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Abstract

Motivation: Haplotype assembly is the computational problem of reconstructing haplotypes in dip-

loid organisms and is of fundamental importance for characterizing the effects of single-nucleotide

polymorphisms on the expression of phenotypic traits. Haplotype assembly highly benefits from

the advent of ‘future-generation’ sequencing technologies and their capability to produce long

reads at increasing coverage. Existing methods are not able to deal with such data in a fully satis-

factory way, either because accuracy or performances degrade as read length and sequencing

coverage increase or because they are based on restrictive assumptions.

Results: By exploiting a feature of future-generation technologies—the uniform distribution of

sequencing errors—we designed an exact algorithm, called HAPCOL, that is exponential in the

maximum number of corrections for each single-nucleotide polymorphism position and that minimizes

the overall error-correction score. We performed an experimental analysis, comparing HAPCOL with the

current state-of-the-art combinatorial methods both on real and simulated data. On a standard bench-

mark of real data, we show that HAPCOL is competitive with state-of-the-art methods, improving the ac-

curacy and the number of phased positions. Furthermore, experiments on realistically simulated data-

sets revealed that HAPCOL requires significantly less computing resources, especially memory. Thanks

to its computational efficiency, HAPCOL can overcome the limits of previous approaches, allowing to

phase datasets with higher coverage and without the traditional all-heterozygous assumption.

Availability and implementation: Our source code is available under the terms of the GNU General

Public License at http://hapcol.algolab.eu/.

Contact: bonizzoni@disco.unimib.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Diploid organisms such as humans contain two sets of chromo-

somes, one from each parent. Reconstructing the two distinct copies

of each chromosome, called haplotypes, is crucial for characterizing

the genome of an individual. The process is known as phasing or

haplotyping and the provided information may be of fundamental

importance for many applications, such as analyzing the relation-

ships between genetic variation and gene function, or between gen-

etic variation and disease susceptibility (Browning and Browning,

2011; Duitama et al., 2012). In diploid species, haplotyping requires
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assigning the variants to the two parental copies of each chromo-

some, which exhibit differences in terms of single-nucleotide poly-

morphisms (SNPs). Since a large scale direct experimental

reconstruction of the haplotypes from the collected samples is not

yet cost-effective (Kuleshov et al., 2014), a computational ap-

proach—called haplotype assembly—that considers a set of reads,

each one sequenced from a chromosome copy, has been proposed.

Reads (also called fragments) have to be assigned to the unknown

haplotypes, using a reference genome in a preliminary mapping

phase, if available. This involves dealing in some way with sequenc-

ing and mapping errors and leads to a computational task that is

generally modelled as an optimization problem (Lancia et al., 2001;

Lippert et al., 2002).

Minimum error correction (MEC) (Lippert et al., 2002) is one of

the prominent combinatorial approaches for haplotype assembly. It

aims at correcting the input data with the minimum number of cor-

rections to the SNP values, such that the resulting reads can be un-

ambiguously partitioned into two sets, each one identifying a

haplotype. wMEC (Greenberg et al., 2004) is the weighted variant

of the problem, where each possible correction is associated with a

weight that represents the confidence degree assigned to that SNP

value at the corresponding position. This confidence degree is a

combination of the probability that an error occurred during

sequencing (phred-based error probability) for that base call and of

the confidence of the read mapping to that genome position. The

usage of such weights has been experimentally validated as a power-

ful way to improve accuracy (Zhao et al., 2005).

Haplotype assembly benefits from technological developments

in genome sequencing. In fact, the advent of next-generation

sequencing (NGS) technologies provided a cost-effective way of

assembling the genome of diploid organisms. However, to assemble

accurate haplotypes, it is necessary to have reads that are long

enough to span several different heterozygous positions (Duitama

et al., 2012). This kind of data is becoming increasingly available

with the advent of ‘future-generation’ sequencing technologies such

as single molecule real-time technologies like PacBio RS II (http://

www.pacificbiosciences.com/products/) and Oxford Nanopore flow

cell technologies like MinION (https://www.nanoporetech.com/).

These technologies, thanks to their ability of producing single end

reads longer than 10 000 bases, eliminate the need of paired-end

data and have already been used for tasks like genome finishing and

haplotype assembly (Smith et al., 2012). Besides read length, the fu-

ture-generation sequencing technologies produce fragments with

novel features, such as the uniform distribution of sequencing

errors, that are not properly addressed (or exploited) in most of the

existing methods that, instead, are tailored to the characteristics of

traditional NGS technologies.

Recently, MEC and wMEC approaches have been used in the

context of long reads, confirming that long fragments allow to as-

semble haplotypes more accurately than traditional short reads

(Aguiar and Istrail, 2012; Duitama et al., 2012; Patterson et al.,

2014, 2015). Since MEC is NP-hard (Cilibrasi et al., 2007), exact

solutions have exponential complexity. Different approaches tack-

ling the computational hardness of the problem have been proposed

in literature. Integer linear programming techniques have been re-

cently used (Chen et al., 2013), but the approach failed to optimally

solve some ‘difficult blocks’. There were also proposed fixed-

parameter tractable (FPT) algorithms that take time exponential in

the number of variants per read (Bonizzoni et al., 2015; He et al.,

2010, 2013) and, hence, are well-suited for short reads but become

unfeasible for long reads. For this kind of data, heuristic approaches

have been proposed to respond to the lack of exact solutions (Bansal

and Bafna, 2008; Duitama et al., 2012). Most of the proposed heur-

istics, such as REFHAP (Duitama et al., 2010), make use of the trad-

itional all-heterozygous assumption, that forces the heterozygosity

of all the phased positions. These heuristics have good performances

but do not offer guarantees on the optimality of the returned solu-

tion (Duitama et al., 2012). Two recent articles (Kuleshov, 2014;

Patterson et al., 2014) aim at processing future-generation long

reads by introducing algorithms exponential in the sequencing

coverage, a parameter which is not expected to grow as fast as read

length with the advent of future-generation technologies. The first

algorithm, called PROBHAP (Kuleshov, 2014), is a probabilistic dy-

namic programming algorithm that optimizes a likelihood function

generalizing the objective function of MEC. Albeit PROBHAP is sig-

nificantly slower than the previous heuristics, it obtained a notice-

able improvement in accuracy. The second approach, called

WHATSHAP (Patterson et al., 2014), is the first exact algorithm for

wMEC that is able to process long reads. It was shown to be able to

obtain a good accuracy on simulated data of long reads at coverages

up to 20� and to outperforms all the previous exact approaches.

