Noname manuscript No.
(will be inserted by the editor)

Monodirectional P systems

Alberto Leporati - Luca Manzoni - Giancarlo Mauri
Antonio E. Porreca - Claudio Zandron

the date of receipt and acceptance should be inserted later

Abstract We investigate the influence that the flow of in-
formation in membrane systems has on their computational
complexity. In particular, we analyse the behaviour of P sys-
tems with active membranes where communication only hap-
pens from a membrane towards its parent, and never in the
opposite direction. We prove that these “monodirectional
P systems” are, when working in polynomial time and under
standard complexity-theoretic assumptions, much less pow-
erful than unrestricted ones: indeed, they characterise classes
of problems defined by polynomial-time Turing machines
with NP oracles, rather than the whole class PSPACE of
problems solvable in polynomial space.

1 Introduction

P systems with active membranes working in polynomial
time are known to be able to solve all PSPACE-complete
problems (Alhazov et al 2003); this exploits membrane struc-
tures of polynomial depth and a bidirectional flow of informa-
tion (in terms of moving objects or changing charges), both
from a parent membrane to its children, and in the opposite
direction.

When restricting the depth of the membrane structures of
a family of P systems to a constant amount, it is still possible
to solve problems in the counting hierarchy CH, defined
in terms of polynomial-time Turing machines with oracles
for counting problems (Leporati et al 2015). In the proof of
this result, it has been noticed that send-in communication

This work was partially supported by Universita degli Studi di Milano-
Bicocca, FA 2014: “Complessita computazionale nei sistemi a mem-
brane”.

Dipartimento di Informatica, Sistemistica e Comunicazione

Universita degli Studi di Milano-Bicocca

Viale Sarca 336/14, 20126 Milano, Italy

E-mail: {leporati,luca.manzoni,mauri,porreca,zandron } @disco.unimib.it

rules of the form a [| — [b]g allow us to check whether the

amount of objects located in a membrane exceeds a (possibly
exponential) threshold in polynomial time.

It is then natural to ask whether that feature is actually
necessary in order to obtain the power of counting in poly-
nomial time. In this paper we prove (under the standard
complexity-theoretic assumption that PN =£ P#P) that this
is actually the case: P systems with monodirectional com-
munication, where the information flows only towards the
outermost membrane, are limited to PNP, the class of prob-
lems efficiently solved by Turing machines with NP oracles.
This happens even when allowing polynomially deep mem-
brane structures, a weak form of non-elementary membrane
division, or dissolution (which, in this case, turns out to be as
powerful as weak non-elementary division). The PN? upper
bound is actually reached when dissolution or weak non-
elementary division are allowed; if neither is available, then
the computation power decreases to PI‘TP, where the queries
must all be fixed in advance, rather than asked adaptively.

Let M = AM(—i,—n,+wn) be the class of monodirec-
tional P systems with active membranes, without send-in
rules; we also remove the usual (“strong’’) non-elementary
division rules, of the form

[0 O)e = (08 -8 18 08 0817

since they also provide a way for membrane % to share infor-
mation with its children by changing their charge. We replace
these rules by “weak” non-elementary division rules (Zan-
dron et al 2008) of the form [a]* — [b]f [c]!, which allow
the creation of complex membrane structures (such as com-
plete binary trees) without exchanging information with the
children membranes.

Let M(—d), M(—wn), and M (—d, —wn) denote mono-
directional P systems without dissolution, without weak non-
elementary division, and without both kinds of rules, respec-

Alberto Leporati et al.

tively. For each class D of P systems, let PMCp and PMCZ,
be the classes of problems solvable by uniform and semi-
uniform families of P systems of class D. Then, the main
results of this paper can be summarised as follows:

— The whole class PMC[XL, as well as PMC[XL(_ d) and

PMC[XL (_wn) Ar€ equivalent to PP Here [] denotes
optional semi-uniformity.

— The class PMC[X/]I | is equivalent to PIHVP.

(—d,—wn
The rest of the paper is structured as follows: in Section 2 we
recall the technical notions related to P systems with active
membranes and their complexity classes; in Section 3 we
prove some basic limitations of monodirectional P systems;
in Section 4 we exploit these results to prove upper bounds
to the complexity classes for monodirectional P systems; in
Section 5 we provide the corresponding lower bounds by
simulating Turing machines with NP oracles; in Section 6
some results of the preceding sections are improved; finally,
in Section 7 we present some open problems and directions
for future research.

2 Basic notions

We begin by formally defining monodirectional P systems as
a variant of P systems with active membranes (Pdun 2001).

Definition 1 A monodirectional P system with active mem-
branes of initial degree d > 1 is a tuple

IT= (F,A,H,Whl,...,th,R)
where:

— I' is an alphabet, i.e., a finite non-empty set of symbols,
usually called objects;

— A is afinite set of labels for the membranes;

— MU is a membrane structure (i.e., a rooted unordered tree,
usually represented by nested brackets) consisting of d
membranes labelled by elements of A in a one-to-one
way;

- WpyyeoosWhy, With iy, ... hy € A, are strings over I, de-
scribing the initial multisets of objects placed in the d
regions of ;

— R is a finite set of rules.

Each membrane possesses, besides its label and position in L,
another attribute called electrical charge, which can be either
neutral (0), positive (4) or negative (—) and is always neutral
before the beginning of the computation.

The rules in R are of the following types:

(@) Object evolution rules, of the form [a — w]}
They can be applied inside a membrane labelled by A,
having charge ¢ and containing an occurrence of the

object a; the object a is rewritten into the multiset w
(i.e., a is removed from the multiset in 4 and replaced by
the objects in w).

(¢) Send-out communication rules, of the form [a]f — []5 b
They can be applied to a membrane labelled by /4, having
charge o and containing an occurrence of the object a;
the object a is sent out from £ to the outside region becom-
ing b and, simultaneously, the charge of & becomes f3.

(d) Dissolution rules, of the form [a]* — b
They can be applied to a membrane labelled by /, having
charge o and containing an occurrence of the object a;
the membrane is dissolved and its contents are left in the
surrounding region unaltered, except that an occurrence
of a becomes b.

(e) Elementary division rules, of the form [a]f — [b]f (]!
They can be applied to a membrane labelled by /4, having
charge «, containing an occurrence of the object a but
having no other membrane inside (an elementary mem-
brane); the membrane is divided into two membranes
having label & and charges 8 and 7; the object a is re-
placed, respectively, by b and c, while the other objects
of the multiset are replicated in both membranes.

Weak non-elementary division rules (Zandron et al 2008),

of the form [a]; — [b],[l3 (]!

