
Scuola di dottorato
Università degli Studi di Milano-Bicocca

Dipartimento di Informatica Sistemistica e Comunicazione – DISCo

PhD program in Computer Science – Cycle XXIX

Self-indexing for de novo
assembly

PhD Thesis

Marco Previtali

704496

Advisors: Prof. Paola Bonizzoni

Prof. Gianluca Della Vedova

Tutor: Prof. Arcelli Fontana Francesca
Coordinator: Prof. Stefania Bandini

Academic Year 2015–2016

Acknowledgements

There are several people that I would like to thank for their support thorough the years

that helped me to get to the end of this journey.

First and foremost, I would like to thank my parents and my family who always

supported me no matter what and whose help has always been invaluable.

I would also like to thank my advisors, Paola and Gianluca, for their guidance, assis-

tance, and encouragement and for showing me how to approach research, a completely

new field for me. I’m also grateful to the AlgoLab research group’s current and past

members — Raffaella, Riccardo, Murray, Anna Paola, Luca D, and Mauricio — for the

insightful suggestions and discussions and for making this period extremely enjoyable.

Special thanks go to Yuri, Stefano, Luca M, and Simone for sharing ideas, laughs,

good and not-so-good moments, office space, and for cheering me up.

During my PhD I had the pleasure to spend some months abroad. In two different

occasions I visited Prof. Veli Mäkinen’s Genome-Scale Algorithmics in Helsinki where I

met an extraordinaire group of researchers who helped me becoming a better one. Veli,

Travis, Simon, Djamal, Alexandru, Leena, and Daniel: kiitos!

I also had the opportunity to visit Prof. Paul Medvedev’s group at the Pennsylvania

State University and I would like to thank all the group members — Paul, Kristoffer,

Rahul, Chen, Ilia, Mayank, Bob — for hosting me.

Last but not least, I would like to thank Eliana who always reminds me what matters

the most.

Contents

1 Introduction 7

2 Preliminaries 15

2.1 Computational complexity . 15

2.2 Strings and Indexing Data Structures . 16

2.3 Bioinformatics and Computational Biology 23

2.4 DNA and sequencing methods . 24

2.5 Assembly Problem . 27

I Indexing data structures for assembly graphs 33

3 De Bruijn graphs representations 37

4 Fully dynamic succinct de Bruijn graphs 43

4.1 Static de Bruijn Graphs representation . 44

4.2 Dynamic de Bruijn Graphs representation 47

4.3 Applications . 50

5 Bidirectional succinct de Bruijn graphs 53

5.1 Fixed- and variable-order BOSS . 53

5.2 Bidirectional BOSS . 55

5.3 Applications . 63

5

Contents

II Building assembly graphs from self-indexes 65

6 Self-index based assembly framework 71

6.1 Preliminaries . 71

7 Lightweight external memory assembly algorithm 81

7.1 Background . 82

7.1.1 Definitions . 83

7.2 Methods . 85

7.2.1 Algorithm Engineering . 91

7.3 Results and discussion . 93

7.4 Conclusions and possible extensions . 97

8 Parallel assembly algorithm 101

8.1 Definitions . 102

8.2 Methods . 103

8.2.1 Data representation . 110

8.3 Results and discussion . 111

8.4 Conclusions and possible extensions . 114

A Appendix 117

A.1 Additional tables . 117

Bibliography 123

6

1 Introduction

For at least three decades computer science approaches have proved to be of utmost

importance for extrapolating knowledge from biological data. On one end the amount of

data produced by sequencing technologies — Sanger [126], Next-Generation Sequencing,

or Third Generation Sequencing — has increased more than exponentially [28,51,76,85],

outpacing Moore’s law [94] and making automatic analysis the only viable option. On

the other end, computer science and electronic devices permeate our society and prove

to be cost efficient and extremely helpful — if not essential — for scientific progress.

Raw biological data produced by sequencing technologies can easily be represented

using computer science techniques. Indeed, for many applications, DNA and RNA can

be represented as one-dimensional sequences of nucleobases (adenine, cytosine, guanine,

and either thymine for DNA and uracil for RNA) that can be represented as a word

which characters belong to an extremely small alphabet (A, C, G, and either T or U).

The representation, analysis, and storage of words and texts is a widely studied field in

computer science in which sequences of characters are usually referred as strings. Close

collaboration between biologists and computer scientists is unavoidable and extremely

beneficial for both fields. Indeed, on one end the former pose computational challenges

to the latter stimulating and motivating research in the field whereas, on the other end,

the latter help the former to extract biological meaning from a huge and unfathomable

muddle of data.

This thesis proposes computer science methods for the representation, storage, and

analysis of huge datasets of strings with applications in bioinformatics. Such datasets

can require hundreds of GB of memory to be stored and therefore the design of efficient

algorithms and data structures aimed to their analysis is not trivial. The main goal of this

thesis is therefore to provide algorithms and data structures for the analysis of such huge

amount of data, providing theoretical analysis of their performances, implementations

7

1 Introduction

of them, and extensive experimental evaluation of the tools proposed.

One of the main problems tackled by computer scientists in this field is the Sequence

Assembly Problem (SAP) which goal is to infer the original DNA or RNA sequence S

from a set of much more shorter substrings of S, usually called reads. SAP can be

further divided into two different problems, namely assembly with reference and de novo

assembly. In the former a draft genome of the species analyzed is available, that is

we have access to a genome highly similar to the one of the individual under analysis,

whereas in the latter this information is not available. The presence or absence of

such information leads to different formulations and solutions of SAP. More precisely,

in assembly with reference the goal is to map the reads to the most probable locus

from which they have been extracted whereas in de novo assembly the goal is to build a

chain of reads that better represents the unknown original sequence. How to solve both

problems is a widely studied yet lively field of research that crosses different computer

science sub-fields such as stringology, algorithms, data structures, information theory,

and software development to name a few.

Apart from pure scientific pleasure, de novo assembly’s first driving force was the Hu-

man Genome Project (HGP), an extremely influential and well known scientific project

of the last decade of the last millennium, whose goals were to determine the sequence of

the humane genome, identify the genes of it, store the information acquired for public

use, and transfer the developed technologies to the private sector [106]. Although HGP

was successful, its cost was estimated to be between 2.7 and 3 billion dollars [66], it

took ten years to complete, and it finally published the sequence of human genome at

the turn of the millennium [78, 141]. Such tremendous costs made the procedures and

technologies proposed by HGP hard to replicate in an everyday research setting, and

therefore, a strong push to limit the cost of sequencing technologies began around the

same time the first draft of the human genome was published.

By 2005 new sequencing technologies started to appear in the market with extremely

interesting costs and performances. Indeed, with the advent of such technologies (Next-

Generation Sequencing — NGS —) it became possible to sequence the genome of a given

individual for approximately 10 million dollars [66], a two order of magnitude decrease

with respect to HGP, and in a matter of days. The last ten years have witnessed a race

8

to the so-called $1000 genome, i.e., sequencing a genome for only $1000, breaking such

barrier in the last couple of years, making the sequencing process an affordable task for

pretty much any research group, and enabling the usage of such technologies as clinical

tools [48].

The astonishing cost drop of sequencing experiments and the amount of data pro-

duced by them (hundreds of GB of raw data per experiment) had consequences on SAP

techniques too. Indeed, the throughput of sequencing experiments increased from mere

millions of reads to billions of reads per run [56] making the dimension of the datasets

almost unmanageable. Therefore, clever ways to efficiently store, represent, and query

the data is, nowadays, mandatory.

Before discussing the methods proposed in this thesis we need to take a step back

and understand what is our focus in de novo assembly. Almost every current de novo

assembly method is based on a graph that represents the layout of the reads in the

final assembly. More precisely, at the core of most of the assemblers lies a graph data

structure that represents some kind of relation between reads or part of them. The two

most well known and used graphs in this field are de Bruijn graphs [30] and Overlap

graphs [97] (and their reduced form, String graph). The former is widely used — e.g. the

well known assembler Velvet [144] uses them — and are tied to a value K, usually called

their order. In these graphs nodes represent sequences of length K that appears in the

reads and nodes are connected if the labels of the nodes shares as prefix or as suffix K−1

characters. De Bruijn graphs present an extremely nice and powerful formalism that was

applied in multiple fields prior to their usage in bioinformatics and, hence, have a strong

theoretical background. Nevertheless, one of the shortcomings of de Bruijn graphs is

that they usually do not consider the whole information contained in the reads since

they split them in smaller parts, increasing the consequences of short repetitions in the

genome in the final assembly. The latter, String graphs, are in use since the dawn of

assemblers [99] and have been later formalized in 2005 by Myers [97]. In these graphs

nodes represent reads and nodes are connected if the reads related to them overlap, i.e., if

they share a prefix and a suffix. String graphs, therefore, avoid the problems of de Bruijn

graphs since they do not split the reads but, on the other end, they require more time to

be computed and more space to be stored. As for now, it is not completely clear what

9

1 Introduction

are the advantages and disadvantages of one approach with respect to the other and,

hence, both formalisms are used. Empirical analysis of the outcomes of the tools (e.g.,

the Assemblathon effort [33]) using both approaches suggest that using String graphs

leads to outputs more faithful to the original genome but these results might be due

to other steps of the pipelines analyzed (error correction, tip removal, bubble popping,

scaffolding) and, therefore, it is still interesting to investigate de Bruijn graphs-based

approaches.

This thesis focuses on this field and, more precisely, proposes methods for representing,

building, and analyzing both String graphs and de Bruijn graphs. The contributions of

our work can be divided in two directions that, although closely related, have slightly

different goals and motivations. In particular, we will propose: (i) methods to store

and query de Bruijn graphs efficiently and (ii) methods to analyze String graphs using

succinct, i.e., close to the theoretical space lower bound, representation of them. The

contributions of this thesis intersect significantly with the study and development of the

so-called indexes and self-indexes, fundamental and widely known tools used in computer

science. Indexes are data structures built on top of a dataset — usually a text — that

facilitate the execution of particular queries over it. Given a text T and a pattern

P , common queries which performances are improved by indexes are Find, that is the

process of deciding whether P appears in T , Count, that is the process of counting how

many times P appears in T , and Locate, that is the process of detecting the starting

positions of P in T . Indexes have found use in computer science for more than 40 years,

starting with Suffix Trees [142] and eventually converging to Suffix Arrays [88], and are

a well established and studied field. Self-indexes are evolutions of indexes; using this

approach it is not required to store the original dataset but the whole information is store

in them, allowing for a better level of compression of the data. An example of self-index

is the well-known FM-index [41], an extremely efficient data structure that can store a

text in optimal space by means of the Burrows-Wheeler Transform [19] (BWT) and that

allows for fast Find, Count, and Locate queries.

In this thesis we will present two methods for storing de Bruijn graphs. Storing de

Bruijn graphs can be done trivially either by storing a plain graph or by using some

fast-access hash table but these approaches may require too much space to store graphs

10

that originate from a whole genome sequencing experiment due to the sheer amount

of data produced. Therefore, efficient methods for storing, accessing, and querying

the graphs are used. The literature presents some interesting approaches and, between

them, the most efficient and interesting ones are the one based on Bloom filters [22] — a

probabilistic membership data structure — and the one based on the Burrows-Wheeler

Transform [14]. These two approaches were proposed simultaneously in 2012 and have

different properties. The first one, indeed, is an extremely compact representation of de

Bruijn graphs that is semi-dynamic in the sense that it is possible to add nodes to the

graph but it is not possible to remove nodes without rebuilding the data structure from

scratch. The second one, along with its extension proposed in 2015 [13], allows to store

multiple de Bruijn graphs for the same dataset with a succinct data structure but allows

to explore the graph only in one direction, i.e., only visiting edges outgoing from the

nodes, that can be seen as a limitation in some application.

Our first contribution in this direction is a new self-index for a de Bruijn graph based

on Minimal Perfect Hashing. The main contribution of this method is a data structure

that represents a de Bruijn graph in succinct space and allows to add and remove both

edges and nodes without requiring to rebuild the whole data structure from scratch.

Dynamic graphs can have different applications in bioinformatics and could be used

in error correction tools for building graphs representing the whole data set and then

removing edges and nodes scarcely supported by the data without requiring an excessive

amount of memory nor time. We present a theoretical analysis of this method and

provide a formal analysis of the properties of it.

The second contribution in this direction is a new self-index for de Bruijn graphs

that removes the limitation of the one presented in [13], i.e., it is able to represent a

set of de Bruijn graphs for different orders and allows to test and visit both outgoing

and incoming edges from a node. We present a theoretical analysis of this method and

provide possible applications of it in genome assembly.

In this thesis we will also focus on efficient methods for analyzing and constructing

String graphs and the relations of such graphs with the Burrows-Wheeler Transform.

Previous works proposed in the literature (e.g. SGA [135]) showed that it was possible

and efficient to use the BWT to build String graphs, highlighting strong relations between

11

1 Introduction

these graphs and the FM-index.

In this thesis we will formalize a new framework for String graph-based assemblers in

which String graphs nodes and edges are represented as intervals of the BWT requiring

constant space to be stored. We will therefore present a theoretical analysis of such

framework showing interesting connection between properties of the arcs of the graph

and properties of portions of the BWT of the dataset that can be exploited in genome

assembly and in particular in constructing the String graph of a dataset.

We will then study and show how this framework can be used to design String graph

construction steps that either require an extremely low amount of main memory or an

extremely low amount of time by external memory algorithms and usage of threads and

careful operations organization, respectively. We will also provide implementations of

both these approaches and perform an extensive experimental evaluation of the tools

in comparison with state-of-the-art assemblers, such as SGA [134]. The experimental

evaluation shows that the framework we propose and its implementations allow to design

tools that can run efficiently either on simple machines or on extremely powerful server

showing the pliability of our contribution.

We note that, once personalized medicine will be available, it will make sense to run

assemblers even on not-so-powerful workstation, but most of the current tools require

at least a mid-range server to complete such task. In our opinion, proposing tools that

can work with a limited amount of main memory make sense in this direction.

The thesis is structured as follows. In Chapter 2 we review some basic notions compu-

tational complexity, indexing data structures, bioinformatics and computational biology,

and the state-of-the-art of the assembly problem. The thesis is then divided in two main

part: the first one presents methods for efficiently store sequencing data for the de novo

assembly problem whereas the second one presents efficient algorithms for analyzing

succinct data structures for the same problem. More precisely, in PartI we will present

two data structures for representing and querying de Bruijn graphs. Although both data

structures represent de Bruijn graphs, they have different purposes. In Chapter 4 we

will present the first one which goal is to represent a de Bruijn graph in succinct space

so that you can add and remove both edges and nodes. To the best of our knowledge,

this is the first fully dynamic and succinct representation of these graphs. In Chap-

12

ter 5 we will present the second representation which goal is to represent multiple de

Bruijn graphs of the same data set for various values of K in succinct space allowing

free exploration of it. We will also point out possible application in bioinformatics — in

particular in genome assembly — where such data structure could be useful. In Part II

of the thesis we will present two new algorithms for computing a de novo assembly of

a data set based on String graphs. In this part we will show that we can analyze and

reduce these graphs by representing them using the so-called self-indexes of the reads,

i.e., representation of the information that allows for fast queries and, usually, can be

compressed close to the theoretical lower bound. In Chapter 6 we will therefore show

and proof strict relations between String graphs and the Burrows-Wheeler Transform.

Moreover, in Chapter 7 and Chapter 8 we will show that these relations can be exploited

to implement, respectively, external memory algorithms and parallel algorithms for the

assembly problem.

13

2 Preliminaries

This chapter is devoted to the formal definition of the prerequisites that will be used

through the rest of the thesis. In particular, this chapter will present notions on compu-

tational complexity, indexing data structures, bioinformatics and computational biology,

and the de novo assembly problem. Note that we defer the definition of some concepts

to the next sections, when closely related to the results of a single part of the thesis.

2.1 Computational complexity

Computational complexity theory is the study and the classification of computational

problems. Borrowing the terminology from [3], a problem can be formalized as follows.

Definition 2.1 (Problem) A problem is a mathematical relation P ⊆ I × S between a

set I of instances and a set S of solutions.

Given a problem p ∈ P , the set of acceptable solutions for an instance i ∈ I is the

set {s : (i, s) ∈ P} and we call such set the feasible solutions. When the solution of a

problem is binary, i.e., it belongs to the set {TRUE, FALSE}, we say that the problem is

a decision problem. In other cases we might want to rank the solutions of a problem

based on “how good” they are with respect to a quality measure c : S → R and either

want to find the solution that minimizes or maximizes the quality measure. We call

such problems optimization problems and, for each instance i ∈ I, s? ∈ S is the optimal

solution if (i, s?) ∈ P and either s? = arg mins∈S{c(s) : (i, s) ∈ P} for minimization

problems or s? = arg maxs∈S{c(s) : (i, s) ∈ P} otherwise. The quality measure c(s) of

a feasible solution s is called cost of the solution, and the cost of an optimal solution is

called optimum of the instance.

15

2 Preliminaries

An algorithm is a description of a procedure for computing a feasible solution of

a problem in a finite number of steps using a mathematical model of computation.

Multiple algorithms can solve the same problem, and comparing the performances of

different algorithms to find the best one (for some definition of best) has a central role in

computer science. Algorithms can be compared using different parameters, time required

to compute the solution being one of the most used. When performing such comparison,

time is not stated as number of seconds spent in order to compute the solution but,

instead, as the number of elementary steps (single value assignments, value comparison,

arithmetic operations, etc.). Since different instances of a problem require different

times, algorithms are usually ranked in terms of worst-case time complexity. Given a

problem and an algorithm solving it, the worst-case time complexity of the algorithm

is a function f : N → R that specifies the maximum number of steps f(n) that the

algorithm requires to solve an instance of size n.

The worst-case time complexity is expressed using the so-called big-O notation, usually

represented as O(t(n)) where t(n) is a function in n. Given an algorithm, we say that its

worst-time complexity is O(t(n)) if t(n) is an asymptotic upper-bound of f(n) when n

— the size of the instance — grows to infinity. We say that an algorithm is a polynomial

algorithm if its worst-time complexity function t(n) can be represented as nk for some

constant k, we say that it is a linear algorithm if t(n) can be represented as kn, and

we say that it is an exponential algorithm if t(n) can be represented as kn. In the

following chapters we will refer to this analysis as time complexity analysis, omitting the

worst-case term since most of the time it is implied.

2.2 Strings and Indexing Data Structures

We begin this section by providing a formal definition that will be fundamental in this

thesis.

Definition 2.2 (String) Let Σ be an ordered finite alphabet of size σ. A string T is

a finite sequence of characters c1, c2, . . . , cn drawn from Σ. We denote by T [i] the i-th

symbol of T and by |T | the length of T .

Strings are extremely well studied data structures in computer science since they are

16

2.2 Strings and Indexing Data Structures

used to represent one of the most widely used mean of transmission of information: texts.

We now give some additional fundamental definitions that we will use later.

Definition 2.3 (Sub-string, Suffix, Prefix) Let Σ be an ordered finite alphabet of size σ,

and let T = c1, c2, . . . , cn be a string over it.

Let i and j be two integers such that 1 ≤ i ≤ j ≤ |T |, we say that the sequence

ci, ci+1, . . . , cj is the sub-string of T starting in i and ending in j and we denote it by

T [i : j].

The suffix and prefix of T of length K are respectively the sub-strings T [|T | −K + 1 :

|T |], denoted by T [|T | −K + 1 :], and T [1 : K], denoted by T [: K].

In the following chapters we will use two functions, namely rank and select, that are

fundamental in the field this thesis is focused on. Both functions can be defined over

sequences of elements but we report their definition over strings since we will use them

in this case.

Definition 2.4 (rank and select) Let T be a string over an alphabet Σ.

rank is a function Σ× I→ I that, given a character c ∈ Σ and an integer p such that

1 ≤ p ≤ |T |, returns the number of occurrences of c in the prefix of length p− 1 of T .

select is a function Σ× I→ I that, given a character c ∈ Σ and an integer i, returns

the position p in T where the i-th occurrence of c appears. If i is greater than the number

of occurrences of c in T , select is undefined.

One of the main problems with strings is the string searching problem. In this problem,

given two strings T and P called the text and the pattern respectively, we want to know

if, how many times, and where, P appears as a sub-string of T . We can formalize the

three goals as follows.

Find: (also called Exists) a decision problem that returns TRUE if P is in T .

Count: a computational problem that returns the number of occurrences of P in T .

Locate: (also called Report) a computational problem that returns the set of positions

in which P occurs in T .

17

2 Preliminaries

There are different classic algorithms that solve this problems, the most known ones

due to Knuth–Morris–Pratt [72], Karp–Rabin [68], and Boyer–More [15]. Although the

first one is optimal if we want to search for a single pattern in the text, i.e., it requires

O(|T |+ |P |) time, they are not suited to search multiple patterns in the same static text

since they would require O(m(|T |+ P ?)), where m is the number of the patterns and

P ? is the average length of them, forcing us to analyze the text multiple times

Searching for patterns in a static text is a usual task in computer science, e.g., we can

consider a book, a dictionary, a data set, or — to some extent — the web to be static

texts. To overcome the limitations of searching multiple patterns in the same text, the

concept of index was proposed.

Definition 2.5 (Index) An index is a data structure built “on top” of the text that

allows to search efficiently for patterns without scanning the whole text.

An index is therefore a bit of information we add to the text in order to perform search

queries efficiently. It is worth to note that the text has to be maintained in this case

and that’s why we say that the index is build “on top” of it. In some cases it is possible

to design data structures that replace the text itself providing the same features of an

index; in this case we call the data structure a self-index [103].

Definition 2.6 (Self-index) A self-index is a data structure that provides the same fea-

tures of an index but does not require to access or store the original text.

The literature presents a plethora of indexes and self-indexes; in this section we will

present the most prevalent ones, namely Suffix Trees, Suffix Arrays, and FM-index. For

technical reasons, in all of these approaches, a single special character $ — lexicograph-

ically smaller than all the characters in Σ — called the sentinel symbol is appended at

the end of the text. This is required because most of these approaches are based on

considering the set of the suffixes of the text and, in order to have a nice and functional

formalism, we have to avoid suffixes that are prefixes of other suffixes. By concatenating

$ at the end of the string we are sure that no suffix will be a prefix of another one since

$ will appear only once. We will now devote a paragraph for each of the indexes cited

before.

18

2.2 Strings and Indexing Data Structures

mis
sis

sip
pi$

i p
s

ssi

ppi$

$

ssippi$ ppi$

pi$ i$
si

i

ss
ip
pi
$

ppi$

ppi$ s
s
i
p
p
i
$

Figure 2.1: An example of a suffix tree for the text mississippi.

Suffix Trees Suffix trees were one of the first indexes for texts and were introduced by

Weiner in 1973 [142]. It is easier to describe suffix trees as a contraction of another data

structure called Tries [44] and we will therefore define them first.

Definition 2.7 (Trie) Let S be a set of strings. The trie of S is a tree in which:

• there exits a node for each distinct prefix in S;

• the root is the node of the empty string ε;

• two nodes vi and vj are connected by a directed edge if and only if there exists a

string X and a character c such that the prefix related to the former is X and the

prefix related to the latter is Xc.

If t is the trie built over the set of suffixes of a text T , we call t a Suffix Trie. Suffix

tries can clearly contain simple paths (i.e., non-branching paths), contracting such paths

produces the so-called Suffix Tree. We can now present a formal definition of Suffix Trees.

Definition 2.8 (Suffix Tree) Let T be a text, let S be the set of suffixes of T , and let t

be the Trie of S. Let t? be a copy of t in which we we replace simple paths by a single

edge between the first node and the last of the path. We call t? a Suffix Tree.

19

2 Preliminaries

$missi
RotationsGSA BWT

(5,0) i

i$miss s

si$mis

p

ssi$mi

missi$m
s

ssippi$

$
pi$ssip p
ppi$ssi i

sippi$s
s

issi$ss

s

i$ssipp

i

missi$

$

(4,0)

(1,1)

(3,1)
(4,1)

(0,1)

(1,0)

(2,0)

(3,0)

(2,1)

(5,1)

(0,0)

$ssippi i(6,1)

Figure 2.2: An example of Generalized Suffix Array and BWT for the texts missi and
ssippi.

Suffix Trees are simple, elegant, and efficient data structures for storing dictionaries

and performing search queries over them. A Suffix Tree can be built in O(|T |) time

using O(|T | lg |T |) bits of space [38, 91, 140], solves find and count queries in O(|P |),
and locate queries in O(|P |+ occ) where occ is the number of occurrences of P. One

of the biggest drawbacks of Suffix Tress is the space required to store them, up to

12|T | bytes even with careful implementations [49, 50], and practical implementation

performances are dependent on the alphabet size. An example of the Suffix Tree of the

text mississippi is shown in Figure 2.1.

Suffix Arrays To lower the amount of space required to store the Suffix Tree, Manber

and Myers proposed in 1990 a new data structure called Suffix Array [88]. This data

structure is a reduced form of the suffix tree that represents only the leaves of it, via

pointers to the starting positions of all suffixes [103], requiring only 4|T | bytes to store the

index. Different extensions of the Suffix Array have been proposed —- e.g. Generalized

20

2.2 Strings and Indexing Data Structures

Suffix Arrays [133], Enhanced Suffix Arrays [1], Compressed Suffix Arrays [59, 60, 121],

and Dynamic Suffix Arrays [46, 124]— in this section we will consider and present the

Generalized Suffix Array (GSA) that we will use in the next chapters of the thesis. Such

data structure indexes a set of strings T = {s1, . . . , sm} and allows to search in all of

them at the same time. Suffix Arrays, much like the Suffix Trees, are based on the set

of suffixes of a text or on the set of rotations of the texts. For simplicity, we will now

present their definition based on the rotations of the texts and thus will now introduce

such concept.

Definition 2.9 (Rotation) Let T be a text, we say that its i-th rotation is the concate-

nation of the suffix of length i of T (containing $) and its prefix of length |T | − i.

Note that a simple string T has exactly |T | distinct rotations and none of them can

be represented by the same string since the sentinel symbol $ appears only once. We

can now present the definition of Generalized Suffix Array.

Definition 2.10 (Generalized Suffix Array) Let T be a set of strings terminated with $

and let RT be the lexicographic ordered array of all the rotations of all the strings in T .

The Generalized Suffix Array (GSA) of T is the array SA where each element SA[i] is

equal to (k, j) if and only if the k-rotation of string rj is the i-th element of RT .

In other words, the Generalized Suffix Array is a permutations of the suffixes of the

texts of T such that they are lexicographically sorted.

Suffix Arrays are elegant and efficient data structures for searching through a text.

A Suffix Array can be built in O(|T |) time [70], solves find and count queries in

O(|P | lg |T |) time, and locate queries in O(|P | lg |T |+ occ). One of the major draw-

backs of Suffix Arrays is that there is usually a significant amount of redundancy in

them since big chunks of the array are copies of each other with values shifted by 1.

Compressed Suffix Arrays [59, 60, 121] aims to reduce this redundancy and are able to

lower the space required down to 2|T | bytes on top of the text at the cost of doubling

the query time. Nevertheless, for some applications 2|T | extra bytes is still too much.

An example of the Generalized Suffix Array for the texts missi and ssippi is shown in

Figure 2.2.

21

2 Preliminaries

FM-index To lower the memory requirements of Suffix Arrays, in 2000 Ferragina and

Manzini [41] proposed a new (self) index which space occupancy is a function of the

entropy of the underlying data set called the FM-index. The FM-index is a self-index

that performs queries over the text by analyzing a permutation of the characters in it

called the Burrows-Wheeler Transform [19] (BWT). BWT was firstly presented in 1994

for data compression purposes and is closely related to the Suffix Array data structure.

We can formalize its definition as follows.

Definition 2.11 (Burrows-Wheeler Transform) Let T be a set of strings terminated

with $ and let RT be the lexicographic ordered array of all the rotations of all the strings

in T . The Burrows-Wheeler Transform of T is the sequence B such that B[i] = rj [|rj |−k]

if SA[i] = (k, j) and k < |rj |, or B[i] = $ otherwise. Less formally, the BWT of T is the

sequence B such that B[i] is the last character of RT [i].

The Burrows-Wheeler Transform of a text T can usually be compressed better than

the text itself since it groups together characters that appear before the same sub-

string. Since texts usually follow grammatical rules, this grouping strategy leads to

producing longer runs of characters that can be better compressed using state-of-the-art

techniques [64,119,139]. It is easy to demonstrate that the Burrows-Wheeler Transform

of a text can be stored in optimal space [41], equivalent to the empirical order-K entropy

of the text [131, 132], referred as |T |HK(T). Although BWT was presented more than

twenty years ago, it is still a central tool in some compression software, like bzip2 [130].

