slow and not very intuitive. It would be ap-

propriate to make the GUI much more intuitive and easy to use, especially by non-IT

users.

Figure 2.7: Bar-plot of the relative percentages of aligned reads for each patient in
[19]: the input sequences are the trimmed reads, whereas the resulting subsets from

the alignment step are LV, U, A, and N.

As already highlighted in many studies and common problem of all alignment

bioinformatics pipelines, the management of repetitive elements in the genome still

has not been resolved, often not addressed. Virtually every tool, at the time, does

nothing and discard reads that map in these areas, since no aligner can handle them.

As it is possible to see in Figure 2.7 (created using VISPA [7]), about 20% of total

reads map on repeated areas. If from this percentage are removed those that map into

the genome of the vector, the percentage refers to the human genome is about 30%, a

very high percentage.

2.2 Cancer Progression Modeling

The inference of progression graphs from cross-sectional data is a difficult task. Dis-

ease progression models have been mainly applied to HIV and cancer data, with the

possibility to extend the methodology to other evolutionary diseases. In a comprehen-

sive review [21], the methods are grouped in: (1) Linear Path Models, (2) Oncogenetic
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Tree Models, (3) Distance-based Trees, (4) Conjunctive Bayesian Networks and Di-

rected Acyclic Graphs. Apart from the performance and accuracy of the different

approaches, the essential point in this case is whether the method actually accurately

describes the progression of event. Also the other essential aspect is the data type of

input that the method can receive at its input, which should be as general as possible,

adaptable to the greatest number of possible studies. On this aspect now I want to

compare, very briefly, these different algorithms. There are also some theories and

models on the formation of cancer (carcinogenesis) [64, 65, 66, 67, 68] which is not

subject of this work. In this field, taking account on mutation only data, there is a

model [69], derived by [70], that is able to couple between evolution and ecology to

study tumour dynamics.

2.2.1 Linear Path Models

Figure 2.8: Taken from Howard Hughes Medical Institute. Model of Colorectal
Cancer, described in [20]

By analyzing the occurrence of genetic alterations in colorectal cancer, Vogelstein

[20] found a sequence of alterations that paralleled the clinical progression of colorectal

adenomas and carcinomas, Figure 2.8. The same algorithm is too reductive to the

great heterogeneity of human tumors, both for the difficulty in finding individual

subsequent mutations, both for the direct causality between the one and the other,

without taking into account the non-sequential nature of most of the human mutations.

For this reason, attempts to find similar progression models in other types of cancer

have not been successful yet, indicating that such linear path models are exceptions

rather than the rule in cancer biology.

2.2.2 Oncogenetic Tree Models

Based on the idea of linear path models, the oncogenetic tree models [71] do no longer

use only one path of genetic events to characterize disease progression but severals

ones, Figure 2.9. Multiple pathways can be represented in a tree, that means pathways

can be parallel to each other or branch out and therefore capture dependent and
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independent events. A rooted tree is defined by T = (V,E, r), where V is the set of

nodes (genetic events), E ⊆ V × V is the set of directed edges (relationships between

events) and r ∈ V is the root of the tree (starting point of the disease). Directed edges

are represented as the tuple (a, b), with starting point a and end b. In a rooted tree,

there is a directed path from r to every node v ∈ V . The conditional probability of

observing the child event (S ⊆ V ) given that the parent event has already occurred

is given as an edge weight which is associated with the corresponding directed edge,

which represents the dependency between parent and child.

Figure 2.9: Taken from [21], Example of an oncogenetic tree model with n = 6 events

Oncogenetic tree models are not as restrictive as path models are. They allow

for multiple pathways and can therefore model disease progression in a more flexible

way. But some patterns of events are still missing. If such an observation is made

nevertheless, the tree model is useless and wrong. Furthermore, the probability of

occurrence only depends on the direct predecessor, no other events have influence and

only one parent is allowed.

2.2.3 Distance-Based Tree Models

Besides oncogenetic trees, [71] also suggests a tree model based on distances between

events to model disease progression, Figure 2.10. The underlying structure is still

a tree, but genetic events are only represented by leaf-nodes or leaves, which are

nodes without children. The nodes in between root and leaves are inner nodes and

represent arbitrary unknown events which cannot be observed. A distanced based tree

is specified by T = (V,E, r, α, L) where in addition to an oncogenetic tree L ⊆ V is a
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nonempty set of leaves, i.e. the set of genetic events. The advantage of this approach

is that every combination of events has a positive probability. One does not have sets

of events with probability 0. This model can therefore give information about the

relationship between every two arbitrary events and not only for certain ones. Having

events only in leaf-nodes does not give an order of occurrence for events as oncogenetic

trees do. But one can convert the conditional probabilities to distances by calculating

their negative logarithm. Summing up these values alongside the path to a certain

leaf results in the distance between root and event. By comparing these distances one

can distinguish between early and late events, because small distances refer to early

occurrence.

Figure 2.10: Taken from [21], Example of a distance based tree model with n = 3
events (left: conditional probabilities, right: distances)

In contrast to oncogenetic tree models, distance based trees do not require the oc-

currence of an event to be able to observe another one. That means, every combination

of events has a positive probability and one does not need to cope with observations

that do not fit the model. Instead there are inner nodes which represent unknown and

non-observable events. One might question whether such events really exist.

2.2.4 Conjunctive Bayesian Networks and Directed Acyclic Graphs

In comparison to path models, tree models are able to model parallel or branching

pathways. However, one restriction is that they do not allow for multiple parents. To

model not only branchings but also conjunctions of edges respectively pathways one

needs the broader class of Directed Acyclic Graphs (DAGs). Here, a node can have

more than one parent-node. In [72] the authors use Conjunctive Bayesian Networks
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(CBNs) that are a generalization of oncogenetic tree models, Figure 2.11. in which

branchings of edges conjunctions are allowed. Thus, there is one node per event, no

cycles and again the occurrence of the child-event depends on the occurrence of the

parents. In this case multiple parents are allowed, that means every parent-event

has to be observed before the child-event can occur. A CBN consists of a finite set

of binary random variables, which stand for the genetic events, and a partial order,

which gives their dependencies. Instead in [73] the authors also use directed acyclic

graphs to model disease progression.

Figure 2.11: Taken from [21], example of a conjunctive bayesian network with n = 4
events
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Chapter 3

VISPA2: Faster and Extended

Version of Vector Integration

Site Parallel Analysis Tool

Source: https://bitbucket.org/andreacalabria/isatk

Mercurial Repository:

hg clone -b ’v3’ https://bitbucket.org/andreacalabria/isatk

As described in Chapter 2.1 mapping the cellular genomic portion to the reference

genome allows to accurately locate IS on the genome, that is a crucial point for each

analysis in gene therapy. For this reason I developed VISPA2, improving our old

version of the pipeline and introducing a huge list of rising:

• Illumina paired-end (PE) reads support.

• Compliance with the new standard of Sonicated Linker-Mediated-PCR (SLiM),

Appendix A.

• Quality filter on each pair of paired-end reads.

• Parallel computation of each Single VISPA2 Step (GNU Parallel):

cat file | parallel --pipe ‘‘cat >{#}; my program {#}; rm {#}".

• Automated generation of final annotated IS matrix.

• Command line version and GUI version (in collaboration with CNR-ITB).

Thanks to all the improvements listed above, VISPA2 was able to obtain excellent

performance both in terms of disk space used and memory. Even the usability of the

tool has been cured, because in addition to the classic bash version, a Graphical User

Interface (GUI) has been developed, allowing non bioinformatics users to use VISPA2

without a hitch. At the end of the chapter also will be presented the precision and

recall tests, on the same simulated data sets used to test the previous version, [7].
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3.1 Bioinformatics Pipeline

The bioinformatics pipeline, Figure 3.1, consists of several sequential steps that lead

from raw sequencing reads to the annotated ISs.

Figure 3.1: VISPA2, workflow. In bold custom programs.

The first step checks (FASTQC ) and filters out the bad quality reads (FASTQ QF );

adapters and control sequences are removed (CONTROL GENOME REMOVAL,

TRIMMING); sequencing data are then parsed (DEMUX ) to identify barcodes and

perform demultiplexing (that is, write a separate FASTQ file for each barcode); the

LTR and LC sequences are subsequently removed from each read to isolate genomic

fragments (LTR-LC TRIMMING); in the next step, reads are mapped to the refer-

ence genome (ALIGNMENT ) and several filters are applied to avoid unambiguous

alignment (ALN FILTERS ); after that, all ISs are imported in a database structure

for easy access and storage (IMPORT ISS ). In a subsequent post-processing step,

each IS is associated to the LAM-PCR sample from which it was originally derived,

allowing its assignment to a source (for example, peripheral blood, bone marrow and

so on), cell type (for example, CD34, T cell, B cell, and so on), and time point af-

ter treatment. An example of launch is in Appendix C.1.1, the main program is

isatk/pipeline/illumina/VISPA2.IlluminaMiSeq.pipeline.sh that is linked as vispa2

command. In the following sections all main steps will be explored in detail.

3.1.1 Quality Controls and Filters

First of all VISPA2 checks quality of raw sequence data coming from high throughput

sequencing with FastQC [74], to provide graphical data reports. To filter out reads

with low quality there are a huge list of third-party software but I decided to create a

custom quality filter specific for our kind of fragments (from LAM or SLiM -PCR), the

bash script (fastq qf, isatk/script/fastq qf.sh, see Appendix C.1.2). It is interesting

to see how the two possible filters can be applied to the pair of FASTQs. For the

classical LAM-PCR (Appendix A) fragments, the filter consists in a window of 80bp
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(it contains the 12bp random barcodes, 8bp of barcodes for demultiplexing of samples,

32bp of LTR and a small portion of the genomic content), Figure 3.2. This windows

is created with a parallel trimming tool (to improve performances), trimmomatic

[75] and fastq quality filter a part of FASTX-toolkit [76], used with a set of

parameters (-q 28 -p 95 -Q 33) then the program extracts only the high quality reads

with fqextract pureheader (isatk/script/fqextract.pureheader.py).

Figure 3.2: Quality filter for LAM-PCR read

Figure 3.3: Quality filter for SLiM-PCR read

Instead, for the new SLiM-PCR (Appendix A), the filter is also extended for the

random barcode (TAG sequence, 12bp), but, for better quality purposes it is checked

on R2 pair, Figure 3.3. The process is the same described before to create the 80bp

window with a window of 12bp for the TAGs (random barcodes at the beginning of

R2, or at the end of R1) filtered with fastq quality filter (-q 28 -p 100 -Q 33).

Indeed a list for high quality reads for 80bp of R1 and 12 bp of R2 is created but then

the two lists are merged in one (with comm command in bash) and at the end only the

good quality reads are maintained in the final FASTQs.

To test the goodness of the quality filter I run the new custom quality filter program

on two different NGS sequencing runs (one with bad quality and the other with good

quality, checked with FastQC), Figures 3.4, 3.5.
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Figure 3.4: Bad run: FastQC on R1 for MLD6 pool ET06

Figure 3.5: Good run: FastQC on R1 for MLD6 pool ET06v2
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Comparison of MLD-ET6 runs

Pool Unique ISs SeqCount

MLD06-ET6 33,203 4,941,050

MLD06-ET6v2 5,704 12,221,508

MLD06-ET6v2-HQ 4,774 10,479,042

Table 3.1: MLD06-ET6 runs comparison. Bad pool (MLD06ET6), correct pool
(MLD06ET6v2) and filtered correct pool with the custom quality filter program.

In Table 3.1 I reported the results of three cases. The bad pool (MLD06ET6) has an

huge number of unique integration sites and low sequence count (SC, number of reads

in the same locus), a typical issue for a contaminated (i.e. from LAM, Sequencing,

between samples) run. A second pool (MLD06ET6v2), was rebuilt and sequenced. In

this scenario I used the quality filter program to test the parameters.

Figure 3.6: Venn diagram of the three runs to see the IS in common.

The ET6 pool, resulted with poor sequencing quality, presents a large number of

additional ISs that have not been found then in the resequenced pool (ET6v2). This

clearly suggests that the majority of these ISs are false positives (only the 7.7% of

ISs are in common with the ET6v2). Instead, comparing ET6v2 and ET6v-HQ (with
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high sequencing quality, and the subset of passing quality filter reads respectively) the

improvement in applying the filter is evident (ET6v2: for the 1092 not in common

with ET6v2-HQ 95% of these are with SC<3 and 711 are in repeats, ET6v2-HQ:

for the 211 not in common with ET6v2 80% of these are with SC<3 and 147 are in

repeats). The vast majority of the total ISs of ET6v2 and ET6v2-HQ are in common,

correctly.

3.1.2 Adapter Removal and Trimming

Once the reads are filtered by quality the next step is to remove the reads mapping in

PhiX and the first 12bp of random barcodes (not the TAGs).

PhiX is a reliable, adapter-ligated library used as a control for Illumina sequencing

runs. It is also a quality control for cluster generation, sequencing, and alignment,

and a calibration control for cross-talk matrix generation, phasing, and pre-phasing.

Roughly for each run the amount of PhiX on the total is 30%. VISPA2 removes it

aligning all the reads on PhiX genome with BWA-MEM (BWA with maximum exact

match), producing a list of the reads that map on that genome and discard them using

fqextract pureheader. Generally the 30% of the total reads are removed for PhiX.

The first 12bp of R1 must be removed from the read (instead the first 12bp of R2

are the TAG and must be removed from the read but conserved in a FASTA file for

the quantification, [77] and Appendix A). To improve the performances, in term of

time, I select trimmomatic (as described before) to use parallelism in our computers

(Appendix B.1).

3.1.3 Demultiplexing and Association File

Several samples are often sequenced at the same time, this technique is called multi-

plexing. To enable the redistribution of output reads into separate groups (demulti-

plexing), samples are tagged with individual barcode sequences.

I demultiplex out samples with fastq-multx, a part of the EA-Utils suite [78]. It

identifies barcodes and uses them to demultiplex sequence data, producing a separate

FASTQ file for each barcode. To demultiplex sequencing data, I developed a simple

exact string pattern matching: the input is a list of barcode sequences (taken from

the association file) that will be searched for at the beginning of each read (reads that

do not contain any known tag are discarded). To avoid biases due to the possible

misclassification of similar sequences, no mismatches are tolerated in this phase. All

information regarding samples are written in the association file (AF, a tab-separated

file). This file is created automatically from adLIMS [79], that I previously developed

for our laboratory. The AF contains all the following fields, reported in Table 3.2.
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The first two columns contain the barcodes list, for demultiplexing, the other

fields all the metadata for IS analysis. Indeed is reported the tissue of the sample,

a sample ID, the time point of the harvest, the LAM-ID for backlinks identification

of the sample, a unique complete containing all required fields for MySQL non-blind

identification of a specific sample, the cell marker, the enzyme used for the LAM

reaction (if SLiM, this filed is unused) and finally the type of vector used.

3.1.5 LTR/LC Trimming and Internal Control Band Removal

After the demultiplexing procedure and before the alignment to the reference genome

it is necessary to remove the LTR and the LC from each sample, in R1 and in R2. The

recognition and removal of the LTR and LC is done with flexbar [80], that enables

accurate recognition, sorting and trimming of sequence tags with maximal flexibility,

based on exact overlap sequence alignment. The software supports data formats from

all current sequencing platforms, including paired-end reads. It maintains read pair-

ings and processes separate barcode reads with multi-threading support. After that

each pair of read is aligned with BWA-MEM [61] to the lentiviral vector genome. The

reads that perfectly mapping on the vector genome are discarded from the FASTQ.

Generally the 30% of the total reads are removed from internal control band.

3.1.6 Alignment to the Reference Genome

To find the exact location where the vector is integrated into the genome, sequencing

reads must be mapped to a reference genome. I chose BWA-MEM because its good

performances compared to BWA-ALN and Bowtie2 [81, 82].

VISPA2 gives to BWA-MEM the two pairs (R1 and R2) and then samtools [63],

processed in the following way (for details see Appendix C.1.3):

1. BWA-MEM align R1 and R2 to the reference genome fixing the minimum seed

length to 18 and an alignment score filter to 151.

2. Samtools then filters out the reads that are unmapped, not primary alignment

and marked as supplementary alignment.

Repetitive Element Annotation

Transposable elements (TEs; or “jumping genes”) are discrete pieces of DNA that

can move within (and sometimes between) genomes during the evolution [22, 83, 84].

Approximately 45% of the human genome can currently be recognized as being derived

from transposable elements, the majority of which are non-long terminal repeat (LTR)

retrotransposons, such as LINE-1 (L1), Alu and SVA elements [22].

1Phred Quality Score: Q is defined as a property which is logarithmically related to the base-
calling error probabilities P . Q = −10 log10 P .
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Figure 3.7: Repetitive families in human genome, [22].

L1 elements are > 500, 000 different copies in the human genome as a result of their

continued mobilization activity over the past 150 Million Years (Myr). L1 elements

constitute ∼ 17% of the human genome, which makes them the most successful TEs

in our genome.

Alu elements are > 1 million different copies in the human genome as a result

of their continued mobilization activity over the past ∼ 65 Myr. This makes Alu

elements the most successful TEs in our genome in terms of copy number.

SVA elements have been active throughout the ∼ 25 Myr of hominoid evolution,

and there are now ∼ 3, 000 copies in the human genome. A typical full-length SVA

element is ∼ 2 kb long and is composed of a hexamer repeat region, an Alu-like region,

a region consisting of a variable number of tandem repeats.

Other non-LTR Retrotransposons are in addition to the L1, Alu and SVA

elements, which are currently active, there are families of old, inactive non-LTR retro-

transposons that comprise ∼ 6% of the human genome. Although they are far less

numerous than L1 and Alu elements, these elements provide a rich molecular ’fossil

record’ that testifies to the long relationship between TEs and the our genome.

Current bioinformatics pipelines for IS detection (Chapter 2.1) can efficiently an-

alyze hundreds of millions of reads containing junctions between the proviral and the

host genome, but considering only sequences that align to unique genomic positions,

which can be then easily merged to a single IS. For those IS landing in repetitive

genomic elements, which cannot be precisely mapped, it is difficult to understand if

they represent a single or multiple IS. For this reason, sequencing reads mapped to

multiple genomic regions are commonly discarded from the analyses. However, in

human Hematopoietic Stem Cells (HSCs) Lentiviral Vector IS within repeats amount
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to about 35% of the entire IS dataset. Therefore, the loss of such significant portion

of the dataset, and thus the corresponding clones, has a major impact on the clonal

abundance estimations, reducing the power of clonal tracking analyses and limiting the

ability to detect potentially malignant clones caused by IS landing in repeats within or

near oncogenes and reducing the reliability of IS studies. As represented in Figure 3.1,

the repeats analysis takes place after the reference genome alignment, taking account

of the discarded reads from BWA-MEM (generally the 30% of the total reads). The

reads that after the alignment to the reference genome have mapping quality (MQ)

less or equal to 5 (68.377%) pass to RepeatMasker [85], a program that screens DNA

sequences for interspersed repeats and low complexity DNA sequences. This value is

calculated as optimal value from [86] as inflection point (second derivative equal to

0, because of twice differentiable function) of the accuracy curve in worst case (short

reads):

f ′′(x) =
d2f

dx2
= 0 (3.1)

The process is the following (using bamtools [87]; see Appendix C.1.4 for details):

1. Identification of low mapping quality reads after alignment (MQ ≤ 5).

2. Filtering out R2 from BAM.

3. FASTA conversion from BAM file.

4. Execution of RepeatMasker on FASTA (engine=rmblast), skipping bacterial in-

sertion element check, multiprocessing option and quick search.

5. Filtering ISs (to remove false positives) with Smith-Waterman Algorithm (thresh-

old of 250, see RepeatMasker manual2 [88].

6. Creation of a BED file from .out file, generated by RepeatMasker.

7. Importing of ISs into the relational MySQL database from BED file.

3.1.7 Filtering

The filtering part is composed of three different steps: (1) filtering by mate sequences,

(2) filtering by CIGAR string and (3) filtering by alignment quality.

Filter aligned reads by mate pair properties

Paired-end reads alignment requires that mate reads are properly paired, means that

R1 and R2 aligned in opposite orientation and with the last portion of the reads close

to each other. In case of short sequenced DNA fragments, paired-end reads may also

2http://www.animalgenome.org/bioinfo/resources/manuals/RepeatMasker.html
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overlap of a sequence portion or fully overlapping, otherwise, when sequenced longer

DNA fragments, is present a the distance between the two reads called insert size.

In integration site studies, where the LTR is placed in one of the pair (such as R1

for our experimental design) and the LC is in the other pair, once aligned both pairs

I analyzed paired results to grant:

1. Reads are properly paired.

2. If the DNA fragment is short enough to be sequenced identically from both pairs,

the alignment of the genomic portion must be proper, following these rules:

(a) R2 alignment must not start within the alignment of R1.

(b) R2 must not end over R1 alignment start.

(c) If R1 alignment ends at R2 alignment start, then R2 end must be in R1

start.

(d) If R2 and R1 are fully overlapping then I also process the alignment score

to identify potential issues in the sequence quality (suspicious divergence

between the alignment scores of the pairs, that is: a full overlap of the

aligned reads means that also the alignment quality should be similar, given

the high quality of the reads).

If a read is not satisfying one or more of the rules, then the read is discarded.

Since no existing tools are able to analyze mate properties with our custom details,

I designed a new program to implement the rules. The software, filter by mate

(isatk/script/filter by mate.py), has been developed in Python and leverages on PySAM

[63] package to process BAM files. To speed-up performances, I developed the paral-

lelization step using the chromosome selection such that each chromosome (or region)

can be processed as an independent process.

Filter aligned reads by CIGAR and MD flags

In many genomics projects, aligned reads could be inspected by their properties

embedded by the aligner in the optional flags (using the SAM/BAM file format,

https://github.com/samtools/hts-specs). BWA [61], in the latest used algorithm,

maximum exact match (MEM), fills standard mandatory flag fields, such as the

CIGAR, and extra fields useful to better understand the alignment quality, such as

the fields MD (mismatching positions/bases), AS (alignment score) and XS (secondary

alignment score). The MD field is a detailed description of the mismatches reported

in the CIGAR flag such that is possible to combine and use both flags to better

characterize the mismatches and base changes (also insertions and deletions).
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In vector integration site projects, the identification of an IS is critical and requires

important rules to include only good alignments and avoid potential false positive IS.

To achieve this goal, I envisage to divide in the following steps the analysis:

1. Analyze the beginning of the alignment and remove reads with mismatches (in-

sertions, deletions or mismatches, or soft clipped alignments) within the first

3 bp. IS with any mismatches in the first 3 bp may arise from PCR artifacts

or wrong trimming of the LTR portion. For this reason, given that the reso-

lution of our IS identification is within a range of ±3bp, I defined a maximum

accepted threshold of 3 bp at the beginning of the read as perfect alignment.

Over this interval, I let the read alignment be processed by the subsequent filter

by alignment scores.

2. Remove aligned reads if the alignment score of the best hit is highly similar the

secondary alignment score. If a read returns two alignment matches with high

scores, it means that the read cannot univocally be placed in the genome and

the IS could be landed within a low complexity region or a repetitive element.

