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Introduction

The main topic of this thesis is discrepancy. We remember that the discrepancy of
a body Ω with respect to the lattice of integer points Zd is defined as

DΩ(t) = |Ω| − card(Zd ∩ (Ω + t))

where |Ω| is the area of Ω.

In Chapter 1 we consider an ellipsoid Ω in Rd with d ≥ 2 and we want to estimate
the Lp norm of the discrepancy{∫ R+1

R

∫
Td
|r−(d−1)/2D(rΩ− x)|pdxdµ(r)

}1/p

where R ≥ 2, r is a dilation and x a traslation of the domain and dµ is a finite Borel
measure.

In Chapter 2 we consider a convex domain Ω in Rd with d ≥ 2 and we want to
estimate the Lp(L2) norm of the discrepancy{∫

Td

[
1

H

∫ R+H

R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµ(r)

]p/2
dx

}1/p

where 0 < H < +∞ and dµ is a finite Borel measure.

In Chapter 3 we consider the discrepancy of a rotated square Ω in the plane with
sides perpendicular to the unit vectors σ = (cos(ϑ), sin(θ)) and σ⊥ = (− sin(ϑ), cos(θ)).
In particular we want to estimate the Ls(Lp) mixed norm{∫

SO(2)

[∫
T2

|D(RσΩ− x)|pdx
]s/p

dµ(ϑ)

}1/s

.

As a corollary we study the Hausdorff dimension of the set of rotations which give
a discrepancy less than |n|β with 0 < β < 1.
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In Chapter 4 we consider a convex set with a point with zero curvature. In
particular we consider a setBγ with ∂Bγ graph of the function y = |x|γ in a neigh-
borhood of the origin, with γ ≥ 2 and we want to understand the role of dilations,
translations and rotations in the estimates of the Lp norm and the Lp(Ls) mixed
norm of the discrepancy of this domain in Rd with d ≥ 2.

Every chapter is indipendent from the others. Therefore the reader will find
repetitions from a chapter to chapter. We hope that this fact will not displease the
reader.



Chapter 1

Lp norms of the lattice point
discrepancy

The discrepancy between the volume and the number of integer points in rΩ− x, a
dilated by a factor r and translated by a vector x of a domain Ω in Rd, is

D (rΩ− x) =
∑
k∈Zd

χrΩ−x(k)− rd |Ω| .

Here χrΩ−x(y) denotes the characteristic function of rΩ−x and |Ω| the measure
of Ω. A classical problem is to estimate the size of D (rΩ− x), as r → +∞. See
e.g. the monograph “Lattice points” of E. Krätzel [27]. We want to estimate the Lp

norm of this discrepancy:{∫
Td

1

H

∫ R+H

R

|D (rΩ− x)|p drdx
}1/p

.

Here is a short non-exhaustive list of previous results on the mean square dis-
crepancy.

As far as we know G.H.Hardy was the first who considered a mean square average
of the discrepancy under dilations. In particular, studing the mean value of the
arithmetical function r(n), the number of integer pairs (h, k) with n = h2 + k2, in
[13] he proved that for every ε > 0,∫ T

0

∣∣∣∣∣∑
n≤t

r(n)− πt

∣∣∣∣∣
2

dt ≤ CT 3/2+ε.

In our notation
∑

n≤t r(n) − πt is nothing but the discrepancy D
(√

tΩ
)
, where Ω

is the disc {|x| < 1} in the plane. In the same paper Hardy also stated that it is

1



2 Chapter 1

not unlikely that the supremum norm has the same size. This is the so called Gauss
circle problem.

H. Cramer in [9] removed the ε in the theorem of Hardy and proved the more
precise asymptotic estimate

lim
T→+∞

T−3/2

∫ T

0

∣∣∣∣∣∑
n≤t

r(n)− πt

∣∣∣∣∣
2

dt =
1

3π2

+∞∑
n=1

r(n)2

n3/2
.

The distribution and higher power moment in the Gauss circle problem and the
related Dirichlet divisor problem have been studied by D.R. Heath-Brown in [16]
and by K. M. Tsang in [38].

W. Nowak in [31] proved that if Ω is a convex set in the plane with smooth
boundary with strictly positive curvature, then for every R ≥ 2,{

1

R

∫ R

0

|D (rΩ)|2 dr
}1/2

≤ CR1/2.

Indeed, P. Bleher proved in [3] a more precise asymptotic estimate:

lim
R→+∞

1

R1/2

{
1

R

∫ R

0

|D (rΩ)|2 dr
}1/2

= C.

M.Huxley in [20] considered the mean value of the discrepancy over short inter-
vals and proved that if Ω is a convex set in the plane with smooth boundary with
strictly positive curvature, then{∫ R+1

R

|D (rΩ)|2 dr
}1/2

≤ CR1/2 log1/2 (R) .

W.Nowak in [32] proved that the above estimate remains valid for an interval up
to a length of order logR, while for H ≤ R but H/ log (R) → +∞ he proved the
more precise asymptotic estimate

lim
R→+∞

1

R1/2

{
1

H

∫ R+H

R

|D (rΩ)|2 dr
}1/2

= C.

A.Iosevich, E.Sawyer, A.Seeger in [23] extended the above results to convex sets
in R3 with smooth boundary with strictly positive Gaussian curvature,{

1

R

∫ R

0

|D (rΩ)|2 dr
}1/2

≤ CR log (R) .
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D.G.Kendall considered the mean square average of the discrepancy under trans-
lations and proved in [26] that if Ω is a convex set in Rd with smooth boundary with
strictly positive Gaussian curvature,{∫

Td
|D (RΩ− x)|2 dx

}1/2

≤ CR(d−1)/2.

The study of the Lp norm of the discrepancy with p 6= 2 is more recent and the
results are less complete.

In [4] the authors studied the Lp norm of the discrepancy for random polyhedra
Ω in Rd,{∫

SO(d)

∫
Td
|D (σRΩ− x)|p dxdσ

}1/p

≤

{
C logd (R) if p = 1,

CR(d−1)(1−1/p) if 1 < p ≤ +∞.

In the same paper it was also proved that the above inequalities can be reversed, at
least for a simplex and for p > 1. In other words, the Lp discrepancy of a polyhedron
grows with p. On the contrary, here we will show that for certain domains with
curvature there exists a range of indices p where the Lp discrepancy is of the same
order as the L2 discrepancy, possibly up to a logarithmic transgression. Indeed,
M.Huxley in [21] proved that if Ω is a convex set in the plane with boundary with
continuous positive curvature, then{∫

T2

|D (RΩ− x)|4 dx
}1/4

≤ CR1/2 log1/4 (R) .

Here we shall give an alternative proof of this result. In [5] the authors extended the
above result to convex sets with smooth boundary with positive Gaussian curvature
in higher dimensions,{∫

Td
|D (RΩ− x)|p dx

}1/p

≤

{
CR(d−1)/2 if p < 2d/ (d− 1) ,

CR(d−1)/2 log(d−1)/2d (R) if p = 2d/ (d− 1) .

The present chapter continues this line of research, presenting the proofs for
some estimates of the Lp norms of the discrepancy for ellipsoids:{∫ R+1

R

∫
Td
|r−(d−1)/2D(rΩ− x)|pdxdr

}1/p

.

With the same techniques one can also study the integral{∫ R+1

R

∫
Td
|r−(d−1)/2D(rΩ− x)|pdxdµ(r)

}1/p

,
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where dµ is a finite Borel measure.

The main results of this chapter are

Theorem 1. (A) If Ω is an ellipse in the plane R2 and if p ≤ 6, then there exists
C > 0 such that for every R ≥ 2,{∫ R+1

R

∫
T2

∣∣r−1/2D(rΩ− x)
∣∣p dxdr}1/p

≤

{
C if p < 6,

C log2/3(R) if p = 6.

(B) If Ω is an ellipsoid in the space Rd with d ≥ 3 and if p ≤ 2(d − 1)/(d − 2),
then there exists C > 0 such that for every R ≥ 2,{∫ R+1

R

∫
Td

∣∣r−(d−1)/2D(rΩ− x)
∣∣p dxdr}1/p

≤


C if p < 2(d− 1)/(d− 2),

C log1/p(R) if p = 2(d− 1)/(d− 2) and d > 3,

C log2/p(R) if p = 2(d− 1)/(d− 2) and d = 3.

1.1 Huxley’s theorem

As a start-up, in this section we give an alternative proof of the result of M. Huxley
[21] on the fourth power mean of the discrepancy of a convex domain in the plane.
We first state a number of easy lemmas:

Lemma 1. The number of integer points in rΩ−x, a translated by a vector x ∈ Rd

and dilated by a factor r > 0 of a domain Ω in the d dimensional Euclidean space
is a periodic function of the translation with Fourier expansion∑

k∈Zd
χrΩ−x(k) =

∑
n∈Zd

rdχ̂Ω (rn) e2πinx.

In particular,

D (rΩ− x) =
∑

n∈Zd\{0}

rdχ̂Ω (rn) e2πinx.

Proof. This is a particular case of the Poisson summation formula.

Lemma 2. If the domain Ω is convex and contains the origin, then there exists
ε > 0 such that if ϕ (x) is a non negative smooth radial function with support in
{|x| ≤ ε} and with integral 1, and if 0 < δ ≤ 1 and r ≥ 1, then

|Ω|
(

(r − δ)d − rd
)

+ (r − δ)d
∑

n∈Zd\{0}

ϕ̂ (δn) χ̂Ω ((r − δ)n) e2πinx
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≤
∑
n∈Zd

χrΩ(n+ x)− |Ω| rd

≤ |Ω|
(

(r + δ)d − rd
)

+ (r + δ)d
∑

n∈Zd\{0}

ϕ̂ (δn) χ̂Ω ((r + δ)n) e2πinx.

Proof. This is a consequence of the inequality

ϕδ ? χ(r−δ)Ω(x) ≤ χrΩ(x) ≤ ϕδ ? χ(r+δ)Ω(x),

where ϕδ(x) = δ−dϕ(δ−1x).

Lemma 3. Assume that Ω is a convex body in Rd with smooth boundary having
everywhere positive Gaussian curvature. Then

χ̂Ω (ξ) ≤ 1 + |ξ|−(d+1)/2.

Proof. This is a classical result. See e.g. [12], [19], [18], [34].

Theorem 2. If Ω is a convex body in the plane R2 with smooth boundary with
everywhere positive Gaussian curvature, and if 0 < p ≤ 4, then there exists C > 0
such that for every R ≥ 2,{∫

T2

|
∑
k∈Z2

χRΩ−x(k)− πR2|pdx

}1/p

≤

{
CR1/2 if p < 4,

CR1/2 log1/4R if p = 4.

Proof. By the Hausdorff-Young inequality, with p ≥ 2 and 1/p+ 1/q = 1,
∫
T2

|R2
∑

n∈Z2\{0}

χ̂Ω(Rn)e2πinx|pdx


1/p

≤ R2

 ∑
n∈Z2\{0}

|χ̂Ω(Rn)|q


1/q

.

Since ∂Ω has strictly positive curvature, |χ̂Ω(ξ)| ≤ C|ξ|−3/2, so that

R2

 ∑
n∈Z2\{0}

|χ̂Ω(Rn)|q


1/q

≤ CR1/2

 ∑
n∈Z2\{0}

|n|−3q/2

 .

The last series converges when 3q/2 > 2, that is p < 4.

If p = 4 it suffices to consider the mollified discrepancy. Let ϕ(x) be a smooth
function. Then it has a Fourier transform with a fast decay at infinity, |ϕ̂(ξ)| ≤
C(1 + |ξ|)−j for every j > 0. Hence, by Parseval equality,

∫
T2

|R2
∑

n∈Z2\{0}

ϕ̂(δn)χ̂Ω(Rn)e2πinx|4dx


1/4
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≤ CR1/2

∑
k∈Z2

(∑
n6=0,k

(1 + δ|n|)−j(1 + δ|k − n|)−j|n|−3/2|k − n|−3/2

)2


1/4

+ CRδ + CR−1/2.

Observe that

(1 + δ|n|)−j(1 + δ|k − n|)−j =
(
1 + δ(|n|+ |k − n|) + δ2|n||k − n|

)−j
≤ (1 + δ(|n|+ |k − n|))−j ≤ (1 + δ|k|)−j .

And also observe that ∑
n6=0,k

|n|−3/2|k − n|−3/2 ≤ C(1 + |k|)−1.

Indeed for k = 0 one has∑
n6=0,k

|n|−3/2|k − n|−3/2 =
∑
n6=0

|n|−3 ≤ C,

while for k 6= 0 the result easily follows from the inequality∑
n 6=0,k

|n|−3/2|k − n|−3/2

≤ 23/2|k|−3/2
∑

0<|n|<|k|/2

|n|−3/2 + 23/2|k|−3/2
∑

0<|k−n|<|k|/2

|k − n|−3/2

+ 23|k|−3
∑

|k|/2≤|n|≤2|k|

1 + 23/2
∑
|n|>2|k|

|n|−3.

Hence

∑
k∈Z2

(∑
n 6=0,k

(1 + δ|n|)−j(1 + δ|k − n|)−j|n|−3/2|k − n|−3/2

)2

≤ C
∑
k∈Z2

(1 + δ|k|)−2j

(∑
n6=0,k

|n|−3/2|k − n|−3/2

)2

≤ C
∑
k∈Z2

(1 + δ|k|)−2j(1 + |k|)−2

≤ C log(1 + 1/δ).

The choice δ = 1/R gives the theorem.
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A natural question is whether p = 4 is really a critical index for the two dimen-
sional discrepancy. In the above theorem, for p < 4 there is no logarithm, but for
p = 4 it appears. We do not know if the logarithm is really necessary. In the next
section another candidate for the critical index (p = 6) will appear. Also we would
like to notice that when Ω is the unit disk in the plane with center in the origin,
Tsang [38] and Heath-Brown [16] showed that for every p ≤ 9{

1

R

∫ R

0

|D(rΩ)|pdr
}1/p

≤ CR1/2.

Observe that in the above theorem of Huxley the average is on the set of translations,
which has dimension two and measure one, while in the last result of Tsang and
Heath-Brown the average is over the set of dilations, which has dimension one and
large measure. We acknowledge that we do not understand if there is a real difference
between averaging over translations and averaging over dilations. In the result that
follows we try to investigate this problem by mixing dilations and translations.

1.2 Lp norms for ellipsoids

Let Σ =
{
x ∈ Rd : |x| ≤ 1

}
be the unit sphere and let Ω = MΣ, with M a non

singular d× d matrix, that is Ω =
{
x ∈ Rd : |M−1x| ≤ 1

}
. Then one has

χ̂Ω(ξ) = |det(M)|χ̂Σ(MT ξ)

= |det(M)||MT ξ|−d/2Jd/2(2π|MT ξ|)

where Jd/2(x) is the Bessel function.

Hence for every non negative integer h, one has

χ̂Ω(ξ) = |det(M)|
h∑
`=0

a`(d)

|MT ξ|(d+4`+1)/2
cos(2π|MT ξ| − (d+ 1)π/4)

+ |det(M)|
h∑
`=0

b`(d)

|MT ξ|(d+4`+3)/2
sin(2π|MT ξ| − (d+ 1)π/4) +O

(
|ξ|−(d+4h+5)/2

)
= |det(M)|

2h+1∑
`=0

c`(d)

|MT ξ|(d+2`+1)/2
e2πi|MT ξ|

+ |det(M)|
2h+1∑
`=0

c`(d)

|MT ξ|(d+2`+1)/2
e−2πi|MT ξ| +O

(
|ξ|−(d+4h+5)/2

)
,

where a`(d), b`(d), c`(d) are coefficients depending on the dimension.
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Let ϕ (x) be a non negative smooth radial function with support in {|x| ≤ ε}
and with integral 1. Let z ∈ C and τ = 0, 1. Let define the tempered distributions:

ΦM
τ (z, r, x) = |det(M)|

∑
n∈Zd\{0}

|MTn|−ze(−1)τ2πi|MTn|re2πinx,

ΦM
τ (δ, z, r, x) = |det(M)|

∑
n∈Zd\{0}

ϕ̂(δn)|MTn|−ze(−1)τ2πi|MTn|re2πinx.

One can notice that if Re(z) > d/2, then the Fourier espansion that defines
ΦM
τ (z, r, x) converges in the topology of L2(Td), while the Fourier expansion that

defines ΦM
τ (δ, z, r, x) converges absolutely and uniformly for every complex z.

Moreover, for every h > (d− 5)/4 there exists C such that for every r > 0

r−(d−1)/2D(rΩ− x) =
2h+1∑
`=0

c`(d)r−`ΦM
0 ((d+ 2`+ 1)/2, r, x)

+
2h+1∑
`=0

c`(d)r−`ΦM
1 ((d+ 2`+ 1)/2, r, x) +Rh(r, x)

where
|Rh(r, x)| ≤ Cr−2h−2.

If r → +∞ and δ → 0+, one has

r−(d−1)/2|D(rΩ− x)|

≤
∑

σ,τ=0,1

2h+1∑
`=0

|ΦM
τ (δ, (d+ 2`+ 1)/2, r + (−1)σδ, x)|+Rh(r, δ)

where
Rh(r, δ) ≤ C

(
r(d−1)/2δ + r−2h−2

)
.

In order to simplify the notation, in the following we shall consider τ = 0 and
M the identity matrix.

Lemma 4. Let
Φ(z, r, x) =

∑
n∈Zd\{0}

|n|−ze2πi|n|re2πinx,

Φ(δ, z, r, x) =
∑

n∈Zd\{0}

ϕ̂(δn)|n|−ze2πi|n|re2πinx.

Also, let N be a positive integer, and ψ(t) a nonnegative smooth function with com-
pact support. Then for every j > 0 there exists C > 0 with the following properties.
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(1) For every −∞ < R < +∞,∫
R

∫
Td
ψ(r −R)|Φ(z, r, x)|2Ndxdr

≤ C

∫
Rd

∫
m,n,···∈Rd
|m|,|n|,···>1
m+n+···=k

|m|−Re(z)|n|−Re(z) . . .

∫
u,v,···∈Rd
|u|,|v|,···>1
u+v+···=k

|u|−Re(z)|v|−Re(z) . . .

× (1 + ||m|+ |n|+ · · · − |u| − |v| − . . . |)−j dudv . . . dmdn . . . dk.

(2) For every −∞ < R < +∞ and 0 < δ < 1/2,∫
R

∫
Td
ψ(r −R)|Φ(δ, z, r, x)|2Ndxdr

≤ C

∫
Rd

(1 + δ|k|)−j
∫

m,n,···∈Rd
|m|,|n|,···>1
m+n+···=k

(1 + δ|m|)−j(1 + δ|n|)−j|m|−Re(z)|n|−Re(z) . . .

×
∫

u,v,···∈Rd
|u|,|v|,···>1
u+v+···=k

(1 + δ|u|)−j(1 + δ|v|)−j|u|−Re(z)|v|−Re(z) . . .

× (1 + ||m|+ |n|+ · · · − |u| − |v| − . . . |)−j dudv . . . dmdn . . . dk.

The inner integrals are over the (N−1)d-dimensional variety of N points with
sum k.

(3) The above final expression are decreasing function of Re(z).

Proof. (1) is the limit of (2) when δ → 0+. It then suffices to prove (2). From the
Fourier expansion of Φ(δ, z, r, x) it follows that for every positive integer N ,

(Φ(δ, z, r, x))N

=
∑
k∈Zd

∑
m,n,···6=0
m+n+···=k

ϕ̂(δm)ϕ̂(δn) . . . |m|−z|n|−z . . . e2πi(|m|+|n|+... )re2πikx.

For a proof, just observe that since ϕ̂(ξ) has a fast decay at infinity, all series involved
are absolutely convergent, and one can freely expand the N -th power and rearrange
the terms. Then, by Parseval equality,∫

Td
|Φ(δ, z, r, x)|2Ndx
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=
∑
k∈Zd
|
∑

m,n,···6=0
m+n+···=k

ϕ̂(δm)ϕ̂(δn) . . . |m|−z|n|−z . . . e(−1)τ2πi(|m|+|n|+... )r|2.

Expanding the square and integrating in the variable r, one obtains∫
R

∫
Td
ψ(r −R)|Φ(δ, z, r, x)|2Ndxdr

=
∑
k∈Zd

∑
m,n,···6=0
m+n+···=k

ϕ̂(δm)ϕ̂(δn) . . . |m|−z|n|−z · · ·
∑

u,v,···6=0
u+v+···=k

ϕ̂(δu)ϕ̂(δv) . . . |u|−z|v|−z . . .

×
∫
R
ψ(r −R)e2πi(|m|+|n|+···−|u|−|v|−... )rdr.

The last integral is the Fourier transform of the function ψ(t),∫
R
ψ(r −R)e2πi(|m|+|n|+···−|u|−|v|−... )rdr

= e2πi(|m|+|n|+···−|u|−|v|−... )R

×
∫
R
ψ(t)e2πi(|m|+|n|+···−|u|−|v|−... )tdt.

The functions ϕ(x) and ψ(r) are smooth, so that |ϕ̂(ξ)| ≤ C
(
1 + |MT ξ|

)−j
and

|ψ̂(τ)| ≤ C (1 + |τ |)−j for every j. Hence the above quantity is dominated up to a
constant by∑

k∈Zd

∑
m,n,···6=0
m+n+···=k

(1 + δ|m|)−j(1 + δ|n|)−j . . . |m|−Re(z)|n|−Re(z) . . .

×
∑

u,v,···6=0
u+v+···=k

(1 + δ|u|)−j(1 + δ|v|)−j . . . |u|−Re(z)|v|−Re(z) . . .

× (1 + ||m|+ |n|+ · · · − |u| − |v| − . . . |)−j .

In this formula there is no cutoff in the variable k. In order to obtain a cutoff in k,
observe that, if m+ n+ · · · = k, then

(1 + δ|m|)−s (1 + δ|n|)−s · · · =
(
1 + δ (|m|+ |n|+ . . . ) + δ2 (|m||n|+ . . . ) + . . .

)−s
≤ (1 + δ (|m|+ |n|+ . . . ))−s ≤ (1 + δ|m+ n+ . . . |)−s = (1 + δ|k|)−s .

In particular, some of the cutoff functions (1+δ|m|)−j(1+δ|n|)−j . . . can be replaced
with (1 + δ|k|)−j. Finally, in the above formulas one can replace the sums with
integrals. Indeed, there exist positive constants A and B such that for every integer
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point m 6= 0 and every x ∈ Q, the cube centered at the origin with sides parallel to
the axes and of length one,

A|m| ≤ |m+ x| ≤ B|m|.

This implies that the function |m+x|−Re(z) is slowly varying in the cubeQ. Moreover,
also the function

(1 + ||m+ x|+ |n|+ · · · − |u| − |v| − . . . |)−j

is slowly varying. Hence, one can replace a sum over m with an integral over the
union of cubes m+Q,∑
k∈Zd

(1 + δ|k|)−j
∑

m,n,···6=0
m+n+···=k

(1 + δ|m|)−j(1 + δ|n|)−j . . . |m|−Re(z)|n|−Re(z) . . .

×
∑

u,v,···6=0
u+v+···=k

(1 + δ|u|)−j(1 + δ|v|)−j . . . |u|−Re(z)|v|−Re(z) . . .

× (1 + ||m|+ |n|+ · · · − |u| − |v| − . . . |)−j

≤ C

∫
Rd

(1 + δ|k|)−j
∫

m,n,···∈Rd
|m|,|n|,···>1/2
m+n+···=k

(1 + δ|m|)−j(1 + δ|n|)−j . . . |m|−Re(z)|n|−Re(z) . . .

×
∫

m,n,···∈Rd
|m|,|n|,···>1/2
m+n+···=k

(1 + δ|u|)−j(1 + δ|v|)−j . . . |u|−Re(z)|v|−Re(z) . . .

× (1 + ||m|+ |n|+ · · · − |u| − |v| − . . . |)−j dudv . . . dmdn . . . dk.

Finally, with a change of variables one can transform the domain of integration
{|x| > 1/2} into {|y| > 1}, and (3) follows immediately. Indeed, if |x| > 1 then
|x|−Re(z) decreases as Re(z) increases.

The integrals in the above lemma look like convolutions. It is well known that
the convolution of two radial functions homogeneous of degree −α and −β is a radial
function homogeneous of degree d− α− β. For later references, we state this result
as a lemma.

Lemma 5. (1) If 0 < α < d and 0 < β < d with α + β > d, then there exists a
constant C such that for every k ∈ Rd \ {0},∫

Rd
|x|−α|k − x|−βdx = C|k|d−α−β.



12 Chapter 1

(2) If α > 0 and β > 0, and α + β > d, then there exists a constant C such that
for every k ∈ Rd, ∫

{|x|>1, |k−x|>1}
|x|−α|k − x|−βdx ≤ C.

Proof. (1) follows from the change of variables k = |k|ϑ, x = |k|y, dx = |k|ddy. (2)
follows from the fact that the integral

∫
{|x|>1, |k−x|>1} |x|

−α|k−x|−βdx is a continuous

function of the variable k vanishing at infinity. In particular this function has a
maximum. Indeed, this maximum is attained at k = 0.

Lemma 6. Let d ≥ 2, −∞ < β < +∞, 0 ≤ ε < 1, and let

E(ε, β, d) =

∫ π

0

(1− 2ε cos(ϑ) + ε2)(1− ε cos(ϑ))β−d−1 sind−2(ϑ)dϑ.

Then, for every −∞ < j < +∞ and −∞ < α < d, there exists a constant C such
that for every −∞ < Y < +∞ and every k ∈ Rd \ {0},∫

Rd
|x|−α|k − x|−α (1 + |Y − |x| − |k − x||)−j dx

≤ C|k|−α
∫ 2|k|

0

(1 + |Y − |k| − τ |)−j τ d−1−αE(|k|/(|k|+ τ), α, d)dτ

+ C

∫ +∞

2|k|
(1 + |Y − |k| − τ |)−j τ d−1−2αE(|k|/(|k|+ τ), 2α, d)dτ.

In particular, if α ≥ 0, then∫
Rd
|x|−α|k − x|−α (1 + |Y − |x| − |k − x||)−j dx

≤ C|k|−α
∫ +∞

0

(1 + |Y − |k| − τ |)−j τ d−1−αE(|k|/(|k|+ τ), α, d)dτ.

Proof. The symmetry between 0 and k gives∫
Rd
|x|−α|k − x|−α (1 + |Y − |x| − |k − x||)−j dx

= 2

∫
{|x|+|k−x|≤3|k|, |x|≤|k−x|}

|x|−α|k − x|−α (1 + |Y − |x| − |k − x||)−j dx

+ 2

∫
{|x|+|k−x|≥3|k|, |x|≤|k−x|}

|x|−α|k − x|−α (1 + |Y − |x| − |k − x||)−j dx

≤ C|k|−α
∫
{|x|+|k−x|≤3|k|}

|x|−α (1 + |Y − |x| − |k − x||)−j dx
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+ C

∫
{|x|+|k−x|≥3|k|}

|x|−2α (1 + |Y − |x| − |k − x||)−j dx.

The integral is invariant under rotations of k, so that one can assume k = (|k|, 0).
Write in spherical coordinates y = (ρ cos (ϑ) , ρ sin (ϑ)σ), with 0 ≤ ρ < +∞, 0 ≤
ϑ ≤ π, σ ∈ Sd−2, the d− 2 dimensional unit sphere

{
σ ∈ Rd−1 : |σ| = 1

}
. In these

spherical coordinates the ellipsoid {|x|+ |k − x| = τ} has equation

ρ =
τ 2 − |k|2

2 (τ − |k| cos (ϑ))
.

In the variables (τ, ϑ, σ), |k| ≤ τ < +∞, 0 ≤ ϑ ≤ π, σ ∈ Sd−2, one has

dρ

dτ
=
τ 2 − 2|k|τ cos (ϑ) + |k|2

2 (τ − |k| cos (ϑ))2 ,

and

dy = ρd−1 sind−2 (ϑ) dρdϑdσ

=

(
τ 2 − |k|2

2 (τ − |k| cos (ϑ))

)d−1
τ 2 − 2|k|τ cos (ϑ) + |k|2

2 (τ − |k| cos (ϑ))2 sind−2 (ϑ) dτdϑdσ.

Hence,∫
{|x|+|k−x|≤3|k|}

(1 + |Y − |x| − |k − x||)−j |x|−αdx

=

∫ 3|k|

|k|

∫ π

0

∫
Sd−2

(1 + |Y − τ |)−j
(

τ 2 − |k|2

2 (τ − |k| cos (ϑ))

)−α
×
(

τ 2 − |k|2

2 (τ − |k| cos (ϑ))

)d−1
τ 2 − 2|k|τ cos (ϑ) + |k|2

2 (τ − |k| cos (ϑ))2 sind−2 (ϑ) dτdϑdσ

= 2α−d|Sd−2|
∫ 3|k|

|k|
(1 + |Y − τ |)−j (τ − |k|)d−1−α (1 + (|k|/τ))d−1−α

×
∫ π

0

(
1− 2 (|k|/τ) cos (ϑ) + (|k|/τ)2) (1− (|k|/τ) cos (ϑ))α−d−1 sind−2 (ϑ) dϑdτ.