BWT alone was not intended as an index, indeed it lacks all the additional structures

for computing efficiently find, count, and locate queries.

The FM-index closes this gap by adding two additional functions to it, namely C : Σ→
I and Occ : Σ× I→ I. The first one, C, counts for each character ci the occurrences of all

the characters cj smaller than it in the BWT and can easily be represented by an array of

size σ that requires σ lg |T | bits. The second one, Occ, counts the occurrences of a given

character c ∈ Σ up to a given position i. Storing such table in plain form for constant

time access would require σ|T | lg ‖T | bytes and would be infeasible even for medium-

sized texts. To overcome this limitation, such function is usually computed by mean of

a Wavelet Tree, a tree data structure initially proposed to represent Compressed Suffix

22

2.3 Bioinformatics and Computational Biology

Arrays [58] and later adapted to BWTs [42]. In brief, a Wavelet Tree is a tree shaped

representation of the characters in a string based on bitvectors that “split” the string

based on the lexicographic order of the characters that requires |T |H0(|T |)+o(|T |σ) bits

to be stored. Since counting bits up to a given position in bitvectors requires constant

time [104] and since a Wavelet Tree has as most lg σ levels, counting occurrences of a

characters up to a position in a string represented as a Wavelet Tree requires O(lg σ)

time.

By means of these two additional data structures, the FM-index allows to search for a

pattern P in a text T represented as a Burrows-Wheeler Transform in O(|P | lg σ) time.

We can summarize what an FM-index is in the following definition and defer a more

in-depth discussion of the search procedure to Chapter 6.

Definition 2.12 (FM-index) Let T be a set of strings terminated with $ and let B be

the Burrows-Wheeler Transform of the text. The FM-index of T is the union of B

and two functions, C and Occ. The first one, given a character ci, returns the number

of characters smaller than it in B whereas the second one, given a character ci and a

position j returns the number of occurrences of ci in B[1:j].

For an in-depth analysis of Wavelet Trees we refer the reader to [102] and references

therein. An example of the BWT of the text mississippi is shown in Figure 2.2.

2.3 Bioinformatics and Computational Biology

Bioinformatics and Computational biology are two research fields in which computer

scientists and biologists collaborate to extract knowledge from biological data using

computational methods. There is a partial overlap between them and the boundary be-

tween the two is, most of the time, blurry. In 2000 [63] the BISTIC Definition Committee

released a formal definition of the two fields that we report here.

Definition 2.13 (Bioinformatics) is “Research, development, or application of compu-

tational tools and approaches for expanding the use of biological, medical, behavioral

or health data, including those to acquire, store, organize, archive, analyze, or visualize

such data.”

23

2 Preliminaries

Definition 2.14 (Computational Biology) is “The development and application of data-

analytical and theoretical methods, mathematical modeling and computational simula-

tion techniques to the study of biological, behavioral, and social systems.”

This thesis focuses on the computer science side of bioinformatics and computational

biology. More precisely, the main focus of this thesis is on algorithms and data structures

for the de novo assembly problem and, thus, it is probably closer to bioinformatics than

it is to computational biology. Nevertheless, as stated above, the boundary between the

two fields is blurry and we reported both definitions for sake of completeness.

2.4 DNA and sequencing methods

As defined by the Talking Glossary of Genetic Terms of the National Institutes of

Health [101], DNA (Deoxyribonucleic Acid) is the chemical name for the molecule that

carries genetic instruction in a living things. It consists of two strands that wind around

one another to form a shape known as a double helix, and each strand is an alternating

sequence of sugar and phosphate groups. Attached to each sugar is one of four bases

(also called base pairs in the context of this thesis): Adenine (A), Cytosine (C), Guanine

(G), and Thymine (T).

The process of determining the exact sequence of bases in a DNA molecule is called

DNA sequencing. It is worth to note immediately that, as for now, DNA cannot be

sequenced in its entirety and only short sub-sequences of the molecule can be determined

each time. The genome of a given individual is therefore sequenced small-piece-by-small-

piece and the sequencing process produces as output a set of reads. During the last 40

years, multiple sequencing methods with different characteristics were developed; in this

section we will give a brief overview of the different sequencing methods.

For a more thorough discussion of sequencing methods, we refer the reader to the

following reviews [28,51,56,76,85].

Sanger sequencing In 1977, the first method for DNA sequencing was developed by

Frederick Sanger [126] and was named after him. For 30 years Sanger sequencing was

the only viable and used option to sequence genomes, it was one of the breakthrough

24

2.4 DNA and sequencing methods

Figure 2.3: Overview of the current sequencing platforms ranked by data produced per
run and length of reads produced. From [105].

discovery of the century since it helped, for the first time, to analyze and reconstruct

the sequence of the human genome [78,141].

Sanger sequencing comes with both advantages and disadvantages. On one end, this

method produces the so-called long reads, of length up to ∼1000 base pairs, and has a

low error rate, estimated to be between 10−4 and 10−5 [71]. On the other end, Sanger

methods are slow since the average output is approximately 6 MB of DNA sequence per

day, and expensive since the chemical consumables’ cost amounts to about $500 per MB

of data. A widespread use of this technology is therefore not possible and, to overcome

this limitation, in the last two decades new sequencing methods have been developed

and proposed.

25

2 Preliminaries

Next-Generation Sequencing (NGS) New methods designed to replace the expensive

Sanger methods usually fall under the name of Next-Generation Sequencing Technolo-

gies (NGS). The main goal of such methods is to lower the cost of a single sequencing

experiment and to increase the amount of data generated by it. The first of these new

technologies appeared in 2005 [83] and immediately changed the genomic research as it

enabled to obtain millions of reads, at a fraction of the cost of Sanger sequencing.

NGS sequencing comes with both advantages and disadvantages too, but the former

outshine the latter. Indeed, the biggest disadvantage is that the sub-sequences of the

genome produced by these methods are shorter than the ones produced by the previous

technologies. Such reads go by the name of short reads (in opposition to the long reads

produced by Sanger methods), are usually in the range of 35 to 400 base pairs and have

a higher error rate (betwen 0.1% and 1%). On the other end, NGS are extremely fast,

cheap, and reliable [56], and has thus enabled the use of sequencing as a clinical tool [48].

Using sequencing as clinical tool is regarded by most as the next big step for medicine,

unlocking the possibility to design drugs that can adapt to the individual will change

healthcare in the next decades.

There are different companies producing of NGS machines (Illumina, Ion Torrent,

SOLiD, 454); a thorough analysis of the options and the characteristics of each machine

is out of the scope of this thesis and we refer the reader to the reviews in literature [28,

51,56,76,85] and to Table A1 in the Appendix.

Third-Generation Sequencing Progress in sequencing didn’t stop with NGS. Indeed,

although affordable and disruptive, NGS technologies come at a cost, most notably

the fact that extremely short reads cannot disambiguate repeats bigger than them in

the sequenced genome. To tackle this limitation, since 2011 new technologies, usually

referred as Third-Generation Sequencing or Future-Generation Sequencing, have been

proposed.

As their predecessors, these new methods, which most notable implementations are

PacBio [116] and Oxford Nanopore [35, 93], have both advantages and disadvantages.

The most notable advantage of this technologies is the length of the reads produced

which are usually longer than 10000 bp and can reach even 200000 bp. On the other

26

2.5 Assembly Problem

end, Third-Generation Sequencing technologies produce reads with much higher error

rate, between 10% and 15% [56].

The combination of these two characteristics makes the analysis of such data chal-

lenging and it is thus common practice nowadays to use them in combination with NGS

technologies, either by correcting the error-prone long reads using the more accurate

short reads [123] or using hybrid approaches [87].

2.5 Assembly Problem

Between the problems bioinformatics faces, inferring the DNA sequence of an individual

from the set of sub-sequences produced by the sequencing technologies is central. Such

problem is one of the first ever considered in the field and is called the Sequence Assembly

Problem (SAP).

SAP can be further divided into two sub-problems that differ by the information

available, namely assembly with reference and de novo assembly. The main difference

between the two is that in the former a draft genome of the species analyzed is available

whereas in the latter only the data produced by the sequencing machines is. This leads to

different formulations and solutions of SAP. More precisely, in assembly with reference

(AR) the goal is to map each read to the most probable locus from which they have

been extracted whereas in de novo assembly (DA) the goal is to build a chain of reads

that better represents the unknown original sequence. Thus, although solving the same

problem, AR and DA approaches are deeply different and this thesis focuses on the latter.

De novo Assembly From a computer science point of view, DA was initially approx-

imated to the Shortest Common Superstring Problem (SSP) [69, 95, 98] that can be

formalized as follows.

Definition 2.15 (Shortest Common Superstring Problem) Given as input a set of strings

T = {s1, . . . , sm}, find the shortest sequence s′ = c1, . . . , cn such that for each sk in T

there exists two integers i and j, with 1 ≤ i < j ≤ n, such that sk = s′[i : j].

SSP provides an elegant formal definition of SAP but it is known to be reducible to

the traveling salesman problem, a problem known to be NP-complete (see [25, Sec-

27

2 Preliminaries

tion 34.5.4] or [29, pp.250]), and is therefore NP-complete [120]. For a more thorough

description of SSP we refer the reader to [137, Section 18.9].

To overcome this issue, many approaches to solve SSP (and, in turn, DA) aim to provide

a near-optimal and approximated solution lowering the time complexity of the method

to polynomial time. The most prominent approximate formulation of SSP for de novo

assembly is the graph-based formulation which goal is to produce a graph in which a

generalized Euler tour is the correct assembly. Finding an Euler tour of the graph can

be performed in linear time [34, 37] and therefore it is possible to use this approach to

produce the assembled genome.

It is worth to note that building the graph and extracting a single path in it is not the

only step of a de novo sequence assembler. Indeed, errors, repetition in the structure

of the genome, and read orientation play a major role in many assemblers currently

available. Nevertheless, we can identify a number of steps shared by the majority of the

approaches proposed in the literature. More precisely:

Error correction that is the process of removing artifacts from the sequencing data in-

troduced by the sequencing machines.

Graph construction and contraction that is the process of constructing a graph rep-

resenting the relations between the reads and compacting the simple paths (also

known as unitig).

Tip removal and bubble popping that is the process of removing short unitigs (tips)

branching out from the graph and short branching-and-joining paths. Tips are

usually due to errors in the data set not corrected by the error correction step

whereas bubbles can be due to errors not corrected or heterozygous loci in the

individual under investigation.

Scaffolding that is the process of linking together non-contiguous sequences in the graph

usually performed exploiting the mate-pair information.

All these steps together allow to produce reasonable results and to deal with the limita-

tion of the technologies currently in use.

In this thesis we will focus on the graph construction, representation, and analysis, i.e.,

the second step presented before. Two main type of graphs are used for DA, namely de

28

2.5 Assembly Problem

ACG

CGT

CGA

GTT

TTAGAC

Figure 2.4: An example of a node centric de Bruijn graph of order 3 of the set of strings
T = {ACGT, CGAC, GTTA}.

Bruijn graphs and Overlap/String graphs; we will now present both of them highlighting

their differences.

The concept of de Bruijn graph was firstly introduced by de Bruijn [30] and Good [55]

in 1946 as a mathematical concept. Their definition in our setting can be formalized as

follows.

Definition 2.16 (de Bruijn graphs) Let T = {s1, . . . , sm} be a set of strings and let K

be a positive integer value. The de Bruijn graph of order K of T is a directed graph

G = (V,E) such that (i) for any distinct sub-string ki of length K of any string sj ∈ T
there exists a vertex vi in V labeled with ki and there exists a directed edge e = (vi, vj) in

E either if (ii-a) the (K − 1)-long suffix of vi is equal to the (K − 1)-long prefix of vj or

(ii-b) property (ii-a) holds and there exists a string sh in T such that the concatenation

of the label of vi and the last character of vj is a sub-string of it.

Depending on which property between (ii-a) and (ii-b) holds, de Bruijn graphs are

referred with different names in computer science, namely node-centric de Bruijn graphs

(n-dBG) and edge-centric de Bruijn graphs (e-dBG). We defer the discussion of their

differences to the introduction of Part I in which we will present methods for representing

these graphs. De Bruijn graphs are a powerful formalism that is used in fields far apart

from bioinformatics, e.g. Cellular Automata Theory [90,138].

A second formalism used to represent assembly graphs is the so-called Overlap/String

graph. These graphs are in use since at least two decades in bioinformatics [96, 99]

but are still central nowadays [134, 135]. Overlap graphs are graphs that represent the

29

2 Preliminaries

overlap relation between the reads whereas String graphs are a reduction of the Overlap

graphs in which redundant information is removed. We can formalize the definition of

the first as follows.

Definition 2.17 (Overlap graphs) Let T = {s1, . . . , sm} be a set of strings and let τ

be a positive integer value. The overlap graph GO = (V,E) of T is a directed graph

whose vertices are the strings in T , and there is an arc in E if and only if the strings

represented by the two connected nodes share a prefix and a suffix of at least τ characters,

i.e., if and only if they overlap by at least τ characters.

The overlap graph contains redundant information. More precisely, the information

provided by some arcs is not required to reconstruct the original genome of the dataset

T . Indeed, if we consider three strings s1 = αβγ, s2 = βγδ, and s3 = γδλ such that all

the factors have length at least τ , and build their overlap graph we can note that we

will obtain three edges — (s1, s2), (s2, s3), and (s1, s3) — and one of them, (s1, s3), does

not add any information to our graph since the path spelled by its traversal, i.e., the

genome represented by that path, is the same as the one represented by another path

that starts in s1, visits s2, end ends in s3. We call such uninformative arcs reducible or

transitive and we refer to the others as irreducible or non-transitive. Removing reducible

arcs from the graph can thus be performed without loss of information and we call such

reduced graph a string graph. We can formalize its definition as follows.

Definition 2.18 (String graphs) Let T = {s1, . . . , sm} be a set of strings, let τ be a

positive integer value, and let GO = (V,E) be the overlap graph of T with minimum

overlap τ . The String graph GS = (V ?, E?) of T is a directed graph where V ? = V and

E = {e : e ∈ E ∩ e is not reducible}.

In bioinformatics, using String graphs is preferable due to the sheer amount of data

needed to represent and, indeed, overlap graphs are more resource intensive then their

reduced counterparts. A graphical representation of the overlap and string graph of

strings s1, s2, and s3 can be found in Figure 2.5.

De Bruijn and String Graphs are both widely used data structures for the de novo

sequence assembly problem. The former is probably the most well-known one follow-

30

2.5 Assembly Problem

αβγ

βγδ

γδλ

δ λ

δλ

Figure 2.5: An example of an overlap graph. Irreducible arcs are represented by a
straight line, reducible arcs by a dashed line. For readability, the arcs are
labeled with only one of the two labels. Note that both paths spell the same
string (αβγδλ).

ing its application in extremely influential articles [65, 111] whereas the latter regained

relevance in the last years [134] after being in use twenty years ago [141]. The two

implementations of assembly graphs present differences — most notably the way the

nodes are connected — but an in-depth theoretical analysis of the repercussion they

have on the final assembly is lacking. Indeed, the usual comparisons between the results

are on an experimental basis and consider the performances of the whole pipeline with

no particular focus on the consequences of choosing a graph over the other, e.g. As-

semblathon [33], Assemblathon 2 [16], and GAGE [125] emphasize — reasonably — the

overall performances of the tools examined.

Nevertheless, it is possible and easy to highlight the most obvious differences between

the two graphs. String graphs can deal with repetitions in the original genome better

than de Bruijn graphs. Indeed, since the whole information of the reads is considered

in its construction, it is possible to avoid collapsing repetitions together when their

length is smaller than the shortest read in the dataset, whereas de Bruijn graph can

distinguish only repetition smaller than K. On the other end, de Bruijn graphs are

easier to store and compute since the intrinsic characteristics of the nodes and of the

edges can be exploited, whereas String graphs do not present such nice and consistent

characterization of them. For the same reasons, de Bruijn graphs show extremely simple

structures in presence of tips or bubbles that can simplify the tip removal and bubble

popping steps of assemblers.

Presenting all the assemblers in the literature is out of the scope of this thesis. Never-

theless, we will report an incomplete list of assemblers proposed in the last years based

31

2 Preliminaries

either on de Bruijn graphs or on String graphs to show the liveliness of this research

field.

de Bruijn graph based assemblers Velvet [144], MetaVelvet [100], MetaVelvet-SL [127],

SPAdes [4], IDBA [109], IDBA-UD [110], Abyss [136], Trans-Abyss [118], Trin-

ity [57], SOAPdenovo [86], SOAPdenovo-Trans [143], Cortex [67], EULER [111],

Oases [129], Minia [22];

String graph based assemblers SGA [134], Readjoiner [54], LSG [11], FSG [12], Cel-

era [99], Edena [61], AMOS [117], MAP [75].

Finally, we want to note that there exist approaches that mix the usage of the two

assembly graphs [20, 62], and that, at the best of our knowledge, only one assembler

(MaSuRCA) [145] implements it.

32

Part I

Indexing data structures for

assembly graphs

33

Context and motivations

In this part of the thesis two different approaches for efficiently storing and querying de

Bruijn graphs (dBG) will be presented. De Bruijn graphs are widely used data structures

for the sequence assembly problem, their main goal is to represent shared substring

between the reads so that a path in the graph represents the DNA sequence of the

sequenced individual. For a given set of reads R = {r1, r2, . . . , rn} output by a biological

experiment and a value K (usually referred as the order of the graph), a dBG is defined

as GK = (V,E) where, as usual, V is the set of nodes of G and E is a set of edges

{e1 = (vi1 , vj1), e2 = (vi2 , vj2), . . . , em = (vim , vjm)}. The literature presents two slightly

different types of de Bruijn graphs, namely edge-centric dBG and node-centric dBG in

which the main difference between the two is the set of edges E. In the following we

will refer to them as e-dBG and n-dBG, respectively. In both definitions, for any distinct

sub-string of length K ki (called a K-mer) in any rj ∈ R, V will contain a vertex vi

labeled with ki. In e-dBG, E will contain an edge e that connects two vertices vi and vj

with labels ki and kj , respectively, if and only if: (i) ki and kj share a prefix and a suffix

of length K − 1 (i.e., ki[2 : K] = kj [1 : K − 1] or kj [2 : K] = ki[1 : K − 1]) and (ii) the

(K + 1)-mer ki · kj [K] appears in some input string r ∈ R. Conversely, edges in n-dBG

have less strict constraints. Indeed, in this case E will contain an edge only if property

(i) is met, i.e., only if the two K-mer share a prefix and a suffix of length K− 1 without

forcing and constraint on the consecutiveness of the two K-mers.

Given the set R, since K ∈ N, an unlimited number of dBG can be defined. For ease

of presentation, we will refer to each of these by their order K and, more precisely, we

will refer to the dBG of order K as dBGK . Clearly, for each K > max{|r| : r ∈ R} there

is no K-mer of length K in R and therefore all the dBGK will be the empty graph (i.e.,

a graph with no vertices and no edges). Instead, for each 1 ≤ K ≤ max{|r| : r ∈ R} the

dBGK exists.

35

It is worth to note that, when considering the assembly problem, different dBGK yield

different inferred sequences and choosing the correct order is fundamental for producing

good assemblies. Choosing the best order is a research topic by itself and is required

in different fields such as de novo genome assembly [21], de novo transcriptome assem-

bly [32], and error correction [128]. Note that this thesis is not focused on this topic

(choosing the best order) and we refer the reader to the related literature [4, 21, 47, 92].

A different approach is to use multiple orders either incrementally [110] or at the same

time [81] to exploit the information provided by all the graphs and thus — ideally —

producing better outputs.

In this part of the thesis we will present two different contribution to the field of indexes

for de Bruijn graphs. The first one is a new deterministic succinct representation that

has better space bounds than the ones currently presented in the literature when the

number of connected components in in the graph is small and is also the first known

succinct representation that is fully dynamic (i.e., it allows to add and remove nodes

and edges from the graph without rebuilding it from scratch). The second one falls in

the field of Burrows-Wheeler Transform inspired indexing data structures and allows

to traverse both incoming and outgoing edges of a node. This second data structure

permits to efficiently compute unitigs in multiple orders of dBG storing only O(n lgK)

bits (where n is the total number of nucleotides in R) instead of O(Kn) bits. Moreover,

possible applications of this data structure (more precisely, unitig construction from

multiple dBG) will be shown.

This part is divided in three main chapters. The first one (Chapter 3) presents the

approaches proposed in the literature, the second one (Chapter 4) presents the dynamic

indexing data structure, and the third one (Chapter 5) presents the BWT-inspired in-

dexing data structure.

36

3 De Bruijn graphs representations

In this section we will focus on presenting the main approaches for representing a dBG

proposed in the literature. In theory, one can represent a dBG näıvely using general

purpose data structures such as hash-tables and storing, for each node, the label and the

adjacency list of its neighborhood. Indeed, early implementations of dBG-based assem-

blers developed simple representations based on distributed hash tables [136]. Although

feasible on powerful servers or clusters, running those tools requires hundreds of GiB of

main memory to store the informations included in a whole genome sequencing exper-

iment and is unfeasible on resource-limited servers and PCs. To cope with the limited

resources available, different methods have been proposed to lower the amount of RAM

required to store these informations by either representing implicitly some data or using

compressed data structures.

In this section we will briefly introduce three data structures proposed in the literature.

The first one by Conway and Bromage [24] is a succinct data structure based on sparse

bit-vectors, the second one by Chikhi and Rizk [22] (further improved by Salikhov et

al. [122]) is based on a probabilistic membership data structure called Bloom filter,

and the third one by Bowe et al. [14] (further improved by Boucher et al. [13]) is a

deterministic data structure loosely inspired by the Burrows-Wheeler Transform.

Sparse bit-vector based data structure A first take on efficiently storing dBG was pre-

sented in 2011 by Conway and Bromage [24]. In this approach nodes are not stored

explicitly and can be inferred from the edges. More precisely, nodes are sorted in lexico-

graphic order and for each node vi with label ki a vector of |Σ| (4 in the case of DNA)

bits is created such that each bit is associated with a character in the alphabet. In order

to represent existence or absence of edges, the bit associated to the character c ∈ Σ is set

to 1 (i.e., True) if the string ki[2 : K] · c is in the dataset (i.e., there is a vertex labeled

37

3 De Bruijn graphs representations

with the concatenation of the (K − 1)-suffix of ki and c in dBG) and 0 (i.e., False) oth-

erwise. All the vectors are then concatenated into a single bit-vector B, compressed to

near-optimal space using Elias-Fano coding [36], and, by efficient implementations [107]

of rank and select queries it is possible to move from the bits related to a given node

to the ones related to one of its neighbors and therefore explore the graph.

This data structure was the first one that reached space requirements close to the

theoretical bounds and can be used to represent either n-dBG or e-dBG, albeit the

description we just outlined is clearly focused on the latter. Nevertheless, it is trivial

to store a n-dBG using such representation since we only need to store some additional

edges by setting to 1 the corresponding bits in B.

A Bloom filter based data structure A second succinct encoding of dBG was presented

in 2012 by Chikhi and Rizk [23]. This representation is based on the so called Bloom

filters [9], an efficient and compact membership data structure based on hash functions.

A Bloom filter can be defined as the union of a bit-vector B of length n (user defined)

and a set of hash functions {h1, h2, . . . , hm} mapping elements (in our case nodes in dBG)

to the range [1 . . . n]. When we want to add an element x to our set all the positions

h1(x), h2(x), . . . , hm(x) are computed and the corresponding bits in B are set to True.

When we want to test if an element y is in our set, the positions h1(y), h2(y), . . . , hm(y)

are computed and the element is reported as absent if at least one position is set to

False in B. This data structure is probabilistic since it produces false positives because

hash functions produce collisions and an element can be reported as present due to a

combinations of collisions with other elements actually in the set. We refer the reader

to Figure 3.1 for an example of false positive produced by a Bloom filter.

Chikhi and Rizk proposed to use a Bloom filter to compactly represent nodes of the

dBG and to store the list of false positives nodes reported as present in the graph by

the Bloom filter alongside it. In order to limit the memory usage of such list (storing

all the false positives could require too much space), the authors proposed to store only

the false positive nodes reachable from nodes in the graph called critical false positives.

Doing so, it is possible to have a deterministic data structure that requires an extremely

low space, if we can assure that the analysis of the graph starts from a node that is

38

1 0 1 0 0 1 1 0 1

AACGT GCATT

TTCGA
Figure 3.1: An example of Bloom filter with bitvector of length 9 and three hash func-

tions. Sequences AACGT and GCATT are inserted in the in the Bloom filter and
then the sequence TTCGA is tested producing a false positive.

actually in it.

It is worth to note that this data structure only represents nodes and does not stores

edges. Indeed, since nodes connected by an edge share a prefix and a suffix of length

K − 1, it is possible to test efficiently if all the nodes that can be reached are in the set.

Thus, this data structure represents a n-dBG.

In 2013, Salikhov et al. [122] improved this approach by noting that also the set of

false positives can be represented by a Bloom filter. Obviously, this will produce false

positives of the false positive set that, in turn, can be represented by mean of a (smaller)

Bloom filter. Reiterating this method until the set of false positive of a Bloom filter is

small enough leads to even greater memory savings than using a single Bloom filter.

A BWT-based data structure A third succinct data structure encoding dBG was pre-

sented by Bowe et al. in 2012 [14]. In the following, we will refer to this data structure

as BOSS (from the concatenation of the first letter of each author’s surname: Bowe,

Onodera, Sadakane, and Shibuya).

This representation is heavily inspired by the Burrows-Wheeler Transform and the

related literature (i.e., BWT-like representation of labeled trees [40,89]) and falls in the

39

3 De Bruijn graphs representations

well established field of compressed deterministic self-indexes. In this approach the goal

is to produce some kind of linearization of the graph (i.e., a 1-dimension representation

of the information contained in it) such that it is possible to apply efficient algorithms

designed to work on strings. In particular, BOSS represents the information of the labels

of the edges of the dBG and does not store the labels of its nodes since they can be inferred

by the former. In brief, given a dBG, its BOSS representation is a string produced by the

concatenation of the labels of its edges sorted by the lexicographic order of the reverse

of the label of the source node, i.e., edges (vi, vj) are sorted by the reverse of the label

of vi. More precisely, in order to compute the BOSS representation of a dBG G = (V,E),

we first compute the set N = {(l(e), reverse(l(source(e))) : e ∈ E} where, for an edge

e in E, l(e) is its label, source(e) is the source node of e, and reverse(s) produces the

reverse of the string s. We then sort the pairs in N by the lexicographic order of their

second elements and create a string W of length |N | by concatenating the first element

of each pair. In addition to W , BOSS is composed by a bit-vector L of length |N | used to

group together labels of edges outgoing from the same node. Indeed, note that, since N

is sorted by the lexicographic order of the reverse of the label of the source node, pairs

related to edges outgoing from the same node will be consecutive in N . Therefore, it is

possible to group together edges outgoing from the same node using a single bit for each

element and, in particular, L[i] will be set to False (or 0) if the i-th element of N has

the same source node as the (i−1)-th. The overall space required by this data structure

is 4|N |+o(|N |), since storing N requires 3 bits per edge and storing L requires 1 bit per

edge. We point out that, albeit the DNA alphabet has size 4, for technical reasons its

dimension is doubled since for each c in Σ a new character c− is added to it. Therefore,

the size of this extended alphabet is 8 and 3 bits are required to index each element in

it.

As presented by Bowe et al., BOSS allows to represent a single order e-dBG. In many

applications like genome assembly, multiple order of the same graph are used either at the

same time [81] or iteratively [109]. Using a simple BOSS, this would require to compute a

data structure for each order. In order to lower the amount of memory required, in 2015

Boucher et al. [13] extended this approach to represent multiple orders at the same time

by storing an additional integer vector representing the Longest Common Suffix Array

40

(LCSA) of the labels of the nodes1. This way it is possible to represent all the graphs

between order 1 and K using O(|N | lgK)+4|N |+o(|N |) bits instead of K(4|N |+o(|N |).

1Note this means to compute the Longest Common Prefix Array of the second elements of the pairs in
N .

41

4 Fully dynamic succinct de Bruijn graphs

In this section we will present a fully dynamic succinct dBG representation. This data

structure is based on a combinations of Karp-Rabin hashing [68] and Minimal Perfect

Hashing, that is similar to that using Bloom filters but has better theoretical bounds

when the number of connected component in the graph is small, and is fully dynamic:

i.e., we can both insert and delete nodes and edges efficiently, whereas implementations

based on Bloom filters are usually semi-dynamic and support only insertions.