However, it cannot handle coverages higher than 20�, and its per-

formance evidently decreases when approaching that limit.

In this article, we exploit a characteristic of future-generation

technologies, namely the uniform distribution of sequencing errors,

for introducing (Section 2) an exact FPT algorithm for a new vari-

ant, called k-cMEC, of the wMEC problem where the parameters

are (i) the maximum number k of corrections that are allowed on

each SNP position and (ii) the coverage. The new algorithm, called

HAPCOL, is based on a characterization of feasible solutions given in

Bonizzoni et al. (2015) and its time complexity is Oðcovkþ1LmÞ
(albeit it is possible to prove a stricter bound), where cov is the max-

imum coverage, L is the read length and m is the number of SNP

positions. HAPCOL is able to work without the all-heterozygous

assumption.

In Section 3, we experimentally compare accuracy and perform-

ance of HAPCOL on real and realistically simulated datasets with

three state-of-the-art approaches for haplotype assembly—REFHAP,

PROBHAP and WHATSHAP. On a real standard benchmark of long reads

(Duitama et al., 2012), we executed each tool under the all-heterozy-

gous assumption, since this dataset has low coverage (�3� on aver-

age) and since the covered positions are heterozygous with high

confidence. HAPCOL turns out to be competitive with the considered

methods, improving the accuracy and the number of phased positions.

We also assessed accuracy and performance of HAPCOL on a large col-

lection of realistically simulated datasets reflecting the characteristics

of ‘future-generation’ sequencing technologies that are currently (or

soon) available (coverage up to 25�, read length from 10 000 to

50 000 bases, substitution error rate up to 5% and indel rate equal to

10%) (Carneiro et al., 2012; Jain et al., 2015; Roberts et al., 2013).

When considering higher coverages, interesting applications such as

SNP calling or heterozygous SNPs validation become feasible and reli-

able (Nielsen et al., 2011). Since these applications require that haplo-

types are reconstructed without the all-heterozygous assumption, on

the simulated datasets we only considered the tools that do not rely on

this assumption—WHATSHAP and HAPCOL. Results on the simulated

datasets with coverage 15–20� show that HAPCOL, while being as ac-

curate as WHATSHAP (they achieve an average error of �2%), is faster

and significantly more memory efficient (�2 times faster and �28

times less memory). The efficiency of HAPCOL allows to further im-

prove accuracy. Indeed, the experimental results show that HAPCOL is

able to process datasets with coverage 25� on standard workstations/

small servers (whereas WHATSHAP exhausted all the available memory,

256 GB) and that, since the number of ambiguous/uncalled positions
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decreases, the haplotypes reconstructed by HAPCOL at coverage 25�
are �9% more accurate than those reconstructed at coverage 20�.

2 Methods

2.1 Preliminary definitions
Let s be a vector. Then, we denote the value of s at position t by s½t�.
A haplotype is a vector h of length m belonging to f0;1gm. Let h1,

h2 be the two haplotypes of an individual. A position j is called het-

erozygous if h1½ j� 6¼ h2½ j�, otherwise (i.e. if h1½ j� ¼ h2½ j�) j is called

homozygous. A fragment is a vector f of length m belonging to

f0;1;�gm. In a fragment f, a position f ½ j� ¼ � is called a hole. A

gap in a fragment f is a maximal sub-vector of f of holes, preceded

and followed by a non-hole element. Moreover, the length of a frag-

ment f is defined as the number of elements contained in f between

the leftmost and rightmost non-hole elements (included).

A fragment matrix is a matrix M consisting of n rows (frag-

ments) and m columns (SNPs). We indicate as L the maximum

length for all the fragments i inM. We denote byMj the jth column

ofM. Notice that each column ofM is a vector in f0;1;�gn, while

each row is a vector in f0;1;�gm.

Given two row vectors s1 and s2 belonging to f0;1;�gm, s1 and

s2 are in conflict when there exists a position j, with 1 � j � m,

such that s1½ j� 6¼ s2½ j� and s1½ j�; s2½ j� 6¼ �, otherwise s1 and s2 are in

agreement. A fragment matrixM is conflict free if and only if there

exist two haplotypes h1, h2 such that each row ofM is in agreement

with one of h1 and h2. In an equivalent way, a fragment matrixM is

conflict free if and only if there exists a bipartition (P1, P2) of the

fragments in M such that each pair of fragments in P1 is in agree-

ment and each pair of fragments in P2 is in agreement. A correction

of the entry Mj½i�, where Mj½i� 6¼ �, is a flip of the value of Mj½i�.
Now we are able to introduce the MEC problem.

Problem 1. MEC (Lippert et al., 2002)

Input: a matrixM of fragments.

Output: a conflict free matrix M0 obtained from M with the min-

imum number of corrections.