They can be applied to a membrane labelled by /, having

charge o, and containing an occurrence of the object a,

even if it contains further membranes; the membrane is

divided into two membranes having label /2 and charges 8

and 7; the object a is replaced, respectively, by b and c,

while the rest of the contents (including whole membrane

substructures) is replicated in both membranes.

)

The instantaneous configuration of a membrane consists of
its label £, its charge «, and the multiset w of objects it
contains at a given time. It is denoted by [w|Y. The (full)
configuration C of a P system IT at a given time is a rooted,
unordered tree. The root is a node corresponding to the exter-
nal environment of II, and has a single subtree corresponding
to the current membrane structure of Il. Furthermore, the
root is labelled by the multiset located in the environment,
and the remaining nodes by the configurations [w];* of the
corresponding membranes.

A computation step changes the current configuration
according to the following set of principles:

— Each object and membrane can be subject to at most one
rule per step, except for object evolution rules: inside
each membrane, several evolution rules can be applied
simultaneously.

— The application of rules is maximally parallel: each ob-
ject appearing on the left-hand side of evolution, com-
munication, dissolution or division rules must be subject
to exactly one of them (unless the current charge of the
membrane prohibits it). Analogously, each membrane

Monodirectional P systems

can only be subject to one communication, dissolution,
or division rule (types (c)—(f")) per computation step. In
other words, the only objects and membranes that do not
evolve are those associated with no rule, or only to rules
that are not applicable due to the electrical charges.

— When several conflicting rules can be applied at the same
time, a nondeterministic choice is performed; this implies
that, in general, multiple possible configurations can be
reached after a computation step.

— In each computation step, all the chosen rules are ap-
plied simultaneously (in an atomic way). However, in
order to clarify the operational semantics, each compu-
tation step is conventionally described as a sequence of
micro-steps as follows. First, all evolution rules are ap-
plied inside the elementary membranes, followed by all
communication, dissolution and division rules involving
the membranes themselves; this process is then repeated
to the membranes containing them, and so on towards
the root (outermost membrane). In other words, the mem-
branes evolve only after their internal configuration has
been updated. For instance, before a membrane division
occurs, all chosen object evolution rules must be applied
inside it; this way, the objects that are duplicated during
the division are already the final ones.

— The outermost membrane cannot be divided or dissolved,
and any object sent out from it cannot re-enter the system
again.

A halting computation of the P system II is a finite se-
quence C = (Cp, ...,Ci) of configurations, where Cy is the
initial configuration, every C;; is reachable from C; via a
single computation step, and no rules of IT are applicable
in Cy. A non-halting computation C = (C; : i € N) consists of
infinitely many configurations, again starting from the initial
one and generated by successive computation steps, where
the applicable rules are never exhausted.

P systems can be used as language recognisers by em-
ploying two distinguished objects yes and no: we assume
that all computations are halting, and that either object yes or
object no (but not both) is sent out from the outermost mem-
brane, and only in the last computation step, in order to signal
acceptance or rejection, respectively. If all computations start-
ing from the same initial configuration are accepting, or all
are rejecting, the P system is said to be confluent. If this is not
necessarily the case, then we have a non-confluent P system,
and the overall result is established as for nondeterministic
Turing machines: it is acceptance iff an accepting compu-
tation exists. All P systems in this paper are assumed to be
confluent.

In order to solve decision problems (or, equivalently, de-
cide languages), we use families of recogniser P systems
IT = {II, : x € £*}. Each input x is associated with a P sys-
tem IT, deciding the membership of x in a language L C X*
by accepting or rejecting. The mapping x — I, must be effi-

ciently computable for inputs of any length, as discussed in
detail in Murphy and Woods (2011).

Definition 2 A family of P systems IT = {I, : x € *} is
(polynomial-time) uniform if the mapping x — I, can be
computed by two polynomial-time deterministic Turing ma-
chines E and F as follows:

— F(1") = I1,,, where n is the length of the input x and IT,
is a common P system for all inputs of length n with a
distinguished input membrane.

— E(x) = wy, where w, is a multiset encoding the specific
input x.

— Finally, IT, is simply II, with w, added to its input mem-
brane.

The family IT is said to be (polynomial-time) semi-uniform
if there exists a single deterministic polynomial-time Turing
machine H such that H(x) = I, for each x € X*.

Any explicit encoding of I, is allowed as output of the
construction, as long as the number of membranes and ob-
jects represented by it does not exceed the length of the whole
description, and the rules are listed one by one. This restric-
tion is enforced in order to mimic a (hypothetical) realistic
process of construction of the P systems, where membranes
and objects are presumably placed in a constant amount dur-
ing each construction step, and require actual physical space
proportional to their number; see also Murphy and Woods
(2011) for further details on the encoding of P systems.

The classes of decision problems solved by uniform and
semi-uniform families of monodirectional P systems work-
ing in polynomial time are denoted by PMC o and PMC’ ,,
respectively. When dissolution, weak non-elementary di-
vision, or both kinds of rules are not allowed, the corre-
sponding classes are denoted by PMC[XL (—d)’ pMC

M(—wn)’
and PMC[/T/]l(f d—wn)’ respectively, where [x] denotes optional
semi-uniformity.

Chapter 17 of Papadimitriou’s book (1993) provides the
technical details on the complexity classes PNF and PIHVP,
defined in terms of Turing machines with NP oracles.

3 Properties of monodirectional P systems

The first results that we prove show how the lack of inbound
communication substantially restricts the range of behaviours
exhibited during the computations of monodirectional P sys-
tems.

Definition 3 Let IT be a P system, and let C and D be con-
figurations of IT. We say that D is a restriction of C, in
symbols D C C, if the membrane structures of the two con-
figurations are identical (i.e., they have the same shape, la-
belling, and charges) and each multiset of objects of D is a
submultiset of that located in the corresponding region of C.

Alberto Leporati et al.

The following proposition shows that, while a recogniser
P system working in time # might create exponentially many
objects per region during its computation, only a polynomial
amount (with respect to ¢) of them in each region does ac-
tually play a useful role if the system is monodirectional:
indeed, the final result of the computation can be identified
by just keeping track of a number of objects per region equal
to the number of steps yet to be carried out.

Lemma 1 Ler II be a monodirectional recogniser P sys-
tem, and let C = (Cy,...,C;), with t > 1, be a halting com-
putation of I1. Then, there exists a sequence of configura-
tions (Dy, ..., Dy) such that

(i) we have D; C C; for 0 < i <t, and each multiset of D;
has at most t — i objects;

(ii) for all i <t there exists a configuration £+ such
that £y is reachable in one step from D; (D; — &1y
for brevity) and D11 C &1,

(iti) a send-out rule of the form [a]; — |]5 yes (resp.,
lalf — []f no) is applied to the outermost membrane
during the transition step D, — & if and only if C is
an accepting (resp., rejecting) computation.