In this case, a potential mis-assignment of the read to the correct position may

result in a false positive and thus bias the biological analyses. To overcome this

issue, I decided to apply a filter based on the alignment scores by comparing the

best hit score with the secondary alignment score. The comparison produces a

ratio that is evaluated by a parameter, here set up at 0.4: if the best alignment

score is not better than the secondary score by 0.4, then the read is discarded.

The value 0.4 comes from specific tests manually curated on experimental reads

from murine samples landing in repetitive regions in proximity of the Lrrc4c

gene.

Since no existing tools are able to process CIGAR flag nor comparing two or more

tags from BAM files, I designed a new software and implemented the rules in Python.

The program, called filter by cigar bam (isatk/script/filter by cigar bam.py), ex-

ploits the PySAM [63] library to read input BAM files (creating the index if missing),

split in processes based on chromosomes (I decided to parallelize the code using chro-

mosomes or input regions), and process reads by flags.

In the implementation of the first rule, the tool reads the CIGAR and the orien-

tation (that drives the CIGAR reading orientation), and acquires the MD flag to best

identify mismatches of indels. The tool discards the read if:

• At the beginning of the alignment, in the CIGAR flag, is found the presence of

a soft clip (marked with an S).

• At the first bases of the alignment directly attached to the IS I identify by

the MD flag any mismatch or indel. I developed this option as parameter

(--minStartingMatches), and set up in default at 3.
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I developed the tool also to process this only first step and left optional the sec-

ond filter by flagging the option --compareSubOptimal. I also designed the program

with the flexibility to process both single end or paired end aligned reads, and with

custom experimental design such that each laboratory may choose to sequence the

LTR to R1 or R2 or both pairs. Once enabled the suboptimal filter, the program

processes the alignments by reading the AS and XS flags. In case of using a dif-

ferent aligner than BWA, users may change the name of the flags with the proper

option: --ASlikeTag and --XSlikeTag. For each alignment read, I compute the for-

mula delta = (1 − XS/AS) ∗ 100 and compare this value with the input parameter

--suboptimalThreshold such that if delta is higher than the threshold (that is the

best hit score is higher enough than the secondary alignment), then the read is kept,

otherwise removed. By default, the threshold is set up to 40.

As an example: given AS = 100, XS = 80, delta = (1−XS/AS) ∗ 100 = 20; then

delta >= suboptimalThreshold? In this case no, thus remove this read.

Filter by Alignment Quality

After MATE and CIGAR filtering the last step is to filter out reads with low mapping

quality. This filter must be put after the two custom filters, otherwise the reads in pair

should be removed before. The following properties must be satisfied for the output

reads (Appendix C.1.5 for details):

• Alignments mapped.

• Alignments with mates mapped.

• Alignments sequenced as paired.

• Alignments that passed PE resolution.

• Alignments marked as primary.

• Keep reads with mapping quality >=12.

Then a BED file with only R2 reads is created (for shear site quantification is funda-

mental to retrieve the length of the fragment, Chapter A, [89]), thus this output file

will be used to extract the product end (that will be the R2 start). For the filtering

on R2 the requirements are (Appendix C.1.5 for details):

• Alignments marked as second mate.

• Not alignments marked as first mate.

• Alignments mapped.

• Alignments with mates mapped.
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• Alignments sequenced as paired.

• Alignments that passed PE resolution.

• Alignments marked as primary.

Then the BAM file is converted in BED file with bedtools bamtobed.

3.1.8 IS Import in MySQL Database and Stats Summary

After filtering and final BAM/BED generation, all reads containing ISs are imported

into MySQL databases, in two different tables (Appendixes B.4.1, B.4.2). Using

MySQL tables permits an easy link to IS data for other custom analyses and soft-

wares, compared to the use of simple plain text files only.

Stats Summary

Figure 3.8: MLD Statistics: each dot is a sample; (a) barcode demultiplexing; (b)
sequence count; (c) unique ISs per replicate (3 replicates for each sample are not

merged); (d) unique ISs merged in replicates.
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All statistics of the sequencing run are in stats summary vispa2 table (Appendix

B.4.3). These statistics are useful for sequencing run diagnostics, like sequencing

depth quantification and counts like sequence count per sample and the number of

unique ISs. For example, Figure 3.8, shows balanced sequencing depth for MLD02

and MLD03 samples, while MLD01 received an higher sequencing depth (more de-

multiplexed reads, SC and unique ISs). Moreover, statistics are useful to highlight

some bad samples or outliers.

3.1.9 IS Merging and Collisions

State-of-the-art techniques for integration sites retrieval, both wet and bioinformatics,

may introduce some artifacts that bias actual methods for integration sites identifi-

cation in terms of precision in genomic location and of potential overestimation of

integration sites. For this reason, I applied a static tolerance window, [90, 91], on the

genomic position of the IS (that is, the starting point of the alignment): all reads that

are in the same window are merged into a single locus, represented by the mode in

the window. We developed a tool (Appendix C.1.6) in Python downloadable here:

https://bitbucket.org/tigetbioinformatics/integration analysis

The tool also has a more accurate algorithm to merge ISs, that is called density.

The density-based approach we designed starts acquiring all mapped reads, accounting

starting bases with their reads pileup count, then splits targeted regions into sub-

regions (ensembles) of neighboring reads, defining for such ensembles an histogram

of covered bases with heights corresponding to the count of piled-up reads. Once all

ensembles have been detected, our procedure identifies ISs using a 3 steps model upon

each one: (1) Exploration, detecting all peaks of the ensemble, (2) Evaluation, scoring

all bases surrounding each peak, and (3) Decision, identifying ISs among local peaks

and their surrounding bases.

1. The Exploration step incrementally detects local peaks and, for each one, it

considers the first n nearest-neighbors bases as related to the same biological

process underlying the peak.

2. The Evaluation process then assigns a score to such bases with respect of the

peak; n parameter is given as input, typically is 8 (up to 4 base far from each

side of the peak as noted in literature [90, 91]). The score is derived from a

comparison between a theoretical statistical curve (e.g. Gaussian process) and

the curve derived from the histogram of the peak and its surroundings, thus
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Figure 3.9: Example matrix file of breast cancer Project, Chapter 6.
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generating during the incremental process consecutive empirical distributions

with potential multiple overlapping (“conflict area” whose covered bases are

ranked with respect to different peaks).

3. The Decision step will determine the most likely attribution, assigning each cov-

ered bases of the ensemble univocally to a specific peak, using score comparisons;

this procedure starts from the lowest peak till the highest: this way, if a lower

peak was ranked as belonging to an higher one, the algorithm is able to assign

the former to the latter, along with the bases just assigned to it; at the end, all

the final groups of covered bases will collapse into unique ISs, located according

to peak placement and characterized by an overall read count.

Whichever method is used the program also can annotate the contamination be-

tween independent projects (always IS based). The final IS matrix will contain, indeed,

in addition to the number of ISs per sample, at each genomic location, the number of

ISs in common with other datasets. This step is very useful in post-analysis phase for

contamination removal. An example of a matrix file is reported in Figure 3.9.

3.1.10 IS Annotation

The final step is the annotation of ISs (the matrix), where each site is associated to

nearby genomic features such as genes, miRNAs, and so on. I developed an annotation

tool, annotate matrix, Appendix C.1.7. This software, developed in Bash, takes in

input only two files: the IS matrix and the GTF file containing all annotation data

(also chrM coordinates and chrR for repeat annotation).

For each IS, the program finds the closest feature(s) among those listed in the

annotation file and, for each feature, outputs the following information: the (chromo-

some, position) tuple that identifies the IS; the name and strand of the feature as they

appear in the IS matrix file; the feature’s starting and ending position; the distance of

the IS from the feature’s transcription start site (TSS); the relative position of the IS

with respect to the feature (upstream, downstream or in-gene); the integration per-

centage for in-gene integrations (from 0% when the IS coincides with the TSS to 100%

when the IS lies at the opposite end of the feature). At the end a new tab-separated

file equal to the IS matrix plus the columns of the ’GeneName’ and ’GeneStrand’ is

written.

3.2 Web Interface

Source: http://155.253.6.236/vispa2.0P

In collaboration with the University of Milano-Bicocca and the CNR-ITB, we devel-

oped a web interface to make easier the usage of the VISPA2 pipeline.
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Figure 3.10: VISPA2 GUI: main page.
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This web interface is open to all users and there is no login requirement. It has

been developed using Java and Javascript technologies. In the first page an “how

to” is present and the user can upload the FASTQ sequences (gzip or not) and an

association file, beside an Input Barcode LTR File and a Input Barcode LC File,

Figure 3.10. Other options are available in order to customize the computation. A

full working example is uploaded by default. Then, after a page in which the user

can confirm all the parameters the computation starts. Since the computation can

take several minutes, a result page is displayed, showing the progresses of the pipeline,

until results are available. The link can be bookmarked, to access it in a second time.

The results page is composed of several panels, according to the datasets described in

the association file, plus a page representing the IS matrix. This matrix has a column

for each dataset and a row for each insertion. Each cell is filled according to the

abundance of that IS in the specific dataset (a cell with zero means that the IS is not

present in that dataset).

Figure 3.11: VISPA2 GUI: results, IS matrix, from breast cancer post-treatment,
Chapter 6.
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Concerning the pages presenting the results for each dataset, many different statis-

tics are reported. In the upper part of the page, an histogram of the IS distribution

in the genome is reported. In the bottom part of the page some tabs are present,

showing different graphs and representation which describe the IS distribution in a

more detailed way. The first tab represents a table showing the specific chromosome

locus and strand of each ISs and reporting the nearest gene, Figure 3.11. The second

tab shows a circos plot of the IS density in the genome, Figure 3.12. The third tab

a gene cloud of the gene more targeted by insertions, Figure 3.13. The fourth tab

shows the Gene Ontology (GO) enrichment of the target genes, considering the three

branches of GO (Molecular Function, Biological Process and Cellular Components).

Beside the p-values achieved in the enrichment analysis, a diagram is reported of the

most representative GO, bi-clustered according to their semantic similarity. The last

tab present the statistics concerning the dataset, as computed by samstats [92].

Figure 3.12: VISPA2 GUI: results, circos plot. The inner circle represents the IS
density and the outer the IS read count, from breast cancer post-treatment, Chapter

6.
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Figure 3.13: VISPA2 GUI: results, word cloud. The most targeted genes (not CISs
necessarily), from breast cancer post-treatment, Chapter 6.

3.3 Performances

3.3.1 Precision and Recall

Precision and recall3 assessments are proposed here in accordance with the information

retrieval context. Given that the items are the simulated ISs (the same dataset tested

for VISPA and the other tools in Chapter 2.1), I accounted as relevant items all the

ones that the approach under evaluation was able to collapse in ISs showing a perfect

match with simulation input, in terms of location and total sequence count.

Thus I defined precision as the ratio between the number of ISs in perfect match

with input and the total number of ISs detected, measure that provides scores as closer

to 1 as the outcomes become more precise; please note that by definition is precision

ε[0, 1]. Conversely, I defined recall as the ratio between the same numerator of the

precision and the total number of generated ISs: here to note that recall ε[0, 1] and a

score closer to 1 highlights a higher retrieval power (number of ISs retrieved).

Precision and recall assessments in single IS simulations (Figure 3.15) show a neat

3https://en.wikipedia.org/wiki/Precision and recall
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superiority of VISPA2 compared to VISPA, MAVRIC and SEQMAP.

Figure 3.14: Precision and Recall definition, Wikipedia.

Only QuickMap is comparable, indeed it is the only tool that supports a simple

repeats analysis, based on statistical analysis and not with RepeatMasker, that is more

robust and reliable. The problem of QuickMap, as I said before, is that only support

FASTA, single pair reads and uses BLAST (that is so slow) to map the reads. In

conclusion the repetitive element support is the key feature to reach optimal results.

If I zoom the section of plot regarding VISPA2 in Figure 3.16 it is possible to

see in detail the difference between the two best tools. VISPA2 has 1.0/0.97 and

QuickMap 0.97/0.98 for precision/recall, at the end VISPA2 can be considered as

best bioinformatics pipeline for IS detection.

3.3.2 Space Required and Time Consuming

Taking in consideration the following setup on Gemini workstation (Appendix B.1), I

compared VISPA (comparable to the other tools) versus VISPA2 in Table 3.3.

Considering the space and the time required for the two type of runs, VISPA2

obtains a 6X and 7X improvements respectively, as in Figure 3.17.
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Figure 3.15: Precision and Recall of VISPA2 versus all other pipelines.

Figure 3.16: Precision and Recall of VISPA2 versus all other pipelines, a zoom.
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VISPA2 Performances - Setup

Pipeline NGS Technology Total Number of Reads

VISPA MiSeq 14,583,450**

VISPA HiSeq 186,300,301*

VISPA2 MiSeq 14,583,450**

VISPA2 HiSeq 186,300,301*

Table 3.3: VISPA2 Performances compared to VISPA. I considered two types of
Illumina sequencing: **MiSeq and *HiSeq.

Figure 3.17: Performances compared to VISPA (green) and VISPA2 (blue), time and
space. Shorter bar is better.

VISPA2 takes less than one day to process an Illumina HiSeq and only 3 hours for a

Illumina MiSeq run. It has also great results in terms of number of IS retrieved and

precision of mapping also in repetitive elements. All these achievements bring VISPA2

as top IS retrieval pipeline for gene therapy studies.

3.4 SR-Tiget IS Pipelines, Final Overview

As it is possible to see in Figure 3.18, VISPA [7] is now obsolete, because the lack

of paired-end and repeats support. The standard now is becoming VISPA2 and γ-

TRIS [93]. VISPA2 is installed in all our servers and is freely available also for non-

bioinformatician people because is very fast and simple. γ-TRIS, with its genome-free
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and graph-based approach, is more robust but the slowness (because of the cluster-

ing/graph algorithms) and difficulty to use (no GUI) are crucial for its future use.

Figure 3.18: History of SR-Tiget IS Pipelines. The old VISPA [7] supports 454 and
Illumina single-end reads, has the Galaxy/Bash interface but lacks of paired-end

support, is very slow because BLAST [23] and does not support repetitive elements.
γ-TRIS has only the Bash version (developed in C++), is graph-based, supports

repetitive elements, is genome free (because of the clustering algorithms in consensus
sequences), supports the Illumina paired-end technology, but is terribly slow and
CPU-intensive. The new VISPA2 combine the easiness of the old VISPA and the

power of γ-TRIS. It has the Bash/GUI interface, supports the paired-end
sequencing, is very fast and supports repetitive elements.
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Chapter 4

VISPA2 Post Analysis:

ISAnalytics and Common

Insertion Site Identification

Figure 4.1: Steps after VISPA2.

After the genomic annotation of the matrix file, we usually process matrixes to target

and answer specific biological questions, from vector toxicity to clonal dynamics over

time. Given the broader scenario of different analyses that can be done and imple-

mented or extended, the software requirements need a tool with high flexibility for

data manipulation and processing, and with flexible data structures to easily add and

extend analyses. This software needs to take in input the data matrix of ISs and iden-

tifies from the column labels the semantic content of the columns. Then, it requires to

have implemented a set of independent analyses (as activities and data manipulation

functions) that can be composed as a workflow and finally to generate the resulting

output (plots or data). No available tools satisfy these requirements and thus we need

to design and develop a new analytical framework. I designed a new tool for data

exploration, mining and analysis, enabling not only the analyses of IS datasets but

also generalized to other potential applications. My approach is realized by importing

the input dataset as matrix/object and designing all the different analyses as inde-

pendent functions that acquire the same input and produce the output with the same
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input data structure so that a workflow can be easily customized as set of consecutive

operations.

Once generate the matrix file, the first main steps are summarized in Figure 4.1.

As described before, the create matrix and annotate matrix programs create

the final IS matrix (tab-separated matrix with ISs with their sequence count between

samples) with annotation informations (nearest gene and gene strand for each IS)

ready to be processed for molecular analysis. For this last step I decided to create an

R [94] package, compliant with Bioconductor 3.1 [95], that can be the starting point

for all common analysis in gene therapy studies.

4.1 Integration Site Analytics (ISAnalytics)

ISAnaytics can do the following:

• Collision detection (versus other gene therapy studies collected before)

• Collision removal and assignment (if it is possible)

• Clonal abundance by sample or by group of samples

• IS sharing between different samples

• IS binning

• Output generation for detection of Common Insertion Site

4.1.1 Motivation

Although I have always adopted the direct programming and often the choice of

Python and Bash for data generation, I have decided (with Davide Rambaldi, the

co-author of this side project), at this stage of post-analysis, to use R to analyze and,

in particular Bioconductor (allowing publication of the package as a methodology pa-

per), to ensure that other groups were using this package and can combine this step

with the final one that I will describe in the following chapters. In addition will be

very easy and useful to use two R suitable structure to handle genomic coordinates

and samples/projects, which are GenomicRanges (GRanges) [96] and SummarizedEx-

periment [97].

4.1.2 Data Loader

To correctly install and import ISAnalytics package some other packages are needed:

S4Vectors, stats4, BiocGenerics, parallel, BiocGenerics, IRanges, GenomicRanges,

GenomeInfoDb, reshape2, ggplot2, plyr, scales, gridExtra. As Reported in Figure
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4.2 an input matrix (IS matrix, annotated with or without collision columns, as in

Figure 3.9) needs to be converted in a dataframe before to use it. For the conver-

sion step, for simplicity, each empty entry is converted in ’*’, genomic coordinates

(chr, integration locus, strand, gene name and gene strand) are also merged creating

a label like GENE NAME(STRAND) CHR:INTEGRATION LOCUS(STRAND). Se-

quence counts 0 are also converted to ’NA’ and the sample IDs are split in three parts

(if the sample ID is BM CD34 01, sample is BM, condition is CD34 and time is 01).

If there are some summary columns they will be treated apart.

Once the IS matrix is produced by VISPA2 it can be imported in R and therefore

in ISAnalytics in Excel format using ISDataSetFromXlxs (but JAVA libraries for this

function are relatively slow) or with ISDataSetFromISA (that imports the classic tab-

separated IS matrix file, as described until now). In every case the matrix file is

converted in a R data-frame and then to an ISDataSet, Figure 4.3.

Figure 4.2: ISAnalytics Data Loader: SummarizedEperiment integration.
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Figure 4.3: ISAnalytics Data Loader: tab-separated and excel import into
dataframes.

Figure 4.4: GRanges of an isset.
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GRanges objects are very useful, indeed they permit nice operations between genomic

ranges:

• Retrieve all ISs on chromosome one:

isset <- ISDataSetFromISA(file);

region <- GRanges(

seqnames = Rle("chr1"),

ranges = IRanges(start=1, end=15784278),

strandRle = ("+")

)

p = subsetByOverlaps(isset,region)

• Retrieve all ISs around one gene:

y <- subset(isset,mcols(isset)$closest\_gene == "OR11L1")

In addition metadata can be used to retrieve all samples in a particular condition,

for example all samples at condition “BM”, output in Figure 4.5:

isset[,colData(isset)$condition == "BM"]

Figure 4.5: Conditions between samples.

Bioconductor defines the SummarizedExperiment class. The computed summaries

for the ranges are compiled into a rectangular array whose rows correspond to the

ranges and whose columns correspond to the different samples (Figure 4.6). For a

typical experiment (or project), there can be millions of ranges and from a handful

to hundreds of samples [98]. Like, for example, Excel, SummarizedExperiment (se)

offers the possible switch between different experiments with exptData(se) and, very

interesting, a switch between sheets (assays, for instance different type of analysis in

the same experiment) with assays(se). With colData(se) I can access the samples
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and with rowData(se) access to the GRanges (because the use of them instead rowID).

At the end the combination of GRanges and SummarizedExperiment is very powerful

and well-fitting for our studies.

Figure 4.6: ISAnalytics Structure: SummarizedExperiment and GRanges.

4.1.3 Collision Detection and Removal

The term ’collision’ is used to identify the presence of identical ISs in independent sam-

ples. In our experimental settings, the integration of vector in the very same genomic

position in different cells is a very low probability event. Thus, the detection of iden-

tical ISs in independent samples likely derives from contamination, which may occur

at different stages of wet laboratory procedures (sample purification, DNA extraction,

LAM-PCRs and NGS). Although our working pipeline is designed to minimize the

occurrence of inter-samples contacts, the high-throughput analysis of ISs intrinsically

carries a certain degree of background contamination. Identification of the extent of

contamination between samples is crucial also because the retrieval of the same IS

in different samples obtained from the same patient is used in subsequent steps to

make inference on biological properties of the vector-marked hematopoietic cells (i.e.

multi-lineage potential and sustained clonogenic activity). Thus, we must be able to

distinguish the actual occurrence of the same IS in different samples (from the same
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patient) from a contamination/collision.

We created an advanced collision detection process in [19, 49] with MLD-WAS

patients’ samples. Given C the set of collisions, each c in C has a sequence count

s. For each patient, we independently analyzed all collisions: given P the set of

patients, p the current patient and p(n) all other patients (P-p), for each patient

p, for collision c in Cp we computed the ratio s|cp/s|cp(n), called collision relative

frequency (ColRF ). We then analyzed the distribution of all ColRF in C to look for

flexes and peaks.

Figure 4.7: Density plot of inter-patients collisions MLD-WAS.

Collisions scenarios between 2 patients

IS Pt A Pt B A/B Log10 A/B

1 1 100 0.01 -2.0

2 20 100 0.20 -0.7

3 100 100 1.00 0.00

4 150 100 1.50 0.18

5 250 100 2.10 0.40

6 1010 100 10.01 1.00

Table 4.1: Theoretical use case scenarios for collisions between two patients.

Positive peak at +2 means that all collisions of this area carry sequence counts 20

times higher in the analyzed patient compared to the others. On the other hand, the

collisions under peak at -2 have 20 times lower sequence counts in the same patient as

compared to the others. The peak at 0 indicates that all these collisions have identical
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sequence counts among patients. The table below shows theoretical use case scenarios

for two patients.

Applying these theoretical scenarios to our empirical ColRF curve, we interpreted

data as decision plot. Thus the chosen threshold to set for contamination identification

patient-based is 1, corresponding to 10 fold difference in linear scale.

Figure 4.8: Density plot of inter-patients collisions MLD-WAS. Decision Plot.

Collision scenarios between 2 patients

IS Pt
A

Pt
B

Ratio
A/B

Log10
A/B

Removed
from A

Removed
from B

Assigned
to A

Assigned
to B

1 1 100 0.01 -2.0 X X

2 20 100 0.20 -0.7 X X

3 100 100 1.00 0.00 X X

4 150 100 1.50 0.18 X X

5 250 100 2.10 0.40 X X

6 1010 100 10.01 1.00 X X

Table 4.2: Theoretical use case scenarios for collisions between two patients.

We obtained the results in Table 4.2, from Figure 4.8. In ISAnalytics I implemented

this strategy to remove the collisions between datasets, comparing indeed the fold

increase of an IS in all conditions/cell population against the maximum frequency

observed in other samples, describing the three possible outcomes previously said:

mFold =

∑j
i=1C

maxn
m=1(C)

(4.1)
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• mFold > 10x: Assigned to the current patient

• 1x < mFold < 10x: Removed from the current patient and NOT assigned

• mFold > −10x: Assigned to other patient

4.2 Frequency and Filtering of a IS

It is possible define the relative frequency of an IS, as follow:

F =
ci∑j
i=1 ci

(4.2)

where ci is the sequence count of the IS in that sample. Basically it is a normalization

of the sequence count of an IS in the relative sample (dividing it by the total sequence

count of the sample). In the collision column (Figure 3.9) we have the total sequence

count of the colliding dataset (or patients, in purple). Given that not all ISs are

represented (only intersection), the sum of the reads is taken from the column label

(T ):

F =
ci
T

(4.3)

Figure 4.9: SCFilter on MLD patient 1, distribution of IS.

