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Abstract. Discrete time price adjustment processes may fail to converge and may exhibit
periodic or even chaotic behavior. To avoid large price changes, a version of the discrete
time tâtonnement process for reaching an equilibrium in a pure exchange economy based on
a cautious updating of the prices has been proposed two decades ago. This modification
leads to a one dimensional bimodal piecewise smooth map, for which we show analytically
that degenerate bifurcations and border collision bifurcations play a fundamental role for the
asymptotic behavior of the model.

1. Introduction
In [12] the author observed that while habitually the eonomic models used to describe the discrete
time tâtonnement process allowed very large price changes, “in reality price changes are usually
restricted in a given period and are adjusted to substantial market disequilibria only over time”
(p.1 in [12]). To overcome the shortcoming he suggested the assumption of a cautious process
of price adjustment, that is, he proposed introducing a bound on the percentage price changes
in function of the excess of the demand. As an example, he inserted the cautious mechanism
in the simplest case of pure exchange economy introduced in the work of Day and Pianigiani
([2]). The analytical description of the model resulted expressed by a bimodal 1D continuous
piecewise linear map which showed the possibility of erratic dynamics even in presence of the
cautious adjustment. In the following years, the model has been extensively studied by many
authors in consideration of its economic implications. Nonetheless, from the mathematical point
of view the map describing the original model has not yet been completely explained, mainly
because of the fact that the map is not smooth. To our knowledge, the bifurcation structure
of the parameter space of a generic 1D piecewise linear bimodal map has been described to a
large extent [9, 10]. Unlike the skew tent map, the piecewise linear bimodal map has two border
points, which implies more tangled bifurcation structure of its parameter space. However, for
certain parameter values the bimodal map (or its suitable iterate) admits reduction either to a
skew tent map or to a discontinuous map defined in two partitions. The results stated in these
two references are exploited in the present paper in order to describe asymptotic behavior of the
map which models a cautious tâtonnement process. This paper is an abridged version of [3] to
which we would like to refer interested readers for analytical proofs and details.
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2. The model
The model framework considers a pure exchange economy with 2 individuals, which we label
with an index i (i = 1, 2), and 2 commodities. The commodities have to be chosen in amounts
y and w, respectively, and we assume that individuals’ preferences are characterized by the
following Cobb-Douglas utility functions

U1 (y, w) = yαw1−α, (1)

U2 (y, w) = yβw1−β (2)

where 0 < α, β < 1. Moreover, we consider that individual 1 is endowed with a quantity A of
the first good while individual 2 is endowed with a quantity B of the second good. We indicate
with p the unitary price of the first good while q denote the unitary price of the second good.
Thus, we may express the budget constraint of consumer 1 as

py + qw ≤ pA (3)

and the budget constraint of consumer 2 as

py + qw ≤ qB. (4)

Let us suppose that prices are normalized so that the price q of the second good is set to a
constant and only the price p of the first is adjusted, then maximizing (1) subject to (3) and (2)
subject to (4) we obtain the following total excess of demand for the first good

z (p) = − (1− α)A+
βqB

p
. (5)

To introduce the tâtonnement process, we have to substitute pt for p in (5) and then consider
the difference equation

pt+1 = max {0, g (z (pt))} , (6)

where g (z (pt)) expresses the price adjustment process as a function of the excess of demand
z (pt) . In particular, choosing the relative price adjustment mechanism

g (z (pt)) = pt (1 + λz (pt)) , (7)

where λ is a positive constant representing the velocity of adjustment, expression (6) becomes

pt+1 = max {0, pt (1 + λz (pt))} . (8)

To obtain exactly the model proposed in [12], we have to assume the hypothesis that prices are
adjusted cautiously meaning that the amount of the percentage price changes is supposed to be
bounded. Analytically this assumption can be expressed adding the restrictions