Proof. By induction on t. If + = 1, then the environment
of C| contains yes or no, which have been sent out dur-
ing the computation step Co — C; by a rule [a]) — []5 yes
or [a]ff — []g no. Let Dy C Cy be obtained by keeping only
the objects on the left-hand side of send-out, dissolution, and
division rules applied during Cy — C; (we call these rules
“blocking”, since at most one of them can be applied inside
each membrane at each step). At most one object per region is
kept, given the lack of send-in rules. Let D C C; be obtained

by deleting all objects. Then:

(i) we have Dy C Cy and D; C C; by construction, and all
multisets of Dy and D; have at most 1 and exactly 0 ob-
jects, respectively;

(i0) let the transition Dy — £ be computed by applying
all blocking rules applied during the step Cop — Cy,
which are all enabled by construction; then & C C;
and, since D; C C; and D contains no objects, neces-
sarily D C &y,

(iii) the computation C is accepting if and only if the rule
lalyf — []5 yes is applied from Cp, and the latter is
equivalent by construction to that rule being applicable
from Dy (the reasoning is similar if C is rejecting).

This proves the base case. Now let C = (C_1,Cy,...,C;) be
a halting computation of length ¢ + 1. The sub-computation
(Co,...,C,) is also halting, and by induction hypothesis there
exists a sequence of configurations (Dy,...,D;) satisfying
properties (i)—(ii7). Construct the configuration D_; as fol-
lows: first of all, keep all objects from C_; that appear on

the left-hand side of blocking rules applied during the com-
putation step C_; — Cp; this requires at most one object per
region, and guarantees that the membrane structure’s shape
and charges can be updated correctly (i.e., the same as Cyp
and Dy).

We must also ensure that all objects of Dy can be gen-
erated from D_ during the transition D_; — &y. Once the
blocking rules to be applied have been chosen, any object a
located inside a membrane of Dy can be traced back to a
single object in D_;. Either a appears on the right-hand side
of one of those blocking rules, or it appears on the right-hand
side of an object evolution rule applied in the step C_; — Cy,
or it does not appear explicitly in any rule applied in that
step; in the latter case, it is either carried on unchanged
from D_; (possibly from another region, if membrane dis-
solution occurred), or is created by duplicating the content
of a membrane by applying a division rule (triggered by a
different object). As a consequence, at most ¢ objects per re-
gion of D_1, possibly in conjunction with a single object per
region involved in blocking rules, suffice in order to generate
the ¢ objects per region of Dy. As a consequence,

(i) we have D_; C C_ by construction, and D_ contains
at most ¢ + 1 objects per region;

(it) by applying all blocking rules and as many evolution
rules as possible from the computation step C_; — Cp
in D_;, we obtain a configuration & with the same
membrane structure as Dy and, as mentioned above,
containing all objects from Dy (and possibly other
objects generated by evolution rules).

Since (iii) holds by induction hypothesis, this completes the
proof. ad

Notice that this lemma does not give us an efficient al-
gorithm for choosing which objects are important for each
step of the computation; it only proves that a small (i.e.,
polynomial-sized) multiset per region exists. However, it is
easy to find such an algorithm by slightly relaxing the con-
ditions: instead of limiting the cardinality of the multisets
to t — i, we limit the number of occurrences of each symbol
to that value, and simply delete the occurrences in excess sep-
arately for each symbol. This gives us the larger cardinality
bound |I"| - (¢ — i) per region, which is polynomial whenever
the number of computation steps of the system is, and still
allows us to simulate the overall behaviour of the P system.

Lemma 1 fails for P systems with send-in rules because
some configurations where each multiset is small nonethe-
less require a previous configuration with a region containing
exponentially many objects. This is the case, for instance,
for P systems solving counting problems, where the num-
ber of assignments satisfying a Boolean formula is checked
against a threshold by means of send-in rules (Leporati et al
2015). Those assignments are represented in the P system
by a potentially exponential number of objects located in the

Monodirectional P systems

same region, which are sent into exponentially many children
membranes in parallel (i.e., at most one object enters each
child membrane), and cannot always be reduced to a poly-
nomial amount without changing the accepting behaviour of
the P system.

Another property of monodirectional P systems is the ex-
istence of computations where membranes having the same
labels always have children (and, recursively, all the descen-
dents) with the same configuration. This property will be
useful when simulating confluent recogniser monodirectional
P systems in Section 4.

Lemma 2 Let I1 be a monodirectional P system. Then there
exists a computation C = (Co,...,C;) of II where, in each
configuration C;, the following holds: any two subconfigura-
tions' of C; having membranes with the same label as roots
are identical, except possibly for the multiset and charge of
the root membranes themselves.

Proof. By induction on i. The statement trivially holds for
the initial configuration of I, since the membranes are injec-
tively labelled.

When a division rule is applied to a membrane A, two
subconfigurations with root 4 are created; this is the only way
to generate multiple membranes sharing the same label. The
two resulting subconfigurations may only differ with respect
to the contents and charges of the root membranes, since
the internal membranes have evolved before the division
of h occurs: recall that the rules are applied, from a logical
standpoint, in a bottom-up way (Paun 2001).

On the other hand, if two subconfigurations with iden-
tically labelled root membranes already exist in a configu-
ration C;, then we can assume that the property holds by in-
duction hypothesis. We can then nondeterministically choose
which rules to apply in the subconfiguration having the first
membrane as root, excluding the root itself; since the other
subconfiguration is identical (except possibly for the root),
the same multiset of rules can also be applied to it, thus pre-
serving the property in the next configuration of the system.

O

While Lemma 2 somehow “compresses” each level of
the configuration of monodirectional P systems, it does not,
however, reduce the number of distinct membranes per level
to a polynomial number. Indeed, the standard membrane
computing technique of generating all (exponentially many)
possible assignments to a set of variables does not require
send-in rules (Zandron et al 2001), and can be carried out in
parallel on all levels of the membrane structure.

Lemma 2 also fails for P systems with send-in rules.
The reason is that two identical subconfigurations can be

! We define a subconfiguration of C; as a subtree (a root node together
with all its descendents) of the membrane structure of C;, including
labels, multisets, and charges of the membranes.

made different by having a single object located immediately
outside, and nondeterministically sending it into one of the
root membranes of the two subtrees; the evolution of the two
branches of the system might then diverge completely.

4 Simulation of monodirectional P systems

It is a well-known result in membrane computing that P sys-
tems with active membranes can be simulated in polynomial
time by deterministic Turing machines if no membrane divi-
sion rules are allowed (Zandron et al 2001). More specifically,
the portion of the system that is not subject to membrane di-
vision can be simulated deterministically with a polynomial
slowdown, while the output of the dividing membranes can
be obtained by querying an appropriate oracle. It was recently
proved that, for standard (bidirectional) P systems where only
elementary membranes can divide, an oracle for a #P func-
tion is necessary and sufficient (Leporati et al 2014).