A column of a matrix is called homozygous if it contains values

in f0;�g or in f1;�g, otherwise it is called heterozygous. We say

that a fragment i is active on a column Mj, if Mj½i� ¼ 0 or

Mj½i� ¼ 1. The active fragments of a column Mj are the set

activeðMjÞ ¼ fi :Mj½i� 6¼ �g. The coverage of the column Mj is

defined as the number covj of fragments that are active onMj, that

is covj ¼ jactiveðMjÞj. In the following, we indicate as cov the max-

imum coverage over all the columns inM. Given two columnsMj1

and Mj2 , we denote by activeðMj1 ;Mj2 Þ the intersection

activeðMj1 Þ \ activeðMj2 Þ. Notice that on the one hand, any hetero-

zygous column Mj encodes a bipartition of the fragments in

activeðMjÞ indicating which one belongs to h1 and which one be-

longs to h2. On the other hand, any homozygous column Mj does

not encode a specific bipartition and, since it gives no information

on how its active fragments have to be partitioned, it is ‘in accord-

ance’ with any other bipartition or heterozygous column.

Definition 1: Two columnsMj1 ;Mj2 of a fragment matrixM are

in accordance if (1) at least one of Mj1 ;Mj2 is homozygous or (2)

Mj1 ;Mj2 are both heterozygous and on activeðMj1 ;Mj2 Þ they are

identical or complementary.

The correction distance between two columns Mj1 ;Mj2 evalu-

ates the minimum number of corrections needed to transform Mj1

andMj2 into heterozygous columns in accordance and it is defined

as dðMj1 ;Mj2 Þ ¼ minfjEj; jEjg, where E ¼ fi :Mj1 ½i� 6¼ Mj2 ½i�^
Mj1 ½i� 6¼ � ^Mj2 ½i� 6¼ �g and E ¼ fi :Mj1 ½i� ¼ Mj2 ½i� ^Mj1 ½i� 6¼
� ^Mj2 ½i� 6¼ �g. Given a column Mj of a fragment matrix M, we

define the homozygous distance HðMjÞ as the number of times the

minor allele (i.e. the least frequent value of the column) appears in

Mj if it is not greater than an integer k, or infinity otherwise. More

formally, HðMjÞ is equal to dðMj;0Þ if dðMj;0Þ � k (notice that

dðMj; 1Þ ¼ dðMj; 0Þ, where 0 and 1 are the columns composed

only of zeros and ones, respectively) or to 1 otherwise.

Homozygous columns cannot induce a conflict due to the fact that

the corresponding positions in the two reconstructed haplotypes can

be homozygous with no influence on the other positions. For this

reason, we can remove every homozygous column from any input

fragment matrix M without changing the optimal solution and we

can assume that M is only composed of heterozygous columns.

However, notice that a heterozygous columnMj in the input can be

transformed into a homozygous columnM0
j in the output. As a con-

sequence, the optimal solutionM0 can potentially contain homozy-

gous columns. Furthermore, given a conflict free matrixM0, notice

that the two resulting haplotypes h1, h2 can be easily computed from

the bipartition of the fragments induced by the columns ofM0.

In the weighted variant wMEC of MEC, there is a weight

wðMj½i�Þ associated with each non-hole entryMj½i� of the input ma-

trixM that represents the cost of correcting that entry. In this case,

the goal is to minimize the total weight instead of the number of

corrections.

Each gap in any fragment of the input matrixM can be modeled

as zero-weight entries equal to 0 or 1. For this reason, even though

we propose an approach that considers fragment matrices without

gaps, called gapless fragment matrices, the approach can be easily

extended to deal with any general fragment matrixM.

Lemma 1 (Bonizzoni et al., 2015) proves a property of these

matrices that will be fundamental for our FPT algorithm.

LEMMA 1: Consider a gapless fragment matrix M. Then, M is

conflict free if and only if each pair of columns is in accordance.

2.2 The k-constrained MEC problem
In this work, we introduce a variant of the MEC problem, called

k-cMEC, motivated by the uniform distribution of sequencing

errors of future-generation technologies, where the number of

errors (hence, corrections) per column are bounded by an integer

k. Given an input fragment matrix M, a conflict free fragment

matrix M0 obtained from M with h corrections is defined as a

k-corrected matrix for M if for each column Mj we have

dðMj;M0
jÞ � k. According to this definition we introduce the fol-

lowing variant of MEC:

Problem 2. k-constrained MEC (k-cMEC)

Input: a fragment matrixM and an integer k.

Output: a k-corrected matrixM0 forM obtained with the minimum

number of corrections.

Given a k-corrected matrixM0 for a fragment matrixM, we can

see each heterozygous columnM0
j inM0 as the correction of the cor-

responding columnMj inM. Hence, considering a columnMj, we

define a k-correction Bj for Mj as a vector in f0; 1;�gn with

activeðBjÞ ¼ activeðMjÞ such that dðMj;BjÞ � k and Bj is heterozy-

gous. According to this definition, a k-correction Bj describes a feas-

ible way to transform Mj into the heterozygous column M0
j when

dðM0
j;BjÞ ¼ 0. Therefore, we define the space of these corrections as

bj, such that bj is the set containing all the possible k-corrections Bj

1612 Y.Pirola et al.
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for the columnMj. Notice that 0 and 1 can be imagined as the cor-

rections for any homozygous column inM0.

The weighted variant of this problem can be easily defined in the

same way as wMEC for MEC. The goal of the weighted version is

to compute a k-corrected matrix M0 obtained from M with min-

imum total weight.

Consider a fragment matrix M. There always exists a feasible

solution for the MEC problem on inputM, while a feasible solution

for the k-cMEC problem, for a fixed k, on input M may not exist.

This implies that a feasible solution for the MEC problem on input

M may not be a feasible solution for the k-cMEC problem. Hence,

an optimal solution for the k-cMEC problem is not necessarily an

optimal solution for the MEC problem.

2.3 Algorithm
In this section, we present an FPT algorithm for solving the k-cMEC

problem, when parameterized by the maximum number k of correc-

tions that are allowed in each column and by the coverage cov. The

algorithm is based on an exact dynamic programming approach.

After presenting the basic dynamic programming equation for the

gapless case, we show that the approach can be easily adapted to

manage gaps and, possibly, the all-heterozygous assumption.