1− r ≤ g (z (pt))

pt
≤ 1 + r, (9)

where 0 < r < 1 denotes the maximal rate of price change. Thus, by substituting (9) in (6)
and after some manipulations, the price adjustment mechanism describing the evolution of the
model is defined by the following difference equation

pt+1 = max {(1− r) pt,min {(1 + r) pt, (λβqB + (1− λ (1− α)A) pt)}} . (10)

NOMA’15 International Workshop on Nonlinear Maps and Applications IOP Publishing
Journal of Physics: Conference Series 692 (2016) 012005 doi:10.1088/1742-6596/692/1/012005

2



By assuming the condition β = 1−α as in [12] we can rewrite (10) as a 1D continuous piecewise
linear map, pt+1 = g (pt) , with g : [0,∞)→ [0,∞) defined by three linear functions gL, gM, and
gR as follows

g : p 7→ g(p) =


gL(p) = (1 + r)p for 0 ≤ p ≤ εγ

A(r+ε) ,

gM(p) = εγ
A + (1− ε)p for εγ

A(r+ε) < p ≤ εγ
A(ε−r) ,

gR(p) = (1− r)p for p > εγ
A(ε−r) ,

(11)

where r, ε, A, and γ are real parameters such that

0 < r < 1, ε ≡ λAβ > r, A > 0, γ = qB > 0. (12)

It can be proved (see [3] for details) that the map g is topologically conjugate to the following
reduced map

f : x→ f(x) =

 fL(x) = aLx+ µL = (1 + r)x, 0 ≤ x ≤ xL,
fM(x) = aMx+ µM = (1− ε)x+ ε, xL < x ≤ xR,
fR(x) = aRx+ µR = (1− r)x, x > xR,

(13)

where

aL = 1 + r, aM = 1− ε, aR = 1− r and µL = µR = 0, µM = ε

are the slopes and the offsets, respectively, while

xL =
ε

ε+ r
, xR =

ε

ε− r
(14)

are the border points. Therefore, asymptotic dynamics of f is qualitatively the same as
asymptotic dynamics of g, while the factor γ

A only influences the scale. As a consequence,
below we restrict our analysis to the (r, ε) parameter plane. The map f in (13) is bimodal as
the branches fL and fR are monotonically increasing while the middle one, fM, is monotonically
decreasing. By definition the border points xL and xR are both singular points for f. Moreover,
f has a local maximum in xL, and a local minimum in xR, which are denoted as

xM
df
= f(xL) =

ε(r + 1)

ε+ r
xm

df
= f(xR) =

ε(1− r)
ε− r

. (15)

3. Bifurcation structures in the parameter space
In this section, we begin the analysis of the model (10) introducing some of the properties of the
map f which describes the price evolution of the first commodity in the economic system. We
will show that only two kind of dynamics are allowed since it will be proved that, depending on
the values of the parameters, the price or converges to a globally stable equilibrium or follows a
chaotic dynamics.

3.1. Preliminary observations, feasible domain and absorbing intervals
The region D of definition of the map f is confined by three boundaries:

δND = {(r, ε) : ε = r}, δr1 = {(r, ε) : r = 1}, δr0 = {(r, ε) : r = 0}, (16)

that is,
D = {(r, ε) : ε > r, 0 < r < 1} . (17)
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Moreover, the map (13) has a fixed point x0 in the origin which is always repelling. Due to this
reason we restrict our analysis to the interval (0,∞) which is divided into the three partitions,
IL = (0, xL], IM = (xL, xR], and IR = (xR,∞), on which the functions fL, fM, and fR are defined.
For parameter values belonging to the feasible domain D given in (17) the map f always admits
an absorbing interval J which is globally attracting. The existence of such an interval is a very
important feature for the system, because all orbits are trapped by the absorbing set, and what
happens in this set determines the long-run dynamics of the model. These preliminary results
prove an important economic property of the model since we may affirm that for the values of
the parameters considered it is not possible that price p becomes zero or diverges. Moreover,
the interval in which the price varies may exclude big jumps if the relative price adjustment
is restricted by a maximal rate of increase or decrease. The investigation of the absorbing
interval of f allows us to identify which ones of the branches defined in (13) are involved in the
asymptotic behavior of f. Thus, D may be divided into three sub-regions denoted by DM, DLM,
and DLMR. These regions distinguish situations in which different numbers of branches of f are
involved in its asymptotic dynamics as reflected by the subscripts. That is, asymptotic behavior
of the map f involves only the middle branch (DM), the left and the middle branches (DLM),
or all three branches (DLMR). According to this, we denote the absorbing interval of f by JM,
JLM, or JLMR when we consider parameter values in DM, DLM or DLMR, respectively.