In the case of Figure 3.9, the two frequency are (versus MLD/WAS patients, first

row):

F =
ci
T

=
80

118170028
= 0.00000067699062
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Sometime can be useful to remove all the IS with sequence count below a certain

threshold, for contamination removal purposes or to remove possible false positives.

In ISAnalytics the function scFilter on a certain isset does exactly this:

isset <- scFilter(isset, threshold=3)

assays(isset)

> List of length 2

> names(2): counts scfilter

producing another assay (sheet) with the IS matrix in which the sequence count 1 or

2 of the ISs is put to “NA”. In Figure 4.9 the vast majority of the ISs are with SC 1

or 2.

4.3 Clonal Abundance

The relative abundance of vector insertions in a target genome is important to un-

derstand the safety and the efficacy treatment of the gene therapy in patients. To

avoid Insertional Mutagenesis (mutagenesis of DNA by the insertion of one or more

bases) it is important to monitor the absence of clonal dominance in time, mostly

in malignant genes. IS abundance could be estimated from a sample of cells if only

the host genomic sites of retroviral insertions could be directly counted (Vector Copy

Number, VCN ∼ 1, number of vector copies infused in patient).

Figure 4.10: Clonal Dominance in β-Thalassaemia [24].
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Now the possible questions are:

• What is the relative abundance of a given IS compared with the total number

of reads observed in a set of conditions?

isset <- calcolateColAbundance(isset, tot.in.label = FALSE,

normalize.by.source=TRUE, output.assay = "abundance")

writeISA(isset,"abundance.bySample.tsv",assay = "abundance")

• What is the relative abundance of a given IS compared with the total number of

reads observed in a single sample? (IMPORTANT: to observe a clonal expansion

of a clone (cells that harbor the same IS, it is a cell population) in time, only

this calculation can be done correctly). This strategy is necessary to avoid biases

due to sub-sampling issues or sequencing depth of different samples.

isset <- calcolateColAbundance(isset, tot.in.label = FALSE,

normalize.by.source=FALSE, output.assay = "abundance")

writeISA(isset,"abundance.bySample.tsv",assay = "abundance")

The function calcolateColAbundance performs abundance computation in two

ways: answering to the first question with normalize.by.source=TRUE, to

the second with normalize.by.source=FALSE. The parameter tot.in.label

= FALSE set to calculate the total to divide each IS sequence count at each sam-

ple, instead to read it to the label. writeISA gives in input the experiment

and the assay to process then write the output as a CSV file (tab-separated or

comma-separated).

Once the abundance is calculated a way to represent it is with box-plots1, Figure

4.11.

Here the code:

pdf("abundanceBySample.bplot.ISA.pdf")

boxplotOutliers(mld01, assay="abundance", samples="^CD34")

dev.off()

4.3.1 IS Sharing

Another important analysis that can be done is the IS sharing between samples. Once

the abundance is calculated, it is possible to sort the IS by the most abundant and

samples, in a specific order, like this:
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Figure 4.11: MLD, Abundance Box-Plot of CD34, BM. ISAnalytics automatically
writes gene label if abundance is > 5%

# Collect cells

cd34_bm <- findLabels(isset, "^CD34_BM")

cd14_pb <- findLabels(isset, "^CD14_PB")

cd15_pb <- findLabels(isset, "^CD15_PB")

cd19_pb <- findLabels(isset, "^CD19_PB")

cd3_pb <- findLabels(isset, "^CD3_PB")

samples <- c(cd34_bm, cd14_pb, cd15_pb, cd19_pb, cd3_pb)

# HeatMap Clonality

isset.heatmap <- mld01[,samples]

isset.heatmap <- sortByColData(isset.heatmap)

isset.heatmap <- driverSelectionFilter(misset.heatmap, assay="purity",

threshold=5)

1It is in developing a new way to represent the abundance based on movie-chart plot (we call it
gene-chart), created by Zach Beane, http://xach.com/moviecharts/
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Figure 4.12: MLD, Clonality Heatmap between shared ISs. For each IS, colored cells
indicate retrieval at > 5%, with higher color intensity indicating higher percentage,
whereas gray cells indicate retrieval at low percentage (from 0.006% to < 5%). Lack
of color indicates that the integration was not retrieved at the indicated time point

and source. The targeted genes are indicated on right, samples on bottom.
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Figure 4.13: Tracking of ISs shared between multiple lineages with time in patient
MLD01. Each row represents a specific IS, with colored bars indicating retrieval

from the indicated cell lineage and time point after gene therapy (columns). The line
color varies with the degree of sharing among lineages (red, high level of sharing;

blue, low level of sharing; white, no integration retrieved). Only samples are
visualized, in bottom.
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pdf("clonality.heatmap.ISA.pdf")

heatmapDriver(isset.heatmap, assay="purity", title = "MLD01 Clonality",

force = TRUE)

dev.off()

In Figure 4.12 the results. We use a lentiviral vector to introduce a functional ARSA

gene into HSCs ex vivo and shows that reinfusion of the engineered HSCs prevents

and corrects disease manifestations (in MLD clinical trial, taken as one of the example

datasets [19]). To assess HSC gene marking in vivo, it is necessary to analyze the subset

of IS shared among three datasets representing progenitors and mature myeloid and

mature lymphoid cells in each patient. After stringent filtering to reduce the false

discovery rate due to the impurity of each cell fraction analyzed (using scFilter)

and the occurrence of collisions during IS processing, a fraction of ISs are consistently

shared among the three datasets of each patient, here the code and the heatmap,

Figure 4.13.

sharing_progenitor <- findLabels(isset, "^CD34_BM")

sharing_against <- c(cd14_pb, cd15_pb, cd19_pb, cd3_pb)

isset <- sharing(isset, with = sharing_progenitor, against = sharing_against,

assay="purity", output.assay = "sharing")

pdf("sharing.heatmap.ISA.pdf")

heatmapSharing(isset, cell.types = c("CD34", "CD14", "CD15", "CD19", "CD3"),

title = "MLD01 Sharing", force = TRUE)

dev.off()

To finalize this part, an example of ISAnalytics’ usage is reported in Appendix

C.2.1.

4.4 Common Insertion Sites

Vector integration frequency along the genome is not homogeneous. Dense clusters

of integrations contained in a relatively narrow genomic interval, known as Com-

mon Insertion Sites (CIS) have been used as an indicator of ongoing genetic selec-

tion and enrichment of cell clones harboring integrations that, by targeting specific

genes, have acquired a selective advantage in vivo. In hematopoietic cells from pa-

tients from the γ-Retroviral Vector (γ-RV) based clinical trials for X-SCID, CGD

and WAS, CIS were identified. Among all CIS identified, some, targeting cancer

genes such as LMO2, MECOM, PRDM16, CCND2 and SETBP1, were found in
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leukemic/dysplastic/dominant cell clones from patients’ blood. To investigate the

presence of CISs in our study we used:

1. A region-based approach based on sliding windows [8, 9, 10].

2. A method for CIS identification based on a new genome-wide Grubbs test for

outliers’ analysis [33].

3. A scan statistics approach to validate hotspot regions [99, 100].

The method 1 is implemented in R and compatible with ISAnalytics. The second

method, the Grubbs test, is manually curated and it is useful to remove the false

positives and outliers used in combination with the first. The last is the new one and

the developing is ongoing, up to now is not usable with our tools.

Figure 4.14: Common Insertion Sites: CISs are defined as regions of the genome that
are targeted by vector integrations in independent tumors with a frequency higher

than the one that is expected to occur by chance [25]. Also a new model,
graph-based, has been proposed in [26].

The algorithm developed in [9] is the starting point for CIS analysis. The quantifi-

cation measure of a CIS is expressed as CIS of Order that is defined as an n-tuple of

ISs such that the maximum distance between the elements is no greater than a fixed

bound dn, the size of the window used. The interesting part of this approach is the

possibility of modeling various vector distribution2 of the IS, like γ-RV (R function

2The term “distribution” is used to designate a distribution of the insertions which assumes that
insertions occur preferentially in the vicinity of the TSS (transcription start site, the location where
transcription starts at the 5’-end of a gene sequence), but are uniformly distributed in the remainder
of the genome
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Cisretro) or, like in our scenario, a lenti distribution (R function Cislenti). The

Monte Carlo simulation works with the functions Cislenti, Cisretro to give the

expected numbers and p-values of CISs and ISs involved in CIS based on a γ-RV or

lenti IS distribution:

1. Calculates p-values based on the simulated distribution of results.

2. Generates uniformly distributed IS locations.

3. Generates randomly distributed IS near the TSS.

4. Carries out the statistical analysis, compresses highly disconnected genomic re-

gions produced when discarding the interval of the TSS.

5. Counts the CISs

6. Carry out the simulations and count the CIS for each simulation run

Unfortunately, the comparison and the simulations of the IS profiles with known

distributions is computational intensive and can require a lot of time, in the case of a

high IS number. For this reason it is possible to avoid this step (Cislenti, Cisretro)

and calculate directly the CISs with the fixed sliding window, the function Cluster.

The input file (in each case) is minimal, a tab-separated file, with header of “chromo-

some” and “position”, then for each IS the relative chromosome (remember 23 instead

X and 24 instead 24 for human genome). Every R function takes in input the data,

the interval d for the window and also the RefSeq genomic coordinates3. The output

is the same tab-separated file with the two columns of results appended (“CIS Order”

and “Cluster”). The column “Cluster” indicates the window to which the IS belongs,

useful to remove false positives CISs, like integrations in the proximity of the end or

start of a new gene (if the CIS is in a narrow gene for example).

If the control distribution is unavailable, correction may be performed using the in-

tegration frequency of genomic region surrounding the CIS interval. However, the

different insertional platforms target the genome with different specificities. The dis-

tribution of integrations along the different chromosomal regions is very heterogeneous,

with scattered clusters of integrations concentrated within the entire length of specific

genes, or narrow regions outside or inside transcription units, or specific chromatin

marks. To correctly compare the integration frequency at a CIS interval in relation to

the surrounding intervals all these factors should be taken in account. To determine

whether a CIS gene within the region was a significant outlier compared to other genes

contained in the same region, it is possible to use the Grubbs test [33], with an available

online tool4. In order to provide reliable results the Grubbs test requires that at least

3http://hgdownload.cse.ucsc.edu/downloads.html
4http://www.graphpad.com/quickcalcs/Grubbs1.cfm
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7 values must be compared and the integration frequencies for all targeted genes in an

interval of 10Mb or more, depending on the number of targeted genes contained in the

interval. The Grubbs test for outliers requires that the analyzed values are normally

distributed. However frequency values may vary from 0 to infinite and thus it is not

normally distributed. Therefore, the negative logarithm base 2 transformation of the

values was required to pass the D’Agostino and Pearson normality test. This method

calculates the ratio Z of the normalized integration frequency for each targeted gene.

The ratio Z is obtained as the absolute value of the difference between the normalized

integration frequency of a given gene and the average of the frequencies of all genes

contained in the interval divided by the standard deviation:

Z =
|mean− value|
standard− dev

(4.4)

The ratio Z is then t-studentized (normalized to a t distribution) by the following

formula. N is the number of values (genes) analyzed:

T =

√
N(N − 2)Z2

(N − 1)2 −NZ2
(4.5)

The approximate p value is calculated for the t-student distribution. Genes tar-

geted at significantly higher or lower integration frequency would both considered

outliers. It will be necessary to verify if the integration frequency is higher or lower

than the average for the correct interpretation of the Z ratios and p values. The

assumption underlying these forward genetic screens is that insertion is essentially

a random process and that the occurrence of multiple integrations within a narrow

genomic region in independently derived tumors provides evidence of a selective ad-

vantage and positive selection of cells bearing these events. Indeed, driver mutations,

particularly those which happen earlier, are selected and clonally propagated. Con-

versely, passenger mutations should ideally be present only in a small number of cells.

Moreover, even if some passenger integrations may be over-represented in a specific

tumoral mass since they co-occurred early in the tumor progression, it is extremely

unlikely that the same will occur in independent tumors. Therefore, clustering of in-

sertions into CIS scores for a role in carcinogenesis of the genes encoded within that

region. An example of CIS retrieval and identification with R is in Appendix C.2.2.



Chapter 5

Cancer Progression Modeling

There are several competing approaches to modeling cancer progression [101], some

of which incorporate some observed effects as cancer hallmarks, heterogeneity in cell-

types, drug responses and resistance development and can be described as in Chapter

2.1. The approach described here try to understand initiation and progression of can-

cer in terms of “chronological” and “causal” relations among somatic alterations as

they occur in the genomes and manifest as point mutations, structural alterations,

DNA methylation and histone modification changes. A cell, through mutations, ac-

quires the ability to ignore anti-growth signals from the body, this cell may thrive

and divide, and its progeny may eventually dominate part of the tumor. This clonal

expansion can be seen as a discrete state of the cancer progression, marked by the

acquisition of a set of genetic events. Cancer progression can then be thought of as a

sequence of these discrete steps, where the tumor acquires certain distinct properties

at each state.

5.1 Introduction

5.1.1 New Usage of Causation

In [102] the authors introduced a novel theoretical framework for the reconstruction

of the causal topologies underlying cumulative progressive phenomena, based on the

probability raising (PR) notion of causation.

Definition 1 (Probabilistic Causation, [103]) For any two events c and e, occur-

ring respectively at times tc and te, under the mild assumptions that 0 < P(c),P(e) <

1, the event c causes the event e if it occurs before the effect and the cause raises the

probability of the effect, i.e.

tc < te and P(e | c) > P(e | c) . (5.1)
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The authors remark that they consider cross-sectional data where no information

about tc and te is available, so they are restricted to consider solely the probability

raising (pr) property, i.e. P(e | c) > P(e | c). Now some properties.

Proposition 1 (Dependency) Whenever the pr holds between two events a and b,

then the events are statistically dependent in a positive sense, i.e.

P(b | a) > P(b | a) ⇐⇒ P(a, b) > P(a)P(b) . (5.2)

Notice that the opposite implication holds as well: when the events a and b are

still dependent but in a negative sense, i.e. P(a, b) < P(a)P(b), the pr does not hold,

i.e. P(b | a) < P(b | a).

Should be good to to use the asymmetry of the pr to determine whether a pair

of events a and b satisfy a causation relation so to place a before b in the progression

tree but, unfortunately, the pr satisfies the following property.

Proposition 2 (Mutual PR) P(b | a) > P(b | a) ⇐⇒ P(a | b) > P(a | b).

That is, if a raises the probability of observing b, then b raises the probability of

observing a too. The pr is not symmetric, and the direction of probability raising

depends on the relative frequencies of the events. Authors make this asymmetry

precise in the following proposition.

Proposition 3 (Probability Raising and Temporal Priority) For any two events

a and b such that the probability raising P(a | b) > P(a | b) holds:

P(a) > P(b) ⇐⇒ P(b | a)

P(b | a)
>
P(a | b)
P(a | b)

. (5.3)

That is, given that the pr holds between two events, a raises the probability of b

more than b raises the probability of a, if and only if a is observed more frequently

than b. Notice that they use the ratio to assess the pr inequality. Given these results,

it is possible to define the following notion of causation.

Definition 2 They state that a causes b if a is a probability raiser of b, and it occurs

more frequently: P(b | a) > P(b | a) and P(a) > P(b).

Finally, they recall the conditions for the pr to be computable: every mutation a

should be observed with probability strictly 0 < P(a) < 1. Moreover, they need each

pair of mutations (a, b) to be distinguishable in terms of pr, that is P(a | b) < 1 or

P(b | a) < 1 similarly to the above condition. Any non-distinguishable pair of events

can be merged as a single composite event.
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Algorithm 1 Tree-alike reconstruction with shrinkage estimator

1: consider a set of genetic events G = {g1, . . . , gn} plus a special event �, added to
each sample of the dataset;

2: define a n× n matrix M where each entry contains the shrinkage estimator

mi→j = (1− λ) · P(j | i)− P(j | i)
P(j | i) + P(j | i)

+ λ · P(i, j)− P(i)P(j)

P(i, j) + P(i)P(j)

according to the observed probability of the events i and j;
3: [pr causation] define a tree T = (G ∪ {�}, E, �) where (i → j) ∈ E for i, j ∈ G if

and only if:

mi→j > 0 and mi→j > mj→i and ∀i′ ∈ G, mi,j > mi′,j .

4: [Correlation filter] define Gj = {gi ∈ G | P(i) > P(j)}, replace edge (i → j) ∈ E
with edge (� → j) if, for all gw ∈ Gj , it holds

1

1 + P(j)
>

P(w)

P(w) + P(j)

P(w, j)

P(w)P(j)
.

5.1.2 Shrinkage Estimator and Progression Tree Extraction

Besides such a probabilistic notion, they should introduce the use of a shrinkage esti-

mator to efficiently remove noisy. The reconstruction method is described in Algorithm

1. The algorithm is very similar in spirit to [71] algorithm, with the main difference

being an alternative weight function based on this shrinkage estimator.

Definition 3 (Shrinkage Estimator) They define the shrinkage estimator ma→b of

the confidence in the causation relationship from a to b as

ma→b = (1− λ)αa→b + λβa→b , (5.4)

where 0 ≤ λ ≤ 1 and

αa→b =
P(b | a)− P(b | a)

P(b | a) + P(b | a)
βa→b =

P(a, b)− P(a)P(b)

P(a, b) + P(a)P(b)
. (5.5)

This estimator combines a normalized version of the pr, the raw model estimate α,

with the correction factor β. The shrinkage aims at improving the performance of the

overall reconstruction process, not limited to the performance of the estimator itself.

In other words, m induces an ordering to the events reflecting our confidence for their

causation. However, this framework does not imply any performance bound for the,

e.g., mean squared error of m.

CAPRESE (CAncer PRogression Extraction with Single Edges) is based on two
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main steps:

1. Instead using correlation to infer progression structures, authors base their tech-

nique on a notion of probabilistic causation.

2. To increase robustness against noise, they adopt a shrinkage-like estimator to

measure causation among any pair of events.

5.2 CAPRI

Results that extend tree representations of cancer evolution exploit mixture tree mod-

els, i.e. multiple oncogenic trees, each of which can independently result in cancer

development [104]. All these methods are capable of modeling diverging temporal

orderings of events in terms of branches, although the possibility of converging evolu-

tionary paths is precluded. To overcome this limitation, the most recent approaches

tend to adopt Bayesian Graphical Models, i.e. Conjunctive Bayesian Networks (CBN),

Chapter 2.1.

Figure 5.1: CAPRI Overview [11]. The algorithm examines cancer cross-sectional
data to determine relationships related to genomic alterations (e.g., somatic

mutations, copy-number variations, etc.) that modulate the somatic evolution of a
tumor. When CAPRI concludes that mutation (EGFR) “selects for” aberration b

(CDK mutation), such relations can be rigorously expressed using Suppes’
conditions, which postulates that if a selects b, then a occurs before b (temporal

priority) and occurrences of a raises the probability of emergence of b (probability
raising).
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Algorithm 2 CAncer PRogression Inference (CAPRI)

1: Input: A set of events G = {g1, . . . , gn}, an m × n matrix D ∈ {0, 1}m×n and
k CNF causal claims Φ = {ϕ1 � e1, . . . , ϕk � ek} where, for any i, ei 6v ϕi and
ei ∈ G;

2: [Lifting] Define the lifting of D to D(Φ) as the augmented matrix

D(Φ) =

∣∣∣∣∣∣∣
D1,1 . . . D1,n ϕ1(D1,·) . . . ϕk(D1,·)

...
. . .

...
...

. . .
...

Dm,1 . . . Dm,n ϕ1(Dm,·) . . . ϕk(Dm,·)

∣∣∣∣∣∣∣ . (5.6)

by adding a column for each ϕi � ci ∈ Φ, with ϕi evaluated row-by-row, define the
coefficients

Γi,j = P(i)− P(j), and Λi,j = P(j | i)− P(j | i), (5.7)

pair-wise over D(Φ);
3: [DAG structure] Define a DAG D = (N, π) where

N = G ∪

(⋃
ϕi

chunks (ϕi)

)
, π(j 6∈ G) = ∅;

π(j ∈ G) =
{
i ∈ G | Γi,j ∧ Λi,j > 0

}
∪
{

chunks (ϕ) | Γϕ,j ∧ Λϕ,j > 0, ϕ� j ∈ Φ
}
.

(5.8)

4: [DAG labeling] Define the labeling α as follows

α(j) =

{
P(j), if π(j) = ∅ and j ∈ G;

P(j | i1 ∧ . . . ∧ in), if π(j) = {i1, . . . , in}.

5: [Likelihood fit] Filter out all spurious causes from D by likelihood fit with the
regularization BIC score and set α(j) = 0 for each removed connection.

6: Output: the DAG D and α;

A new algorithm proposed in [11] is called CAncer PRogression Inference (CAPRI)

and is part of the TRanslational ONCOlogy (TRONCO) R package [105]. From

cross-sectional genomic data, CAPRI reconstructs a probabilistic progression model

by inferring selectivity advantage relations, where a mutation in a gene A “selects” for

a later mutation in a gene B. These relations are depicted in a combinatorial graph and

resemble the way a mutation exploits its “selective advantage” to allow its host cells

to expand clonally. These relations are expected to also imply probability raising for a

pair of events. A selectivity relation between a pair of events signifies that the presence

of the earlier genomic alteration (i.e., the upstream event) that is advantageous in a

Darwinian competition scenario increases the probability with which a subsequent

advantageous genomic alteration (i.e., the downstream event) appears in the clonal

evolution of the tumor.
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Figure 5.2: CAPRI Pipeline [11]. The first step is to collect experimental data and
perform genomic analyses to derive profiles of, e.g., somatic mutations or

copy-number variations for each patient or sample. Then, statistical analysis and
biological priors are used to select events relevant to the progression and imputable
by CAPRI - e.g., driver mutations. CAPRI can extract a progression model from
these data and to assess various confidence measures on its constituting relations -

e.g., (non-)parametric bootstrap and hypergeometric testing. Experimental
validation concludes the pipeline.

This approach has been tested by authors in [11] for Atypical Chronic Myeloid Leukemia

(AML), data taken from [106].

In Figure 5.3 CAPRI predicts a progression involving mutations in SETBP1,

ASXL1 and CBL, consistently with the recent study by [107], in which these genes

were shown to be highly correlated and possibly functioning in a synergistic manner

for aCML progression. Specifically, CAPRI predicts a selective advantage relation be-

tween missense point mutations in SETBP1 and nonsense point mutations in ASXL1.

Among the hypotheses given as input to CAPRI, the algorithm seems to suggest

that the exclusivity pattern among ASXL1 and SF3B1 mutations selects for CBL

missense point mutations. The role of the ASXL1/SF3B1 exclusivity pattern is con-

sistent with the study of [108] which shows that, on 479 MDS patients, mutations in

SF3B1ARE inversely related to ASXL1 mutations.