Informally, the algorithm iteratively computes, for all j from 1

to m, a k-corrected matrix M0 on the first j columns M1; . . . ;Mj

of the input matrix M by considering all the possible corrections

M0
j for the last columnMj such that dðMj;M0

jÞ � k and choosing

the best option. The corrected column M0
j can be either homozy-

gous or heterozygous. If it is homozygous, we pay a cost equal to

the homozygous distance HðMjÞ of Mj but then M0
j is in accord-

ance with any other column and no other check must be per-

formed. If M0
j is heterozygous, then we consider all the possible

k-corrections Bj for Mj in bj and for each one two different cases

may arise: (i) there exists a column Mq with q< j that ‘shares’

some fragments with Mj and that in the optimal solution M0
q is

heterozygous (clearly, q � j� L) or (ii) all the previous columns

that share some fragments withMj are homozygous in the optimal

solutionM0. In the first case,M0
q andM0

j must be either identical

or complementary on the shared fragments (Lemma 1). It follows

that we have to choose the best option among all the k-corrections

Bq such that dðBq;BjÞ ¼ 0 and we pay a cost equal to that of the

correction Bj (i.e. dðMj;BjÞ) plus the cost of transforming the col-

umns between Mq and Mj into homozygous columns (i.e. their

homozygous distance). In the second case, all the columns to the

left of Mj that share some fragment with Mj are homozygous in

the optimal solution M0 (and we pay a total cost equal to their

homozygous distance). As a consequence, any k-correction Bj of

Mj is in accordance with them and we pay a cost equal to

dðMj;BjÞ.
More formally, let M be a fragment matrix and Bj be a

k-correction for Mj, we define D½j;Bj� as the minimum number of

corrections needed to obtain a k-corrected matrixM0 forM on col-

umnsM1; . . . ;Mj such thatM0
j is heterozygous and dðM0

j;BjÞ ¼ 0.

Moreover, we define OPT½j� as the minimum number of corrections

needed to obtain a k-correctedM0 forM on columnsM1; . . . ;Mj.

Finally, we define MLj
(MRj

, respectively) as the rightmost (left-

most, respectively) column to the left (right, respectively) of Mj

such that activeðMLj
;MjÞ ¼ / (activeðMRj

;MjÞ ¼ /, respectively);

if it does not exist,MLj
(MRj

, respectively) corresponds to an empty

column in position 0 (mþ1, respectively). Note that j� Lj � L and

Rj � j � L.

Without loss of generality, we implicitly assume that there exists

a dummy empty columnM0 in position 0 of the inputM. Thus, we

can define OPT½0� ¼ 0 and D½0; �� ¼ 0.

For 0 < j � m; D½ j;Bj� and OPT½ j� can be computed as follows:

D½ j;Bj� ¼ min

min
q : Lj þ 1� q� j� 1;

Bq : dðBj;BqÞ ¼ 0

D½q;Bq� þ dðMj;BjÞ þ
Xj�1

y¼ qþ1

HðMyÞ

OPT½Lj� þ dðMj;BjÞ þ
Xj�1

y¼Ljþ1

HðMyÞ

8>>>>><
>>>>>:

(1)

OPT½ j� ¼ min
OPT½j� 1� þHðMjÞ ==Mj is homozygous

min8Bj
D½j;Bj� ==Mj is heterozygous

(
(2)

The optimum cost is given by OPT½m� and a corresponding opti-

mal solution M0 can be reconstructed by backtracking. The formal

proof of correctness along with some technical details about the

backtracking procedure are in the Supplementary Material.

The algorithm can be easily adapted to the weighted version of

k-cMEC. In this case, each non-hole elementMj½i� of the input ma-

trix M has a weight wðMj½i�Þ. Given a column Mj and any

k-correction Bj in bj, the key idea is to consider the weight wðMj;BjÞ
as the minimum sum of the weights to transform Mj in M0

j such

that dðM0
j;BjÞ ¼ 0 and to consider the weight wHðMjÞ as the min-

imum sum of weights to transformMj into a homozygous column.

Hence, we want to minimize the sum of such weights by replacing

dðMj;BjÞ with wðMj;BjÞ and HðMjÞ with wHðMjÞ in the recursive

equations.

Assume to consider a general fragment matrixM that may con-

tain gaps. As explained before, any gap can be modeled as zero-

weight elements. Since each of these elements can be equal to 0 or 1

with a cost of 0, we can adapt the algorithm such that for each col-

umn all the combinations of values for its gaps will be considered. It

follows that any k-correction Bj for a column Mj is extended with

any combination of values for its gaps and added to bj.

Furthermore, the algorithm can be slightly modified to find a so-

lution under the all-heterozygous assumption that forces to recon-

struct two complementary haplotypes. In this case, the homozygous

columns, both in the input and in the output, have to be considered

as ‘special’ heterozygous columns that place all the covered frag-

ments in the same part of the fragments bipartition. Hence, we

remove from the recursive equation the possibility to transform

each column Mj into a homozygous column and we add to bj the

k-correction Bj that transforms Mj into a ‘special’ heterozygous

column.

We now show how the time complexity Oðð
Pk

s¼0

�
cov
s

�
Þ2 � cov�

L �mÞ of a naive implementation of the recursive equation can be

reduced to Oð
Pk

s¼0

�
cov
s

�
� cov � L �mÞ by a careful re-engineering of

the algorithm.

First, given n elements, their (n, s)-combinations for all s between

0 and k are
Pk

s¼0

�
n
s

�
and they correspond to all the k-corrections Bj

in bj. Such a set can be enumerated in lexicographic order in time

Oð
Pk

s¼0

�
cov
s

�
Þ (Knuth, 2005, see Alg. T, chapter 7.2.1.3) and, using

the same ideas, it is possible to compute the ith element (for any ar-

bitrary i) of this order in time O(k).