The term 1 + (|k|/τ) in the last double integral is bounded between 1 and 2, and it
is negligible. Hence,∫

{|x|+|k−x|≤3|k|}
(1 + |Y − |x| − |k − x||)−j |x|−αdx

≤ C

∫ 2|k|

0

(1 + |Y − |k| − τ |)−j τ d−1−αE (|k|/ (|k|+ τ) , α, d) dτ.
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The integral over {|x|+ |k − x| ≥ 3|k|} is estimated with the same change of vari-
ables.

Lemma 7. If −∞ < β < +∞, d ≥ 2, there exists C such that for every 0 < ε < 1,

E (ε, β, d)

∫ π

0

(
1− 2ε cos (ϑ) + ε2

)
(1− ε cos (ϑ))β−d−1 sind−2 (ϑ) dϑ

≤


C (1− ε)β−(d+1)/2 if β < (d+ 1) /2,

C (1− log (1− ε)) if β = (d+ 1) /2,

C if β > (d+ 1) /2.

Proof. When β > d + 1 there is nothing to prove. Assume that β ≤ d + 1. Again,
when 0 < ε < 1/2, there is nothing to prove. When 1/2 ≤ ε < 1, the integral
over π/2 ≤ ϑ ≤ π is bounded independently of ε, and when 0 ≤ ϑ ≤ π/2 one has
sin (ϑ) ≤ ϑ and 1 − ϑ2/2 ≤ cos (ϑ) ≤ 1 − 4ϑ2/π2. Hence one ends up with the
integral∫ π/2

0

(
1− 2ε

(
1− ϑ2/2

)
+ ε2

) (
1− ε

(
1− 4ϑ2/π2

))β−d−1
ϑd−2dϑ

=

∫ π/2

0

(
(1− ε)2 + εϑ2

) (
1− ε+ 4εϑ2/π2

)β−d−1
ϑd−2dϑ

≤ C (1− ε)β−d+1

∫ 1−ε

0

ϑd−2dϑ+ C (1− ε)β−d−1

∫ √1−ε

1−ε
ϑddϑ+ C

∫ π/2

√
1−ε

ϑ2β−d−2dϑ

≤ C (1− ε)β + C (1− ε)β−(d+1)/2 +


C (1− ε)β−(d+1)/2 if β < (d+ 1) /2,

−C log (1− ε) if β = (d+ 1) /2,

C if β > (d+ 1) /2.

Lemma 8. (1) If j > 0 and −1 < β < j − 1, there exists C such that for every
−∞ < X < +∞,

∫ +∞

0

(1 + |X − τ |)−j τβdτ ≤


C (1 + |X|)β+1−j if 0 < j < 1,

C (1 + |X|)β log (1 + |X|) if j = 1,

C (1 + |X|)β if j > 1.

(2) If β > −1, then for every j there exists C such that for every −∞ < X < +∞,∫ 1

0

(1 + |X − τ |)−j τβ log (τ) dτ ≤ C (1 + |X|)−j .
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(3) If 0 < j < 1, there exists C such that for every 0 ≤ X < +∞ and 2 ≤ Y <
+∞, ∫ Y

0

(1 + |X − τ |)−j τ j−1dτ ≤ C log (Y ) .

(4) If 0 < j < 1 and β < −1, there exists C such that for every 0 ≤ X < +∞ and
2 ≤ Y < +∞, ∫ +∞

Y

(1 + |X − τ |)−j τβdτ ≤ CY 1+β−j.

The proof of the lemma reduces to some elementary and boring computations.
We include details for sake of completeness.

Proof. (1) If X ≤ 0, then∫ +∞

0

(1 + |X − τ |)−j τβdτ ≤ (1 + |X|)−j
∫ 1+|X|

0

τβdτ+

∫ +∞

1+|X|
τβ−jdτ ≤ C (1 + |X|)β+1−j .

If 0 ≤ X ≤ 1, then∫ +∞

0

(1 + |X − τ |)−j τβdτ ≤
∫ 2

0

τβdτ +

∫ +∞

2

τβ−jdτ ≤ C.

If X ≥ 1, then∫ +∞

0

(1 + |X − τ |)−j τβdτ

≤ 2jX−j
∫ X/2

0

τβdτ + max
{

2−β, 2β
}
Xβ

∫ 2X

X/2

(1 + |X − τ |)−j dτ + 2j
∫ +∞

2X

τβ−jdτ

≤


CXβ+1−j if 0 < j < 1,

CXβ log (1 +X) if j = 1,

CXβ if j > 1.

(2) It suffices to observe that there exists C such that for every X,

max
0≤τ≤1

{
(1 + |X − τ |)−j

}
≤ C (1 + |X|)−j .

(3) If Y ≤ 2X, then∫ Y

0

(1 + |X − τ |)−j τ j−1dτ ≤ 2jX−j
∫ Y/2

0

τ j−1dτ+21−jY j−1

∫ 2X

Y/2

(1 + |X − τ |)−j dτ ≤ C.
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If Y ≥ 2X, then∫ Y

0

(1 + |X − τ |)−j τ j−1dτ

≤ 2jX−j
∫ X/2

0

τ j−1dτ + 21−jXj−1

∫ 2X

X/2

(1 + |X − τ |)−j dτ + 2j
∫ Y

2X

τ−1dτ

≤ C + C + C log (Y ) .

(4) If Y ≤ X/2, then∫ +∞

Y

(1 + |X − τ |)−j τβdτ

≤ 2jX−j
∫ X/2

Y

τβdτ + 2βXβ

∫ 2X

X/2

(1 + |X − τ |)−j dτ + 2j
∫ +∞

2X

τβ−jdτ

≤ CX−jY 1+β + CX1+β−j + CX1+β−j ≤ CY 1+β−j.

If X/2 ≤ Y ≤ 2X, then∫ +∞

Y

(1 + |X − τ |)−j τβdτ

≤ Y β

∫ 2X

X/2

(1 + |X − τ |)−j dτ + 2j
∫ +∞

2X

τβ−jdτ ≤ CY 1+β−j.

If Y ≥ 2X, then∫ +∞

Y

(1 + |X − τ |)−j τβdτ ≤ 2jY −j
∫ +∞

Y

τβdτ ≤ CY 1+β−j.

Lemma 9. (1) If Re (z) > d/2, there exists C > 0 such that for every −∞ <
R < +∞, ∫

R
ψ (r −R)

∫
Td
|Φ (z, r, x) |2dxdr ≤ C.

(2) If Re (z) ≥ d/2, there exists C > 0 such that for every −∞ < R < +∞ and
0 < δ < 1/2,∫

R
ψ (r −R)

∫
Td
|Φ (δ, z, r, x) |2dxdr ≤

{
C if Re (z) > d/2,

C log (1/δ) if Re (z) = d/2.
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Proof. (1) is the limit of (2) when δ → 0+. It then suffices to prove (2). This follows
immediately by Plancherel formula applied to the functionΦ (δ, z, r, x),∫

R

∫
Td
|Φ (δ, z, r, x) |2dxdr

=

∫
R
ψ (r −R)

∑
m∈Zd,m 6=0

|ϕ̂ (δm) |2|m|−2Re(z)dr

=

∫
R
ψ (r) dr

∑
m∈Zd,m 6=0

|ϕ̂ (δm) |2|m|−2Re(z)

≤ C
∑

m∈Zd,m 6=0

(1 + δ|m|)−j |m|−2Re(z).

The following lemma is an estimate of the L (p) norms of the functions Φ (z, r, x)
and Φ (δ, z, r, x) when p = 4 and the space dimension d ≥ 3. In dimension d = 2 the
relevant exponent is p = 6, and this will be considered later.

Lemma 10. (1) If Re (z) > (3d− 1) /4, there exists C > 0 such that for every
−∞ < R < +∞, ∫

R
ψ (r −R)

∫
Td
|Φ (δ, z, r, x) |4dxdr ≤ C.

(2) If Re (z) ≥ (3d− 1) /4, there exists C > 0 such that for every −∞ < R < +∞
and 0 < δ < 1/2,∫

R
ψ (r −R)

∫
Td
|Φ (δ, z, r, x) |4dxdr

≤


C if Re (z) > (3d− 1) /4,

C log (1/δ) if Re (z) = (3d− 1) /4, and if d > 3,

C log2 (1/δ) if Re (z) = (3d− 1) /4, and if d = 3.

Proof. (1) is the limit of (2) when δ → 0+. It then suffices to prove (2). Set
α = Re (z). By the above Lemma 4 with N = 2, it suffices to estimate∫

Rd
(1 + δ|k|)−j

∫
|m|,|k−m|>1

|m|−α|k −m|−α

×
∫
|u|,|k−u|>1

|u|−α|k − u|−α (1 + ||m|+ |k −m| − |u| − |k − u||)−j dudmdk.
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Notice that we have canceled all the cutoff functions in the variables m, k −m, u,
k − u. By Lemma 5 the integral over the set {|k| ≤ 2} is bounded by∫

{|k|≤2}

∫
|m|,|k−m|>1

|m|−α|k −m|−α
∫
|u|,|k−u|>1

|u|−α|k − u|−αdudmdk

=

∫
|k|≤2

(∫
|m|,|k−m|>1

|m|−α|k −m|−αdm
)2

dk ≤ C.

Let us now consider the integral over the set {|k| ≥ 2},∫
|k|≥2

(1 + δ|k|)−j
∫
|m|,|k−m|>1

|m|−α|k −m|−α

×
∫
|u|,|k−u|>1

|u|−α|k − u|−α (1 + ||m|+ |k −m| − |u| − |k − u||)−j dudmdk.

Assume first d ≥ 4. Since this integral is decreasing in α, one can assume without
loss of generality that (3d− 1) /4 ≤ α < d− 1. By Lemma 6, the inner integral∫

|u|,|k−u|>1

|u|−α|k − u|−α (1 + ||m|+ |k −m| − |u| − |k − u||)−j du

is bounded by

C|k|−α
∫ +∞

0

(1 + ||m|+ |k −m| − |k| − τ |)−j τ d−1−αE (|k|/ (|k|+ τ) , α, d) dτ.

By Lemma 7 and Lemma 8, this is bounded by

C|k|−α
∫ +∞

0

(1 + ||m|+ |k −m| − |k| − τ |)−j τ d−1−αdτ

≤ C|k|−α (1 + |m|+ |k −m| − |k|)d−1−α .

Thus, the goal estimate becomes∫
|k|>2

(1 + δ|k|)−j |k|−α
∫
Rd
|m|−α|k −m|−α (1 + |m|+ |k −m| − |k|)d−1−α dmdk

≤ C

∫
|k|>2

(1 + δ|k|)−j |k|−α
∫
|k|≤|m|+|k−m|≤3|k|

|m|−α|k −m|−α|k|d−1−αdmdk

+ C

∫
|k|>2

(1 + δ|k|)−j |k|−α
∫

3|k|≤|m|+|k−m|
|m|−α|k −m|−α||m|+ |k −m| − |k||d−1−αdmdk.

The change of variables m = |k|n, with w = k/|k|, in the inner integrals gives∫
|k|>2

(1 + δ|k|)−j |k|2d−1−4α

∫
1≤|n|+|w−n|≤3

|n|−α|w − n|−αdndk
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+

∫
|k|>2

(1 + δ|k|)−j |k|2d−1−4α

∫
3≤|n|+|w−n|

|n|−α|w − n|−α||n|+ |w − n| − 1|d−1−αdndk

≤ C

∫
|k|>2

(1 + δ|k|)−j |k|2d−1−4αdk

≤

{
C if α > (3d− 1) /4,

C log (2/δ) if α = (3d− 1) /4.

Assume now d = 3 and α = (3d− 1) /4 = 2. By Lemma 6, the integral∫
|u|,|k−u|>1

|u|−2|k − u|−2 (1 + ||m|+ |k −m| − |u| − |k − u||)−j du

is bounded by

C|k|−2

∫ +∞

0

(1 + ||m|+ |k −m| − |k| − τ |)−j E (|k|/ (|k|+ τ) , 2, 3) dτ.

By Lemma 7 and Lemma 8 this is bounded by

C|k|−2

∫ +∞

0

(1 + ||m|+ |k −m| − |k| − τ |)−j (1 + log (1 + |k|/τ)) dτ

≤ C|k|−2 (1 + log (1 + |k|))
∫ +∞

0

(1 + ||m|+ |k −m| − |k| − τ |)−j dτ

− C|k|−2

∫ 1

0

(1 + ||m|+ |k −m| − |k| − τ |)−j log (τ) dτ

≤ C|k|−2 (1 + log (1 + |k|)) .

We used the inequality

1 + log (1 + |k|/τ) ≤ 1 + log (1 + |k|) + log (1 + 1/τ) .

The goal estimate becomes∫
|k|>2

(1 + δ|k|)−j |k|−2 log (|k|)
∫
R3

|m|−2|k −m|−2dmdk

≤ C

∫
|k|>2

(1 + δ|k|)−j |k|−3 log (|k|) dk

≤ C log2 (1/δ) .

Finally, assume d = 3 and (3d− 1) /4 = 2 < α < 3. By Lemma 6, the integral∫
|u|,|k−u|>1

|u|−α|k − u|−α (1 + ||m|+ |k −m| − |u| − |k − u||)−j du
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is bounded by

C|k|−α
∫ +∞

0

(1 + ||m|+ |k −m| − |k| − τ |)−j τ 2−αE (|k|/ (|k + |τ) , α, 3) dτ.

By Lemma 7 and Lemma 8 this is bounded by

C|k|−α
∫ +∞

0

(1 + ||m|+ |k −m| − |k| − τ |)−j τ 2−αdτ

≤ C|k|−α (1 + ||m|+ |k −m| − |k||)2−α .

Thus, the goal estimate becomes∫
|k|>2

(1 + δ|k|)−j |k|−α
∫
Rd

|m|−α|k −m|−α (1 + ||m|+ |k −m| − |k||)2−α dmdk.

Again by Lemma 6 and Lemma 7∫
Rd
|m|−α|k −m|−α (1 + ||m|+ |k −m| − |k||)2−α dm

≤ C|k|−α
∫ 2|k|

0

(1 + τ)2−α τ 2−αE (|k|/ (|k|+ τ) , α, 3) dτ

+ C

∫ +∞

2|k|
(1 + τ)2−α τ 2−2αE (|k|/ (|k|+ τ) , 2α, 3) dτ

≤ C|k|−α
∫ 2|k|

0

(1 + τ)2−α τ 2−αdτ + C

∫ +∞

2|k|
(1 + τ)2−α τ 2−2αdτ

≤ C|k|5−3α.

Finally, since α > 2, ∫
|k|>2

(1 + δ|k|)−j |k|5−4αdk ≤ C.

In the following lemma the space dimension is d = 2.

Lemma 11. (1) If Re (z) > 3/2, there exists C > 0 such that for every −∞ <
R < +∞, ∫

R
ψ (r −R)

∫
T2

|Φ (z, r, x) |6dxdr ≤ C.
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(2) If Re (z) ≥ 3/2, there exists C > 0 such that for every −∞ < R < +∞ and
0 < δ < 1/2,∫

R
ψ (r −R)

∫
T2

|Φτ (δ, z, r, x) |6dxdr ≤

{
C if Re (z) > 3/2,

C log4 (1/δ) if Re (z) = 3/2.

Proof. (1) is the limit of (2) when δ → 0+. It then suffices to prove (2). Set
α = Re (z). By the Lemma 4 with N = 3, it suffices to estimate∫

R2

(1 + δ|k|)−j

×
∫ ∫

{|m|,|n|,|k−m−n|>1}

(1 + δ|m|)−j (1 + δ|n|)−j (1 + δ|k −m− n|)−j |m|−α|n|α|k −m− n|−α

×
∫ ∫

{|u|,|v|,|k−u−v|>1}

(1 + δ|u|)−j (1 + δ|v|)−j (1 + δ|k − u− v|)−j |u|−α|v|−α|k − u− v|−α

× (1 + ||m|+ |n|+ |k −m− n| − |u| − |v| − |k − u− v||)−j dudvdmdndk.

The above expression is decreasing in α, so one can assume 3/2 ≤ α < 5/3. Split
R2 as {|k| ≤ 2} ∪ {|k| ≥ 2}. Disregarding the cutoff functions in the variables k, m,
n, k −m− n, u, v, k − u− v, the integral over the disc {|k| ≤ 2} is bounded by∫

{|k|≤2}

(∫
R2

|m|−α
∫
R2

|n|−α|k −m− n|−αdmdn
)2

dk

= C

∫
{|k|≤2}

(∫
R2

|m|−α|k −m|2−2αdm

)2

dk

= C

∫
{|k|≤2}

|k|8−6αdk ≤ C.

Consider now the case {|k| ≥ 2}, and assume first α > 3/2. Disregarding all cutoff
functions, an application of Lemma 6, Lemma 7, Lemma8, gives∫

R2

|v|−α|k − u− v|−α (1 + ||m|+ |n|+ |k −m− n| − |u| − |v| − |k − u− v||)−j dv

≤ C|k − u|−α
∫ +∞

0

(1 + ||m|+ |n|+ |k −m− n| − |u| − |k − u| − τ |)−j τ 1−α

× E (|k − u|/ (|k − u|+ τ) , α, 2) dτ

≤ C|k − u|−α
∫ +∞

0

(1 + ||m|+ |n|+ |k −m− n| − |u| − |k − u| − τ |)−j τ 1−αdτ
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≤ C|k − u|−α (1 + ||m|+ |n|+ |k −m− n| − |u| − |k − u||)1−α .

Hence, again by Lemma 6, Lemma 7, Lemma 8,∫
R2

|u|−α
∫
R2

|v|−α|k − u− v|−α

× (1 + ||m|+ |n|+ |k −m− n| − |u| − |v| − |k − u− v||)−j dvdu

≤ C

∫
R2

|u|−α|k − u|−α (1 + ||m|+ |n|+ |k −m− n| − |u| − |k − u||)1−α du

≤ C|k|−α
∫ +∞

0

(1 + ||m|+ |n|+ |k −m− n| − |k| − τ |)1−α τ 1−αE (|k|/ (|k|+ τ) , α, 2) dτ

≤ C|k|−α
∫ +∞

0

(1 + ||m|+ |n|+ |k −m− n| − |k| − τ |)1−α τ 1−αdτ

≤ C|k|−α (1 + ||m|+ |n|+ |k −m− n| − |k||)3−2α

≤ C|k|−α.

Moreover,∫
R2

|m|−α
∫
R2

|n|−α|k −m− n|−αdmdn = C

∫
R2

|m|−α|k −m|2−2αdm = C|k|4−3α.

Finally, the integral over {|k| ≥ 2} gives∫
|k|≥2

|k|4−4αdk ≤ C.

Now assume α = 3/2. Again one can delete the cutoff functions in v and k− u− v.
An application of Lemma 6, Lemma 7, Lemma 8, gives∫

R2

|v|−3/2|k − u− v|−3/2 (1 + ||m|+ |n|+ |k −m− n| − |u| − |v| − |k − u− v||)−j dv

≤ C|k − u|−3/2

∫ +∞

0

(1 + ||m|+ |n|+ |k −m− n| − |u| − |k − u| − τ |)−j τ−1/2

× E (|k − u|/ (|k − u|+ τ) , 3/2, 2) dτ

≤ C|k − u|−3/2

∫ +∞

0

(1 + ||m|+ |n|+ |k −m− n| − |u| − |k − u| − τ |)−j τ−1/2

× (1 + log (1 + |k − u|/τ)) dτ

≤ C|k − u|−3/2 (1 + log (1 + |k − u|))

×
∫ +∞

0

(1 + ||m|+ |n|+ |k −m− n| − |u| − |k − u| − τ |)−j τ−1/2dτ
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− C|k − u|−3/2

∫ 1

0

(1 + ||m|+ |n|+ |k −m− n| − |u| − |k − u| − τ |)−j τ−1/2 log (τ) dτ

≤ C|k − u|−3/2 (1 + log (1 + |k − u|)) (1 + ||m|+ |n|+ |k −m− n| − |u| − |k − u||)−1/2 .

Observe that

(1 + δ|k|)−ε (1 + δ|u|)−ε log (1 + |k − u|)
≤ (1 + δ|k|)−ε (1 + δ|u|)−ε (log (1 + |k|) + log (1 + |u|))
≤ (1 + δ|k|)−ε (log (1 + δ|k|) + log (1 + 1/δ)) + (1 + δ|u|)−ε (log (1 + δ|u|) + log (1 + 1/δ))

≤ 2

(
sup
t≥0

{
(1 + t)−ε log (1 + t)

}
+ log (1 + 1/δ)

)
.

Roughly speaking, this inequality allows to replace a variable log (1 + |x− y|) with
a constant log (1 + 1/δ). In particular, if 0 < δ < 1/2,

(1 + δ|k|)−ε (1 + δ|u|)−ε (1 + log (1 + |k − u|)) ≤ C log (1/δ) .

By this inequality, and again by Lemma 6, Lemma 7, Lemma 8,∫
R2

(1 + δ|k|)−ε (1 + δ|u|)−ε |u|−3/2

×
∫
R2

|v|−3/2|k − u− v|−3/2 (1 + ||m|+ |n|+ |k −m− n| − |u| − |v| − |k − u− v||)−j dvdu

≤ C log (1/δ)

∫
R2

|u|−3/2|k − u|−3/2 (1 + ||m|+ |n|+ |k −m− n| − |u| − |k − u||)−1/2 du

≤ C log (1/δ) |k|−3/2

∫ 2|k|

0

(1 + ||m|+ |n|+ |k −m− n| − |k| − τ |)−1/2 τ−1/2

× E (|k|/ (|k|+ τ) , 3/2, 2) dτ

+ C log (1/δ)

∫ +∞

2|k|
(1 + ||m|+ |n|+ |k −m− n| − |k| − τ |)−1/2 τ−2E (|k|/ (|k|+ τ) , 3, 2) dτ

≤ C log (1/δ) |k|−3/2

∫ 2|k|

0

(1 + ||m|+ |n|+ |k −m− n| − |k| − τ |)−1/2 τ−1/2

× (1 + log (1 + |k|/τ)) dτ

+ C log (1/δ)

∫ +∞

2|k|
(1 + ||m|+ |n|+ |k −m− n| − |k| − τ |)−1/2 τ−2dτ

≤ C log (1/δ) |k|−3/2 log (|k|)
∫ 2|k|

0

(1 + ||m|+ |n|+ |k −m− n| − |k| − τ |)−1/2 τ−1/2dτ

− C log (1/δ) |k|−3/2

∫ 1

0

(1 + ||m|+ |n|+ |k −m− n| − |k| − τ |)−1/2 τ−1/2 log (τ) dτ
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+ C log (1/δ)

∫ +∞

2|k|
(1 + ||m|+ |n|+ |k −m− n| − |k| − τ |)−1/2 τ−2dτ

≤ C log (1/δ) |k|−3/2 log2 (|k|) + C log (1/δ) |k|−3/2 + C log (1/δ) |k|−3/2

≤ C log (1/δ) |k|−3/2 log2 (|k|) .

Moreover,∫
R2

|m|−3/2

∫
R2

|n|−3/2|k−m− n|−3/2dmdn = C

∫
R2

|m|−3/2|k−m|−1dm = C|k|−1/2.

Finally, the integral over {|k| ≥ 2} gives

log (1/δ)

∫
|k|≥2

(1 + δ|k|)−j |k|−2 log2 (|k|) dk ≤ C log4 (1/δ) .

Lemma 12. The notation is as in the previous lemmas.

(1) Let d = 2, Re (z) ≥ 3/2, and p < 6. Then there exists a constant C such that
for every −∞ < R < +∞,{∫

R
ψ (r −R)

∫
T2

|Φ (z, r, x) |pdxdr
}1/p

≤ C.

(2) Let d = 2, Re (z) ≥ 3/2, and p ≤ 6. Then there exists a constant C such that
for every −∞ < R < +∞,{∫

R
ψ (r −R)

∫
T2

|Φ (δ, z, r, x) |pdxdr
}1/p

≤

{
C if p < 6,

C log2/3 (1/δ) if p = 6.

(3) Let d ≥ 3, Re (z) ≥ (d+ 1) /2, and p < 2 (d− 1) / (d− 2). Then there exists
a constant C such that for every −∞ < R < +∞,{∫

R
ψ (r −R)

∫
Td
|Φ (δ, z, r, x) |pdxdr

}1/p

≤ C.

(4) Let d ≥ 3, Re (z) ≥ (d+ 1) /2, and p ≤ 2 (d− 1) / (d− 2). Then there exists
a constant C such that for every −∞ < R < +∞ and 0 < δ < 1/2,{∫

R
ψ (r −R)

∫
Td
|Φ (δ, z, r, x) |pdxdr

}1/p

≤


C if p < 2 (d− 1) / (d− 2) ,

C log2/p (1/δ) if p = 2 (d− 1) / (d− 2) and d = 3,

C log1/p (1/δ) if p = 2 (d− 1) / (d− 2) and d > 3.
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Proof. Assume that z = (d+ 1) /2. The cases Re (z) ≥ (d+ 1) /2 is similar. The
case d = 2 and p = 6 is contained in Lemma 4, and the case d = 3 and p = 4
is contained in Lemma 10. The other cases follow from these lemmas, via com-
plex interpolation. For the definition of the complex interpolation method and the
complex interpolation of L (p) spaces, see for example Chapter 4 and Chapter 5 of
Bergh and Lofstrom. Here we recall the relevant result: Let X be a measure space,
1 ≤ a < b ≤ +∞, −∞ < A < B < +∞, and let Φ (z) be a function with values in
La (X) +Lb (X), continuous and bounded on the closed strip {A ≤ Re (z) ≤ B} and
analytic on the open strip {A < Re (z) < B}. Assume that there exist constants H
and K such that for every −∞ < t < +∞,{

‖Φ (A+ it)‖La(X) ≤ H,

‖Φ (B + it)‖La(X) ≤ K.

If 1/p = (1− ϑ) /a+ ϑ/b, with 0 < ϑ < 1, then

‖Φ ((1− ϑ)A+ ϑB)‖Lp(X) ≤ H1−ϑKϑ.

In (4) the analytic function is Φ (δ, z, r, x), the measure space is R× Td with measure
ψ (r −R) drdx, a = 2, b = 4, A = d/2 + ε, B = (3d− 1) /4 + ε, with ε ≥ 0. Set

d+ 1

2
= (1− ϑ)A+ ϑB.

This gives

ϑ =
2− 4ε

d− 1
,

and
1

p
=

(1− ϑ)

a
+
ϑ

b
=
d− 2 + 2ε

2d− 2
.

When ε > 0 and p < (2d− 2) / (d− 2),{∫
R
ψ (r −R)

∫
Td
|Φ (δ, (d+ 1) /2, r, x) |pdxdr

}1/p

≤ C.

When ε = 0 and p = (2d− 2) / (d− 2) and d > 3,{∫
R
ψ (r −R)

∫
Td
|Φ (δ, (d+ 1) /2, r, x) |pdxdr

}1/p

≤ C log1/p (1/δ) .

This gives (4). The proof of (3) is similar. And also the proof of (1) and (2) is
similar, and it follows by complex interpolation with a = 2, b = 6,A = 1 + ε,
B = 3/2 + ε, with ε ≥ 0.
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Proof. (of the Theorem 1) One has{∫
R
ψ (r −R)

∫
Td
|r−

d−1
2 D (rΩ− x) |pdxdr

}1/p

≤
∑

σ,τ=0,1

h∑
`=0

|b` (d) |
{∫

R
ψ (r −R)

∫
Td
r−`p|ΦM

τ (δ, (d+ 2`+ 1) /2, r + (−1)σ δ, x) |pdxdr
}1/p

+

{∫
R
ψ (r −R) |r−(d−1)/2Rh (r, δ) |pdr

}1/p

.

If h ≥ (d− 3) /2 and δ = R−(d−1)/2 the last term is bounded and, with this choice
of δ, each term in the double sum is estimated by the previous lemma.
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Mixed Lp(L2) norms of the lattice
point discrepancy

As we have seen in the previous chapter, the discrepancy between the volume and
the number of integer points in rΩ− x, a dilated by a factor r and translated by a
vector x of a domain Ω in Rd, is

D (rΩ− x) =
∑
k∈Zd

χrΩ−x(k)− rd |Ω| .