Finally, CAPRI predicts selective advantage relations among TET2 and EZH2 mis-

sense point and indel mutations. Even though the limited sample size does not allow

to draw definitive conclusions on the ordering of such alterations, we can hypothesize

that they may play a synergistic role in aCML progression.

Encouraged by CAPRI’s ability to infer interesting relationships in a complex

disease such as aCML and the ability to use cross-sectional data, I expect that CAPRI

will help uncover relationships to aid our understanding of cancer and eventually

improve targeted therapy design, in particular to anticancer-drug-resistance studies.
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Figure 5.3: CAPRI Pipeline for AML [11]. (left) Mutational profiles of n = 64 aCML
patients - exome sequencing - with alterations in |G| = 9 genes with either mutation
frequency > 5% or belonging to an hypothesis inputed to CAPRI. Mutation types
are classified as nonsense point, missense point and insertion/deletions, yielding
m = 16 input events. Purple annotations report the frequency of mutations per

sample. (right) Progression model inferred by CAPRI in supervised mode. Node size
is proportional to the marginal probability of each event, edge thickness to the

confidence estimated with 1000 non-parametric bootstrap iterations. The p-value of
the hypergeometric test is displayed too.

Some limitations of this approach (general, not necessary linked to CAPRI) are:

1. The selection of the nodes (genes). If you not have a selection criteria put in

input a non-curated list of genes can be misleading and at the end the result

interpretation can be impossible or not confident.

2. To improve the confidence and to reduce the bias generated by the use a non-

curated list of genes is necessary to have a large number of samples, not always

possible.

3. For drug resistance studies in cancer, unless you have the pre and the post

treatment samples, is impossible to reconstruct the progression DAG due to a

drug treatment.

4. The crucial aspect, for all these models, is the final interpretation of the results

(DAGs, progression, links...).

5.3 Integration Site Data and Causal Modeling

The identification of genomic regions recurrently targeted by ISs (CIS) in tumors

induced by insertional mutagens has allowed the discovery of new cancer driver genes,

as in [1, 109]. As I will discuss in the next chapter my institute has developed a new

strategy to study some of these aspects.
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In our scenarios the CIS quantification (CIS Order) is an important improvement

in every causal model reconstruction, independently of the method used to build the

progression. Indeed the CISs with high order are the most confident candidates to be

the driver genes of a specific phenotype1, [2, 3, 11, 12].

Figure 5.4: Data Generation, step 1: after IS matrix creation, annotation and
collision removal with ISAnalytics, I perform a count of ISs for each single CIS with

SC >= 3.

After the VISPA2’s run, the IS matrix generation with create matrix program

(described in Chapter 3), the annotation to the reference genome with annotate matrix

(described in Chapter 3) and ISAnalytics to remove the collisions against other dif-

ferent projects (contaminations, described in Chapter 4), it is necessary to define a

correct input for CAPRI, Figure 5.4. To count the number of different ISs per CIS

(gene) should be useful to insert a threshold on sequence count (>= 3, as used in

[19, 49]), to reduce false positives. For this scope a function in ISAnalytics can be

useful (described in Chapter 4), scFilter. After the selection of the corrected CISs

the count of ISs per gene can be completed for the next step.

1A phenotype is the composite of an organism’s observable characteristics or traits, such as its
morphology, development, biochemical or physiological properties, behavior and products of behavior
(such as a bird’s nest). A phenotype results from the expression of an organism’s genetic code, its
genotype, as well as the influence of environmental factors and the interactions between the two.
When two or more clearly different phenotypes exist in the same population of a species, the species
is called polymorphic. Wikipedia
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Figure 5.5: Data Generation, step 2: The count matrix of CISs is now binarized and
transposed for CAPRI input.

The IS matrix per CIS now must be transposed and binarized (1 if there is at least

an IS in a CIS, 0 otherwise) to lift the input for CAPRI.

For the limitations described in the section before it is very important to input

in CAPRI only the highly targeted genes, changing the CAPRI’s classic input, thus

taking advantage of the possibility of using cross-sectional data, instead of mutation

type with CISs that cut off the first two previous described limitations:

1. The selection of the nodes (genes). Using CISs allows to take in consideration

for the progression DAG only the driver genes and not the passengers.

2. With CISs as input the number of necessary samples can be reduced a lot, more

or less 1 sample for 1 CIS.
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Chapter 6

Case Study: Breast Cancer

My laboratory developed a new lentiviral vector-based insertional mutagenesis screen-

ing to identify genes that confer resistance to clinically relevant targeted anti-cancer

therapies [3]. By applying this approach to cell lines representing two subtypes of

HER2+ breast cancer [110], we identified 62 candidate Lapatinib resistance genes. We

validated in vitro the top ranking genes by showing that their forced expression confer

resistance to Lapatinib and found that their mutation or over-expression is associated

to poor prognosis in human breast tumors [111, 112, 113, 114]. As a proof of concept

of the flexibility of our platform, we then successfully applied it to the identification

of erlotinib resistance genes in pancreatic cancer. This experimental platform can be

easily applied to different types of cancer and drugs. The acquired knowledge can help

identifying combinations of targeted drugs to overcome the occurrence of resistance,

thus opening new horizons for more effective treatment of tumors. We decided to

apply LV-based insertional mutagenesis screening to identify genes whose deregula-

tion is involved in resistance to Lapatinib, a HER2-inhibitor recently approved for the

treatment of metastatic HER2+ breast cancer; as targets for insertional mutagenesis

we used the BT474 and SKBR3 cell lines1.

6.1 Experimental Strategy Description

The experimental outline of the in vitro insertional mutagenesis screen for the identi-

fication of drug resistance genes developed in my institute (SR-Tiget) is represented

in Figure 6.1. Initially drug sensitive cells2 (a) are infected with a mutagenic vector

which induce random genome-wide mutations. When insertional mutagenesis deregu-

lates genes with roles in drug response, drug-resistant clones (cell clones in which the

drug has no effects anymore) are generated (b). Drug treatment promotes the positive

1List of breast cancer cell lines, https://en.wikipedia.org/wiki/List of breast cancer cell lines
2Several effective drugs having differing mechanisms of action are available. In this case cells

sensitive to Lapatinib.
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selection of resistant clones (c). DNA is then extracted from resistant colonies (d) and

vector integration sites are retrieved using LAM-PCR (e). Vector-genome junctions

are sequenced (f) and aligned to the reference genome, and statistical analysis is per-

formed to identify the genes which are recurrently targeted (CISs) and which therefore

may have a role in inducing drug resistance.

Figure 6.1: Anti-Cancer Drug Resistance Forward Screening Strategy at SR-Tiget.

Obviously my activity regards the point (f) of Figure 6.1. In the following sections

two different results will be reported, based on two different pipelines, VISPA (at the

time of our strategy paper [3]) and VISPA2 (results, CISs, after the development of the

new version of the pipeline). The comparison only in terms of CISs will be described

(Appendix D.3), all the other data are referred to VISPA2’s output.

6.2 CAPRI on Breast Cancer Data

This project has produced 4 Illumina MiSeq runs with, at the end, more than 8 millions

of LAM-PCR products. The experimental strategy of anti-cancer drug resistance

screening has been applied on two different cell lines (BT474 and SKBR3), Table 6.1.

In this work only data of BT474 will be processed for simplicity.

In [3], with VISPA, the authors obtained the CISs in Table 6.2, for BT474 cell line.

Before applying the strategy described at the end of Chapter 5, it is necessary to test

the mutual exclusivity of the CISs (genes). I used Mutex to verify the the invalidity

of this hypothesis [16], for all CISs with CIS Order > 5. Verified the goodness of the

input (Appendix D.1, score > 0.05), the R script is in Appendix C.3.1 and necessary
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ISs Output on VISPA2

Cell Line Condition N of Samples N of ISs

BT474 Control (Pre-Treatment) 16 6,031

BT474 Drug (Post-Treatment) 12 9,202

SKBR3 Control (Pre-Treatment) 16 11,892

SKBR3 Drug (Post-Treatment) 12 12,438

Table 6.1: VISPA2 output of breast cancer experiment. For each cell line there are 2
conditions, before (Pre-Treatment) and after (Post-Treatment) the drug treatment.
The number of samples is the same for the 2 conditions in the 2 cell lines, but the

number of ISs retrieved is relatively different.

CISs for BT474 Cell Line

Pre-Treatment Post-Treatment

FBXL20* PIK3CA

VMP1 CDK12

SUMO1P1 BCAS1

ITCH ITCH

DENND1B NCOA3

MIPOL1 VMP1

ARHGAP39 KIFAP3

ACACA ARHGAP39

STXBP4 PKIA

C8orf83 CADM2

LOC100131234 SLITRK6

KCNV1 CSMD3

Table 6.2: CISs obtained with VISPA (CIS Order > 10), identified with [9, 33].
*FBXL20 is identified as ERBB2 gene.

files for CAPRI’s pipeline are the following:

bt474-types.txt (comma-separated) file identify the content type and the color of

the nodes (CIS), in this case a light blue.

CIS , cornflowerblue

For the pre-treatment: bt474-events-pre-treatment.txt (comma-separated) file

identify the events (CISs, genes) with their relative order.

FBXL20 , CIS , 1

VMP1 , CIS , 2

SUMO1P1 , CIS , 3

ITCH , CIS , 4

DENND1B , CIS , 5

MIPOL1 , CIS , 6

ARHGAP39 , CIS , 7
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ACACA , CIS , 8

STXBP4 , CIS , 9

C8orf83 , CIS , 10

LOC100131234 , CIS , 11

KCNV1 , CIS , 12

bt474-data-pre-treatment.txt (tab-separated) file contains the binary matrix,

as described in Chapter 5. Each row is a CIS (gene) and each column is a sample.

1 1 1 1 1 1 0 0 1 1 1 1

0 0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 1 1

1 1 1 0 0 1 0 0 1 1 0 0

0 1 0 1 1 0 0 0 1 0 0 0

1 1 1 1 0 1 1 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 0 0 1 1 1 1

0 0 1 0 0 0 0 0 0 0 0 1

0 0 1 1 0 0 0 0 0 1 0 0

1 1 1 0 0 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1 1

For the post-treatment: bt474-events-post-treatment.txt (comma-separated)

file identify the events (CISs, genes) with their relative order.

PIK3CA , CIS , 1

CDK12 , CIS , 2

BCAS1 , CIS , 3

ITCH , CIS , 4

NCOA3 , CIS , 5

VMP1 , CIS , 6

KIFAP3 , CIS , 7

ARHGAP39 , CIS , 8

PKIA , CIS , 9

CADM2 , CIS , 10

SLITRK6 , CIS , 11

CSMD3 , CIS , 12
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bt474-data-post-treatment.txt (tab-separated) file contains the binary matrix,

as described in Chapter 5. Each row is a CIS (gene) and each column is a sample.

1 0 1 1 0 1 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0 1 1 1 1

1 1 1 1 1 1 0 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 1 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

Figure 6.2: Anti-Cancer Drug Resistance progression for BT474 cell line in
pre-treatment condition. CISs are highlighted in blue, in green the CISs that CAPRI
cannot distinguish (CISs in same samples), in this case the two CISs have the same
progression. The edges in bold have a confidence > 50%. I used Cytoscape to refine

the figure [27].

The output of the algorithm is composed of two DAGs, in which each node is a CIS

(gene), the edges the relations between them in terms of causality, selective advantage
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relations among driver genes. The thickness of the edges represents the confidence of

the relation. Any inequality (i.e., checking temporal priority and probability raising)

is estimated using the non-parametric Mann-Whitney U [115] test with p-values set

to 0.05. Authors of [11] compute confidence p-values for both temporal priority and

probability raising using this test, which need not assume Gaussian distributions for

the populations. In each graph the bold edges have a confidence > 50%.

The progression, the topology of the DAG and the relations between CISs should

be investigated in detail, but immediately one aspect emerges, the most confident

relations regard the CISs with the highest CIS Order. This confirms that the selection

of the CIS was well done.

Figure 6.3: Anti-Cancer Drug Resistance progression for BT474 cell line in
post-treatment condition. CISs are highlighted in blue, in green the CISs that

CAPRI cannot distinguish (CISs in same samples), in this case the two CISs have
the same progression. The edges in bold have a confidence > 50%. I used Cytoscape

to refine the figure [27].

Because the limited number of samples, the progression is less detailed, two of the

most targeted genes seems to be related to the activity of CSMD3. In this case the

CIS Order is very unbalanced between PIK3CA and the others, for this reason the

confident relations are less in terms of numbers. Should be interesting investigate the

relation between PIK3CA and CSMD3.

I have tried, at the first time, the CAPRI pipeline without the test of mutual

exclusivity of the CISs and with no distinction of pre and post treatment, and I have

produced the progression represented in Appendix D.2. This approach is terribly

wrong, for the following reasons:
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1. Without any distinction between pre and post treatment the causal model used

in CAPRI cannot correctly identify the real progression generated by the drug

treatment. It can only produce the DAG of the total CISs that is meaningless.

2. The temporal priority property is misleading without the distinction of pre and

post treatment samples.

3. Mutual exclusivity test for genes is necessary also to avoid problems of redundant

pathways [116, 117], redundant information. Not only for CAPRI.

4. The CISs are calculated separately in the two different conditions (pre and post

Lapatinib) thus merging CISs is a wrong simplification.

The limitation 3 in Chapter 5 is outdated because in the experiment there are the pre

and post treatment conditions. For the limitation 4 I decided to do some enrichment

analyses due to improve the DAGs interpretation and investigate in deeply some CISs.

6.3 Enrichment Analysis

In [3], where these data have been generated and analyzed for the first time, GREAT

[118], a tool that enables the analysis integrated with gene ontology and genomic

coordinates, was used for gene ontology (GO)3 assessments, without any relevant

results (because false positives and difficulties of interpretation).

Figure 6.4: Selection of the most relevant relations in pre and post treatment in
BT474 breast cancer cell line, from CAPRI. I used Cytoscape to refine the figure [27].

3Gene ontology (GO) is a major bioinformatics initiative to unify the representation of gene and
gene product attributes across all species.
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Exploiting instead the CISs on the DAGs, selecting branches based on CIS Or-

der and confidence score and causal relations given by CAPRI, Figure 6.4, I found

two analytical tools more appropriate for enrichment analysis: Enrichr [14, 15] and

GeneMANIA [13].

6.3.1 Enrichr

Enrichr uses a list of gene symbols as input (RefSeq gene symbols as nomenclature).

Each symbol in the input must be on its own line optionally followed by a comma. It

is possible to upload the list by either selecting the text file that contains the list or

just simply pasting in the list into the text box. On the results page, the analysis is

divided into different categories of enrichment, the most important:

• Pathways: most common database resources for understanding high-level func-

tions (pathways), like KEGG [32], WikiPathways [119], Reactome [120]...

• Ontologies4: its built-in tools to produce GO Biological Process, GO Cellular

Component, GO Molecular Function...

• Disease/Drug : OMIM Disease, OMIM Expanded [121], MSigDB Computa-

tional, MSigDB Oncogenic Signatures [122], LINCS L1000 Chem Pert up, LINCS

L1000 Chem Pert down, LINCS L1000 Ligand Perturbations up, LINCS L1000

Ligand Perturbations down [123], DrugMatrix [124]...

• Cell Types: Cancer Cell Line Encyclopedia [125], Human Gene Atlas, Mouse

Gene Atlas [126]...

Statistics is powered by Z-Score of the deviation from the expected rank by the

Fisher’s exact test.

As input, in this particular case, I split it in two gene lists, for pre and post

treatment, as discussed before, with the same list of CISs (genes). Interestingly, in the

pre-treatment scenario Enrichr correctly confirmed by blind analysis that the cell line

used was the BT474 of breast cancer (the input is only 12 CISs, confirming the role

of driver genes), Figure 6.5, and no significant information about pathways related,

Figure 6.6.

For the post-treatment CISs, using in the same way Enrichr:
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Figure 6.5: Enrichr: Cancer Cell Line Encyclopedia. Correctly shows a relation with
BT474 of breast cancer, p− value = 0.000002032

Figure 6.6: Enrichr: Reactome. No significant pathways related with the gene set.

Figure 6.7: Enrichr: Cancer Cell Line Encyclopedia. Correctly shows a relation with
BT474 of breast cancer, p− value = 0.000005972. Similar to pre-treatment, indeed

this is a intrinsic characteristic of the cell line.
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Figure 6.8: Enrichr: Reactome. Significant relation with “Signaling of ERBB4”.
Well known signaling pathway in breast cancer, as showed in [28, 29]. Moreover the

“EGFR Signaling Pathway” results involved, as confirmed in [30, 31].

Enrichr provided excellent verification of the IS data used (by CISs), confirming

strong relationships among CISs and notes related to the cancer cells of breast cancer

and the use of Lapatinib as a chemotherapy drug, Figure 6.8.

6.3.2 GeneMANIA

After the confirmations obtained with Enrichr, I wanted to investigate in detail the

two highlighted branches: ERBB2-(FBXL20)-SUMO1 for pre-treatment and PIK3CA-

CSMD3 for post-treatment.

The progression in Figure 6.4 (blue selection) predicts that SUMO1 is an “early

event” for the BT474 cell line and that this event “selects” for FBXL20 (ie, ERBB2,

intrinsic mutation of the cell line). According to the theory used to develop CAPRI

this is interpreted as follows: the emergence of a mutation in SUMO1 allows clonal

expansion through SUMO1, which, subsequently, is replaced by a clone SUMO1 and

FBXL20 (the selected clone contains both mutations).

Thus the first step is to verify the relation SUMO1-FBXL20 for the pre-treatment

condition with GeneMANIA. It extracts from a curated database relationships be-

tween genes; the pathway on which it maps the genes (blue), co-expression (purple)

and physical interactions (protein-protein interactions, pink).

The output reports of GeneMANIA listed the literature at the basis of the results. Re-

lations extracted from GeneMANIA for SUMO1 - mainly protein-protein interactions

and some pathway-level - involving various genes linked to the Ubiquitin (UBE2I,

UB2, UBE2G1...), Figure 6.9.

4To GO analysis I recommend the use of GREAT that takes in consideration also different ISs,
non only the different genes.
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From these results, I can speculate that SUMO1 clones modify the function of the

mechanisms linked to Ubiquitin that, in cascade, alter the functioning of the pathway

of ERBB2. Interestingly, Ubiquitin is known in the literature to be often linked to

breast cancer and other tumors.

Figure 6.9: GeneMANIA for SUMO1 and pre-treatment. The pathway on which it
maps the genes (blue), co-expression (purple) and physical interactions

(protein-protein interactions, pink). For details please download,
http://giuliospinozzi.altervista.org/docs/GMSUMO1.pdf

The second step (selective pressure induced by Lapatinib) is the verification of the

similarity between the relationship CSMD3-PIK3CA and SUMO1-FBXL20. To justify

resistance to the drug, the functional “relation” SUMO1-FBXL20 should be equiva-

lently in the post-treatment. If so, the progression of the breast may start involving

the Ubiquitin mechanisms, and continues through the pathway of ERBB2. Follow-

ing this interpretation, CSMD3 should be verified that is relevant to the mechanisms

linked to Ubiquitin, Figure 6.11.

PIK3CA (Figure 6.10) is also directly involved in the pathway of ERBB2 signaling.

In general it appears that: the Ubiquitin is linked (through both pathways, both at
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the protein level) to ERBB2 and PIK3CA, the first is precisely the predominant gene

in the cell line prior to treatment, the second in the post-treatment with Lapatinib.

Figure 6.10: GeneMANIA for UBC and post-treatment. The pathway on which it
maps the genes (blue), co-expression (purple) and physical interactions

(protein-protein interactions, pink). For details please download,
http://giuliospinozzi.altervista.org/docs/GMUBC.pdf

All these findings allowed to draft the hypothesis that exactly the Lapatinib in-

tervenes on SUMO1 clones, along with CSMD3. Note that it is recently discovered

that CSMD3 is a potential tumor suppressor gene, and it is believed that PIK3CA is

responsible for the response to Lapatinib in HER2+ breast cancer [127, 128, 129].

The selective pressure due to Lapatinib - in this cell line - induces a “change of

evolutionary trajectory” (resistance) of breast cancer, which goes from evolve through

SUMO1 and ERBB2 (FBXL20) to CSMD3 trajectory and PIK3CA, both paths may

be explained mechanistically by Ubiquitin, as confirmed by several papers [127, 128,

129] and pathways, Figure 6.12 (information produced by Enrichr, with only PIK3CA,

SUMO1, ERBB2 and CSMD3 as input genes).
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Figure 6.11: GeneMANIA for CSMD3 and post-treatment. The pathway on which it
maps the genes (blue), co-expression (purple) and physical interactions

(protein-protein interactions, pink). For details please download,
http://giuliospinozzi.altervista.org/docs/GMCSMD3.pdf

Figure 6.12: Enrichr: post-treatment enrichment with KEGG [32] pathway engine.
Significant relation with Ubiquitin related pathways, p− value = 0.0002006



112 6. Case Study: Breast Cancer

6.4 CAPRI Adaptation

Considering all the adaptations, filters and enrichments done for anticancer drug resis-

tance analysis, the final workflow for this last part (modeling) is represented in Figure

6.13. I encloses the Mutex’s test for exclude mutual exclusive genes, the use of CISs

for driver genes selection, sequence count filter to select only the true positives events

between different samples and the enrichment analysis with Enrichr and GeneMANIA

for final speculations.

Figure 6.13: CAPRI Pipeline [11], edited from Figure 5.2. The framework to study
anticancer drug resistance from IS data. CAPRI is integrated with Mutex for

checking the mutual exclusivity between CISs, the cross sectional usage of CISs as
input, the scFilter of ISAnalytics to set the gene threshold and the final results

interpretation with enrichment analysis with Enrichr and GeneMANIA.



Chapter 7

Conclusions

This work provides the first example of a framework of insertional mutagenesis screen

for drug resistance gene identification employing LVs as mutagens, with IS data (CISs

in particular) and causal modeling reconstruction. Recently my laboratory ad SR-

Tiget has performed for the first time a LV-based insertional mutagenesis screen for

cancer gene discovery [1, 2]. The developed framework in synergy with this biotech-

nology technique provides a powerful tool also for pre-clinical screening and not only

for cancer therapies. The presented workflow includes the three powerful tools pre-

sented in Chapters 3 (VISPA2), 4 (ISAnalytics) and 5 (CAPRI). The first two

developed completely by me and the last one is in collaboration (I adapted the model

and generated tools for data conversion) with the University of Milano-Bicocca.

VISPA2, Chapter 3, is an essential step for assessing the safety and efficacy of

molecular therapies that use genetically-modified hematopoietic stem cells through

integrating viral vectors. VISPA2 was extensively used to monitor lentiviral inte-

grations in several clinical trials (such as MLD, WAS, β-Thalassemia, MPS1) and

internal/external projects. Moreover, compared with the previous version of VISPA,

is more precise (reducing the false positives), supports repetitive element analysis and

is very fast.

ISAnalytics, Chapter 4, is a new R package enabling IS analysis from the matrix

file, output of VISPA2, compliant with Bioconductor 3.1. I developed many functions

in ISAnalytics, such as collision detection and CIS analysis enabling the identification

of over-targeted genomic regions. Furthermore, it uses very efficient data structures

such as GRanges and SummarizedExperiment, the standard de facto for genomic

operation and experiment managing in R. It is also possible to extend ISAnalytics

with new functions and structures, within the constraints of Bioconductor.