In a direct implementation of the recurrence equations, there

exists Oðm �
Pk

s¼0

�
cov
s

�
Þ entries D½j;Bj� and m entries OPT½j�.

Computing each entry D½j;Bj� requires checking at most one entry

OPT½q� and checking at most L �
Pk

s¼0

�
cov
s

�
entries D½q;Bq� (for

any q in fLj; . . . ; j� 1g) in time OðcovÞ each (for computing

dðBj;BqÞ, since covj; covq � cov). Therefore, since OPT½j� can be

updated in constant time during the computation of the entries

Accurate and memory-efficient haplotype assembly 1613
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D½j;Bj�, we have that the overall time complexity of the simple im-

plementation is Oðð
Pk

s¼0

�
cov
s

�
Þ2 � cov � L �mÞ.

The time complexity can be improved to Oð
Pk

s¼0

�
cov
s

�
� cov � L�

mÞ by computing an intermediate projection table and applying an ap-

proach inspired by the one presented in Patterson et al. (2014). LetM
be a gapless fragment matrix. Given two columnsMj1 andMj2 , and

a k-correction Bj1 for Mj1 , we define pj2 ðBj1 Þ as the vector of size

jactiveðMj1 ;Mj2 Þj that is obtained from Bj1 by keeping only elements

that correspond to fragments that are in activeðMj1 ;Mj2 Þ. We define

the intermediate projection table for each column Mj, for each q in

fLj þ 1; . . . ; j� 1g and for each vector C representing a possible cor-

rection of the positions in activeðMj;MqÞ, as follows:

~D½q; j;C� ¼ min
8Bq2bq :dðC;pjðBqÞÞ¼0

D½q;Bq�: (3)

Entry ~D½q; j; pjðBqÞ� (and ~D½q; j; pjðBqÞ�, where pjðBqÞ is the com-

plement of pjðBqÞ) can be filled in OðcovÞ time [needed to compute

pjðBqÞ] while computing D½q;Bq� and, consequently, the asymptotic

overall time complexity does not change. Intuitively, ~D½q; j;C�
corresponds to the minimum number of corrections to obtain a

k-corrected matrixM0 forM on the first q columns such thatM0
q is

heterozygous and dðC;pjðM0
qÞÞ ¼ 0. As a consequence, Equation (1)

can be equivalently rewritten as:

D½j;Bj� ¼ min

~D½q; j; pqðBjÞ� þ dðMj;BjÞ þ
Xj�1

y¼qþ1

HðMyÞ

OPT½Lj� þ dðMj;BjÞ þ
Xj�1

y¼Ljþ1

HðMyÞ

8>>>>>><
>>>>>>:

(4)

In other words, with this recurrence, each entry D½j;Bj� is com-

puted using the entries ~D½�; j; �� and, at the same time, it is used to up-

date the entries ~D½j; �; �� and OPT½j� without changing the asymptotic

time complexity. Since there exists Oðm � L �
Pk

s¼0

�
cov
s

�
Þ entries

~D½j;p; ppðBjÞ� with p in fjþ 1; . . . ;L� 1g, it follows that the overall

time complexity is Oð
Pk

s¼0

�
cov
s

�
� cov � L �mÞ. Notice that

Oðcovkþ1 � L �mÞ is a more intuitive, but less tight, bound.

Concerning space complexity and according to Equation (4), the

intermediate projection table ~D½�; �; �� can be stored instead of table

D½�; ��. This takes OðL �m �
Pk

s¼0

�
cov
s

�
Þ space, since for any column

Mj we only consider all the values q in fLj þ 1; . . . ; j� 1g and

j� Lj � L. Therefore, since the algorithm iteratively proceeds col-

umn wise, when it is at the step corresponding to the column Mj,

we just need to consider the entries ~D½y; �; �� for all the columnsMy

with j � y � Rj. For this reason, we just need OðL � L
�
Pk

s¼0

�
cov
s

�
Þ space to store that window of the projection table.

Furthermore, if we consider a general fragment matrixM mod-

elling the gaps as zero-weight elements (using the approach

described before), the number of k-corrections Bj in bj for a column

Mj increases to 2g �
Pk

s¼0

�
cov
s

�
, where g is the maximum number of

gaps in a column (hence 2g is the number of all the combinations of

values for gap elements). As a consequence, the overall time

complexity becomes Oð2g �
Pk

s¼0

�
cov
s

�
� cov � L �mÞ and it takes

Oð2g � L � L �
Pk

s¼0

�
cov
s

�
Þ space.

As shown in the Supplementary Material, for the backtracking

phase we need two tables requiring O(m) and Oðm �
Pk

s¼0

�
cov
s

�
Þ

space, respectively.

2.4 Implementation
A prototypical implementation of HAPCOL is available under the

terms of the GPL at http://hapcol.algolab.eu/. Since coverage varies

across columns, HAPCOL adaptively adopts a different maximum

number kj of corrections for each column Mj computed as the

smallest integer such that the probability that Mj contains more

than kj errors is at most a, with a given as input. Such a probability

is computed assuming that sequencing errors are uniformly distrib-

uted with a substitution error rate � (given as input), an assumption

which reflects the characteristics of future-generation sequencing

technologies. Therefore, the two parameters given in input to

HAPCOL are � and a and can be chosen by the user depending on the

estimated sequencing (substitution) error rate and on the user’s pref-

erence towards better performances (larger a) or increased probabil-

ity of finding a feasible solution (smaller a).

The strategy currently implemented for choosing the maximum

number of corrections per column assumes that errors are uniformly

distributed. However, it can be easily modified to process datasets

produced by technologies with different error profiles (even those

with systematic errors, especially if the average error rate is low,

such as current Illumina technologies) and/or to automatically in-

crease the values kj until a feasible solution exists.