In what follows we prove that an NP-oracle is sufficient
for the simulation of monodirectional P systems. In particular,
the oracle will solve the following problem.

Lemma 3 Given the initial configuration of an elementary
membrane with label h of a monodirectional P system (pos-
sibly without dissolution rules), an object type a € I, and
two integers k,t € N in unary notation, it is NP-complete to
decide whether the set of membranes with label h existing
at time t emits (via send-out or dissolution rules) at least k
copies of object a at that time step.

Proof. The problem is NP-hard, since it is possible to simu-
late an arbitrary polynomial-time, nondeterministic Turing
machine M by using a single membrane with elementary
division (without using send-in rules) and obtain the same
result as M by checking if the resulting membranes send out
at least one (k = 1) “acceptance object” at a specific time
step (Leporati et al 2015). Clearly, the problem remains NP-
hard if we allow dissolution rules in addition to send-out
rules.

Conversely, the problem can be solved by a nondetermin-
istic, polynomial-time Turing machine M as follows. Sim-
ulate r computation steps of the membrane explicitly, by
keeping track of its charge and multiset, as in any standard
simulation (Zandron et al 2001). If the membrane divides,
then M keeps track of all the resulting membranes, until the
number exceeds k. If that happens, then k copies of the mem-
brane are chosen nondeterministically among those being
simulated (which are at most 2k after any simulated step, if
all membranes divide), and the remaining ones are discarded.
Since there is no incoming communication, any instance of
the membrane can be simulated correctly, as its behaviour
does not depend on the behaviour of its siblings. If one of
the simulated membranes dissolves before ¢ steps, one of

Alberto Leporati et al.

the k “slots” is released and can be reused in case of a further
membrane division.

After having simulated ¢ steps as described, the ma-
chine M accepts if and only if at least k copies of a are emitted
(sent out, or released by dissolution) in the last step by the
membranes being simulated. At most k membranes need to
be simulated in order to check whether at least k copies of
the object are emitted and, by exploiting nondeterminism,
we are guaranteed that the correct subset of membranes is
chosen by at least one computation of M. Since k and ¢ are
polynomial with respect to the size of the input, the result
follows. a

The values of ¢ and k are given in unary since, otherwise,
the number of steps or the number of membranes to simulate
could be exponential with respect to the size of the input, and
the problem would not be solvable in polynomial time.

As a consequence of Lemma 3, monodirectional P sys-
tems without non-elementary division can be simulated in
polynomial time with access to an NP oracle.

Theorem 1 PMCle(fwn) C PNP,

Proof. The rules applied to non-elementary membranes (i.e.,
non-dividing membranes) can be simulated directly in deter-
ministic polynomial time by a Turing machine M (Leporati
et al 2014); this includes the outermost membrane, which
ultimately sends out the result object. In order to update the
configurations of the non-elementary membranes correctly,
the objects emitted from elementary membranes (which po-
tentially divide) have to be added to their multisets.
Suppose the P systems of the family being simulated
work in polynomial time p(n). By Lemma 1, the final result
of the computation can be correctly determined by keeping
track of at most p(n) copies of each object per region. Hence,
we can update the configurations by using an oracle for the
problem of Lemma 3. At time step ¢, we make multiple
queries for each label /4 of an elementary membrane and for
each object type a € I': by performing a binary search on k
over the range [0, p(n)], we can find the exact number of
copies of a emitted by membranes with label /4 at time ¢, or
discover that this number is at least p(n) (and, in that case,
we only add p(n) objects to the multiset). This completes the
proof. O

Monodirectional P systems without non-elementary di-
vision become weaker if dissolution is also disallowed: now
a membrane cannot become elementary during the compu-
tation, and thus the evolution of each dividing membrane is
always independent of the rest of the system. This allows us
to perform all queries in parallel, rather than sequentially (in
an adaptive way).

C PP,

Theorem 2 PMCle()

—d,—wn)

Proof. If dissolution rules are not allowed, being elementary
is a static property of the membranes, i.e., a membrane is
elementary for the whole computation if and only if it is
elementary in the initial configuration. By observing that
each query is completely independent of the others (i.e.,
each query involves a different membrane, time step and
object) and also independent of the configurations of the non-
dividing membranes (due to the lack of send-in rules), we
can perform them in parallel even before starting to simulate
the P system. This proves the inclusion in PI‘TP . O

Now let us consider monodirectional P systems with non-
elementary membrane division. For this kind of systems, the
behaviour of a dividing membrane is, of course, dependent
on the behaviour of its children and, recursively, of all its de-
scendants. In order to simulate the behaviour of the children
by using oracles, we define a more general query problem,
where we assume that the behaviour of the descendents of
the membrane mentioned in the query has already been es-
tablished.

First of all, notice that the lack of send-in rules allows
us to extend the notion of transition step C — D between
configurations to labelled subforests’> £ of C and F of D
as & — F; the only differences from the standard defini-
tion are that £ is not necessarily a single tree, and that its
outermost membranes may divide and dissolve.

Definition 4 Let IT be a monodirectional P system, let C be
a configuration of I, and let 7 € A be a membrane label.
A subforest S of C is called a label-subforest induced by h,
or h-subforest for brevity, if one of the following conditions
hold:

— C is the initial configuration of IT, and S consists of a
single tree rooted in the (unique) membrane /4,

— C is a possible configuration of IT at time ¢ + 1 with
C' — C, and there exists an h-subforest S’ in C’ such
that S’ — S.

The notion of #-subforest can be viewed as a generalisation of
the equivalence classes of membranes in P systems without
charges defined by Murphy and Woods (2007).

Lemma 4 Let I1 be a monodirectional P system. Then there
exists a computation of Il where, at each time step and for
each membrane label h € A, all h-subforests are identical.

Proof. Multiple h-subforests can only be created by division
of an ancestor of &; but then, by Lemma 2, there exists a
computation of IT where the resulting s-subforests are iden-
tical. O

2 We define a subforest F’ of a forest F to be any subgraph such that,
whenever F’ includes a vertex v, it also includes all the descendents
of v.

Monodirectional P systems

Fig. 1 Evolution of a membrane structure and its label-subforests, which are enclosed by dashed rectangles.