We can summarize the results of this section with the two following technical lemmas:

Lemma 4.1 Given a static set S = {k1, k2, . . . , kn} of n K-tuples over an alphabet Σ

of size σ, with high probability in O(kn) expected time we can build a function f : Σk →
{0, . . . , n− 1} with the following properties:

• when its domain is restricted to S, f is bijective;

• we can store f in O(n+ logK + log σ) bits;

• given a K-tuple ki, we can compute f(ki) in O(K) time;

• given ki and kj such that the suffix of ki of length K−1 is the prefix of kj of length

K−1, or vice versa, if we have already computed f(ki) then we can compute f(kj)

in O(1) time (i.e., f is a Karp-Rabin — or rolling — hashing function).

Lemma 4.2 If S is dynamic then we can maintain a function f as described in Lemma 4.1

except that:

• the range of f becomes {0, . . . , 3n− 1};

• when its domain is restricted to N , f is injective;

43

4 Fully dynamic succinct de Bruijn graphs

• our space bound for f is O(n(log log n+ log log σ)) bits with high probability;

• insertions and deletions take O(K) amortized expected time.

• the data structure may work incorrectly with very low probability (inversely poly-

nomial in n).

Suppose G = (V,E) is a dBG. In Section 4.1 we show how we can store O(nσ) more

bits than Lemma 4.1 such that, given a pair of K-tuples (ki and kj) of which at least one

appears in G, we can check whether the edge (ki, kj) is in the graph. This means that,

if we start with a K-tuple whose node is in V , then we can explore the entire connected

component containing that K-tuple in the underlying undirected graph. On the other

hand, if we start with a K-tuple not in V , then we will learn that fact as soon as we

try to cross an edge to a K-tuple that is in V . To deal with the possibility that we

never try to cross such an edge, however — i.e., that our encoding as described so far is

consistent with a graph containing a connected component disjoint from V — we cover

the vertices with a forest of shallow rooted trees. We store each root as a K-tuple, and

for each other node we store 1 + lg σ bits indicating which of its incident edges leads to

its parent. To verify that a K-tuple we are considering is indeed in the graph, we ascend

to the root of the tree that contains it and check that K-tuple is what we expect. The

main challenge for making our representation dynamic with Lemma 4.2 is updating the

covering forest. In Section 4.2, we show how we can do this efficiently while maintaining

our depth and size invariants. Finally, in Section 4.3 we observe that our representation

can be easily modified for other applications by replacing the Karp-Rabin hash function

by other kinds of hash functions.

4.1 Static de Bruijn Graphs representation

Let G be a de Bruijn graph of order K, let V = {v1, . . . , vn} be the set of its nodes, and

let E = {a1, . . . , ae} be the set of its edges. We call each vi either a node or a K-tuple,

using interchangeably the two terms since there is a one-to-one correspondence between

nodes and labels.

44

4.1 Static de Bruijn Graphs representation

We maintain the structure of G by storing two binary matrices, IN and OUT, of size n×
σ. For each node, the former represents its incoming edges whereas the latter represents

its outgoing edges. In particular, for each K-tuple vi = c1c2 . . . cK−1a, the former stores

a row of length σ such that, if there exists another K-tuple vj = bc1c2 . . . cK−1 and an

edge from vi to vj , then the position indexed by b of such row is set to 1. Similarly, OUT

contains a row for vi and the position indexed by a is set to 1. As previously stated, each

K-tuple is uniquely mapped to a value between 0 and n−1 by f , where f is as defined in

Lemma 4.1, and therefore we can use these values as indices for the rows of the matrices

IN and OUT, i.e., in the previous example the values of IN[f(vi)][b] and OUT[f(vj)][a] are

set to 1. We note that, e.g., the SPAdes assembler [4] also uses such matrices.

Suppose we want to check whether there is an edge from bX to Xa. Letting f(bX) = i

and f(Xa) = j, we first assume bX is in G and check the values of OUT[i][a] and IN[j][b].

If both values are 1, we report that the edge is present and we say that the edge is

confirmed by IN and OUT; otherwise, if any of the two values is 0, we report that the

edge is absent. Moreover, note that if bX is in G and OUT[i][a] = 1, then Xa is in G as

well. Symmetrically, if Xa is in G and IN[j][b] = 1, then bX is in G as well. Therefore,

if OUT[i][a] = IN[j][b] = 1, then bX is in G if and only if Xa is. This means that, if we

have a path P and if all the edges in P are confirmed by IN and OUT, then either all the

nodes touched by P are in G or none of them is.

We now focus on detecting false positives in our data structure maintaining a rea-

sonable memory usage. Our strategy is to sample a subset of nodes for which we store

the plain-text K-tuple and connect all the unsampled nodes to the sampled ones. More

precisely, we partition nodes in the undirected graph G′ underlying G into a forest of

rooted trees of height at least K lg σ and at most 3K lg σ. For each node we store a

pointer to its parent in the tree, which takes 1 + lg σ bits per node, and we sample the

K-mer at the root of such tree. We allow a tree to have height smaller than K lg σ when

necessary, i.e., if it covers a connected component. Figure 4.1 shows an illustration of

this idea.

We can therefore check whether a given node vi is in G by first computing f(vi) and

then checking and ascending at most 3K lg σ edges, updating vi and f(vi) as we go.

Once we reach the root of the tree we can compare the resulting K-tuple with the one

45

4 Fully dynamic succinct de Bruijn graphs

vi vj

vk
e

Figure 4.1: Given a de Bruijn graph (top left), we cover the underlying undirected graph
with a forest of rooted trees of height at most 3K lg σ (top right). The roots
are shown as filled nodes, and parent pointers are shown as arrows; notice
that the directions of the arrows in our forest are not related to the edges’
directions in the original de Bruijn graph. We sample the K-tuples at the
roots so that, starting at a node we think is in the graph, we can verify its
presence by finding the root of its tree and checking its label in O(K log σ)
time. The most complicated kind of update (bottom) is adding an edge
between a node vi in a small connected component to a node vj in a large
one, vj ’s depth is more than 2K lg σ in its tree. We re-orient the parent
pointers in vi’s tree to make vi the temporary root, then make vi point to vj .
We ascend K lg σ steps from vj , then delete the parent pointer e of the node
vk we reach, making vk a new root. (To keep this figure reasonably small,
some distances in this example are smaller than prescribed by our formulas.)

sampled to check if vi is in the graph. This procedure requires O(K lg σ) time since

computing the first value of f(vi) requires O(K), ascending the tree requires constant

46

4.2 Dynamic de Bruijn Graphs representation

time per edge, and comparing the K-tuples requires O(K lg σ).

Construction algorithm We now describe a Las Vegas algorithm for the construction of

this data structure that requires, with high probability, O(Kn+ nσ) expected time. We

recall that V is the set of input nodes of size n. We first select a function f and construct

a bitvector B of size n initialized with all its elements set to 0. For each element v of V

we compute f(v) = i and check the value of B[i]. If this value is 0 we set it to 1 and

proceed with the next element in V , if it is already set to 1, we reset B, select a different

function f , and restart the procedure from the first element in V . Once we finish this

procedure — i.e., we found that f does not produce collisions when applied to V — we

store f and proceed to initialize IN and OUT correctly. This procedure requires with high

probability O(Kn) expected time for constructing f and O(nσ) time for computing IN

and OUT. Notice that if V is the set of K-tuples of a single text sorted by their starting

position in the text, each f(vi) can be computed in constant time from f(vi−1) except

for f(v1) that still requires O(K). More generally, if V is the set of K-tuples of t texts

sorted by their initial position, we can compute n − t values of the function f(vi) in

constant time from f(vi−1) and the remaining t in O(K). In this case the construction

requires, with high probability, O(Kt+ (n− t) + nσ) = O(Kt+ nσ) expected time.

Combining our forest with Lemma 4.1, we can summarize our static data structure in

the following theorem:

Theorem 4.3 Given a static σ-ary Kth-order de Bruijn graph G with n nodes, with high

probability in O(Kn+ nσ) expected time we can store G in O(σn) bits plus O(K log σ)

bits for each connected component in the underlying undirected graph, such that checking

whether a node is in G takes O(K log σ) time, listing the edges incident to a node we

are visiting takes O(σ) time, and crossing an edge takes O(1) time.

4.2 Dynamic de Bruijn Graphs representation

In the previous section we presented a static representation of de Buijn graphs, we now

show how we can make this data structure dynamic. In particular, we will show how we

can insert and remove edges and nodes and that updating the graph reduces to managing

47

4 Fully dynamic succinct de Bruijn graphs

the covering forest over G. In this section, when we refer to f we mean the function

defined in Lemma 4.2. We first show how to add or remove an edge in the graph and

will later describe how to add or remove a node in it. The updates must maintain the

following invariant: any tree must have size at least K log σ and height at most 3K log σ

except when the tree covers (all nodes in) a connected component of size at most K log σ.

Let vi and vj be two nodes in G, e = (vi, vj) be an edge in G, and let f(vi) = i′ and

f(vj) = j′.

Suppose we want to add e to G. First, we set to 1 the values of OUT[i′][a] and IN[j′][b]

in constant time. We then check whether vi or vj are in different components of size

less than K lg σ in O(K lg σ) time for each node. If both components have size greater

than K lg σ we do not have to proceed further since the trees will not change. If both

connected components have size less than K lg σ we merge their trees in O(K lg σ) time

by traversing both trees and switching the orientation of the edges in them, discarding

the samples at the roots of the old trees and sampling the new root in O(K) time.

If only one of the two connected components has size greater than K lg σ we select it

and perform a tree traversal to check whether the depth of the node is less than 2K lg σ.

If it is, we connect the two trees as in the previous case. If it is not, we traverse the tree

in the bigger components upwards for K lg σ steps, we delete the edge pointing to the

parent of the node we reached creating a new tree, and merge it with the smaller one.

This procedure requires O(K lg σ) time since deleting the edge pointing to the parent in

the tree requires O(1) time, i.e., we have to reset the pointer to the parent in only one

node.

Suppose now that we want to remove e from G. First we set to 0 the values of OUT[i′][a]

and IN[j′][b] in constant time. Then, we check in O(K) time whether e is an edge in some

tree by computing f(vi) and f(vj) checking for each node if that edge is the one that

points to their parent. If e is not in any tree we do not have to proceed further whereas if

it is we check the size of each tree in which vi and vj are. If any of the two trees is small

(i.e., if it has fewer than K lg σ elements) we search any outgoing edge from the tree that

connects it to some other tree. If such an edge is not found we conclude that we are in

a small connected component that is covered by the current tree and we sample a node

in the tree as a root and switch directions of some edges if necessary. If such an edge

48

4.2 Dynamic de Bruijn Graphs representation

is found, we merge the small tree with the bigger one by adding the edge and switch

the direction of some edges originating from the small tree if necessary. Finally if the

height of the new tree exceeds 3K log σ, we traverse the tree upwards from the deepest

node in the tree (which was necessarily a node in the smaller tree before the merger) for

2K lg σ steps, delete the edge pointing to the parent of the reached node, creating a new

tree. This procedure requires O(K lg σ) since the number of nodes traversed is at most

O(K lg σ) and the number of changes to the data structures is also at most O(K lg σ)

with each change taking expected constant time.

It is clear that the insertion and deletion algorithms will maintain the invariant on the

tree sizes. It is also clear that the invariant implies that the number of sampled nodes

is O(n/(K log σ)) plus the number of connected components.

We now show how to add and remove a node from the graph. Adding a node is trivial

since it will not have any edge connecting it to any other node. Therefore adding a node

reduces to modify the function f and requires O(K) amortized expected time. When

we want to remove a node, we first remove all its edges one by one and, once the node is

isolated from the graph, we remove it by updating the function f . Since a node will have

at most σ edges and updating f requires O(K) amortized expected time, the amortized

expected time complexity of this procedure is O(σK lg σ +K).

Combining these techniques for updating our forest with Lemma 4.2, we can summa-

rize our dynamic data structure in the following theorem:

Theorem 4.4 We can maintain a σ-ary Kth-order de Bruijn graph G with n nodes that

is fully dynamic (i.e., supporting node and edge insertions and deletions) in O(n(log log n+ σ))

bits (plus O(K log σ) bits for each connected component) with high probability, such

that we can add or remove an edge in expected O(K lg σ) time, add a node in expected

O(K + σ) time, and remove a node in expected O(σK lg σ) time, and queries have the

same time bounds as in Theorem 4.3. The data structure may work incorrectly with very

low probability (inversely polynomial in n).

49

4 Fully dynamic succinct de Bruijn graphs

4.3 Applications

Karp-Rabin hash functions implicitly divide their domain into equivalence classes — i.e.,

subsets in which the elements hash to the same value. In this chapter we have chosen

Karp-Rabin hash functions such that each equivalence class contains only one K-tuple

in the graph. Most of our efforts have gone into being able, given a K-tuple and a hash

value, to determine whether that K-tuple is the unique element of its equivalence class

in the graph. In some sense, therefore, we have treated the equivalence relation induced

by our hash functions as a necessary evil, useful for space-efficiency but otherwise an

obstacle to be overcome. For some applications, however — i.e., parameterized pattern

matching, circular pattern matching or jumbled pattern matching — we are given an

interesting equivalence relation on strings and asked to preprocess a text such that later,

given a pattern, we can determine whether any substrings of the text are in the same

equivalence class as the pattern. We can modify our data structure for some of these

applications by replacing the Karp-Rabin hash function by other kinds of hash functions.

For indexed jumbled pattern matching [2,18,73] we are asked to pre-process a text such

that later, given a pattern, we can determine quickly whether any substring of the text

consists of exactly the same multiset of characters in the pattern. Consider fixed-length

jumbled pattern matching, when the length of the patterns is fixed at pre-processing

time. If we modify Lemmas 4.1 and 4.2 so that, instead of using Karp-Rabin hashes in

the definition of the function f , we use a hash function on the histograms of characters’

frequencies in K-tuples, our function f will map all permutations of a K-tuple to the

same value. The rest of our implementation stays the same, but now the nodes of our

graph are multisets of characters of size K and there is an edge between two nodes vi

and vj if it is possible to replace an element of vi and obtain vj . If we build our graph

for the multisets of characters in K-tuples in a string T , then our process for checking

whether a node is in the graph tells us whether there is a jumbled match in T for a

pattern of length K. If we build a tree in which the root is a graph for all of T , the left

and right children of the root are graphs for the first and second halves of T , etc., as

described by Gagie et al. [45], then we increase the space by a logarithmic factor but we

can return the locations of all matches quickly.

50

4.3 Applications

Theorem 4.5 Given a string T [1..n] over an alphabet of size σ and a length K � n,

with high probability in O(Kn+ nσ) expected time we can store (2n log σ)(1 + o(1)) bits

such that later we can determine in O(K log σ) time if a pattern of length K has a

jumbled match in T .

51

5 Bidirectional succinct de Bruijn graphs

In this section we will present a succinct data structure for representing a set of de

Bruijn graphs for various order that permits to move backwards in them. In particular,

given a set of texts S and an integer K, this data structure, called bidirectional variable

order BOSS (biBOSS for short), represents all the dBGs of S of order between 1 and K

and their reverse. The main goal of this data structue is to overcome the limitations of

what was presented in 2015 by Boucher et al. [13] when describing approaches for storing

multiple dBGs at the same time. Supporting variable-orders is useful when non-uniform

sampling of the reads leads to some parts of the graph being sparser than others but

it’s an asymmetric representation. The BOSS representation is asymmetric in the sense

that, when visiting a node vi, it takes much longer to follow the edge with a given label

arriving at vi than it does to follow the edge with that label leaving vi.

The contribution of this chapter is a space-efficient bidirectional variable-order BOSS

representation. Although being motivated partly by aesthetics — symmetry is beautiful

— such representation is useful when building unitigs considering multiple orders at the

same time.

The rest of this chapter is laid out as follows: in Section 5.1 we briefly review the defi-

nitions of fixed- and variable-order BOSS (see Section 3 for a more thorough description),

in Section 5.2 we describe our bidirectional variable-order BOSS representation, and in

Section 5.3 we briefly show possible applications of this data structure.

5.1 Fixed- and variable-order BOSS

We recall that the BOSS representation of a K-th order dBG is essentially the union of

two vectors. The first one, W — also called edge-BWT —, is the concatenation of the

labels of the edges of the graph sorted by the lexicographic order of the reverse of the

53

5 Bidirectional succinct de Bruijn graphs

Figure 5.1: A BOSS representation of a dBG. On the left two the bruijn graph for the same
dataset are reported: the one on top is of order 5 and the one on the bottom
is of order 2. On the right the variable-order BOSS representation is reported.
Note that K-mers are reported but are not part of the data structure.

label of their source node. The second one, L, is used to group together consecutive

edges in W outgoing from the same node.

Bowe et al. [14] described a number of queries for traversing the graph, all of which can

be implemented in terms of the following three basic queries, with at most an O(σ)-factor

slowdown:

• forward(v, a) returns the node u reached from v by an edge labelled a, or NULL

if there is no such node;

• backward(v) lists the nodes u with an edge from u to v;

• lastchar(v) returns the last character of v’s label.

54

5.2 Bidirectional BOSS

In BOSS, nodes correspond to the intervals of the edge-BWT. Boucher et al. [13]

augment the BOSS representation of the original graph, by storing the length of the

longest common suffix of each consecutive pair of nodes, to support the following three

queries:

• shorter(v,K ′) returns the node whose label is the last K ′ characters of v’s label;

• longer(v,K ′) lists nodes whose labels have length K ′ ≤ K and end with v’s label;

• maxlen(v, a) returns some node in the graph of maximum order whose label ends

with v’s label, and that has an outgoing edge labelled a, or NULL if there is no

such node.

Together, these operations allow the order of the de Bruijn graph to be changed on

the fly. The main addition to BOSS is a wavelet tree over the array L∗ storing the length

of the longest suffix common to each row in the BOSS matrix and the preceding row.

5.2 Bidirectional BOSS

BOSS allows us to move backward in the graph, accurately using rank and select on W

and L. This procedure has a major drawback, which is that we cannot read which is the

label of the edge we are traversing backward but can only read labels when we traverse

edges forward. Indeed, it is possible to read the labels outgoing from a node by following

an edge and using the function lastchar(v) (that returns the last character of a node

in constant time). Nevertheless, moving backward in BOSS is performed “blindly”, i.e.,

without reading the label of the edge since the function backward(v) only returns a list

of nodes and there is no firstchar(v) function.

A näıve yet inefficient solution would be to traverse K ′ edges backward in order to

retrieve the character in the first position of the current K ′-mer. Note that this way

we shift the label of the current vertex until the first character becomes the label of

the outgoing edge of the reached vertex. This procedure clearly requires O(K ′) for each

incoming edge of the source node. Moreover, if the current node has j incoming edges

we should perform j × K ′ backward steps in order to find all the possible backward

55

5 Bidirectional succinct de Bruijn graphs

labels of those edges. Therefore, for an alphabet of size σ this procedure would require

O(σ ×K ′).

For fixed order BOSS we can avoid backtracking in the graph by storing the first

character of each K-mer, although this approach is not viable in variable-order dBG

since it requires to store the whole set of K-mers. Indeed, note that storing the first

character of the K-mers allows us to gather the backward label of an edge in the graph

of order K but we need to store the second character in order to gather the backward

label of an edge in the graph of order K − 1, the third character for the graph of order

K−2, and so on. We now introduce an elegant and efficient approach to move backward

and forward in BOSS, namely bidirectional BOSS (biBOSS for short). This idea is loosely

inspired by bidirectional BWT.

First, note that if we build the dBG of order K ′ for a set of strings and their reverse, we

obtain two isomorphic graphs; we refer to the former as dBGfK′ and to the latter as dBGrK′ .

For each vertex vfi with label li in dBG
f
K′ there is a vertex vri with label reverse(li) in

dBGrK′ and for each edge efh = (vfi , v
f
j) labeled with σf = vfj [K ′] in dBG

f
K′ there is an edge

erh = (vrj , v
r
i) labeled with σr = vri [K

′] = vfi [1] in dBGrK′ . Therefore, if we can maintain

a link between the nodes and the edges in the two graphs we can easily retrieve the

forward and backward labels simply by looking at efh and erh.

Moreover, note that outgoing edges from vfi in dBG
f
K′ are edges incoming to vri in

dBGrK′ and, conversely, edges outgoing from vri are incoming to vfi . This remark clearly

points out that we can simulate a backward step in dBG
f
K′ with a forward step in dBGrK′

without any need for further backtracking in neither dBGfK′ nor dBGrK′ .

A biBOSS for a set of strings S is therefore a data structure composed by two BOSS.

The first one, BOSSf , is the BOSS data structure for S whereas the second one, BOSSr,

is the BOSS data structure for Sr = {reverse(si) : si ∈ S}. Each node vfi in dBG
f
K′ is

defined in BOSSf as an interval Ifi = [bf , ef] over W , L, and L∗ (W f , Lf , and L∗f from

now on). Conversely, each node vri in dBGrK′ is defined in BOSSr as an interval Iri = [br, er]

over W r, Lr, and L∗r.

Therefore, in order to support forward and backward navigation of the DBG we pro-

pose to maintain a pair of intervals (Ifi , I
r
i), one to describe the vertex vfi (Ifi) and the

other to describe the vertex vri (Iri). From now on we will use vfi and vri to define vertices

56

5.2 Bidirectional BOSS

and intervals on their respective BOSS interchangeably.

As described in section 5.1, Boucher et al. [13] described three main functions for a

variable order BOSS, namely shorter, longer, and maxlen in order to move upwards

and downwards in the orders of the dBGs and to explore the graph. Obviously we want

to support the same set of functions so we will provide the biBOSS versions of the first

two. We will not define maxlen for biBOSS since it is related to a specific direction of the

graph and wouldn’t make too much sense in this case. The examples in Figures 5.2–5.4

show a biBOSS graphical representation for a dBG of maximum order 5. We will use this

example to show the execution of the new procedures graphically.

Shorter Let vfi and vri be two vertices of order K ′ labeled by li and reverse(li) and

let K be the maximum order of the variable order BOSS. We define bi-shorter as

bi-shorter(vfi , v
r
i) = (vfj , v

r
j) such that the labels of vfj and vrj are respectively li[2 : K ′]

and reverse(li[2 : K ′]) = reverse(li)[1 : K ′ − 1]. This function returns the node in

dBG
f
K′−1 which label is the last K ′ − 1 character of li and its linked node in dBGrK′−1.

Note that we can swap the two vertices in order to move downward between the orders

of any dBGr∗.

Computing vfj is straightforward since we only need to compute shorter(vfi ,K
′ − 1)

as defined in section 5.1. This procedure requires O(lgK) time [13].

Computing vrj is more challenging since we need to remove the last character of

reverse(li). Nevertheless we can easily find a node in the graph with maximum order K

that ends with reverse(li)[1 : K ′−1] by selecting any position in the interval vri and ap-

plying backward as defined in Bowe et al. [14] and then moving downwards in the order of

the graph. More formally we can say that vrj = shorter(backward(maxlen(vri , ∗)),K ′−
1). This procedure requires O(lgK) time since we can compute maxlen and backward

in constant time and shorter in O(lgK).

The example in Figure 5.2 shows the computation of bi-shorter on the pair of linked

vertices vfi = AAGTA and vri = ATGAA. The vertex vfj = AGTA is computed by

finding the L∗f -interval of order 4 that contains vfi . In order to compute vrj we first

gather any node in the original graph contained in vri (in this case the same node since

vri has maximum order 5) and, by applying backward to it, obtain a node in which the

57

5 Bidirectional succinct de Bruijn graphs

Forward

kmer L W L* 1 2 3 4 5 6 7 8 9 10 11 12 13

$$$$$ 1 T 0

A$$$$ 1 $ 4

CA$$$ 1 $ 3

ACA$$ 1 $ 2

CACA$ 1 $ 1

$$TAA 1 G 0

ACACA 1 $ 1

GTACA 1 C 3

TTACA 1 C 4

$$$TA 1 A 1

AAGTA 0 C 2

AAGTA 1 G 5

TAGTA 1 G 4

AGTTA 1 C 2

TACAC 1 A 0

AGTAC 1 A 2

GTTAC 1 A 3

$TAAG 1 T 0

AGTAG 1 T 2

$$$$T 1 A 0

TAAGT 1 A 1

GTAGT 0 A 3

GTAGT 1 T 5

TAGTT 1 A 1

A = AAGTA

shorter(A)

Reverse

kmer L W L* 1 2 3 4 5 6 7 8 9 10 11 12 13

$$$$$ 1 A 0

T$$$$ 1 $ 4

AT$$$ 1 $ 3

AAT$$ 1 $ 2

GAAT$ 1 $ 1

$$$$A 1 C 0

ATGAA 1 T 1

$$ACA 1 C 1

ACACA 1 T 3

CATGA 1 A 1

GATGA 0 A 4

GATGA 1 T 5

ATTGA 1 T 3

$$$AC 1 A 0

$ACAC 1 A 2

ACATG 1 A 0

TGATG 1 A 3

CATTG 1 A 2

TGAAT 1 $ 0

CACAT 0 T 2

CACAT 1 G 5

ATGAT 1 G 2

TTGAT 1 G 4

ACATT 1 G 1

A' = ATGAA

maxlen(A', *)

backward

shorter

Figure 5.2: A graphical example of bi-shorter.

reversed label of vfj is a suffix (CATGA). Finally we move downwards in the order of

BOSSr obtaining the vertex vrj = ATGA.

Note that bi-shorter and shorter are slightly different since the former only allows

to move between two adjacent orders (i.e., between K and K − 1) whereas the latter

allow to move between multiple orders at the same time. Nevertheless, bi-shorter

can simulate the behavior of shorter by performing repeatedly the same operations

(increasing the time complexity to O(J lgK) where J is the difference between the two

orders of the dBGs).

Longer Let σk ∈ Σ be a character in the alphabet; we define bi-longer as

bi-longer(vfi , v
r
i , σh) = (vfj , v

r
j)

such that the labels of vfj and vrj are respectively σh · li and reverse(li) ·σh, thus the two

computed vertices have reversed labels. Note that bi-longer is slightly different than

58

5.2 Bidirectional BOSS

its corresponding function in variable order BOSS, namely longer. Indeed, applying the

latter function (longer) to a vertex v ∈ dBG
f
i in order to gather the nodes of order j,

returns a list of vertices V ∈ dBG
f
j such that each vertex vh ∈ V has a label that ends

with the label of v. bi-longer, instead, allow us to select the character we want to

concatenate to the labels. Nevertheless, gathering all the vertices from bi-longer to

simulate longer is straightforward.

Clearly, we cannot directly compute vfj using longer. Our goal is therefore to provide

a method that allows us to select the correct vertex from the list produced by longer, i.e.

the one labeled with σh ·li. First, note that if V is the list returned by longer(vfi ,K
′+1)

then the labels of the vertices in V end with li and have length equal to |li|+1. Moreover,

the vertices in V are sorted by lexicographic order of the reverse of the labels and for

each vertex vh in V the first character of its label is in the interval vri . Indeed, since vh

is a backward extension of vfi its first character is a label of an edge outgoing from vri .

This remark hints that we can analyze vri in order to correctly label the vertices in V . It

is easy to prove that |V | is equal to the cardinality of the set of the distinct characters

in vri and, since the elements of V are sorted, we can easily link each vertex with its first

character and select the vertices that starts with σh (if it exists).

Computing vrj is straightforward, we need only to follow an edge labeled by σh (if it

exists) and then find the vertex of order K ′ + 1. More formally, if t is the cardinality

of the set {c : c ∈ vri ∩ c < σh} 6=, then vfj and vrj can be computed respectively as

longer(vfi ,K
′ + 1)[t+ 1] and shorter(forward(maxlen(vri , σh)),K ′ + 1).

This procedure requires O(σ lg σ + |V | lgK) time since computing t requires us to

compute the rank values for each character in the alphabet at the beginning and at the

end of the interval of vri (O(σ lg σ)), longer takes O(|V | lgK), forward takes constant

time, maxlen takes O(lg σ), shorter takes O(lgK), and selecting an element from a list

takes constant time. When σ = O(1), therefore, bi-longer takes O(lgK) time.