3 Results and discussion

We experimentally compared accuracy and performance of HAPCOL

with those of state-of-the-art haplotype assembly approaches on

both real (Section 3.1) and simulated datasets (Section 3.2). The ex-

perimental comparison on the real long read dataset is focused on

evaluating the accuracy of the tools under the all-heterozygous as-

sumption since such a standard benchmark dataset has low average

coverage (�3�) and contains only heterozygous SNP positions. We

also assessed accuracy and performances of the tools while varying

coverage, read length and sequencing/indel error rate on simulated

long read datasets with characteristics similar to those of the ‘future-

generation’ sequencing technologies that are currently (or soon)

available (coverage up to 25�, read length up to 50 000 bases, sub-

stitution error rate up to 5% and indel rate equal to 10%) (Carneiro

et al., 2012; Jain et al., 2015; Roberts et al., 2013).

We compared HAPCOL with three state-of-the-art haplotyping

tools specifically designed for handling long reads, namely, REFHAP,

which was shown to be one of the most accurate heuristic methods

(Duitama et al., 2012), PROBHAP, a recent probabilistic method

which has been shown to be sensibly more accurate than REFHAP

(Kuleshov, 2014) and WHATSHAP, the first exact approach for the

weighted MEC problem specifically designed for long reads

(Patterson et al., 2014, 2015). At higher coverages, applications

such as SNP calling or validating which SNPs are really heterozy-

gous in the given sample (e.g. there could be a significant portion of

positions that, due to sequencing errors, appears to be heterozygous,

but that should be predicted as homozygous) become feasible and

reliable (Nielsen et al., 2011). However, since these applications re-

quire that haplotypes are reconstructed without the all-heterozygous

assumption, on the simulated datasets we only considered

WHATSHAP and HAPCOL as they do not rely on this assumption.

The analyses focused on the accuracy of the reconstructed haplo-

types and on the performances of the tools. Accuracy of the recon-

structed haplotypes has been evaluated in terms of (switch) error rate

(Browning and Browning, 2011) (i.e. the number of inconsistencies

over contiguous phased variants) and in terms of phased positions (i.e.

the number of positions for which the tool gave a phase prediction over

the total number of positions that can be phased using the fragments

given as input). Performances of the tools have been evaluated in terms

of running time and peak memory usage, as reported by the Unix utility

time. All the tests have been performed on a server equipped with four

Intel Xeon E5-4610v2 CPUs and 256 GB of RAM.
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3.1 The NA12878 dataset
The real dataset (called ‘NA12878 dataset’) is the one produced

using a fosmid-based technology from the HapMap sample

NA12878 by Duitama et al. (2012). This dataset is considered a

standard benchmark for comparing haplotyping algorithms on long

reads, since the haplotypes of individual NA12878 were independ-

ently and confidently reconstructed using the sequenced genomes of

the individual and of her parents. The dataset is composed of

271 184 reads with average length of �40 kb and with average

coverage of �3�. The reference haplotypes are the trio-phased vari-

ant calls from the GATK resource bundle (DePristo et al., 2011), fil-

tered on the 1 252 769 positions that are also covered by the

fragments of the NA12878 dataset.

HAPCOL, REFHAP, PROBHAP and WHATSHAP have been executed

independently on each chromosome. HAPCOL and WHATSHAP can be

executed with or without the all-heterozygous assumption without

affecting the exponential part of their time/space complexities.

In this case, these two tools have been executed using the all-

heterozygous assumption, since the positions covered by the dataset

are heterozygous with high confidence and since the comparison be-

tween solutions obtained with different assumptions may lead to

misleadingresults.Moreover, HAPCOL has been executed with e ¼ 5%

and a ¼ 10�3 and, for this choice of the parameters, a feasible solu-

tion existed for each chromosome. Table 1 reports, for each tool,

the overall error rate and the percentage of phased positions over all

the phasable positions, the total running time and the peak of mem-

ory for the whole dataset (i.e. for all the chromosomes).

On this dataset, HAPCOL reconstructed the most accurate haplo-

types and phased the largest number of positions compared with the

other tools. In particular, HAPCOL improves the accuracy obtained

by WHATSHAP, PROBHAP and REFHAP by around 6%, 43% and

48%, respectively. Furthermore, HAPCOL is also the tool which

phases the largest number of positions. In fact, HAPCOL phases

0.15% more positions than WHATSHAP, 2.03% more than PROBHAP

and 2.18% more than REFHAP.

To the contrary, REFHAP was the fastest and most memory-

efficient tool among the four considered. This was expected, as

REFHAP is a heuristic-based method, while the other ones are exact

(albeit they minimize different objective functions). Overall, all the

tools can be run with modest/medium computing resources. Indeed,

each one analyzed the dataset in less than 25 min and using less than

24 GB of memory. However, while HAPCOL and WHATSHAP con-

cluded in a few minutes, PROBHAP was significantly slower than the

others (�20 min) and, possibly, it could not be able to scale to data-

sets with higher coverage.

HAPCOL and WHATSHAP required significantly more memory

than PROBHAP and REFHAP (4 times and 44 times, respectively).

However, such a peak of memory usage is due to a small number of

consecutive positions on chromosomes 2, 3 and 10 where coverage

is high (up to 30�), but most of values are gaps (all but 2-4 non-gap

alleles on average). In these regions, the performances of HAPCOL

and WHATSHAP degrade since both approaches model the gaps as

zero-weight elements and must essentially ‘guess’ the alleles at those

positions. Clearly, in this case, phase prediction is not reliable and a

simple pre-filtering step can easily find (and possibly remove) such

positions from further analyses. If we exclude chromosomes 2, 3

and 10, then WHATSHAP becomes the fastest tool (30 s), followed by

REFHAP (35 s), by HAPCOL (60 s) and by PROBHAP that remains the

slowest tool (956 s). In terms of memory usage, HAPCOL turns out to

be the most memory-efficient method (0.06 GB), followed

by WHATSHAP (0.16 GB), by PROBHAP (0.48 GB) and by REFHAP

(0.54 GB).