CAPRI, Chapter 5, is a new algorithm to causal modeling reconstruction. It was

able to create progression DAGs for the breast cancer case study of my laboratory.

Because the cross-sectional data capabilities of the model, I created some tools to lift

and to adapt the input (ISs, CISs) that worked very well. The post analysis with
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enrichment tools (Enrichr and GeneMANIA) was fundamental to interpret the data

(the graphs), to validate past results [3] and for new speculations on Ubiquitin.

Concluding, the biological use case has been confirmed, as published [3], using

these precise and powerful new tools. Moreover, this study allowed:

1. Extend the previously developed causal model [11, 12, 102] with more precise ISs

(with the usage of VISPA2), mutual exclusivity check and enrichment analysis

through CISs and DAGs.

2. Find new biological results, some confirmed by scientific publications, other can

be validated in the next future.

7.1 Future Works

VISPA2 has been largely extended and optimized. An innovative extension will be

the inclusion of IS landing in repetitive elements, that can be improved, in terms of

filtering and precision. At the moment a research article for VISPA2 is in preparation,

at the beginning of the 2017 should be sent to a research journal.

I planned to extend ISAnalytics by adding/implementing new quantification methods

(thinking on the new SLiM-PCR and shear site analysis [77, 89, 130]), ecology studies

[131, 132] or new CIS identification methods [10, 26, 99, 100]. A separated method-

ological paper can be written (also for the Bioconductor compliance).

Regarding the framework should be useful to analyze also other datasets, in partic-

ular in vivo, to test the accuracy and the robustness of the tools. In my laboratory

a new anticancer drug resistance experiment is ongoing and in the next months for

sure I will analyze this dataset (8 MiSeq and 2 HiSeq Illumina runs, ∼ 400 samples).

A scientific paper for the whole framework, the anticancer drug resistance screening

tools and methods proposed here, can be written in the near future.

An interesting open problem is the big data management. The bioinformatics

tools, as I previously mentioned, are just ready to the big data. VISPA2 can process

1 Illumina HiSeq in less than 1 day and R is always improving. New infrastructural

and information system management tools need to be applied to best handle the

increasing number of input data. A possible solution is to migrate to a cloud system

(for computing probably only Illumina HiSeq runs, 40-50 per year), like Amazon S31,

and Spark2, to run programs faster, reduce memory usage and accesses to the disks.

1https://aws.amazon.com/s3
2http://spark.apache.org
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Appendix A

Wet-Lab Procedures

A.1 LAM-PCR

DNA fragments containing the vector genome junctions are retrieved and ampli-

fied from vector marked genomic DNA by Linear Amplification Mediated Polymerase

Chain Reaction (LAM-PCR).

Figure A.1: LAM-PCR, sequential steps.

The LAM-PCR was performed on ∼300ng of DNA extracted from cells. Follow-

ing the Figure A.1 our technicians made 100 cycles of linear PCR pre-amplification of

vector-genome junctions, followed by magnetic capture of the biotinylated target DNA

by streptavidin-coupled magnetic beads, hexanucleotide priming, restriction digestion

using MluCI, HpyCHIV4 and AciI enzymes, and ligation to a restriction site com-

plementary linker cassette (LC, AGTGGCACAGCAGTTAGG). The ligation product

was then amplified by two nested PCR with primers specific for the vector Long Termi-

nal Repeat (LTR, ACCCTTTTAGTCAGTGTGGAAAATCTCTAGCA) and the LC
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sequences. LAM-PCR amplicons were separated on Shimadzu MultiNA Microchip

Electrophoresis System to evaluate PCR efficiency and the bands pattern for each

sample. Primers and PCR thermal protocols used were previously described in [56].

LAM-PCR products were then purified by AmpureXP beads and quantified by Qubit

Fluorimeter. 40ng of PCR product were re-amplified with Fusion-LTR and Fusion-LC

primers (Section A.1.1, containing 8 nucleotides (X) tags allowing samples barcoding

on both on the LTR and the Linker cassette side of the amplicons, specific sequences

that allow paired end sequencing with the Illumina MiSeq System, and a random 12

nucleotides (N) sequence to increase cluster separation. The PCR was performed us-

ing the Qiagen TAQ DNA Polymerase at the following conditions: 95 ◦C for 2 min,

and 95 ◦C for 45 sec, 58 ◦C for 45 sec, and 72 ◦C for 1 min, for 12 cycles, followed by

a further 5 min incubation at 72 ◦C.

A.1.1 Fusion Primers for LAM-PCR

>Fusion-LTR

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

NNNNNNNNNNNNXXXXXXXXACCCTTTTAGTCAGTGTGGA

>Fusion-LC

CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

NNNNNNNNNNNNXXXXXXXXGATCTGAATTCAGTGGCACAG
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A.2 Sonicated Linker-Mediated (SLiM)-PCR

The old LAM-PCR, although sensitive, allows only approximate clonal abundance

estimations since before PCR amplification the genomic DNA is fragmented with

restriction enzymes that, depending on the distance between the integrated vector and

the site recognized by restriction enzyme will produce DNA fragments of different sizes

upon amplification. Therefore, IS in long DNA fragments could be lost or amplified at

low efficiency while short fragments would be favored and still produce sequences too

short to be univocally mapped on the target cell genome. Moreover, the nucleotide

composition at the vector/cell genome junction may impact on the PCR amplification

efficiency impacting on the reliability of clonal quantifications based on sequence count

statistics.

Figure A.2: SLiM-PCR, fragments (P5 and P7 are the Illumina adapters)

To avoid the biases produced by the exponential amplification and the use of restriction

enzymes, my laboratory developed the new Sonicated Linker-Mediated (SLiM)-PCR.

In this method, similar to [77], the genomic DNA of vector marked cells is sonicated to

obtain randomly sheared fragments, ligated to a synthetic DNA linker cassette (LC,

GTCACCGTGTCGTCAATCCT) needed as template for the successive PCR ampli-

fication. The tagged DNA is then used as template for PCR using oligonucleotides

complementary to vector sequences and the linker cassette in order to specifically am-

plify the vector/cell genome junctions contained in between. Given that the random

DNA fragmentation, achieved by sonication, occurs prior PCR amplification, a clonal

population harboring the same IS will produce a number of DNA fragments contain-

ing the vector/cell genome junctions of different sizes that will be proportional to the

initial number of contributing cells. Therefore counting the number of shear sites of

the same IS allows to estimate the clonal abundance avoiding the PCR biases. More-

over, in the linker cassette ligated after DNA shearing we included a 12 nucleotide

sequence, a random barcode that is tagged to the sheared DNA fragments prior PCR

amplification.

A.2.1 Fusion Primers for SLiM-PCR

>Fusion-LTR
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AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

NNNNNNNNNNNNXXXXXXXXACCCTTTTAGTCAGTGTGGA

>Fusion-LC

GACGTGTGCTCTTCCGATCTNNNNNNNNNNNNAAACATCGGTCACCGTGTCGTCAATCCT



Appendix B

Information System

B.1 Computational Resources

I configured VISPA2 in various infrastructures, also different, in which the command

line version is present everywhere, only in the Institute of Biomedical Technologies of

the CNR at Segrate (MI) is implemented the GUI version. This section explained the

technologies used and the resources used. A clarification is in order: all this has been

done, not only to differentiate certain aspects, but also to make available VISPA2 with

a larger scale.

B.1.1 @SR-Tiget: Gemini and Oracle

Gemini

Nodes Cores RAM Operating System Research Group

2 16 128GB* Ubuntu Server 12.04 LTS SR-Tiget**

Table B.1: Gemini, HP Z820 Workstation. Intel(R) Xeon(R) CPU E5-2690,
2.90GHz. The storage is composed of 4 HD with 500GB and 10k rpm. *Memory per

node. **SR-Tiget people in charge of computational resources are Giulio Spinozzi
and Andrea Calabria.

Oracle

Nodes Cores RAM Operating System Research Group

2 24 128GB* Ubuntu Server 16.04 LTS SR-Tiget**

Table B.2: Oracle, HP Z840 Workstation. Intel(R) Xeon(R) CPU E5-2690 v3,
2.60GHz. The storage is composed of 5 HD with 4TB and 7k rpm and 1 primary

disk of 500GB SSD. *Memory per node. **SR-Tiget people in charge of
computational resources are Giulio Spinozzi and Andrea Calabria.
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B.1.2 @CINECA: PICO

PICO

Nodes Cores RAM Operating System Description

74 1480 126GB* Red Hat Enterprise VM with Ubuntu Server 12.04

Table B.3: PICO is a BigData infrastructure that has been acquired (Nov 2014)
devoted to ”Big Analytics”. It is named after the Italian Renaissance philosopher
famous for his amazing memory. *Memory per node. Intel(R) Xeon(R) CPU 2670

v2, 2.5GHz.

B.1.3 @CNR

Cluster @ CNR-ITB Milano

Nodes Cores RAM Operating System Description

40+ 700+ 24GB* CentOS VM with CentOS 6.5

Table B.4: CNR-ITB bioinformatics computational resources present at ITB-Milano
consist of more than 700 CPU-cores (Intel(R) Xeon(R) L5640 Westmere, Intel(R)

Xeon(R) E5420 Harpertown based on Penryn microarchitecture and Intel(R)
Xeon(R) E5420 Harpertown), more than 270 TB of disk space and more than

1700GBs of total memory, in an dual and quadri infiniband interconnected
computational clusters. The architecture provides both an advanced HPC

computational infrastructure and a distributed cloud-like virtualization facility for
aggregating virtual servers, in turn providing the CNR-ITB bioinformatics services

exposed to the Internet. *Memory per node. Intel(R) Xeon(R) CPU 2670 v2,
2.5GHz.

B.2 Storage

B.2.1 NAS Server: QNAP TS-412 4-BAY

QNAP TS-412 4-BAY

CPU DRAM HDs Operating System File Sharing

Marvell 6281
1.2GHz

256MB
DDRII

4x 3.5” SATAII
4x 2.5” SATAII

Embedded Linux CIFS/SMB,
AFP, NFS

Table B.5: TS-412 is a powerful yet easy to use networked storage center for backup,
synchronization and remote access. It supports comprehensive RAID configuration

and hot-swapping to allow hard drive replacement without system interruption.

This NAS is available online with CIFS/SMB or AFP protocols for UNIX systems.
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B.2.2 LaCie 4Big Quadra

LaCie 4big Quadra USB 3

HDs RAID Types Interfaces

4x 7.200 rpm 0/10/5/5+replacement Thunderbolt,
USB2-3, FireWire

Table B.6: LaCie 4Big Quadra: Noctua magnetic levitation cooling fan:
high-performance, quiet, zero-vibration. 32MB cache (or greater) hard disks.

The LaCie 4Big Quadra is attached, through thunderbolt, to Gemini workstation,

because the lack of HD space. Is also possible to put it into LAN network.

All final files (BAM, BED..) and MySQL databases are backed up into LaCie 4Big

Quadra with RAID5, weekly.

B.3 Configurations

VISPA2 SERVER CONFIGURATION (Rev 1.0 13/04/2016)

--------------------------------------------------------------------

Author: Giulio Spinozzi, PhD Student

San Raffaele Telethon Institute for Gene Therapy (SR-Tiget)

Ospedale San Raffaele, Basilica, 5A3, Room 55

E-Mail: spinozzi.giulio@hsr.it

--------------------------------------------------------------------

Required software (pre-installed):

MySQL server (https://dev.mysql.com/downloads/mysql/)

Fastqc (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

Bwa (http://bio-bwa.sourceforge.net/bwa.shtml)

Samtools (http://www.htslib.org/doc/samtools.html)

Trimmomatic (www.usadellab.org/cms/?page=trimmomatic)

fastq-multx (https://expressionanalysis.github.io/ea-utils/)

flexbar (https://github.com/seqan/flexbar)

bamtools (https://github.com/pezmaster31/bamtools)

RepeatMasker (http://www.repeatmasker.org/RMDownload.html)

FilterSamReads/MergeSamFiles (https://broadinstitute.github.io/picard/)

Bedtools (https://github.com/arq5x/bedtools2/releases)

Configuration:

Directories

sudo mkdir /opt/applications

sudo chmod -R 777 /opt/applications

mkdir /opt/applications/bin

sudo mkdir /opt/genome

sudo chmod -R 777 /opt/genome

sudo mkdir /opt/NGS

sudo chmod -R 777 /opt/NGS

mkdir /opt/NGS/results

In /opt/applications/bin you should install all third-party software like Picard, EA-Utils...

while in /opt/NGS/results the final results folder (BAM, BED...)

Genomes

mkdir /opt/genome/human

mkdir /opt/genome/human/hg19/

mkdir /opt/genome/human/hg19/annotation

mkdir /opt/genome/human/hg19/index

mkdir /opt/genome/human/hg19/index/bwa_7

mkdir /opt/genome/vector

In /opt/genome/human/hg19/index/bwa_7 must be inserted the genome (FASTA) and its indexes. The indexes can be built in this way:

bwa index -a bwtsw REF.fa
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samtools faidx REF.fa

java -jar /opt/applications/bin/picard/picard-tools-1.79/CreateSequenceDictionary.jar R=CE.cns.fa O=CE.cns.dict

The same for vector genomes.

R

Install R (3.2 or 3.3) system with Bioconductor 3.1 (exactly this version)

MySQL

Install the dev lib and create two users (all privileges and readonly)

sudo apt-get install libmysqlclient-dev

mysql -uroot -p

mysql> GRANT ALL PRIVILEGES ON *.* To ’andrea’@’localhost’ IDENTIFIED BY ’andrea’;

mysql> GRANT SELECT ON *.* TO ’readonly’@’localhost’ IDENTIFIED BY ’readonlypswd’;

BWA

sudo ln -s /opt/applications/bin/bwa/bwa-0.7.15/bwa /usr/bin/bwa-stable

Flexbar - Version 2.5

export LD_LIBRARY_PATH=/path/FlexbarDir:$LD_LIBRARY_PATH

sudo ln -s /opt/applications/bin/flexbar/flexbar_v2.5/flexbar /usr/bin/flexbar2.5

Trimmomatic

sudo ln -s /opt/applications/scripts/isatk/utils/trimmomatic.sh /usr/bin/trimmomatic

the trimmomatic.sh bash contains:

--

#!/bin/bash

java -jar /opt/applications/bin/trimmomatic/trimmomatic-0.36.jar $@

Picard

sudo ln -s /opt/applications/scripts/isatk/utils/FilterSamReads.sh /usr/bin/FilterSamReads

--

#!/bin/bash

picard FilterSamReads $@

sudo ln -s /opt/applications/scripts/isatk/utils/MergeSamReads.sh /usr/bin/MergeSamReads

--

#!/bin/bash

picard FilterSamReads $@

Python 2.7

sudo -H pip install MySQL-python

sudo -H pip install pysam==0.7.7

sudo -H pip install biopython

sudo -H pip install HTSeq

sudo -H pip install rpy2

sudo -H pip install scipy

sudo -H pip install numpy

sudo -H pip install matplotlib

sudo -H pip install xlsxwriter

sudo -H pip install pandas

ISATK Configuration (VISPA2 repository and others)

cd /opt/applications

hg clone -b ’v3’ https://bitbucket.org/andreacalabria/isatk

sudo ln -s isatk/script/import_iss.py /usr/bin/import_iss

sudo ln -s isatk/script/fqreverseextract.pureheader.py /usr/bin/fqreverseextract.pureheader

sudo ln -s isatk/script/fqextract.pureheader.py /usr/bin/fqextract.pureheader

sudo ln -s isatk/script/rev_extract_header.py /usr/bin/rev_extract_header

sudo ln -s isatk/script/extract_header.py /usr/bin/extract_header

sudo ln -s isatk/script/filter_by_cigar_bam.py /usr/bin/filter_by_cigar_bam

sudo ln -s isatk/script/filter_by_mate.py /usr/bin/filter_by_mate

sudo ln -s isatk/script/dbimport_redundantiss_from_bed.v2.py /usr/bin/isa_importrediss_frombed

sudo ln -s /opt/applications/scripts/isatk/script/annotate_matrix_v2.sh /usr/bin/annotate_matrix

sudo ln -s /opt/applications/scripts/isatk/script/fastq_qf.sh /usr/bin/fastq_qf

sudo ln -s /opt/applications/scripts/isatk/script/fasta_to_csv.rb /usr/bin/fasta_to_csv

hg clone -b ’2.1-seqTracker’ https://bitbucket.org/tigetbioinformatics/integration_analysis

sudo ln -s integration_analysis/src/Integration_Analysis.py /usr/bin/create_matrix

RepeatMasker

http://www.repeatmasker.org/RMBlast.html

./configure --with-mt --prefix=/opt/applications/bin/rmblast/ncbi-rmblastn-2.2.28 --without-debug

http://www.repeatmasker.org/RMDownload.html
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B.4 MySQL Tables

B.4.1 Import ISs from BED

Figure B.1: MySQL Table Structure for IS imported from BED file.

isa importrediss frombed (isatk/script/dbimport redundantiss from bed.v2.py)

1. group name: project name

2. n LAM: LAM ID

3. pool: Pool ID

4. tag: TAG ID (for sample recognition)

5. sample: Sample ID

6. vector: Vector ID
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7. tissue: Biological tissue of the harvest

8. treatment: time point

9. enzyme: Enzyme used (for SLiM-PCR is NONE)

10. complete name: Complete name of the sample (link to the association file)

11. header (Primary): Header of the read (from FASTQ)

12. chr: Chromosome

13. integration locus: Locus of the integration site

14. sequence count: Count of how many reads are collapsing in the same locus

15. score: Mapping quality

16. strand: Strand of the read (’+’ for 5’-3’, ’-’ for 3’-5’)

17. label: String

18. sequence raw: Raw sequence

19. sequence trimmed: Trimmed sequence
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B.4.2 Import ISs from BAM

Figure B.2: MySQL Table Structure for IS imported from BAM file.

import iss (isatk/script/import iss.py) produces refactored tables

1. prod header (Primary): Header of the read (from FASTQ)

2. prod chr*: Chromosome
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3. prod locus*: Starting locus of the integration site

4. prod end*: Ending locus of the integration site

5. prod strand*: Strand of the read (’+’ for 5’-3’, ’-’ for 3’-5’)

6. ref associationid: Complete name of the sample (link to the association file)

7. ref matrixid: String

8. ref poolid: Pool ID

9. isread chr: Chromosome

10. isread start: Starting locus of the integration site

11. isread end: Ending locus of the integration site

12. isread strand: Strand of the read (’+’ for 5’-3’, ’-’ for 3’-5’)

13. isread RG: Read group

14. isread quality: Mapping quality

15. isread NM: Number of mismatches

16. isread flag: BAM alignment flag

17. isread cigar: CIGAR string

18. isread MD: MD score from string

19. isread insert size: Insert Size

20. isread AS: Alignment score from BAM

21. isread XS: Suboptimal alignment score

22. isread SA: Secondary alignment

23. isread nasequence: Genomic part of the read (trimmed)

24. mate chr: Pair chromosome

25. mate start: Pair starting locus of the integration site

26. mate end: Pair ending locus of the integration site

27. mate strand: Pair strand of the read (’+’ for 5’-3’, ’-’ for 3’-5’)

28. mate RG: Pair read group
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29. mate quality: Pair mapping quality

30. mate NM: Pair number of mismatches

31. mate flag: Pair BAM alignment flag

32. mate cigar: Pair CIGAR string

33. mate MD: Pair MD score from string

34. mate insert size: Pair insert Size

35. mate AS: Pair alignment score from BAM

36. mate XS: Pair suboptimal alignment score

37. mate SA: Pair secondary alignment

38. mate nasequence: Pair genomic part of the read (trimmed)

* If the mate (pair) is present, these fields are considered for the paired read.
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B.4.3 Stats Summary

Figure B.3: MySQL Table Structure for Stats Summary.

1. RUN ID: RUN (VISPA2) ID

2. RUN NAME: Concatenation of $DISEASE$PATIENT$POOL variables

3. DISEASE: Disease ID
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4. PATIENT: Patient ID

5. POOL: Pool ID

6. TAG: TAG ID (for sample recognition)

7. LTR ID: LTR ID

8. LC ID: LC ID

9. PHIX MAPPING: Number of reads mapping on PhiX genome (overall)

10. PLASMID MAPPED BYPOOL: Number of reads mapping on plasmid genome by pool

11. RAW NO PLASMID: Number of reads not mapping on plasmid genome by pool

12. BARCODE MUX: Number of reads Demultiplexed reads by sample

13. LTR IDENTIFIED: Number of reads with LTR identified

14. TRIMMING LTRR1: Number of reads with LTR identified on R1

15. TRIMMING LTRR1R2: Number of reads with LTR identified on R1 and R2

16. TRIMMING LTRR1R2 LCR1: Number of reads with LTR identified and LC on R1

17. TRIMMING FINAL RESCUED: Number of reads rescued

18. TRIMMING FINAL LTRLC: Number of trimmed reads overall

19. LV MAPPED: Number of reads mapping LV genome (internal control band)

20. BWA INPUT: Number of reads in input on BWA-MEM

21. BWA MAPPED: Number of reads mapped with BWA-MEM

22. BWA MAPPED PP: Number of reads mapped with BWA-MEM properly pair

23. BWA MAPPED ST: Number of reads mapped with BWA-MEM as singletons

24. BWA MAPPED OVERALL: Number of reads mapped with BWA-MEM overall

25. BWA ALIGNED R1: Number of reads mapped with BWA-MEM with only R1

26. RECALIB MAPPED: NONE

27. RECALIB MAPPED PP: NONE

28. RECALIB MAPPED ST: NONE

29. RECALIB MAPPED OVERALL: NONE
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30. RECALIB ALIGNED R1: NONE

31. RECALIB SOFCLIPPED READS: NONE

32. FILTER MATE TO REMOVE: Number of reads filtered by mate program

33. FILTER CIGARMD TO REMOVE: Number of reads filtered by CIGAR program

34. FILTER JOINT MC TO REMOVE: Number of joint reads filtered by MD

35. FILTER JOINT MC PP: Number of joint properly pair reads filtered

36. FILTER JOINT MC ST: Number of joint singleton reads filtered

37. FILTER JOINT MC OVERALL: Number of joint reads filtered

38. FILTER JOINT ALIGNED R1: Number of joint reads filtered by R1

39. FILTER ALMQUAL PP: Number of properly pair reads filtered by alignment quality

40. FILTER ALMQUAL ST: Number of singleton reads filtered by alignment quality

41. FILTER ALMQUAL OVERALL: Number of reads filtered by alignment quality overall

42. FILTER ALMQUAL ALIGNED R1: Number of reads filtered by alignment quality on

R1

43. ISS FINAL: Number of IS reads (non unique, redundant)

44. ISS MAPPED: Number of IS reads mapped (non unique, redundant)

45. ISS MAPPED PP: Number of properly pair IS reads (non unique, redundant)

46. ISS MAPPED ST: Number of singleton IS reads mapped (non unique, redundant)

47. ISS MAPPED OVERALL: Number of IS reads mapped (non unique, redundant)

48. ISS ALIGNED R1: Number of IS reads mapped (non unique, redundant) on R1
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Some Useful Programs

C.1 VISPA2

C.1.1 Example of VISPA2 bash launch

vispa2 link: isatk/pipeline/illumina/VISPA2.IlluminaMiSeq.pipeline.sh

#!/bin/bash

source /etc/environment

source /etc/profile

###########################################################################

######################################################

# #

# Breast Cancer - POOL1 #

# #

######################################################

###########################################################################

TODAY=‘date +"%Y%m%d%H%M%S"‘;

####### ---------- start editing from here ----------------- ########

R1="/storage/dx/backup/nas/LabDevelopment/ftp.gatc-biotech.com/2015-12-28/NG-8959_VP1_lib102988_4287_1_1.fastq.gz";

R2="/storage/dx/backup/nas/LabDevelopment/ftp.gatc-biotech.com/2015-12-28/NG-8959_VP1_lib102988_4287_1_2.fastq.gz";

DISEASE="BreastCancer"; # project main name

PATIENT="InsertionalMutagenesis";

POOLNAME="POOL1";

GENOME="/opt/genome/human/hg19/index/bwa_7/hg19.fa"; ## hg19: /opt/genome/human/hg19/index/bwa_7/hg19.fa ;

mm9: /opt/genome/mouse/mm9/index/bwa_7/mm9.fa ; mfa5: /opt/genome/monkey/mfa5/index/bwa_7/mfa5.fa

BARCODE_LTR="/opt/applications/scripts/isatk/elements/barcode/barcode.LTR.48.list";

BARCODE_LC="/opt/applications/scripts/isatk/elements/barcode/barcode.LC.48.list";

ASSOCIATIONFILE="/opt/applications/scripts/isatk/elements/association/asso.breastcancer.pool1.tsv";

LTR="/opt/applications/scripts/isatk/elements/sequences/LTR.32bp.fa"; # LTR in forward

LTR_rc="/opt/applications/scripts/isatk/elements/sequences/LTR.32bp.rev.fa"; # LTR in reverse complement

LC_fwd="/opt/applications/scripts/isatk/elements/sequences/LC.assayvalidation.fwd.fa"; # Linker Cassette in forward

LC_rev="/opt/applications/scripts/isatk/elements/sequences/LC.assayvalidation.rc.fa"; # Linker Cassette in reverse

DBHOSTID="local";

DBTARGETSCHEMA="sequence_breastcancer";

DBTARGETTABLE="allPools";

GATKREFGENOME="/opt/genome/human/hg19/index/bwa_7/hg19.fa";

CIGARGENOMEID="hg19" ; # Reference genome ID: choose among {hg19 | mm9 | mfa5}

VECTORCIGARGENOMEID="lv"; ## This is the vector reference name (id) used to remove vector sequences.