The example in Figure 5.3 shows the computation of bi-longer on the pair of linked

vertices vfi = TA and vri = AT with σh = T . The interval vfi is first split into the 3

possible vertices of order 3 using L∗f . By analyzing vri we find that the characters at

the beginning of each 3-mer are respectively $, G, and T . We therefore select the third

interval since $ < G < T . In order to compute vrj we first select an edge in vri labeled

59

5 Bidirectional succinct de Bruijn graphs

Forward

kmer L W L* 1 2 3 4 5 6 7 8 9 10 11 12 13

$$$$$ 1 T 0

A$$$$ 1 $ 4

CA$$$ 1 $ 3

ACA$$ 1 $ 2

CACA$ 1 $ 1

$$TAA 1 G 0

ACACA 1 $ 1

GTACA 1 C 3

TTACA 1 C 4

$$$TA 1 A 1 1

AAGTA 0 C 2

AAGTA 1 G 5

TAGTA 1 G 4

AGTTA 1 C 2 3

TACAC 1 A 0

AGTAC 1 A 2

GTTAC 1 A 3

$TAAG 1 T 0

AGTAG 1 T 2

$$$$T 1 A 0

TAAGT 1 A 1

GTAGT 0 A 3

GTAGT 1 T 5

TAGTT 1 A 1

A = TA

longer(k) 1

longer(k) 2

longer(k) 3

take(t+1)

2

Reverse

kmer L W L* 1 2 3 4 5 6 7 8 9 10 11 12 13

$$$$$ 1 A 0

T$$$$ 1 $ 4

AT$$$ 1 $ 3

AAT$$ 1 $ 2

GAAT$ 1 $ 1

$$$$A 1 C 0

ATGAA 1 T 1

$$ACA 1 C 1

ACACA 1 T 3

CATGA 1 A 1

GATGA 0 A 4

GATGA 1 T 5

ATTGA 1 T 3

$$$AC 1 A 0

$ACAC 1 A 2

ACATG 1 A 0

TGATG 1 A 3

CATTG 1 A 2

TGAAT 1 $ 0

CACAT 0 T 2

CACAT 1 G 5

ATGAT 1 G 2

TTGAT 1 G 4

ACATT 1 G 1

A' = AT

maxlen(A', T)

forward

shorter

t = 2

Figure 5.3: A graphical example of bi-longer.

with T (the one outgoing from CACAT) and follow it, obtaining a vertex in the graph

of maximum order 5 that has the label of vrj as suffix (ACATT). As a last step we move

upward in the order of the graph using the information stored in L∗r and obtaining the

correct vertex in BOSSr (ATT , represented by the same interval).

Forward-Backward Until now we have described how we can move between the different

orders described by the variable order BOSS maintaining the link between the nodes. We

will now show how to move forward in either of the two graphs and maintain the link

with the vertex in the other one with reversed label. Note that this actually means

we move backward in one of the two graphs by selecting the correct graph in which to

perform the forward step.

Let σh be a character in the alphabet; we define FwdBwd(vfi , v
r
i , σh) = (vfj , v

r
j) such

that the labels of vfj and vrj are respectively li[2 : K ′]·σh and σh ·reverse(li)[1 : K ′−1] =

reverse(li[2 : K ′] · σh).

Computing vfj is straightforward since we only need to compute forward(vfi , σh) as

60

5.2 Bidirectional BOSS

defined in Section 5.1. This step requires O(lgK).

Computing vrj is mostly a combination of the previous two functions. Indeed, if we

consider the labels of vri (li) and vrj (lj) we can note that, for some σl ∈ Σ, li ·σl = σh · lj ,
that is, in order to obtain vrj we must remove the last character of vri (σl) and concatenate

σh at the beginning of the obtained label. This two-step description clearly highlights the

connections with bi-shorter (delete the last character) and bi-longer (concatenate a

character at the beginning).

The proposed method is as follows. First we compute the interval for reverse(li[2 :

K ′]) by applying backward to vri ; note that this step produces a node (vrt) in dBGrK′−1

which label is a suffix of the label of vrj . At this point it is easy to see that we can apply

longer to vrp in order to find the list of vertices V that share the label of vrp as suffix;

clearly vrj will be in V by definition. Selecting the correct vertex can be done similarly

as in bi-longer, the vertices are sorted by lexicographic order of the reverse of their

labels and we can access the different characters by analyzing shorter(vfi ,K
′ − 1).

More formally, if t is the cardinality of the set {c : c ∈ shorter(vfi ,K
′−1)∩c < σh}6=,

we can compute vfj and vrj using the following formulas:

vfj = forward(vfi , σh)

and

vrj = longer(shorter(backward(maxlen(vri , ∗)),K ′ − 1),K ′ + 1)[t]

This procedure requires O(σ lg σ + |V | lgK) time where |V | ≤ σ is the number of

nodes returned by longer. Computing t requires us to compute shorter (O(lgK)) and

perform the same rank operation as for bi-longer (O(σ lg σ)), computing vfj requires

O(lgK), and computing vrj requires O(|V | lgK) since maxlen and backward can be

computed in constant time, shorter requires O(lgK), and longer requires O(|V | lgK).

When σ = O(1), therefore, FwdBwd takes O(lgK) time.

The example in Figure 5.4 shows the computation of FwdBwd on the pair of linked

vertices vfi = GTA and vri = ATG with σh = G. First we gather the index t, that we will

use in the last step, by applying shorter to vfi (obtaining the vertex TA) and counting

the number of distinct character smaller than σh. We then compute vfj by selecting an

61

5 Bidirectional succinct de Bruijn graphs

Forward

kmer L W L* 1 2 3 4 5 6 7 8 9 10 11 12 13

$$$$$ 1 T 0

A$$$$ 1 $ 4

CA$$$ 1 $ 3

ACA$$ 1 $ 2

CACA$ 1 $ 1

$$TAA 1 G 0

ACACA 1 $ 1

GTACA 1 C 3

TTACA 1 C 4

$$$TA 1 A 1

AAGTA 0 C 2

AAGTA 1 G 5

TAGTA 1 G 4

AGTTA 1 C 2

TACAC 1 A 0

AGTAC 1 A 2

GTTAC 1 A 3

$TAAG 1 T 0

AGTAG 1 T 2

$$$$T 1 A 0

TAAGT 1 A 1

GTAGT 0 A 3

GTAGT 1 T 5

TAGTT 1 A 1

A = GTA

shorter(k-1)

maxlen(A, 'G')

forward

shorter

t = 2

Reverse

kmer L W L* 1 2 3 4 5 6 7 8 9 10 11 12 13

$$$$$ 1 A 0

T$$$$ 1 $ 4

AT$$$ 1 $ 3

AAT$$ 1 $ 2

GAAT$ 1 $ 1

$$$$A 1 C 0 1

ATGAA 1 T 1 2

$$ACA 1 C 1 3

ACACA 1 T 3

CATGA 1 A 1

GATGA 0 A 4

GATGA 1 T 5

ATTGA 1 T 3

$$$AC 1 A 0

$ACAC 1 A 2

ACATG 1 A 0

TGATG 1 A 3

CATTG 1 A 2

TGAAT 1 $ 0 1

CACAT 0 T 2

CACAT 1 G 5

ATGAT 1 G 2

TTGAT 1 G 4

ACATT 1 G 1

A' = ATG

maxlen(A')

backward

shorter(k-1)

longer(k) 1

longer(k) 2

longer(k) 3

take(t+1)

2

3

Figure 5.4: A graphical example of FwdBwd.

edge in vfi labeled with σh and following it, obtaining the vertex in the original graph

labeled with AGTAG. We then apply shorter to gather the vertex vfj of order 3. In order

to compute vrj we first select any edge in vri and traverse it backward obtaining a vertex

with suffix AT. We then compute vrj by applying shorter (order K ′ − 1) and longer

(order K ′) and selecting the t-th interval computed. This example clearly shows why

we cannot directly compute shorter of order K ′. When we select a random edge in vri

we cannot directly access the K ′-mers so we may concatenate a character σl 6= σh at

the beginning of the label of our vertex (in our example σl = C). We therefore need to

get rid of this character by moving downward between the orders obtaining the node AT

and then select the correct vertex by moving upward using the information of the edges

outgoing from its reverse (TA = shorter(vfi ,K
′ − 1)).

We can summarize the results of this section in the following theorem.

Theorem 5.1 When σ = O(1), we can store a variable-order de Bruijn graph of maxi-

mum order K in O(n lgK) bits on top of the BOSS representation of the order-K graph,

62

5.3 Applications

where n is the number of nodes in the order-K graph, such that incrementing or decre-

menting the order and forward or backward traversals take O(lgK) time.

5.3 Applications

The biBOSS data structure and the functions we have described in this chapter can be

applied to the sequence assembly problem. First of all, we note once again that different

approaches build unitigs by considering multiple orders of the de Bruijn graphs either

at the same time or iteratively. For example, the IDBA [110] metagenome assembler

iteratively builds de Bruijn graphs for increasing orders, compute the unitigs, and use

them when computing unitigs in higher order dBG. Although reasonable, such approach

requires to build the dBG multiple times and, most importantly, it only considers orders

in one direction, i.e., only for increasing order value. At the best of our knowledge, no

method proposed in the literature allows to build unitigs by increasing or decreasing the

context — i.e., the order of the dBG — at will. Doing so, while analyzing the graph it

could be possible to jump between the orders selecting the best one at each extension

of the unitig, possibly considering the both the length of the context and the average

coverage of it.

biBOSS has all the characteristics to unlock this opportunity. Indeed, starting from

a given seed, with this data structure we can extend a pattern, i.e., an unitig, in one

direction using bi-longer if there is only one possible choice, append the character to

the unitig and repeat such process. Once bi-longer cannot be performed (i.e., when

there are no possible extensions of the unitig or the coverage of the extended unitig —

easily inferred by the width of the interval — is too low), we can shorten the context

considered by applying bi-shorter and repeat the process until an unavoidable branch

is reached. Finally, we can perform the same process on the reverse of the seed switching

the graphs used and the intervals of the seed.

Note that we cannot use a simple variable order BOSS with this approach since, in order

to guarantee that we compute unitigs, we have to test that there is a single incoming

edge in the current node. Indeed, a variable order boss BOSS only allows to “see” in one

direction and checking the label of an incoming edge would require some additional and

63

5 Bidirectional succinct de Bruijn graphs

probably convoluted method.

We note that unitig is probably an abuse of terminology in this case but we chose to

use it to better explain the goal of this procedure.

64

Part II

Building assembly graphs from

self-indexes

65

Context and motivation

In this part of the thesis we will present a new framework for the genome assembly

problem. We will show relations between indexing data structure and assembly graphs

— more precisely string graphs — with an in-depth theoretical analysis and, after that,

we will show how these properties can be exploited to implement either external memory

assembler or parallel assemblers.

We note that indexing data structure based assemblers have been proposed in the

past [134] and proved to be extremely efficient for genome assembly [135]. Although

those methods hint to underlying relations between the Burrows-Wheeler Transform

and assembly graph and exploit them, no formal and thorough analysis is performed.

In the first chapter of this section (Chapter 6) we will fill this gap by a complete and

accurate theoretical investigation of it. In the successive chapters we will show that these

properties can be efficiently exploited in order to design both external memory (Chap-

ter 7) and parallel (Chapter 8) methods and tools that can suite different requirements

and will compare their performances with state-of-the-art tools.

String Graph based assembly

We are currently witnessing the rise of different Next-Generation Sequencing (NGS)

technologies, each with its own peculiarities, especially with respect to read lengths that

typically range between 50 and 150 bases [125]. De novo sequence assembly is still one

of the most fundamental problems in Bioinformatics and is continuously receiving much

attention. Most of the available assemblers [4,110,136] are built upon the notions of de

Bruijn graphs and of k-mers (short k-long substrings). To analyze datasets coming from

different technologies, hence with a large variation of read lengths, an approach based

on same-length strings is likely to be limiting.

67

The amount of data necessary to assemble a (meta)genome emphasizes the need for

algorithmic solutions that are time and space efficient. For example, over 500 gigabases

of data have been analyzed to start a catalogue of the human gut microbiome [113]. To

manage such a dataset, it is important to reduce main memory usage while keeping a

reasonable time efficiency. Such challenge is usually tackled with the introduction of

compact data structures for indexing reads, on which it is possible to build an efficient

assembler. Papers applying the notion of Bloom filter [23, 108] to genome assembly

follow this direction. For instance, a standard representation of the de Bruijn graph for

the human genome when k = 27 requires 15GB (and is unfeasible in metagenomics),

while a probabilistic version requires less than 4GB [23]. Larger values of k increase the

memory requirements; other common values of k are 55 and 77 [112].

Alternative approaches have been developed recently, mostly based on the idea of

string graph, initially proposed by Myers [97] before the advent of NGS technologies and

further developed [134, 135] to incorporate some advances in text indexing, such as the

FM-index [42]. These methods build a graph whose vertices are reads and the paths

allow to assemble overlapping reads into larger contigs.

Since the optimal value of k for k-mers is usually less than half the read length [21],

string graphs can immediately disambiguate some repeats that methods based on de

Bruijn graphs might resolve only at later stages. Even without repetitions, analyzing

only k-mers instead of the longer reads can result in some information loss, since bases of

a read that are more than k positions apart are not part of the same k-mer. Moreover,

string graphs methods can deal easily with mixed length reads. On the other hand,

string graphs are more computationally intensive to compute [135].

The most used string graph assembler is SGA [134]. The main technical devices of

SGA are the construction of the BWT [19] and of the FM-index of a set of strings,

and their use to efficiently compute the arcs of the string graph (connecting overlapping

reads). The original SGA has estimated requirement of 700GB of main memory to

assemble the human genome [134].

Another string graph assembler is Fermi [79] which is inspired by SGA and tailored

for variant calling. The main data structure of Fermi is a single bidirectional FM-index.

A number of recent works face the problem of designing efficient algorithmic strategies

68

or data structures for building string graphs. Among those works we can find a string

graph assembler [7], based on a careful use of hashing and Bloom filters, with performance

comparable with the first SGA implementation [134]. Another important alternative

approach to SGA is Readjoiner [54] which is based on an efficient computation of a

subset of exact suffix-prefix matches of the overlap graph and by subsequent round of

suffix sorting, scanning, and filtering outputs the irreducible edges of the graph.

All the string graph based assemblers rely on both efficient indexing data structures

and the original reads set in order to detect prefix-suffix overlaps between the elements.

Since self-indexing data structures such as FM-index represents the whole information

of the original dataset, an interesting problem is to design efficient algorithms for the

construction of string graphs that only require the index and do not directly access the

reads set. Improvements in this direction have both theoretical and practical motiva-

tions. Indeed, detecting prefix-suffix overlaps by the analysis of the (compressed) index

alone is an almost unexplored problem and managing such data structure is usually

more efficient since it is more compressible than the original dataset (thus requiring less

memory than the whole reads set) and can be copied between machines faster.

69

6 Self-index based assembly framework

In this section we focus on a thorough presentation of the tight relations between self-

indexes and overlap graphs. The main goal is to present a new representation of such

graphs that includes all the information required to remove redundant information from

them by storing a constant amount of memory per edge.

6.1 Preliminaries

In the following we will consider a collection T = {r1, . . . , rm} of m distinct strings (also

called reads) over a finite alphabet Σ. As usual we consider each string in T to have

a special character $, smaller than any character in Σ, at the end. Furthermore, we

assume that T is substring-free, that is, no string in T is a substring of another string

in it. We denote by n the total number of characters in the input strings plus the m

sentinels and by `max the maximum length of a string, that is n =
∑m

i=1(|ri| + 1) and

`max = maxmi=1{|ri|}.
Generalized Suffix Arrays, Longest Common Prefix arrays, and the Burrows-Wheeler

Transform (BWT) are well-known index structures for collections of strings based on

the lexicographic ordering of all their suffixes (see Chapter 2). In order to preserve the

identifiability of each string of the collection, it is often assumed that all of them are

terminated with distinct sentinels symbols. However, this approach has the drawback

of making the alphabet too large. To overcome this technical difficulty, we use a single

sentinel symbol and we define the index structures on the lexicographic ordering of all

the rotations of all the strings of the collection. This allows to uniquely identify the

resulting indexing structures independently from the order of the strings even if a single

sentinel symbol is used. Furthermore, at the end of this section we will show how these

indexing structures can be easily mimicked using those based on the ordering of the

71

6 Self-index based assembly framework

i RT [i] B[i] SA[i] L[i]

1 $ATT T (0, 4) -1

2 $CAT T (0, 3) 0

3 $CCA A (0, 2) 0

4 $GCA A (0, 1) 0

5 A$CC C (1, 2) 0

6 A$GC C (1, 1) 1

7 AT$C C (2, 3) 1

8 ATT$ $ (3, 4) 2

9 CA$C C (2, 2) 0

10 CA$G G (2, 1) 2

11 CAT$ $ (3, 3) 2

12 CCA$ $ (3, 2) 1

13 GCA$ $ (3, 1) 0

14 T$AT T (1, 4) 0

15 T$CA A (1, 3) 1

16 TT$A A (2, 4) 1

q(A)

q(AT)

Figure 6.1: The rotations RT , BWT, GSA, and LCP array of the reads r1 = GCA,
r2 = CCA, r3 = CAT, and r4 = ATT. The column RT lists all rotations
in lexicographic order, presenting the k-suffixes in black and the remaining
prefixes in grey.

suffixes (that are computed by most existing methods).

In the following, we will refer to the list of the sorted rotations of T as RT , to the

generalized suffix array of T as SA, to the LCP array of T as L, and to the BWT

of T as B. Figure 6.1 shows an example of these data structures over the set R =

{GCA, CCA, CAT, ATT}.

Given a string Q ∈ (Σ ∪ {$})∗ containing at most a single sentinel symbol $, notice

that all rotations of all the strings in T whose prefix is Q appear consecutively in RT .

We call Q-interval [6,27] on T (or, simply, Q-interval) the maximal interval q(Q) = [b, e)

such that Q is a prefix of RT [i] for each i, b ≤ i < e. For instance, on the example in

Figure 6.1, the interval q(A) is [5, 9) and the interval q(AT) is [7, 9). It is worth noting

that two strings Q1 and Q2 might be distinct but q(Q1) = q(Q2) (see, for example, q(GC)

72

6.1 Preliminaries

and q(GCA) in Figure 6.1). We define the length and width of the Q-interval [b, e) as |Q|
and the difference e − b, respectively. Notice that the width of the Q-interval is equal

to the number of occurrences of Q as a substring of some string r ∈ T . Whenever the

string Q is not specified, we will use the term string-interval. For simplicity we assume

that q(ε) = [1, n + 1) = [1, |RT | + 1). Nonempty string-intervals q(Q$) or q($Q) have

some important properties. In the first case, the string Q is a suffix of some strings in T .

Indeed, given the Q$-interval [b, e), then RT [i][: |Q|+ 1] = Q$ for each i, b ≤ i < e. For

this reason, we will say that a Q$-interval is associated with the set T s(Q) of the reads

(strings) with suffix Q. In the latter case, the string Q is a prefix of some strings in T .

Indeed, given the $Q-interval [b, e), then RT [i][: |Q|+ 1] = $Q for each i, b ≤ i < e. For

this reason, we will say that the $Q-interval is associated with the set T p(Q) of the reads

with prefix Q. Moreover, given a $Q-interval [b, e), we have that 1 ≤ b < e ≤ m + 1

since $ is smaller than any element in Σ, and T contains m reads. Notice that the width

of a Q$-interval ($Q-interval, resp.) is equal to the number of reads having Q as suffix

(prefix, resp.). Since we are not interested in circular patterns (i.e., strings which match

a rotation of a string in T), in the following we will assume that all the string-intervals

refers to strings of the form Q, $Q, or Q$ for some Q ∈ Σ∗.

Since RT , B , SA, and L are all closely related, a string-interval can be viewed as an

interval on any of those arrays. There are some interesting relations between string-

intervals and the LCP array. The interval [i, j) of the LCP array is called a lcp-interval

of value K (shortly K-interval) [1], if L[i],L[j] < K, while L[h] ≥ K for each h with

i < h < j and there exists L[h] = K with i < h < j. An immediate consequence is the

following proposition.

Proposition 6.1 Let S be a string over Σ and let [b, e) be the S-interval. Then L[h] ≥
|S| for each h with b < h < e. Moreover, if S ∈ Σ∗ is the longest string whose S-interval

is [b, e), then [b, e) is a lcp-interval of value |S|.

Proposition 6.1 relates the notion of string-intervals with that of lcp-intervals. It is

immediate to associate to each K-interval [b, e) the string S consisting of the common K-

long prefix of all strings RT [i] with b ≤ i < e. Such string S is called the representative

of the K-interval. Moreover, given a K-interval [b, e), we will say that b is its opening

position and that e is its closing position.

73

6 Self-index based assembly framework

String-intervals form an inclusion hierarchy, that is no string-interval can partially

overlap another one, as showed by the following proposition.

Proposition 6.2 Let S1, S2 be two strings such that the S2-interval [b2, e2) is nonempty,

and let [b1, e1) be the S1-interval. Then S1 is a proper prefix of S2 if and only if [b1, e1)

contains [b2, e2) and |S1| < |S2|.

Proof The only-if direction is immediate, therefore we only consider the case when

[b1, e1) contains [b2, e2) and |S1| < |S2|. If the containment is proper, the proof is again

immediate from the definition of string-interval. Therefore assume that b1 = b2 and

e1 = e2. Since both S1 and S2 are prefixes of all the rotations in RT [b1, e1) and since

|S1| < |S2|, we have that S1 is a proper prefix of S2. �

Notice that Proposition 6.2 is restricted to nonempty S2-intervals, since the Q-interval

is empty for each string Q that is not a substring of a read in T . Therefore relaxing that

condition would falsify Proposition 6.2.

Let Brev be the BWT of the set T rev = {rrevi : ri ∈ R}, let [b, e) be the Q-interval

on T for some string Q, and let [br, er) be the Qrev -interval on T rev . Then, [b, e) and

[br, er) are called linked string-intervals. The linking relation is a 1-to-1 correspondence

and two linked intervals have same width and length, hence e− b = er − br.
We recall from the literature [41] that, given aQ-interval for someQ ∈ Σ∗ and a symbol

σ ∈ Σ$, the backward σ-extension of the Q-interval is the σQ-interval. We say that a

Q-interval has a nonempty (empty, respectively) backward σ-extension if the resulting

interval has width greater than 0 (equal to 0, respectively). Conversely, the forward

σ-extension of a Q-interval is the Qσ-interval. Moreover, two important results [42, 77]

showed that, given an S-interval on T and the linked Srev -interval on T rev , it is possible

to compute the backward σ-extension of the former and the forward σ-extension of the

latter using only the functions C and Occ computed on B (hence avoiding to store C

and Occ computed on Brev). We recall that C is a function that, given a character as

input, counts the number of the characters lexicographically smaller than it in a given

set, and that Occ is a function that, given a character and a position on a string, count

the number of occurrences of that character up to the given position in the string. The

following proposition summarizes those results.

74

6.1 Preliminaries

Proposition 6.3 Let S be a string, q(S) = [b, e) be the S-interval on T , qrev (Srev) =

[br, er) be the Srev -interval on T rev , and let σ be a character. Then, the backward σ-

extension of q(S) and the forward σ-extension of qrev (Srev) are:

q(σS) = [C(σ) + Occ(σ, b) + 1, C(σ) + Occ(σ, e) + 1) (6.1)

qrev (Srevσ) = [br + Σc<σ(Occ(c, e)− Occ(c, b)), br + Σc≤σ(Occ(c, e)− Occ(c, b))) . (6.2)

It is immediate to obtain from C a function C−1(i) that returns the first character of

RT [i] (i.e., C−1(i) = arg maxσ∈Σ${C(σ) ≤ i}).

Self-indexes rotations and suffixes -based Notice that, up to now, we have described

B, SA, and L on the rotations of the input strings, but most existing methods compute

these data structures based on the K-suffixes (for all K) of the input strings. The two

definitions are almost equivalent and, indeed, the resulting data structures are almost

identical. The only difference between sorting suffixes and rotations is due to the order

of identical suffixes. In fact, the traditional definition does not impose an order in that

case, whereas we impose a specific order of identical suffixes. This order guarantees

that Proposition 6.2 holds also when σ = $. Moreover, the order of identical suffixes

has no impact if we focus our attention only on string-intervals, since the definition of

string-interval does not depend on such order. To show the equivalence between the two

definitions, we will now show a simple yet efficient linear time algorithm that will allow

us to modify the data structures produced considering the suffixes in order to correctly

identify each string rj of T by performing a backward $-extension of the rj$-interval.

The goal is to (efficiently) sort the suffixes that are equal to the sentinel $ (corre-

sponding to the positions i such that SA[i] = (0, ·)) according to the lexicographic order

of the reads. In other words, we enforce that, for each i1, i2 where SA[i1] = (0, j1),

SA[i2] = (0, j2), if i1 < i2 then rj1 lexicographically precedes rj2 . Since the reads are

already listed in lexicographic order in the GSA, we can reconstruct such order with a

coordinated scan of the GSA and of the BWT, exploiting the fact that B[i] = $ and

SA[i] = (k, j) iff the read rj is k long (see Algorithm 1). Since we are not interested in

searching patterns that include the sentinel symbol in the middle (i.e., circular patterns),

this procedure, which is executed just after the construction of SA and B, updates SA

75

6 Self-index based assembly framework

Algorithm 1: Reorder the first m entries of SA according to the lexicographic order
of the input reads.

Input : The BWT B and the GSA SA of the set R.
Output: An updated SA such that for each i1, i2 where SA[i1] = (0, j1),

SA[i2] = (0, j2), if i1 < i2 then rj1 lexicographically precedes rj2 .
1 p← 1;
2 foreach i do
3 if B[i] = $ then
4 (k, j)← SA[i];
5 SA[p]← (0, j);
6 p← p+ 1;

in order to simulate the data structures produced on the rotations of the input strings.

For this reason the order of the input strings does not affect in any way our approaches

and we will interchangeably refer to suffixes and rotations from now on. Notice that

the procedure performs a single sequential scan of B and SA and requires only O(1)

additional internal memory.

Overlap graph and string graph We recall that the overlap graph is a graph that

represents the overlap relationships among the strings in the collection T . Given two

strings ri, rj ∈ T , we say that ri overlaps rj iff a nonempty suffix S of ri is also a prefix

of rj , that is, ri = PS and rj = SX. In that case we say that S is the overlap of ri and

rj , denoted as ovi,j , that X is the right extension of ri with rj , denoted as rxi,j , and P

is the left extension of rj with ri, denoted as lxi,j (see Figure 6.2). The overlap graph is

defined as follows.

Definition 6.1 (Overlap graph) Given a set T of reads, its overlap graph [97] is the

directed graph GO = (T,A) whose vertices are the reads in T , and where two reads ri, rj

form the arc (ri, rj) if they have a nonempty overlap. Moreover, each arc (ri, rj) of GO

is labeled by the left extension (lxi,j) and the right extension (rxi,j) of rj with ri.

The main use of an overlap graph is to compute the assembly of each path, correspond-

ing to the sequence that can be read by traversing the reads corresponding to vertices of

the path. More formally, given a path ri1 , ri2 , . . . , riK of GO, its assembly can be spelled

76

6.1 Preliminaries

r3 C A T

r1 G C A

P = lx1,3 S = ov1,3 X = rx1,3

r1 r3

G/T

Figure 6.2: Example of an overlap between the reads r1, r3 of Figure 6.1 (left) and the
associated arc of the overlap graph (right). According to Definition 6.1, the
label of the arc is G/T since G is the left extension and T is the right extension
of the overlap. The assembly of the path r1, r3 is lx1,3r3 = r1rx1,3 = GCAT.

either by the string lxi1,i2 lxi2,i3 · · · lxiK−1,iKriK or the string ri1rxi1,i2rxi2,i3 · · · rxiK−1,iK

(we will show shortly that these two strings are actually the same).

Figure 6.2 depicts the overlap graph of the set of reads {r1, r3} with r1 = GCA and

r3 = CAT. The assembly of the path r1, r3 is lx1,3r3 = GCAT = r1rx1,3.

We will now show that labeling the arcs with both lx and rx is not necessary if we

do not consider reverse complemented reads since either one of the two informations

suffices.

Lemma 6.4 Let GO be the overlap graph for T and let ri1 , ri2 , . . . , riK be a path of GO.

Then, lxi1,i2 lxi2,i3 · · · lxiK−1,iKriK = ri1rxi1,i2rxi2,i3 · · · rxiK−1,iK .

Proof We will prove the lemma by induction on K. Let (rh, rj) be an arc of GO. Notice

that the path rhrj represents lxh,jovh,jrxh,j . Since rh = lxh,jovh,j and rj = ovh,jrxh,j ,

the case K = 2 is immediate.