Here we want to estimate the mixed norm Lp(L2) of the discrepancy:{∫
Td

[∫
R
|D (rΩ− x)|2 dµ(r)

]p/2
dx

}1/p

.

First some notation. If dµ(r) is a finite Borel measure on the line−∞ < r < +∞,
and if 0 < H < +∞ and −∞ < R < +∞, the dilated and translated measure
dµH,R (r) is defined by

µH,R {Ω} = µ
{
H−1 (Ω−R)

}
.

Alternatively, by duality with continuous bounded functions,∫
R
f (r) dµH,R (r) =

∫
R
f (R +Hr) dµ (r) .

With this definition, the Fourier transform of dµ (r) and dµH,R (r) are related by
the equation

µ̂H,R (ζ) =

∫
R
e−2πiζrdµH,R (r)

27
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=

∫
R
e−2πiζ(R+Hr)dµ (r) = e−2πiRζµ̂ (Hζ) .

Recall that the Fourier dimension of a measure is the supremum of all σ such that
there exists C such that |µ̂ (ζ)| ≤ C |ζ|−σ/2 (see 4.4 in [11]). Since the L2 growth of
the discrepancy D (rΩ− x) is of the order of r(d−1)/2, we call r−(d−1)/2D (rΩ− x) the
normalized discrepancy. Our main result (Theorem 3) can be seen as an estimate of
the Fourier dimension of the set where this normalized discrepancy may be large.

The main results of this chapter are the following.

Theorem 3. Assume that dµ (r) is a Borel probability measure on R, with support
in ε < r < δ, with δ > ε > 0, and assume that the Fourier transform of dµ (r) has
the decay

|µ̂ (ζ)| ≤ B (1 + |ζ|)−β ,

for some β ≥ 0 and B > 0. Assume that Ω is a convex set in Rd, with a smooth
boundary with strictly positive Gaussian curvature. Finally assume one of the fol-
lowing rows: 

d = 2, 0 ≤ β < 1, A = 4
1−β , α = 1+β

4
,

d = 2, β = 1, A = +∞, α = 1,
d = 2, β > 1, A = +∞, α = 1/2,
d = 3 0 ≤ β ≤ 1/2, A = 3−2β

1−β , α = 1−β
3−2β

,

d = 3 1/2 ≤ β < 1, A = 6
2−β , α = 1+β

6
,

d = 3 β = 1, A = 6, α = 5/6,
d = 3 β > 1 A = 6, α = 1/3,
d ≥ 4, 0 ≤ β < 1, A = 2d−4β

d−1−2β
, α = d−1−2β

2d−4β
,

d ≥ 4, β = 1, A = 2d−4
d−3

, α = d−1
2d−4

,

d ≥ 4, β > 1, A = 2d−4
d−3

, α = d−3
2d−4

.

Then the following hold:

(1) If p < A, then there exists C such that for every H,R ≥ 1,{∫
Td

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r)

]p/2
dx

}1/p

≤ C

(
1

p
− 1

A

)−α
.

(2) If p = A, then there exists C such that for every H,R ≥ 1,{∫
Td

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r)

]p/2
dx

}1/p

≤ C logα (1 +R) .
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(3) If β > 0 and p < A, the sequence of functions∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r)

has a limit G (x) in the norm of Lp/2
(
Td
)

as H → +∞. In particular,

lim
H→+∞

{∫
Td

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r)

]p/2
dx

}1/p

=

{∫
Td
|G (x)|p/2 dx

}1/p

.

The growth of the norm of the discrepancy in this theorem allows to extrapolate
some Orlicz type estimates at the critical indexes p = A.

Corollary 1. (1) Assume one of the following rows:{
d = 2, β = 1, α = 2, γ < 2/e,
d = 2, β > 1, α = 1, γ < 1/e.

Then there exists C > 0 such that for every H,R ≥ 1,∫
T2

exp

(
γ

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r)

]1/α
)
dx ≤ C.

(2) Assume one of the following rows:{
d = 2, 0 ≤ β < 1, p = 4/ (1− β) , γ > 2/ (1− β) ,

d = 3, 0 ≤ β ≤ 1/2, p = (3− 2β) / (1− β) , γ > 2,
d = 3, 1/2 ≤ β < 1, p = 6/ (2− β) , γ > 3/ (2− β) ,
d = 3, β = 1, p = 6, γ > 6,
d = 3, β > 1, p = 6, γ > 3,

d ≥ 4, 0 ≤ β < 1, p = (2d− 4β) / (d− 1− 2β) , γ > 2,
d ≥ 4, β = 1, p = (2d− 4) / (d− 3) , γ > (2d− 4) / (d− 3) ,
d ≥ 4, β > 1, p = (2d− 4) / (d− 3) , γ > 2.

Then there exists C such that for every H,R ≥ 1,∫
Td

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r)

]p/2
× log−γ

(
2 +

∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r)

)
dx ≤ C.
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For “generic” convex sets, the theorem can be slightly strengthened.

Corollary 2. If the support function of the convex set g (x) = supy∈Ω {x · y} has the
property that there exists C such that for every m in Zd the equation g (m) = g (n)
has at most C solutions n in Zd, then the limit function G (x) in the Theorem 3 (3)
is bounded and continuous in Td. If the support function is injective when restricted
to the integers, that is g (m) 6= g (n) for every m,n ∈ Zd with m 6= n, then this limit
function G (x) is constant.

The family of compact convex sets endowed with the Hausdorff metric is a com-
plete metric space. We will see that the collection of convex sets with injective
support functions is an intersection of a countable family of open dense sets. In
particular, it can be shown that the above corollary applies to almost every ellipsoid
{|M (x− p)| ≤ 1}, but not to the ball {|x| ≤ 1}.

The results of G.H.Hardy in [13], E.Landau in [28] and A.E. Ingham in [22]
imply that in Theorem 3, when d = 2 and β > 1 the assumption p < +∞ cannot be
replaced by the equality p = +∞. In the other cases we do not know if the indexes
in the above theorem and corollaries are best possible. Anyhow, the following holds.

Theorem 4. (1) Assume that Σ = {|x| ≤ 1} is a ball in Rd with d ≥ 4, and that
dµ (r) is a Borel probability measure on R. Then for every p > 2d/ (d− 3),

lim sup
H,R→+∞

{∫
Td

[∫
R

∣∣r−(d−1)/2D (rΣ− x)
∣∣2 dµH,R (r)

]p/2
dx

}1/p

= +∞.

(2) If in addition the Fourier transform of dµ (r) vanishes at infinity, that is

lim
|ζ|→+∞

{|µ̂ (ζ)|} = 0,

the supremum limit can be replaced by a limit,

lim
H,R→+∞

{∫
Td

[∫
R

∣∣r−(d−1)/2D (rΣ− x)
∣∣2 dµH,R (r)

]p/2
dx

}1/p

= +∞.

The proof of Theorem 4 reduces essentially to an estimate of the norm in
Lp/2

(
Td
)

of the function G (x) which appears as a limit of the discrepancy in The-
orem 3. While the limit function associated to the ball {|x| ≤ 1} is unbounded, for
a generic convex the limit function is constant. In particular, we do not know if the
statement of the theorem for the ball also applies to all convex sets.

Let us conclude this introduction with a few examples.
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Example. If dµ (r) is the uniformly distributed measure in {0 < r < 1}, then
the Lp (L2) mixed norm in the theorem is{∫

Td

[
1

H

∫ R+H

R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dr]p/2}1/p

.

The Fourier transform of the uniformly distributed measure in {0 < r < 1} has decay
β = 1,

µ̂ (ζ) =

∫ 1

0

e−2πiζrdr = e−πiζ
sin (πζ)

πζ
.

On the other hand, if ψ (r) is a non negative smooth function with integral one and
support in 0 ≤ r ≤ 1, one can considers a smoothed average{∫

Td

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2H−1ψ

(
H−1 (r −R)

)
dr

]p/2}1/p

.

This smoothed average is of equivalent to the uniform average over {R < r < R +H},
but the decay of the Fourier transform ψ̂ (ζ) is faster than any power β. Hence for the
uniformly distributed measure in {0 < r < 1} the theorem applies with the indexes
corresponding to β > 1:

1) if d = 2 {∫
Td

[
1

H

∫ R+H

R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dr]p/2}1/p

≤

{
Cp1/2 if p < +∞,
C log1/2 (1 +R) if p = +∞.

2) if d = 3 {∫
Td

[
1

H

∫ R+H

R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dr]p/2}1/p

≤

{
C (6− p)−1/3 if p < 6,

C log1/3 (1 +R) if p = 6.

3) if d ≥ 4{∫
Td

[
1

H

∫ R+H

R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dr]p/2}1/p
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≤

{
C ((2d− 4) / (d− 3)− p)−(d−3)/(2d−4) if p < (2d− 4) / (d− 3) ,

C log(d−3)/(2d−4) (1 +R) if p = (2d− 4) / (d− 3) .

Observe that the range of indexes in the above theorem and corollaries for which
the mixed Lp (L2) norm remains uniformly bounded is larger than the range of
indexes in [21] and [5] and in the previous chapter.

Example. If dµ (r) is the unit mass concentrated at r = 0, then µ̂ (ζ) = 1, so
that β = 0, and the Lp (L2) mixed norm in the theorem reduce to a pure Lp norm,
and one obtains{∫

Td

∣∣R−(d−1)/2D (RΩ− x)
∣∣p dx}1/p

≤
{
C (2d/ (d− 1)− p)−(d−1)/2d if d ≥ 2 and p < 2d/ (d− 1) ,

C log(d−1)/2d (1 +R) if d ≥ 2 and p = 2d/ (d− 1) .

In particular, one recovers some of the results in [21] and [5].

Example. If dµ (r) is r−αχ{0<r<1} (r) dr, with 0 < α < 1, then |µ̂ (ζ)| ≤
C (1 + |ζ|)α−1, that is β = 1− α.

Example. A probability measure is a Salem measure if its Fourier dimension

γ = sup
{
δ : |µ̂ (ζ)| ≤ C (1 + |ζ|)−δ/2

}
is equal to the Hausdorff dimension of the

support. Such measures exist for every dimension 0 < γ < 1, and the above theo-
rem and corollary assert that the discrepancy cannot be too large in mean on the
supports of translated and dilates of these measures.

The techniques used to prove these theorems are similar to the ones in the
previous chapter used to estimate the pure Lp norms of the discrepancy.

2.1 Proof of theorems and corollaries

The proofs will be splitted into a number of lemmas, some of them well known. The
starting point is the observation of D.G.Kendall that the discrepancy D (rΩ− x) is a
periodic function of the translation, and it has a Fourier expansion with coefficients
that are a sampling of the Fourier transform of Ω,

χ̂Ω (ξ) =

∫
Ω

e−2πiξxdx.
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Lemma 13. The number of integer points in rΩ−x, a translated by a vector x ∈ Rd

and dilated by a factor r > 0 of a domain Ω in the d dimensional Euclidean space
is a periodic function of the translation with Fourier expansion∑

k∈Zd
χrΩ−x(k) =

∑
n∈Zd

rdχ̂Ω (rn) e2πinx.

In particular,

D (rΩ− x) =
∑

n∈Zd\{0}

rdχ̂Ω (rn) e2πinx.

Proof. This is a particular case of the Poisson summation formula.

Remark: We emphasize that the Fourier expansion of the discrepancy converges
at least in L2

(
Td
)
, but we are not claiming that it converges pointwise. Indeed,

the discrepancy is discontinuous, hence the associated Fourier expansion does not
converge absolutely or uniformly. To overcome this problem, one could introduce a
mollified discrepancy. If the domain Ω is convex and contains the origin, then there
exists ε > 0 such that if ϕ (x) is a non negative smooth radial function with support
in {|x| ≤ ε} and with integral 1, and if 0 < δ ≤ 1 and r ≥ 1, then

|Ω|
(

(r − δ)d − rd
)

+ (r − δ)d
∑

n∈Zd\{0}

ϕ̂ (δn) χ̂Ω ((r − δ)n) e2πinx

≤
∑
n∈Zd

χrΩ(n+ x)− |Ω| rd

≤ |Ω|
(

(r + δ)d − rd
)

+ (r + δ)d
∑

n∈Zd\{0}

ϕ̂ (δn) χ̂Ω ((r + δ)n) e2πinx.

One has
∣∣∣(r + δ)d − rd

∣∣∣ ≤ Crd−1δ, and one can define the mollified discrepancy

(r ± δ)d
∑

n∈Zd\{0}

ϕ̂ (δn) χ̂Ω ((r ± δ)n) e2πinx.

Observe that the discrepancy is the limit of this mollified discrepancy as δ → 0+.
Also observe that since |ϕ̂ (ζ)| ≤ C (1 + |ζ|)−γ for every γ > 0, with this mollified
Fourier expansion there are no problem of convergence.

Lemma 14. Assume that Ω is a convex body in Rd with smooth boundary hav-
ing everywhere positive Gaussian curvature. Define the support function g (x) =
supy∈Ω {x · y}. Then, there exist functions {aj (ξ)}+∞

j=0 and {bj (ξ)}+∞
j=0 homogeneous
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of degree 0 and smooth in Rd − {0} such that the Fourier transform of the charac-
teristic function of Ω for |ξ| → +∞ has the asymptotic expansion

χ̂Ω (ξ) =

∫
Ω

e−2πiξ·xdx

= e−2πig(ξ) |ξ|−(d+1)/2
h∑
j=0

aj (ξ) |ξ|−j + e2πig(−ξ) |ξ|−(d+1)/2
h∑
j=0

bj (ξ) |ξ|−j

+O
(
|ξ|−(d+2h+3)/2

)
.

The functions aj (ξ) and bj (ξ) depend on a finite number of derivatives of a parametriza-
tion of the boundary of Ω at the points with outward unit normal ±ξ/ |ξ|. In par-

ticular, a0 (ξ) and b0 (ξ) are, up to some absolute constants, equal to K (±ξ)−1/2,
with K (±ξ) the Gaussian curvature of ∂Ω at the points with outward unit normal
±ξ/ |ξ|.

Proof. This is a classical result. See e.g. [12], [19], [18], [34]. Here, as an explicit ex-
ample, we want just to recall that the Fourier transform of a ball

{
x ∈ Rd : |x| ≤ R

}
can be expressed in terms of a Bessel function, and Bessel functions have simple
asymptotic expansions in terms of trigonometric functions,

χ̂{|x|≤R} (ξ) = Rdχ̂{|x|≤1} (Rξ) = Rd |Rξ|−d/2 Jd/2 (2π |Rξ|)
≈ π−1R(d−1)/2 |ξ|−(d+1)/2 cos (2πR |ξ| − (d+ 1) π/4)

− 2−4π−2
(
d2 − 1

)
R(d−3)/2 |ξ|−(d+3)/2 sin (2πR |ξ| − (d+ 1) π/4) + ...

More generally, also the Fourier transform of an ellipsoid, that is an affine image of
a ball, can be expressed in terms of Bessel functions.

Lemma 15. Assume that Ω is a convex body in Rd with smooth boundary having
everywhere positive Gaussian curvature. Let z be a complex parameter, and for every
j = 0, 1, 2, ... and r ≥ 1, with the notation of the previous lemmas, let define the
tempered distributions Φj (z, r, x) via the Fourier expansion

Φj (z, r, x) = r−j
∑

n∈Zd\{0}

aj (n) |n|−z−j e−2πig(n)re2πinx

+ r−j
∑

n∈Zd\{0}

bj (n) |n|−z−j e2πig(−n)re2πinx.

(1) If Re (z)+j > d/2 then the Fourier expansion that defines Φj (z, r, x) converges
in L2

(
Td
)
. If Re (z) + j > d then the convergence is absolute and uniform.
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(2) Let

Rh (r, x) = r−(d−1)/2D (rΩ− x)−
h∑
j=0

Φj ((d+ 1) /2, r, x) .

If h > (d− 3) /2 there exists C such that if r ≥ 1,

|Rh (r, x)| ≤ Cr−h−1.

Proof. This is a simple consequence of the previous lemmas. The terms
Φj ((d+ 1) /2, r, x) come from the terms homogeneous of degree − (d+ 1) /2 − j
in the asymptotic expansion of the Fourier transform of Ω, while the remainder
Rh (r, x) is given by an absolutely and uniformly convergent Fourier expansion.

Lemma 16. Let g (x) = supy∈Ω {x · y} be the support function of a convex Ω which
contains the origin, and with a smooth boundary with everywhere positive Gaussian
curvature.

(1) This support function is convex, homogeneous of degree one, positive and
smooth away from the origin, and it is equivalent to the Euclidean norm, that
is there exist 0 < c < C such that for every x,

c |x| ≤ g (x) ≤ C |x| .

(2) There exists C > 0 such that for all unit vectors ω and ϑ in Rd, there exists a
number A (ϑ, ω) such that for every real τ one has

|g (ϑ− τω)− g (ϑ)| ≥ C
|τ | |τ − A (ϑ, ω)|

1 + |τ |
.

Proof. (1) The convexity of the support function easily follows from the convexity
of Ω, and also the other properties are elementary. In order to prove (2), observe
that for |ω| = |ϑ| = 1 and −∞ < τ < +∞,

|g (ϑ− τω)− g (ϑ)| =

∣∣∣∣∣g (ϑ− τω)2 − g (ϑ)2

g (ϑ− τω) + g (ϑ)

∣∣∣∣∣
≥ C

∣∣g (ϑ− τω)2 − g (ϑ)2
∣∣

1 + |τ |
.

It then suffices to prove that there exists a C > 0 such that for all unit vectors ϑ
and ω, there exists a number A (ϑ, ω) such that for every real τ one has∣∣g (ϑ− τω)2 − g (ϑ)2

∣∣ ≥ C |τ | |τ − A (ϑ, ω)| .
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Let us show that the function f (τ) = g (ϑ− τω)2 − g (ϑ)2 is strictly convex. If
ω = ±ϑ, then

f (τ) = g ((1± τ)ϑ)2 − g (ϑ)2 =
(
(1± τ)2 − 1

)
g (ϑ)2 =

(
τ 2 ± 2τ

)
g (ϑ)2 .

Therefore, if ω = ±ϑ,

d2

dτ 2
f (τ) = 2g (ϑ)2 ≥ δ > 0.

If ω 6= ±ϑ, then ϑ− τω 6= 0, and

d

dτ
f (τ) = −2g (ϑ− τω)∇g (ϑ− τω) · ω,

d2

dτ 2
f (τ) = 4 (∇g (ϑ− τω) · ω)2 + 2g (ϑ− τω)ωt · ∇2g (ϑ− τω) · ω.

For notational simplicity call ϑ − τω = x. The Hessian matrix ∇2g (x) is homoge-
neous of degree −1 and positive semidefinite. When |x| = 1 one eigenvalue is 0 and
the associated eigenvector is the gradient ∇g (x), while all the other eigenvalues are
the reciprocal of the principal curvatures at the point where the normal is ∇g (x).
See [33, Corollary 2.5.2]. Let α be the minimum of g (x) on the sphere {|x| = 1}, let
β > 0 be the minimum of |∇g (x)| on {|x| = 1}, and let γ > 0 be the minimum of
the non zero eigenvalues of ∇2g (x) on {|x| = 1}. If one decomposes ω into ω0 +ω1,
where ω0 is parallel to ∇g (x) and ω1 is orthogonal to ∇g (x), then

d2

dτ 2
f (τ) = 4 (∇g (x) · ω0)2 + 2g (x)ωt1 · ∇2g (x) · ω1

= 4 |∇g (x)|2 |ω0|2 + 2g (x/ |x|)ωt1 · ∇2g (x/ |x|) · ω1

≥ 4β2 |ω0|2 + 2αγ |ω1|2 ≥ δ > 0.

Therefore, for every ϑ and ω the function f (τ) is strictly convex, and it has exactly
two zeros, one is τ = 0 and the other is τ = A (ϑ, ω), possibly the zero is double.
By the Lagrange remainder in interpolation, there exists ε such that

f (τ) = τ (τ − A (ω, ϑ))
1

2

d2f

dτ 2
(ε) .

And since d2f (τ) /dτ 2 ≥ δ > 0,

∣∣g (ϑ− τω)2 − g (ϑ)2
∣∣ ≥ δ

2
|τ | |τ − A (ω, ϑ)| .



Chapter 2 37

Lemma 17. If g (x) is the support function of Ω, then for every (d+ 1) /2 ≤ α < d
and β ≥ 0, there exists C such that for every y ∈ Rd − {0},∫

Rd
|x|−α |x− y|−α (1 + |g (x)− g (x− y)|)−β dx

≤


C |y|d−2α−β if 0 ≤ β < 1,

C |y|d−2α−1 log (2 + |y|) if β = 1,

C |y|d−2α−1 if β > 1.

Proof. It is easy to explain the numerology behind the lemma. Assume that there
is no cutoff (1 + |g (x)− g (x− y)|)−β. Then the change of variables x = |y| z and
y = |y|ω gives∫

Rd
|x|−α |x− y|−α dx = |y|d−2α

∫
Rd
|z|−α |z − ω|−α dx = C |y|d−2α .

On the other hand, the cutoff (1 + |g (x)− g (x− y)|)−β should give an extra decay.
In particular, the integral with the cutoff (1 + |g (x)− g (x− y)|)−β with β large
is essentially over the set {g (x) = g (x− y)}, that is the cutoff reduces the space
dimension by 1. This suggests that, at least when β is large, the integral with
the cutoff can be seen as the convolution in Rd−1 of two homogeneous functions of
degree −α, and this gives the decay |y|d−1−2α. When β = 0 the decay is |y|d−2α,
and when β > 1 the decay is |y|d−1−2α. By interpolation, when 0 < β < 1 the decay
is |y|d−β−2α. This is just the numerology, the details of the proof are more delicate.
The change of variables x = |y| z and y = |y|ω gives∫

Rd
|x|−α |x− y|−α (1 + |g (x)− g (x− y)|)−β dx

= |y|d−2α

∫
Rd
|z|−α |z − ω|−α (1 + |y| |g (z)− g (z − ω)|)−β dz.

If ε is positive and suitably small, there exists δ > 0 such that for every ω and z
with |ω| = 1 and |z| < ε one has g (z − ω)−g (z) > δ, and the domain of integration
can be split into

{|z| ≤ ε} ∪ {|z − ω| ≤ ε} ∪ {|z| ≥ ε, |z − ω| ≥ ε} .

The integral over the domain {|z| ≤ ε} is bounded by∫
{|z|≤ε}

|z|−α |z − ω|−α (1 + |y| |g (z)− g (z − ω)|)−β dz

≤ (1− ε)−α (1 + δ |y|)−β
∫
{|z|≤ε}

|z|−α dz
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≤ C (1 + |y|)−β .

The integral over the domain {|z − ω| ≤ ε} is bounded similarly,∫
{|z−ω|≤ε}

|z|−α |z − ω|−α (1 + |y| |g (z)− g (z − ω)|)−β dz ≤ C (1 + |y|)−β .

It remains to estimate the integral over {|z| ≥ ε, |z − ω| ≥ ε}. First observe that∫
{|z|≥ε, |z−ω|≥ε}

|z|−α |z − ω|−α (1 + |y| |g (z)− g (z − ω)|)−β dz

≤ C

∫
{|z|≥ε}

|z|−2α (1 + |y| |g (z)− g (z − ω)|)−β dz.

In spherical coordinates write z = ρϑ, with ε ≤ ρ < +∞ and |ϑ| = 1, and dz =
ρd−1dρdϑ, with dϑ the surface measure on the d − 1 dimensional sphere Sd−1 =
{|ϑ| = 1}. Then by the above lemma and the change of variables ρ = 1/τ , recalling
that |ω| = 1 and 2α− d− 1 ≥ 0,∫

{|z|≥ε}
|z|−2α (1 + |y| |g (z)− g (z − ω)|)−β dz

=

∫
Sd−1

∫ +∞

ε

ρd−1−2α (1 + |y| |g (ρϑ)− g (ρϑ− ω)|)−β dρdϑ

=

∫
Sd−1

∫ 1/ε

0

τ 2α−d−1

(
1 + |y|

∣∣∣∣g (ϑ)− g (ϑ− τω)

τ

∣∣∣∣)−β dτdϑ
≤ C

∫
Sd−1

∫ 1/ε

0

(
1 + |y|

∣∣∣∣g (ϑ)− g (ϑ− τω)

τ

∣∣∣∣)−β dτdϑ
≤ C

∫
Sd−1

∫ 1/ε

0

(1 + |y| |τ − A (ϑ, ω)|)−β dτdϑ.

Finally, if sup|ϑ|=|ω|=1 {|A (ϑ, ω)|} = γ, then∫
Sd−1

∫ 1/ε

0

(1 + |y| |τ − A (ϑ, ω)|)−β dτdϑ

≤
∣∣Sd−1

∣∣ ∫ γ+1/ε

−γ−1/ε

(1 + |y| |τ |)−β dτ

=
∣∣Sd−1

∣∣ |y|−1

∫ (γ+1/ε)|y|

−(γ+1/ε)|y|
(1 + |τ |)−β dτ

≤


C (1 + |y|)−β if 0 ≤ β < 1,

C (1 + |y|)−1 log (2 + |y|) if β = 1,

C (1 + |y|)−1 if β > 1.
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Roughly speaking one can describe the strategy of the proof as follows: The
normalized discrepancy r−(d−1)/2D (rΩ− x) has a Fourier expansion of the form∑

n∈Zd\{0}

|n|−(d+1)/2 e±2πig(±n)re2πinx.

One can replace the real parameter (d+ 1) /2 which describes the decay of the
Fourier transform by a complex parameter z, and define the function

Θ (z, r, x) =
∑

n∈Zd\{0}

|n|−z e±2πig(±n)re2πinx.

Observe that the Fourier coefficients of this function are analytic functions of
the complex variable z. One can estimate the L2 (L2) norms of this function via the
Parseval equality, and the norm is finite if Re (z) > d/2. Then one can estimate
the Lp (L2) norm with p ≥ 4 via the Hausdorff Young inequality, and the norm is
finite if Re (z) > d (1− 1/p)− 1/2. Finally, the result for z = (d+ 1) /2 follows by
complex interpolation.

By the above lemma, the normalized discrepancy r−(d−1)/2D (rΩ− x) is a sum
of terms Φj ((d+ 1) /2, r, x), and the following lemma studies the two terms that
appear in the definition of Φj (z, r, x).

Lemma 18. Let dµ (r) be a Borel probability measure on R with support in 0 < ε <
r < δ < +∞, and with |µ̂ (ζ)| ≤ B (1 + |ζ|)−β. Let c (ξ) be a bounded homogeneous
function of degree 0, let Re (z) ≥ (d+ 1) /2, and for j = 0, 1, 2, ... and any choice of
±, define

Θj (z, r, x) = r−j
∑

n∈Zd\{0}

c (n) |n|−z−j e±2πig(±n)re2πinx.

Moreover, for H,R ≥ 1, define

Fj (z,H,R, x) =

∫
R
|Θj (z, r, x)|2 dµH,R (r) .

Expand this last function into a Fourier series in the variable x,

Fj (z,H,R, x) =
∑
k∈Zd
F̂j (z,H,R, k) e2πikx.

(1) If j = 0 there exists a constant C, which may depend on d, B, β, but is indepen-
dent of the complex parameter z, the real parameters H and R, and on the measure
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dµ (r), such that the Fourier coefficients of F0 (z,H,R, x) satisfy for every H,R ≥ 1
and k ∈ Zd the estimates

∣∣∣F̂0 (z,H,R, k)
∣∣∣ ≤


C (1 + |k|)d−β−2 Re(z) if 0 ≤ β < 1,

C (1 + |k|)d−1−2 Re(z) log (2 + |k|) if β = 1,

C (1 + |k|)d−1−2 Re(z) if β > 1.

(2) If j ≥ 1 then there exists a constant C such that the Fourier coefficients of
Fj (z,H,R, x) satisfy for every H,R ≥ 1 and k ∈ Zd the estimates∣∣∣F̂j (z,H,R, k)

∣∣∣ ≤ C (R +H)−2j (1 + |k|)d−1−2 Re(z) .

Proof. Let us fix a choice of ±,

Θj (z, r, x) = r−j
∑

n∈Zd\{0}

c (n) |n|−z−j e−2πig(n)re2πinx.

Expanding the product Θj (z, r, x) · Θj (z, r, x) and integrating against dµ (r), one
obtains

Fj (z,H,R, x) =

∫
R
|Θj (z, r, x)|2 dµH,R (r)

=
∑
k∈Zd

∑
n∈Zd\{0,k}

c (n) c (n− k) |n|−z−j |n− k|−z−j e2πikx

× e2πi(g(n−k)−g(n))R

∫
R

(R +Hr)−2j e2πiH(g(n−k)−g(n))rdµ (r) .