Choose among: {lv, lvarsa, lvwas, lvkana, lvamp, transposon, giada, hiv}
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CONTAMINANTDB="/opt/applications/scripts/isatk/elements/sequences/UniVec_Tiget.fa";

REMOVE_TMP_DIR="remove_tmp_yes"; # remove tmp dirs? remove_tmp_yes

####### ---------- end editing here ----------------- ########

TMPDIR="/opt/NGS/pipetmpdir/${TODAY}" ;

LOGF="/opt/NGS/log/${TODAY}.${DISEASE}.${PATIENT}.${POOLNAME}.log";

mkdir ${TMPDIR};

PHIXGENOME="/opt/genome/control/phix174/bwa_7/phiX174.fa";

LVGENOME="/opt/genome/vector/lv/bwa_7/lv.backbone.fa"; # Change it ONLY if you want to quantify and remove other vectors

or inserted sequences. Alternatives in the GEMINI folder /opt/genome/vector/lv/bwa_7/: {lv.backbone.fa,

lv.backbone.hpgk.arsa.wprem.fa, lv.backbone.wasp.was.wprem.fa, lv.plasmid.amp.fa, lv.plasmid.kana.fa}.

HIV: /opt/genome/hiv/hiv_hxb2cg/bwa_7/hiv.fa ;

# available CPUs

CPUN="‘cat /proc/cpuinfo | grep "model name" | wc -l‘";

MAXTHREADS=16;

FASTQ_QF="slim"; # FASTQ Quality Filter Methods: slim (QF on R1 80bp and R2 TAGs) or lam (QF only on R1 80bp)

SUBOPTIMALTHRESHOLD=’40’;

REPEATS="repeats_yes";

##########

if [ ! -r "$R1" ]; then

echo "Error: can’t open input file for R1."

exit 1

fi

if [ ! -r "$R2" ]; then

echo "Error: can’t open input file for R2."

exit 1

fi

if [ ! -r "$ASSOCIATIONFILE" ]; then

echo "Error: can’t open input ASSOCIATION FILE."

exit 1

fi

echo "

[ VISPA2 - PE ] -> STARTING PROCESSING AT:

"

date

vispa2 ${DISEASE} ${PATIENT} ${NGSWORKINGPATH} ${R1} ${R2} ${POOLNAME} ${BARCODE_LTR} ${BARCODE_LC} ${GENOME} ${TMPDIR} ${ASSOCIATIONFILE}

${DBHOSTID} ${DBTARGETSCHEMA} ${DBTARGETTABLE} ${PHIXGENOME} ${LVGENOME} ${CONTAMINANTDB} ${MAXTHREADS} ${GATKREFGENOME} ${CIGARGENOMEID}

${VECTORCIGARGENOMEID} ${SUBOPTIMALTHRESHOLD} ${REMOVE_TMP_DIR} ${LTR} ${LTR_rc} ${LC_fwd} ${LC_rev} ${FASTQ_QF} ${REPEATS}

echo "

[ VISPA2 - PE ] -> FINISHED PROCESSING AT:

"

date;

#=========================================================================#

#-----------------------------------***-----------------------------------#

C.1.2 FASTQ Quality Filter

Source: isatk/script/fastq qf.sh

Python program to filter out reads with low quality. This software works per FASTQ.

fastq qf -a $R1.FASTQ.GZ -b $R2.FASTQ.GZ -o $OUTDIR -t $MAXTHREADS

-m $METHOD

1. −a [R1.FASTQ.GZ] - Input File: Illumina R1 FASTQ zipped

2. −b [R2.FASTQ.GZ] - Input File: Illumina R2 FASTQ zipped

3. −o [OUTDIR] - Output directory

4. −t [MAXTHREADS] - Maximum number of parallel threads

5. −m [METHOD] - Quality filter on R1 only (LAM) or R1 and R2 (SLiM)
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C.1.3 Alignment to the Reference Genome with BWA-MEM

1. bwa-mem -k 18 -r 1 -M -T 15 -c 1 -R -t $THREADS $R1.FASTQ $R2.FASTQ

> $TMPDIR/sam/SAMPLE 1.sam

• −k [18]: Minimum seed length. Matches shorter than k will be missed.

• −r [1]: Trigger re-seeding for a MEM longer than minSeedLen*r. This is

a key heuristic parameter for tuning the performance. Larger value yields

fewer seeds, which leads to faster alignment speed but lower accuracy.

• −M : Mark shorter split hits as secondary (for Picard compatibility).

• −T [15]: Do not output alignment with score lower than 15. This option

only affects output.

• −c [1]: Discard a MEM if it has more than c occurrence in the genome.

This is an insensitive parameter.

• −R [COMPLETE NAME]: Complete read group header line. ’\t’ can be

used in STR and will be converted to a TAB in the output SAM. The

read group ID will be attached to every read in the output. An example is

’@RG\tID:foo\tSM:bar’.

2. samtools view -F 2308 -uS $TMPDIR/sam/SAMPLE 1.sam

• −F [FLAG]: Filter the alignments that will be included in the output to

only those alignments that match certain criteria1.

• −uS: Output uncompressed BAM. This option saves time spent on com-

pression/decompression and is thus preferred when the output is piped to

another samtools command. Ignored for compatibility with previous sam-

tools versions. Previously this option was required if input was in SAM

format, but now the correct format is automatically detected by examining

the first few characters of input.

C.1.4 Repetitive Element Analysis with RepeatMasker

1. bamtools filter -in $TMPDIR/bam/SAMPLE 1.bam -mapQuality "<10" >

$TMPDIR/bam/SAMPLE 1.lowMQ.bam; (Identifying low mapping quality reads

after alignment).

2. bamtools filter -in $TMPDIR/bam/SAMPLE 1.lowMQ.bam -isFirstMate true

> $TMPDIR/bam/SAMPLE 1.lowMQ.R1.bam; (Filter out the R2 from BAM).

3. bamtools convert -format fasta -in $TMPDIR/bam/SAMPLE 1.lowMQ.R1.bam

-out $TMPDIR/SAMPLE 1.lowMQ.R1.fa; (FASTA conversion from BAM file).

1https://broadinstitute.github.io/picard/explain-flags.html
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4. RepeatMasker -no is -species $SPECIE -pa $MAXTHREADS -dir $OUTDIR -q

$TMPDIR/SAMPLE 1.lowMQ.R1.fa;

• −no is: Skips bacterial insertion element check.

• −species [SPECIE]: Species of the input sequence. The species name must

be a valid NCBI Taxonomy Database2 species name and be contained in the

RepeatMasker repeat database. Some examples are: human and mouse.

• −pa [MAXTHREADS]: The number of threads to use in parallel (only

works for batch files or sequences over 50 kb).

• −dir [OUTDIR]: Writes output to this directory (default is query file di-

rectory, ’-dir .’ will write to current directory).

• −q: Quick search; 5-10% less sensitive, 2-5 times faster than default.

5. tail -n+4 ${OUTDIR}/SAMPLE_1.lowMQ.R1.fa.out | awk

’{if ($1 >= 250) print $1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11}’ |

sort -uk5,5 | awk ’BEGIN{OFS="\t"}{if($9=="C"){strand="-"}

else{strand="+"};print"R_"$11,$6-1,$7,$11"_"$5,".",strand,$10}’

> ${OUTDIR}/SAMPLE_1.RM.R1.bed (this command creates a bed file with all

required informations, like an unique ID, the start and the end position in the

genome, the family and the sub-family of the repetitive elements).

6. isa importrediss frombed -b $OUTDIR/SAMPLE 1.RM.R1.bed -a $ASSOCI-

ATIONFILE –patient $PATIENT –pool $POOL –tag $TAG -d $DBHOSTID

–dbschema $DBSCHEMA –dbtable $DBTABLE repeats

• −b: BED file to import into MySQL database.

• −a: Association File.

• −patient: Patient ID.

• −pool: Sequencing Pool

• −tag: Sample Barcode TAG.

• −d: IP of MySQL DBMS.

• −dbschema: MySQL target database name.

• −dbtable: MySQL target table name to import.

C.1.5 Filtering

bamtools filter -in $TMPDIR/bam/SAMPLE 1.sorted.md.filter.bam -isMapped true

-isMateMapped true -isPaired true -isProperPair true -isPrimaryAlignment true -

mapQuality ”>=12” -out $TMPDIR/bam/SAMPLE 1.sorted.md.filter pp.bam

2https://www.ncbi.nlm.nih.gov/taxonomy



C. Some Useful Programs 151

• -in [BAM] Input BAM to filter.

• -isMapped [TRUE] Keep only alignments that were mapped.

• -isMateMapped [TRUE] Keep only alignments with mates that mapped.

• -isPaired [TRUE] Keep only alignments that were sequenced as paired.

• -isProperPair [TRUE] Keep only alignments that passed PE resolution.

• -isPrimaryAlignment [TRUE] Keep only alignments marked as primary.

• -mapQuality [>=12] Keep reads with map quality that matches pattern.

• -out [BAM] Output BAM filtered.

Then a BED file with only R2 reads is created (for shear site quantification):

bamtools filter -in $TMPDIR/bam/SAMPLE 1.sorted.md.rel.bam -isSecondMate

true -isFirstMate false -isMapped true -isMateMapped true -isPaired true -isProperPair

true -isPrimaryAlignment true | bedtools bamtobed >

$TMPDIR/bed/SAMPLE 1.sorted.allr2reads.bed

• -in [BAM] Input BAM to filter.

• -isSecondMate [TRUE] Keep only alignments marked as second mate.

• -isFirstMate [FALSE] Keep only alignments marked as first mate.

• -isMapped [TRUE] Keep only alignments that were mapped.

• -isMateMapped [TRUE] Keep only alignments with mates that mapped.

• -isPaired [TRUE] Keep only alignments that were sequenced as paired.

• -isProperPair [TRUE] Keep only alignments that passed PE resolution.

• -isPrimaryAlignment [TRUE] Keep only alignments marked as primary.

C.1.6 IS Merging and Collisions

create matrix –dbDataset ”matrix mldwas.mld was patients, sequence breastcancer.bc merge,

sequence qlam.cem reference” –columns sample,tissue,treatment,vector,enzyme –IS method

classic –bp rule 7 –collision –tsv –no xlsx

1. -dbDataset : Datasets to analyze (tables must be present on MySQL Database).

2. -columns: Indicates the columns for the final matrix output. Available fields

(from the association file): n LAM, tag, pool, tissue, sample, treatment, group name

and enzyme.
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3. -IS method : Specifies which method run to retrieve Integration Sites: ’classic’ or

’gauss’ (strand specific only). You’ll be able to tune ’classic’ through –bp rule

(default provided); ’gauss’ method has to be set-up through –interaction limit

and –alpha (no defaults provided for it).

• Classic: All reads that are in the same window are merged into a single

locus, represented by the mode in the window.

• Gauss: interaction limit states, de facto, the number of bin of the histogram

you get. Alpha states how many sigmas are equal to half-basepair. Some

examples: alpha = 1 means that sigma is half-bp long; then 3bp are long

6sigma, alpha = 0.5 means that sigma is 1-bp long.

4. -bp rule: Minimum number of empty base-pairs between reads belonging to

different cluster (also called Covered Bases Ensembles). If you chose ’classic’

method to retrieve IS, this number also sets the maximum dimension allowed

for a Covered Bases Ensemble (n+1 bases). Default option is ’3’, i.e. ’minimum 3

empty-bp between independent ensembles, an ensemble can span at most 4bp’.

Conversely, if you chose ’gauss’ method, it will be automatically set equal to

interaction limit (overriding your setting) and no limit of dimension will be set

for ensembles construction.

5. -collision: Produces ”collisions” between one dataset and a list of some others.

All datasets versus each other. For each dataset, over current, is hung at the end

of a column matrix containing for each integration, how many have been found

in comparison datasets. Each IS is compared between datasets with a radius

equal to bp rule+1.

6. -tsv : Produces output matrixes in tab-separated format (UTF-8 encoded).

7. -no xlsx : With this option no excel files are produced.

The program has also some default parameters like host (IP address to establish a

connection with the server that hosts DB, localhost), user (username to log into the

server you just chosen through, readonly), pw (password for the user you choose to

log through, readonlypswd), dbport (database port, 3306), query steps (number of

row simultaneously retrieved by a single query, 50000000), reference genome (specify

reference genome, hg19), strand aspecific (if called, strands will be merged together

instead of be treated separately), set radius (along with –collision option, here you

can set the maximum distance (i.e. loci difference) between two covered bases regarded

as ’colliding’, None), diagnostic (Excel output will be created without any frills but

equipped with specific formulas to perform output control, self-coherence and DB

coherence), statistics (statistical report will be created, equipped with graphs and
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many more features constantly developing (bioinfo-oriented). By default, this report

is an Excel Workbook file (*.xlsx) but a *.tsv version (less featured) is also available,

using –tsv option).

C.1.7 IS Annotation

annotate matrix [-m $IS MATRIX.TSV] [-t $TYPE] [-g $GTF FILE.GTF] [-o $OUT-

PUT DIR]

1. -m [IS MATRIX.TSV]: IS matrix file (tab-separated).

2. -t [TYPE]: vispa or γ-TRIS [93] Matrix file.

3. -g [GTF FILE.GTF]: Positions of all data items in a standard gene prediction

format (similar to a BED file)3.

4. -o [OUTPUT DIR]: Output directory.

The lines added to the GTF file for compatibility with repeats and mitochondrial
chromosome annotation:

chrM hg19_knownGene exon 1 368 0.000000 - . gene_id "uc004coq.4"; transcript_id "uc004coq.4";

chrM hg19_knownGene exon 651 674 0.000000 + . gene_id "uc022bqo.2"; transcript_id "uc022bqo.2";

chrM hg19_knownGene exon 1604 1634 0.000000 + . gene_id "uc004cor.1"; transcript_id "uc004cor.1";

chrM hg19_knownGene exon 1844 4264 0.000000 + . gene_id "uc004cos.5"; transcript_id "uc004cos.5";

chrM hg19_knownGene exon 5544 5566 0.000000 - . gene_id "uc022bqp.1"; transcript_id "uc022bqp.1";

chrM hg19_knownGene exon 5586 5606 0.000000 - . gene_id "uc022bqq.1"; transcript_id "uc022bqq.1";

chrM hg19_knownGene exon 5691 5714 0.000000 - . gene_id "uc022bqr.1"; transcript_id "uc022bqr.1";

chrM hg19_knownGene exon 5905 7439 0.000000 + . gene_id "uc031tga.1"; transcript_id "uc031tga.1";

chrM hg19_knownGene exon 7587 7982 0.000000 - . gene_id "uc022bqs.1"; transcript_id "uc022bqs.1";

chrM hg19_knownGene exon 15504 15888 0.000000 - . gene_id "uc022bqs.1"; transcript_id "uc022bqs.1";

chrM hg19_knownGene exon 7587 9208 0.000000 + . gene_id "uc011mfi.2"; transcript_id "uc011mfi.2";

chrM hg19_knownGene exon 8367 8472 0.000000 - . gene_id "uc022bqt.1"; transcript_id "uc022bqt.1";

chrM hg19_knownGene exon 13450 14149 0.000000 - . gene_id "uc022bqt.1"; transcript_id "uc022bqt.1";

chrM hg19_knownGene exon 10060 10404 0.000000 + . gene_id "uc022bqu.2"; transcript_id "uc022bqu.2";

chrM hg19_knownGene exon 10471 12138 0.000000 + . gene_id "uc004cov.5"; transcript_id "uc004cov.5";

chrM hg19_knownGene exon 10761 11231 0.000000 - . gene_id "uc031tgb.1"; transcript_id "uc031tgb.1";

chrM hg19_knownGene exon 13979 14149 0.000000 - . gene_id "uc031tgb.1"; transcript_id "uc031tgb.1";

chrM hg19_knownGene exon 12208 12264 0.000000 + . gene_id "uc004cow.2"; transcript_id "uc004cow.2";

chrM hg19_knownGene exon 12908 14149 0.000000 + . gene_id "uc004cox.4"; transcript_id "uc004cox.4";

chrM hg19_knownGene exon 14675 14698 0.000000 - . gene_id "uc022bqv.1"; transcript_id "uc022bqv.1";

chrM hg19_knownGene exon 14857 15888 0.000000 + . gene_id "uc022bqw.1"; transcript_id "uc022bqw.1";

chrM hg19_knownGene exon 15960 16024 0.000000 - . gene_id "uc022bqx.1"; transcript_id "uc022bqx.1";

chrM hg19_knownGene exon 15999 16571 0.000000 + . gene_id "uc004coz.1"; transcript_id "uc004coz.1";

chrR hg19_knownGene exon 1 99999999 . + . gene_id "REPEAT"; transcript_id "uc000000.0";

3Downloadable from: https://genome.ucsc.edu/cgi-bin/hgTables but with added lines with chrM
and repeats description to annotation.
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C.2 ISAnalytics

C.2.1 Example of Usage

########################################################################

## MLD Molecular Follow Up, sorted cells ##

## R Script based on ISAnalytics (v0.40) ##

## Date: Rev1: 18 May 2016 ##

## Author: Giulio Spinozzi ##

########################################################################

library(XLConnect)

library(ISAnalytics)

##### ========= MLD01, pipe 3.0.8d latest FU ====== #######

isset <- ISDataSetFromXlsx("IA_mldso40cellm_mld01.xlsx")

nm <- colnames(isset)

# identify collisions

patient <- colnames(isset)[colnames(isset) %in% grep("all", colnames(isset),

value=TRUE)]

collisions <- colnames(isset)[colnames(isset) %in% grep("Collision",

colnames(isset), value=TRUE)]

isset <- calcolateColAbundance(isset, tot.in.label = TRUE)

isset <- annotateCollisions(isset, with=patient, against=collisions,

assay="abundance")

# remove collisions

isset <- removeCollisions(isset, with=patient, against=collisions,

remove.extra.columns = TRUE)

writeISA(isset, "mld01.countsNoCollisions.tsv", assay= "counts")

# compute abundance by source and time point (and write both the

percentage and the count resulting files)

isset <- calcolateColAbundance(isset, normalize.by.source=TRUE)

writeISA(isset, "mld01.abundanceBySource.tsv", assay= "abundance")

# ISAnalytics BoxPlot

pdf("mld01.abundanceBySource.bplot.ISA.pdf", height=8, width=18)

boxplotOutliers(isset, assay="abundance", samples="^CD34")

boxplotOutliers(isset, assay="abundance", samples="^CD14_PB")

boxplotOutliers(isset, assay="abundance", samples="^CD15_PB")

boxplotOutliers(isset, assay="abundance", samples="^CD19_PB")

boxplotOutliers(isset, assay="abundance", samples="^CD3_PB")

dev.off()

# compute sample abundance (column percentage) and write results

isset <- calcolateColAbundance(isset, tot.in.label = FALSE)

writeISA(isset, "mld01.abundanceBySampleTP.tsv", assay= "abundance")

# compute sample abundance (column percentage) and write results with

sequence count filter

isset <- scFilter(isset, threshold = 2)

isset <- calcolateColAbundance(isset, tot.in.label = FALSE,

assay = "scfilter2",output.assay="abundanceSCfilter2")

writeISA(isset, "mld01.abundanceBySampleTP.sc3filter.tsv",

assay= "abundanceSCfilter2")

C.2.2 Example of Abel R Package Usage

########################################################################

## MLD Molecular Follow Up, sorted cells ##

## CIS analysis with Abel method V2 (Lenti distr.) ##

## Date: Rev1: 120 May 2016 ##

## Author: Giulio Spinozzi ##

########################################################################

load("/AbelV2/CISALL1_3-0.RData")

mld01.iss <- "mld01.list"

geneshg19 = "/AbelV2/gene_ucsc_hg19.txt"

addrgene <- "/AbelV2/gene_ucsc_hg19.txt"

##### MLD01 #####

CisLenti(dat.is=mld01.iss, dat.gene=geneshg19, CHR.hum_hg19, vd30, 150,
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10, "c")

# do classic CIS analysis, with clusters

Cluster(dat.is=mld01.iss, dat.res="cis.abel.out.mld01.csv", vd30, 150)
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C.3 Causal Modeling

C.3.1 TRONCO Script for Breast Cancer Progression with CAPRI

R script to generate the progression DAGs for pre/post -treatment conditions with
breast cancer cell line BT474 for drug resistance studies.