Assume now that the lemma holds for paths of length smaller than K and consider the

path ri1 , . . . , riK . The same argument used forK = 2 shows that lxi1,i2 lxi2,i3 · · · lxiK−1,iKriK

= lxi1,i2 lxi2,i3 · · · lxiK−2,iK−1riK−1rxK−1,K . Moreover, by inductive hypothesis we have

that lxi1,i2 lxi2,i3 · · · lxiK−2,iK−1riK−1rxK−1,K = ri1rxi1,i2rxi2,i3 · · · rxiK−2,iK−1rxiK−1,iK ,

completing the proof. �

This definition models the actual use of overlap graphs to reconstruct a genome [97]. If

we have perfect data and no relevant repetitions, the overlap graph is a directed acyclic

graph (DAG) with a unique topological sort, which in turn reveals a peculiar structure:

the graph is made of tournaments [31]. More formally, let 〈r1, . . . , rn〉 be the topological

77

6 Self-index based assembly framework

r4 A T T

r3 C A T

r1 G C A

lx3,4

lx1,4

r1 r3 r4

G C

GC

Figure 6.3: Example of a reducible arc of the overlap graph on the subset {r1, r3, r4} of
the reads of Figure 6.1 labeled using only left extensions. The arc (r1, r4) is
reducible since the assembly of r1, r4 is the same of r1, r3, r4 (GCATT).

order of GO. If (ri, rj) is an arc of GO then also all (rh, rk) with i < h < k < j are arcs

of GO. Notice that in this case, all paths from ri to rj have the same assembly. This

suggests that it is possible (and desirable) to remove some arcs of the overlap graph

without modifying the set of distinct assemblies that can be read from the graph. An

arc (ri, rj) of GO is called reducible [97] if there exists another path from ri to rj with

the same assembly (i.e., the string lxi,jrj). After removing all reducible arcs from the

overlap graph, we obtain the string graph [97]. Figure 6.3 depicts the overlap graph of

the subset {r1, r3, r4} of the reads of Figure 6.1. Since the assembly of the path r1, r4 is

the same of that of r1, r3, r4, then the arc (r1, r4) is reducible. Notice that the label of

the arc (r3, r4) is a suffix of the label of the arc (r1, r4). The following lemma, introduced

but not formally proved in [11], proves that this condition is necessary and sufficient to

recognize reducible arcs.

Lemma 6.5 Let GO be the labeled overlap graph for a substring-free set T of reads and

let (ri, rj) be an arc of GO. Then, (ri, rj) is reducible iff there exists another arc (rh, rj)

of GO incoming in rj and such that lxrevh,j is a proper prefix of lxrevi,j .

Proof First notice that lxrevh,j is a proper prefix of lxrevi,j iff and only if lxh,j is a proper

suffix of lxi,j . By definition, (ri, rj) is reducible if and only if there exists a second path

ri, rh1 , . . . , rhk , rj representing the string XY Z, where X, Y and Z are respectively the

left extension of rj with ri, the overlap of ri and rj , and the right extension of ri with rj .

Assume that such a path (ri, rh1 , . . . , rhk , rj) exists. Since ri, rh1 , . . . , rhk , rj represents

XY Z and Z = rxi,j , rhk = X1Y Z1 where X1 is a suffix of X and Z1 is a proper prefix

78

6.1 Preliminaries

of Z. Notice that X1 = lxhk,j and R is substring free, hence X1 is a proper suffix of X,

otherwise ri would be a substring of rhk , completing this direction of the proof. Assume

now that there exists an arc (rh, rj) such that lxh,j is a proper suffix of lxi,j . Again,

rh = X1Y1Z1 where X1, Y1 and Z1 are respectively the left extension of rj with rh, the

overlap of rh and rj , and the right extension of rh with rj . By hypothesis, X1 is a proper

suffix of X. Since rh is not a substring of ri, the fact that X1 is a suffix of X implies that

Y is a substring of Y1, therefore ri and rh overlap and |ovi,h| ≥ |Y |, hence (ri, rh) is an

arc of GO. The string associated to the path (ri, rh, rj) is rirxi,hrxh,j . By Lemma 6.4,

rirxi,hrxh,j = lxi,hlxh,jrj . At the same time the string associated to the path ri, rj is

rirxi,j = lxi,jrj by Lemma 6.4, hence it suffices to prove that lxi,hlxh,j = lxi,j . Since

lxh,j is a proper suffix of lxi,j , by definition of left extension, lxi,hlxh,j = lxi,j , completing

the proof. �

We can transform Lemma 6.5 into an easily testable property, by way of Proposi-

tion 6.2, that is (rx, rz) is reducible iff there exists an arc (rs, rz) such that qr(lxrs,z)

includes qr(lxrx,z) and |lxx,z| > |lxs,z|. The following lemma shows that, if (rx, rz) can

be reduced, then it can be reduced by an arc of the string graph GS , hence avoiding a

comparison between all pairs of arcs of GO.

Lemma 6.6 Let GO be the overlap graph of a set T of reads, let GS be the corresponding

string graph, and let (rx, rz) be an arc of GO that is not an arc of GS. Then there exists

an arc (rs, rz) of GS such that qr(lxrs,z) includes qr(lxrx,z) and |lxx,z| > |lxs,z|.

Proof Let (rs, rz) be the arc of GO whose left extension is the shortest among all arcs

of GO such that qr(lxrs,z) includes qr(lxrx,z) and |lxx,z| > |lxs,z|. By Lemma 6.5, since

(rx, rz) is not an arc of GS such an arc must exist. We want to prove that (rs, rz) is an

arc of GS .

Assume to the contrary that (rs, rz) is not an arc of GS , that is there exists an

arc e1 = (rh, rz) of GO such that qr(lxrs,z) includes qr(lxrh,z) and |lxs,z| > |lxh,z|. Then

qr(lxrx,z) includes qr(lxrh,z) and |lxx,z| > |lxh,z|, contradicting the assumption that (rs, rz)

is the arc of GO whose left extension is the shortest among all arcs of GO such that

qr(lxrs,z) includes qr(lxrx,z) and |lxx,z| > |lxs,z|. �

79

6 Self-index based assembly framework

Lemma 6.6 highlights a fundamental notion that we will use in our work. Given a set

of reads T , if we want to build its overlap graph and reduce it to its string graph we

don’t need to store neither the labels of the arcs nor the sequences of the nodes. Indeed,

we can perform the graph reduction by labeling the arcs by string-intervals on the BWT

of T and the lengths of the labels.

The consequences of Lemma 6.6 are twofold: we need less space to store the informa-

tion related to the labels and we can test faster if an arc is reducible.

More precisely, the labels can be stored using |E|(2 lg n + lg `max) bits instead of the

|E|`max lg σ bits required by the plain representation of the strings1. Note that if we

consider lg n to be the word length, the two space requirements become respectively

3|E| and `max|E|(lg σ/ lg n) =∼ `max|E|. Moreover, we can test if an arc ei can be

reduced by another arc ej in constant time. Indeed, if l(ei) is the label of ei, [bi, ei) is

its string-interval, li = |l(ei)| is its length, and [bj , ej) and lj are respectively the string-

interval and the length of the label of ej (l(ej)), then we can test if ej is reduced by ei

by checking in constant time if bi ≤ bj < ej ≤ ei and li < lj whereas testing if l(ei) is a

prefix of l(ej) requires O(`max).

Notice that Lemma 6.6 does not consider reverse complemented reads although they

are produced by current sequencing methods. Nevertheless, our practical implementa-

tions consider this reads and we will show how we can avoid these problems by doubling

the informations for each arc and by implicitly merging nodes in the graph.

In the next two chapters we will show how this model can be used to design methods

that pursue different — almost orthogonal — goals, hence proving its usefulness and

pliability.

1recall that n =
∑i=|T |

i=1 (|ri| + 1).

80

7 Lightweight external memory assembly

algorithm

In this section we will present the first implementation of the framework we defined

in the previous chapter. The main goal of this tool, called LightStringGraph (LSG),

is to reduce the main memory usage of the graph construction of string graph based

assemblers in order to run such step on resource-limited machines.

The main motivation behind this work is that a single experiment performed with

current sequencing technologies produces hundreds of Gigabyte of data and it is usually

required to have access to powerful workstations in order to compute assemblies even

when the data is compressed. Since nowadays assembling genomes is almost an everyday

task for biological analysis and the advent of personalized medicine in sight, it is worth

to study possible methods that are able to cope with a limited amount of RAM, i.e.,

are able to run even on laptops. Moreover, since the cost of solid state hard drives

has plummetted, LSG heavily rely on them and aims to maintain the data in external

memory and to lower I/O as much as possible.

We developed an open source implementation of our algorithm and we have integrated

it in SGA to obtain a complete string graph based assembler. To the best of our knowl-

edge, LSG is the first disk-based exact algorithm to construct a string graph that does

not require to have the whole original dataset in main memory. Clearly, an external-

memory algorithm usually requires more time than an in-memory approach, even when

disk accesses are minimized and made sequential. However, this kind of investigation

could greatly help to achieve good compromises between the use of time and space when

processing a huge number of reads.

81

7 Lightweight external memory assembly algorithm

7.1 Background

As for other efficient and widely used assemblers [79, 134, 135], LSG is based on the

Burrows-Wheeler Transform and, obviously, requires to build it as a initial step. There

are plenty of BWT construction algorithms (see [5, 6, 39, 80, 84] and references therein

for a comprehensive review of the field). LSG requires to compute also the LCP array

in order to speed up the computation of the overlaps between the reads. Moreover,

we strive to produce a string graph building pipeline that is able to compute it in low

memory from start to end. We chose BEETL [6] as BWT building tool for LSG since it

builds such data structure along the LCP array using a negligible amount of memory.

In order to evaluate the performance of the LSG algorithm, we have compared our

string graph construction tool with the one implemented in SGA [135], a current state-

of-the-art string-graph assembler. As stated previously, SGA is a genome assembler

that uses the FM-index to output all the irreducible edges of a string graph. First,

it builds the FM-index of all the reads and of their reverse. Then, for each read, it

searches overlaps of it by querying the index to find suffixes of the read that can be

backward extended with the symbol $ and saves the string-intervals on the FM-index of

the reverse of the reads of each of these suffixes. Lastly, SGA backward extend all the

stored intervals character by character on the second FM-index (actually performing a

forward extension), outputs the ones that can be extended with $, and filters the ones

related to reducible arcs.

The experimental analysis over a large dataset (875 million reads) extracted from

the human genome shows that LSG is able to build the string-graph on a standard

workstation using 1GB of main memory, while SGA has a peak usage of 43GB. Moreover,

since LSG can replace the string graph construction in a string-graph assembler such

as SGA, we have implemented a LSG-based assembler by designing a pipeline that uses

BEETL for indexing reads, LSG for constructing the graph, and the SGA module that

builds the final assembly from the string-graph (sga-assemble).

We compared our BEETL+LSG+SGA assembler with SGA and Readjoiner, i.e., two

of the most known string-graph assemblers. The experimental results on the aforemen-

tioned dataset show that the overlap detection and string graph reduction steps can be

performed using a negligible amount of main memory (about 2% of that used by SGA)

82

7.1 Background

at the cost of about 3x increase in running time. This analysis shows that LSG is a

competitive approach for the construction of assembly graphs from large NGS dataset,

even though its benefits would be more evident if a memory efficient version of more

steps of the pipeline were available.

7.1.1 Definitions

We briefly recall some fundamental definitions that will be used in the following. Given

two strings (si, sj), we say that si overlaps sj iff a nonempty suffix Z of si is also a prefix

of sj , that is si = XZ and sj = ZY . In that case we say that Z is the overlap of si and

sj , denoted as ovi,j , that Y is the extension of si with sj , denoted as exi,j (called rxi,j

in the previous chapter), and X is the prefix-extension of si with sj , denoted as pei,j

(called lxi,j in the previous chapter).

In the following of the chapter we will consider a collection S = {s1, . . . , sn} of n reads

(i.e., strings) over Σ. We append a sentinel symbol $ /∈ Σ to the end of each string ($

lexicographically precedes all symbols in Σ) and we denote by Σ$ the extended alphabet

Σ∪{$}. We assume that the sentinel symbol $ is not taken into account when computing

overlaps between two strings.

Given a string Q, all suffixes of the GSA whose prefix is Q appear consecutively in

GSA, where they induce an interval [b, e) which is called Q-interval [6] and denoted by

q(Q). We define the length and width of the Q-interval [b, e) as |Q| and the difference

e − b, respectively. Notice that the width of the Q-interval is equal to the number of

occurrences of Q as a substring of some string s ∈ S. Whenever the string Q is not

specified, we use the term string-interval to point out that it is the interval on the GSA

of all suffixes having a common prefix. Since the BWT and the GSA are closely related,

we also say that [b, e) is a string-interval (or Q-interval for some string Q) on the BWT.

Let Brev be the BWT of the set Srev = {srev | s ∈ S}, let [b, e) be the Q-interval on B

for some string Q, and let [b′, e′) be the Qrev -interval on Brev . Then, [b, e) and [b′, e′) are

called linked string-intervals. The linking relation is a 1-to-1 correspondence and two

linked intervals have same width and length, hence e− b = e′ − b′. Finally notice that,

given two strings Q1 and Q2 s.t. Q1 6= Q2, the Q1-interval q(Q1) and the Q2-interval

q(Q2) are either contained one in the other (possibly they are the same) or are disjoint.

83

7 Lightweight external memory assembly algorithm

If q(Q1) is contained in q(Q2), the string Q2 is a prefix of Q1 = Q2Q
′. Moreover, if

q(Q1) = q(Q2) then the string Q′ follows Q2 in all reads of S.

Given a Q-interval and a symbol a ∈ Σ, the backward a-extension of the Q-interval

is the aQ-interval (that is, the interval on the GSA of the suffixes sharing the common

prefix aQ). We say that a Q-interval has a nonempty (empty, respectively) backward

a-extension if the resulting interval has width greater than 0 (equal to 0, respectively).

Conversely, the forward a-extension of a Q-interval is the Qa-interval. The backward

$-extension of the Q-interval represents the set of reads whose prefix is Q, while the

forward $-extension of the Q-interval is represents the set of reads whose suffix is Q.

The trivial extension of the functions C and Occ to the set Σ$ allows to compute also

the backward and forward $-extensions, provided that the $-interval refers to the reads

in lexicographic order (see Algorithm 1 for a linear time algorithm that reorders the

entries of the GSA/BWT/FM-index accordingly). With a slight abuse of language, we

will denote with q($Q) and q(Q$) respectively the backward and the forward $-extension

of the Q-interval.

The overlap graph [97] of S is the directed graph GO = (S,A) whose vertices are the

reads in S, and two reads si, sj form the arc (si, sj) if they overlap. Moreover, each arc

(si, sj) of GO is labeled by the left extension exi,j of si with sj . Each path (s1, . . . , sk)

in GO represents a string α that is obtained by assembling the reads of the path. If

two nodes are connected by two paths, one that connect the nodes directly and one

that visits a third node, and if the two paths represent the same string, we say that the

arc that directly connects the two nodes is reducible. Reducible arcs are not helpful in

assembling reads, therefore we can — and want — to remove (or avoid computing) them.

After removing all reducible arcs from the overlap graph, we obtain a string graph [97].

Moreover, since short overlaps are likely to appear by chance, they are not meaningful

for assembling the original sequence. Hence, we will consider only overlaps at least τ

long, where τ is a positive constant.

84

7.2 Methods

7.2 Methods

As previously stated, we assume that the set S of the reads is substring-free, that is,

there are no two reads s1, s2 ∈ S such that s1 is a substring of s2. Moreover we base

our algorithm on a space efficient representation of reads by string-intervals: we use a

string-interval q(Q) to represent all the reads having suffixes starting with the prefix Q.

Let us denote by Rs(α) and Rp(α) the sets of reads whose suffix and prefix (respec-

tively) is a given string α. Let si and sj be two reads and let α be a string with |α| ≥ τ .

Then si ∈ Rs(α), sj ∈ Rp(α) if and only if (si, sj) is an arc of GO = (S,A) whose overlap

is α.

Observe that the set Rp(α) is represented by q($α), while the set Rs(α) of the reads

is represented by q(α$). Then, the arc set of the overlap graph can be represented by

the set of all the pairs (q(α$), q($α)), s.t. |α| ≥ τ . In particular, a pair (q(α$), q($α))

represents the set Aα ⊆ A of the arcs whose overlap is α. In the following, we will refer to

an α-interval with nonempty backward and forward $-extensions as an overlap-interval.

Observe that the interval q(βα$) represents the reads whose suffix is βα (which are a

subset of the reads whose suffix is α). Notice that the pair (q(βα$), q($α)) represents the

arcs of Aα outgoing from reads with suffix βα. When q(βα$) has a nonempty backward

$-extension, then it represents the read r = βα (which is unique under the substring-free

assumption), and the pair (q(βα$), q($α)) represents the arcs of Aα with prefix-extension

(or label) β.

As stated in the main lemma of the previous chapter (Lemma 6.6), as a main con-

sequence of our definition of reducible arc, we need to associate to an arc (si, sj) the

reverse of the prefix-extension given in compact form by the lxrevi,j -interval on Brev . By

using the stated characterization of reducible arcs, the arc (si, sj) is reducible if and only

if there exists an arc (sh, sj) such that the lxrevh,j -interval contains the lxrevi,j -interval or

they are the same but |lxrevh,j | < |lxrevi,j |.
Therefore, in order to characterize the arc reducibility in terms of string-intervals, we

introduce the following notion of arc-pair and label-pair, which are fundamental to build

arcs and labels of the overlap graph.

Definition 7.1 Let B be the BWT for the collection S of reads and let Brev be the BWT

85

7 Lightweight external memory assembly algorithm

for the set Srev of the reversed reads. Let α and β be two strings s.t. |α| ≥ τ . Then, the

arc-pair associated to (β, α) is the pair (q(βα$), q($α)). The strings α and β are called

the overlap and the p-extension of the arc-pair, respectively. An arc-pair is terminal if

q(βα$) has a nonempty backward $-extension (hence β is a complete prefix-extension).

An arc-pair is basic if β is the empty string ε.

The pair (q(β), qrev (βrev)), where q(β) and qrev (βrev) are the β-interval on B and the

βrev -interval on βrev (respectively), is called the label-pair of the arc-pair associated to

(β, α).

For simplicity, we also use (β, α) to denote the arc-pair associated to such pair of

strings. A basic arc-pair (ε, α) = (q(α$), q($α)) represents (as described above) the arcs

of the overlap graph with overlap α. Two arcs of the overlap graph with the same overlap

α may have different prefix-extensions, let us say β and γ, thus they are represented by

two different terminal arc-pairs (q(βα$), q($α)) and (q(γα$), q($α)). Observe that a

terminal arc-pair cannot have a nonempty backward a-extension where a 6= $.

Our algorithm for building the string graph is composed of three steps: (i) computing

the unlabeled overlap graph, (ii) labeling the arcs of the overlap graph, and (iii) reducing

the overlap graph to the string graph.

Step (i) consists in computing all basic arc-pairs, while step (ii) labels the overlap

graph by computing all terminal arc-pairs and the related label-pairs (q(β), qrev (βrev))

— we recall that the information on qrev (βrev) is necessary to reduce the overlap graph.

The main idea of step (ii) is to start from the basic arc-pairs computed in step (i) to

obtain the terminal arc-pairs (and label-pairs) via a sequence of backward extensions.

Finally, the step (iii) reduces the overlap graph to the string graph by using the label-

pairs computed in step (ii).

Computing the unlabeled overlap graph. In order to compute the set of all basic

arc-pairs (ε, α) = (q(α$), q($α)) we have designed the procedure BuildBasicArcPairs

(Algorithm 2). This procedure is based on a single synchronous scan of the BWT B,

the GSA SA, and the LCP array L of the set S.

In the following, we call overlap-candidate (or simply candidate) a string-interval

(at least τ long) with a nonempty forward $-extension. An overlap-candidate with a

86

7.2 Methods

Algorithm 2: BuildBasicArcPairs

Input : The BWT B, the LCP array L and the GSA SA of the set R.
Output: The set of the basic arc-pairs.

1 #$ ← 0;
2 if B[1] = $ then #$ ← 1 ;
3 p← 2;
4 Z ← empty stack;
5 while p ≤ |L| do
6 if L[p] > L[p− 1] and L[p] ≥ τ then // p is an opening position

7 (k, j)← SA[p− 1];
8 if L[p] = k then // [p− 1, x) is an overlap-candidate

9 q ← p;
10 (k∗, j)← SA[q];
11 while L[q] = L[p] = k∗ = k do
12 q ← q + 1;
13 (k∗, j)← SA[q];

14 push ([p− 1, q), k,#$) to Z;
15 p← q;

16 if L[p] < L[p− 1] then // p is a closing position

17 ([b, e1), `S , b$)← top(Z);
18 while Z is not empty and `S > L[p− 1] do
19 if #$ > b$ then
20 output ([b, e1), [b$, #$));
21 pop(Z);
22 ([b, e1), `S , b$)← top(Z);

23 if B[p] = $ then #$ ← #$ + 1 ;
24 p← p+ 1;

// Processing remaining records of Z
25 ([b, e1), `S , b$)← top(Z);
26 while Z is not empty do
27 if #$ > b$ then output ([b, e1), [b$, #$)) ;
28 pop(Z);
29 ([b, e1), `S , b$)← top(Z);

nonempty backward $-extension is an overlap-interval. Given an α-interval [b, e), if α is

an overlap, then we can compute the α$-interval by finding the largest interval [b, e1)

(starting in b) such that L[i] = |α| for b < i ≤ e1 and SA[i] = (|α|, ·) for b ≤ i < e1. For

our purposes, we say that a position p is:

87

7 Lightweight external memory assembly algorithm

• an opening position, if L[p] > L[p− 1] and L[p] ≥ τ (i.e., the LCP value increases).

The position p−1 is the start of a set of string-intervals [p−1, ·) of length > L[p−1]

and ≤ L[p]. It is easy to prove that, among those intervals, only the interval of

length L[p] may be an overlap-candidate. We call that interval as opening interval

related to p.

• a closing position, if L[p] < L[p− 1] (i.e., the LCP value decreases). Then, p is the

end of a set of string-intervals [·, p) of length strictly larger than L[p] and smaller

than (or equal to) L[p− 1]. In this case we will call such intervals as closing in p.

A stack Z (initially empty) is used to store the overlap-candidates and, for each

position p, the number #$ of symbols $ in the prefix B[1 : p− 1] is maintained. At each

position p, the behavior of the procedure depends on the type of p.

When p is an opening position, the procedure reads B, SA and L, to compute the

forward $-extension [p − 1, e1) of the opening interval. If that extension is nonempty,

then the opening interval is an overlap-candidate, and the following data are recorded

on top of Z (see line 15): the forward $-extension [p− 1, e1), the length of the overlap-

candidate referred to as opening length, and the number #$ of symbols $ in B[1 : p− 1]

referred to as opening $-number. Observe that, at this step, the end of the overlap-

candidate is unknown and will be determined at some next step when its nonempty

backward $-extension is computed.

When a closing position p is read, the stack Z contains the records related to overlap-

candidates starting before p and ending in a position e ≥ p. In particular, the records

are sorted by increasing value of opening length, with the highest value on top. In other

words, the records form a nested hierarchy of the related overlap-candidate intervals,

where the top record is related to the longest overlap-candidate. Let OI(p) be the

set of the overlap-intervals closing in p (i.e., ending in p). The |OI(p)| top records

in Z, together with the closing position p, contain the information that is necessary

to reconstruct those overlap-intervals. Observe that for those records, the length of

the related overlap-candidates (i.e., the opening length) must be between L[p] + 1 and

L[p− 1], inclusive. This condition is used to extract from Z the set OI(p) (see the while

cycle at lines 18–22).

For each record in OI(p), the backward $-extension of the related overlap-candidate

88

7.2 Methods

is computed. Let [b, e1) and b$ be the forward $-extension and the opening $-number,

respectively. Notice that the overlap-candidate is [b, p) and b$ is the number of occur-

rences of $ in B[1, b]. Moreover, under the assumption that no input read is a substring

of another read, the BWT B cannot contain any $ in [b, e1), thus b$ is equal to the

number of occurrences of $ in B[1, b − 1] (i.e., Occ($, b)). We maintain a variable #$

containing the number of occurrences of $ in B[1, p − 1] (i.e., Occ($, p)). Then, the

backward $-extension of [b, p) is [b$,#$): it is clearly nonempty if and only if #$ > b$.

In that case, the basic arc-pair ([b, e1), [b$,#$]) is output (see lines 20–21).

Observe that, when the last position is not a closing position, after the while cycle at

lines 5–24, the stack Z may be nonempty. The while cycle at lines 25–29 empties the

stack Z if necessary.

Notice that the stack Z can contain at most l records (more precisely, when the current

position is i, the stack Z contains at most L[i] records). Therefore, the memory used by

Z can be considered negligible for our purposes.

Labeling the overlap graph. In the previous step all basic arc-pairs representing the

unlabeled arcs of the overlap graph are computed. In this step the procedure La-

belOverlapGraph (Algorithm 3) labels the overlap graph by finding all terminal arc-

pairs and their related label-pairs. In the following, we say that |βα$| is the length of

the arc-pair (q(βα$), q($α)) and |P | is the length of the label-pair (q(β), qrev (βrev)). Fur-

thermore, we say that the backward a-extension of an arc-pair is the arc-pair (aβ, α) =

(q(aβα$), q($α)), and is associated to an extended label-pair (q(aβ), qrev (βreva)). Ob-

serve that the backward a-extension of a basic arc-pair (ε, α) is the arc-pair (a, α),

and that the label-pair associated to a basic arc-pair is (q(ε), qrev (ε) = q(ε)). There-

fore the backward a-extension of a basic arc-pair will be associated to the label-pair

(q(a), qrev (a) = q(a)) that can be easily computed by the value C(a).

In order to discover all terminal arc-pairs and their label-pairs, our procedure it-

eratively backward extends basic and non-basic arc-pairs of increasing length. More

precisely, at a given iteration, the procedure backward extends all arc-pairs (β, α), with

a given length ` = |βα$|, as well as their related label-pairs (q(β), qrev (βrev)). The aim

is to discover which arc-pairs are terminal (that is which labels have been completely

89

7 Lightweight external memory assembly algorithm

Algorithm 3: LabelOverlapGraph

Input : The set of the basic arc-pairs.

Output: The labeled overlap graph.

1 k ← τ + 1;

2 APk ← basic arc-pairs of length k;

3 while APk is not empty do

4 foreach (β, α) ∈ APk do

5 if (β, α) is terminal then

6 output 〈{βα} ×Rp(α), qrev (βrev)〉;
7 else

8 foreach a ∈ Σ do

9 if (aβ, α) is nonempty then

10 add (aβ, α) to APk+1;

11 a-extend the label-pair (q(β), qrev (βrev));

12 k ← k + 1;

13 AP bk ← basic arc-pairs of length k;

14 APk ← APk ∪AP bk ;

computed) and to produce the arc-pairs (aβ, α) of length ` + 1 as well as their related

label-pairs (q(aβ), qrev (βreva)), which will be processed in the following iteration. Notice

that an arc-pair (β, α) of length ` has an overlap α of ` − 1 symbols (when β = ε and

the arc-pair is basic) or strictly shorter than `− 1 (when it is not basic).

Whenever a terminal arc-pair (β, α) is discovered (observe that it cannot be basic),

then the set of arcs (outgoing from the unique read s = βα), with overlap α and prefix-

extension β, is output together with the string-interval qrev (βrev) contained in its label-

pair. Recall that qrev (βrev) will be necessary in the next step to reduce the overlap

graph.

Reducing the overlap graph to the string graph. Let As be the arc set of the string

graph, which is initially empty. Moreover, the previous phases output the arcs (and the

labels) of the overlap graph in several lists, where each list contains the arcs with the

same length. The lists of the arcs of the overlap graph (computed in the previous step)

are read by increasing length `p (starting from `p = 1): an arc e = (si, sj) is put into As,

iff there does not exist an arc that (i) is already in As and (ii) reduces e as stated before.

90

7.2 Methods

In fact, let (si, sj) and (sh, sj) be two arcs of the overlap graph whose prefix-extensions

are respectively pij and phj . Testing whether (si, sj) is reduced by (sh, sj) is reframed

as testing whether phj is a suffix of pij and |phj | < |pij |. Hence, an arc can be only

reduced by an arc with smaller prefix-extension. Reading the arcs by increasing values

of `p, allows to detect all transitive arcs, keeping in main memory only arcs of the string

graph, since either an arc e is reduced by an arc that is already in As, or no arc, that

is subsequently read can reduce e. Therefore our use of main memory is parsimonious,

since we never remove an arc from the set As.

7.2.1 Algorithm Engineering

In this section we are going to describe a number of improvements that we have realized

to transform the algorithms described in the previous section into the current implemen-

tation. First of all, LSG must manage reads originating from both DNA strands. To

such purpose, for each read with index i, we add its reverse-complemented version as a

virtual read with index i+ n (where n is the number of original reads). Notice that the

reverse-complemented read is called virtual because we do not actually append it to the

input file, but our implementation simulates the insertion of such a such virtual read

i+ n when reading the input.