The product term by term of the series and the integration term by term can be
justified with a suitable summation method, which amounts to introduce a cutoff
in the the series that defines Θj (z, r, x). See the Remark after Lemma 13. In
particular, the Fourier coefficients of Fj (z,H,R, x) are

F̂j (z,H,R, k)

=
∑

n∈Zd\{0,k}

c (n) c (n− k) |n|−z−j e2πi(g(n−k)−g(n))R

∫
R

(R +Hr)−2j e2πiH(g(n−k)−g(n))rdµ (r) .

Let us first consider the case j = 0. By the assumption on the Fourier transform of
the measure dµ (r),∣∣∣F̂0 (z,H,R, k)

∣∣∣
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≤ B sup
n∈Zd

{
|c (n)|2

} ∑
n∈Zd\{0,k}

|n|−Re(z) |n− k|−Re(z) (1 + |g (n− k)− g (n)|)−β

≤ C

∫
Rd
|x|−Re(z) |x− k|−Re(z) (1 + |g (x− k)− g (x)|)−β dx.

It then suffices to apply Lemma 17. The case j > 0 is simpler.∣∣∣F̂j (z,H,R, k)
∣∣∣

≤ sup
n∈Zd

{
|c (n)|2

} ∑
n∈Zd\{0,k}

|n|−Re(z)−j |n− k|−Re(z)−j
∫
R

(R +Hr)−2j dµ (r)

≤ C (R +H)−2j (1 + |k|)d−1−2 Re(z) .

Lemma 19. Let 0 ≤ β < 1 and F0 (z,H,R, x) be defined as in the previous lemmas.
Then there exists C such that for every H,R ≥ 1 the following hold.

(1) If 2 ≤ p ≤ 4 and Re (z) > d (1− 1/p) + 2β/p− β,{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
Re (z) + β − 2β

p
− d

(
1− 1

p

))−1/p

(2) If 4 ≤ p ≤ +∞ and Re (z) > d (1− 1/p)− β/2,{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
Re (z) +

β

2
− d

(
1− 1

p

))1/p−1/2

.

Proof. If p = 2 and Re (z) > d/2 then, by Parseval equality,{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

=

{∫
Td

∫
R
|Θ0 (z, r, x)|2 dµH,R (r) dx

}1/p

=


∫
R
dµ (r)

∑
n∈Zd−{0}

|c (n)|2 |n|−2 Re(z)


1/2
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≤ C

(
Re (z)− d

2

)−1/2

.

If 4 ≤ p ≤ +∞ and Re (z) > d (1− 1/p) − β/2 then, by the Hausdorff Young
inequality, {∫

Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤

{∑
k∈Zd

∣∣∣F̂0 (z,H,R, k)
∣∣∣p/(p−2)

}(p−2)/2p

≤ C

{∑
k∈Zd

∣∣∣(1 + |k|)d−β−2 Re(z)
∣∣∣p/(p−2)

}(p−2)/2p

≤ C

(
(2 Re (z) + β − d)

p

p− 2
− d
)−(p−2)/2p

= C

(
p− 2

2p

)(p−2)/2p(
Re (z) +

β

2
− d

(
1− 1

p

))−(p−2)/2p

≤ C

(
Re (z) +

β

2
− d

(
1− 1

p

))1/p−1/2

.

This proves the cases p = 2 and p ≥ 4. The cases 2 < p < 4 follow from these cases
via complex interpolation of vector valued L (p) spaces. For the definition of the
complex interpolation method, see for example [1, Chapter 4 and Chapter 5 ]. Here
we recall the relevant result: Let H be a Hilbert space and X a measure space, let
1 ≤ a < b ≤ +∞, −∞ < A < B < +∞, and let Θ (z) be a function with values in
the vector valued space La (X,H)+Lb (X,H), continuous and bounded on the closed
strip {A ≤ Re (z) ≤ B} and analytic on the open strip {A < Re (z) < B}. Assume
that there exist constants M and N such that for every −∞ < t < +∞,{

‖Θ (A+ it)‖La(X,H) ≤M,

‖Θ (B + it)‖Lb(X,H) ≤ N.

If 1/p = (1− ϑ) /a+ ϑ/b, with 0 < ϑ < 1, then

‖Θ ((1− ϑ)A+ ϑB)‖Lp(X,H) ≤M1−ϑNϑ.

Here the analytic function is Θ0 (z, r, x), the Hilbert space is L2 (R, dµH,R (r)), the
measure space is the torus Td, a = 2, A = d/2 + ε, b = 4, B = 3d/4− β/2 + ε, with
ε > 0, M = Cε−1/2 and N = Cε−1/4. By the above computations,{∫

Td
|F0 (z,H,R, x)|p/2 dx

}1/p
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≤
{
Cε−1/2 if p = 2 and Re (z) = d/2 + ε,
Cε−1/4 if p = 4 and Re (z) = 3d/4− β/2 + ε.

By complex interpolation with

1/p = (1− ϑ) /2 + ϑ/4,

Re (z) = (1− ϑ) (d/2 + ε) + ϑ (3d/4− β/2 + ε) ,

that is, 2 < p < 4 and Re (z) = d (1− 1/p) + 2β/p− β + ε,{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
Re (z) + β − 2β

p
− d

(
1− 1

p

))−1/p

.

Lemma 20. Let β = 1 and F0 (z,H,R, x) be defined as in the previous lemmas.
Then there exists C such that for every H,R ≥ 1 the following hold.

(1) If 2 ≤ p ≤ 4 and Re (z) > d (1− 1/p) + 2/p− 1,{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
Re (z)−

(
d

(
1− 1

p

)
+

2

p
− 1

))1/p−1

(2) If 4 ≤ p ≤ +∞ and Re (z) > d (1− 1/p)− 1/2,{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
Re (z)− d

(
1− 1

p

)
+

1

2

)1/p−1

.

Proof. The proof is as in the previous lemma. If p = 2 and Re (z) > d/2, then{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
Re (z)− d

2

)−1/2

.

If 4 ≤ p ≤ +∞ and Re (z) > d (1− 1/p) − 1/2 then, by the Hausdorff Young
inequality, {∫

Td
|F0 (z,H,R, x)|p/2 dx

}1/p
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≤

{∑
k∈Zd

∣∣∣F̂0 (z,H,R, k)
∣∣∣p/(p−2)

}(p−2)/2p

≤ C

{∑
k∈Zd

∣∣∣(1 + |k|)d−1−2 Re(z) log (2 + |k|)
∣∣∣p/(p−2)

}(p−2)/2p

.

The series can be compared with the integral{∫
Rd

∣∣∣(1 + |x|)d−1−2 Re(z) log (2 + |x|)
∣∣∣p/(p−2)

dx

}(p−2)/2p

=

{
|{|ϑ| = 1}|

∫ +∞

0

(1 + ρ)(d−1−2 Re(z))p/(p−2) logp/(p−2) (2 + ρ) ρd−1dρ

}(p−2)/2p

.

The last integral can be compared to another integral,∫ +∞

1

t−α logβ (t) dt = (α− 1)−(β+1)

∫ +∞

0

sβe−sds = (α− 1)−(β+1) Γ (β + 1) .

Hence, {∫ +∞

0

(1 + ρ)(d−1−2 Re(z))p/(p−2)+d−1 logp/(p−2) (2 + ρ) dρ

}(p−2)/2p

≤ C

(
(2 Re (z) + 1− d)

p

p− 2
− d
)−(1+p/(p−2))(p−2)/2p

≤ C

(
Re (z)− d

(
1− 1

p

)
+

1

2

)1/p−1

.

This proves the cases p = 2 and p ≥ 4. The cases 2 < p < 4 follow from these cases
via complex interpolation. By the above computations,{∫

Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤
{
Cε−1/2 if p = 2 and Re (z) = d/2 + ε,
Cε−3/4 if p = 4 and Re (z) = (3d− 2) /4 + ε.

By complex interpolation, if 2 < p < 4 and Re (z) = d (1− 1/p) + 2/p− 1 + ε,{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
Re (z)−

(
d

(
1− 1

p

)
+

2

p
− 1

))1/p−1

.
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Lemma 21. Let β > 1 and F0 (z,H,R, x) be defined as in the previous lemma.
Then there exists C such that for every H,R ≥ 1 the following hold.

(1) If 2 ≤ p ≤ 4 and Re (z) > d (1− 1/p) + 2/p− 1,{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
Re (z)− d

(
1− 1

p

)
− 2

p
+ 1

)−1/p

(2) If 4 ≤ p ≤ +∞ and Re (z) > d (1− 1/p)− 1/2,{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
Re (z)− d

(
1− 1

p

)
+

1

2

)1/p−1/2

.

Proof. The proof is as in the previous lemma. If p = 2 and Re (z) > d/2 then, by
Parseval equality,{∫

Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
Re (z)− d

2

)−1/2

.

If 4 ≤ p ≤ +∞ and Re (z) > d (1− 1/p) − 1/2 then, by the Hausdorff Young
inequality, {∫

Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
Re (z)− d

(
1− 1

p

)
+

1

2

)1/p−1/2

.

The cases 2 < p < 4 follow from these cases via complex interpolation. By the above
computations, {∫

Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤
{
Cε−1/2 if p = 2 and Re (z) = d/2 + ε,
Cε−1/4 if p = 4 and Re (z) = (3d− 2) /4 + ε.

By complex interpolation, with 2 < p < 4 and Re (z) = d (1− 1/p) + 2/p− 1 + ε,{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p
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≤ C

(
Re (z)−

(
d

(
1− 1

p

)
+

2

p
− 1

))−1/p

.

Lemma 22. Let β ≥ 0 and j ≥ 1, and let Fj (z,H,R, x) with be defined as in the
previous lemma. Then there exists C such that for every H,R ≥ 1 the following
hold.

(1) If 2 ≤ p ≤ 4 and Re (z) > d (1− 1/p) + 2/p− 1,{∫
Td
|Fj (z,H,R, x)|p/2 dx

}1/p

≤ C (H +R)−j
(

Re (z)− d
(

1− 1

p

)
− 2

p
+ 1

)−1/p

(2) If 4 ≤ p ≤ +∞ and Re (z) > d (1− 1/p)− 1/2,{∫
Td
|Fj (z,H,R, x)|p/2 dx

}1/p

≤ C (H +R)−j
(

Re (z)− d
(

1− 1

p

)
+

1

2

)1/p−1/2

.

Proof. The proof is as in the previous lemma. If p = 2 and Re (z) > d/2 then, by
Parseval equality,{∫

Td
|Fj (z,H,R, x)|p/2 dx

}1/p

=


∫
R

(R +Hr)−2j dµ (r)
∑

n∈Zd\{0}

|c (n)|2 |n|−2 Re(z)−2j


1/2

≤ C (H +R)−j
(

Re (z)− d

2

)−1/2

.

If 4 ≤ p ≤ +∞ and Re (z) > d (1− 1/p) − 1/2 then, by the Hausdorff Young
inequality, {∫

Td
|Fj (z,H,R, x)|p/2 dx

}1/p
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≤

{∑
k∈Zd

∣∣∣F̂j (z,H,R, k)
∣∣∣p/(p−2)

}(p−2)/2p

≤ C (H +R)−j
{∑
k∈Zd

∣∣∣(1 + |k|)d−1−2 Re(z)
∣∣∣p/(p−2)

}(p−2)/2p

≤ C (H +R)−j
(

Re (z)− d
(

1− 1

p

)
+

1

2

)1/p−1/2

.

By complex interpolation, if 2 < p < 4 and Re (z) = d (1− 1/p) + 2/p− 1 + ε,{∫
Td
|Fj (z,H,R, x)|p/2 dx

}1/p

≤ C (H +R)−j
(

Re (z)−
(
d

(
1− 1

p

)
+

2

p
− 1

))1/p−1

.

The estimates in the previous lemmas blow up when Re (z)→ critical (z)+,

Re (z)→



[
d

(
1− 1

p

)
+

2β

p
− β

]+

if β ≤ 1 and p ≤ 4,[
d

(
1− 1

p

)
− β

2

]+

if β ≤ 1 and p ≥ 4,[
d

(
1− 1

p

)
+

2

p
− 1

]+

if β ≥ 1 and p ≤ 4,[
d

(
1− 1

p

)
− 1

2

]+

if β ≥ 1 and p ≥ 4,

which is the same as p→ critical (p)−,

p→



(
d− 2β

d− β − Re (z)

)−
if β ≤ 1 and p ≤ 4,(

d

d− β/2− Re (z)

)−
if β ≤ 1 and p ≥ 4,(

d− 2

d− 1− Re (z)

)−
if β ≥ 1 and p ≤ 4,(

d

d− 1/2− Re (z)

)−
if β ≥ 1 and p ≥ 4.

The following lemmas are essentially a rewriting of the previous ones, with
Re (z)− critical (z) replaced by critical (p)− p.
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Lemma 23. Let 0 ≤ β < 1 and let F0 (z,H,R, x) be as in Lemma 19. Then there
exists C such that for every H,R ≥ 1 the following hold.

(1) If d/2 < Re (z) ≤ (3d− 2β) /4 and 2 ≤ p < (d− 2β) / (d− β − Re (z)), then{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
d− 2β

d− β − Re (z)
− p
)−(d−β−Re(z))/(d−2β)

.

(2) If (3d− 2β) /4 < Re (z) < d− β/2 and 4 ≤ p < d/ (d− β/2− Re (z)), then{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
d

d− β/2− Re (z)
− p
)(d−β/2−Re(z))/d−1/2

.

(3) If Re (z) = d− β/2 and p < +∞, then{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ Cp1/2.

Proof. This is a rewriting of Lemma 19. (1) If d/2 < Re (z) ≤ (3d− 2β) /4 and 2 ≤
p < (d− 2β) / (d− β − Re (z)), then 2 ≤ p ≤ 4 and Re (z) > d (1− 1/p)+2β/p−β.
The estimate (1) of Lemma 19 applies, and(

Re (z) + β − 2β

p
− d

(
1− 1

p

))−1/p

= p1/p (d− β − Re (z))−1/p

(
d− 2β

d− β − Re (z)
− p
)(d−β−Re(z))/(d−2β)−1/p

×
(

d− 2β

d− β − Re (z)
− p
)−(d−β−Re(z))/(d−2β)

≤ C

(
d− 2β

d− β − Re (z)
− p
)−(d−β−Re(z))/(d−2β)

.

We have used the inequalities x1/x ≤ e1/e for every x > 0, and (x− y)1/x−1/y =(
(x− y)−(x−y)

)1/xy

≤
(
e1/e
)1/xy ≤ e1/e for every x > y ≥ 1. Observe that the above

constant C may depend on d, β, Re (z), but it is independent of p.

(2) If (3d− 2β) /4 < Re (z) < d − β/2 and 4 ≤ p < d/ (d− β/2− Re (z)) then
Re (z) > d (1− 1/p)− β/2. The estimate (2) of Lemma 19 applies, and(

Re (z) +
β

2
− d

(
1− 1

p

))1/p−1/2
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= p1/2−1/p (d− (d− β/2− Re (z)) p)1/p−1/2

= p1/2−1/p (d− β/2− Re (z))1/p−1/2

(
d

d− β/2− Re (z)
− p
)1/p−(d−β/2−Re(z))/d

×
(

d

d− β/2− Re (z)
− p
)(d−β/2−Re(z))/d−1/2

≤ C

(
d

d− β/2− Re (z)
− p
)(d−β/2−Re(z))/d−1/2

.

(3) If Re (z) = d− β/2 and p < +∞, the estimate (3) of Lemma 19 applies, and(
Re (z) +

β

2
− d

(
1− 1

p

))1/p−1/2

= d1/p−1/2p−1/pp1/2 ≤ Cp1/2.

Lemma 24. Let β = 1 and let F0 (z,H,R, x) be as in Lemma 20. Then there exists
C such that for every H,R ≥ 1 the following hold.

(1) If d/2 < Re (z) ≤ (3d− 2) /4 and 2 ≤ p <
d− 2

d− 1− Re (z)
then

{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
d− 2

d− 1− Re (z)
− p
)−(Re(z)−1)/(d−2)

.

(2) If (3d− 2) /4 < Re (z) < d− 1/2 and 4 ≤ p < d/ (d− Re (z)− 1/2) then{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
d

d− 1/2− Re (z)
− p
)−(2 Re(z)+1)/2d

.

(3) If Re (z) = d− 1/2 and p < +∞ then{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ Cp.

Proof. This is a rewriting of Lemma 20, and the proof is as in the previous lemma.
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Lemma 25. Let β > 1 and let F0 (z,H,R, x) be as in the Lemma 21. Then there
exists C such that for every H,R ≥ 1 the following hold.

(1) If d/2 < Re (z) ≤ (3d− 2) /4 and 2 ≤ p <
d− 2

d− 1− Re (z)
then

{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
d− 2

d− 1− Re (z)
− p
)−(d−1−Re(z))/(d−2)

.

(2) If (3d− 2) /4 < Re (z) < d− 1/2 and 4 ≤ p < d/ (d− Re (z)− 1/2) then{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ C

(
d

d− 1/2− Re (z)
− p
)(d−1/2−Re(z))/d−1/2

.

(3) If Re (z) = d− 1/2 and p < +∞ then{∫
Td
|F0 (z,H,R, x)|p/2 dx

}1/p

≤ Cp1/2.

Proof. This is a rewriting of Lemma 21, and the proof is as in the previous lemma.

Lemma 26. Let β ≥ 0 and j ≥ 1, and let Fj (z,H,R, x) be as in the Lemma 22.
Then there exists C such that for every H,R ≥ 1 the following hold.

(1) If d/2 < Re (z) ≤ (3d− 2) /4 and 2 ≤ p <
d− 2

d− 1− Re (z)
then

{∫
Td
|Fj (z,H,R, x)|p/2 dx

}1/p

≤ C (H +R)−j
(

d− 2

d− 1− Re (z)
− p
)−(d−1−Re(z))/(d−2)

.

(2) If (3d− 2) /4 < Re (z) < d− 1/2 and 4 ≤ p < d/ (d− Re (z)− 1/2) then{∫
Td
|Fj (z,H,R, x)|p/2 dx

}1/p

≤ C (H +R)−j
(

d

d− 1/2− Re (z)
− p
)(d−1/2−Re(z))/d−1/2

.
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(3) If Re (z) = d− 1/2 and p < +∞ then{∫
Td
|Fj (z,H,R, x)|p/2 dx

}1/p

≤ C (H +R)−j p1/2.

Proof. This is a rewriting of Lemma 22, and the proof is as in the previous lemma.

The above lemmas are enough for an upper bound for the norms of the discrep-
ancy. In order to prove the asymptotics of the norms as H → +∞, one has to work
a bit more. Recall that Φ0 (z, r, x), the main term in the asymptotic expansion of
the discrepancy, is defined by

Φ0 (z, r, x) =
∑

n∈Zd\{0}

a0 (n) |n|−z e−2πig(n)re2πinx

+
∑

n∈Zd\{0}

b0 (n) |n|−z e2πig(−n)re2πinx.

The following lemma is similar to the previous ones, just observe that one integrates
the square of this function, and not the square of the modulus.

Lemma 27. Define G (z, x) and B (z,H,R, x) by

G (z, x) =
∑
k∈Zd

2
∑

n∈Zd\{0,k}, g(n−k)=g(n)

a0 (n) b0 (k − n) |n|−z |k − n|−z
 e2πikx,

∫
R
Φ0 (z, r, x)2 dµH,R (r) = G (z, x) + B (z,H,R, x) .

(1) The function G (z, x) does not depend on H and R and it is in Lp/2
(
Td
)
, under

the relations between p and β in Lemma 19 or the equivalent Lemma 22,{∫
Td
|G (z, x)|p/2 dx

}1/p

≤ C.

(2) Under the relations between p and β in the lemmas 19, 20, 21, or the equivalent
lemmas 22, 23, 24, also the function B (z,H,R, x) is in Lp/2

(
Td
)
, and there

exists C such that for every H,R ≥ 1,{∫
Td
|B (z,H,R, x)|p/2 dx

}1/p

≤ C.
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Moreover, if β > 0 then this function vanishes as H → +∞, uniformly in
R ≥ 1,

lim
H→+∞

{∫
Td
|B (z,H,R, x)|p/2 dx

}1/p

= 0.

Proof. Expanding the product Φ0 (z, r, x) · Φ0 (z, r, x) and integrating, one obtains∫
R
Φ0 (z, r, x)2 dµH,R (r)

= G (z, x) + B1 (z,H,R, x) + B2 (z,H,R, x) + B3 (z,H,R, x) ,

where

G (z, x) = 2
∑
k∈Zd

∑
n∈Zd\{0,k}, g(n−k)=g(n)

a0 (n) b0 (k − n) |n|−z |k − n|−z e2πikx,

B1 (z,H,R, x)

= 2
∑
k∈Zd

∑
n∈Zd\{0,k}, g(n−k)6=g(n)

a0 (n) b0 (k − n) |n|−z |k − n|−z e2πikx

× e2πi(g(n−k)−g(n))R

∫
R
e2πiH(g(n−k)−g(n))rdµ (r) ,

B2 (z,H,R, x)

=
∑
k∈Zd

∑
n∈Zd\{0,k}

a0 (n) a0 (k − n) |n|−z |k − n|−z e2πikx

× e−2πi(g(n)+g(k−n))R

∫
R
e−2πiH(g(n)+g(k−n))rdµ (r) ,

B3 (z,H,R, x)

=
∑
k∈Zd

∑
n∈Zd\{0,k}

b0 (n) b0 (k − n) |n|−z |k − n|−z e2πikx

× e2πi(g(−n)+g(n−k))R

∫
R
e2πiH(g(−n)+g(n−k))rdµ (r) .

Observe that G (z, x) does not depend on H and R, and let us consider the Fourier
coefficients of this function. Since a0(n) and b0(−n) are bounded, the Fourier coef-
ficient with k = 0 is bounded by

∣∣∣Ĝ (z, 0)
∣∣∣ =

∣∣∣∣∣∣2
∑

n∈Zd\{0}

a0(n)b0(−n) |n|−2z

∣∣∣∣∣∣ ≤ C
∑

n∈Zd\{0}

|n|−2 Re(z) ≤ C.
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By the Lemma 17 with an arbitrary γ > 1, the Fourier coefficients with k 6= 0 can
be bounded by∣∣∣Ĝ (z, k)

∣∣∣ =

∣∣∣∣∣∣2
∑

n∈Zd\{0,k}, g(n−k)=g(n)

a0 (n) b0 (k − n) |n|−z |k − n|−z
∣∣∣∣∣∣

≤ C
∑

n∈Zd\{0,k}

|n|−Re(z) |k − n|−Re(z) (1 + |g (n− k)− g (n)|)−γ

≤ C

∫
Rd
|x|−Re(z) |k − x|−Re(z) (1 + |g (x− k)− g (x)|)−γ dx

≤ C |k|d−1−2 Re(z) .

The estimates of the Fourier coefficients of B1 (z,H,R, x) are similar to the ones of

G (z, x). First observe that B̂1 (z,H,R, 0) = 0. Then, by the assumption on the
measure dµ (r), if k 6= 0 there exists C such that for every H ≥ 1,∣∣∣B̂1 (z,H,R, k)

∣∣∣
=

∣∣∣∣∣∣2
∑

n∈Zd\{0,k}, g(n−k)6=g(n)

a0 (n) b0 (k − n) |n|−z |k − n|−z

×e2πi(g(n−k)−g(n))R

∫
R
e2πiH(g(n−k)−g(n))rdµ (r)

∣∣∣∣
≤ C

∑
n∈Zd\{0,k}

|n|−Re(z) |k − n|−Re(z) (1 +H |g (n− k)− g (n)|)−β

≤ C

∫
Rd
|x|−Re(z) |k − x|−Re(z) (1 +H |g (x− k)− g (x)|)−β dx.

By Lemma 17, the last integral is bounded by
C |k|d−2α−β if 0 ≤ β < 1,

C |k|d−2α−1 log (2 + |k|) if β = 1,

C |k|d−2α−1 if β > 1.

These estimates are independent of H,R ≥ 1. Hence, by dominated convergence
applied to the sum that defines B̂1 (z,H,R, k), if β > 0 then

lim
H→+∞

{
B̂1 (z,H,R, k)

}
= 0.

The estimates of the Fourier coefficients of B2 (z,H,R, x) and B3 (z,H,R, x) are
easier. Since g (x) ≥ c |x| with c > 0,∣∣∣B̂2 (z,H,R, k)

∣∣∣
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=

∣∣∣∣∣∣
∑

n∈Zd\{0,k}

a0 (n) a0 (k − n) |n|−z |k − n|−z

×e−2πi(g(n)+g(k−n))R

∫
R
e−2πiH(g(n)+g(k−n))rdµ (r)

∣∣∣∣
≤ CH−β

∑
n∈Zd\{0,k}

|n|−Re(z) |k − n|−Re(z) (|n|+ |k − n|)−β

≤ CH−β (1 + |k|)−β
∑

n∈Zd\{0,k}

|n|−Re(z) |k − n|−Re(z)

≤ CH−β (1 + |k|)d−β−2 Re(z) .

Moreover, by this estimate, if β > 0 then

lim
H→+∞

{
B̂2 (z,H,R, k)

}
= 0.

The estimates of the Fourier coefficients of B3 (z,H,R, x) are analogous to the ones
of B2 (z,H,R, x). The estimates of the norms in Lp/2

(
Td
)

of these functions in
the cases p = 2 and p ≥ 4 follow from the estimates of the Fourier coefficients of
the functions involved, the Parseval or Hausdorff Young inequality, and dominated
convergence. Finally, the cases 2 < p < 4 follow by complex interpolation. The
details are as in the proof of the lemmas 19, 20, 21.

The above lemmas are sufficient to prove the theorem for norms p less than
the critical index A. In order to reach the critical index, one need an easy lemma
suggested by the Yano extrapolation theorem. See [39] or [40](chapter XII-4.41).

Lemma 28. Let α ≥ 0, A ≥ 1, K ≥ 2, and assume that

supx∈Td {|F (x)|} ≤ K,{∫
Td |F (x)|p dx

}1/p ≤ (A− p)−α for every 0 < p < A.

Then, there exists C independent of F (x) and K such that{∫
Td
|F (x)|A dx

}1/A

≤ C logα (K) .

Proof. If α ≥ 0 and A ≥ 1 and 0 < p < A,{∫
Td
|F (x)|A dx

}1/A

≤ sup
x∈Td

{
|F (x)|(A−p)/A

}{∫
Td
|F (x)|p dx

}1/A

≤ K(A−p)/A (A− p)−αp/A = A−αp/A (1− p/A)α(1−p/A) K1−p/A (1− p/A)−α
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≤ K1−p/A (1− p/A)−α .

Then, with 1− p/A = t,{∫
Td
|F (x)|A dx

}1/A

≤ inf
0<t<1

{
Ktt−α

}
= eαα−α logα (K) .

Proof. (of Theorem 3) By Lemma 15,{∫
Td

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r)

]p/2
dx

}1/p

≤
h∑
j=0

{∫
Td

[∫
R
|Φj ((d+ 1) /2, r, x)|2 dµH,R (r)

]p/2
dx

}1/p

+

{∫
Td

[∫
R
|Rh (r, x)|2 dµH,R (r)

]p/2
dx

}1/p

.

Since the Φj ((d+ 1) /2, r, x) are a sum of two Θj ((d+ 1) /2, r, x) to which the above
lemmas apply, under appropriate relations between p and β the mixed norm of the
discrepancy is uniformly bounded, and (1) follows from the estimates in Lemma 23,
24, 25, 26.

(2) follows from (1) via Lemma 28. The cases p < +∞ follow from the Lemma 28.
One has just to recall that the discrepancy satisfy the trivial bound |D (rΩ− x)| ≤
Crd for every r ≥ 1. The case d = 2 and p = +∞ and dµ (x) = χ{0<r<1} (r)
is proved in [20]. An alternative proof of all cases can also be obtained via the
mollified discrepancy. For example, when d = 2, with the techniques in the above
lemmas, one can prove that if 1 ≤ H ≤ R, and δ ≤ 1/R,

sup
x∈T2


∫
R

∣∣∣∣∣∣(r ± δ)−3/2
∑

n∈Z2−{0}

ϕ̂ (δn) χ̂Ω ((r ± δ)n) e2πinx

∣∣∣∣∣∣
2

dµH,R (r)


1/2

≤



C
[∑

n∈Z2 (1 + |δn|)−γ (1 + |k|)−β−1
]1/2

if 0 ≤ β < 1,

C

[∑
n∈Z2

(1 + |δn|)−γ (1 + |k|)−2 log (2 + |k|)

]1/2

if β = 1,

C

[∑
n∈Z2

(1 + |δn|)−γ (1 + |k|)−2

]1/2

if β > 1,
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≤


Cδ(1−β)/2 if 0 ≤ β < 1,
C log (1/δ) if β = 1,

C log1/2 (1/δ) if β > 1,

≤


CR(1−β)/2 if 0 ≤ β < 1,
C log (R) if β = 1,

C log1/2 (R) if β > 1.