Example 1 Fig. 1 shows the evolution of the membrane struc-
ture of a monodirectional P system together with its label-
subforests. The label-subforests in the initial configuration Co
coincide with all downward-closed subtrees. In the computa-
tion step Cy — C; both iy and A3 divide; the division of the
former causes the duplication of the h3- and hy4-subforests
(and, indirectly, of the hs-subforest); the division of an ances-
tor membrane is the only way to have more than one label-
subforest. By Lemma 4, we can always assume that multiple
label-subforests induced by the same label are identical. In
the computation step C; — Cy, the rightmost membrane hav-
ing label /1, and both instances of /4 dissolve. Notice that this
does not cause the disappearance of the two h4-subforests:
in the general case, the membranes /4 might contain label-
subforests induced by different labels, and we still need to
refer to them as a single entity (that is, the /4-subforest), with-
out the need to describe the internal structure, even when /4
ceases to exist.

As can be observed from Fig. 1, a subforest can be identi-
fied as an h-subforest by checking whether it can be generated
from the downward-closed subtree rooted in 4 in the initial
configuration.

A computation that ensures that all 4-subforests are identi-
cal for all 2 € A can be obtained by imposing a total ordering
(a priority) on the set of rules of the P system, and applying
inside each membrane the rules with higher priority when-
ever possible. In the following, we assume that a priority
order (e.g., the lexicographic order) has been fixed; there
is no loss of generality in doing that, since we only focus
on confluent P systems in this paper. We define the multiset
of objects emitted by a label-subforest as the union of the
multisets emitted by its outermost membranes.

Lemma 5 Given the initial configuration of a membrane
with label h of a monodirectional P system, an objecta € I,
two integers k,t € N in unary notation, and a table T of the
objects emitted during computation steps 1, ...t by the label-
subforests immediately contained in h, it is NP-complete to
decide whether each h-subforest emits at least k copies of
object a at time t.

Proof. The problem is NP-hard, since the set of elementary
membranes with label 7 of Lemma 3 is an example of an
h-subforest; that problem is thus a special case (limited to
label-subforests of height 0) of the current one.

Alberto Leporati et al.

To prove membership in NP we also use an algorithm
similar to the proof of Lemma 3: simulate up to k instances
of membrane %, nondeterministically choosing which ones
to keep when a membrane division occurs. However, besides
simulating the rules directly involving the membranes with
label h, we need to update their configuration by adding,
at each computation step, the objects emitted by the label-
subforests they contain. This is trivial, since the required data
is supplied as the input table 7. Here we exploit Lemma 4,
and simulate a computation where all label-subforests con-
tained in multiple instances of & are identical, and always
emit the same objects.

The other main difference from the proof of Lemma 3
is that we do not release one of the k slots when one in-
stance of membrane / dissolves, since its children may still
emit objects, and those count in determining the output of
the h-subforest. Rather, if an instance of & currently being
simulated dissolved during steps 1,...,¢, then we add the
outputs at time ¢ of the label-subforests immediately con-
tained in £ to the result of the computation; those outputs are
obtained from table 7.

The statement of this lemma then follows from an argu-
ment completely analogous to that presented in the proof of
Lemma 3: there exists a sequence of nondeterministic choices
leading to the simulation of k instances of / sending out at
least k objects if and only if at least k objects are actually
sent out by the P system being simulated. a

We can finally show that monodirectional P systems using
non-elementary division (and dissolution) also do not exceed
the upper bound PNP.

Theorem 3 PMC%, C PP,

Proof. We use an algorithm similar to the one described in
the proof of Theorem 1. However, instead of using the oracle
to compute the output of the elementary membranes, we
use it to compute the output of the label-subforests; this, as
proved in Lemma 5, is NP-complete.

First, we perform all queries involving all h-subforests
of height 0, that is, those where & is an elementary mem-
brane. Since these label-subforests do not contain further
label-subforests, the corresponding parameter 7 of the query
is always the empty table. By collecting all query results
across all meaningful values of parameters h,a,k,t, we ob-
tain a table Tp of the number of objects emitted during the
computation by label-subforests of height O (up to a threshold
of p(n), corresponding to the computation time of the family
of P systems being simulated).

The table 7j can then be used as parameter to queries
involving label-subforests of height 1, which allows us to
compute a corresponding table 77. In general, the table 7; is
used as a parameter for the queries related to label-subforests
of height i + 1. The procedure is repeated until non-divisible

membranes are reached; these can be simulated directly
by using the table obtained by collecting the results of the
queries involving the label-subforests immediately contained
in them.

Notice that the queries involving h-subforests of a given
height can always be asked in parallel (across all values
of h,a,k,t); the queries must be asked sequentially only when
involving different heights, since the tables 7 related to inner
label-subforests must be computed in advance. a

PNP

5 Simulation of machines

In order to prove the converse inclusions between complexity
classes, we describe a simulation of any Turing machine M
with an NP oracle by means of monodirectional P systems,
as an adaptation of the simulation by Leporati et al (2015).
Let Q be the set of states of M; we assume, without loss of
generality, a binary alphabet {0, 1} for M. Finally, we denote
by 6: O XX — Q x X x {«,>} the transition function of M.

Suppose that the configuration of M at a certain time step
is the following: the tape contains the string x = x1 - - - X, the
state of the machine is ¢, and the tape head is located on
cell i. This configuration is encoded as a multiset located in
a single membrane & of the P system, as follows. There is
one object 1;_; for each 1 < j < m such that x; = 1; that is,
each 1 in the string x is represented as an object indexed by its
position in x, shifted by i; the Os of x are not represented by an
object, but rather by the absence of the corresponding 1. The
object 1¢ (resp., its absence) represents a 1 (resp., a 0) located
under the tape head; the indices will be updated (increased or
decreased) when simulating a tape head movement. Finally,
the state g of M is encoded as an object g with the same name.
Further objects, not part of the encoding of the configuration
of M, may also appear for simulation purposes.

A transition step of M is simulated by 7 steps of the
P system. We assume that the membrane / containing the
encoding of the configuration of M also contains the object &.

Step 1. The object & is sent out (as the “junk” object #) in
order to change the charge of / to negative:

(el — [, # (1)

Step 2. When £ is negative, the object 1 is sent out, if
appearing, in order to change the charge to positive. If 1j
does not appear, the membrane remains negative.