################################################################################

###

### GIULIO SPINOZZI

###

### @ Last update: 4 February 2016

### @ Revision: 1

### @ Contact: spinozzi.giulio@hsr.it

### @ Institute: HSR TIGET

### DISCo

###

################################################################################

#set the working directory

work.dir = ’~/Desktop/reconstruction/tool_stable’;

setwd(work.dir);

################################################################################

#datasets B2L

file.dataset.breast = "data/bt474-data-pre-treatment.txt";

#file.dataset.breast = "data/bt474-data-post-treatment.txt";

file.types.breast = "data/bt474-types.txt";

file.events.breast = "data/bt474-events-pre-treatment.txt";

#file.events.breast = "data/bt474-events-post-treatment.txt";

################################################################################

#load TRONCO (with CAPRI) package

invisible(sapply(list.files(pattern="[.]R$",path="R",full.names=TRUE),source));

#STARTING EXAMPLE OVARIAN CANCER

#reset all the settings

reset();

#load the types

types.load(file.types.breast);

#load the events

events.load(file.events.breast);

#load the dataset and print it

data.load(file.dataset.breast);

str(data.values);

#load required library

library(Rgraphviz);

#reconstruct the topology with CAPRI and print it

set.seed(12345);

topology = tronco.capri(data.values,nboot=1000);

print(topology);

#plot the resulting topology

tronco.plot(topology,node.th.on=TRUE);

#tronco.plot(topology,primafacie=TRUE,node.th.on=TRUE);

#perform non-parametric and parametric bootstrap

set.seed(12345);

topology <- tronco.bootstrap(topology,type="non-parametric",nboot=100);

#plot the topology

tronco.plot(topology,confidence=TRUE,node.th.on=TRUE);
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Anticancer Drug Resistance

Supplementary Information

D.1 Test of Mutual Exclusivity with Mutex

D.1.1 BT474: Pre-Treatment

Score q-val Members

0.05 0.6 KIF5B CTNND1 EFNA5

0.05194805194805195 0.315 PBX1 PSMD3 CCNG2

0.09491884262526465 0.6966666666666667 MYO9B EFNA5 CTNND1

0.10079575596816977 0.565 GRIK1 EFNA5 CTNND1

0.10771302173494902 0.5 PKN2 CTNND1 MAP4K3

0.1093 0.425 FOXA1 CTNND1 CUL3

0.1093 0.36428571428571427 FER CTNND1 CUL3

0.1189 0.38125 WDR75 EFNA5 CTNND1

0.12413394919168591 0.3611111111111111 MAPK1 ANGPT1

0.12413394919168591 0.325 ANGPT1 FN1

0.12413394919168591 0.29545454545454547 GSK3B ANGPT1

0.12413394919168591 0.2708333333333333 FN1 ANGPT1

0.12413394919168591 0.25 NF1 ANGPT1

0.15476190476190477 0.3364285714285714 EFNA5 NBEA

0.15476190476190477 0.314 NBEA EFNA5

0.17988525143435707 0.375625 CUL3 GNA13

0.17988525143435707 0.35352941176470587 GNA13 CUL3

0.2702702702702703 0.7027777777777778 CSNK1D ANGPT1

0.2777777777777778 0.7042105263157895 TRAF2 DCC

0.2777777777777778 0.669 DCC TRAF2

0.2815926139642239 0.6476190476190476 RIPK2 CTNND1 MAP2K4 MAP4K3

0.2815926139642239 0.6181818181818182 VAV3 CTNND1 MAP4K3

0.2815926139642239 0.591304347826087 CDH2 CTNND1 MAP2K4 MAP4K3

0.2885670088595134 0.5983333333333333 BCL2 PPP2CB PSMD3

0.2925 0.5824 CEP290 CTNND1

0.2925 0.56 SMYD3 CTNND1

0.2925 0.5392592592592593 SOS2 CTNND1

0.2925 0.52 PRKACB CTNND1 PSMD3

0.2925 0.5020689655172415 AHR CTNND1

0.2925 0.48533333333333334 CNTN1 CTNND1

0.2925 0.4696774193548387 MIR1297 CTNND1

0.2925 0.455 CTNND1 CEP290

0.3035594358629953 0.4703030303030303 RPS6KB1 ANGPT1 MAP2K4

0.3083612040133779 0.4697058823529412 PVRL3 CTNND1 MAP2K4

0.3083612040133779 0.4562857142857143 CBLB CTNND1 MAP2K4

0.3083612040133779 0.4436111111111111 CDK17 CTNND1 MAP2K4

0.3179791976225854 0.4508108108108108 MAP2K4 ANGPT1 TAOK3

0.3179791976225854 0.43894736842105264 TAOK3 ANGPT1 MAP2K4

0.3225806451612903 0.4415384615384615 NDST4 FN1

0.3333333333333333 0.4575 MIR622 CUL3

0.3333333333333333 0.44634146341463415 PPP2CB CUL1 PSMD3

0.3333333333333333 0.4357142857142857 SUPT3H CUL1 PSMD3 CCNG2
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0.35219399538106233 0.4679069767441861 PSMD3 ANGPT1

0.36905582356995176 0.49500000000000005 NUP160 PPP2CB PSMD3

0.37037037037037035 0.49444444444444446 ITCH PSMD3

0.38095238095238093 0.5006521739130435 NME2 ESR1 CTNND1

0.38095238095238093 0.49000000000000005 WWC2 ESR1

0.38095238095238093 0.47979166666666667 ESR1 WWC2

0.4153 0.5491836734693878 MIR30B MIR1297

0.4284559417946645 0.5672 TADA2A EHMT1 MEN1

0.4284559417946645 0.556078431372549 EHMT1 TADA2A MEN1

0.4284559417946645 0.5453846153846154 MEN1 EHMT1 TADA2A

0.4324712643678161 0.5443396226415095 LAMA2 EFNA5

0.4324712643678161 0.5342592592592593 ZMYM2 EFNA5

0.4324712643678161 0.5245454545454545 PTPRA EFNA5

0.4345 0.5208928571428572 GRIN1 EFNA5

0.4546 0.5631578947368421 COL12A1 LAMA2

0.5263157894736842 0.7153448275862069 TRPC6 WASL

0.5263157894736842 0.7032203389830509 WASL TRPC6

0.5270903010033445 0.6925 TRPC4AP TRPC6 MAP2K4

0.5277777777777778 0.6827868852459016 LPAR4 DCC

0.5277777777777778 0.6717741935483871 MARK3 DCC

0.5401 0.6796825396825397 BRAF CTNND1 LRRK2

0.5401 0.6690625 SPOP CTNND1

0.5401 0.6587692307692308 CEACAM6 CTNND1 FN1

0.5401 0.6487878787878788 MED1 CTNND1

0.5401 0.6391044776119403 CAPN1 CTNND1

0.5401 0.6297058823529412 FGF12 CTNND1

0.5401 0.6205797101449275 IQGAP1 CTNND1 MAP2K4

0.5401 0.6117142857142858 TRIM37 CTNND1 MAP2K4

0.5401 0.6030985915492958 LRPPRC GSK3B CTNND1

0.5401 0.5947222222222223 HSPD1 GSK3B CTNND1

0.5510204081632653 0.6031506849315069 RICTOR TRDN

0.5510204081632653 0.595 TSC2 RICTOR

0.5510204081632653 0.5870666666666667 TRDN RICTOR

0.5714285714285714 0.6251315789473684 TLK1 CTNND1 CBLB

0.5882352941176471 0.6535064935064935 EPHA5 EFNA5

0.5888290713324361 0.645897435897436 B3GALT6 MAPK1 CTNND1

0.5888290713324361 0.6377215189873418 MIR181A1 MAPK1 CTNND1

0.6009209516500383 0.6515 PIAS1 NLK

0.6009209516500383 0.6434567901234568 NLK PIAS1

0.6135394456289979 0.6587804878048781 MAP4K5 TLK1

0.6270270270270271 0.6860240963855422 WDR3 NBEA

0.632183908045977 0.6898809523809524 KIF21A EFNA5

0.6414 0.7003529411764706 MIR30D MIR30B

0.6585365853658537 0.7309302325581395 HSF1 CUL3 MTOR

0.6758 0.768735632183908 ACAP2 CTNND1

0.6758 0.7599999999999999 CDC42BPA CTNND1

0.6875 0.7811235955056179 DSCAM TRAF2 MAP2K4

0.6875418620227729 0.7724444444444444 ALMS1 GSK3B

0.6875418620227729 0.7639560439560439 RAB6A GSK3B

0.7 0.7860869565217391 CUL1 NLK CCNG2

0.7142857142857143 0.8186021505376344 ACTR3 ARHGAP39

0.7142857142857143 0.8098936170212766 NR2F1 WWC2

0.7142857142857143 0.8013684210526315 PTP4A1 ARHGAP6

0.7142857142857143 0.7930208333333333 ARHGAP6 PTP4A1

0.7142857142857143 0.7848453608247422 ARHGAP39 ACTR3

0.7251908396946565 0.7911224489795918 RPS6KA6 AHR

0.7589491916859122 0.842929292929293 GRB7 ANGPT1

0.7647058823529411 0.8454 EPHA3 MIR30B EFNA5

0.7684021543985637 0.8428712871287128 HTR2B LPAR4

0.7692307692307693 0.8451960784313725 ZNFX1 UBE3A

0.7692307692307693 0.8369902912621359 KDM2A EHMT1 MEN1

0.7692307692307693 0.8289423076923076 UBE3A ZNFX1

0.7712 0.8229523809523809 PGR CTNND1

0.8125 0.8735849056603773 CCNI ARMC8 CCNG2

0.8125 0.8654205607476635 MAP4K3 ARMC8

0.8125 0.8574074074074074 ARMC8 MAP4K3

0.8125 0.8495412844036697 NDUFV2 ARMC8

0.8333333333333334 0.8905454545454545 NUP35 KPNA4

0.8333333333333334 0.8825225225225225 NUP205 P4HB

0.8333333333333334 0.874642857142857 MYO3A MAP4K3 CTNND1

0.8333333333333334 0.8669026548672566 P4HB NUP205

0.8333333333333334 0.859298245614035 KPNA4 NUP35

0.8368 0.8543478260869565 MIR548A3 PSMD3

0.8368 0.8469827586206896 PDCD6IP PSMD3

0.8368 0.8397435897435898 UBE2E1 PSMD3 TADA2A

0.8581560283687943 0.8641525423728813 TJP1 TRDN
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0.864406779661017 0.8659663865546218 ARHGAP32 ARHGAP39

0.8666666666666667 0.86475 CCNG2 CTNND2

0.8666666666666667 0.8576033057851239 UIMC1 CTNND2

0.8666666666666667 0.8505737704918033 CTNND2 CCNG2

0.8818681318681318 0.8625203252032521 VAPA VAPB

0.8818681318681318 0.8555645161290323 VAPB VAPA

0.8821603927986906 0.84904 ITGAV COL12A1

0.8928571428571429 0.8597619047619047 MIR612 PGR

0.8982 0.860236220472441 SGK3 MIR30B

0.8982 0.853515625 SH3GLB1 MIR30B

0.906801007556675 0.8604651162790697 SDCCAG8 ALMS1

0.9090909090909091 0.8746923076923077 PIK3C3 CTNND1 MAP4K3

0.9090909090909091 0.8680152671755724 PRIM2 MCM8

0.9090909090909091 0.8614393939393938 EPHA6 MIR30B

0.9090909090909091 0.8549624060150376 PHF16 MEN1

0.9090909090909091 0.8485820895522388 MCM8 PRIM2

0.9090909090909091 0.8422962962962962 TBL1XR1 MEN1

0.9090909090909091 0.8361029411764705 CAMK2D ANGPT1

0.9090909090909091 0.83 CENPQ NUP160

0.9130434782608695 0.8298550724637681 FOXH1 PIAS1

0.92 0.8410071942446044 MTOR RPA3

0.92 0.8350000000000001 RPA3 MTOR

0.9230769230769231 0.8370212765957447 ERBB2 MIR30B

0.9230769230769231 0.8311267605633803 HLF MIR30B

0.9268 0.8307692307692307 RAB14 CTNND1

0.9268 0.825 MYO5A CTNND1

0.9268 0.8193103448275861 SOCS6 CTNND1

0.9268 0.8136986301369863 FOXP1 CTNND1

0.9268 0.8081632653061225 NBN CTNND1

0.9268 0.8027027027027027 HHAT CTNND1

0.9268 0.7973154362416107 ARID2 CTNND1

0.9268 0.7919999999999999 MAPK8IP3 CTNND1 LRRK2

0.9337027914614121 0.8071523178807947 SEMA3A EFNA5

0.9411764705882353 0.8196052631578947 MIR618 PIAS1

0.9722222222222222 0.8909803921568628 LPHN3 DCC

0.9722222222222222 0.8851948051948052 FGF10 DCC EFNA5

0.9722222222222222 0.8794838709677419 GPR37 DCC

0.975609756097561 0.8801923076923077 LRRK2 RICTOR

0.9789260969976905 0.8822929936305733 MMP16 ANGPT1

0.98328025477707 0.884493670886076 TNFSF13B TRAF2

0.9858718125430738 0.8825157232704403 CPSF1 NUP160

0.9906 0.8885 PCDH20 CTNND1

0.9959218112783013 0.9045962732919254 STXBP4 PPP2CB

0.9977744807121661 0.9115432098765431 ADCY9 FOXA1

0.9979 0.9068098159509203 OSMR CTNND1

0.9979 0.901280487804878 PHLPP1 CTNND1

0.99822695035461 0.8986060606060606 SYT1 TRDN

1.0 1.3884939759036146 MED24 TBL1XR1

1.0 1.380179640718563 TPD52 CAMK2D

1.0 1.3719642857142857 ERO1LB CTNND2

1.0 1.363846153846154 KIFAP3 PBX1

1.0 1.3558235294117646 STAG1 CENPQ

1.0 1.3478947368421053 PTPRK CTNND1

1.0 1.3400581395348838 UBR4 MTOR

1.0 1.3323121387283237 MED13 MAPK1

1.0 1.3246551724137932 SCYL3 FOXA1

1.0 1.3170857142857144 UBE2J2 CTNND1

1.0 1.3096022727272727 OR4E2 DCC

1.0 1.3022033898305085 MED17 MAPK1

1.0 1.2948876404494383 NEK7 CTNND1

1.0 1.2876536312849163 ARHGEF26 GRIK1

1.0 1.2805 AHCTF1 CENPQ

1.0 1.2734254143646409 RIMS1 TRPC6

1.0 1.2664285714285715 SKA2 CENPQ

1.0 1.2595081967213115 PLA2G4A TRDN

1.0 1.2526630434782609 GBE1 GSK3B

1.0 1.245891891891892 PDE11A XRN1

1.0 1.2391935483870968 GUCY1A2 ESR1

1.0 1.2325668449197862 FANCB PDCD6IP

1.0 1.2260106382978724 PGAP1 MAPK1

1.0 1.2195238095238097 SPEN CAMK2D

1.0 1.2131052631578947 ARHGEF12 GRIK1

1.0 1.2067539267015708 ARL4A PBX1

1.0 1.20046875 GULP1 ACAP2

1.0 1.1942487046632124 EXOC3 CTNND1

1.0 1.1880927835051547 PDS5A SKA2
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1.0 1.182 OR2F1 DCC

1.0 1.175969387755102 CDH18 CTNND2

1.0 1.1700000000000002 THRB MIR612

1.0 1.164090909090909 GRIK2 EFNA5

1.0 1.1582412060301508 KNTC1 NUP160

1.0 1.15245 XRN1 PDE11A

1.0 1.1467164179104479 CSE1L BCL2

1.0 1.141039603960396 HCN1 ADCY9

1.0 1.1354187192118228 SLC6A15 MIR612

1.0 1.1298529411764706 ATG3 SH3GLB1

1.0 1.1243414634146343 NDST3 NDST4

1.0 1.118883495145631 APLF CAMK2D

1.0 1.1134782608695653 ARID4B MIR622

1.0 1.108125 STXBP5L CTNND1

1.0 1.1028229665071771 ANO3 TBL1XR1

1.0 1.0975714285714286 PIGU MAPK1

1.0 1.0923696682464454 RFWD2 WDR3

1.0 1.0872169811320755 NCOA3 EHMT1

1.0 1.082112676056338 NCOA6 MEN1

1.0 1.0770560747663551 ARHGAP42 VAV3

1.0 1.072046511627907 KDM3A MEN1

1.0 1.0670833333333334 PDC MIR612

D.1.2 BT474: Post-Treatment

Score q-val Members

0.054945054945054944 1.0 AHCTF1 NSL1

0.054945054945054944 0.5 NSL1 AHCTF1

0.17144060657118787 2.54 PVRL3 FOXA1

0.17144060657118787 1.905 FOXA1 PVRL3

0.23809523809523808 3.19 TCF3 CAV2

0.23809523809523808 2.658333333333333 CAV2 TCF3

0.3074291300097752 3.775714285714286 GNB1 COL12A1

0.3074291300097752 3.30375 COL12A1 GNB1

0.3125 3.058888888888889 PBX1 CAV2

0.3225806451612903 3.005 GALNT13 GALNT3

0.3225806451612903 2.731818181818182 GALNT3 GALNT13

0.3333333333333333 2.7175 CAB39L PRKAA1

0.3333333333333333 2.5084615384615385 PRKAA1 CAB39L

0.38461538461538464 2.942142857142857 SLC8A1 STX19

0.38461538461538464 2.746 STX19 SLC8A1

0.4166666666666667 2.92375 CUL3 FOXA1 HSF1

0.4242424242424242 2.7852941176470587 C2 MBL2

0.4242424242424242 2.6305555555555555 MBL2 C2

0.43478260869565216 2.6310526315789473 GLI3 SLC8A1

0.45743329097839897 2.663 NRK CLK4

0.46627131208302447 2.5828571428571427 CORO1C EML4

0.46627131208302447 2.4654545454545453 EML4 CORO1C

0.4749455337690632 2.3982608695652172 MAP3K7 CLK4

0.4749455337690632 2.2983333333333333 CLK4 MAP3K7

0.4749455337690632 2.2064 TAB2 MAP3K7

0.47619047619047616 2.187307692307692 RFWD2 EML4

0.5 2.278888888888889 PGR YES1

0.5 2.1975000000000002 YES1 PGR

0.5166177908113392 2.176896551724138 WDR26 GNB1

0.5166177908113392 2.1043333333333334 VCP EML4 GNB1

0.5166177908113392 2.036451612903226 PRICKLE2 GNB1

0.5263157894736842 2.06 CTCF PGR

0.5416666666666666 2.053030303030303 ARMC1 PVRL3

0.5714285714285714 2.1644117647058825 KITLG IL6ST

0.5769230769230769 2.1228571428571428 WDR64 EML4

0.5853658536585366 2.1005555555555557 P2RY1 OR2A5

0.5853658536585366 2.043783783783784 OR2A5 P2RY1

0.6 2.108421052631579 RPS6KA3 PVRL3

0.6025641025641025 2.058205128205128 HUWE1 PRKAA1

0.6190476190476191 2.0695 MED13 MED1

0.6190476190476191 2.0190243902439025 TP63 MED1

0.6190476190476191 1.970952380952381 MED1 TP63

0.6190476190476191 1.9251162790697676 MED13L MED1

0.625 1.9506818181818182 LPHN3 P2RY1 GRM3

0.625 1.9073333333333333 CUL5 MIB2

0.625 1.8658695652173913 PIK3CB GNB1

0.625 1.8261702127659574 IRS4 PRKAA1

0.625 1.788125 MIB2 CUL5
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0.625 1.7516326530612245 RPL8 EIF1AX

0.625 1.7166 EIF1AX RPL8

0.625 1.6829411764705882 NCOR1 MED1

0.625 1.650576923076923 PRKCA GNB1

0.6412157153446998 1.677358490566038 RAE1 EML4

0.6486486486486487 1.6725925925925924 COL4A5 COL12A1

0.6486486486486487 1.642181818181818 LEPREL1 COL12A1

0.6494178525226391 1.6155357142857143 PIK3C2A IL6ST

0.6494178525226391 1.5871929824561404 IL6ST PIK3C2A

0.6494178525226391 1.5598275862068964 YWHAE IL6ST

0.65 1.5359322033898306 RICTOR PIP4K2A

0.65 1.5103333333333333 PIP4K2A RICTOR

0.65625 1.5034426229508195 ZZZ3 SETDB2 CHD3

0.6666666666666666 1.5651612903225807 ZWINT ESCO2

0.6666666666666666 1.5403174603174603 CHD3 ARID2 SETDB2

0.6666666666666666 1.51625 ESCO2 ZWINT

0.6666666666666666 1.492923076923077 SETDB2 ARID2 CHD3

0.6756756756756757 1.4903030303030302 STAM2 HUWE1

0.6799601196410767 1.4804477611940299 NEK10 PVRL3

0.6799601196410767 1.4586764705882354 PTPN2 PVRL3

0.6799601196410767 1.4375362318840579 GRB7 PVRL3

0.6842105263157895 1.4345714285714286 TADA1 GATAD2B

0.6842105263157895 1.4143661971830985 GATAD2B TADA1

0.6875 1.4068055555555556 SMAD2 IL6ST

0.7073170731707317 1.4426027397260275 GRM3 OR2A5 P2RY1

0.7142857142857143 1.4925675675675676 XRCC5 PAWR

0.7142857142857143 1.4726666666666668 DCAF6 EML4

0.7142857142857143 1.4532894736842106 RPS6KB1 IL7

0.7142857142857143 1.4344155844155844 PAWR XRCC5

0.7291666666666666 1.458974358974359 TSC2 ARMC1

0.7291666666666666 1.440506329113924 RAPGEF1 ARMC1

0.7333333333333333 1.442125 ARHGEF10L ARHGEF38

0.7333333333333333 1.424320987654321 ARHGEF38 ARHGEF10L

0.7407407407407407 1.435609756097561 TRAF7 WDR26

0.7407407407407407 1.4183132530120481 KPNA1 WDR26

0.7619047619047619 1.4714285714285713 SIAH2 TCF3

0.7676214546475709 1.4728235294117646 WDR90 FOXA1 EML4

0.7676214546475709 1.4556976744186045 HLF FOXA1 IL6ST

0.7676214546475709 1.4389655172413793 WDR24 FOXA1 EML4

0.7676214546475709 1.4226136363636364 TRAF2 FOXA1 IL7

0.7676214546475709 1.406629213483146 EHMT2 FOXA1 MED1

0.7676214546475709 1.391 ARID2 FOXA1

0.7676214546475709 1.3757142857142857 KAT7 FOXA1 MED1

0.7692307692307693 1.4051086956521741 PIK3CA IL6ST

0.7692307692307693 1.3900000000000001 STAG1 ESCO2 NSL1

0.7692307692307693 1.375212765957447 IL7 PIK3CA

0.7692307692307693 1.3607368421052632 RPL28 EIF1AX

0.7692307692307693 1.3465625 TBL1XR1 MME

0.7692307692307693 1.3326804123711342 MME TBL1XR1

0.7692307692307693 1.3190816326530612 CDK11B PAWR

0.7692307692307693 1.305757575757576 SOCS7 IL7

0.7777777777777778 1.3214 ANO6 MME

0.782608695652174 1.3233663366336634 YWHAQ IL6ST

0.7904656319290465 1.333235294117647 YWHAB WDR26

0.8 1.358155339805825 BAZ2A ARID2

0.8096304591265397 1.3692307692307693 MIR16-2 MAP3K7 TAB2

0.8125 1.369142857142857 ITSN2 PIP5K1B ARHGEF38

0.8125 1.3562264150943395 PIP5K1B FOXA1

0.8125 1.3435514018691588 FARP2 PIP5K1B ARHGEF38

0.8125 1.3311111111111111 GULP1 PIP5K1B

0.8125 1.3188990825688072 TLN2 PIK3CB

0.8125 1.3069090909090908 ARHGAP15 PIP5K1B

0.8125 1.295135135135135 DCAF8L1 PIP5K1B

0.8163265306122449 1.2949107142857144 SH2D4B KITLG

0.8163265306122449 1.2834513274336283 EPHA7 KITLG ARHGEF38

0.8163265306122449 1.2721929824561404 EPHA6 KITLG ARHGEF38

0.8181818181818182 1.267304347826087 ETF1 RPL8

0.8214285714285714 1.2650862068965518 TAOK1 TAB2

0.8214285714285714 1.2542735042735043 BMP5 TAB2

0.8214285714285714 1.24364406779661 ITCH TAB2

0.8235294117647058 1.2408403361344538 ARHGAP6 ARHGEF38

0.8292682926829268 1.2485833333333334 OR4E2 GRM3 P2RY1

0.830423940149626 1.2400826446280993 FOSL1 SLC8A1

0.8333333333333334 1.2850000000000001 HTR1B GRM3 P2RY1

0.8333333333333334 1.2745528455284554 BRAF TAB2 RIPK2

0.8333333333333334 1.2642741935483872 SRGAP1 ARHGEF38
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0.8333333333333334 1.2541600000000002 LRP5 CUL3