Since our implementation is disk-based, it is paramount to minimize the size of data

stored on disk, as well as the number of accesses to the disk and the number of open

files (otherwise some disk operations become too slow). This fact requires a careful

orchestration of input and output files. More precisely, the basic arc-pairs (ε, α) are

stored in the class of files BAI(a, `), where a = α[1] and ` = |α|, while the data

related to non-basic arc-pairs (β, α) are split in two separate classes of files AI(a, `) and

AL(a, `, `p). The first class of files contains the information about βα$, while the second

class contains the information regarding β. More in detail, the files AI(a, `) contain the

records (q(βα$), q($α), `p), where a = β[1], ` = |βα$|, and `p = |β|, that is non-basic arc-

pairs of length `. The second class consists of the files AL(a, `, `p) containing the records

(q(β), qrev (βrev)), where ` = |βα$| and `p = |β|, that is the label-pairs corresponding

to arc-pairs of length `. Each one of the above files contains essentially a sequence of

disjoint string-intervals. Moreover, records in BAI(·, ·), AI(·, ·) and AL(·, ·, ·) are sorted

91

7 Lightweight external memory assembly algorithm

by increasing value of the start of q(α$), q(βα$) and q(β), respectively. The association

between an arc-pair and its related label-pair is easily maintained, since they have the

same rank inside the set of the arc-pairs with p-extension of length `p and the set of

the label-pairs of length `p, respectively. In other words, the j-th record of AI(a, l),

containing a given length `p, is associated to the j-th record of AL(a, `, `p).

At iteration k of the labeling phase, our procedure first backward extends, with a

single scan of the BWT file B, each arc-pair (β, α) (possibly β = ε) of the sorted union

of the files AI(·, k − 1) and BAI(·, k − 1). At the same time, the set X of symbols,

which have produced a nonempty backward extension, is saved into a temporary file

F (`p) as a record (h,X), where h = |X|; this information will be used in the following

to check if the input arc-pair is terminal (that is, X = {$}) or to extend the related

label-pair. Each nonempty backward a-extension (aβ, α), where a 6= $, is put into the

file AI(a, k) and will be used in the next iteration of the labeling phase. Observe that

two input records of AI(·, k − 1) and BAI(·, k − 1) may have the same interval q(βα$)

(or q(α$) when the arc-pair is basic): our procedure is able to detect that case and

process only the first one of each distinct record, by storing its multiplicity mimicking

an RLE-encoding of arc-pairs. Iteration k is completed with a second scan of the file

B in order to backward-extends the label-pairs contained in the files AL(·, k − 1, ·): the

j-th record in AL(·, k − 1, `p) will be extended by the symbols of the set X of the j-th

record in the file F (`p). The results are written in the files AL(·, k, `p + 1). Observe

that, if the input arc-pair is basic, then its label-pair is trivially (q(a), qrev (a)) and is

written into the file AL(a, k, 1). Notice that, if X = {$} (that is, the input arc-pair is

terminal), then the related label-pair (q(β), qrev (βrev)) is not further extended. In that

case, the set of arcs, with overlap α and outgoing from the (unique) read s = βα, are

produced together with the string-interval qrev (βrev), which is necessary to reduce the

overlap graph.

A final improvement regards the reduction step, with the goal of minimizing the main

memory usage. In fact, each arc (sj , si) and the corresponding string-interval qrev (βrev)

are output to the file A(i mod z), for an opportune z. Since our reducibility test needs

to consider only the arcs incoming into the same vertex, each file A(j) can be analyzed

separately to compute the string graph, greatly reducing the RAM usage.

92

7.3 Results and discussion

An important improvement regards the GSA. In fact, since only step (i) of the al-

gorithm (computing the unlabeled overlap graph) uses the GSA and requires only the

lengths of the suffixes, we only need to store the first field of each GSA entry, omitting

the index of the read. The index of the read is needed only when a βα$-interval has

a nonempty backward $-extension (that is, we have fully identified the read si = βα

and we require its index i). In fact, we exploit the fact that all suffixes that are equal

to $ (i.e., the sentinel symbol) are at the beginning of the GSA and that there is ex-

actly one such suffix for each input read. We reorder only those suffixes to ensure that

SA[i] = (0, i), where si is the i-th read in lexicographical order as showed in Algorithm 1

in Section 6.1. Note that Algorithm 1 only requires a single scan of the (complete) and

thus can be performed with negligible RAM requirements.

In our algorithm, the backward $-extensions are computed for a set of βα$-intervals

that are ordered lexicographically. Hence the nonempty $βα$-intervals (computed via

backward $-extensions) are ordered and can be used to identify the correct source of the

edge analyzed.

Since our implementation has been designed to manage a large number of short reads,

the suffix lengths are stored as an 8 bit integer (hence it is able to handle reads that are

at most 255 characters long).

7.3 Results and discussion

We have implemented our representation and algorithms into an open source software

(called LSG and available at http://lsg.algolab.eu), and we have performed an ex-

perimental comparison on a large portion of the NA12878 dataset.

In fact, since LSG is aimed at reducing memory requirements, a comparison is inter-

esting only on large datasets. For this reason, our experiments have been performed on

the human reads of the NA12878 sample of the 1000 Genomes Project matching read

group “20FUK”. We preprocessed and filtered these reads according to the first five steps

of the workflow used by SGA in the recent Genome Assembly Gold-standard Evaluation

(GAGE) project [125] as reported at http://gage.cbcb.umd.edu/recipes/sga.html.

The resulting filtered dataset contains approximately 875 million reads, all 101bp long.

93

7 Lightweight external memory assembly algorithm

Table 7.1: Running time (in minutes) and peak memory usage (in GBytes) of LSG and
SGA to build the string graph on the NA12878 dataset.

LSG SGA (string graph)

Running time (min) 9,388 4,145
Peak memory usage (GB) 0.87 43

Our first analysis compares LSG and the most recent version of SGA [135], examining

the running time and the memory usage to compute the string graph, hence not con-

sidering the indexing phase that both programs require (since LSG does not include an

indexing phase, but relies upon BEETL [6]). The results of this analysis are summarized

in Table 7.1, where we can notice that SGA uses almost 50 times the main memory of

LSG, while LSG needs a running time that is 2.3x that of SGA. We point out that the

string graphs computed by LSG and SGA are essentially the same, except for a very

minor divergence regarding pairs of reads with multiple overlaps. More precisely, the

string graph computed by LSG has ≈ 3.5% more arcs than the one computed by SGA.

This small difference does not (sensibly) impact on the resulting assembly since it is

due to the presence of multiple edges with distinct labels between the same pairs of

vertices: in that case, LSG keeps all such edges, whereas SGA keeps only the edge with

the shortest label. We want to highlight that, although the two graph produced by LSG

and SGA are different, both of them are correct from a theoretical point of view. Indeed,

the standard definition proposed by Myers [97] does not consider such case and choosing

only one edge between them is not required (although reasonable). Anyway, we note

that we can easily remove multi arcs by a local analysis of the graph in a successive step

(not implemented in LSG).

In order to assess the performances of our tool, we have also built a pipeline for

genome assembly based upon LSG, using a slightly modified version of BEETL to

index the input reads and the assembly phase of SGA. We denote the new pipeline

as BEETL+LSG+SGA, shortly BLS. We have compared this complete pipeline with

SGA [134] and Readjoiner [54], two state-of-the-art string graph-based assemblers.

Notice that the indexing phases of SGA and LSG are based on the same algorithm

94

7.3 Results and discussion

(namely, BCR [6]), but use two different implementations: SGA uses Ropebwt [80],

which is an in-memory implementation. On the other hand, we have selected BEETL [6]

for the indexing phase, since it is (to the best of our knowledge) the only available

disk-based implementation that is able to compute the BWT, and the suffix array of a

large set of input reads without concatenating them. Therefore our choice of BEETL

is more germane to our investigation of a memory efficient string graph construction.

Additionally, BEETL is used also to compute the LCP array. Unfortunately, at the

time of this investigation, BEETL does not implement the LCPext algorithm [6], that

is an external memory computation of the LCP array, hence this part has to resort to

an in-memory approach. Our modifications to BEETL 0.10.0 consists of tailoring the

output to the need of LSG, so that the disk usage is minimized, without changing the

algorithm. More precisely, only suffix lengths of the GSA are stored (besides the BWT

and the LCP array).

Furthermore, LSG converts its internal compact representation of the string graph to

the ASQG format used by SGA in order to process the resulting string graph by the

subsequent assembly and scaffolding steps of the SGA workflow. We point out that the

current implementation of the conversion to the ASQG format is not optimized, since

the overall memory usage is dominated by the assembly phase.

Even though LSG is able to run on commodity hardware, in order to properly compare

the performance of the three tools, the experiment has been performed on a server

running Ubuntu Linux 12.04 equipped with eight 4-core Intel Xeon E5-4610v2 2.30GHz

CPUs, 256GB of RAM, and standard mechanical hard disk drives.

For all tools, we required a minimum overlap τ of 65bp. The index structures used

by LSG (i.e., the BWT, the GSA, and the LCP array) has been computed by BEETL,

while the index used by SGA has been obtained using sga-index with the -a ropebwt

option.

We used the running time and peak main memory usage to measure the computational

performance of the tools.

First we have compared in Table 7.2 the computational performances of the three

phases (indexing, string graph construction and output, and assembly) of BEETL, LSG,

and SGA. Since Readjoiner is a single program and its phases are not perfectly corre-

95

7 Lightweight external memory assembly algorithm

Table 7.2: Running time (in minutes) and peak memory usage (in GBytes) of each phase
of BEETL, LSG, SGA on the NA12878 dataset. We report two values for the
string graph output step of LSG: the first one preserves the FASTA IDs in
the ASQG output, whereas the second one does not and uses uniques integer
IDs.

BEETL LSG SGA

Indexing 9,540 1,112
String graph construction and output 9,444 4,145
Assembly 1,637

Indexing 52 26
String graph construction 0.87 ∗43
String graph output 45 (1) 63

∗ SGA does not separate the string graph construction and output phases. The peak memory usage for

the string graph construction phase has been empirically measured during the execution.

sponding to those of LSG and/or SGA, we could not include it in this comparison.

A cursory examination of Table 7.2 shows that the main bottleneck of BEETL+LSG+SGA

is represented by BEETL, which uses 52GB of memory for computing the index struc-

tures needed by LSG, while the other two phases – string graph construction and output

– require 1GB and 45GB, respectively. As stated previously, the memory requirements

of BEETL are largely due to the fact that it does not currently implement the LCPext

algorithm [6] to compute the LCP. Furthermore, the other phase of BEETL+LSG+SGA

that requires a significant amount of memory is the string graph output phase. This is

mainly due to the fact that the ASQG format represents edges of the string graph by

pairs of read IDs (as indicated in the input FASTA/Q file). As a consequence, during

the conversion to the ASQG format, LSG maintains in memory the full list of read IDs,

which accounts for most of the memory usage. Indeed, if we replace the original read

IDs with their index in the input file (thus avoiding to explicitly store the IDs), then the

peak memory usage of this phase becomes less than 1GB. This phase is the most mem-

ory expensive phase for SGA as well, which faces the same problem. Nevertheless, SGA

still requires a significant amount of memory during string graph construction (43GB),

while the memory usage of LSG during this phase is, to any practical extent, negligible

96

7.4 Conclusions and possible extensions

(1GB). Furthermore, since the space complexity of LSG (in terms of main memory) is

not dependent on the size of the dataset, this result suggests that, as the size of the

dataset increases, then the advantage in memory usage of using LSG for string graph

construction would increase even more. We stress that, even if LSG is able to compute

the string graph using 43 times less memory than SGA, LSG is only 3 times slower than

SGA.

Our final comparison is summarized in Table 7.3 and is dedicated to study the com-

putational performances and the quality of the assemblies produced obtained by the

BEETL+LSG+SGA, SGA, and Readjoiner pipelines. In this experiment, Readjoiner

has been executed with its default options.

Overall, Readjoiner is 9.7 times faster than SGA and SGA is 3 times faster than

BEETL+LSG+SGA. Indeed, the peak memory usage of SGA (63GB) is larger than

that of BEETL+LSG+SGA (52GB). Notably, the peak memory usage of Readjoiner

(42GB) is smaller than the one of BEETL+LSG+SGA. Readjoiner reaches its memory

usage peak (42GB) during its overlap detection phase and, since it does not apparently

store read IDs, its memory usage in that phase is essentially devoted to storing the sorted

array of SPM-relevant suffixes [54]. Regarding the quality of the assemblies produced

by the pipelines analyzed, we have not distinguished BEETL+LSG+SGA and SGA,

since the string graphs produced by them are basically identical. As a consequence,

we performed a single assembly for both BEETL+LSG+SGA and SGA by invoking

the assembly tool of the SGA workflow. All metrics show that the contigs produced by

BEETL+LSG+SGA and SGA are clearly better than those produced by Readjoiner (for

instance, the N50 value for LSG-SGA assembly is almost 5 times that of Readjoiner),

largely thanks to better assembly techniques currently implemented by the assembly

tool of SGA. This justifies our attention on the integration with the SGA workflow.

7.4 Conclusions and possible extensions

We have proposed the first external memory algorithm, based on the notions of FM-

index and of backward extension [42], for building a string graph from a set T of reads.

Overall, we have shown that LSG is a memory-efficient alternative approach to SGA

97

7 Lightweight external memory assembly algorithm

Table 7.3: Comparison between BEETL+LSG+SGA (BLS), SGA, and Readjoiner
pipelines on the NA12878 dataset.

BLS SGA Readjoiner

Total contigs 15,322,517 22,559,637
Max contig size 77,395 20,141
N25 7,258 1,628
N50 3,450 739
N75 981 270

Total running time (min) 20,621 6,894 713
Overall peak memory usage (GB) 52 63 42

and Readjoiner for computing the string graph of large datasets. For this task, LSG

achieves a significant reduction in memory usage (≈ 45 times compared to both SGA

and Readjoiner), in exchange of a less sharp increase of running times (3 times w.r.t.

SGA and 28 times w.r.t. Readjoiner, if we exclude the assembly phase, where Readjoiner

implements only basic techniques).

From the algorithmic point of view LSG exploits some characteristics of FM-indexing

of reads to compute the overlaps between reads, mainly the fact that it is not required

to process single reads one after the other to detect common overlaps among reads, but

the FM-index itself retains all the needed information. In fact, once the FM-indexing

has been built, differently from SGA, LSG does not need to process the set of reads, but

simply by iterating backward extensions over the FM-index it is able to discover common

overlaps. We believe that some of the techniques used in LSG could be further improved

to achieve an optimal trade-off between time and space in building the string graph.

Moreover, it would be useful to improve LSG algorithm implementation by allowing

parallel execution of the computation (e.g. by having one process that reads and writes

information from and to the disks and one process that performs the computation of the

arc-pair and label-pair analyzing the BWT).

We showed in this chapter that LSG can be used in a pipeline for de novo assembly

by providing the construction of a string graph in a string-graph based assembler, such

as SGA. Following this research direction, we have investigated the use of LSG inside

98

7.4 Conclusions and possible extensions

a novel pipeline: BLS. An experimental analysis shows that BLS has lighter memory

requirements than SGA, while retaining the same quality in the assembly phase. More-

over, the experiments have suggested possible improvements to the BLS pipeline, mainly

consisting of improving the other two components that have been integrated with LSG:

the indexing phase by implementing LCPext, and the assembly phase from the string-

graph by storing and using the string-graph itself in a more memory efficient way (for

example using the external memory again). We believe that some of the ideas of LSG

can be further investigated, with the goal of obtaining a complete assembly tool that

is entirely disk-based. This would greatly improve the space requirements needs for de

novo assembly of huge datasets that are currently ranging in the hundreds of gigabytes

of data and cannot be managed with a standard workstation.

Though we have applied LSG to genomic reads, it would be interesting to investigate

developments of our approach to build string graphs for de novo assembly of RNA-seq

data in absence of a reference. More precisely, FM-indexing of reads exhibits some further

interesting combinatorial properties that could be used in this framework. For example,

as shown in [27], compressed FM-indexing of a collection of reads (both genomic and

transcriptomic reads) allows a memory efficient algorithm for detecting splice sites in

RNA-seq data even in absence of a reference. On the other hand, we expect that our

approach may be used to face the problem of assembling RNA-seq data and building

graph models of gene structures such as for example splicing graphs [8].

Another possible direction for future research regards the design and the analysis of a

new version of our algorithm that is able to take advantage of a parallel disk architecture,

such as a RAID.

99

8 Parallel assembly algorithm

In this section we will present a second implementation of the framework we defined in

Chapter 6. The main goal of this tool, called FastStringGraph (FSG), is to reduce the

time required by the graph construction step of string graph based assemblers.

The main motivation behind this work is that the amount of sequencing data produced

is increasing steadily year by year [105] and, hence, fast methods for assembling NGS

data are required.

As stated before, this goal is almost orthogonal to the one presented in the previous

chapter where we presented LSG, an external memory-based NGS assembler. Indeed,

LSG aims to minimize the main memory usage and to run on simple workstation whereas

FSG does not emphasize the RAM usage (although it is memory parsimonious).

In the following we will refer to this approach as being parallel. We want to highlight

that we do not consider the theoretical definition of parallel algorithm [43,52,53] based

on a parallel random access memory (pRAM) but that we use such term to refer to a

method that uses threads to compute in parallel independent sets of instructions. More

precisely, FSG uses Intel®’s Threading Building Blocks Library (Intel® TBB) [26] to

split the work between the processors. Intel® TBB is a widely used C++ library for

shared memory parallel programming and heterogeneous computing that provides a

wide range of features for parallel programming (concurrent containers, scalable memory

allocator, task scheduler, and low-level synchronization primitives) that can be ported to

a wide range of CPU architectures (see https://www.threadingbuildingblocks.org/

and [115] for an in-depth discussion of such library).

FSG aims to minimize the computational time by using a parallel approach and by

grouping together redundant operations and performing them only once. Indeed, an

important observation is that SGA [135] computes the string graph basically performing,

for each read s = s1, . . . , sm, a query to the FM-index for each character s1, . . . , sm,

101

https://www.threadingbuildingblocks.org/

8 Parallel assembly algorithm

to compute the arcs outgoing from the read. While this approach works in O(nm)

time (where n is the number of reads and m is the length of them), it can perform

several redundant queries, most notably when the reads share common suffixes — a

very common case when suffixes are short —. Our algorithm queries the FM-index

in a specific order, implicitly grouping together reads by their suffixes and computing

only once the shared search operations. We have implemented FSG and integrated

it with the SGA assembler, by replacing in SGA the step related to the string graph

construction. Our implementation follows the SGA guidelines, i.e., we use the correction

step of SGA before computing the overlaps without allowing mismatches (which is also

SGA’s default). Notice that SGA is a finely tuned implementation that has performed

very nicely in the latest Assemblathon competition [16]. We have compared FSG with

SGA, where we have used the latter’s default parameter (that is, we compute overlaps

without errors). Our experimental evaluation on a standard benchmark dataset shows

that our approach is 2.3–4.8 times faster than SGA in terms of wall clock time.

Together, FSG and LSG show that the approach proposed in Chapter 6 is extremely

flexible.

8.1 Definitions

We briefly recall some standard definitions that will be used in the following. Let Σ be

a constant-sized alphabet of size σ and let s be a string over Σ. We denote by s[i] the

i-th symbol of s, by ` = |s| the length of s, and by s[i : j] the substring s[i]S[i+1] . . . s[j]

of s. The suffix and prefix of s of length k are the substrings s[` − k + 1 : `] (denoted

by s[`− k + 1 :]) and s[1 : k] (denoted by s[: k]) respectively. Given two strings (si, sj),

we say that si overlaps sj iff a nonempty suffix α of si is also a prefix of sj , that is

si = βα and sj = αβ. In this chapter we consider a set S of n strings over Σ that are

terminated by the sentinel $, which is the smallest character. To simplify the exposition,

we will assume that all input strings have exactly m characters, excluding the $. The

overlap graph of a set S of strings is the directed graph GO = (S,A) whose vertices are

the strings in R, and each two overlapping strings si = βα and sj = αγ form the arc

(si, sj) ∈ A labeled by β. In this case α is called the overlap of the arc and β is called

102

8.2 Methods

the (left) extension of the arc. Observe that the notion of overlap graph originally given

by [97] is defined by labeling with γ the arc (si, sj) ∈ A.

We briefly recall that, the Generalized Suffix Array (GSA) [133] of S is the array SA

where each element SA[i] is equal to (k, j) iff the k-long suffix sj [|sj | − k + 1 :] of the

string sj is the i-th smallest element in the lexicographic ordered set of all suffixes of

the strings in S. The Burrows-Wheeler Transform (BWT) of S is the sequence B such

that B[i] = sj [|sj | − k], if SA[i] = (k, j) and k > 1, or B[i] = $, otherwise. Informally,

B[i] is the symbol that precedes the k-long suffix of a string sj where such suffix is the

i-th smallest suffix in the ordering given by SA. For any string ω, all suffixes of (the

lexicographically sorted) SA whose prefix is ω appear consecutively in SA. Consequently,

we define the ω-interval [6], denoted by q(ω), as the maximal interval [b, e] such that

b ≤ e, SA[b] and SA[e] both have prefix ω. Notice that the width e−b+1 of the ω-interval

is equal to the number of occurrences of ω in some read of S. Since the BWT B and SA

are closely related, we also say that [b, e] is a ω-interval on B. Given a ω-interval and a

character c, the backward c-extension of the ω-interval is the cω-interval.

8.2 Methods

FSG’s algorithm is based on two steps: in the first we compute the overlap graph whereas

in the second we remove all transitive arcs. Given a string α and a set of reads R, let

RS(α) and RP (α) be respectively the subset of R with suffix (resp. prefix) α. As usual

in string graph construction algorithms, we will assume that the set R is substring free,

i.e., no string is a substring of another. A fundamental observation is that the list

of all nonempty overlaps α is a compact representation of the overlap graph, since all

pairs in RS(α) × RP (α) are arcs of the overlap graph. Our approach to compute all

overlaps between pairs of strings is based on the notion of potential overlap, which is a

nonempty string α∗ ∈ Σ+, s.t. there exists at least one input string si = βα∗ (β 6= ε)

with suffix α∗, and there exists at least one input string sj = γα∗δ (δ 6= ε) with α∗ as

a substring (possibly a prefix). The first part of Algorithm 4 (lines 3–11) is devoted to

the computation of potential overlaps, starting from those of length 1 and extending the

potential overlaps by adding a new leading character to each one. Lemma 8.1 is a direct

103

8 Parallel assembly algorithm

consequence of the definition of potential overlap that motivates the design of the first

part of our algorithm.

Lemma 8.1 Let α be an overlap. Then all suffixes of α are potential overlaps.

Therefore, this part of the algorithm computes potential overlaps for increasing length

and, once they cannot be extended anymore, it outputs the arcs of the overlap graph.

The second part of our algorithm is devoted to the detection of all the transitive arcs.

We start considering the set of all arcs sharing the same overlap and a suffix of their

extensions, as stated in the following definition.

Definition 8.1 Assume that β, α ∈ Σ∗, α 6= ε and X ⊆ RP (α). The arc-set ARC(β, βα,X)

is the set {(s1, s2) : βα is a suffix of s1, s1 ∈ R, and s2 ∈ X}. The strings β and α are

called the extension and the overlap of the arc-set. The set X is called the destination

set of the arc-set.

In other words, an arc-set contains the arcs with overlap α and extension β. An

arc-set is terminal if there exists s ∈ R s.t. r = αβ, while an arc-set is basic if

β = ε (the empty string). Since the arc-set ARC(β, βα,X) is uniquely determined by

strings β, βα, and X, the triple (β, βα,X) encodes the arc-set ARC(β, βα,X). More-

over, the arc-set ARC(β, βα,X) is correct if X includes all reads whose irreducible

arcs have overlap α and extension with suffix β, that is X ⊇ {s2 ∈ RP (α) : s1 ∈
RS(βα) and (s1, s2) is irreducible}. Observe that our algorithm computes only correct

arc-sets. Moreover, terminal arc-sets only contain irreducible arcs (Lemma 8.4).

Lemma 8.2 shows the use of arc-sets to detect transitive arcs.

Lemma 8.2 Let (s1, s2) be an arc with overlap α. Then (s1, s2) is transitive iff (i) there

exist β, γ, δ, η ∈ Σ∗, γ, η 6= ε such that s1 = γβα, s2 = αδη, (ii) there exists an input read

s3 = βαδ such that (s3, s2) is an irreducible arc of a nonempty arc-set ARC(β, βαδ,X).

Proof Let s3 = βαδ be the input string maximizing |δ| so that s1 = γβα, s2 = αδη, for

some β, γ, δ, η ∈ Σ∗. Notice that such string s3 exists iff (s1, s2) is transitive.

If no such input string s3 exists, then the arc-set ARC(β, βαδ,X), for each set X, are

empty.

104

8.2 Methods

Algorithm 4: Compute the string graph

Input : The set R of input strings
Output: The string graph of R, given as a list of arcs

1 Cluster ← empty list;
// Compute all overlaps of length 1

2 Last← {c ∈ Σ | suff(c) > 0 and substr(c) > suff(c)};
3 while Last is not empty do
4 New← ∅;
5 foreach α∗ ∈ Last do
6 if pref(α∗) > 0 then
7 Append (ε, α∗, listpref(α∗)) to Cluster;
8 for c ∈ Σ do
9 if suff(cα∗) > 0 and substr(cα∗) > suff(cα∗) then

10 Add cα∗ to New;

11 Last ← New;

12 Clusters ← the stack with Cluster as its only element;
13 while Clusters is not empty do
14 CurrentCluster ← Pop(Clusters);
15 Rdc ← ∅;
16 Let ExtendedClusters be an array of |Σ| empty clusters;
17 foreach (β, βα,X) ∈ CurrentCluster do
18 if substr(βα) = pref(βα) = suff(βα) > 0 then
19 Output the arcs (βα, x) with label β for each x ∈ X;
20 Rdc ← Rdc ∪X;

21 foreach (β, βα,X) ∈ CurrentCluster do
22 if X 6⊆ Rdc then
23 for c ∈ Σ do
24 if suff(cβα) > 0 then
25 Append (cβ, cβα,X \ Rdc) to ExtendedClusters[c];

26 Push each non-empty cluster of ExtendedClusters to Clusters;

Assume now that such an input string s3 exists, then the arc (s3, s2) reduces (s1, s2).

First we prove that (s3, s2) is irreducible. Assume to the contrary that (s3, s2) is transi-

tive, hence there exists an arc (s4, s2) whose extension is a suffix of β. Since s4 is not a

substring of s3, this fact contradicts the assumption that s3 maximizes |δ|. Consequently

(s3, s2) is irreducible.

Moreover, let ARC(β, βαδ,X) be a correct arc-set (at least one such correct arc-set

exists, when X = RP (αδ)). Since (s3, s2) is correct, then s2 ∈ X hence ARC(β, βαδ,X)

105

8 Parallel assembly algorithm

is nonempty. �

Note that Lemma 8.2 is a reformulation of Lemma 6.5 in terms of arc-sets. A direct

consequence of Lemma 8.2 is that a nonempty correct terminal arc-set ARC(β, βαδ,X)

implies that all arcs of the form (γβα, αδη), with γ, η 6= ε are transitive. Another

consequence of Lemma 8.2 is that an irreducible arc (βαδ, αδη) with extension β and

overlap αδ reduces all arcs with overlap α and extension γβ, with γ 6= ε. Lemma 8.2 is the

main ingredient used in our algorithm. More precisely, it computes terminal correct arc-

sets of the form ARC(β, βαδ,X) for extensions β of increasing length. By Lemma 8.2,

ARC(β, βαδ,X) contains arcs that reduce all the arcs contained in ARC(β, βα,X ′)

which have a destination in X. Since the transitivity of an arc is related to the extension

β of the arc that is used to reduce it, and since our algorithm considers extensions of

increasing length, a main consequence of Lemma 8.2 is that it computes terminal arc-sets

that are correct, that is they contain only irreducible arcs. We will further speed up the

computation by clustering together the arc-sets sharing the same extension.

Definition 8.2 Let T be a set of arc-sets, and let β be a string. The cluster of β,

denoted by C(β), is the union of all arc-sets of T whose extension is β.