[Toly = (1 #)
The remaining tape-objects are primed:
(1 — 1], fori #0 3)

The state-object g is also primed, and produces the object ®:

lg—4 o],)

Monodirectional P systems

Step 3. The system can now observe the charge of & and
establish whether 1¢ appeared (i.e., whether the symbol under
the tape head was 1) or not (i.e., the symbol was 0); this
corresponds to a positive or negative charge, respectively.
The object ¢’ is rewritten accordingly:

[= (a. D] lg" = (4.0)], (5)
At the same time, the neutral charge of # is restored by ©:

[O)F — [19 # for o € {+,—} (6)

Step 4. For the sake of example, suppose the transition
function of M on state ¢ is defined by 6(g,0) = (r,1,>)
and 6(g,1) = (s,0,<); the other cases are similar. The ob-
ject (g,0) or (g, 1) is rewritten accordingly:

[(4,0) = (n1,)]; [(g,1) = (5,0,9)] ¥
Simultaneously, the tape-objects are primed again:

(1 =179 fori =0 3

Step 5. Now the triple generated in the previous step is
“unpacked” into its components, which include an object that
will be eventually rewritten into the new state-object, the
object 1 (or nothing), and an object to be used to change
the charge according to the direction of the movement of the
tape head:

[(r1,9) = 715 @) forre Q)
[(r1,5) = 715) forre Q (10)
[(,0,9) = 7]} forre Q (1)
[(r,0,5) = 7 O]9 forre Q (12)

Step 6. The object @, if appearing, changes the charge of
the membrane to positive:

[— [} # (13)

If © appears, it behaves similarly, according to rule (1). Si-
multaneously, the object 7 is primed and produces ©:

[P =7 o forreQ (14)

Step 7. Now the charge of & is negative if the tape head
is moving right, and the indices of the tape-objects have to
be decremented, or positive if the tape head is moving left,
and the indices must be incremented; the primes are also
removed:

17 = 1.], [1f = 1)) for —(m—1)<i<m-—1

The object # is now rewritten into the state-object r, and
produces the & object to be used in Step 1 of the simulation
of the next step of M:

[# = ro]y forre Qnonfinaland @ € {+,—} (16)

Finally, the neutral charge of # is restored by ® through
rule (6). The configuration of the membrane now encodes the
next configuration of M, and the system can begin simulating
the next computation step. The process is depicted in Fig. 2.

When r € Q is a final state (accepting or rejecting), in-
stead of applying rule (16) the system rewrites the object #
as yes or no:

a7
(18)

¥ — yes|;y forr € Q accepting and & € {+,—}

[# — no]if for r € Q rejecting and @ € {+,—}

The object yes or no is then sent out as the result of the
computation of the P system in the next step:
0 []0

[yes]y — [yes [noljy — [1 no (19)

It is easy to see that this simulation provides us with
a uniform family of P systems ITy = {II, : x € {0,1}*},
each consisting of a single membrane /s and simulating the
deterministic Turing machine M on all possible inputs.

5.1 Simulating oracle queries

If membrane 4 is not the outermost membrane of the system,
then we can use division rules to simulate nondeterminism
with parallelism. Suppose, for the sake of example, that the
transition function of M describes nondeterministic binary
choices such as 8(¢q,0) = {(r,1,>),(s,0,<)}. Then, instead
of the rules (7), we define the elementary division rule

[(g,0)] = [(n 1,>)]5 [(5,0,)];

The two resulting copies of membrane % can then evolve in
parallel according to the two possible choices.

This construction allows us to simulate polynomial-time
deterministic Turing machines M with an NP oracle. In this
section, we use the following conventions: the machine M
simulates a work tape and a query tape with a single tape, by
using the odd and even positions, respectively. When making
a query, M writes the query string in the even positions of
its tape, then enters a query state ¢y. The oracle answers
by erasing the query string (i.e., overwriting it with zeros),
except for the first cell, where it writes O or 1 according to
the result. The machine M then resumes its computation in
state gy, with the tape head located on the answer.

The oracle can be simulated by a polynomial-time nonde-
terministic Turing machine M’ deciding the oracle language.
We can assume, without loss of generality, that this machine
has g (the same as the query state of M) as its initial state,
uses only the even positions of the tape, and ends its compu-
tation in the post-query configuration described above. We
assume that M’ performs a series of nondeterministic choices
leading to acceptance, if an accepting computation exists at
all.

(20)

Alberto Leporati et al.

q © B
1.3 1o 1 I
h
" J o Y 4
1, VR T "
/h
0
4 (,0,<) N #o#
1” 1’1’ 1/2' #
h
§ ©) Y
1, ooy
/h

q N #
1.3 I 1 5
h
0
@ N # o
175 VR ¥
/h
0
4 § e N #
1 Iy 1 #
h
0
s =) h # # #
1., 1, 13
/h

Fig. 2 Two successive Turing machine configurations, and the configurations of the P system simulating the transition step (in left-to-right,

top-to-bottom order).

This combination of M and M’ can be simulated by lin-
early nested membranes of a P system, one membrane for
each query to be asked. The computation begins inside the
innermost membrane, where we place a multiset encoding
the initial configuration of M on its input x; whenever a query
is performed, the computation moves one level higher in the
membrane structure. In the following description we refer
to all nested membranes as &, for brevity; the labels can be
made unique, and the rules replicated for each label, with a
polynomial-time preprocessing. The P system simulates the
computation steps of M as described above, until M enters
the query state g7. Now the system pauses the simulation
of M. Instead of producing g7 and &, as in rule (16), the
system produces g2 and G ;, where ¢ is the maximum number
of steps required by M’ on query strings written by M. This
number can be bounded above by considering the polyno-
mial running time of M’ on the longest possible query string,
which is at most as long as the running time of M on its
input x. The object G, is sent out from % as g, setting its
charge to negative as & does, and upon reaching the parent

membrane it begins counting down:

2n
(22)

[udn = 1y v

[= a1 for1 <j<t
In the internal membrane, the nondeterministic Turing ma-
chine M’ is now simulated. Since M’ is allowed to make
nondeterministic choices, in general there will be a number
of membranes simulating M’ after the first simulated step.
When one of these membranes is simulating the last step of
a computation of M’, the object §] is produced by rule (14):
then, instead of having a rule of type (16), the object g, is
used to dissolve the membrane and release the tape-objects
to the parent membrane:

(G5 — # for o € {+,—} 23)
After ¢ steps, all membranes simulating M’ have completed
the simulation, and have released their contents to the parent
membrane. This membrane now contains:

— the object g1 o;

Monodirectional P systems

11

— objects 1; corresponding to the 1s contained in the odd
positions of the tape of M (which are left unchanged
by the simulation of M’); each of these objects has a
multiplicity equal to the number of computations of M’
on the previous query string;

— zero or more occurrences of 11, one for each accepting
computation of M’ on the query string; in particular, there
is at least one occurrence of 1; if and only if the query
string is accepted by the oracle. Notice that this object
has index 1 even if it is on the first even position of the
tape, since index 0 is reserved to the tape cell under the
head (tape cell 1).