In order to prove the asymptotic estimate for the norm in (3), with the notation
of the previous lemmas, since the discrepancy is real one can write{∫

Td

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r)

]p/2
dx

}1/p

=


∫
Td

∫
R

(
h∑
j=0

Φj ((d+ 1) /2, r, x) +Rh (r, x)

)2

dµH,R (r)

p/2 dx


1/p

.

The inner integral is equal to∫
R

(
h∑
j=0

Φj ((d+ 1) /2, r, x) +Rh (r, x)

)2

dµH,R (r)

= G ((d+ 1) /2, x) + B ((d+ 1) /2, H,R, x)

+
∑

0≤i,j≤h, i+j>0

∫
R
Φi ((d+ 1) /2, r, x) Φj ((d+ 1) /2, r, x) dµH,R (r)

+ 2
∑

0≤j≤h

∫
R
Φj ((d+ 1) /2, r, x)Rh (r, x) dµH,R (r)

+

∫
R
Rh (r, x)2 dµH,R (r) .

By the above lemmas, all these terms give a bounded contribution. The main term
is G ((d+ 1) /2, x), and it is independent of H and R. The contributions of the other
terms is negligible when H → +∞. For example, let us estimate the integral with
the mixed product Φi ((d+ 1) /2, r, x) Φj ((d+ 1) /2, r, x). A repeated application of
the Cauchy Schwarz inequality gives∫

Td

∣∣∣∣∫
R
Φi ((d+ 1) /2, r, x) Φj ((d+ 1) /2, r, x) dµH,R (r)

∣∣∣∣p/2 dx
≤
∫
Td

[∫
R
|Φi ((d+ 1) /2, r, x)|2 dµH,R (r)

]p/4
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×
[∫

R
|Φj ((d+ 1) /2, r, x)|2 dµH,R (r)

]p/4
dx

≤

{∫
Td

[∫
R
|Φi ((d+ 1) /2, r, x)|2 dµH,R (r)

]p/2}1/2

×

{∫
Td

[∫
R
|Φj ((d+ 1) /2, r, x)|2 dµH,R (r)

]p/2}1/2

.

By Lemma 19, if i+ j > 0 this converges to 0 when H +R→ +∞.

Proof. (of Corollary 1) The corollary is an immediate consequence of part (1) of the
theorem, and another easy lemma suggested by the Yano extrapolation theorem.
See [39] or [40] (chapter XII-4.41).

Lemma 29. (1) Assume that α > 0 and that for every p < A < +∞,{∫
Td
|F (x)|p dx

}1/p

≤ (A− p)−α .

Then, for every γ > 1 + αA there exists C independent of F (x) such that∫
Td
|F (x)|A log−γ (2 + |F (x)|) dx ≤ C.

(2) Assume that α > 0 and that for every p < +∞,{∫
Td
|F (x)|p dx

}1/p

≤ pα.

Then, for every γ < α/e there exists C > 0 independent of f (x) such that∫
Td

exp
(
γ |F (x)|1/α

)
dx ≤ C.

Proof. (1) Let F0 (x) = F (x)χ{|F(x)|<2} (x) and Fj (x) = F (x)χ{2j≤|F(x)|<2j+1} (x)
if j ≥ 1, and let εj the measure of the set where Fj (x) 6= 0. Then, if j ≥ 1 and
p < A,

2jpεj ≤
∫
Td
|Fj (x)|p dx ≤

∫
Td
|F (x)|p dx ≤ (A− p)−αp .

Hence, εj ≤ 2−jp (A− p)−αp = 2−Aj2j(A−p) (A− p)−αA, and the minimum of this
expression is when p = A− αA/j log (2). This gives

εj ≤ C2−AjjαA.
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Hence, if γ > 1 + αA,∫
Td
|F (x)|A log−γ (2 + |F (x)|) dx

=
+∞∑
j=0

∫
Td
|Fj (x)|A log−γ (2 + |Fj (x)|) dx

≤ 2A log−γ (2) +
+∞∑
j=1

2(j+1)A log−γ
(
2 + 2j

)
εj

≤ C + C
+∞∑
j=1

jαA−γ ≤ C.

(2) Let Fj (x) = F (x)χ{j≤|F(x)|<j+1} (x), and let εj the measure of the set where
Fj (x) 6= 0. Then, if j ≥ 1 and p < A,

jpεj ≤
∫
Td
|Fj (x)|p dx ≤

∫
Td
|F (x)|p dx ≤ pαp.

Hence, εj ≤ j−ppαp. The minimum of this expression is when p = e−1j1/α, and this
gives

εj ≤ exp
(
− (α/e) j1/α

)
.

Hence, if γ < α/e,∫
Td

exp
(
γ |F (x)|1/α

)
dx =

+∞∑
j=0

∫
Td

exp
(
γ |Fj (x)|1/α

)
dx

≤
+∞∑
j=0

εj exp
(
γ (j + 1)1/α

)
≤ eγ +

+∞∑
j=1

exp
(
−
(
α/e− γ (1 + 1/j)1/α

)
j1/α

)
≤ C.

Proof. (of Corollary 2) By the Lemma 15,

G (x) =
∑
k∈Zd

2
∑

n∈Zd\{0,k},
g(n−k)=g(n)

a0 (n) b0 (k − n) |n|−(d+1)/2 |k − n|−(d+1)/2

 e2πikx.

Since c |x| ≤ g (x) ≤ C |x|, if g (n− k) = g (n) then |k| ≤ C |n| and

a0 (n) b0 (k − n) |n|−(d+1)/2 |k − n|−(d+1)/2 ≤ C |n|−d−1 ≤ C |k|−d−1 .
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Hence, under the assumption that that for every m in Zd the equation g (m) = g (n)
has at most C solutions n in Zd, the Fourier coefficients of G (x) are bounded by

2
∑

n∈Zd\{0,k}, g(n−k)=g(n)

a0 (n) b0 (k − n) |n|−(d+1)/2 |k − n|−(d+1)/2 ≤ C |k|−d−1 .

This implies that the Fourier expansion that defines G (x) is absolutely and uniformly
and convergent, and G (x) is bounded and continuous. In particular, under the
additional assumption that g (m) 6= g (n) for every m,n ∈ Zd with m 6= n, all
Fourier coefficients with k 6= 0 vanish, and this function reduces to the constant

2
∑

n∈Zd\{0}

a0 (n) b0 (−n) |n|−d−1 .

In order to prove theorem we need an easy algebraic lemma.

Lemma 30. If (A,B,C,D, ...) is a vector with integers coordinates, then the integer
vectors (x, y, z, w, ...) which are solutions to the equation Ax+By+Cz+Dw+ ... =
0 are a lattice. Assume that A and B are coprimes, so that there exist inte-
gers there exist u and v such that Au + Bv = 1. Then a basis of the lattice
{Ax+By + Cz +Dw + ... = 0} is

{(B,−A, 0, 0, ...) , (uC, vC,−1, 0, ...) , (uD, vD, 0,−1, ...) , ...} .

The area of a fundamental domain of this lattice is the length of the vector (A,B,C,D, ...),
√
A2 +B2 + C2 +D2 + ....

Proof. The solutions to the equation Ax + By + Cz + Dw + ... = 0 are a sum of a
particular solution to the non homogeneous equation Ax + By = −Cz −Dw − ...,
plus all solutions to the homogeneous equation Ax + By = 0. The solutions to the
homogeneous equation Ax + By = 0 are x = Br and y = −Ar, and a particular
solution to the equation Ax+By = −Cz−Dw− ... is x = −u (Cz +Dw + ...) and
y = −v (Cz +Dw + ...). Hence, all integral solutions to Ax+By+Cz+Dw+... = 0
are

(x, y, z, w, ...) = r (B,−A, 0, 0, ...) + s (uC, vC,−1, 0, ...) + t (uD, vD, 0,−1, ...) + ....

The area of a fundamental domain of the lattice {Ax+By + Cz +Dw + ... = 0} is
the length of the vector∣∣∣∣∣∣∣∣∣∣


e1 e2 e3 e4 ...
B −A 0 0 ...
uC vC −1 0 ...
uD vD 0 −1 ...
... ... ... ... ...


∣∣∣∣∣∣∣∣∣∣
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= ±Ae1 ±Be2 ± C (Au+Bv) e3 ±D (Au+Bv) e4 ± ...
= (±A,±B,±C,±D, ...) .

Proof. (of Theorem 4) Let us first prove (2). Set

G (H,R, x) =

∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r) .

If the statement of the theorem does not apply to Ω, then there exist 2d/ (d− 3) <
p < +∞ and sequences {Rn} → +∞ and {Hn} → +∞ such that

lim sup
n→+∞

{∫
Td
|G (Hn, Rn, x)|p/2 dx

}2/p

< +∞.

Then a suitable subsequence converges weakly in Lp/2
(
Td
)
.

Since weak convergence implies the convergence of Fourier coefficients, by the as-
sumption that lim|ζ|→+∞ {|µ̂ (ζ)|} = 0 the subsequence converges weakly to the
function G (x) defined by the Fourier expansion

G (x) =
∑
k∈Zd

2
∑

n∈Zd\{0,k},
g(n−k)=g(n)

a0 (n) b0 (k − n) |n|−(d+1)/2 |k − n|−(d+1)/2

 e2πikx.

This follows from from Lemma 18 and Lemma 27. By Theorem 3 this function
G (x) is in Lp/2

(
Td
)

for every p < (2d− 4) / (d− 3). In order to prove the theorem,

it suffices to show that when Σ = {|x| ≤ 1} this function is not in Lp/2
(
Td
)

if
p > 2d/ (d− 3). In order to give an estimate of the norm from below, one can test
this function against a Bessel potential of order α > 0,

B (x) =
∑
k∈Zd

(
1 + 4π2 |k|2

)−α/2
e2πikx.

This Bessel potential is a positive integrable function, which blows up as x→ 0 with
an asymptotic expansion

B (x) ≈

 C |x|α−d if 0 < α < d,
C log (1/ |x|) if α = d,
C if α > d.
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This follows from the Poisson summation formula, and the asymptotic estimate of
the Bessel potentials in Rd. See [35] (chapter V 3.1). It follows that if 1 ≤ r ≤ +∞
and α > d (1− 1/r), then {∫

Td
|B (x)|r dx

}1/r

< +∞.

By the way, when 2 ≤ r ≤ +∞ and 1/r + 1/s = 1 and α > d (1− 1/r) = d/s, this
also follows via the Hausdorff Young inequality:{∫

Td

∣∣∣∣∣∑
k∈Zd

(
1 + 4π2 |k|2

)−α/2
e2πikx

∣∣∣∣∣
r

dx

}1/r

≤

{∑
k∈Zd

∣∣∣(1 + 4π2 |k|2
)−α/2∣∣∣s}1/s

< +∞.

If 1/r + 1/s = 1, then

2
∑
k∈Zd

(
1 + 4π2 |k|2

)−α/2 ∑
n∈Zd\{0,k},
g(n−k)=g(n)

a0 (n) b0 (k − n) |n|−(d+1)/2 |k − n|−(d+1)/2

=

∫
Td
B (x)G (x) dx ≤

{∫
Td
|B (x)|r dx

}1/r {∫
Td
|G (x)|s dx

}1/s

.

Recalling that g (n) ≈ |n|, for every α > d (1− 1/r) = d/s, one obtains{∫
Td
|G (x)|s dx

}1/s

≥ C
∑

k∈Zd\{0}

|k|−α
∑

n∈Zd\{0}, g(n−k)=g(n)

|n|−d−1 .

In particular, if Σ = {|x| ≤ 1} is a ball, then g (n) = |n|, and the above inequality
takes the form{∫

Td
|G (x)|s dx

}1/s

≥ C
∑

k∈Zd\{0}

|k|−α
∑

|n−k|=|n|

|n|−d−1 .

In order to bound this expression from below, one can restrict the sum to the k
even, ∑

k∈Zd\{0}

|k|−α
∑

|n−k|=|n|

|n|−d−1 ≥
∑

k∈Zd\{0}

|2k|−α
∑

|n−2k|=|n|

|n|−d−1 .
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The equation |m− 2k| = |m| is the same as k ·m = k · k, and with the change of
variables m = k + n one obtains k · n = 0, so that for every α > d/s,{∫

Td
|G (x)|s dx

}1/s

≥ C
∑

k∈Zd\{0}

|k|−α
∑
k·n=0

(
|k|2 + |n|2

)−(d+1)/2
.

By the above lemma, when two entries of the vector k are coprimes, the area of a
fundamental domain of the (d − 1)-dimensional lattice {k · n = 0} is |k|, and the
density of the lattice is |k|−1. For such a k,∑

k·n=0

(
|k|2 + |n|2

)−(d+1)/2 ≥
(
2 |k|2

)−(d+1)/2 |{k · n = 0, |n| ≤ |k|}| ≥ C |k|−3 .

Since, by a theorem of E.Cesàro, the probability that two random non negative
integers are coprime is 6/π2, the probability that two entries of the vector k are
coprimes is positive. Hence, if α ≤ d− 3,∑

k∈Zd\{0}

|k|−α
∑
k·n=0

(
|k|2 + |n|2

)−(d+1)/2 ≥ C
∑

k∈Zd\{0}

|k|−α−3 = +∞.

In particular, recalling that s = p/2 and α > d/s = 2d/p, if p > 2d/ (d− 3) then{∫
Td
|G (x)|p/2 dx

}1/p

= +∞.

This proves (2). Finally, (1) follows from (2) by replacing the measure dµ (r) with
a convolution ϕ ∗ µ (r) dr, with ϕ (r) a non negative smooth function on R with
integral one. This convolution is a probability measure with Fourier transform that
vanishes at infinity. Observe that{∫

Td

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 d (ϕ ∗ µ)H,R (r)

]p/2
dx

}2/p

=

{∫
Td

[∫
R

∫
R

∣∣∣(R +H (r + t))−(d−1)/2D ((R +H (r + t)) Ω− x)
∣∣∣2 dµ (r)ϕ (t) dt

]p/2
dx

}2/p

≤
∫
R

{∫
Td

[∫
R

∣∣∣(R +H (r + t))−(d−1)/2D ((R +H (r + t)) Ω− x)
∣∣∣2 dµ (r)

]p/2
dx

}2/p

ϕ (t) dt.

Hence, if{∫
Td

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r)

]p/2
dx

}2/p

≤ C < +∞,
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then also{∫
Td

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 d (ϕ ∗ µ)H,R (r)

]p/2
dx

}2/p

≤ C < +∞,

and the argument used to prove (2) applies.

We conclude with some remarks.

Remark: The ellipsoid Ω = {|M (x− p)| ≤ 1}, with M a non singular d × d

matrix and p a fixed point in Rd, has support function g (x) =
∣∣∣(M t)

−1
x
∣∣∣+ x · p,

g (x) = sup
y∈Ω
{x · y} = sup

{|M(y−p)|≤1}

{
M t
(
M t
)−1

x · y
}

= sup
{|M(y−p)|≤1}

{(
M t
)−1

x ·M (y − p)
}

+
(
M t
)−1

x ·Mp =
∣∣∣(M t

)−1
x
∣∣∣+ x · p.

The equality g (m) = g (n) is a non trivial algebraic relation between the coordinates
of p = (p1, p2, ..., pd),

(m− n) · p =
∣∣∣(M t

)−1
n
∣∣∣− ∣∣∣(M t

)−1
m
∣∣∣ .

If {1, p1, p2, ..., pd} are linearly independent over the algebraic closure of the field
generated by the entries of the matrix M , then this relation holds only if m = n.
Hence, under these assumptions, the support function is injective when restricted to
the integers. In the case p = 0, then the equality g (m) = g (n) when squared gives

Am2
1 +Bm2

2 + ...+ Cm1m2 + ... = An2
1 +Bn2

2 + ...+ Cn1n2 + ...,

A
(
m2

1 − n2
1

)
+B

(
m2

2 − n2
2

)
+ ...+ C (m1m2 − n1n2) + ... = 0.

Here m = (m1,m2, ...), n = (n1, n2, ...), and A, B, C,... are homogeneous second
degree polynomials in the entries of the matrix M . This equation has has at least
the solutions n = ±m. On the other hand, if the entries of the matrix M are alge-
braically independent, then n = ±m are the only solutions. A cardinality argument
shows that for a fixed M , then almost every p has the property that there exist no
algebraic relation between its coordinates. Similarly, almost every matrix M has
the property that its entries are algebraically independent.

Remark: In Corollary 2 we defined a convex set “generic” if its support function
is injective when restricted to the integers. Not only “generic” convex set exists,
but they are the majority, they are of second category in space of compact convex
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sets endowed with the Hausdorff metric. If A+ Ω is the Minkowski sum of A and Ω,
then grA+Ω (x) = rgA (x) + gΩ (x). For a fixed x in Rd, the function Ω → gΩ (x) is
continuous in the Hausdorff metric. For fixed m,n ∈ Zd with m 6= n, the collection
of convex sets Ω with gΩ (m) 6= gΩ (n) is open in the Hausdorff metric. On the other
hand, if gΩ (m) = gΩ (n), and if A is a convex set with gA (m) 6= gA (n), as in the
previous remark, then rA + Ω → Ω as r → 0+, and grA+Ω (m) 6= grA+Ω (n). This
implies that the set of Ω with gΩ (m) 6= gΩ (n) is open and dense. Hence the set
of Ω with gΩ (m) 6= gΩ (n) for every m,n ∈ Zd with m 6= n is the intersection of a
countable family of open dense sets.

Remark: For the ball centered at the origin Σ = {|x| ≤ 1} the function G (x)
defined in Lemma 27 and studied in Theorem 4 is not constant. For almost every p,
the function G (x) associated to the shifted ball Ω = {|x− p| ≤ 1} = Σ + p is con-
stant. This may seem contradictory, but observe that in the case of Σ the function
G (x) is an r average of the discrepancy of rΣ− x, while if Ω = Σ + p the function
G (x) is an r average of the discrepancy of rΩ− x = rΣ + (rp− x). These averages
are different. In particular, in the averages of rΣ + (rp− x) are a mix of an average
over the dilations rΣ together with an average over the translations rp−x. Observe
that for irrational choices of p, these translations rp − x are dense in the set of all
translations. Hence it is not completely surprising that in this case G (x) is constant.

Remark: For every convex Ω with a boundary with strictly positive Gaussian
curvature, if the Fourier transform of the probability measure dµ (r) has a good
decay at infinity, then for every p < (2d− 4) / (d− 3),

sup
R,H

{∫
Td

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r)

]p/2
dx

}2/p

< +∞.

On the other hand, if Ω = {|x| ≤ 1}, for every probability measure dµ (r) and every
p > 2d/ (d− 3),

sup
R,H

{∫
Td

[∫
R

∣∣r−(d−1)/2D (rΩ− x)
∣∣2 dµH,R (r)

]p/2
dx

}2/p

= +∞.

Both these indexes (2d− 4) / (d− 3) and 2d/ (d− 3) are asymptotic to 2 as d →
+∞.
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Discrepancy and Hausdorff
dimension

The origin of the problem considered in this chapter can be traced to the work
of Hardy and Littlewood in [15] and to the work of Jarnik (see [24], [25]) and
Besicovitch (see [2]) about diophantine approximation (see also theHardy’s book
about Ramanujan [14])-

Hardy and Littlewood consider two positive numbers ω and ω′. Let ∆ be the
triangle whose sides are the coordinate axes and the line ωx + ω′y = n > 0. The
main thing really relevant to count integer points in ∆ and on its boundary (half
counted) is the ratio θ = ω/ω′. The simplest case is when θ is rational: in this case
the hypotenuse of the triangle may contain a number of integer points comparable
to the perimeter and the discrepancy D(∆) between the number of integer points in
∆ and its area is bounded by n. The problem is more difficult when θ is irrational.
It is again true that the discrepancy is bounded by n for all irrational θ, but there
are sharper results for special classes of slopes θ. These results depend on the
approximation |θ − p/q| of θ by the rationals p/q, hence on the partial quotients of
the expansion θ in continued fractions. In particular Hardy and Littlewood prove
that if the quotients are bounded, then the discrepancy D(∆) is bounded by log n
(e. g. in the case of quadratic θ, which have a periodic expansion); if the quotients
do not increase rapidly, then the discrepancy is bounded by nε for every ε > 0 (e.g.
in the case of algebraic numbers). Hence a fundamental topic in what follows is the
diophantine approximation of a given number by rationals (see [24], [25], [2] [11]).

A classical theorem by Lagrange and Dirichlet states that for every real number
x, there are infinitely many positive integers q such that∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

q2

65
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for some integer p; such p/q are good rational approximations to x. Written in
another way,

‖qx‖ ≤ q−1

for infinitely many q, where ‖y‖ = minm∈Z |y −m| denotes the distance from y to
the nearest integer.

Motivated by the above results, one can define a α-well-approximable number x
when

‖qx‖ ≤ q1−α

for infinitely many positive integers q.

A classical theorem of Jarnik, relevant in what follows, states that the set of
α-well-approximable numbers has Hausdorff dimension 2/α.

In this chapter, using the above quoted result of Jarnik, we consider a rotated
square Ω in the plane with sides perpendicular to the unit vectors σ = (cos θ, sin θ)
and σ⊥ = (− sin θ, cos θ) and we study properties and Hausdorff dimension of the set
of rotations θ which give a discrepancy less than |n|β with 0 < β < 1. The estimates
of the Hausdorff dimension will be a corollary of the estimate of the Ls(Lp) mixed
norm {∫

SO(2)

[∫
T2

|D(RσΩ− x)|pdx
]s/p

dµ(σ)

}1/s

,

where dµ is a suitable Borel measure on the set of rotations σ.

3.1 The square in the plane

Let Ω be a square in the plane. In what follows the rotations in SO(2) are identified
with the unit vectors {|σ| = 1} in R2.

Lemma 31. (1) If σΩ is the unit square in the plane centered at the origin and
with sides perpendicular to σ and σ⊥, then∑

k∈Z2

χRσΩ−x(k) =
∑
n∈Z2

sin (πRn · σ)

πn · σ
sin
(
πRn · σ⊥

)
πn · σ⊥

exp(2πinx).

(2) There exists ε > 0 such that if ζ (x) is a smooth non negative radial function
with support in {|x| < ε} and with integral 1, and if 0 < δ ≤ 1 and R ≥ 1,
then∣∣∣∣∣∑

n∈Z2

χRΩ(n+ x)− |Ω|R2

∣∣∣∣∣ ≤ 2Rδ
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+

∣∣∣∣∣∣
∑

n∈Z2\{0}

ζ̂ (δn)
sin (π (R− δ)n · σ)

πn · σ
sin
(
π (R− δ)n · σ⊥

)
πn · σ⊥

exp (2πinx)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

n∈Z2\{0}

ζ̂ (δn)
sin (π (R + δ)n · σ)

πn · σ
sin
(
π (R + δ)n · σ⊥

)
πn · σ⊥

exp (2πinx)

∣∣∣∣∣∣ .
Proof. This follows from the Poisson summation formula.

Theorem 5. Fix 0 < δ < 1/2, and let ψ0 (t) , ψ1 (t) , ψ2 (t) , . . . be positive functions
in {t > 0} decreasing to zero, and let ϕ0 (t) , ϕ1 (t) , ϕ2 (t) , . . . be defined in {|σ| = 1}
by the conditions

ϕj (σ) = inf
0<|n|≤2j/δ

{
|n · σ|
ψj (|n|)

}
.

In particular, |n · σ| ≥ ψj (|n|)ϕj (σ) if 0 < |n| ≤ 2j/δ. If σΩ is the unit square in
R2 with sides perpendicular to σ and σ⊥, and if 2 ≤ p ≤ +∞ and 1/p+1/q = 1, then
for every a > 0 there exists a constant C such that for every R ≥ 2, the following
hold:

(1) If 2 ≤ p < +∞, then{∫
T2

|D (RσΩ− x)|p dx
}1/p

≤ C (1 +Rδ)

+ CR
+∞∑
j=0

2−aj


[log2(R)]∑
k=0

2−kq min
{

1,
(
ψ−1
j

(
2k/ (Rϕj (σ))

))−q}
1/q

(2) If p = +∞, then

sup
x∈T2

{|D (RσΩ− x)| dx} ≤ C
(
Rδ + log2 (1/δ)

)
+ CR log (1/δ)

+∞∑
j=0

2−aj


[log2(R)]∑
k=0

2−k min
{

1,
(
ψ−1
j

(
2k/ (Rϕj (σ))

))−1
} .

Proof. By the above lemma, it suffices to estimate the norm in Lp (T2) of the Fourier
series ∑

n∈Z2\{0}

ζ̂ (δn)
sin (πRn · σ)

πn · σ
sin
(
πRn · σ⊥

)
πn · σ⊥

exp (2πinx)
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=
∑

0<|n|≤1/δ

ζ̂ (δn)
sin (πRn · σ)

πn · σ
sin
(
πRn · σ⊥

)
πn · σ⊥

exp (2πinx)

+
+∞∑
j=0

 ∑
2j−1/δ<|n|≤2j/δ

ζ̂ (δn)
sin (πRn · σ)

πn · σ
sin
(
πRn · σ⊥

)
πn · σ⊥

exp (2πinx)

 .

First consider the Fourier series with the sum over {0 < |n| ≤ 1/δ}. By the Hausdorff

Young inequality, if 2 ≤ p ≤ +∞ and 1/p+ 1/q = 1, since
∣∣∣ζ̂ (δn)

∣∣∣ ≤ 1,
∫
T2

∣∣∣∣∣∣
∑

0<|n|≤1/δ

ζ̂ (δn)
sin (πRn · σ)

πn · σ
sin
(
πRn · σ⊥

)
πn · σ⊥

exp (2πinx)

∣∣∣∣∣∣
p

dx


1/p

≤

 ∑
0<|n|≤1/δ

∣∣∣∣∣sin (πRn · σ)

πn · σ
sin
(
πRn · σ⊥

)
πn · σ⊥

∣∣∣∣∣
q


1/q

.

The proofs of the cases q = 1 and q > 1 are slightly different. The sum over
{0 < |n| ≤ 1/δ} can be splitted into four quadrants{

0 < |n| ≤ 1/δ, n · σ ≥ 0, n · σ⊥ ≥ 0
}
,{

0 < |n| ≤ 1/δ, n · σ < 0, n · σ⊥ ≥ 0
}
,{

0 < |n| ≤ 1/δ, n · σ < 0, n · σ⊥ < 0
}
,{

0 < |n| ≤ 1/δ, n · σ ≥ 0, n · σ⊥ < 0
}
.

The sums over these quadrants are similar, and it suffices to consider the first. This
first quadrant can be further splitted into

{0 < |n| ≤ 1/δ, 0 ≤ n · σ ≤ 1/R} ,{{
0 < |n| ≤ 1/δ, 2k−1/R < n · σ ≤ 2k/R

}}[log2(R)]

k=1
,{

0 < |n| ≤ 1/δ, 0 ≤ n · σ⊥ ≤ 1/R
}
,{{

0 < |n| ≤ 1/δ, 2k−1/R < n · σ⊥ ≤ 2k/R
}}[log2(R)]

k=1
,{

0 < |n| ≤ 1/δ, n · σ > 2[log2(R)]/R, n · σ⊥ > 2[log2(R)]/R
}
.

Since |n|2 = |n · σ|2+
∣∣n · σ⊥∣∣2, if |n · σ| is close to 0, then

∣∣n · σ⊥∣∣ is close to |n|. This
implies that the sum over the strip {0 < |n| ≤ 1/δ, 0 ≤ n · σ ≤ 1/R} is dominated
by ∑

0<|n|≤1/δ
0≤n·σ≤1/R

∣∣∣∣∣sin (πRn · σ)

πn · σ
sin
(
πRn · σ⊥

)
πn · σ⊥

∣∣∣∣∣
q

≤ CRq
∑

0<|n|≤1/δ
0≤n·σ≤1/R

|n|−q .
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If m and n are in this strip, 0 < |m| , |n| ≤ 1/δ, 0 ≤ m·σ ≤ 1/R and 0 ≤ n·σ ≤ 1/R,
then

ψ0 (|m− n|)ϕ0 (σ) ≤ |(m− n) · σ| ≤ 1/R,

|m− n| ≥ ψ−1
0 (1/ (Rϕ0 (σ))) .