3.2. A stable fixed point: region DM

Apart from the repelling origin x0, the map f always has another fixed point x∗ = 1 which may
be stable or unstable. By definition x∗ is stable when the related slope |f ′(x∗)| = |aM| < 1,
which clearly holds whenever ε < 2. The line

δDFB = {(r, ε) : ε = εDFB = 2} (18)

defines a degenerate flip bifurcation (DFB) [11] boundary in the parameter plane of f. Thus, the
point x∗ is stable for the parameter values belonging to region DM = {(r, ε) : 0 < r < 1, r < ε <
2} confined by three feasible domain boundaries δND, δr0, δr1, and the DFB boundary δDFB.
Moreover, since the slope of the left branch is aL > 1 and the slope of the right branch is aR < 1,
any orbit of f enters the middle partition IM in a finite number of iterations, and hence, the
point x∗ is globally attracting. Thus, as ε ≡ λAβ, we can observe that the constant elasticity
of substitution of the Cobb-Douglas utility functions, the endowment of the first good and the
velocity of the price adjustment mechanism are the parameters influencing the dynamics of the
model together with the maximal rate of price change. Furthermore, we can affirm that the
values of the parameters λ, A and β may play a crucial role in preserving the stability of the
equilibrium price whatever the value of r is.

3.3. Reduction to a skew tent map: region DLM

Immediately after the DFB occurring at δDFB the map f has an absorbing interval JLM =[
f2(xL), f(xL)

]
= J1

LM ∪ J2
LM with

J1
LM =

[
f2(xL), xL

]
=

[
ε (2r − rε+ 1)

r + ε
,

ε

r + ε

]
⊂ IL

and

J2
LM = (xL, f(xL)] =

(
ε

r + ε
,
ε(1 + r)

r + ε

]
⊂ IM.

Thus, the map f restricted to JLM is defined as

fJLM : x 7→ fJLM (x) =

{
fL (x) = (1 + r)x, ε(2r−rε+1)

r+ε ≤ x ≤ ε
r+ε ,

fM (x) = ε+ (1− ε)x, ε
r+ε < x ≤ ε(1+r)

r+ε .
(19)
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Figure 1. (a) Parameter plane of the skew tent map f̂ . The region corresponding to DLM

is outlined red. H2m and H̃2m are the curves (accumulating at the point P∞) where the first
homoclinic bifurcation of the repelling cycles O2m occur. (b) Skew tent structure inside the

region DLM for the map f and its extension to the region DLMR. Ĥ2m indicates the boundaries
(accumulating at the point Q∞) corresponding to the first homoclinic bifurcation of the repelling
cycle O2m . In both panels ξq designate the fold BCB leading to the appearance of the two

unstable cycles Oq and Ôq.