3.2 Simulated datasets
We used simulated datasets to assess how accuracy and perform-

ances change while the characteristics of the dataset (coverage, espe-

cially) vary. As motivated before, in this part we focused on the

tools that can work also without the all-heterozygous assumption,

namely HAPCOL and WHATSHAP. The simulation of the datasets has

been performed as in Patterson et al. (2015). The dataset consists of

a ground truth, which was assembled by inserting all known vari-

ants of chromosomes 1 and 15 of J. Craig Venter’s genome into the

Table 1. Comparison of four haplotyping tools on the NA12878 real

dataset

Tool Error (%) Phased (%) Time (s) Mem. (GB)

HAPCOL 1.91 99.88 332 2.1

WHATSHAP 2.02 99.73 172 23.9

PROBHAP 3.36 98.02 1205 0.6

REFHAP 3.68 97.75 43 0.5

Accuracy is given in terms of phasing error (‘error’) and total phased pos-

itions (‘phased’) of the reconstructed haplotypes, while performances are

given in terms of total running time (‘time’) expressed in seconds and the peak

memory usage (‘mem.’) expressed in GB. Best results for each column are

highlighted in boldface.

Table 2. Comparison of HAPCOL (hc) and WHATSHAP (wh) on realistically simulated instances.

Chromosome 15 Chromosome 1

Feas. Error (%) Time (s) Mem. (GB) Feas. Error (%) Time (s) Mem. (GB)

� /a cov e �/20 wh hc wh hc wh hc �/20 wh hc wh hc wh hc

5% =10�2 15� 1 17 2.26 2.24 18 6 1.7 0.1 15 2.40 2.40 47 17 4.5 0.3

5 20 1.98 1.98 19 6 1.8 0.1 8 2.42 2.44 46 17 4.4 0.3

20� 1 18 1.77 1.76 487 53 52.9 0.6 7 1.84 1.84 1241 155 129.2 2.0

5 18 1.76 1.76 490 48 52.7 0.6 4 2.07 2.08 1249 132 129.0 1.6

5% =10�3 15� 1 20 2.12 2.11 19 25 1.8 0.3 20 2.35 2.36 48 64 4.6 0.8

5 20 1.98 1.98 19 22 1.8 0.3 19 2.35 2.35 49 56 4.7 0.7

20� 1 20 1.82 1.81 485 218 52.8 2.2 19 1.95 1.94 1306 586 138.0 5.6

5 20 1.67 1.67 497 200 53.6 2.0 19 2.07 2.08 1347 526 138.5 5.1

The simulated instances have coverage (‘cov’) 15� and 20�, substitution error rate (‘e’) 1% and 5% and indel error rate fixed to 10%. The metrics considered are

the number of instances with feasible solutions (‘feas.’), the average phasing error (‘error’) of the reconstructed haplotypes, the average running time (‘time’) and the

average maximum used memory (‘mem.’). HAPCOL has been executed with two different combinations of � and a: 5% / 10�2 and 5% / 10�3.
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human reference genome (hg18), mapped simulated long reads of

lengths 1000, 5000, 10 000 and 50 000 bases with varying uniform

substitution rates 1% and 5% and with a uniform indel distribution

of 10% at 30� coverage. These rates reflect the characteristics of

the long read data generated by the future-generation sequencing

technologies (Carneiro et al., 2012; Jain et al., 2015; Roberts et al.,

2013). From each set of simulated reads, five datasets were obtained

by randomly extracting a maximal subset with (maximum) coverage

of 15�, 20� and 25�.

HAPCOL has been executed with two combinations of its input

parameters—namely e ¼ 5% with a ¼ 10�2, and e ¼ 5% with

a ¼ 10�3—to assess the behavior of HAPCOL depending on the

choice of the parameters. We remark that some fragment matrices

could not admit a feasible solution for the k-cMEC problem with

some choices of parameter k (depending on � and a in the implemen-

tation), while the same instances have always a feasible solution for

the (unconstrained) MEC problem. Both tools have been executed

on all the instances, but HAPCOL terminated on some of them be-

cause no feasible solution existed for that choice of the input param-

eters. WHATSHAP, which should be able to find a feasible solution for

all the instances, computed a solution only for the instances with

coverage 15� and 20�, while, as expected (Patterson et al., 2015),

it was not able to successfully conclude the execution on the in-

stances with coverage 25� since it exhausted the available memory

(256 GB).

Table 2 reports, for any combination of input parameters � and

a, the number of instances with a feasible solution (column ‘feas.’),

the average error of the reconstructed haplotypes, the average run-

ning time and the average memory usage over all the instances of a

given chromosome (Venter chromosome 1 and chromosome 15),

coverage (15� and 20�) and substitution error rate e (1% and 5%)

(the indel error rate is fixed to 10%, thus is not reported). The re-

sults presented in the table refer only to the subset of instances

which have a feasible solution for the k-cMEC problem and are

averaged over the read lengths. Since WHATSHAP was not able to suc-

cessfully terminate on any instance with coverage 25�, the results

on that subset of instances are separately reported (only for

HAPCOL) on Table 3.

First, as expected, the number of instances with a feasible solu-

tion increases as the combination of parameters � and a allows

more corrections per column. Indeed, for e ¼ 5% and a ¼ 10�2,

the maximum numbers of corrections per column (not shown) are

quite low and, as a consequence, a feasible solution does not exists

for many instances, especially for those with high substitution error

rates e. For the other combination of parameters (namely, e ¼ 5%

and a ¼ 10�3), the number of instances with a feasible solution

rapidly increases. This trend, albeit less evident for chromosome

15, is clear for chromosome 1. Noticeably, when e ¼ 5% and

a ¼ 10�3, a feasible solution exists for all but three instances with

coverage at most 20�.