Before resuming the simulation of M, the system needs to
eliminate any duplicate copies of objects 1;. First of all, the
object g1 ¢ is rewritten into gy, the next state of M:

g0 — q]) (24)

We then change the behaviour of M in such a way that, before
continuing its original computation after receiving the answer
to the oracle query, it sweeps its entire tape left-to-right and
back to the first cell. This behaviour, in conjunction with the
following extra rule of the P system:

(1o — €], (25)

erases any duplicate of 1; for all i. Indeed, if a copy of 19
appears when £ is positive, then another copy has been sent
out in the previous step by rule (2); rule (25) eliminates such
duplicates.

When the tape head of M moves back to the leftmost
cell, the machine can resume its original behaviour, and the
encoding of the configuration of M in the P system is now
correct according to the description given at the beginning of
this section.

Further queries by M are simulated analogously, by ex-
ploiting another level of the membrane structure. Notice that
simulating a query actually “consumes” one level of the
membrane structure, due to the dissolution rule (23). For this
reason, the initial membrane structure of the P system simu-
lating M consists of an outermost membrane, containing as
many nested membranes as the number of queries performed
by M.

Theorem 4 A deterministic polynomial-time Turing machine
which asks p(n) queries to an NP oracle on inputs of length n
can be simulated by a uniform family of monodirectional
P systems of depth p(n) without non-elementary division
rules.

Proof. The family of P systems IT = {IT, : x € {0,1}*} sim-
ulating M on input x can be constructed uniformly in poly-
nomial time, since only the initial multiset depends on the
actual string x, while the set of rules and the membrane struc-
ture only depend on |x|. We only need to make sure that the

indices of the tape-objects are large enough to ensure that
both the tape of M and the tape of M’ can be represented at
the same time. a

Corollary 1 PN? C PMC (- O

Instead of using membrane dissolution as in rule (23), we
can use the object §; to produce &:

[G) — @] foro € {+,—} (26)

which ensures that the charge of % is positive instead of
negative two steps later. The tape-objects are then sent out,
one at a time, by using the following rules:

(L= L for —-(m—1)<i<m-—1 (27)
The timer ¢ of the object Gy, has to be increased appropriately,
in order to take into account the time needed to send out
all the tape-objects. However, since the membrane where
the simulation of M is non-elementary after the first query,
rule (20) is now a weak non-elementary division rule. As a

consequence, we have:

Theorem 5 A deterministic polynomial-time Turing machine
which asks p(n) queries to an NP oracle on inputs of length n
can be simulated by a uniform family of monodirectional
P systems of depth p(n) without dissolution rules. O

Corollary 2 PN? C PMC M(—d)- O

In order to prove the converse of Theorem 2, we intro-
duce an auxiliary complexity class, a variant of the class of
optimisation problems OptP (Krentel 1988).

Definition 5 Let OrP be the class of functions over binary
strings f: {0,1}* — {0, 1}* having a polynomial-time non-
deterministic Turing machine M such that f(x) =\/ M(x) for
all x € {0, 1}*, where M(x) denotes the set of possible output
strings of M on input x, and \/ denotes bitwise disjunction of
strings; here we assume that the bitwise disjunction of strings
of different lengths is performed by padding the shortest ones
with zeros.

The purpose of the class OrP is to capture a polyno-
mial number of parallel NP queries with a single query to a
function over binary strings.

Proposition 1 PIHW = pOrPll,

Proof. A polynomial number of parallel queries yy, ...,y to
an oracle for L € NP can be replaced by a single query to an
oracle for the function f(y;,...,ym) =21+ zZm, Where z; = 1
if and only if y; € L. Let M be an NP machine deciding L,
and let M’ be the following nondeterministic machine: on
input yq,...,y, simulate M on each y; and record the cor-
responding output bit z;; finally, output z; - - -z,. For all i

12

Alberto Leporati et al.

with 1 < i <m,if y; is accepted by the oracle, then there ex-
ists a computation of M’ such that z; = 1: thus, by taking the
bitwise disjunction of all possible output strings of M’, we
obtain the i-th bit of f(y1,...,yn); this proves that f € OrP.
Notice that this proof requires the query strings yi,...,Vn
to be fixed in advance, i.e., the queries cannot be performed
adaptively.

Vice versa, a single query to an oracle for f € OrP with
query string y can be replaced by the following polynomial
number of parallel queries, one for each 1 <i < |f(y)[: “is
the i-th bit of f(y) a 1?”. These queries are in NP, since they
can be answered by simulating an OrP machine M for f and
selecting only its i-th output bit; the answer will be positive
if and only if there exists a computation of M having a 1 as
the i-th output bit, which (by definition of OrP) is equivalent
to the i-th bit of f(y) being 1. O

Simulating an OrP query by means of a P system is
completely analogous to simulating an NP query, except that,
instead of a single output bit, we have a polynomial number
of them. These binary strings are automatically combined
by bitwise disjunction when the tape-objects are sent out
of the membrane simulating the nondeterministic Turing
machine. Furthermore, since a single OrP query suffices to

capture PﬂIP, we obtain the following results:

Theorem 6 A deterministic polynomial-time Turing machine
which asks a polynomial number of parallel queries to an NP
oracle on inputs of length n can be simulated by a uniform
family of monodirectional P systems of depth 1 without dis-
solution (and, necessarily, without non-elementary division).

O

Corollary 3 PIHVP C PMC pq(_d —wn)- O

6 Further results

The depth of the P systems of Theorems 4 and 5 can be
asymptotically reduced by exploiting the equivalence of
a logarithmic number of adaptive queries and a polyno-
mial number of parallel queries (Papadimitriou 1993, Theo-
rem 17.7), formally PﬂJP = PNPllogr] Suppose a determinis-
tic polynomial-time Turing machine performs p(n) sequen-
tial NP queries, and divide these queries into @ (p(n)/logn)
blocks of @(logn) queries. Each block can then be replaced
by a polynomial number of parallel NP queries or, by Propo-
sition 1, by a single OrP query. Hence, p(n) sequential
NP queries can be simulated by ®(p(n)/logn) sequential
OrP queries, and each of the latter can be simulated by one
level of depth in a P system:

Corollary 4 A deterministic polynomial-time Turing ma-
chine which asks p(n) queries to an NP oracle on inputs

of length n can be simulated by a uniform family of monodi-
rectional P systems of depth ©(p(n)/logn) without non-
elementary division rules (or without division rules). O

Theorem 3 can be sharpened by making the intra-level
query parallelism explicit with OrP queries:

Corollary 5 Let I1 be a family of semi-uniform polynomial-
time monodirectional P systems of depth f(n). Then IT can be
simulated by a polynomial-time deterministic Turing machine
with f(n) queries to an OrP oracle. O

We can also prove that monodirectional families of P sys-
tems of any constant depth, even with dissolution and non-
elementary division rules (denoted, in symbols, by M(O(1))),
are always equivalent to families of depth one without dis-
solution and without non-elementary division (in symbols
M(1,—d,—wn)), and thus only able to simulate paralle] NP
queries.