Hence the integer points in the strip {0 < |n| ≤ 1/δ, 0 ≤ n · σ ≤ 1/R} are spaced
at least by max

{
1, ψ−1

0 (1/ (Rϕ0 (σ)))
}

. This leads to the estimate

Rq
∑

0<|n|≤1/δ
0≤n·σ≤1/R

|n|−q

≤ CRq

+∞∑
i=1

(
imax

{
1, ψ−1

0 (1/ (Rϕ0 (σ)))
})−q

≤ CRq min
{

1,
(
ψ−1

0 (1/ (Rϕ0 (σ)))
)−q}

.

Similarly,

[log2(R)]∑
k=1

 ∑
0<|n|≤1/δ

2k−1/R<n·σ≤2k/R

∣∣∣∣∣sin (πRn · σ)

πn · σ
sin
(
πRn · σ⊥

)
πn · σ⊥

∣∣∣∣∣
q



≤ C

[log2(R)]∑
k=1

 ∑
0<|n|≤1/δ

2k−1/R<n·σ≤2k/R

|n · σ|−q |n|−q



≤ CRq

[log2(R)]∑
k=1

2−kq
∑

0<|n|≤1/δ

2k−1/R<n·σ≤2k/R

|n|−q


≤ CRq

[log2(R)]∑
k=1

2−kq min
{

1,
(
ψ−1

0

(
2k/ (Rϕ0 (σ))

))−q}
.

The sums over the strips defined by n·σ⊥ can be estimated similarly. Finally, the sum
over the quadrant

{
0 < |n| ≤ 1/δ, n · σ > 2[log2(R)], n · σ⊥ > 2[log2(R)]

}
is uniformly

bounded, ∑
0<|n|≤1/δ

n·σ>2[log2(R)]/R

n·σ⊥>2[log2(R)]/R

∣∣∣∣∣sin (πRn · σ)

πn · σ
sin
(
πRn · σ⊥

)
πn · σ⊥

∣∣∣∣∣
q
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≤ C
∑

0<|n|≤1/δ

n·σ>2[log2(R)]/R

n·σ⊥>2[log2(R)]/R

|n · σ|−q
∣∣n · σ⊥∣∣−q ≤ C.

Let us now consider the case q = 1.∑
0<|n|≤1/δ

0≤n·σ≤1/R

∣∣∣∣∣sin (πRn · σ)

πn · σ
sin
(
πRn · σ⊥

)
πn · σ⊥

∣∣∣∣∣
≤ CR

∑
0<|n|≤1/δ

0≤n·σ≤1/R

|n|−1

≤ CR
∑

j<1/(δmax{1,ψ−1
0 (1/(Rϕ0(σ)))})

(
jmax

{
1, ψ−1

0 (1/ (Rϕ0 (σ)))
})−1

≤ C log (1/δ)Rmin
{

1,
(
ψ−1

0 (1/ (Rϕ0 (σ)))
)−1
}
.

Similarly,

[log2(R)]∑
k=1

 ∑
0<|n|≤1/δ

2k−1/R<n·σ≤2k/R

∣∣∣∣∣sin (πRn · σ)

πn · σ
sin
(
πRn · σ⊥

)
πn · σ⊥

∣∣∣∣∣


≤ C

[log2(R)]∑
k=1

 ∑
0<|n|≤1/δ

2k−1/R<n·σ≤2k/R

|n · σ|−1 |n|−1



≤ CR

[log2(R)]∑
k=1

2−k
∑

0<|n|≤1/δ

2k−1/R<n·σ≤2k/R

|n|−1


≤ C log (1/δ)R

[log2(R)]∑
k=1

2−k min
{

1,
(
ψ−1

0

(
2k/ (Rϕ0 (σ))

))−1
}
.

Finally, the sum over the quadrant
{
n · σ > 2[log2(R)], n · σ⊥ > 2[log2(R)]

}
is bounded

by log2 (1/δ), ∑
0<|n|≤1/δ

n·σ>2[log2(R)]/R

n·σ⊥>2[log2(R)]/R

∣∣∣∣∣sin (πRn · σ)

πn · σ
sin
(
πRn · σ⊥

)
πn · σ⊥

∣∣∣∣∣
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0<|n|≤1/δ

n·σ>2[log2(R)]/R

n·σ⊥>2[log2(R)]/R

|n · σ|−1
∣∣n · σ⊥∣∣−1

≤ C log2 (1/δ) .

This takes care of the Fourier series over {0 < |n| ≤ 1/δ}. The series over
{2j−1/δ < |n| ≤ 2j/δ} can be treated in the same way. Just observe that since ζ (x)

is smooth with compact support,
∣∣∣ζ̂ (δn)

∣∣∣ ≤ C (1 + δ |n|)−a for every a, and the

factor 2−aj appears.

It is a classical result in Diophantine approximation that for every σ there exists
a positive constant C and infinite n with |n · σ| ≤ C/ |n|. In particular, the condition
|n · σ| ≥ ϕ (σ) |n|−α makes sense only for α ≥ 1.

Corollary 3. Let α ≥ 1, and let

ϕj (σ) = inf
0<|n|≤2j/δ

{|n|α |n · σ|} .

If σΩ is the unit square in R2 with sides perpendicular to σ and σ⊥, and if 2 ≤ p ≤
+∞, there exists a constant C such that for every R ≥ 2, the following hold:

(1) if 2 ≤ p < +∞ and α = 1,{∫
T2

|D (RσΩ− x)|p dx
}1/p

≤ CRδ + C log1−1/p (R)
+∞∑
j=0

2−ajϕj (σ)−1 .

(2) if 2 ≤ p < +∞ and α > 1,{∫
T2

|D (RσΩ− x)|p dx
}1/p

≤ CRδ + CR(α−1)/α

+∞∑
j=0

2−ajϕj (σ)−1/α .

(3) if p = +∞ and α = 1,

sup
x∈T2

{|D (RσΩ− x)| dx}

≤ CRδ + C log2 (1/δ) + C log (R) log (1/δ)
+∞∑
j=0

2−ajϕj (σ)−1 .
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(4) if p = +∞ and α > 1,

sup
x∈T2

{|D (RσΩ− x)| dx}

≤ CRδ + C log2 (1/δ) + CR(α−1)/α log (1/δ)
+∞∑
j=0

2−ajϕj (σ)−1/α .

Proof. By the theorem, if 2 ≤ p < +∞ and 1/p+ 1/q = 1,{∫
T2

|D (RσΩ− x)|p dx
}1/p

≤ C (1 +Rδ)

+ CR
+∞∑
j=0

2−aj


[log2(R)]∑
k=0

2−kq min
{

1, 2kq/αR−q/αϕj (σ)−q/α
}

1/q

≤ C (1 +Rδ) + CR1−1/α

+∞∑
j=0

2−aj

ϕj (σ)−q/α
[log2(R)]∑
k=0

2kq(1−α)/α


1/q

≤

{
C (1 +Rδ) + C log1/q (R)

∑+∞
j=0 2−ajϕj (σ)−1 if α = 1,

C (1 +Rδ) +R1−1/α
∑+∞

j=0 2−ajϕj (σ)−1/α if α > 1

Similarly, if p = +∞,

sup
x∈T2

{|D (RσΩ− x)| dx} ≤ C
(
Rδ + log2 (1/δ)

)
+ CR log (1/δ)

+∞∑
j=0

2−aj


[log2(R)]∑
k=0

2−k min
{

1, 2k/αR−1/αϕj (σ)−1/α
}

≤ CRδ + C log2 (1/δ) + CR1−1/α log (1/δ)
+∞∑
j=0

2−aj

ϕj (σ)−1/α

[log2(R)]∑
k=0

2−k(1−1/α)


≤

{
CRδ + C log2 (1/δ) + C log (R) log (1/δ)

∑+∞
j=0 2−ajϕj (σ)−1 if α = 1,

CRδ + C log2 (1/δ) + CR(α−1)/α log (1/δ)
∑+∞

j=0 2−ajϕj (σ)−1/α if α > 1.

By the above theorem and corollary, one can control the discrepancyD (RσΩ− x)
via a function ϕ (σ) = inf |n|≥0 {|n · σ| /ψ (|n|)}. We want to estimate the size and
dimension of the set of rotations σ where ϕ (σ) = 0. The lemma of Frostman is a
tool for estimating the Hausdorff dimension of Borel sets in Euclidean spaces. This
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lemma states that a Borel set X has positive α-dimensional Hausdorff measure if
and only if there is a positive Borel measure µ on X which assigns to every ball
of center p and radius r a measure µ {|x− p| < r} ≤ rα. The following is nothing
but a variant of classical results of Khintchine and Jarńık on metric Diophantine
approximation.

Theorem 6. Let ρ (t) be a positive increasing function in {t > 0}, and let dµ (ϑ) be
a non negative measure on R \ 2πZ with the property that for every interval I on
R \ 2πZ of length |I|,

µ {I} ≤ ρ (|I|) .
Fix 0 < T ≤ +∞. Let ψ (t) be a positive function in {t > 0} decreasing to zero, and
define the function ϕ (ϑ) on R \ 2πZ by the condition

ϕ (ϑ) = inf
0<
√
h2+k2<T

{
|−h cos (ϑ) + k sin (ϑ)|

ψ
(√

h2 + k2
) }

.

Then for every t > 0,

µ {ϕ (ϑ) < t} ≤ min

{
ρ (2π) , 8

∑
1≤k<T

(k + 1) ρ

(
2
√

2ψ (k) t

k

)}
.

Proof. The following estimate holds for every t > 0:

µ {ϕ (ϑ) < t} ≤ µ {0 ≤ ϑ < 2π} ≤ ρ (2π) .

This estimate is essentially best possible when t is large. Recall that ϕ (ϑ) < t if
and only if there exists (−h, k) 6= (0, 0) with

|−h cos (ϑ) + k sin (ϑ)| < tψ
(√

h2 + k2
)
.

By symmetry one can assume that 0 ≤ ϑ ≤ π/4, and also that 0 ≤ h ≤ k. Indeed, if
0 ≤ sin (ϑ) ≤ cos (ϑ) and k > 0, the minimum of |−h cos (ϑ) + k sin (ϑ)| is achieved
in the interval 0 ≤ h ≤ k. Then, if ϕ (ϑ) < t, there exist 0 ≤ h ≤ k such that

tψ (k) ≥ tψ
(√

h2 + k2
)
> |−h cos (ϑ) + k sin (ϑ)|

= k cos (ϑ) |tan (ϑ)− tan (arctan (h/k))|

≥ k√
2
|ϑ− arctan (h/k)| .

Hence,

{0 ≤ ϑ ≤ π/4 : ϕ (ϑ) < t}
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⊆
⋃

1≤k<T

⋃
0≤h≤k

(
arctan (h/k)−

√
2ψ (k) t

k
, arctan (h/k) +

√
2ψ (k) t

k

)
.

Finally, the measure of this set is dominated by

µ {0 ≤ ϑ ≤ π/4 : ϕ (ϑ) < t}

≤
∑

1≤k<T

∑
0≤h≤k

µ

{
arctan (h/k)−

√
2ψ (k) t

k
< ϑ < arctan (h/k) +

√
2ψ (k) t

k

}

≤
∑

1≤k<T

(k + 1) ρ

(
2
√

2ψ (k) t

k

)
.

Corollary 4. Let dµ (ϑ) be a non negative measure on R \ 2πZ with the property
that for every interval I on R \ 2πZ of length |I|,

µ {I} ≤ |I|β .

Finally, let

ϕ (ϑ) = inf
0<
√
h2+k2<T

{(
h2 + k2

)α/2 |−h cos (ϑ) + k sin (ϑ)|
}
.

Then for every t > 0,

µ {ϕ (ϑ) < t} ≤


C min

{
1, tβT 2−β(1+α)

}
if β < 2/ (1 + α) ,

C min
{

1, tβ log (T )
}

if β = 2/ (1 + α) ,

C min
{

1, tβ
}

if β > 2/ (1 + α) .

In particular, if 0 < s < αβ, then

{∫ 2π

0

(ϕ (ϑ))−s/α dµ (ϑ)

}1/s

≤


CT (2−β−αβ)/αβ if β < 2/ (1 + α) ,

C log1/αβ (T ) if β = 2/ (1 + α) ,

C if β > 2/ (1 + α) .

Proof. By the theorem,

µ {ϕ (ϑ) < t} ≤ min

{
(2π)β , 8

∑
1≤k<T

(k + 1)
(

2
√

2k−α−1t
)β}

.
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By the way, remember that the definition of ϕ (ϑ) when T = +∞ forces α ≥ 1, while
the assumption µ {I} ≤ |I|β forces β ≤ 1. Observe that when β > 2/ (α + 1) then
the above estimates can be made independent of T . Finally, by the above corollary,{∫ 2π

0

(ϕ (ϑ))−s/α dµ (ϑ)

}1/s

=

{∫ +∞

0

µ
{

(ϕ (ϑ))−s/α > u
}
du

}1/s

=

{
s/α

∫ +∞

0

t−s/α−1µ {ϕ (ϑ) < t} dt
}1/s

≤


C
(∫ +∞

0
t−s/α−1 min

{
1, tβT 2−β(1+α)

}
dt
)1/s

if β < 2/ (1 + α) ,

C
(∫ +∞

0
t−s/α−1 min

{
1, tβ log (T )

}
dt
)1/s

if β = 2/ (1 + α) ,

C
(∫ +∞

0
t−s/α−1 min

{
1, tβ

}
dt
)1/s

if β > 2/ (1 + α) ,

≤


CT (2−β−αβ)/αβ if β < 2/ (1 + α) ,

C log1/αβ (T ) if β = 2/ (1 + α) ,

C if β > 2/ (1 + α) .

Corollary 5. Let 2 ≤ p ≤ +∞, also let α ≥ 1, 0 < β ≤ 1, and 0 < s < αβ.
Finally, let dµ (ϑ) be a non negative measure on R \ 2πZ with the property that for
every interval I on R \ 2πZ of length |I|,

µ {I} ≤ |I|β .

If σΩ is the unit square in R2 with sides perpendicular to σ and σ⊥, then there exists
a constant C such that for every R ≥ 2,

(1) if β < 2/ (α + 1){∫
SO(2)

[∫
T2

|D (RσΩ− x)|p dx
]s/p

dµ (ϑ)

}1/s

≤


CR(2−2β)/(2−β) log1−1/p (R) if p < +∞, α = 1,

CR(2−2β)/(2−β) log2 (R) if p = +∞, α = 1,

CR(2−2β)/(2−β) if p < +∞, α > 1,

CR(2−2β)/(2−β) log (R) if p = +∞, α > 1.
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(2) if β = 2/ (α + 1){∫
SO(2)

[∫
T2

|D (RσΩ− x)|p dx
]s/p

dµ (ϑ)

}1/s

≤


C log2−1/p (R) if p < +∞, α = 1,

C log3 (R) if , p = +∞, α = 1,

CR(α−1)/α log1/αβ (R) if p < +∞, α > 1,

CR(α−1)/α log1+1/αβ (R) if p = +∞, α > 1.

(3) if β > 2/ (α + 1){∫
SO(2)

[∫
T2

|D (RσΩ− x)|p dx
]s/p

dµ (ϑ)

}1/s

≤

{
CR(α−1)/α if , p < +∞, α > 1,

CR(α−1)/α log (R) if , p = +∞, α > 1.

Observe that the the estimates with p = +∞ are the limit of the estimates with
p < +∞, with an extra factor log (R).

Proof. By the above corollary, with T = 2j/δ,

{∫ 2π

0

(ϕj (ϑ))−s/α dµ (ϑ)

}1/s

≤


C (2j/δ)

(2−β−αβ)/αβ
if β < 2/ (1 + α) ,

C log1/αβ (2j/δ) if β = 2/ (1 + α) ,

C if β > 2/ (1 + α) .

By the previous corollaries, if 2 ≤ p < +∞ and α = 1,{∫
SO(2)

[∫
T2

|D (RσΩ− x)|p dx
]s/p

dµ (ϑ)

}1/s

≤ C

(
Rδ + log1−1/p (R)

+∞∑
j=0

2−aj
{∫

SO(2)

ϕj (ϑ)−s dµ (ϑ)

}1/s
)
,

if 2 ≤ p < +∞ and α > 1,{∫
SO(2)

[∫
T2

|D (RσΩ− x)|p dx
]s/p

dµ (ϑ)

}1/s
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≤ C

(
Rδ +R(α−1)/α

+∞∑
j=0

2−aj
{∫

SO(2)

ϕj (ϑ)−s/α dµ (ϑ)

}1/s
)
,

if p = +∞ and α = 1,{∫
SO(2)

[∫
T2

|D (RσΩ− x)|p dx
]s/p

dµ (ϑ)

}1/s

≤ C

(
Rδ + log2 (1/δ) + log (R) log (1/δ)

+∞∑
j=0

2−aj
{∫

SO(2)

ϕj (ϑ)−s dµ (ϑ)

}1/s
)
,

if p = +∞ and α > 1,{∫
SO(2)

[∫
T2

|D (RσΩ− x)|p dx
]s/p

dµ (ϑ)

}1/s

≤ C

(
Rδ + log2 (1/δ) +R(α−1)/α log (1/δ)

+∞∑
j=0

2−aj
{∫

SO(2)

ϕj (ϑ)−s/α dµ (ϑ)

}1/s
)
.

If 2 ≤ p < +∞ and α = 1 and δ = R−β/(2−β),

Rδ + log1−1/p (R)
+∞∑
j=0

2−aj
{∫

SO(2)

ϕj (ϑ)−s dµ (ϑ)

}1/s

≤ Rδ + log1−1/p (R)
+∞∑
j=0

2−aj

{
C (2j/δ)

(2−2β)/β
if β < 1,

C log (2j/δ) if β = 1,

≤

{
CR(2−2β)/(2−β) log1−1/p (R) if β < 1 and δ = R−β/(2−β),

C log2−1/p (R) if β = 1 and δ = R−1.

If 2 ≤ p < +∞ and α > 1,

Rδ +R(α−1)/α

+∞∑
j=0

2−aj
{∫

SO(2)

ϕj (ϑ)−s/α dµ (ϑ)

}1/s

≤ Rδ +R(α−1)/α

+∞∑
j=0

2−aj


C (2j/δ)

(2−β−αβ)/αβ
if β < 2/ (1 + α) ,

C log1/αβ (2j/δ) if β = 2/ (1 + α) ,

C if β > 2/ (1 + α) .

≤


CR(2−2β)/(2−β) if β < 2/ (1 + α) ,

CR(α−1)/α log1/αβ (R) if β = 2/ (1 + α) ,

CR(α−1)/α if β > 2/ (1 + α) .
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If p = +∞ and α = 1 and δ = R−β/(2−β),

Rδ + log2 (1/δ) + log (R) log (1/δ)
+∞∑
j=0

2−aj
{∫

SO(2)

ϕj (ϑ)−s dµ (ϑ)

}1/s

≤ Rδ + log2 (1/δ) + log (R) log (1/δ)
+∞∑
j=0

2−aj

{
C (2j/δ)

(2−2β)/β
if β < 1,

C log (2j/δ) if β = 1,

≤

{
CR(2−2β)/(2−β) log2 (R) if β < 1,

C log3 (R) if β = 1.

If p = +∞ and α > 1 and δ = R−β/(2−β),

Rδ + log2 (1/δ) +R(α−1)/α log (1/δ)
+∞∑
j=0

2−aj
{∫

SO(2)

ϕj (ϑ)−s/α dµ (ϑ)

}1/s

≤ Rδ + log2 (1/δ) +R(α−1)/α log (1/δ)×

×
+∞∑
j=0

2−aj


C (2j/δ)

(2−β−αβ)/αβ
if β < 2/ (1 + α) ,

C log1/αβ (2j/δ) if β = 2/ (1 + α) ,

C if β > 2/ (1 + α) .

≤


CR(2−2β)/(2−β) log (R) if β < 2/ (1 + α) ,

CR(α−1)/α log1+1/αβ (R) if β = 2/ (1 + α) ,

CR(α−1)/α log (R) if β > 2/ (1 + α) .
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Convex sets with zero curvature at
a point

As before, let Ω ⊂ Rd be a convex body with measure |Ω| and let

DRΩ = card(Zd ∩RΩ)−Rd|Ω|.

In this chapter we introduce dilations, translations and rotations of this set Ω,
and we will try to understand the role of each one of these trasformations in the
estimates of the discrepancy. We will consider a convex set with everywhere positive
curvature except at a single point. Let Bγ be a such convex domain with boundary
∂Bγ coinciding with the graph of the function y = |x|γ in a neighborhood of the
origin, with γ ≥ 2. In particular if γ = 2 the curvature in the origin is positive,
while if γ > 2 the curvature is zero.

Some results about this matter can be found in [8], where the author proves that
in dimension d = 2

DRBγ =

{
R2/3 if γ ≤ 3,

R1− 1
γ if γ > 3.

Furthermore, he extends the results to domains in Rd, with d ≤ 7:

DRΩ ≤ CRd−2+ 2
d+1 .

The interest of this estimate is that the index d − 2 + 2
d+1

is the same for domains
with positive curvature, as prove in [17] and in [19].

Here we consider the mixed norm Ls(SO(d), Lp(T d)) of the discrepancy, also in
the case s = p: {∫

SO(d)

{∫
T d
|DRBγ (σ, t)|pdt

} s
p

dσ

} 1
s

79
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studying first the bidimensional case, and then the multidimensional one.

The main result is related to the norm Lp with p = +∞:

Theorem 7. Let γ > 2 and let Bγ ⊂ [0, 1)2 be a convex body. Assume that its
boundary ∂Bγ satisfies the following conditions:

i) ∂Bγ passes through the origin and it is of class C∞ in any other points;

ii) ∂Bγ coincides with the graph of the function y = |x|γ in a neighborhood of the
origin;

iii) ∂Bγ has strictly positive curvature out of this neighborhood.

Then for γ ≤ 3 it’s true that

|DRBγ | ≤ CR2/3.

Theorem 8. Let γ > 2 and let Bγ ⊂ [0, 1)2 be a convex body with a boundary that
satisfies the conditions of the previous theorem. Then for γ ≤ d+ 1, it is true that

|DRBγ | ≤ Cγ,dR
d−2+ 2

d+1 .

4.1 Lp(SO(d), Lp(T d)) estimates

4.1.1 Bidimensional case

Let γ > 2 and let Bγ ⊂ [0, 1)2 be a convex body. Assume that its boundary ∂Bγ

satisfies the following conditions:

i) ∂Bγ passes through the origin and it is of class C∞ in any other points;

ii) ∂Bγ coincides with the graph of the function y = |x|γ in a neighborhood of
the origin;

iii) ∂Bγ has strictly positive curvature out of this neighborhood.

Let R ≥ 1, t ∈ T 2 and σ ∈ SO(2). We remember that the discrepancy of a body
Ω is defined as

DΩ(t) = |Ω| − card
(
Z2 ∩ (Ω + t)

)
where |Ω| is the area of Ω. We want to study the discrepancy of the body Bγ rotated
by σ, traslated by t and dilated by R:
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DRBγ (σ, t) = R2|Bγ| − card
(
Z2 ∩ (Rσ(Bγ) + t)

)
= R2|Bγ| −

∑
n∈Z2

χ̂RBγ (σ(n))e2πint

= R2|Bγ| −R2
∑
n∈Z2

χ̂Bγ (Rσ(n))e2πint. (4.1)

From [7] we know that

{∫ 2π

0

|χ̂Bγ (ρΘ)|pdθ
} 1

p

≈


Cρ−3/2 if p < (2γ − 2)/(γ − 2),

Cρ−3/2 log(γ−2)/(2γ−2)(ρ) if p = (2γ − 2)/(γ − 2),

Cρ−1−1/p−1/(qγ) if p > (2γ − 2)/(γ − 2).

(4.2)
where ρ ≥ 0 and Θ = (cos θ, sin θ). We will use this result to calculate the norm
Lp(SO(2), Lp(T 2)) of the discrepancy DRBγ (σ, t):{∫

SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

.

one has three results, presented in three different theorems, depending on the value
of p and γ.

Theorem 9. Let 4 < (2γ − 2)/(γ − 2) (and so γ < 3) and 1/p+ 1/q = 1. Then

{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤


CR1/2 if p < 4,

CR1/2 log)3/4(R) if p = 4,

CR(2q−4)/(q−4) if 4 < p ≤ (2γ − 2)/(γ − 2),

CR2(q−2+ 1
γ )/(q−3+ 1

γ ) if p > (2γ − 2)/(γ − 2).

Proof. We start considering the first case: p < 4. For Hausdorff-Young and Minkowski
inequalities, one has{∫

SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

=

{∫
SO(2)

{(∫
T 2

|DRBγ (σ, t)|pdt
) 1

p

}p

dσ

} 1
p

≤ R2


∫
SO(2)

 ∑
n6=0∈Z2

|χ̂Bγ (Rσ(n))|q


p
q

dσ


1
p
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= R2

{
‖
∑
n6=0

|χ̂Bγ (Rσ(n))|q‖
L
p
q (SO(2))

} 1
q

≤ R2

{∑
n 6=0

‖|χ̂Bγ (Rσ(n))|q‖
L
p
q (SO(2))

} 1
q

= R2

{∑
n6=0

{∫
SO(2)

|χ̂Bγ (Rσ(n))|pdσ
} q

p

} 1
q

.

At this point we can use (4.2):

R2

{∑
n6=0

{∫
SO(2)

|χ̂Bγ (Rσ(n))|pdσ
} q

p

} 1
q

≤ R2

{∑
n6=0

|Rn|(−
3
2)q

} 1
q

= R
1
2

{∑
n6=0

|n|−
3
2
q

} 1
q

.

This series converges when 3
2
q > 2, that it means p < 4. Therefore one has{∫

SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ CR1/2.

Now let 4 < p < (2γ− 2)/(γ− 2) (the case p = (2γ− 2)/(γ− 2) will be analyzed
later). In this case the final series doesn’t converge because p > 4, so one has to
introduce the cut-off ϕ. Hence, one has

|DRBγ (σ, t)| ≤ |(R± ε)2 −R2||Bγ|+ |
∑
n6=0

ϕ̂ε(σ(n))χ̂RBγ (σ(n))|

≤ CRε+R2|
∑
n6=0

ϕ̂(εσ(n))χ̂Bγ (Rσ(n))|.

Considering the last series, one has

R2

{∫
SO(2)

∫
T 2

|
∑
n6=0

ϕ̂(εσ(n))χ̂Bγ (Rσ(n))|pdtdσ

} 1
p
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≤ R2


∫
SO(2)

(∑
n 6=0

|ϕ̂(εσ(n))χ̂Bγ (Rσ(n))|q
) p

q

dσ


1
p

≤ R2

{∑
n6=0

{∫
SO(2)

|ϕ̂(εσ(n))χ̂Bγ (Rσ(n))|pdσ
} q

p

} 1
q

= CR2

{∑
n6=0

1

1 + |εn|K1

{∫
SO(2)

|χ̂Bγ (Rσ(n))|pdσ
} q

p

} 1
q

At this point one can use (4.2) for p < (2γ − 2)/(γ − 2). Therefore we get

R2

{∑
n6=0

1

1 + |εn|K
‖χ̂Bγ (Rσ(n))‖qLp(SO(2))

} 1
q

≤ R2

{∑
n6=0

1

1 + |εn|K
|Rn|−

3
2
q

} 1
q

≤ R2

{∫
|ξ|≥1

1

1 + (ε|ξ|)K
(R|ξ|)−

3
2
qdξ

} 1
q

≤ R
1
2

{∫ ∞
1

1

1 + (εt)K
t−

3
2
q+1dt

} 1
q

≤ R
1
2 ε

3
2
− 2
q

{∫ ∞
0

s−
3
2
q+1

1 + sK
ds

} 1
q

= A.

Choose K large enough so that the last integral has no problems at ∞. Then
one has that the integral converges in 0 for −3

2
q + 1 > −1 ⇒ q < 4

3
, that it means

p > 4. Therefore

A ≤ CR
1
2 ε

3
2
− 2
q .

Then {∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ C(Rε+R
1
2 ε

3
2
− 2
q )

and choosing ε = Rq/(q−4 we can conclude that for 4 < p < (2γ − 2)/(γ − 2){∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ CR(2q−4)/(q−4).
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Considering the last integral of the inequality, one can find a result also for p = 4.
One has to analyze

A = R
1
2 ε

3
2
− 2
q

{∫ ∞
ε

s−
3
2
q+1

1 + sK
ds

} 1
q

with K large to not have problems at ∞. For −3
2
q + 1 = −1⇒ q = 4

3
(i.e. p = 4),

one has
A ≤ CR

1
2 (log(1/ε))

3
4

and choosing ε = 1/R we obtain{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ CR1/2 log3/4(R).