In terms of accuracy of the reconstructed haplotypes, on all the

instances, HAPCOL obtained the same phasing error rate of

WHATSHAP, which, in turn, was shown to be competitive with other

state-of-the-art approaches (Patterson et al., 2015). This observation

supports the validity of the newly introduced k-cMEC problem as a

computational model for haplotype assembly on long reads.

Albeit HAPCOL and WHATSHAP achieve the same accuracy, in

terms of performances HAPCOL is both faster and significantly more

memory-efficient than WHATSHAP. In particular, on average,

HAPCOL is at least twice faster than WHATSHAP when the coverage is

20� even for the largest values of maximum number kj of correc-

tions per column (i.e. when e ¼ 5% and a ¼ 10�3). Moreover, with

the same parameters and with read length of 10 000 bases (a typical

average read length in the foreseeable future), HAPCOL is almost

three times faster than WHATSHAP, allowing to process a single data-

set in less than 11 min (on average). Concerning memory usage, we

observe the same general trend, except that differences are even

more evident. In fact, the average memory usage of WHATSHAP on

chromosome 1 (the largest one) at coverage 20� is �138 GB, while

HAPCOL requires only �5 GB. Moreover, on instances with read

length at most 50 000 bases, WHATSHAP requires up to 164 GB,

while HAPCOL never requires more than 10 GB. As a consequence,

with HAPCOL, the analysis of a genome-wide dataset at coverage

20� is feasible even on a standard workstation/small server.

As noticed before, three instances do not admit a feasible solu-

tion with e ¼ 5% and a ¼ 10�3. However, by setting e ¼ 5% and

a ¼ 10�4, a feasible solution exists also for these instances and the

error rate of the solution obtained by HAPCOL is equal to that ob-

tained by WHATSHAP. In terms of performance, HAPCOL is slower

than WHATSHAP on the single instance with coverage 15� and it

has a similar running time of WHATSHAP on the two instances with

coverage 20� (�21 min, on average). Noticeably, the amount of

memory required by HAPCOL on these two instances (�9 GB, on

average) is �15 times lower than that required by WHATSHAP

(�143 GB, on average), a further confirmation of the memory-

efficiency of HAPCOL even when more corrections per columns are

allowed. Furthermore, these results confirm that a simple strategy

that progressively increases the number of corrections allowed in

each column until a solution is found would be practicable, since it

always leads to a solution while keeping the memory usage as low

as possible.

A comparison between HAPCOL and WHATSHAP is not possible

on instances with coverage 25�, since WHATSHAP was not able to

solve these instances within the available amount of memory.

Hence, we evaluated how accuracy and performances of HAPCOL

vary between instances with coverage 20� and 25� (Table 3). For

space constraints, we report the results only for e ¼ 5% and

a ¼ 10�3, that is for the parameters for which the maximum num-

ber of instances has a feasible solution. Moreover, to not discard the

effect of read lengths, we focused only on instances with read length

Table 3. Comparison between instances with coverage 20x and 25� for HAPCOL.

Chromosome 15 Chromosome 1

Feas. Error Time Mem. Feas. Error Time Mem.

e cov �/5 (%) (s) (GB) �/5 (%) (s) (GB)

1 20� 5 1.40 311 3.8 5 1.66 832 9.5

25� 5 1.25 1457 16.1 4 1.52 4272 40.7

5 20� 5 1.24 277 3.3 5 1.71 737 8.5

25� 5 1.14 1466 15.2 4 1.55 4357 39.2

HAPCOL has been executed with �¼5% and a¼ 10�3. Read length was fixed to 50 000 bases and the attributes are the same of Table 2.
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50 000 bases. Such a read length has been chosen since almost all

these instances have a feasible solution for both coverage 20� and

25�. We observe that increasing coverage from 20� to 25� allows

to improve accuracy (�9%) of the reconstructed haplotypes (as we

already observed for coverage 15� and 20�). Moreover, the

increased accuracy is mainly due to a significant reduction (approxi-

mately �10% on average, data not shown for space constraints) of

the number of ambiguous positions, leading to an increased number

of phased SNP positions. Concerning performances, instances with

coverage 25� can be still analyzed with modest computing equip-

ments; indeed HAPCOL completed the tests on chromosome 1 in

<73 min and using less than 40 GB of main memory.

4 Conclusion

We have proposed an exact algorithm, called HAPCOL, for the

weighted k-cMEC, a new variant of the wMEC problem that takes

into account the main characteristics of future-generation sequenc-

ing technologies, namely the uniform distribution of sequencing

errors and the increasing length of sequenced reads.

We showed that the haplotypes computed by HAPCOL on a

real benchmark dataset are at least as accurate as those computed by

current state-of-the-art approaches. This result supports the validity

of the additional constraints imposed by the k-cMEC problem.

Furthermore, HAPCOL is able to overcome the traditional all-het-

erozygous assumption and to process datasets with coverage 25� on

standard workstations/small servers, while the current state-of-the-

art methods either rely on this assumption or become unfeasible on

coverages over 20�. Thanks to these results, HAPCOL is potentially

able to directly perform SNP calling or heterozygous SNPs valid-

ation that become feasible and reliable on coverage up to 25�.

HAPCOL has been specifically designed to exploit the uniform dis-

tribution of errors that characterizes ‘future-generation’ sequencing

technologies, but it can be successfully applied on sequencing data

with a different error distribution by choosing the maximum num-

ber k of errors per position according to the error model.

Furthermore, HAPCOL can be easily extended to adaptively increase

the value of k (on certain columns) until a feasible solution exists.

This strategy allows to process datasets affected by systematic

sequencing errors without a great impact on the performance if the

average error rate is low (such as in the current Illumina sequencing

technologies).

An interesting future direction would be the extension of the

k-cMEC problem to deal with individuals related by structures such

as trios or pedigrees (Browning and Browning, 2011). Indeed, the

Mendelian laws of inheritance induce further constraints that may

improve the accuracy of the reconstructed haplotypes, as shown for

example by Pirola et al. (2012).
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