The map (19) is applicable while the absorbing interval JLM remains in the left and the middle
partitions, that is, until f(xL) = xR is fulfilled and the right endpoint of JLM coincides with
xR. This contact happens when ε and r belong to the line δBCR = {(r, ε) : ε = r + 2}, so that
δBCR is the boundary between the regions DLM and DLMR. In such a way the region DLM is
defined as DLM = {(r, ε) : 0 < r < 1, 2 < ε < r + 2}. The 2D bifurcation diagram shown
in Fig. 1(a) displays how the bifurcation structure changes when the parameter point moves
from DM to DLM. In the diagram, gray color indicates convergence of the orbits of the map
f to the fixed point x∗, while the other colors denote regions associated with cyclic chaotic
intervals that is chaotic attractors made up of different bands (correspondence between colors
and numbers of intervals is indicated in the color bar). As the 2D bifurcation diagram in
Fig. 1(a) suggests, the main feature concerning the asymptotic dynamics of (13) in D1 ∪D2 is
that crossing the straight line δDFB (18) leads to the abrupt transition from the global stability
of the fixed point x∗ in region DM to chaos which characterizes the whole area DLM. Thus, the
introduction of the cautious price updating in the tâtonnement model causes a sudden change
from the stable equilibrium price to the chaotic regime which is rather exceptional economic
phenomenon. Not only, but as it will be proved in the following analysis, the complete absence
of periodic attracting cycles is a feature of this version of the model that distinguishes it from
its classical formulation. As we will show, two characteristics of (13) mainly contribute to the
peculiar bifurcation structure of the set DM ∪ DLM in the (r, ε)-plane: first, the change in
stability of x∗ when we pass from DM to DLM, and second, the unimodal shape of fJLM in (19).
The latter fact allows us to assert that the map fJLM is topologically conjugate to the skew tent
map in the normal form

f̂ : x→ f̂(x) =

{
f̂A(x) = αx+ 1, x ≤ 0,

f̂B(x) = βx+ 1, x > 0,
(20)
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with
α = aL = 1 + r, β = aM = 1− ε.

As it is known, the skew tent map has been widely studied by many authors and for its normal
form f̂ all the possible kinds of border collision bifurcations are classified (see [4, 8, 6, 7] to
cite a few, and also [11] for a detailed description and references therein). From the topological
conjugacy of (19) and (20) it follows that if we refer to the 2D bifurcation diagram of the

skew tent map f̂ we may deduce the bifurcation structure of the region DLM of the map f. In
particular, we can explain the meaning of the curves that divide DLM into sub-regions as it is
shown in the 2D bifurcation diagram of Fig. 1(a). For that we plot in Fig. 1(b) a bifurcation

diagram in the (α, β) parameter plane of f̂ in order to compare it with the panel (a) (the red
line marks the parameter region which corresponds to DLM). As it is immediately seen, the

asymptotic dynamics of the skew tent map f̂ for the related parameter values corresponds to
cyclic chaotic intervals Q2m , m = 0, 1, . . ., whose regions are denoted as C2m . It can be also
evidenced that after the DFB of the fixed point x∗ there holds |αβ| > 1. Hence, the cycle of
period 2 which is born due to the bifurcation is unstable, and therefore the DFB of x∗ leads to
a chaotic regime. For the skew tent map f̂ it is known (see, e. g., [11]) that any two contiguous
regions C2m and C2m+1 are separated from each other by the boundary corresponding to the
first homoclinic bifurcation of the repelling cycle O2m of period 2m. Analytically the homoclinic
bifurcation boundary is expressed in general case as

Ĥ2m =

{
(α, β) : α2δmβ2δm+1 +

(
α

β

)(−1)m+1

− 1 = 0

}
, (21)

where

δm =
2m − (−1)m

3
, m ≥ 0. (22)

All curves of the form (21) accumulate at the point Q∞(α, β) = (1,−1) when m → ∞. The
expression (21) is easily mapped to the parameter plane (r, ε) of the original map f as follows

H2m =

{
(r, ε) ∈ DLM : (1 + r)2δm(1− ε)2δm+1 +

(
1 + r

1− ε

)(−1)m+1

− 1 = 0

}
. (23)