Now let p = (2γ − 2)/(γ − 2) (i. e. q = (2γ − 2)/(γ)). We can resume the
computation above using the right norm in (4.2). Therefore one has

R2

{∑
n 6=0

1

1 + |εn|K
‖χ̂Bγ (Rσ(n))‖qLp(SO(2))

} 1
q

≤ R2

{∑
n6=0

1

1 + |εn|K
|Rn|−

3
2
q(log |Rn|)

γ−2
2γ−2

q

} 1
q

≤ R2

{∫
|ξ|≥1

1

1 + |εn|K
(R|ξ|)−

3
2
q(log (R|ξ|))

γ−2
2γ−2

qdξ

} 1
q

= R
1
2

{∫ ∞
1

1

1 + (εt)K
t−

3
2
q+1(log (Rt))

γ−2
γ dt

} 1
q

≤ R
1
2 ε

3
2
− 2
q

{∫ ∞
0

1

1 + sK
s−

3
2
q+1

(
log

(
R

ε
s

)) γ−2
γ

ds

} 1
q

.

Considering only the integral, one has that

∫ ∞
0

1

1 + sK
s−

3
2
q+1

(
log

(
R

ε
s

)) γ−2
γ

ds =

∫ ∞
0

1

1 + sK
s−

3
2
q+1(C + log (s))

γ−2
γ ds

and the integral
∫∞

0
1

1+sK
s−

3
2
q+1(log (s))

γ−2
γ ds converges for −3

2
q + 1 > −1 ⇒

−3(γ−1)
γ

> −2⇒ γ < 3.
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Therefore {∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ C(Rε+R
1
2 ε

3
2
− 2
q )

and choosing ε = Rq/(q−4) we can conclude that{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ CR(2q−4)/(q−4).

We can now consider the last case: p > (2γ− 2)/(γ− 2) (i. e. q < (2γ− 2)/(γ)).
Also in this case we can resume the computation above using the right norm in
(4.2). One has

R2

{∑
n6=0

1

1 + |εn|K
‖χ̂Bγ (Rσ(n))‖qLp(SO(2))

} 1
q

≤ R2

{∑
n6=0

1

1 + |εn|K
|Rn|−q−

q
p
− 1
γ

} 1
q

≤ R2

{∫
|ξ|≥1

1

1 + (ε|ξ|)K
(R|ξ|)−q−

q
p
− 1
γ dξ

} 1
q

≤ R
1
q (1− 1

γ )ε1+ 1
p

+ 1
γq
− 2
q

{∫ ∞
0

s−q−
q
p
− 1
γ

+1

1 + sK
ds

} 1
q

= A.

Choose K large enough so that the last integral has no problems at∞. Then one
has that the integral converges in 0 for −q − q

p
− 1

γ
+ 1 > −1⇒ q < (3γ − 1)/(2γ).

Notice that (3γ − 1)/(2γ) > (2γ − 2)/γ and so it is satisfied the condition q <
(2γ − 2)/γ. Therefore

A ≤ CR
1
q (1− 1

γ )ε1+
1
p+ 1

γq−
2
q

.

Then {∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ C(Rε+R
1
q (1− 1

γ )ε1+ 1
p

+ 1
γq
− 2
q )

and choosing ε = R(q−1+ 1
γ )/(q−3+ 1

γ ) we can conclude that{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ CR2(q−2+ 1
γ )/(q−3+ 1

γ ).
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For p = 4 we can reason also in this way. One has to estimate this integral:{∫
SO(2)

‖DRBγ (σ, t)‖
p
L4(T 2)dσ

} 1
p

.

We know from [5] that

‖DRBγ (σ, t)‖L4(T 2) ≤ CR2 log
1
4 (R)‖

{
χ̂Bγ (Rσn)

}
n 6=0
‖Lq,∞(Z2)

where q = 4/3. Noticing that 4/3 < (2γ − 2)/(γ − 2) ∀γ > 2, one has{∑
n6=0

|χ̂Bγ (Rσn)|q
} 1

q

≤ R−
3
2

{∑
n6=0

|n|−
3
2
q

} 1
q

and we know that this series is in Lq,∞(Z2) if and only if 3
2
q ≥ 2⇒ q ≥ 4

3
. Therefore

‖DRBγ (σ, t)‖L4(T 2) ≤ CR
1
2 log

1
4 (R)

and
‖DRBγ (σ, t)‖L4(SO(2),L4(T 2)) ≤ CR

1
2 log

1
4 (R).

Theorem 10. Let (2γ − 2)/(γ − 2) < 4 (and so γ > 3) and 1/p+ 1/q = 1. Then{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤


CR1/2 if p ≤ (2γ − 2)/(γ − 2),

CR
1
q (1− 1

γ ) if (2γ − 2)/(γ − 2) < p < (3γ − 1)/(γ − 1),

CR
1
q (1− 1

γ ) log1/q(R) if p = (3γ − 1)/(γ − 1),

CR2(q−2+ 1
γ )/(q−3+ 1

γ ) if p > (3γ − 1)/(γ − 1).

Proof. For the case p < (2γ−2)/(γ−2) the proof is the same of the first case of the
Theorem 9, because we use the same norm for the computation and the convergence
condition p ≤ 4 is still satisfied. Let p = (2γ−2)/(γ−2) (i. e. q = (2γ−2)/gamma).
Reasoning as before, one has the following inequalities:{∫

SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

=

{∫
SO(2)

{(∫
T 2

|DRBγ (σ, t)|pdt
) 1

p

}p

dσ

} 1
p
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≤ R2

{∑
n6=0

{∫
SO(2)

|χ̂Bγ (Rσ(n))|pdσ
} q

p

} 1
q

≤ R2

{∑
n6=0

|Rn|−
3
2
q(log |Rn|)

γ−2
2γ−2

q

} 1
q

≤ R
1
2

{∫ ∞
1

t−
3
2
q+1(log (Rt))

γ−2
γ dt

} 1
q

Considering only the integral, one has that

∫ ∞
1

t−
3
2
q+1(log (Rt))

γ−2
γ dt =

∫ ∞
1

t−
3
2
q+1(C + log (t))

γ−2
γ dt

and the integral
∫∞

1
t−

3
2
q+1(log (t))

γ−2
γ dt converges for −3

2
q+ 1 < −1⇒ 3(γ−1)

γ
>

2⇒ γ > 3. Then

{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ CR1/2.

Let (2γ − 2)/(γ − 2) < p ≤ (3γ − 1)/(γ − 1). Reasoning in the same way of the
previous cases but changing the norm, one has

{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ R2

{∑
n6=0

{∫
SO(2)

|χ̂Bγ (Rσ(n))|pdσ
} q

p

} 1
q

≤ R2

{∑
n6=0

|Rn|(−1− 1
p
− 1
γ

1
q )q
} 1

q

= R
1
q (1− 1

γ )
{∑

|n|−q−
q
p
− 1
γ

} 1
q ≤ CR

1
q (1− 1

γ )

where the last inequality is possible because the series converges when q > (3γ −
1)/(2γ), that it means p < (3γ − 1)/(γ − 1).

Now consider p ≥ (3γ−1)/(γ−1) resuming the proof of the last case of the first
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theorem. In particular for p > (3γ − 1)/(γ − 1) one has

R2

{∑
n 6=0

1

1 + |εn|K
‖χ̂Bγ (Rσ(n))‖qLp(SO(2))

} 1
q

≤ R2

{∑
n6=0

1

1 + |εn|K
|Rn|−q−

q
p
− 1
γ

} 1
q

≤ R2

{∫
|ξ|≥1

1

1 + (ε|ξ|)K
(R|ξ|)−q−

q
p
− 1
γ dξ

} 1
q

≤ R
1
q (1− 1

γ )ε1+ 1
p

+ 1
γq
− 2
q

{∫ ∞
0

s−q−
q
p
− 1
γ

+1

1 + sK
ds

} 1
q

= A.

Choose K large enough so that the last integral has no problems at ∞. The
integral converges for −q − q

p
− 1

γ
+ 1 > −1⇒ q < 3γ−1

2γ
. Then one has

A ≤ CR
1
q (1− 1

γ )ε1+ 1
p

+ 1
γq
− 2
q .

Therefore{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ C(Rε+R
1
q (1− 1

γ )ε1+ 1
p

+ 1
γq
− 2
q )

and choosing ε = R(q−1+ 1
γ )/(q−3+ 1

γ ) we can conclude that{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ CR2(q−2+ 1
γ )/(q−3+ 1

γ ).

For p = (3γ − 1)/(γ − 1) one has to consider

A = R
1
q (1− 1

γ )ε1+ 1
p

+ 1
γq
− 2
q

{∫ ∞
0

s−q−
q
p
− 1
γ

+1

1 + sK
ds

} 1
q

with K large enough to not have problems at∞. For −q− q
p
− 1
γ
+1 = −1⇒ q = 3γ−1

2γ

(i.e. p = 3γ−1
γ−1

), one has

A ≤ CR
1
q (1− 1

γ )(log(1/ε))
1
q

and choosing ε = 1/R we obtain{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ CR
1
q (1− 1

γ )(logR)
1
q .



Chapter 4 89

Theorem 11. Let (2γ − 2)/(γ − 2) = 4 (and so γ = 3) and 1/p+ 1/q = 1. Then

{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤


CR1/2 if p < (2γ − 2)/(γ − 2),

CR1/2 log1/4(R) if p = (2γ − 2)/(γ − 2),

CR2(3q−5)/(3q−8) if p > (2γ − 2)/(γ − 2).

Proof. For p < (2γ−2)/(γ−2) the proof is the same of the first case of the Theorem
1, because we use the same norm for the computation and the convergence condition
p < 4 is still satisfied.

The case p = 4 is the same of the first theorem.

For p > (2γ− 2)/(γ− 2) we consider the proof of the last cases of both previous
theorems with γ = 3.

Estimates from below

One has that ∀k 6= 0

‖DRBγ (σ, t)‖Lp(SO(2),Lp(T 2))

= R2

{∫
SO(2)

∫
T 2

|
∑
n6=0

χ̂Bγ (Rσn)e2πint|pdtdσ

} 1
p

≥ R2

{∫
SO(2)

|χ̂Bγ (Rσk)|pdσ
} 1

p

Let γ < 3. Using [7] one has

for p < 4
cR1/2 ≤ ‖DRBγ (σ, t)‖Lp(SO(2),Lp(T 2)) ≤ CR1/2;

for 4 < p < (2γ − 2)/(γ − 2)

cR1/2 ≤ ‖DRBγ (σ, t)‖Lp(SO(2),Lp(T 2)) ≤ CR(2q−4)/(q−4);

for p > (2γ − 2)/(γ − 2)

cR
1
q

(1− 1
γ

) ≤ ‖DRBγ (σ, t)‖Lp(SO(2),Lp(T 2)) ≤ CR

2(q−2+ 1
γ )

q−3+ 1
γ .

Let γ > 3. One has
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for p < (2γ − 2)/(γ − 2)

cR
1
2 ≤ ‖DRBγ (σ, t)‖Lp(SO(2),Lp(T 2)) ≤ CR

1
2 ;

for (2γ − 2)/(γ − 2) < p < (3γ − 1)/(γ − 1)

cR
1
q

(1− 1
γ

) ≤ ‖DRBγ (σ, t)‖Lp(SO(2),Lp(T 2)) ≤ CR
1
q

(1− 1
γ

);

for p > (3γ − 1)/(γ − 1)

cR
1
q

(1− 1
γ

) ≤ ‖DRBγ (σ, t)‖Lp(SO(2),Lp(T 2)) ≤ CR

2(q−2+ 1
γ )

q−3+ 1
γ .

Main result

For p =∞ the norm che be improved:

Theorem 12. Let γ > 2 and let Bγ ⊂ [0, 1)2 be a convex body. Assume that its
boundary ∂Bγ satisfies the following conditions:

i) ∂Bγ passes through the origin and it is of class C∞ in any other points;

ii) ∂Bγ coincides with the graph of the function y = |x|γ in a neighborhood of the
origin;

iii) ∂Bγ has strictly positive curvature out of this neighborhood.

Then for γ < 3 we have
|DRBγ (σ, t)| ≤ CR2/3.

Simmetry enables us to consider only half Bγ. We can divide it in three parts:
the first part A with the origin, the second one B behaving as |x|γ and the third one
C with positive curvature. In particular, we can define better the angles limiting

these parts: for A one has 0 ≤ θ ≤ cρ−1+ 1
γ , for B one has cρ−1+ 1

γ < θ ≤ δ and for
C one has δ < θ ≤ π.

At this point we can consider the L∞-norm remembering that

|DRBγ (σ, t)| ≤ CRε+R2|
∑
n6=0

ϕ̂(εσ(n))χ̂Bγ (Rσ(n))|.

Let

S = R2
∑
n6=0

|χ̂Bγ (Rσ(n))| 1

1 + |εn|K
.
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We divide S in three pieces:

S = R2
∑

0≤arg(σ(n)|n| )≤cρ−1+ 1
γ

|χ̂Bγ (Rσ(n))| 1

1 + |εn|K

+R2
∑

cρ
−1+ 1

γ <arg(σ(n)|n| )≤ε

|χ̂Bγ (Rσ(n))| 1

1 + |εn|K

+R2
∑

ε<arg(σ(n)|n| )≤π

|χ̂Bγ (Rσ(n))| 1

1 + |εn|K

and we analyze the pieces one by one using for each region the estimates of |χ̂Bγ (ρΘ)|
present in [7].

For the first piece, we start considering the part of the region:

R2
∑

1≤|n|≤ρ1−
1
γ

|χ̂Bγ (Rσ(n))| = R2
∑

1≤|n|≤ρ1−
1
γ

(R|n|)−1− 1
γ

= R1− 1
γ

∑
1≤|n|≤ρ1−

1
γ

|n|−1− 1
γ

and this is finite. Therefore we can estimate the first series with an integral and one
has

R2
∑

0≤arg( n
|n|)≤cρ

−1+ 1
γ

|χ̂Bγ (Rσ(n))| 1

1 + |εn|K

≤ R2

∫ ∞
1

1

1 + ερK
ρ(Rρ)−1− 1

γ ρ−1+ 1
γ dρ

= R1− 1
γ

∫ ∞
1

1

1 + ερK
ρ−1dρ

= R1− 1
γ

∫ ∞
ε

1

1 + tK
(t)−1dt

= R1− 1
γ log

(
1

ε

)
and choosing ε = R−1/3 one has that

R2
∑

0≤arg( n
|n|)≤cρ

−1+ 1
γ

|χ̂Bγ (Rσ(n))| 1

1 + |εn|K
≤ CR1− 1

γ log(R).
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For the second part one has

R2
∑

cρ
−1+ 1

γ <arg( n
|n|)≤δ

|χ̂Bγ (Rσ(n))| 1

1 + |εn|K

≤ R2

∫ ∞
1

1

1 + (ερ)K
ρ(Rρ)−

3
2

∫ δ

ρ
−1+ 1

γ

θ
2−γ
2γ−2dθdρ

≤ R
1
2

∫ ∞
1

1

1 + (ερ)K
ρ−

1
2dρ

= R
1
2 ε−

1
2

∫ ∞
ε

1

1 + tK
t−

1
2dt

≤ CR
1
2 ε−

1
2

because (2− γ)/(2γ− 2) > −1 and so the integral in θ converges. For ε = R−1/3 we
get that

R2
∑

cρ
−1+ 1

γ <arg( n
|n|)≤ε

|χ̂Bγ (Rσ(n))| 1

1 + |εn|K
≤ CR2/3.

For the third part we can use the classical result:

R2
∑

ε<arg( n
|n|)≤π

|χ̂Bγ (Rσ(n))| 1

1 + |εn|K
≤ CR2/3.

Therefore
S ≤ CR1− 1

γ logR + CR2/3.

If γ < 3, one has 1− 1
γ
< 2

3
and so

|DRBγ (σ, t)| ≤ CR2/3.

We can now compare this result with the one in Theorem 9. In this theorem one
has that for p =∞{∫

SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤ CR1− 1
2γ−1 .

But for 2 < γ < 3 one has 1− 1
2γ−1

> 2
3

and so one has improved the estimate. Look
at 4.1.1.
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Figure 4.1: red= 1− 1
2γ−1

, blue= 1− 1
γ
, green= 2/3

4.1.2 Multidimensional case

Let

∂Bγ = {(x′, xd) ∈ Rd : xd = |x′|γ}

for values of γ > 2 near the origin. We are interested at the decay at infinity of the
Fourier transform of χBγ :

χ̂Bγ (ξ) =

∫
Rn
e−2πi(ξ·x)χBγ (x)dx

=

∫
Bγ

e−2πi(ξ·x)dx

=

∫
∂Bγ

e−2πi(ξ·x) · dS

=

∫
Rd−1

e−2πi(ξ′·x′+ξn|x′|γ)|x′|γdx′.



94 Chapter 4

Proposition 1. One has

|χ̂Bγ (ξ)| ≤ |ξ′|
− (d−1)(γ−2)

2(γ−1) |ξd|−
d−1

2(γ−1) |ξ|−1

and
|χ̂Bγ (ξ)| ≤ |ξ|

− d−1
γ
−1.

Proof. It follows from [6].

Proposition 2. One has the following estimates:

{∫
Sd−1

|χ̂Bγ (ρω)|pdω
} 1

p

≤


ρ−(d+1)/2, if p < 2(γ − 1)/(γ − 2),

ρ−(d+1)/2 log(γ−2)(d−1)/2(γ−1)(ρ), if p = 2(γ − 1)/(γ − 2),

ρ−(d−1)( 1
p

+ 1
γ
− 1
pγ )−1, if p > 2(γ − 1)/(γ − 2.

Proof. Let ξ = (ξ′, ξd) = (ρω′ sin θ, ρ cos θ) with ω′ ∈ Sd−2 and 0 ≤ θ ≤ π. When
ε < θ < π − ε one has the estimate

|χ̂Bγ (ρω′ sin θ, ρ cos θ)| ≤ ρ−
d+1
2 .

Therefore for p > 2(γ−1)
γ−2

one has∫ π

0

∫
Sd−2

|χ̂Bγ (ρω′ sin θ, ρ cos θ)|p sind−2 θdω′dθ

≤ ρ−
d+1
2
p +

∫ ε

0

(
min

(
ρ−

d−1
γ
−1, ρ−

d+1
2 (sin θ)−

(d−1)(γ−2)
2(γ−1) (cos θ)−

d−1
2(γ−1)

))p
(sin θ)d−2dθ

≤ ρ−
d+1
2
p +

∫ ε

0

(
min

(
ρ−

d−1
γ
−1, ρ−

d+1
2 θ−

(d−1)(γ−2)
2(γ−1)

))p
θd−2dθ

≤ ρ−
d+1
2
p +

∫ ρ−1+1/γ

0

ρ(− d−1
γ
−1)pθd−2dθ +

∫ ε

ρ−1+1/γ

ρ−
d+1
2
pθ−p

(d−1)(γ−2)
2(γ−1) θd−2dθ

≤ ρ−
d+1
2
p + ρ−(d−1) γ+p−1

γ
p−p + ρ−(d−1) γ+p−1

γ
p−p ≤ ρ−(d−1) γ+p−1

γ
p−p.

In the same way you can obtain the other two results.

At this point one can consider the convex body Bγ ⊂ [0, 1)d with γ > 2, remem-
bering that

DRBγ = Rd|Bγ| −Rd
∑
n∈Z

χ̂Bγ (Rσn)e2πint

and we can estimate the norm Lp(SO(d), Lp(T d)) of the discrepancy DRBγ (σ, t).
Like for d = 2, one has different cases, depending on the value of p and γ.
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Theorem 13. Let 2d/(d− 1) < (2γ − 2)/(γ − 2) (so γ < d+ 1) and 1/p+ 1/q = 1.
Then{∫

SO(d)

∫
T d
|DRBγ (σ, t)|pdtdσ

} 1
p

≤


CR(d−1)/2 if p < 2d/(d− 1),

CRd(d−1)(q−2)/[q(d−1)−2d] if 2d/(d− 1) < p < 2(γ − 1)/(γ − 2),

Rd(d−1)(q−2+ 1
γ

)/[(d−1)(q−2+ 1
γ

)−1] if p > 2(γ − 1)/(γ − 2).

Proof. As before, one has{∫
SO(d)

∫
T d
|DRBγ (σ, t)|pdtdσ

} 1
p

≤ Rd

{∑
n6=0

{∫
SO(d)

|χ̂Bγ (Rσ(n))|pdσ
} q

p

} 1
q

.

Hence for p < 2d/(d− 1)

Rd

{∑
n6=0

{∫
SO(d)

|χ̂Bγ (Rσ(n))|pdσ
} q

p

} 1
q

≤ Rd

{∑
n6=0

|Rn|−
d+1
2
q

} 1
q

= R
d−1
2

{∑
n6=0

|n|−
d+1
2
q

} 1
q

.

This series converges when d+1
2
q > d, that it means p < 2d

d−1
. Therefore{∫

SO(d)

∫
T d
|DRBγ (σ, t)|pdtdσ

} 1
p

≤ CR(d−1)/2.

Now let 2d/(d− 1) < p < 2(γ − 1)/(γ − 2). In this case, the final series doesn’t
converge because p > 2d/(d− 1). So we can use the smoothing-trick on Rd to solve
the problem. Therefore

|DRBγ (σ, t)| ≤ CRd−1ε+Rd|
∑
n6=0

ϕ̂(εσn)χ̂Bγ (Rσn)|.

Considering the last series, one has

Rd

{∫
SO(d)

∫
T d
|
∑
n6=0

ϕ̂(εσn)χ̂Bγ (Rσn)|pdtdσ

} 1
p
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≤ CRd

{∑
n6=0

1

1 + |εn|K

{∫
SO(d)

|χ̂Bγ (Rσn)|pdσ
} p

q

} 1
q

and so using the estimate for p < (2γ − 2)/(γ − 2) we get

Rd

{∑
n 6=0

1

1 + |εn|K
‖χ̂Bγ (Rσn)‖qLp(SO(d))

} 1
q

≤ CRd

{∑
n6=0

1

1 + |εn|K
|Rn|−

d+1
2
q

} 1
q

= CRd

{∫
|ξ|≥1

1

1 + |ε|ξ||K
(R|ξ|)−

d+1
2
qdξ

} 1
q

= CR
d−1
2

{∫ +∞

1

1

1 + (εt)K
t−

d+1
2
q+d−1dt

} 1
q

= CR
d−1
2

{∫ +∞

0

1

1 + sK
s−

d+1
2
q+d−1ε

d+1
2
q−d+1−1ds

} 1
q

= CR
d−1
2 ε

d+1
2
− d
q

{∫ +∞

0

1

1 + sK
s−

d+1
2
q+d−1ds

} 1
q

= A.

This integral converges in 0 for −d+1
2
q + d− 1 > −1⇒ q < 2d

d+1
. Therefore

A ≤ CR
d−1
2 ε

d+1
2
− d
q .

Then {∫
SO(d)

∫
T d
|DRBγ (σ, t)|pdtdσ

} 1
p

≤ C(Rd−1ε+R
d−1
2 ε

d+1
2
− d
q )

and choosing ε = Rq(d−1)/[q(d−1)−2d] we can say that for 2d/(d − 1) < p < 2(γ −
1)/(γ − 2) {∫

SO(d)

∫
T d
|DRBγ (σ, t)|pdtdσ

} 1
p

≤ CR
d(d−1)(q−2)
q(d−1)−2d .

Using the right estimate, we can find an estimate also for p > (2γ − 2)/(γ − 2).
So one has

Rd

{∑
n6=0

1

1 + |εn|K
‖χ̂Bγ (Rσn)‖qLp(SO(d))

} 1
q
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≤ CRd

{∑
n6=0

1

1 + |εn|K
|Rn|−q−(d−1)( q

p
+ 1
γ

)

} 1
q

≤ R
1
q

(d−1)(1− 1
γ

)ε1+(d−1)( 1
p

+ 1
qγ
− 1
q

)− 1
q

{∫ +∞

0

s−q−(d−1)( q
p

+ 1
γ
−1)

1 + sK

} 1
q

.

This integral converges for −q− (d−1)( q
p

+ 1
γ
−1) > −1⇒ q < γ(2d−1)−(d−1)

dγ
. Notice

that γ(2d−1)−(d−1)
dγ

> 2γ−2
γ

and so we satisfy the condition p > 2γ−2
γ−2

. Therefore

{∫
SO(d)

∫
T d
|DRBγ (σ, t)|pdtdσ

} 1
p

≤ C(Rd−1ε+R
1
q

(d−1)(1− 1
γ

)ε1+(d−1)( 1
p

+ 1
qγ
− 1
q

)− 1
q )

and choosing ε = R
(d−1)(γq−γ+1)

(d−1)(qγ−2γ+1)−γ one has{∫
SO(d)

∫
T d
|DRBγ (σ, t)|pdtdσ

} 1
p

≤ R

d(d−1)(q−2+ 1
γ )

(d−1)(q−2+ 1
γ )−1 .

Theorem 14. Let (2γ − 2)/(γ − 2) < 2d/(d− 1) (so γ > d+ 1) and 1/p+ 1/q = 1.
Then{∫

SO(d)

∫
T d
|DRBγ (σ, t)|pdtdσ

} 1
p

≤


CR(d−1)/2 if p < (2γ − 2)/(γ − 2),

CR
1
q

(d−1)(1− 1
γ

) if (2γ − 2)/(γ − 2) < p < [γ(2d− 1)− (d− 1)]/dγ,

CR

d(d−1)(q−2+ 1
γ )

(d−1)(q−2+ 1
γ )−1 if p > [γ(2d− 1)− (d− 1)]/dγ.

Proof. For p < (2γ − 2)/(γ − 2) the proof is as before.
Let p > (2γ − 2)/(γ − 2). One has

Rd

{∑
n6=0

‖χ̂Bγ (Rσn)‖qLp(SO(d))

} 1
q

≤ Rd
{∑

|Rn|−q(d−1)( 1
p

+ 1
γ
− 1
pγ

)−q
} 1
q

= R
1
q

(d−1)(1− 1
γ

)
{∑

|n|−q(d−1)( 1
p

+ 1
γ
− 1
pγ

)−q
} 1
q
.
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This series converges when q > γ(2d−1)−(d−1)
dγ

⇒ p < γ(2d−1)−(d−1)
(d−1)(γ−1)

.Therefore

{∫
SO(d)

∫
T d
|DRBγ (σ, t)|pdtdσ

} 1
p

≤ CR
1
q

(d−1)(1− 1
γ

).

For p > γ(2d−1)−(d−1)
(d−1)(γ−1)

one has to use the smoothing-trick:

Rd

{∑
n6=0

1

1 + |εn|K
‖χ̂Bγ (Rσn)‖qLp(SO(d))

} 1
q

≤ Rd

{∑ 1

1 + |εn|K
|Rn|−q(d−1)( 1

p
+ 1
γ
− 1
pγ

)−q
} 1

q

= R
1
q

(d−1)(1− 1
γ

)ε1+(d−1)( 1
p

+ 1
qγ
− 1
q

)− 1
q

{∫ +∞

0

s−q−(d−1)( q
p

+ 1
γ
−1)

1 + sK
ds

} 1
q

and this converges for p > γ(2d−1)−(d−1)
(d−1)(γ−1)

. Hence choosing ε = R
(d−1)(γq−γ+1)

(d−1)(qγ−2γ+1)−γ we get

{∫
SO(d)

∫
T d
|DRBγ (σ, t)|pdtdσ

} 1
p

≤ R

d(d−1)(q−2+ 1
γ )

(d−1)(q−2+ 1
γ )−1 .

Main result

One can improve the L∞-norm:

Theorem 15. Let γ > 2 and let Bγ ⊂ [0, 1)2 be a convex body as before. If γ ≤ d+1,
it is true that

|DRBγ (σ, t)| ≤ Cγ,dR
d−2+ 2

d+1 .

Proof. Let ϕ(t) be a cut-off function as before. One has

|DR| := |DRBγ (σ, t)| ≤ Rd−1ε+Rd
∑
n6=0

|χ̂Bγ (Rσn)| 1

1 + |εn|K
. (4.3)

Let ξ = (ξ′, ξd) with ξ′ ∈ R−1 and ξd ∈ R. One has

(ξ′, ξd) = (ρω′ sin θ, ρ cos θ)
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with ρ > 0, ω′ ∈ Sd−2 and 0 ≤ θ ≤ π. We want to replace the series in 4.3 with the
following integral: ∫

|ξ|≥1/2

|χ̂Bγ (Rn)| 1

1 + |εn|K
dξ.