We sketch Algorithm 4 which consists of two phases: the first phase to compute the

overlap graph, and the second phase to remove all transitive arcs. In our description, we

assume that, given a string ω, we can compute in constant time (i) the number suff(ω) of

input strings whose suffix is ω, (ii) the number pref(ω) of input strings whose prefix is ω,

(iii) the number substr(ω) of occurrences of ω in the input strings. Moreover, we assume

to be able to list the set listpref(ω) of input strings with prefix ω in O(|listpref(ω)|) time.

In Sect. 8.2.1 we will describe such a data structure.

The first phase (lines 3– 11) exploits Lemma 8.1 to compute all overlaps. Potential

overlaps are defined inductively. The empty string ε is a potential overlap of length 0;

given an i-long potential overlap α∗, the (i+ 1)-long string cα∗, for c ∈ Σ, is a potential

overlap iff suff(cα∗) > 0 and substr(cα∗) > suff(cα∗). Our algorithm uses this definition

to build potential overlaps of increasing length, starting from those with length 1, i.e.,

symbols of Σ (line 2). The lists Last and New store the potential overlaps computed at

the previous and current iteration respectively. Observe that a potential overlap α∗ is an

106

8.2 Methods

overlap iff pref(α∗) > 0. The first phase produces (line 7) the set of disjoint basic arc-sets

ARC(ε, α,Rp(α)) for each overlap α, whose union is the set of arcs of the overlap graph.

Recall that listpref(α) gives the set of reads with prefix α, which has been denoted by

Rp(α).

The second phase (lines 13– 25) classifies the arcs of the overlap graph into reducible

or irreducible by computing arc-sets of increasing extension length, starting from the

basic arc-sets ARC(ε, εα,Rp(α)) obtained in the previous phase.

By Lemma 8.2, we compute all correct terminal arc-sets ARC(β, βα,X) and remove

all arcs that are reduced by ARC(β, βα,X). The set Rdc is used to store the destination

set X of the computed terminal arc-sets. Notice that if ARC(β, βα,X) is terminal, then

all of its arcs have the same origin r = βα, i.e., ARC(β, βα,X) = {(s, x) : x ∈ X}.
By Lemma 8.2 all arcs in the cluster C(β) with a destination in X and with an origin

different from s are transitive and can be removed, simply by removing X from all

destination sets in the arc-sets of C(β). Another application of Lemma 8.2 is that when

we find a terminal arc-set all of its arcs are irreducible, i.e., it is also correct. In fact,

Lemma 8.2 classifies an arc as transitive according to the existence of a read s = βα

with extension β. Since the algorithm considers extensions β of increasing length, all

arcs whose extensions is shorter than β have been reduced in a previous step, thus all

terminal arc-set of previous iterations are irreducible. More precisely, the test at line 18

is true iff the current arc-set is terminal. In that case, at line 19 all arcs of the arc-set are

output as arcs of the string graph, and at line 20 the destination set X is added to the

set Rdc that contains the destinations of C(β) that must be removed. For each cluster

C(β), we read twice all arc-sets that are included in C(β). The first time to determine

which arc-sets are terminal and, in that case, to determine the set Rdc of reads that

must be removed from all destinations of the arc-sets included in C(β). The second

time to compute the clusters C(cβ) that contain the nonempty arc-sets with extension

cβ consisting of the arcs that we still have to check if they are transitive or not (that is

the arcs with destination set X \Rdc).

In Algorithm 4, the cluster C(β) that is currently analyzed is stored in CurrentCluster,

that is a list of the arc-sets included in the cluster. Moreover, the clusters that still

have to be analyzed are stored in the stack Clusters. We use a stack to guarantee

107

8 Parallel assembly algorithm

that the clusters are analyzed in the correct order, that is the cluster C(β) is analyzed

after all clusters C(β[i :]) — β[i :] is a generic suffix of β. We can prove that an

irreducible arc (s1, s2) with extension β and overlap α belongs exactly to the clusters

C(ε), . . . , C(β[2 :]), C(β). Moreover, s2 does not belong to the set Rdc when considering

C(ε), . . . , C(β[2 :]), hence the arc (s1, s2) is correctly output when considering the cluster

C(β).

The lemmas leading to the correctness of the algorithm follow.

Lemma 8.3 Let e1 be an irreducible arc (s1, s2) with extension β and overlap α. Then

e1 belongs exactly to the |β|+1 clusters C(β), C(β[2 :]), C(β[3 :]), . . . , C(ε), while s2 does

not belong to the set Rdc when currentCluster is any of C(β[2 :]), C(β[3 :]), . . . , C(ε).

Moreover, e1 is output by the algorithm when currentCluster is C(β).

Proof By construction, e1 can belong only to the clusters C(β), C(β[2 :]), C(β[3 :

]), . . . , C(ε).

Now we will prove that e1 belongs to all clusters C(β), C(β[2 :]), C(β[3 :]), . . . , C(ε),

while s2 does not belong to the set Rdc when currentCluster is any of C(β[2 :]), C(β[3 :

]), . . . , C(ε). Notice that e1 ∈ C(ε). Assume to the contrary that there exists i ≥ 2 such

that e1 ∈ C(β[i :]) and s2 ∈ Rdc when considering a cluster C(β[i :]). Since s2 ∈ Rdc,
by Lemma 8.2 there exists a nonempty terminal arc-set ARC(β[i :], β[i :]αγ,X) s.t.

s2 = αγδ and s2 ∈ X. Since it is terminal and nonempty, such arc-set contains the arc

(β[i :]αγ, s2) with extension β[i :]. Since β[i :] is a suffix of β the arc e1 is transitive,

which is a contradiction.

In particular, when the algorithm examines C(β[2 :]), e1 ∈ C(β[2 :]) and s2 ∈ X \Rdc.
Moreover, e1 belongs to the arc-set ARC(β, βα,X\Rdc) added to ExtendedClusters[β[1]]

at line 25. Clearly, such arc-set is included in C(β). When the algorithm examines the

cluster C(β), the arc-set containing e1 satisfies the condition at line 18, hence such

arc-set is output. �

Lemma 8.4 Let ARC(β, βα,X) be an arc-set inserted into a cluster by Algorithm 4.

Then such arc-set is correct.

Proof Let e1 be an irreducible arc (s1, s2) of ARC(β, βα,X), and let β1 be respectively

the extension and the overlap α of e1. Since e1 ∈ ARC(β, βα,X), β is a suffix of β1,

108

8.2 Methods

therefore we can apply Lemma 8.3 which implies that e1 ∈ C(β). Since the only arc

triple contained in C(β) to which e1 can belong is ARC(β, βα,X), then s2 ∈ X which

completes the proof. �

Lemma 8.5 Let e1 be a transitive arc (s1, s2) with overlap α. Then the algorithm does

not output e1.

Proof Since e1 is transitive, by Lemma 8.2 s1 = γβα, s2 = αδη, and there exists an

input string s3 = βαδ such that the arc e2 = (s3, s2) with overlap αδ is irreducible, and

all correct arc-sets of the form ARC(β, βαδ,X) are nonempty and terminal.

Assume to the contrary that e1 is output by Algorithm 4, and notice that such

arc can be output only when the current cluster is C(β) and the current arc-set is

ARC(γβ, γβα,X) with s2 ∈ X.

By the construction of our algorithm, since the cluster C(γβ) is nonempty, also C(β) is

nonempty: let us consider the iteration when the current cluster is C(β). By Lemma 8.4

the arc-set ARC(β, βαδ,X1) is correct, hence it contains the arc e2. But such arc-set

satisfies the condition at line 18, hence s2 ∈ Rdc at that iteration. Consequently, C(β)

cannot contain an arc-set with destination set including s2. �

Theorem 8.6 is a direct consequence of Lemmas 8.3 and 8.5.

Theorem 8.6 Given as input a set of strings R, Algorithm 4 computes exactly the arcs

of the string graph.

Computational analysis We now sketch the time complexity of Algorithm 4. The first

step (lines 3 – 11) requires O(nm), where m and n are the length and the number of

input strings, respectively. Indeed, since a potential overlap is a suffix of some input

string, there are at most nm distinct suffixes. Moreover, each query suff(·), pref(·),
substr(·) requires O(1) time, thus the time complexity related to the total number of

such queries is O(nm). Given two strings α1 and α2, when |α1| = |α2| no input string

can be in both listpref(α1) and listpref(α2). Since each overlap is at most m long, the

overall time spent in the listpref(·) queries is O(nm).

The second step (lines 13 – 25) requires O(|E|d(n)) where E is the set of the edges

of the string graph and d(n) is the time required to compute a union-difference between

109

8 Parallel assembly algorithm

two sets of size n. Note that, since each string βα considered in the second phase is a

suffix of an input string, and there are at most nm such suffixes, at most nm arc-sets

are considered in the second phase. Moreover, for each cluster a set Rdc is computed. If

Rdc is empty, then each arc-set of the cluster can be examined in constant time, since all

unions at line 20 are trivially empty and at line 25 the set X\Rdc is equal to X, therefore

no operation must be computed. The interesting case is when X 6= ∅ for some arc-set.

In that case the union at line 20 and the difference X \ Rdc at line 25 are computed.

Let d(n) be the time complexity of those two operations on n-element sets (the actual

time complexity depends on the data structure used). Notice that X is not empty only

if we have found an irreducible arc, that is an arc of the string graph. Overall, there can

be at most |E| nonempty such sets X, where E is the set of arcs of the string graph.

Summing-up, the time complexity of the entire algorithm is O(nm+ |E|d(n)).

8.2.1 Data representation

Our algorithm entirely operates on the (potentially compressed) FM-index of the col-

lection of input reads. Indeed, each processed string ω (both in the first and in the

second phase) can be represented in constant space by the ω-interval [bω, eω] on the

BWT (i.e., q(ω)), instead of using the näıve representation with O(|ω|) space. Notice

that in the first phase, the i-long potential overlaps, for a given iteration, are obtained by

prepending a symbol c ∈ Σ to the (i−1)-long potential overlaps of the previous iteration

(lines 8–10). In the same way the arc-sets of increasing extension length are computed

in the second phase. In other words, our algorithm needs in general to obtain string cω

from string ω, and, since we represent strings as intervals on the BWT, this operation

can be performed in O(1) time via backward c-extension of the interval q(ω) [42].

Moreover, both queries pref(ω) and substr(ω) can be answered in O(1) time. In fact,

given q(ω) = [bω, eω], then substr(ω) = eω − bω + 1 and pref(ω) = e$ω − b$ω + 1 where

q($ω) = [b$ω, e$ω] is the result of the backward $-extension of q(ω). Similarly, it is easy

to compute listpref(ω) as it corresponds to the set of reads that have a suffix in the

interval q($ω) of the GSA.

The interval q(ω$) = [bω$, eω$] allows to answer to the query suff(ω) which is computed

as eω$ − bω$ + 1.] The interval q(ω$) is maintained along with q(ω). Moreover, since

110

8.3 Results and discussion

q(ω$) and q(ω) share the lower extreme bω = bω$ (recall that $ is the smallest symbol),

each string ω can be compactly represented by the three integers bω, eω$, eω. While in our

algorithm a substring ω of some input read can be represented by those three integers,

we exploited the following representation for greater efficiency.

In the first phase of the algorithm we mainly have to represent the set of potential

overlaps. At each iteration, the potential overlaps in Last (New, resp.) have the same

length, hence their corresponding intervals on the BWT are disjoint. Hence, we can

store those intervals using a pair of n(m+ 1)-long bitvectors. For each potential overlap

α ∈ Last (New, resp.) represented by the α-interval [bα, eα], the first bitvector has 1

in position bα and the second bitvector has 1 in positions eα$ and eα. Recall that we

want also to maintain the interval q(α$) = [bα, eα$]. Since substr(α) > suff(α), then

eα$ 6= eα and can be stored in the same bitvector. In the second phase of the algorithm,

we mainly represent clusters. A cluster groups together arc-sets whose overlaps are

pairwise different or one is the prefix of the other. Thus, the corresponding intervals

on the BWT are disjoint or nested. Moreover, the destination set of the basic arc-sets

can be represented by a set of pairwise disjoint or nested intervals on the BWT (since

listpref(α) of line 7 correspond to the interval q($α)). Moreover, the loop at lines 13–

25 preserves the following invariant: let ARC(β, βα1, X1) and ARC(β, βα2, X2) be two

arc-sets of the same cluster C(β) with α1 prefix of α2, then X2 ⊆ X1. Hence, each

subset of arc-sets whose extensions plus overlaps share a common nonempty prefix γ is

represented by means of the following three vectors: two integers vectors Vb, Ve of length

eγ − bγ + 1 and a bitvector Bx of length e$γ − b$γ + 1, where [bγ , eγ] is the γ-interval and

[b$γ , e$γ] is the $γ-interval. More precisely, Vb[i] (Ve[i], resp.) is the number of arc-sets

whose representation (BWT interval) of the overlap starts (ends, resp.) at bγ + i, while

Bx[i] is 1 iff the read at position b$γ + i, in the lexicographic order of the GSA, belongs

to the destination set of all the arc-sets.

8.3 Results and discussion

A C++ implementation of our approach, called FSG (short for Fast String Graph), has

been integrated in the SGA suite and is available at http://fsg.algolab.eu under the

111

http://fsg.algolab.eu

8 Parallel assembly algorithm

GPLv3 license. We have evaluated the performance of FSG on a standard benchmark of

875 million 101bp-long reads sequenced from the NA12878 individual of the International

HapMap and 1000 genomes project and compared the running time of FSG with SGA.

We have run SGA with its default parameters, that is SGA has compute exact overlaps

after having corrected the input reads. Since the string graphs computed by FSG and

SGA are almost the same the same (as highlighted in Chapter 7), we have not compared

the entire pipeline, but only the string graph construction phase. We could not compare

FSG with Fermi, since Fermi does not split its steps in a way that allows to isolate

the running time of the string graph construction — most notably, it includes reads

correction and scaffolding.

Especially on the DNA alphabet, short overlaps between reads may happen by chance

and, hence, for genome assembly purposes, only overlaps whose length is larger than a

user-defined threshold are considered. The value of the minimum overlap length thresh-

old that empirically showed the best results in terms of genome assembly quality is

around the 75% of the read length [135]. To assess how graph size affects performance,

different values of minimum overlap length (called τ) between reads have been used

(clearly, the lower this value, the larger the graph). The minimum overlap lengths used

in this experimental assessment are 55, 65, 75, and 85, hence the chosen values test the

approaches also on larger-than-normal (τ = 55) and smaller-than-normal (τ = 85) string

graphs.

Another aspect that we have wanted to measure is the scalability of FSG. We have

run the programs with 1, 4, 8, 16, and 32 threads. In all cases, we have measured the

elapsed (wall-clock) time and the total CPU time (the time a CPU has been working).

All experiments have been performed on an Ubuntu 14.04 server with four 8-core Intel®

Xeon E5-4610v2 2.30GHz CPUs. The server has a NUMA architecture with 64GiB of

RAM for each node (256GiB in total).

Table 8.1 summarizes the running times of both approaches on the different config-

urations of the parameters. Notice that FSG approach is from 2.3 to 4.8 times faster

than SGA in terms of wall-clock time and from 1.9 to 3 times in terms of CPU time.

On the other hand, FSG uses approximately 2.2 times the memory used by SGA — on

the executions with at most 8 threads. We want to highlight that on a larger number

112

8.3 Results and discussion

Table 8.1: Comparison of FSG and SGA, for different minimum overlap lengths and
numbers of threads. The wall-clock time is the time used to compute the
string graph. The CPU time is the overall execution time over all CPUs
actually used.

Min. no. of Wall time [min] Work time [min]
overlap threads FSG SGA FSG

SGA
FSG SGA FSG

SGA

55 1 1,485 4,486 0.331 1,483 4,480 0.331
4 474 1,961 0.242 1,828 4,673 0.391
8 318 1,527 0.209 2,203 4,936 0.446
16 278 1,295 0.215 3,430 5,915 0.580
32 328 1,007 0.326 7,094 5,881 1.206

65 1 1,174 3,238 0.363 1,171 3,234 0.363
4 416 1,165 0.358 1,606 3,392 0.473
8 271 863 0.315 1,842 3,596 0.512
16 255 729 0.351 3,091 4,469 0.692
32 316 579 0.546 6,690 4,444 1.505

75 1 1,065 2,877 0.37 1,063 2,868 0.371
4 379 915 0.415 1,473 2,903 0.507
8 251 748 0.336 1,708 3,232 0.528
16 246 561 0.439 2,890 3,975 0.727
32 306 455 0.674 6,368 4,062 1.568

85 1 1,000 2,592 0.386 999 2,588 0.386
4 360 833 0.432 1,392 2,715 0.513
8 238 623 0.383 1,595 3,053 0.523
16 229 502 0.457 2,686 3,653 0.735
32 298 407 0.733 6,117 3,735 1.638

of threads, the performances of FSG slightly degrades (in particular the wall time of

FSG on 32 threads is larger than that on 16 threads). We want to point out that the

current implementation of FSG is almost a proof of concept and future improvements

to its codebase and a better analysis of the race conditions of our tool will likely lead

to better performances with a large number of threads. Furthermore, notice that also

the SGA algorithm, which is (almost) embarrassingly parallel (since, in principle, each

input read can be processed independently) and has a stable implementation, does not

achieve a speed-up better than 6.4 with 32 threads. As such, a factor that likely con-

tributes to a poor scaling behaviour of both FSG and SGA could be also the NUMA

architecture of the server used for the experimental analysis, which makes different-unit

memory accesses more expensive (in our case, the processors in each unit can manage

at most 16 logical threads, and only 8 on physical cores).

113

8 Parallel assembly algorithm

FSG uses more memory than SGA since genome assemblers must correctly manage

reads extracted from both strands of the genome. In our case, this fact has been ad-

dressed by adding each reverse-and-complement read to the set of strings on which the

FM-index has been built, hence immediately doubling the size of the FM-index. More-

over, FSG needs some additional data structures to correctly maintain potential overlaps

and arc-sets: two pairs of n(m+ 1)-long bitvectors and the combination of two (usually)

small integer vectors and a bitvector of the same size. Our experimental evaluation

shows that the memory required by the latter is usually negligible, hence a better im-

plementation of the four bitvectors — for instance compressing the static ones — could

decrease the memory use. Nevertheless, we want to stress that the main goal of FSG is

to show that the framework proposed in Chapter 6 can improve the running time, not

the memory usage (as shown in Chapter 7).

The combined analysis of the CPU time and the wall-clock time on at most 8 threads

(which is the number of physical cores of each CPU on our server) suggests that FSG is

more CPU efficient than SGA and is able to better distribute the workload across the

threads. In our opinion, our greater efficiency is achieved by operating only on the FM-

index of the input reads and by the order on which extension operations (i.e., considering

a new string cβ after β has been processed) are performed. These two characteristics of

our algorithm allow to eliminate the redundant queries to the index which, instead, are

performed by SGA. In fact, FSG considers each string that is longer than the threshold

at most once, while SGA potentially reconsiders the same string once for each read in

which the string occurs. Indeed, FSG uses 2.3–3 times less user time than SGA when

τ = 55 (hence, when such sufficiently-long substrings occur more frequently) and “only”

2–2.6 times less user time when τ = 85 (hence, when such sufficiently-long substrings

are more rare).

8.4 Conclusions and possible extensions

We have proposed FSG, a tool implementing a new parallel algorithm for constructing a

string graph that works directly querying a FM-index representing a collection of reads,

instead of processing the input reads. Our main goal is to provide a simpler and fast

114

8.4 Conclusions and possible extensions

algorithm to construct string graphs, so that its implementation can be easily integrated

into an assembly pipeline that analyzes the paths of the string graph to produce the

final assembly. Indeed, FSG could be used for related purposes, such as transcriptome

assembly [8, 74], and haplotype assembly [10]. These topics are some of the research

directions that we plan to investigate.

115

A Appendix

A.1 Additional tables

Table A1: Sequencing technologies list. Data retrieved and adapted from [105].

Platform Instrument Year Reads per run Read length (mode or average) Bases per run (gigabases)
ABI Sanger 3730xl 2002 96 800 0.0000768
454 GS20 2005 200000 100 0.02
454 GS FLX 2007 400000 250 0.1
454 GS FLX Titanium 2009 1000000 500 0.45
454 GS FLX+ 2011 1000000 700 0.7
454 GS Junior 2010 100000 400 0.04
454 GS Junior+ 2014 100000 700 0.07
Illumina (Solexa) GA 2006 28000000 25 0.7
Illumina GA 2008 28000000 35 1
Illumina GA II ND 100000000 50 5
Illumina GAIIx 2009 440000000 75 33
Illumina GAIIx 2011 640000000 75 48
Illumina GAIIx 2012 640000000 150 95
Illumina HiSeq 2000 2010 2000000000 100 200
Illumina HiSeq 2000 2011 3000000000 100 600
Illumina HiSeq 2000/2500 2014 4000000000 125 1000
Illumina HiSeq 2500 RR 2012 600000000 150 180
Illumina HiSeq 2500 RR 2014 600000000 250 300
Illumina HiSeq 4000 2015 5000000000 150 1500
Illumina HiSeq X 2014 6000000000 150 1800
Illumina NextSeq 500 2014 400000000 150 120
Illumina MiSeq 2011 30000000 150 4.5
Illumina MiSeq 2012 30000000 250 8.5
Illumina MiSeq 2013 30000000 300 15
Illumina MiniSeq 2016 25000000 150 7.5
SOLiD 1 2007 40000000 25 1
SOLiD 2 2008 115000000 35 4
SOLiD 3 2009 320000000 50 16
SOLiD 4 2010 2000000000 50 100
SOLiD 5500xl 2011 3000000000 60 180
SOLiD 5500xl W 2013 3000000000 75 320
IonTorrent PGM 314 chip 2011 100000 100 0.01
IonTorrent PGM 316 chip 2011 1000000 100 0.1
IonTorrent PGM 318 chip 2011 5000000 100 0.5
IonTorrent PGM 318 chip 2012 5000000 200 1
IonTorrent PGM 318 chip V2 2013 5000000 400 2
IonTorrent Proton PI 2012 50000000 200 10
IonTorrent Ion S5/S5XL 530 chip 2015 20000000 400 8
IonTorrent Ion S5/S5XL 540 chip 2015 75000000 200 15
PacBio RS C1 2011 432000 1300 0.540
PacBio RS C2 2012 432000 2500 1.080
PacBio RS C2 XL 2012 432000 4300 1.858
PacBio RS II C2 XL 2013 564000 4600 2.594
PacBio RS II P5 C3 2014 528000 8500 4.500
PacBio RS II P6 C4 2014 660000 13500 12.000
Oxford Nanopore MinION Mk1 2015 2200000 9545 21
Oxford Nanopore MinION Mk1 fast 2015 4400000 9545 42

117

List of Figures

2.1 Example of a Suffix Tree . 19
2.2 Example of Suffix Array and BWT . 20
2.3 Developments in high throughput sequencing 25
2.4 An example of a node centric de Bruijn graph 29
2.5 An example of an overlap graph . 31

3.1 An example of Bloom filter. 39

4.1 Example of a de Bruijn graph update procedure 46

5.1 ABOSS representation of a dBG . 54
5.2 A graphical example of bi-shorter. 58
5.3 A graphical example of bi-longer. 60
5.4 A graphical example of FwdBwd. 62

6.1 Example of RT , BWT, GSA, and LCP . 72
6.2 Example of overlap between two reads . 77
6.3 Example of a reducible arc of the overlap graph 78

119

List of Tables

7.1 Running time (in minutes) and peak memory usage (in GBytes) of LSG
and SGA to build the string graph on the NA12878 dataset. 94

7.2 Running time (in minutes) and peak memory usage (in GBytes) of each
phase of BEETL, LSG, SGA on the NA12878 dataset. We report two
values for the string graph output step of LSG: the first one preserves the
FASTA IDs in the ASQG output, whereas the second one does not and
uses uniques integer IDs. 96

7.3 Comparison between BEETL+LSG+SGA (BLS), SGA, and Readjoiner
pipelines on the NA12878 dataset. 98

8.1 Comparison of FSG and SGA, for different minimum overlap lengths and
numbers of threads. The wall-clock time is the time used to compute the
string graph. The CPU time is the overall execution time over all CPUs
actually used. 113

A1 Sequencing technologies list . 117

121

Bibliography

[1] M. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees with enhanced
suffix arrays,” J. of Discrete Algorithms, vol. 2, no. 1, pp. 53–86, 2004.

[2] A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein, “On hardness of jumbled
indexing,” in Automata, Languages, and Programming - 41st International Collo-
quium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part
I, ser. Lecture Notes in Computer Science, J. Esparza, P. Fraigniaud, T. Husfeldt,
and E. Koutsoupias, Eds., vol. 8572. Springer, 2014, pp. 114–125.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi, Complexity and approximation: Combinatorial optimization problems
and their approximability properties. Springer Science & Business Media, 2012.

[4] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov,
V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski et al., “SPAdes: A new
genome assembly algorithm and its applications to single-cell sequencing,” Journal
of Computational Biology, vol. 19, no. 5, pp. 455–477, 2012.

[5] M. Bauer, A. Cox, and G. Rosone, “Lightweight BWT construction for very
large string collections,” in Combinatorial Pattern Matching, ser. LNCS, vol. 6661.
Springer, 2011, pp. 219–231.

[6] ——, “Lightweight algorithms for constructing and inverting the BWT of string
collections,” Theoretical Computer Science, vol. 483, pp. 134–148, 2013.

[7] I. Ben-Bassat and B. Chor, “String graph construction using incremental hashing,”
Bioinformatics, vol. 30, no. 24, pp. 3515–3523, 2014.

[8] S. Beretta, P. Bonizzoni, G. Della Vedova, Y. Pirola, and R. Rizzi, “Modeling
alternative splicing variants from RNA-Seq data with isoform graphs,” J. of Com-
putational Biology, vol. 16, no. 1, pp. 16–40, 2014.

[9] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-
mun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[10] P. Bonizzoni, G. Della Vedova, R. Dondi, and J. Li, “The haplotyping problem:
An overview of computational models and solutions,” Journal of Computer Science
and Technology, vol. 18, no. 6, pp. 675–688, 2003.

123

Bibliography

[11] P. Bonizzoni, G. Della Vedova, Y. Pirola, M. Previtali, and R. Rizzi, “Construct-
ing string graphs in external memory,” in Algorithms in Bioinformatics - 14th
International Workshop, WABI 2014, Wroclaw, Poland, September 8-10, 2014.
Proceedings, ser. Lecture Notes in Computer Science, D. G. Brown and B. Mor-
genstern, Eds., vol. 8701. Springer, 2014, pp. 311–325.

[12] ——, “FSG: fast string graph construction for de novo assembly of reads data,” in
Bioinformatics Research and Applications - 12th International Symposium, ISBRA
2016, Minsk, Belarus, June 5-8, 2016, Proceedings, ser. Lecture Notes in Computer
Science, A. G. Bourgeois, P. Skums, X. Wan, and A. Zelikovsky, Eds., vol. 9683.
Springer, 2016, pp. 27–39.

[13] C. Boucher, A. Bowe, T. Gagie, S. J. Puglisi, and K. Sadakane, “Variable-order
de bruijn graphs,” in 2015 Data Compression Conference, DCC 2015, Snowbird,
UT, USA, April 7-9, 2015. IEEE, 2015, pp. 383–392.

[14] A. Bowe, T. Onodera, K. Sadakane, and T. Shibuya, “Succinct de bruijn graphs,”
in Algorithms in Bioinformatics - 12th International Workshop, WABI 2012,
Ljubljana, Slovenia, September 10-12, 2012. Proceedings, ser. Lecture Notes in
Computer Science, B. J. Raphael and J. Tang, Eds., vol. 7534. Springer, 2012,
pp. 225–235.

[15] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Commun. ACM,
vol. 20, no. 10, pp. 762–772, 1977.

[16] K. R. Bradnam, J. N. Fass, A. Alexandrov, P. Baranay, M. Bechner, I. Birol,
S. Boisvert, J. A. Chapman, G. Chapuis, R. Chikhi et al., “Assemblathon 2: eval-
uating de novo methods of genome assembly in three vertebrate species,” Giga-
Science, vol. 2, no. 1, pp. 1–31, 2013.

[17] D. G. Brown and B. Morgenstern, Eds., Algorithms in Bioinformatics - 14th In-
ternational Workshop, WABI 2014, Wroclaw, Poland, September 8-10, 2014. Pro-
ceedings, ser. Lecture Notes in Computer Science, vol. 8701. Springer, 2014.

[18] P. Burcsi, F. Cicalese, G. Fici, and Z. Lipták, “Algorithms for jumbled pattern
matching in strings,” Int. J. Found. Comput. Sci., vol. 23, no. 2, pp. 357–374,
2012.

[19] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algo-
rithm,” Digital Systems Research Center, Tech. Rep., 1994.