Moreover, the accumulation point Q∞ is translated to P∞(r, ε) = (0, 2). In Fig. 1(a) the
homoclinic bifurcation curves H2m , m = 0, . . . , 4, are numerically obtained from (23). Note
that the other curves for m > 4 also exist, but they are not observable in the presented scale,
and these curves accumulate at the point P∞. It is also easy to check that all the homoclinic
curves H2m for any integer m ≥ 1 intersect the line δDFB. So that, depending on the value
of parameter r the DFB of the fixed point x∗ occurring at ε = 2 can lead to cyclical chaotic
intervals Q2m for any integer m ≥ 1. This is not true for the curve H1 which is asymptotic to
the DFB line ε = 2 meaning that we cannot have direct transition from a stable equilibrium
point to one chaotic interval Q1. Figs. 1 (a) and (b) also display several other bifurcation curves,
denoted as ξq, q ≥ 3, plotted by dashed lines. Each such boundary corresponds to the fold BCB

leading to the appearance of the two cycles Oq and Ôq of the same period q. The cycle Oq is
the so-called basic cycle having a single point in IM and all other q − 1 points in IL. The other
cycle Ôq is called complementary and it has two points in IM. For parameter values belonging

to DLM both cycles, Oq and Ôq, appear unstable. In the (r, ε)-parameter plane of the map f

the fold BCB curve at which Oq and Ôq appear is given by

ξq =

{
(r, ε) : 1− ε = −1− (1 + r)q−1

r(1 + r)q−2

}
, q ≥ 3, (24)
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then the two cycles exist in the region above the curve ξq. It can be proved that ξq ∩DLM 6= ∅
for any q ≥ 3, and all these curves accumulate at the point E∞(r, ε) = (1, 3) for q → ∞. As
one can see in Fig. 1(a), the intersection point of each ξq and the border δBCR is particular. In
fact, as we shall see, each such point is the issuing point of other bifurcation curves located in
region DLMR and associated with cyclic chaotic intervals of the map f . These chaotic intervals
are related to period adding structure.

3.4. All three partitions: region DLMR

The transition from region DLM to region DLMR occurs when (r, ε) ∈ δBCR . Hence, the region
DLMR is defined as

DLMR = {(r, ε) : 0 < r < 1, ε > r + 2}. (25)

For parameter values belonging to DLMR the expression of the absorbing interval is

JLMR = [f(xL), f(xR)] =

[
(1− r)ε
ε− r

,
(1 + r)ε

ε+ r

]
and, as it can be easily checked, JLMR ranges across all the partitions IL, IM, and IR. As
a consequence, the definition of the map f in the region DLMR involves all three branches.
Preliminary understanding of the bifurcation structure of the region DLMR can be obtained
from Fig. 1(a). As one can see, when the parameter point moves from DLM to DLMR the
regions associated with chaotic dynamics existing in DLM extend as well to DLMR. In this
section we describe briefly why the related boundaries change and find analytic expressions for
some of them. At first, we consider the boundary H1 ⊂ DLM related to the first homoclinic
bifurcation of the fixed point x∗, and let the parameter point p move along this boundary.
When the parameter point crosses δBCR and enters the region DLMR, the condition for the first
homoclinic bifurcation of the fixed point x∗ defines the new curve

H̃1 =

{
(r, ε) : ε =

1

r

}
. (26)