0.8333333333333334 1.2442063492063493 IFT80 EML4

0.8333333333333334 1.2344094488188977 WASL ARHGEF38

0.8333333333333334 1.224765625 BAI3 GRM3 P2RY1

0.8333333333333334 1.2152713178294574 GRM8 GRM3 P2RY1

0.8406346531873069 1.2218461538461538 ROCK1 FOXA1

0.8406346531873069 1.2125190839694657 UBE2J2 FOXA1

0.8406346531873069 1.2033333333333334 ARHGEF4 FOXA1

0.8406346531873069 1.1942857142857144 TBC1D4 FOXA1

0.8406346531873069 1.1853731343283582 CAPN1 FOXA1

0.8406346531873069 1.1765925925925926 NBN FOXA1

0.8406346531873069 1.1679411764705883 RRAS2 FOXA1

0.8406346531873069 1.1594160583941606 HS3ST6 FOXA1

0.8406346531873069 1.1510144927536232 MIR1206 FOXA1

0.8406346531873069 1.1427338129496403 RIT2 FOXA1

0.8406346531873069 1.1345714285714286 MCF2L FOXA1

0.8406346531873069 1.1265248226950355 LPXN FOXA1

0.8406346531873069 1.1185915492957748 DMPK FOXA1

0.8406346531873069 1.1107692307692307 AXIN1 FOXA1

0.8406346531873069 1.1030555555555557 P4HB FOXA1

0.8406346531873069 1.095448275862069 UBE2W FOXA1

0.8406346531873069 1.087945205479452 MOB1A FOXA1

0.8421052631578947 1.0861904761904762 CCNL2 CTCF

0.84375 1.0836486486486485 PRPF4B CLK4

0.8461538461538461 1.0904026845637584 SCYL2 NRK

0.8461538461538461 1.0831333333333333 CNTRL RIPK2

0.8461538461538461 1.0759602649006623 LEMD3 VRK2

0.8461538461538461 1.0688815789473685 VRK2 LEMD3

0.8461538461538461 1.0618954248366013 NFKB1 IL6ST

0.8461538461538461 1.055 RIPK2 CNTRL

0.8565493646138808 1.0735483870967741 ERBB4 PIP5K1B GNB1

0.8565493646138808 1.0666666666666667 ERBB2 PIP5K1B GNB1

0.8565493646138808 1.0598726114649681 PKP4 PIP5K1B GNB1 ARHGEF38

0.8565493646138808 1.0531645569620254 EFNA5 CNTRL GNB1

0.8565493646138808 1.0465408805031446 SLIT2 PIP5K1B GNB1 ARHGEF38

0.8565493646138808 1.04 FGF10 PIP5K1B GNB1 ITSN2

0.8565493646138808 1.0335403726708075 ARHGAP39 PIP5K1B ARHGEF38 GNB1

0.8571428571428571 1.038641975308642 NCOA3 MED1

0.8571428571428571 1.0322699386503067 TRPC3 IL6ST

0.8648648648648649 1.045731707317073 MYBL1 HUWE1

0.8666666666666667 1.0484848484848486 AURKA TNS3

0.8666666666666667 1.0421686746987953 TNS3 AURKA

0.8666666666666667 1.035928143712575 PUF60 STAM2 NOTCH1

0.8695652173913043 1.0360119047619047 PTPRK NOTCH1

0.8695652173913043 1.0298816568047338 NOTCH1 PTPRK

0.8813278008298755 1.0562352941176472 NOX4 CAPN1

0.8823529411764706 1.0553801169590644 PSMD1 PAWR

0.8947368421052632 1.0825581395348836 JMJD1C TADA1

0.8947368421052632 1.076300578034682 CEP192 CDK11B

0.8947368421052632 1.0701149425287355 CEP63 CEP192

0.90625 1.0946285714285715 XBP1 PIP5K1B

0.9090909090909091 1.1427272727272728 TGFBR1 AXIN1

0.9090909090909091 1.136271186440678 HGF IL6ST

0.9090909090909091 1.1298876404494382 GRIK2 KITLG ARHGEF38

0.9090909090909091 1.1235754189944134 NCOA1 SLC8A1 CDK11B

0.9090909090909091 1.1173333333333333 GALNT7 GALNT13

0.9090909090909091 1.111160220994475 LHCGR OR2A5

0.9090909090909091 1.1050549450549452 PRDM9 SETDB2 CHD3

0.9090909090909091 1.099016393442623 SKA2 ESCO2 NSL1

0.9090909090909091 1.0930434782608696 WDHD1 EML4

0.9090909090909091 1.0871351351351353 TRPC6 SLC8A1

0.9090909090909091 1.0812903225806452 EPHA5 PIP5K1B ARHGEF38

0.9090909090909091 1.0755080213903743 ROBO1 PIP5K1B PTPRK

0.9090909090909091 1.0697872340425532 PSMA1 CUL3 PSMD1

0.9090909090909091 1.0641269841269843 UBE2H UBE2J2

0.9090909090909091 1.0585263157894738 CTNND2 ARHGEF38 GNB1

0.9102564102564102 1.053717277486911 CUL4A PRKAA1

0.9102564102564102 1.0482291666666665 WWP1 PRKAA1

0.9166666666666666 1.066943005181347 STRN FOXA1 GNB1

0.9166666666666666 1.061443298969072 ABI1 WASL

0.9166666666666666 1.0559999999999998 CSTF1 CORO1C

0.9166666666666666 1.0506122448979591 PLCB4 GNB1 SLC8A1

0.9166666666666666 1.045279187817259 ECT2 MCF2L

0.9230769230769231 1.0596464646464647 MIR622 CUL3

0.9230769230769231 1.054321608040201 CSNK1D CUL3

0.9230769230769231 1.04905 BMP2K PRKAA1
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0.9230769230769231 1.0438308457711443 YAP1 PRKAA1

0.9230769230769231 1.0386633663366336 SCNN1D STX19

0.9230769230769231 1.0335467980295567 PDGFRA PRKAA1

0.9230769230769231 1.0284803921568628 RAB5A AXIN1

0.9230769230769231 1.0234634146341464 ANAPC11 CSNK1D

0.9230769230769231 1.018495145631068 MSL2 CSNK1D

0.9230769230769231 1.0135748792270531 AKT3 PRKAA1

0.9230769230769231 1.0087019230769232 NFIA PRKAA1

0.9259259259259259 1.0093301435406699 EML5 WDR26

0.9285714285714286 1.0146190476190475 TRIM37 GNB1 GATA3

0.9333333333333333 1.022132701421801 OR2F1 OR2A5 CALCRL

0.9375 1.0266509433962265 HSF1 XRCC5

0.9375 1.021830985915493 MIR181A1 SMAD2

0.9375 1.017056074766355 HSPD1 LAMC1

0.9375 1.012325581395349 TANK XRCC5

0.9375 1.007638888888889 LAMC1 COL4A5

0.9375 1.0029953917050691 VPS37A EIF1AX

0.9411764705882353 1.0085321100917433 SYMPK CSTF1

0.9473684210526315 1.0208675799086757 RARB CTCF

0.9512195121951219 1.0248181818181819 VCAM1 PIP4K2A

0.9565217391304348 1.0365610859728507 RAB13 GLI3

0.9599217986314761 1.04009009009009 RYR3 GNB1

0.9599217986314761 1.0354260089686098 ARHGEF26 GNB1

0.9599217986314761 1.0308035714285715 DYNLL2 GNB1

0.9599217986314761 1.0262222222222221 NUP54 GNB1

0.9599217986314761 1.0216814159292036 RASAL2 GNB1

0.9612403100775194 1.0206607929515419 MARCKS ROCK1

0.9655172413793104 1.0319298245614035 CRK TLN2

0.9666666666666667 1.030524017467249 DNM3 RPS6KA3

0.96875 1.0325652173913045 CTNNA3 PIP5K1B

0.9696969696969697 1.0309090909090908 NSD1 SETDB2

0.9696969696969697 1.0264655172413792 PPM1L VAPB

0.9696969696969697 1.0220600858369098 VAPB PPM1L

0.9705093833780161 1.0190598290598292 KPNA4 KPNA1

0.9791666666666666 1.0400851063829786 RRM2B ARMC1

0.9868035190615836 1.0533050847457628 HNF4G PIP5K1B GNB1

0.9868035190615836 1.048860759493671 SPRY2 PIP5K1B GNB1

0.9890560875512996 1.0490336134453782 CDC42SE2 HLF

0.9953664700926707 1.0595397489539748 TJP1 FOXA1

0.9953664700926707 1.0551249999999999 NRIP1 MED1 FOXA1

1.0 1.8209958506224067 ERO1LB FOXA1

1.0 1.8134710743801654 PIK3C3 ARHGEF38

1.0 1.806008230452675 STAG2 NSL1

1.0 1.7986065573770493 TADA2A SETDB2

1.0 1.791265306122449 PTPRG NFKB1

1.0 1.7839837398373983 MECP2 CSNK1D

1.0 1.776761133603239 F7 SLC8A1

1.0 1.7695967741935485 SCYL3 FOXA1

1.0 1.7624899598393575 UNC13B PRKCA

1.0 1.7554400000000001 KCNJ3 GNB1

1.0 1.7484462151394422 SCRIB NFKB1

1.0 1.7415079365079367 PABPC1 RNPS1

1.0 1.7346245059288539 RCHY1 NBN

1.0 1.7277952755905512 SPOP FOXA1

1.0 1.7210196078431372 GUCY2F FOXA1

1.0 1.714296875 PTH2R CALCRL

1.0 1.707626459143969 PCDH10 CTNND2

1.0 1.7010077519379845 ACACA PRKAA1

1.0 1.6944401544401544 NUF2 ESCO2

1.0 1.687923076923077 PCDH15 CTNND2

1.0 1.681455938697318 MIR548A3 IL6ST

1.0 1.6750381679389315 PCDH18 CTNND2

1.0 1.6686692015209126 OR5AK2 CALCRL

1.0 1.6623484848484849 CDC42BPA PRKCA

1.0 1.6560754716981132 RGS7 PRKCA

1.0 1.6498496240601503 BACH1 CTCF

1.0 1.6436704119850187 SH3RF1 FOXA1

1.0 1.637537313432836 ELF1 FOSL1

1.0 1.631449814126394 UBE2G1 FOXA1

1.0 1.6254074074074074 GHR GNB1

1.0 1.619409594095941 RAP2B FOXA1

1.0 1.6134558823529412 TPX2 AURKA

1.0 1.6075457875457877 MMP16 PIP5K1B

1.0 1.6016788321167883 MMP13 FOXA1

1.0 1.5958545454545454 BRWD3 FOXA1

1.0 1.590072463768116 EIF4A3 RNPS1
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1.0 1.584332129963899 CHSY3 CTCF

1.0 1.57863309352518 DOK5 FOXA1

1.0 1.5729749103942652 NAB1 NFKB1

1.0 1.567357142857143 RUVBL2 SMARCE1

1.0 1.561779359430605 ZNF652 TCF12

1.0 1.556241134751773 USP34 FOXA1

1.0 1.5507420494699646 PHLDA1 AURKA

1.0 1.545281690140845 CDH12 ERBB4

1.0 1.5398596491228072 PLSCR1 CTCF

1.0 1.5344755244755246 RPS6KA6 YES1

1.0 1.5291289198606273 P2RY10 GRM3

1.0 1.5238194444444444 CDH18 ERBB4

1.0 1.5185467128027683 PHF16 KAT7

1.0 1.5133103448275862 CDH19 ERBB4

1.0 1.5081099656357388 NARFL BRIP1

1.0 1.502945205479452 SELE NFKB1

1.0 1.497815699658703 MPZL1 FOXA1

1.0 1.492721088435374 STK38 CRK

1.0 1.4876610169491526 KNTC1 NSL1

1.0 1.4826351351351352 DAB2 PIP5K1B

1.0 1.4776430976430976 RALA AURKA

1.0 1.4726845637583894 PNPLA8 NFKB1

1.0 1.4677591973244148 SMARCE1 NBN

1.0 1.4628666666666668 KDM2A AURKA

1.0 1.4580066445182724 PDCD6IP CUL5

1.0 1.4531788079470198 TFAP2C PRKAA1

1.0 1.4483828382838284 PAM PBX1

1.0 1.4436184210526317 MIR30B PRKAA1

1.0 1.4388852459016395 B4GALT5 GALNT13

1.0 1.4341830065359478 SMEK2 BAZ2A

1.0 1.4295114006514658 BRIP1 FOXA1

1.0 1.4248701298701298 SLC6A15 SLC8A1

1.0 1.4202588996763754 NRF1 RPS6KA3

1.0 1.4156774193548387 MYH14 CTCF

1.0 1.4111254019292605 IER3 NFKB1

1.0 1.4066025641025641 NDST4 PRKCA

1.0 1.402108626198083 WWC2 TCF3

1.0 1.397643312101911 ANO3 MME

1.0 1.3932063492063493 RTEL1 NARFL

1.0 1.3887974683544304 EBAG9 NCOA3

1.0 1.384416403785489 CNTN6 FOXA1

1.0 1.380062893081761 ARID5B SETDB2

1.0 1.3757366771159876 CCNL1 FOXA1

1.0 1.3714375 PCDH9 CTNND2

1.0 1.367165109034268 PCDH7 CTNND2

1.0 1.362919254658385 STXBP4 PRKAA1

1.0 1.3586996904024768 HLTF NFKB1

1.0 1.3545061728395063 MIR578 TCF3

1.0 1.3503384615384615 PRPF6 GLI3

1.0 1.346196319018405 TNFSF13B FOXA1

1.0 1.342079510703364 NCOA6 SETDB2

1.0 1.337987804878049 CPSF3 RAE1

1.0 1.333920972644377 CPSF1 NUP188

1.0 1.3298787878787879 PPP2R2A KITLG

1.0 1.3258610271903324 PHLPP2 AURKA

1.0 1.321867469879518 MIR1297 FOXA1

1.0 1.317897897897898 HS3ST1 PIP5K1B

1.0 1.3139520958083832 CDH6 CTNND2

1.0 1.3100298507462687 CDH8 ERBB4

1.0 1.3061309523809523 CDH7 ERBB4

1.0 1.3022551928783384 CDH9 ERBB4

1.0 1.2984023668639053 APPBP2 CTCF

1.0 1.2945722713864307 NEDD4L FOXA1

1.0 1.290764705882353 COL8A1 TCF3

1.0 1.2869794721407626 NF1 CTCF

1.0 1.283216374269006 COL5A2 YES1

1.0 1.2794752186588922 NDOR1 NARFL

1.0 1.2757558139534884 INVS CUL3

1.0 1.2720579710144928 RAD51C AURKA

1.0 1.2683815028901735 SYT1 PPFIA2

1.0 1.2647262247838618 DZIP3 TBL1XR1

1.0 1.2610919540229886 TPD52 CLTC

1.0 1.2574785100286534 PLOD2 COL23A1

1.0 1.2538857142857143 KIFAP3 FOXA1

1.0 1.2503133903133903 RAPGEF2 PIK3CA

1.0 1.2467613636363637 UBR5 FOXA1
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1.0 1.243229461756374 NEK7 FOXA1

1.0 1.2397175141242938 ADD1 PRKCA

1.0 1.236225352112676 SUV420H1 ARID2

1.0 1.232752808988764 SRSF11 RAE1

1.0 1.2292997198879552 ASAP1 FOXA1

1.0 1.2258659217877095 TIPRL TCF3

1.0 1.222451253481894 MACF1 NFKB1

1.0 1.2190555555555556 STX16 FOXA1

1.0 1.2156786703601108 GYS1 AGL

1.0 1.2123204419889504 AEBP2 KAT7

1.0 1.2089807162534436 IKZF3 PRKCA

1.0 1.2056593406593408 TPD52L2 GLI3

1.0 1.2023561643835616 PTPN12 AURKA

1.0 1.199071038251366 EPHA3 PIK3CA

1.0 1.1958038147138965 CBLB PRKAA1

1.0 1.192554347826087 BMP7 PIP5K1B

1.0 1.1893224932249322 TCF12 ZNF652

1.0 1.1861081081081082 KAT6A AURKA

1.0 1.182911051212938 CCNT2 NOTCH1

1.0 1.1797311827956989 PHKB RYR3

1.0 1.1765683646112601 SEMA3E PIK3CB

1.0 1.1734224598930483 RAB6A ADAM17

1.0 1.1702933333333334 NR2F2 MED1

1.0 1.1671808510638297 ADAM10 PIP5K1B

1.0 1.1640848806366049 ADAM17 MALT1

1.0 1.161005291005291 PPFIA2 SYT1

1.0 1.1579419525065964 YWHAZ IL6ST

1.0 1.1548947368421052 SDCCAG8 ANAPC11

1.0 1.1518635170603675 ZBTB16 TP63

1.0 1.148848167539267 RB1CC1 PRKAA1

1.0 1.1458485639686684 MLLT4 PIP5K1B

1.0 1.1428645833333333 AGL GBE1

1.0 1.139896103896104 SI BCHE

1.0 1.1369430051813472 DKK1 NOTCH1

1.0 1.1340051679586565 CNGB3 SLC8A1

1.0 1.1310824742268042 GATA3 CAB39L

1.0 1.1281748071979434 DTL CORO1C

1.0 1.1252820512820514 STK4 PRKAA1

1.0 1.1224040920716112 AHR KITLG

1.0 1.1195408163265306 MAP4K3 PRKAA1

1.0 1.1166921119592876 LYST NFKB1

1.0 1.1138578680203046 SDCBP PIP5K1B

1.0 1.1110379746835444 GIPC1 CTCF

1.0 1.1082323232323232 ZMYND8 PLCB4

1.0 1.10544080604534 BCHE SI

1.0 1.1026633165829145 EWSR1 PRKCA

1.0 1.0998997493734337 TTC21B FOXA1

1.0 1.09715 RNPS1 NUP188

1.0 1.0944139650872817 MALT1 RIPK2

1.0 1.0916915422885571 WRN PRKCA

1.0 1.0889826302729528 CPNE3 OR2A5

1.0 1.0862871287128713 NUP188 GNB1

1.0 1.0836049382716049 CLTC PIP5K1B

1.0 1.080935960591133 LGR4 OR2A5

1.0 1.0782800982800984 PIGK PIGU

1.0 1.0756372549019608 ARHGAP5 PIP5K1B

1.0 1.0730073349633251 GALNTL6 GALNT13

1.0 1.070390243902439 CDK12 FOXA1

1.0 1.067785888077859 CALCRL PTH2R

1.0 1.0651941747572815 COL23A1 LEPREL1

1.0 1.0626150121065376 ARHGAP32 ITSN2

1.0 1.060048309178744 SUPT3H HSPD1

1.0 1.0574939759036144 TNFRSF21 TBL1XR1

1.0 1.054951923076923 ING3 SMARCE1

1.0 1.05242206235012 PPP1R12B ANAPC11

1.0 1.0499043062200957 PPP1R12A ANAPC11

1.0 1.0473985680190931 RGS18 FOXA1

1.0 1.044904761904762 RNF43 PRKCA

1.0 1.0424228028503564 JHDM1D TADA1

1.0 1.039952606635071 L2HGDH GPD2

1.0 1.0374940898345153 TRPC4AP SLC8A1

1.0 1.0350471698113208 BMPR1B PIP5K1B

1.0 1.0326117647058823 CSN2 ERBB4
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D.2 CAPRI on Merged (Pre and Post) Dataset

Progression model CAPRI

PIK3CA

KIFAP3

PKIA

CADM2

SLITRK6

CSMD3

LOC643401

KIAA0528 ZNF652

VAPB

MRPS28

KYNU

INPP4B

STK4

PCDH17MYCBP2

BMP7IRS4

CDH7

SEMA3C

 .83

 .65  .64 .77

 .27 .48

 .78

 .9  .36

 .28

 .33

 .31

 .15

 .39 .72

 .43

 .08

 .61 .16 .68

 .14

 .31  .56

 .17

 .4 .13 .26 .46

 .27 .19

Legend

CIS

Figure D.1: CAPRI on merged Dataset (no distinction of pre and post treatment).

bt474-types.txt (comma-separated) file identify the content type and the color

of the nodes (CIS), in this case a light blue.

CIS , cornflowerblue

For the complete model: bt474-events-complete.txt (comma-separated) file iden-

tify the events (CISs, genes) with their relative order.

PIK3CA , CIS , 1

CDK12 , CIS , 2

BCAS1 , CIS , 3
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ITCH , CIS , 4

NCOA3 , CIS , 5

VMP1 , CIS , 6

KIFAP3 , CIS , 7

ARHGAP39 , CIS , 8

PKIA , CIS , 9

CADM2 , CIS , 10

SLITRK6 , CIS , 11

CSMD3 , CIS , 12

PWRN2 , CIS , 13

LOC643401 , CIS , 14

DENND1B , CIS , 15

LOC100131234 , CIS , 16

ACACA , CIS , 17

KIAA0528 , CIS , 18

ZNF652 , CIS , 19

MIPOL1 , CIS , 20

bt474-data-complete.txt (tab-separated) file contains the binary matrix, as de-

scribed in Chapter 5. Each row is a CIS (gene) and each column is a sample.

1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1

0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1

1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 0 1 1
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0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0 1

0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1

The DAG obtained in output is in Figure D.1.

D.3 CAPRI before VISPA2

With the old version of VISPA, the CISs are slightly different. This means that

the CISs retrieved are the same, but the binary matrix given as input to CAPRI is

different, because some CISs are not present in the same sample and with the same CIS

Order. This is due to the false positives bias of VISPA versus VISPA2, see precision

and recall results in Chapter 3. The DAGs with the old version of the pipeline are in

Figure D.2.

Figure D.2: CAPRI with the old version of VISPA, some CISs were false positives,
LOC1001312234, ACACA and ARHGAP39 for the pre-treatment; SLITRK6, PKIA

and KIFAP3 for the post-treatment.



”Bisogna fare della propria vita come si fa un’opera d’arte. Bisogna che

la vita d’un uomo d’intelletto sia opera di lui. La superiorità vera è tutta

qui.”

Gabriele D’Annunzio
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