This means that one has to consider the set of the points near the origin and the set
of the line {nd = 0} in a different way. Hence, remembering that ∂Bγ has a strictly
positive curvature out of a neighborhood of the origin, one has

|DR| ≤ Rd−1ε+Rd max
1≤|n|≤c

|χ̂Bγ (Rn)|+Rd

+∞∑
nd=1

|χ̂Bγ (R(0, · · · , nd))|

+Rd

∫ +∞

1/2

∫ π

0

∫
Sd−2

|χ̂Bγ (Rρ(ω′ sin θ, cos θ))|dω′ sind−2(θ)dθ
1

1 + (ερ)K
ρd−1dρ

≤ Rd−1 +R(d−1)(1− 1
γ ) +R(d−1)(1− 1

γ )
+∞∑
nd=1

n
− d−1

γ
−1

d +R
d(d−1)
d+1

+Rd

∫ +∞

1/2

∫ π/4

0

min
(

(Rρ)−
d−1
γ
−1, (Rρ sin θ)−

(d−1)(γ−2)
2(γ−1) (Rρ cos θ)−

d−1
2(γ−1) (Rρ)−1

)
× sind−2 θdθ

1

1 + (ερ)K
ρd−1dρ.

If 0 ≤ θ ≤ π/4, one has

(Rρ)−
d−1
γ
−1 = (Rρ sin θ)−

(d−1)(γ−2)
2(γ−1) (Rρ cos θ)−

d−1
2(γ−1) (Rρ)−1

⇒ θ ≈ (Rρ)
1
γ
−1.

Therefore one has to consider the following integral:

Rd

∫ +∞

1/2

∫ c(Rρ)
1
γ−1

0

θd−2dθ(Rρ)−
d−1
γ
−1 1

1 + (ερ)K
ρd−1dρ

+Rd

∫ +∞

1/2

∫ π/4

c(Rρ)
1
γ−1

(Rρθ)−
(d−1)(γ−2)

2(γ−1) (Rρ)−
d−1

2(γ−1)
−1θd−2dθ

× 1

1 + (ερ)K
ρd−1dρ

:= A+B.

One has

A = Rd

∫ +∞

1/2

∫ c(Rρ)
1
γ−1

0

θd−2 dθ (Rρ)−
d−1
γ
−1 1

(1 + ερ)K
ρd−1 dρ
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= R(d−1)(1− 1
γ )
∫ +∞

1/2

∫ c(Rρ)
1
γ−1

0

θd−2 dθ ρ−
d−1
γ

+d−2 1

(1 + ερ)K
dρ

. R(d−1)(1− 1
γ )
∫ +∞

1/2

(Rρ)−
(γ−1)(d−1)

γ ρ−
d−1
γ

+d−2 1

(1 + ερ)K
dρ

=

∫ +∞

1/2

ρ−1 1

(1 + ερ)K
dρ .

∫ +∞

ε/2

t−1 1

(1 + t)K
dt . log

(
1

ε

)
.

and

B = Rd

∫ +∞

1/2

∫ π/4

c(Rρ)
1
γ−1

(Rρθ)−
(d−1)(γ−2)

2(γ−1) (Rρ)−
d−1

2(γ−1)
−1 θd−2 dθ

1

(1 + ερ)K
ρd−1 dρ

= R
d−1
2

∫ +∞

1/2

∫ π/4

c(Rρ)
1
γ−1

θ
dγ+2−3γ
2(γ−1) dθ ρ

d−3
2

1

(1 + ερ)K
dρ

. R
d−1
2

∫ +∞

1/2

ρ
d−3
2

1

(1 + ερ)K
dρ = R

d−1
2

∫ +∞

ε

t
d−3
2 ε−

d−3
2

1

ε (1 + t)K
dt

. R
d−1
2 ε−

d−1
2

∫ +∞

0

t
d−3
2

1

ε (1 + t)K
dt . R

d−1
2 ε−

d−1
2 ,

because θ
dγ+2−3γ
2(γ−1) is convergent in 0+. Therefore one has

|DR| . Rd−1ε+R(d−1)(1− 1
γ ) +R

d(d−1)
d+1 + log

(
1

ε

)
+R

d−1
2 ε−

d−1
2 ,

and, if Rd−1ε = R
d−1
2 ε−

d−1
2 , we have ε = R−

d−1
d+1 and

|DR| . R(d−1)(1− 1
γ ) + log (R) +R

d(d−1)
d+1 . R

d(d−1)
d+1 = Cγ,dR

d−2+ 2
d+1

because γ ≤ d+ 1.

4.2 Ls(SO(2), Lp(T 2)) estimates

We want now to calculate the norm Ls(SO(2), Lp(T 2)) of the discrepancy DRBγ (σ, t):{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

.

One can consider two cases: 1 < p ≤ 2 and p > 2. Let 1 < p ≤ 2.
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Theorem 16. Let 1 < p ≤ 2 and s < 2.
For s < 2 one has{∫

SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ CR
1
2 .

Proof. For 1 < p ≤ 2 we know it’s true that ‖f‖p ≤ ‖f‖2 = ‖f̂‖2. So one has{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤

{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|2dt
} s

2

dσ

} 1
s

= R2


∫
SO(2)

{∑
n 6=0

|χ̂Bγ (Rσn)|2
} s

2

dσ


1
s

We know also that for 0 < p ≤ 1 it’s true that ‖f+g‖pp ≤ ‖f‖pp+‖g‖pp. Therefore,
since s

2
< 1,

R2


∫
SO(2)

{∑
n6=0

|χ̂Bγ (Rσn)|2
} s

2

dσ


1
s

= R2

{
‖
∑
n6=0

|χ̂Bγ (Rσn)|2‖
s
2

L
s
2 (SO(2))

} 1
s

= R2

{
‖
∑
n6=0

|χ̂Bγ (Rσn)|2‖
L
s
2 (SO(2))

} 1
2

≤ R2

{∑
n6=0

‖|χ̂Bγ (Rσn)|2‖
L
s
2 (SO(2))

} 1
2

= R2

{∑
n6=0

(∫
SO(2)

|χ̂Bγ (Rσn)|sdσ
) 2

s

} 1
2

= R2

{∑
n6=0

‖χ̂Bγ (Rσn)‖2
Ls(SO(2))

} 1
2
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Now one has to use a result in [7] for the Ls(SO(2))-norm of χ̂Bγ . Noticing that
2 < (2γ − 2)/(γ − 2) for all γ, one has

R2

{∑
n 6=0

‖|χ̂Bγ (Rσn)|‖2
Ls(SO(2))

} 1
2

≤ CR2

{∑
n6=0

|Rn|−3

} 1
2

= CR
1
2

{∑
n6=0

|n|−3

} 1
2

This series converges. Therefore for s < 2 one has{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ CR1/2.

Theorem 17. Let 1 < p ≤ 2, s > 2 and 1/s+ 1/r = 1. Then{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤

CR
1/2 if 2 < s ≤ (2γ − 2)/(γ − 2),

CR

r−2(1− 1
γ )

1
γ−1 if s > (2γ − 2)/(γ − 2).

Proof. Reasoning as before and remembering that s < (2γ − 2)/(γ − 2), one has{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ CR
1
2

{∑
n 6=0

|n|−3

} 1
2

.

The last series is finite. Therefore we can conclude that for 2 < s < (2γ−2)/(γ−
2) {∫

SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ CR1/2.

For s = (2γ − 2)/(γ − 2) one has

R2

{∑
n6=0

‖χ̂Bγ (Rσn)‖2
Ls(SO(2))

} 1
2
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≤ CR2

{∑
n6=0

|Rn|−3(log (Rn))
γ−2
γ−1

} 1
2

≤ CR
1
2

{∑
n6=0

|n|−3(log (Rn))
γ−2
γ−1

} 1
2

.

Also this series is finite and so for s = (2γ − 2)/(γ − 2){∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ CR1/2.

Let s > (2γ− 2)/(γ− 2). Like in the first theorem, we can use the function ϕ to
get a convergent integral:

R2


∫
SO(2)

(∫
T 2

|
∑
n6=0

ϕ̂(εσn)χ̂Bγ (Rσn)|pdt

) s
p

dσ


1
s

≤ R2


∫
SO(2)

(∫
T 2

|
∑
n6=0

ϕ̂(εσn)χ̂Bγ (Rσn)|2dt

) s
2

dσ


1
s

= R2


∫
SO(2)

(∑
n6=0

|ϕ̂(εσn)χ̂Bγ (Rσn)|2
) s

2

dσ


1
s

= R2

{
‖
∑
n6=0

|ϕ̂(εσn)χ̂Bγ (Rσn)|2‖
L
s
2 (SO(2))

} 1
2

≤ R2

{∑
n 6=0

‖|ϕ̂(εσn)χ̂Bγ (Rσn)|2‖
L
s
2 (SO(2))

} 1
2

= R2

{∑
n6=0

(∫
SO(2)

|ϕ̂(εσn)χ̂Bγ (Rσn)|sdσ
) 2

s

} 1
2

≤ CR2

{∑
n6=0

1

1 + |εn|K

(∫
SO(2)

|χ̂Bγ (Rσn)|sdσ
) 2

s

} 1
2

≤ CR2

{∑
n6=0

1

1 + |εn|K
|Rn|−2− 2

s
− 2
rγ

} 1
2
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= CR2

{∫
|ξ|≤1

1

1 + (ε|ξ|)K
(R|ξ|)−2− 2

s
− 2
rγ dξ

} 1
2

= CR1− 1
s
− 1
rγ

{∫ ∞
1

1

1 + (εt)K
(t)−1− 2

s
− 2
rγ dt

} 1
2

≤ CR1− 1
s
− 1
rγ

{∫ ∞
0

1

1 + xK

(x
ε

)−1− 2
s
− 2
rγ 1

ε
dx

} 1
2

= CR
1
r

(1− 1
γ

)ε
1
s

+ 1
rγ

{∫ ∞
0

1

1 + xK
x−1− 2

s
− 2
rγ dx

} 1
2

= A.

We choose K large enough to not have problems at ∞. Therefore

A ≤ CR
1
r

(1− 1
γ

)ε1− 1
r

(1− 1
γ

)

and {∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ C(Rε+R
1
r

(1− 1
γ

)ε1− 1
r

(1− 1
γ

)).

Choosing ε = R

1− 1
r (1−

1
γ )

1
r (

1
γ−1) , we get{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ CR

r−2(1− 1
γ )

1
γ−1 .

Now let p > 2.

Theorem 18. Let s ≤ (2γ − 2)/(γ − 2). Then

{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤


CR1/2 if 2 < p < 4,

CR1/2 log1/4(R) if p = 4,

CR(2q−4)/(q−4) if p > 4.

Proof. Let 2 < p < 4. One has{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s
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=

{∫
SO(2)

{
‖|DRBγ (σ, t)|‖Lp(T 2)

}s
dσ

} 1
s

≤ R2


∫
SO(2)

(∑
n 6=0

|χ̂Bγ (Rσn)|q
) s

q

dσ


1
s

= R2

{
‖
∑
n 6=0

|χ̂Bγ (Rσn)|q‖
L
s
q (SO(2))

} 1
q

≤ R2

{∑
n6=0

‖|χ̂Bγ (Rσn)|q‖
L
s
q (SO(2))

} 1
q

= R2

{∑
n6=0

(∫
SO(2)

|χ̂Bγ (Rσn)|sdσ
) q

s

} 1
q

= R2

{∑
n6=0

‖χ̂Bγ (Rσn)‖qLs(SO(2))

} 1
q

For s < (2γ − 2)/(γ − 1), using [7] we get

R2

{∑
n6=0

‖χ̂Bγ (Rσn)‖qLs(SO(2))

} 1
q

≤ R2

{∑
n 6=0

|Rn|−
3
2
q

} 1
q

= R
1
2

{∑
n 6=0

|n|−
3
2
q

} 1
q

This series is finite when q > 4/3 and therefore

{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ CR1/2.
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For s = (2γ − 2)/(γ − 2) one has

R2

{∑
n6=0

‖χ̂Bγ (Rσn)‖qLs(SO(2))

} 1
q

≤ R2

{∑
n6=0

|Rn|−
3
2
q(log |Rn|)

γ−2
2γ−2

q

} 1
q

= R
1
2

{∑
n6=0

|n|−
3
2
q(log |Rn|)

γ−2
2γ−2

q

} 1
q

This series is finite when q > 4/3 and therefore{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ CR1/2.

Let p > 4. We can use the smoothing-trick with the function ϕ to get a conver-
gent final integral. One has

R2


∫
SO(2)

(∫
T 2

|
∑
n 6=0

ϕ̂(εσn)χ̂Bγ (Rσn)|pdt

) s
p

dσ


1
s

≤ R2


∫
SO(2)

(∑
n 6=0

|ϕ̂(εσn)χ̂Bγ (Rσn)|q
) s

q

dσ


1
s

= R2

{
‖
∑
n 6=0

|ϕ̂(εσn)χ̂Bγ (Rσn)|q‖
L
s
q (SO(2))

} 1
q

≤ R2

{∑
n6=0

‖|ϕ̂(εσn)χ̂Bγ (Rσn)|q‖
L
s
q (SO(2))

} 1
q

= R2

{∑
n6=0

(∫
SO(2)

|ϕ̂(εσn)χ̂Bγ (Rσn)|sdσ
) q

s

} 1
q

≤ CR2

{∑
n6=0

1

1 + |εn|K

(∫
SO(2)

|χ̂Bγ (Rσn)|sdσ
) q

s

} 1
q
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= CR2

{∑
n6=0

1

1 + |εn|K
‖χ̂Bγ (Rσn)‖qLs(SO(2))

} 1
q

For s < (2γ − 2)/(γ − 2) we get

R2

{∑
n6=0

1

1 + |εn|K
‖χ̂Bγ (Rσ(n))‖qLs(SO(2))

} 1
q

≤ R2

{∑
n6=0

1

1 + |εn|K
|Rn|−

3
2
q

} 1
q

≤ R2

{∫
|ξ|≥1

1

1 + (ε|ξ|)K
(R|ξ|)−

3
2
qdξ

} 1
q

≤ R
1
2

{∫ ∞
1

1

1 + (εt)K
t−

3
2
q+1dt

} 1
q

≤ R
1
2

{∫ ∞
0

1

1 + xK

(x
ε

)− 3
2
q+1 1

ε
dx

} 1
q

≤ R
1
2 ε

3
2
− 2
q

{∫ ∞
0

x−
3
2
q+1

1 + xK
dx

} 1
q

= A.

Choose K large enough so that the last integral has no problems at ∞. Then
one has that the integral converges in 0 for −3

2
q + 1 > −1 ⇒ q < 4

3
, that it means

p > 4. Therefore

A ≤ CR
1
2 ε

3
2
− 2
q .

Then {∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ C(Rε+R
1
2 ε

3
2
− 2
q )

and choosing ε = Rq/(q−4) we can conclude that for s < 2γ−2
γ−2

and p > 4{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ CR(2q−4)/(q−4).

For s = (2γ − 2)/(γ − 2), one has

R2

{∑
n 6=0

1

1 + |εn|K
‖χ̂Bγ (Rσ(n))‖qLs(SO(2))

} 1
q



108 Chapter 4

≤ R2

{∑
n6=0

1

1 + |εn|K
|Rn|−

3
2
q(log |Rn|)

γ−2
γ−2

q

} 1
q

≤ R2

{∫
|ξ|≥1

1

1 + (ε|ξ|)K
(R|ξ|)−

3
2
q(log (R|ξ|))

γ−2
2γ−2

qdξ

} 1
q

≤ R
1
2

{∫ ∞
1

1

1 + (εt)K
t−

3
2
q+1(log (Rt))

γ−2
2γ−2

qdt

} 1
q

≤ R
1
2

{∫ ∞
0

1

1 + xK

(x
ε

)− 3
2
q+1

(log
(
R
x

ε

)
)
γ−2
2γ−2

q 1

ε
dx

} 1
q

≤ R
1
2 ε

3
2
− 2
q

{∫ ∞
0

x−
3
2
q+1

1 + xK
(log (R

x

ε
))

γ−2
2γ−2

qdx

} 1
q

.

This integral converges for q < 4/3⇒ p > 4. Therefore{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ C(Rε+R
1
2 ε

3
2
− 2
q )

and choosing ε = Rq/(q−4) we can conclude that for s = 2γ−2
γ−2

and p > 4

{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ CR(2q−4)/(q−4).

The case p = 4 is the critic one for s ≤ (2γ − 2)/(γ − 2) for every γ. One can
resume the computation done in the previous proofs to get the thesis.

For s = (2γ−2)/(γ−2) one can think in the same way using the right Ls(SO(2))-
norm to get the same result.

One can notice that these results are independent of γ. So for s < (2γ−2)/(γ−2),
if p ≤ 4 the discrepancy norm doesn’t depend on p or s. For p > 4 the value of s
isn’t important: what matters is p and its coniugated q.
Now let s > (2γ − 2)/(γ − 2).

Theorem 19. Let s > (2γ − 2)/(γ − 2). Then{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s
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≤

CR
2+ 2r

rq−q(1− 1
γ )−2r if p < (2γ)/(γ − 1) and p > 4,

CR
1
r

(1− 1
γ

) if 2γ/(γ − 1) < p < 4.

Proof. One has {∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

=

{∫
SO(2)

{
‖|DRBγ (σ, t)|‖Lp(T 2)

}s
dσ

} 1
s

≤ R2

{∑
n6=0

‖χ̂Bγ (Rσn)‖qLs(SO(2))

} 1
q

≤ R2

{∑
n6=0

|Rn|(−1− 1
s
− 1
γ

+ 1
γs

)q

} 1
q

≤ R
1
r

(1− 1
γ

)

{∑
n6=0

|n|(−1− 1
s
− 1
γ

+ 1
γs

)q

} 1
q

This series is finite for q + q
s

+ q
γ
− q

γs
> 2⇒ s < q(γ−1)

2γ−q(γ+1)
. Because of s > 2γ−2

γ−2
,

if q(γ−1)
2γ−q(γ+1)

> 2γ−2
γ−2

we get the result. This inequality is verified when

q(γ − 2)− 2(2γ − qγ − q) > 0⇒ q >
4

3
and 2γ − q(γ + 1) > 0⇒ q <

2γ

γ + 1
.

Notice that for γ > 2 it’s 4
3
< 2γ

γ+1
and so for 2γ

γ−1
< p < 4 one has

{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ CR
1
r

(1− 1
γ

).

For the other results we can use the function ϕ to get a convergent integral. One
has

R2


∫
SO(2)

(∫
T 2

|
∑
n 6=0

ϕ̂(εσn)χ̂Bγ (Rσn)|pdt

) s
p

dσ


1
s
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≤ CR2

{∑
n6=0

1

1 + |εn|K

(∫
SO(2)

|χ̂Bγ (Rσn)|sdσ
) q

s

} 1
q

= CR2

{∑
n6=0

1

1 + |εn|K
‖χ̂Bγ (Rσn)‖qLs(SO(2))

} 1
q

≤ R2

{∑
n6=0

1

1 + |εn|K
|Rn|(−1− 1

s
− 1
γ

+ 1
γs

)q

} 1
q

≤ R
1
r

(1− 1
γ

)ε1+ 1
s

+ 1
γ
− 1
γs
− 2
q

{∫ ∞
0

x−q−
q
s
− q
γ

+ q
γs

+1

1 + xK
dx

} 1
q

= A.

With the right K, the integral is finite for −q − q
s
− q

γ
+ q

γs
+ 1 > −1 ⇒ s >

q(γ−1)
2γ−q(γ+1)

. If q(γ−1)
2γ−q(γ+1)

< 2γ−2
γ−2

we can conclude the proof. This is verified when

q(γ − 2)− 2(2γ − qγ − q) < 0⇒ q <
4

3
and 2γ − q(γ + 1) > 0⇒ q <

2γ

γ + 1

and when

q(γ − 2)− 2(2γ − qγ − q) > 0⇒ q >
4

3
and 2γ − q(γ + 1) < 0⇒ q >

2γ

γ + 1
.

So one has that for q < 4
3

and for q > 2γ
γ+1

the integral converges. Therefore

A ≤ R
1
r

(1− 1
γ

)ε1+ 1
s

+ 1
γ
− 1
γs
− 2
q

and {∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ C(Rε+R
1
r

(1− 1
γ

)ε1+ 1
s

+ 1
γ
− 1
γs
− 2
q ).

Choosing ε = R
1+ 2r

rq−q(1− 1
γ )−2r , one has{∫

SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤ CR
2+ 2r

rq−q(1− 1
γ )−2r .
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Let s =∞. We want to estimate ‖DRBγ (σ, t)‖L∞(SO(2),Lp(T 2)), that it means the
sup ‖DRBγ (σ, t)‖Lp(T 2). One has

‖DRBγ (σ, t)‖Lp(T 2) =

{∫
T 2

|DRBγ (σ, t)|pdt
} 1

p

≤ R2‖{χ̂Bγ (Rσn)}n6=0‖Lq(Z2)

= R2

(∑
n6=0

|χ̂Bγ (Rσn)|q
) 1

q

Remembering that for s =∞{∫ 2π

0

|χ̂Bγ (ρΘ)|sdθ
} 1

s

≤ cρ−1− 1
γ ,

one gets

R2

(∑
n6=0

|χ̂Bγ (Rσn)|q
) 1

q

≤ R2

(∑
n 6=0

|Rn|(−1− 1
γ

)q

) 1
q

= R1− 1
γ

(∑
n6=0

|n|(−1− 1
γ

)q

) 1
q

This series converges for (1 + 1
γ
)q > 2 ⇒ q > 2γ

γ+1
. Therefore for p < 2γ

γ−1
one

gets

‖DRBγ (σ, t)‖L∞(SO(2),Lp(T 2)) ≤ CR1− 1
γ .

One can notice that this estimate is better than the previous one, because 1− 1
γ
<

2q−2γ
q−2γ

for q > 2γ
γ+1

.

One can try with the smoothing-trick to obtain another result. One has

R2

(∑
n6=0

|χ̂Bγ (Rσn)|q 1

1 + |εn|K

) 1
q

≤ R2

(∑
n6=0

|Rn|(−1− 1
γ

)q 1

1 + |εn|K

) 1
q
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= R1− 1
γ

(∑
n 6=0

|n|(−1− 1
γ

)q 1

1 + |εn|K

) 1
q

≤ R1− 1
γ

(∫
|ξ|≥1

1

1 + (ε|ξ|)K
|ξ|(−1− 1

γ
)qdξ

) 1
q

= R1− 1
γ

(∫ ∞
1

1

1 + (εt)K
t(−1− 1

γ
)q+1dt

) 1
q

≤ R1− 1
γ ε(1+ 1

γ
)− 2

q

(∫ ∞
0

1

1 + (s)K
s(−1− 1

γ
)q+1ds

) 1
q

With the right K, this integral converges for q < 2γ
1+γ

. So it is

‖DRBγ (σ, t)‖L∞(SO(2),Lp(T 2)) ≤ C(Rε+R1− 1
γ ε(1+ 1

γ
)− 2

q )

and choosing ε = R
q

q−2γ one has

‖DRBγ (σ, t)‖L∞(SO(2),Lp(T 2)) ≤ CR1− q
2γ−q .

Comparing this result with the estimate in the theorem for s =∞, we can conclude
that for 2γ

γ−1
< p < 4

‖DRBγ (σ, t)‖L∞(SO(2),Lp(T 2)) ≤ CR1− 1
γ

because 1− q
2γ−q > 1− 1

γ
for q < 2γ

γ+1
, and for p > 4

‖DRBγ (σ, t)‖L∞(SO(2),Lp(T 2)) ≤ CR1− q
2γ−q

Theorem 20. Let s =∞. Then{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤

{
CR1− q

2γ−q if p > 4,

CR1− 1
γ if p < 4.

Estimates from below

One can do as before with the Ls(SO(2), Lp(T 2))-norm. Therefore ∀k 6= 0

‖DRBγ (σ, t)‖Ls(SO(2),Lp(T 2))

=

{∫
SO(2)

(∫
T 2

|DRBγ (σ, t)|pdt
) 1

p
·s

dσ

}



Chapter 4 113

= R2


∫
SO(2)

(∫
T 2

|
∑
n 6=0

χ̂Bγ (Rσn)e2πint|pdt

) s
p

dσ


1
s

≥ R2

{∫
SO(2)

|χ̂Bγ (Rσk)|sdσ
} 1

s

.

One can notice that this estimate depends only on the value of s: for s <
(2γ − 2)/(γ − 2) it’s

‖DRBγ (σ, t)‖Ls(SO(2),Lp(T 2)) ≥ cR1/2

and for s > (2γ − 2)/(γ − 2) it’s

‖DRBγ (σ, t)‖Ls(SO(2),Lp(T 2)) ≥ cR
1
r

(1− 1
γ

).

Summary

In summary one has that for s < 2γ−2
γ−2{∫

SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤

{
CR

1
2 for p < 4

CR
2q−4
q−4 for p > 4.

and for s > 2γ−2
γ−2

{∫
SO(2)

{∫
T 2

|DRBγ (σ, t)|pdt
} s

p

dσ

} 1
s

≤


CR

r−2(1− 1
γ )

1
γ−1 for p < 2

CR
2+ 2r

rq−q(1− 1
γ )−2r for 2 < p < 2γ

γ−1

CR
1
r

(1− 1
γ

) for 2γ
γ−1

< p < 4

CR
2+ 2r

rq−q(1− 1
γ )−2r for p > 4.

We can control that these results agree with the ones for p = s. For p < 2γ−2
γ−2

one has

{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤


CR

1
2 for p < 4 < 2γ−2

γ−2
;

CR
2q−4
q−4 for 4 < p < 2γ−2

γ−2
;

CR
1
2 for p < 2γ−2

γ−2
< 4



114 Chapter 4

and it agrees with what said before. For p > 2γ−2
γ−2

one has

{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤


CR

2(q−2+1/γ)
q−3+1/γ for 4 < 2γ−2

γ−2
< p;

CR
1
q

(1− 1
γ

) for 2γ−2
γ−2

< p < 3γ−1
γ−1

< 4;

CR
2(q−2+1/γ)
q−3+1/γ for 2γ−2

γ−2
< 3γ−1

γ−1
< p < 4;

CR
2(q−2+1/γ)
q−3+1/γ for 2γ−2

γ−2
< 3γ−1

γ−1
< 4 < p.

The only different thing is the case 3γ−1
γ−1

< p < 4, where we obtain a better estimate
studying s 6= p. So one has:

{∫
SO(2)

∫
T 2

|DRBγ (σ, t)|pdtdσ
} 1

p

≤


CR

2(q−2+1/γ)
q−3+1/γ for 4 < 2γ−2

γ−2
< p;

CR
1
q

(1− 1
γ

) for 2γ−2
γ−2

< p < 3γ−1
γ−1

< 4;

CR
1
q

(1− 1
γ

) for 2γ−2
γ−2

< 3γ−1
γ−1

< p < 4;

CR
2(q−2+1/γ)
q−3+1/γ for 2γ−2

γ−2
< 3γ−1

γ−1
< 4 < p.
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[10] A. Erdély, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher transcendental
functions, Vol. I, II, III. Based on the notes left by Harry Bateman. Reprint
of the 1955 original, (Robert E. Krieger Publishing Co., Inc., Melbourne, Fla,
1981).

115



116 Chapter 4

[11] K. Falconer, Fractal geometry, (John Wiley and Sons, Ltd, Third edition 2014).

[12] I.M. Gelfand, M.I. Graev and N. Ya. Vilenkin, Generalized functions. Vol. 5.
Integral geometry and representation theory. Translated from the Russian by
Eugene Saletan, (Academic Press, New York-London, 1966).

[13] G.H. Hardy, ’The average order of the arithmetical functions P (x) and ∆(x)’,
Proc. London Math. Soc. 15 (1917) 192–213.

[14] G.H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and
work, (Chelsea Publishing Company, New York 1959).

[15] G.H. Hardy, J.E. Littlewood, ’Some problems of diophantine approximation:
the lattice-points of a right-angled triangle’, Proc. London Math. Soc.(2) 20
(1921) 15–363.

[16] D. R. Heath-Brown, ’The distribution and moments of the error term in the
Dirichlet divisor problem’, Acta Arith. 60 (1962) 389–415.

[17] C.S. Herz, ’On the number of lattice points in a convex set’, Amer. J. Math.
84 (1962) 126–133.

[18] C.S. Herz, ’Fourier transforms related to convex sets’, Ann. of Math. (2) 75
(1962) 81-92.
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[24] V. Jarnik, ’Über die simultanen diophantischen approximationen’, Math. Zeit.
33 (1931) 505–543.

[25] V. Jarnik, ’Diophantische approximationen und Hausdorffsches mass, Recueil
math. Moscow 36 (1929) 371–382.



Chapter 4 117

[26] D. Kendall, ’On the number of lattice points inside a random oval’, Quarterly
J. Math. 19 (1948) 1–26.

[27] E. Krätzel, Lattice points, (Kluwer Academic Publisher, 1988).
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