Similarly, all the other homoclinic bifurcation curves H2m ⊂ DLM, m ≥ 1, have their extensions
inside DLMR. As it can be seen in Fig. 1(a), the regions related to cyclic chaotic intervals
belonging to DLMR have more complicated structure than those belonging to DLM. Moreover,
the higher the number of chaotic intervals, the higher the number of bifurcation curves bounding
the related parameter regions. To explain the bifurcation structure of the region DLMR when
the parameter point crosses the curve H̃1, we have to consider the period adding (PA) structure
of the map f . It is known for a generic bimodal piecewise linear map that even if its absorbing
interval spreads over all three partitions the map still may have periodic orbits whose points are
located only in the two outermost partitions IL and IR. Existence conditions for such cycles can
be derived by means of a discontinuous map defined in two partitions, as shown, for instance,
in [9]. In particular, periodicity regions related to these cycles are arranged in the parameter
space into a PA structure, known also as Arnold tongues or mode-locking tongues. However,
that for the map of the form (13) the PA structure is highly degenerate and consists only of
a set of lines defined by r = const. To obtain the boundaries of regions constituting the PA
structure (PA regions, for short) in the parameter plane of the map f we use the expressions for
such boundaries known for a generic bimodal piecewise linear map. Let us start with regions of
the so-called first complexity level (following Leonov [5]) associated with q-cycles having either
a single point in IL and all other q − 1 points in IR (type I), or vice verse (type II). The BCB
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Figure 2. (a) Degenerate PA structures in the (r, ε) parameter plane of the map f . Blue lines
correspond to first complexity level cycles, red lines correspond to those of the second complexity
level. (b) Numerically calculated chaoticity regions around PA structure.

boundaries of regions related to the type I cycles are defined in general form as

BC with xL : µL = − 1− aq−1R

(1− aR)aq−1R

µR +
1− aq−1R aL

aq−1R

xL,

BC with xR : µL = −

(
aL +

1− aq−2R

(1− aR)aq−2R

)
µR +

1− aq−1R aL

aq−2R

xR.

(27)

The BCB boundaries of the type II cycles are obtained from (27) by interchanging the indices
L and R (for detail see [1, 9]). Due to the fact that µL = µR = 0 for f , the expressions for BCB
boundaries of PA regions related to the type I cycles are clearly simplified to

BC with xL :
(1− aq−1R aL)xL

aq−1R

= 0, BC with xR :
(1− aq−1R aL)xR

aq−2R

= 0. (28)

From (28) it is obviously deduced that for a type I cycle both BCBs, with xL and xR, occur at

the same time, namely, when aq−1R aL = 1. Similarly, for a type II cycle both BCBs occur when
aq−1L aR = 1. Hence, for the map f any cycle related to PA region of the first complexity level
exists only when its multiplier equals to one. Taking into account that aL = 1 + r, aR = 1 − r
we obtain that any PA region of the first complexity level degenerates to a line r = r̄q,1 with
r̄q,1 depending on q. The other regions belonging to PA structure (of the second and higher
complexity levels) are degenerate as well. Having (28), we derive that for the map f any PA-

cycle of any complexity level exists only when its multiplier equals to one, that is, for alLa
q−l
R = 1.

Then the related PA region degenerates to a line r = r̄q,l with r̄q,l depending on the period of
the cycle and the number of points in IL. In Fig. 2(a) we plot several lines corresponding to
PA regions of the first (blue) and second (red) complexity level. Although for the map f the
PA structure is highly degenerate, it still plays an essential role in the bifurcation structure in
the parameter plane of f . In particular, the set of lines composing PA structure serves as a
skeleton for the regions in the parameter plane of f related to the cycles of chaotic intervals
shown in Fig. 2(b). In that figure the area painted light-blue corresponds to a single chaotic
interval enclosing both border points, while the other colors are related to different number of
chaotic intervals (as indicated in the color bar) which can enclose only one border point (xL
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Figure 3. Chaoticity regions around the line (1 + r)2(1 − r) = 1 corresponding to ORL2 . (a)
In regions DL

st and DR
st the map f3 in the neighborhood of the border point xL is topologically

conjugate to a skew tent map. Curves indicated by H3·2m are boundaries separating regions
characterized by the existence of 3 · 2m pieces chaotic attractors. (b) Chaotic regions related to
3 · 2m pieces chaotic attractors are indicated by C3·2m .