[20] B. Cazaux, G. Sacomoto, and E. Rivals, “Superstring graph: A new approach
for genome assembly,” in Algorithmic Aspects in Information and Management
- 11th International Conference, AAIM 2016, Bergamo, Italy, July 18-20, 2016,

124

Bibliography

Proceedings, ser. Lecture Notes in Computer Science, R. Dondi, G. Fertin, and
G. Mauri, Eds., vol. 9778. Springer, 2016, pp. 39–52.

[21] R. Chikhi and P. Medvedev, “Informed and automated k -mer size selection for
genome assembly,” Bioinformatics, vol. 30, no. 1, pp. 31–37, 2014.

[22] R. Chikhi and G. Rizk, “Space-efficient and exact de bruijn graph representation
based on a bloom filter,” in Algorithms in Bioinformatics - 12th International
Workshop, WABI 2012, Ljubljana, Slovenia, September 10-12, 2012. Proceedings,
ser. Lecture Notes in Computer Science, B. J. Raphael and J. Tang, Eds., vol.
7534. Springer, 2012, pp. 236–248.

[23] ——, “Space-efficient and exact de bruijn graph representation based on a bloom
filter,” Algorithms for Molecular Biology, vol. 8, p. 22, 2013.

[24] T. C. Conway and A. J. Bromage, “Succinct data structures for assembling large
genomes,” Bioinformatics, vol. 27, no. 4, pp. 479–486, 2011.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms (3. ed.). MIT Press, 2009.

[26] I. Corporation, “Intel® threading building blocks,” https://www.
threadingbuildingblocks.org/, accessed: 2017-01-07.

[27] A. Cox, T. Jakobi, G. Rosone, and O. Schulz-Trieglaff, “Comparing DNA sequence
collections by direct comparison of compressed text indexes,” in Algorithms in
Bioinformatics, ser. LNCS. Berlin, Germany: Springer, 2012, vol. 7534, pp.
214–224.

[28] R. D’Amore, U. Z. Ijaz, M. Schirmer, J. G. Kenny, R. Gregory, A. C. Darby,
M. Shakya, M. Podar, C. Quince, and N. Hall, “A comprehensive benchmarking
study of protocols and sequencing platforms for 16s rrna community profiling,”
BMC Genomics, vol. 17, no. 1, p. 55, 2016.

[29] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, Algorithms. McGraw-Hill,
2008.

[30] N. G. De Bruijn, “A combinatorial problem,” Proceedings of the Section of Sci-
ences of the Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam,
vol. 49, no. 7, pp. 758–764, 1946.

[31] R. Diestel, Graph Theory, 3rd ed., ser. Graduate Texts in Mathematics. Springer-
Verlag, Heidelberg, 2005.

[32] D. A. Durai and M. H. Schulz, “Informed kmer selection for de novo transcriptome
assembly,” Bioinformatics, vol. 32, no. 11, pp. 1670–1677, 2016.

125

https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/

Bibliography

[33] D. Earl, K. Bradnam, J. S. John, A. Darling, D. Lin, J. Fass, H. O. K. Yu,
V. Buffalo, D. R. Zerbino, M. Diekhans et al., “Assemblathon 1: A competitive
assessment of de novo short read assembly methods,” Genome research, vol. 21,
no. 12, pp. 2224–2241, 2011.

[34] J. Ebert, “Computing eulerian trails,” Inf. Process. Lett., vol. 28, no. 2, pp. 93–97,
1988.

[35] M. Eisenstein, “Oxford nanopore announcement sets sequencing sector abuzz,”
Nature biotechnology, vol. 30, no. 4, pp. 295–296, 2012.

[36] P. Elias, “Efficient storage and retrieval by content and address of static files,” J.
ACM, vol. 21, no. 2, pp. 246–260, 1974.

[37] S. Even and G. Even, Graph Algorithms, Second Edition. Cambridge University
Press, 2012.

[38] M. Farach, “Optimal suffix tree construction with large alphabets,” in 38th An-
nual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach,
Florida, USA, October 19-22, 1997. IEEE Computer Society, 1997, pp. 137–143.

[39] P. Ferragina, T. Gagie, and G. Manzini, “Lightweight data indexing and compres-
sion in external memory,” Algorithmica, vol. 63, no. 3, pp. 707–730, 2012.

[40] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan, “Compressing and
indexing labeled trees, with applications,” J. ACM, vol. 57, no. 1, 2009.

[41] P. Ferragina and G. Manzini, “Opportunistic data structures with applications,”
in 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-
14 November 2000, Redondo Beach, California, USA. IEEE Computer Society,
2000, pp. 390–398.

[42] ——, “Indexing compressed text,” J. of the ACM, vol. 52, no. 4, pp. 552–581,
2005.

[43] S. Fortune and J. Wyllie, “Parallelism in random access machines,” in Proceedings
of the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978,
San Diego, California, USA, R. J. Lipton, W. A. Burkhard, W. J. Savitch, E. P.
Friedman, and A. V. Aho, Eds. ACM, 1978, pp. 114–118.

[44] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, no. 9, pp. 490–
499, 1960.

[45] T. Gagie, D. Hermelin, G. M. Landau, and O. Weimann, “Binary jumbled pattern
matching on trees and tree-like structures,” Algorithmica, vol. 73, no. 3, pp. 571–
588, 2015.

126

Bibliography

[46] T. Gagie, G. Manzini, and D. Valenzuela, “Compressed spaced suffix arrays,”
in Proceedings of the 2nd International Conference on Algorithms for Big Data
, Palermo, Italy, April 07-09, 2014., ser. CEUR Workshop Proceedings, C. S.
Iliopoulos and A. Langiu, Eds., vol. 1146. CEUR-WS.org, 2014, pp. 37–45.

[47] J. E. Gallo, J. F. Muñoz, E. Misas, J. G. McEwen, and O. K. Clay, “The complex
task of choosing a de novo assembly: Lessons from fungal genomes,” Computational
Biology and Chemistry, vol. 53, pp. 97–107, 2014.

[48] V. Genetics, “Veritas genetics breaks $1,000 whole genome barrier – press release,”
https://www.veritasgenetics.com/documents/VG-PGP-Announcement-Final.
pdf, accessed: 2017-01-02.

[49] R. Giegerich, S. Kurtz, and J. Stoye, “Efficient implementation of lazy suffix trees,”
in Algorithm Engineering, 3rd International Workshop, WAE ’99, London, UK,
July 19-21, 1999, Proceedings, ser. Lecture Notes in Computer Science, J. S. Vitter
and C. D. Zaroliagis, Eds., vol. 1668. Springer, 1999, pp. 30–42.

[50] ——, “Efficient implementation of lazy suffix trees,” Softw., Pract. Exper., vol. 33,
no. 11, pp. 1035–1049, 2003.

[51] T. C. Glenn, “Field guide to next-generation dna sequencers,” Molecular Ecology
Resources, vol. 11, no. 5, pp. 759–769, 2011.

[52] L. M. Goldschlager, “A unified approach to models of synchronous parallel ma-
chines,” in Proceedings of the 10th Annual ACM Symposium on Theory of Comput-
ing, May 1-3, 1978, San Diego, California, USA, R. J. Lipton, W. A. Burkhard,
W. J. Savitch, E. P. Friedman, and A. V. Aho, Eds. ACM, 1978, pp. 89–94.

[53] ——, “A universal interconnection pattern for parallel computers,” J. ACM,
vol. 29, no. 4, pp. 1073–1086, 1982.

[54] G. Gonnella and S. Kurtz, “Readjoiner: a fast and memory efficient string graph-
based sequence assembler,” BMC Bioinformatics, vol. 13, no. 1, p. 82, 2012.

[55] I. J. Good, “Normal recurring decimals,” Journal of the London Mathematical
Society, vol. 1, no. 3, pp. 167–169, 1946.

[56] S. Goodwin, J. D. McPherson, and W. R. McCombie, “Coming of age: ten years of
next-generation sequencing technologies,” Nature Reviews Genetics, vol. 17, no. 6,
pp. 333–351, 2016.

[57] M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit,
X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng et al., “Full-length transcriptome
assembly from rna-seq data without a reference genome,” Nature biotechnology,
vol. 29, no. 7, pp. 644–652, 2011.

127

https://www.veritasgenetics.com/documents/VG-PGP-Announcement-Final.pdf
https://www.veritasgenetics.com/documents/VG-PGP-Announcement-Final.pdf

Bibliography

[58] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-compressed text in-
dexes,” in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA. ACM/SIAM,
2003, pp. 841–850.

[59] R. Grossi and J. S. Vitter, “Compressed suffix arrays and suffix trees with applica-
tions to text indexing and string matching (extended abstract),” in Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23,
2000, Portland, OR, USA, F. F. Yao and E. M. Luks, Eds. ACM, 2000, pp.
397–406.

[60] ——, “Compressed suffix arrays and suffix trees with applications to text indexing
and string matching,” SIAM J. Comput., vol. 35, no. 2, pp. 378–407, 2005.

[61] D. Hernandez, P. François, L. Farinelli, M. Øster̊as, and J. Schrenzel, “De novo
bacterial genome sequencing: millions of very short reads assembled on a desktop
computer,” Genome research, vol. 18, no. 5, pp. 802–809, 2008.

[62] Y. Huang and C. Liao, “Integration of string and de bruijn graphs for genome
assembly,” Bioinformatics, vol. 32, no. 9, pp. 1301–1307, 2016.

[63] M. Huerta, G. Downing, F. Haseltine, B. Seto, and Y. Liu, “Nih working definition
of bioinformatics and computational biology,” US National Institute of Health,
2000.

[64] D. A. Huffman et al., “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[65] R. M. Idury and M. S. Waterman, “A new algorithm for DNA sequence assembly,”
Journal of Computational Biology, vol. 2, no. 2, pp. 291–306, 1995.

[66] N. H. G. R. Institute, “The cos of sequencing a human genome,” https://www.
genome.gov/sequencingcosts/, accessed: 2017-01-02.

[67] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean, “De novo assembly and
genotyping of variants using colored de bruijn graphs,” Nature genetics, vol. 44,
no. 2, pp. 226–232, 2012.

[68] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,”
IBM Journal of Research and Development, vol. 31, no. 2, pp. 249–260, 1987.

[69] J. D. Kececioglu and E. W. Myers, “Combinatiorial algorithms for DNA sequence
assembly,” Algorithmica, vol. 13, no. 1/2, pp. 7–51, 1995.

128

https://www.genome.gov/sequencingcosts/
https://www.genome.gov/sequencingcosts/

Bibliography

[70] D. K. Kim, J. S. Sim, H. Park, and K. Park, “Linear-time construction of suffix
arrays,” in Combinatorial Pattern Matching, 14th Annual Symposium, CPM 2003,
Morelia, Michocán, Mexico, June 25-27, 2003, Proceedings, ser. Lecture Notes in
Computer Science, R. A. Baeza-Yates, E. Chávez, and M. Crochemore, Eds., vol.
2676. Springer, 2003, pp. 186–199.

[71] M. Kircher and J. Kelso, “High-throughput dna sequencing–concepts and limita-
tions,” Bioessays, vol. 32, no. 6, pp. 524–536, 2010.

[72] D. E. Knuth, J. H. M. Jr., and V. R. Pratt, “Fast pattern matching in strings,”
SIAM J. Comput., vol. 6, no. 2, pp. 323–350, 1977.

[73] T. Kociumaka, J. Radoszewski, and W. Rytter, “Efficient indexes for jumbled
pattern matching with constant-sized alphabet,” in Algorithms - ESA 2013 - 21st
Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Pro-
ceedings, ser. Lecture Notes in Computer Science, H. L. Bodlaender and G. F.
Italiano, Eds., vol. 8125. Springer, 2013, pp. 625–636.

[74] V. Lacroix, M. Sammeth, R. Guigo, and A. Bergeron, “Exact transcriptome recon-
struction from short sequence reads,” in Algorithms in Bioinformatics, ser. LNCS,
vol. 5251. Springer Berlin Heidelberg, 2008, pp. 50–63.

[75] B. Lai, R. Ding, Y. Li, L. Duan, and H. Zhu, “A de novo metagenomic assembly
program for shotgun DNA reads,” Bioinformatics, vol. 28, no. 11, pp. 1455–1462,
2012.

[76] H. Y. Lam, M. J. Clark, R. Chen, R. Chen, G. Natsoulis, M. O’Huallachain, F. E.
Dewey, L. Habegger, E. A. Ashley, M. B. Gerstein et al., “Performance comparison
of whole-genome sequencing platforms,” Nature biotechnology, vol. 30, no. 1, pp.
78–82, 2012.

[77] T. Lam, R. Li, A. Tam, S. Wong, E. Wu, and S. Yiu, “High throughput short read
alignment via bi-directional BWT,” in Bioinformatics and Biomedicine (BIBM
’09). Washington, DC, USA: IEEE Computer Society, 2009, pp. 31–36.

[78] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. De-
von, K. Dewar, M. Doyle, W. FitzHugh et al., “Initial sequencing and analysis of
the human genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001.

[79] H. Li, “Exploring single-sample SNP and INDEL calling with whole-genome de
novo assembly,” Bioinformatics, vol. 28, no. 14, pp. 1838–1844, Jul. 2012.

[80] ——, “Fast construction of FM-index for long sequence reads,” Bioinformatics,
vol. 30, no. 22, pp. 3274–3275, 2014.

129

Bibliography

[81] Y. Lin and P. A. Pevzner, “Manifold de bruijn graphs,” in Algorithms in Bioinfor-
matics - 14th International Workshop, WABI 2014, Wroclaw, Poland, September
8-10, 2014. Proceedings, ser. Lecture Notes in Computer Science, D. G. Brown and
B. Morgenstern, Eds., vol. 8701. Springer, 2014, pp. 296–310.

[82] R. J. Lipton, W. A. Burkhard, W. J. Savitch, E. P. Friedman, and A. V. Aho,
Eds., Proceedings of the 10th Annual ACM Symposium on Theory of Computing,
May 1-3, 1978, San Diego, California, USA. ACM, 1978.

[83] L. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, and M. Law, “Compar-
ison of next-generation sequencing systems,” BioMed Research International, vol.
2012, 2012.

[84] Y. Liu, T. Hankeln, and B. Schmidt, “Parallel and space-efficient construction
of burrows-wheeler transform and suffix array for big genome data,” IEEE/ACM
Trans. Comput. Biology Bioinform., vol. 13, no. 3, pp. 592–598, 2016.

[85] N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W.
Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome se-
quencing: an embarrassment of choice, a world of opportunity,” Nature Reviews
Microbiology, vol. 10, no. 9, pp. 599–606, 2012.

[86] R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu
et al., “Soapdenovo2: an empirically improved memory-efficient short-read de novo
assembler,” GigaScience, vol. 1, no. 1, p. 1, 2012.

[87] M.-A. Madoui, S. Engelen, C. Cruaud, C. Belser, L. Bertrand, A. Alberti,
A. Lemainque, P. Wincker, and J.-M. Aury, “Genome assembly using nanopore-
guided long and error-free dna reads,” BMC genomics, vol. 16, no. 1, p. 1, 2015.

[88] U. Manber and E. W. Myers, “Suffix arrays: A new method for on-line string
searches,” in Proceedings of the First Annual ACM-SIAM Symposium on Discrete
Algorithms, ser. SODA ’90. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 1990, pp. 319–327.

[89] G. Manzini, “XBWT tricks,” in String Processing and Information Retrieval -
23rd International Symposium, SPIRE 2016, Beppu, Japan, October 18-20, 2016,
Proceedings, ser. Lecture Notes in Computer Science, S. Inenaga, K. Sadakane,
and T. Sakai, Eds., vol. 9954, 2016, pp. 80–92.

[90] L. Mariot, A. Leporati, A. Dennunzio, and E. Formenti, “Computing the periods
of preimages in surjective cellular automata,” Natural Computing, pp. 1–15, 2016.

[91] E. M. McCreight, “A space-economical suffix tree construction algorithm,” J.
ACM, vol. 23, no. 2, pp. 262–272, 1976.

130

Bibliography

[92] P. Melsted and B. V. Halldórsson, “Kmerstream: streaming algorithms for k -mer
abundance estimation,” Bioinformatics, vol. 30, no. 24, pp. 3541–3547, 2014.

[93] A. S. Mikheyev and M. M. Tin, “A first look at the oxford nanopore minion
sequencer,” Molecular ecology resources, vol. 14, no. 6, pp. 1097–1102, 2014.

[94] G. Moore, “Cramming more components onto integrated circuits,” 1965.

[95] E. W. Myers, “Whole-genome DNA sequencing,” Computing in Science and En-
gineering, vol. 1, no. 3, pp. 33–43, 1999.

[96] ——, “The whole genome assembly of drosophila,” in Proceedings of the Eleventh
Annual ACM-SIAM Symposium on Discrete Algorithms, January 9-11, 2000, San
Francisco, CA, USA., D. B. Shmoys, Ed. ACM/SIAM, 2000, p. 753.

[97] ——, “The fragment assembly string graph,” Bioinformatics, vol. 21, no. suppl. 2,
pp. ii79–ii85, 2005.

[98] ——, “A history of DNA sequence assembly,” it - Information Technology, vol. 58,
no. 3, pp. 126–132, 2016.

[99] E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J. Flanigan,
S. A. Kravitz, C. M. Mobarry, K. H. Reinert, K. A. Remington et al., “A whole-
genome assembly of drosophila,” Science, vol. 287, no. 5461, pp. 2196–2204, 2000.

[100] T. Namiki, T. Hachiya, H. Tanaka, and Y. Sakakibara, “Metavelvet: an extension
of velvet assembler to de novo metagenome assembly from short sequence reads,”
Nucleic acids research, vol. 40, no. 20, pp. e155–e155, 2012.

[101] N. H. G. R. I. National Institutes of Health, “Talking glossary of genetic terms,”
https://www.genome.gov/glossary/, accessed: 2017-01-02.

[102] G. Navarro, “Wavelet trees for all,” J. Discrete Algorithms, vol. 25, pp. 2–20, 2014.

[103] G. Navarro and V. Mäkinen, “Compressed full-text indexes,” ACM Comput. Surv.,
vol. 39, no. 1, Apr. 2007.

[104] G. Navarro and E. Providel, “Fast, small, simple rank/select on bitmaps,” in
Experimental Algorithms - 11th International Symposium, SEA 2012, Bordeaux,
France, June 7-9, 2012. Proceedings, ser. Lecture Notes in Computer Science,
R. Klasing, Ed., vol. 7276. Springer, 2012, pp. 295–306.

[105] L. Nedberbragt, “Developments in high throughput sequencing –
july 2016 edition,” https://flxlexblog.wordpress.com/2016/07/08/
developments-in-high-throughput-sequencing-july-2016-edition/, accessed:
2016-12-21.

131

https://www.genome.gov/glossary/
https://flxlexblog.wordpress.com/2016/07/08/developments-in-high-throughput-sequencing-july-2016-edition/
https://flxlexblog.wordpress.com/2016/07/08/developments-in-high-throughput-sequencing-july-2016-edition/

Bibliography

[106] U. D. of Energy, “Human genome project information archive,” http://www.ornl.
gov/hgmis, accessed: 2017-01-08.

[107] D. Okanohara and K. Sadakane, “Practical entropy-compressed rank/select dictio-
nary,” in Proceedings of the Nine Workshop on Algorithm Engineering and Exper-
iments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM,
2007.

[108] J. Pell, A. Hintze, R. Canino-Koning, A. Howe, J. M. Tiedje, and C. T. Brown,
“Scaling metagenome sequence assembly with probabilistic de bruijn graphs,” Pro-
ceedings of the National Academy of Sciences, vol. 109, no. 33, pp. 13 272–13 277,
2012.

[109] Y. Peng, H. C. M. Leung, S. Yiu, and F. Y. L. Chin, “IDBA - A practical iterative
de bruijn graph de novo assembler,” in Research in Computational Molecular Bi-
ology, 14th Annual International Conference, RECOMB 2010, Lisbon, Portugal,
April 25-28, 2010. Proceedings, ser. Lecture Notes in Computer Science, B. Berger,
Ed., vol. 6044. Springer, 2010, pp. 426–440.

[110] Y. Peng, H. C. Leung, S.-M. Yiu, and F. Chin, “IDBA-UD: a de novo assem-
bler for single-cell and metagenomic sequencing data with highly uneven depth,”
Bioinformatics, vol. 28, no. 11, pp. 1420–1428, 2012.

[111] P. A. Pevzner, H. Tang, and M. S. Waterman, “An eulerian path approach to
dna fragment assembly,” Proceedings of the National Academy of Sciences, vol. 98,
no. 17, pp. 9748–9753, 2001.

[112] A. D. Prjibelski, I. Vasilinetc, A. Bankevich, A. Gurevich, T. Krivosheeva, S. Nurk,
S. Pham, A. Korobeynikov, A. Lapidus, and P. A. Pevzner, “Exspander: a uni-
versal repeat resolver for dna fragment assembly,” Bioinformatics, vol. 30, no. 12,
pp. i293–i301, 2014.

[113] J. Qin, R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh, T. Nielsen,
N. Pons, F. Levenez, T. Yamada et al., “A human gut microbial gene catalogue
established by metagenomic sequencing,” Nature, vol. 464, no. 7285, pp. 59–65,
2010.

[114] B. J. Raphael and J. Tang, Eds., Algorithms in Bioinformatics - 12th International
Workshop, WABI 2012, Ljubljana, Slovenia, September 10-12, 2012. Proceedings,
ser. Lecture Notes in Computer Science, vol. 7534. Springer, 2012.

[115] J. Reinders, Intel threading building blocks - outfitting C++ for multi-core processor
parallelism. O’Reilly, 2007.

132

http://www.ornl.gov/hgmis
http://www.ornl.gov/hgmis

Bibliography

[116] A. Rhoads and K. Au, “Pacbio sequencing and its applications,” Genomics, Pro-
teomics & Bioinformatics, vol. 13, no. 5, pp. 278–289, 2015.

[117] M. Roberts, B. R. Hunt, J. A. Yorke, R. A. Bolanos, and A. L. Delcher, “A
preprocessor for shotgun assembly of large genomes,” Journal of Computational
Biology, vol. 11, no. 4, pp. 734–752, 2004.

[118] G. Robertson, J. Schein, R. Chiu, R. Corbett, M. Field, S. D. Jackman,
K. Mungall, S. Lee, H. M. Okada, J. Q. Qian et al., “De novo assembly and
analysis of rna-seq data,” Nature methods, vol. 7, no. 11, pp. 909–912, 2010.

[119] B. Y. Ryabko, “Data compression by means of a “book stack”,” Problemy
Peredachi Informatsii, vol. 16, no. 4, pp. 16–21, 1980.

[120] K.-J. Räihä and E. Ukkonen, “The shortest common supersequence problem over
binary alphabet is np-complete,” Theoretical Computer Science, vol. 16, no. 2, pp.
187 – 198, 1981.

[121] K. Sadakane, “Compressed text databases with efficient query algorithms based on
the compressed suffix array,” in Algorithms and Computation, 11th International
Conference, ISAAC 2000, Taipei, Taiwan, December 18-20, 2000, Proceedings,
ser. Lecture Notes in Computer Science, D. T. Lee and S. Teng, Eds., vol. 1969.
Springer, 2000, pp. 410–421.

[122] K. Salikhov, G. Sacomoto, and G. Kucherov, “Using cascading bloom filters to
improve the memory usage for de brujin graphs,” in WABI, 2013, pp. 364–376.

[123] L. Salmela and E. Rivals, “Lordec: accurate and efficient long read error correc-
tion,” Bioinformatics, vol. 30, no. 24, pp. 3506–3514, 2014.

[124] M. Salson, T. Lecroq, M. Léonard, and L. Mouchard, “Dynamic extended suffix
arrays,” J. Discrete Algorithms, vol. 8, no. 2, pp. 241–257, 2010.

[125] S. L. Salzberg et al., “GAGE: A critical evaluation of genome assemblies and
assembly algorithms,” Genome research, vol. 22, no. 3, pp. 557–567, 2012.

[126] F. Sanger, S. Nicklen, and A. R. Coulson, “Dna sequencing with chain-terminating
inhibitors,” Proceedings of the National Academy of Sciences, vol. 74, no. 12, pp.
5463–5467, 1977.

[127] K. Sato, Y. Sakakibara et al., “Metavelvet-sl: an extension of the velvet assembler
to a de novo metagenomic assembler utilizing supervised learning,” DNA research,
vol. 22, no. 1, pp. 69–77, 2015.

133

Bibliography

[128] M. H. Schulz, D. Weese, M. Holtgrewe, V. Dimitrova, S. Niu, K. Reinert, and
H. Richard, “Fiona: a parallel and automatic strategy for read error correction,”
Bioinformatics, vol. 30, no. 17, pp. 356–363, 2014.

[129] M. H. Schulz, D. R. Zerbino, M. Vingron, and E. Birney, “Oases: robust de novo
rna-seq assembly across the dynamic range of expression levels,” Bioinformatics,
vol. 28, no. 8, pp. 1086–1092, 2012.

[130] J. Seward, “bzip2 and libbzip2, version 1.0.5 – a program and library for data
compression,” http://bzip.org/1.0.5/bzip2-manual-1.0.5.html, accessed: 2017-01-
06.

[131] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, July 1948.

[132] ——, “A mathematical theory of communication,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 5, no. 1, pp. 3–55, 2001.

[133] F. Shi, “Suffix arrays for multiple strings: A method for on-line multiple string
searches,” in Concurrency and Parallelism, Programming, Networking, and Secu-
rity, ser. LNCS, vol. 1179. Springer Berlin Heidelberg, 1996, pp. 11–22.

[134] J. Simpson and R. Durbin, “Efficient construction of an assembly string graph
using the FM-index,” Bioinformatics, vol. 26, no. 12, pp. i367–i373, 2010.

[135] ——, “Efficient de novo assembly of large genomes using compressed data struc-
tures,” Genome Research, vol. 22, pp. 549–556, 2012.

[136] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and I. Birol,
“Abyss: a parallel assembler for short read sequence data,” Genome research,
vol. 19, no. 6, pp. 1117–1123, 2009.

[137] S. Skiena, The Algorithm Design Manual (2. ed.). Springer, 2008.

[138] K. Sutner, “De bruijn graphs and linear cellular automata,” Complex Systems,
vol. 5, no. 1, pp. 19–30, 1991.

[139] C. Tech Correspondence, “Technical correspondence,” Commun. ACM, vol. 30,
no. 9, pp. 792–796, Sep. 1987.

[140] E. Ukkonen, “On-line construction of suffix trees,” Algorithmica, vol. 14, no. 3,
pp. 249–260, 1995.

[141] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton,
H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt et al., “The sequence of the
human genome,” science, vol. 291, no. 5507, pp. 1304–1351, 2001.

134

http://bzip.org/1.0.5/bzip2-manual-1.0.5.html

Bibliography

[142] P. Weiner, “Linear pattern matching algorithms,” in 14th Annual Symposium on
Switching and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973.
IEEE Computer Society, 1973, pp. 1–11.

[143] Y. Xie, G. Wu, J. Tang, R. Luo, J. Patterson, S. Liu, W. Huang, G. He, S. Gu,
S. Li et al., “Soapdenovo-trans: de novo transcriptome assembly with short rna-seq
reads,” Bioinformatics, vol. 30, no. 12, pp. 1660–1666, 2014.

[144] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read assembly
using de bruijn graphs,” Genome research, vol. 18, no. 5, pp. 821–829, 2008.

[145] A. V. Zimin, G. Marçais, D. Puiu, M. Roberts, S. L. Salzberg, and J. A. Yorke,
“The masurca genome assembler,” Bioinformatics, vol. 29, no. 21, pp. 2669–2677,
2013.

135

	Introduction
	Preliminaries
	Computational complexity
	Strings and Indexing Data Structures
	Bioinformatics and Computational Biology
	DNA and sequencing methods
	Assembly Problem

	Indexing data structures for assembly graphs
	De Bruijn graphs representations
	Fully dynamic succinct de Bruijn graphs
	Static de Bruijn Graphs representation
	Dynamic de Bruijn Graphs representation
	Applications

	Bidirectional succinct de Bruijn graphs
	Fixed- and variable-order BOSS
	Bidirectional BOSS
	Applications

	Building assembly graphs from self-indexes
	Self-index based assembly framework
	Preliminaries

	Lightweight external memory assembly algorithm
	Background
	Definitions

	Methods
	Algorithm Engineering

	Results and discussion
	Conclusions and possible extensions

	Parallel assembly algorithm
	Definitions
	Methods
	Data representation

	Results and discussion
	Conclusions and possible extensions

	Appendix
	Additional tables

	Bibliography