or xR) or both of them. Comparing Figs. 2(a) and (b) one can see that the regions related to
more than one chaotic interval are located in the neighborhood of the lines composing the PA
structure. Some of the boundaries of these regions can be found analytically as described, for
instance, in [10]. We concentrate below only on those boundaries which intersect with the lines
composing the PA structure, and derive expressions for the region boundaries which issue from
the line r = r̄3,2 associated with the cycle of period 3. In a similar way, such boundaries can
be obtained for the regions related to any cycle in the PA structure. Consider r = r̄3,2, so that
a cycle of period 3 having 2 points in IL exists. First let r < r̄3,2. Following [10], we consider
the map f3 in the neighborhood of the border point xL. For the values of r sufficiently close to
r̄3,2 the map f3 in the neighborhood of xL is topologically conjugate to a skew tent map. More
precisely, such a conjugacy holds until

f3(xL) ≡ fL ◦ fR ◦ fL(xL) < x̄, (29)

where x̄ is a preimage of xR such that fM(x̄) = xR. The equality in (29) defines a curve in the
parameter plane of f :

bLst = {(r, ε) : fL ◦ fR ◦ fL ◦ fM(xL) = xR}

=

{
(r, ε) :

(1− ε)(1 + r)2(1− r)
ε+ r

+ 1 <
ε

ε− r

}
.

(30)

In other words, for any set of parameter values belonging to the region DL
st confined by

L3,2 = {(r, ε) : r = r̄3,2, ε ≥ ε̄3,2} and bLst, the map f3 in the neighborhood of the border point

xL is topologically conjugate to a skew tent map f̂ given in (20) with α = (1 + r)(1 − r)2,
β = (1 − r)2(1 − ε). The related boundaries of chaotic regions are then obtained from the
expressions known for the skew tent map. In Fig. 3(a) we observe chaotic regions C3·2m , m = 0, 4.
Now we turn to chaoticity regions located on the right-hand side of L3,2, that is for r > r̄3,2.
Similarly to the previous case, we consider the map f3, but now in the neighborhood of the
border point xR. The map f3 in the neighborhood of xR is topologically conjugate to a skew
tent map f̂ with α = (1 + r)(1− r)2, β = (1− r2)(1− ε) as long as the inequality

f3(xR) ≡ fR ◦ fL ◦ fL(xR) < x̂, (31)
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holds with fM ◦ fL(x̂) = xL. Changing inequality to equality in (31) we get the curve

bRst = {(r, ε) : fR ◦ fL ◦ fL ◦ fM ◦ fL(xR) = xL} =

= {(r, ε) :
(1− ε)(1 + r)3(1− r)

ε− r
+ 1 + r <

ε

ε+ r
}.

(32)

Then for parameter values belonging to the region DR
st confined by L2,3 and the curve bRst the

boundaries of chaotic regions are obtained from expressions known for the skew tent map.
However, as it can be observed in Fig. 3(a) for r > r̄3,2 there is only a region C3 related to three
pieces chaotic attractor. It can be proved that inside DR

st no other chaotic regions appear.

4. Concluding remarks
In this paper we studied the map proposed in [12] to describe a cautious discrete time
tâtonnement process in a pure exchange economy. The model is analytically expressed by
a 1D piecewise linear bimodal map and the presence of two border points entails a complex
bifurcation structure of its parameter space. Although the map has three branches it has been
shown that for some parameter values its asymptotic dynamics involved only two of them. In
these cases, results known for discontinuous maps or for the skew tent map have been applied.
The main finding of our analyses can be resumed in the dichotomy which characterizes the
dynamic behavior of the model. In fact, depending on the values of the parameters only one of
the two following situations may occur: either the non trivial equilibrium point is globally stable
or the orbits are chaotic. Moreover an abrupt transition characterizes the change from the first
to the second regime. From an economic point of view, we may thus affirm that the introduction
of the cautious process adjustment may reduce the amplitude of the price oscillations but may
not eliminate the chaotic behavior typical of the discrete time tâtonnement process.
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