— PNP

_ (+]
- PMCM(I.fd,fwn) -

%]
Theorem 7 PMCM(O(1>)

Proof. By Theorem 6, we know that PIHVP C PMC v o(1))»
even when limited to depth 1. Furthermore, the inclusion
PMC (o(1)) € PMCle(Om) holds by definition. We can
prove the inclusion PMCj\/t(o(l)) - PIH\IP as follows. By The-
orem 3, a family of P systems of constant depth k can be
simulated in polynomial time by asking k sets (one per level)
of p(n) parallel queries, for some polynomial p. Each set
of p(n) parallel queries can be converted into @ (logn) se-
quential queries (Papadimitriou 1993, Theorem 17.7), for
a total of k- ®(logn) sequential queries. These can be con-
verted back into a polynomial number of parallel queries. O

Finally, observe that Theorem 3 also trivially holds for
monodirectional P systems without charges. This implies a
better upper bound than previously known (Leporati et al
2014) for a monodirectional variant of the P conjecture (Paun
2005, Problem F), which states that P systems without charges
and without non-elementary division characterise P.

7 Conclusions

In this paper we confirmed the importance of the direction
of the information flow in P systems with active membranes
with respect to their computing power. Indeed, when work-
ing in polynomial time and using only outward-bound com-
munication, the corresponding complexity class decreases
from PSPACE (Alhazov et al 2003) to PN? and, when non-
elementary division and dissolution rules are disallowed,
from P*P (Leporati et al 2015) to Pﬁlp. It is interesting to
notice that, unlike with other restrictions such as removing
membrane division (Zandron et al 2001) or charges and disso-
lution (Gutiérrez-Naranjo et al 2006), the resulting P systems
are still more powerful than P (unless, of course, P = NP).

Monodirectional P systems

13

The role of strong non-elementary division (which is
replaced in this paper by weak non-elementary division) in
the absence of send-in rules is still unclear. Even if it provides
a way to convey information from a parent membrane to
its children, we do not know whether this is sufficient to
altogether replace send-in communication while maintaining
a polynomial run-time.

Finally, it would be interesting to investigate monodirec-
tional P systems where the information flow is reversed, i.e.,
send-out communication and dissolution rules (as well as
strong non-elementary division rules) are disallowed. A first
issue to overcome is choosing an appropriate acceptance con-
dition for the P systems, to replace sending out yes or no from
the outermost membrane. The acceptance condition most sim-
ilar “in spirit” to the original one is probably accepting (resp.,
rejecting) by having at least one yes (resp., no) object appear,
either anywhere in the system, or inside a distinguished (and
possibly dividing) membrane, during the last computation
step; we also add the restriction that yes and no can never ap-
pear together, since giving the priority to one of them would
allow us to solve NP-complete (or coNP-complete) problems
“for free”. Such monodirectional P systems appear to be very
weak when working in polynomial time; indeed, even though
exponentially many membranes can still be created by di-
vision, they can never communicate. Is P actually an upper
bound to the class of problems they can solve?

References

Alhazov A, Martin-Vide C, Pan L (2003) Solving a PSPACE-complete
problem by recognizing P systems with restricted active membranes.
Fundamenta Informaticae 58(2):67—77, URL http://iospress.
metapress.com/content/99n72anvn6bkl4mm/

Gutiérrez-Naranjo MA, Pérez-Jiménez MJ, Riscos-Nuiiez A, Romero-
Campero FJ (2006) Computational efficiency of dissolution rules
in membrane systems. International Journal of Computer Math-
ematics 83(7):593-611, URL http://dx.doi.org/10.1080/
00207160601065413

Krente]l MW (1988) The complexity of optimization problems. Journal
of Computer and System Sciences 36:490-509, URL http://dx.
doi.org/10.1016/0022-0000(88)90039-6

Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C (2014)
Simulating elementary active membranes, with an application
to the P conjecture. In: Gheorghe M, Rozenberg G, Sosik P,
Zandron C (eds) Membrane Computing, 15th International Con-
ference, CMC 2014, Lecture Notes in Computer Science, vol
8961, Springer, pp 284-299, URL http://dx.doi.org/10.1007/
978-3-319-14370-5_18

Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C (2015)
Membrane division, oracles, and the counting hierarchy. Funda-
menta Informaticae 138(1-2):97-111, URL http://dx.doi.org/
10.3233/FI-2015-1201

Murphy N, Woods D (2007) Active membrane systems without charges
and using only symmetric elementary division characterise P. In:
Eleftherakis G, Kefalas P, Pdun Gh, Rozenberg G, Salomaa A (eds)
Membrane Computing, 8th International Workshop, WMC 2007,
Lecture Notes in Computer Science, vol 4860, pp 367-384, URL
http://dx.doi.org/10.1007/978-3-540-77312-2_23

Murphy N, Woods D (2011) The computational power of mem-
brane systems under tight uniformity conditions. Natural
Computing 10(1):613-632, URL http://dx.doi.orgl0.1007/
s11047-010-9244-7

Papadimitriou CH (1993) Computational Complexity. Addison-Wesley

Paun Gh (2001) P systems with active membranes: Attacking NP-
complete problems. Journal of Automata, Languages and Com-
binatorics 6(1):75-90

Paun Gh (2005) Further twenty six open problems in membrane com-
puting. In: Gutierrez-Naranjo MA, Riscos-Nuiiez A, Romero-
Campero FJ, Sburlan D (eds) Proceedings of the Third Brainstorm-
ing Week on Membrane Computing, Fénix Editora, pp 249-262,
URL http://www.gcn.us.es/3BWMC/Volumen.htm

Zandron C, Ferretti C, Mauri G (2001) Solving NP-complete prob-
lems using P systems with active membranes. In: Antoniou I,
Calude CS, Dinneen MJ (eds) Unconventional Models of Compu-
tation, UMC’2K, Proceedings of the Second International Confer-
ence, Springer, pp 289-301, URL http://dx.doi.org/10.1007/
978-1-4471-0313-4_21

Zandron C, Leporati A, Ferretti C, Mauri G, Pérez-Jiménez MJ (2008)
On the computational efficiency of polarizationless recognizer
P systems with strong division and dissolution. Fundamenta In-
formaticae 87:79-91, URL http://iospress.metapress.com/
content/95t4416hp5w165m2/

http://iospress.metapress.com/content/99n72anvn6bkl4mm/
http://iospress.metapress.com/content/99n72anvn6bkl4mm/
http://dx.doi.org/10.1080/00207160601065413
http://dx.doi.org/10.1080/00207160601065413
http://dx.doi.org/10.1016/0022-0000(88)90039-6
http://dx.doi.org/10.1016/0022-0000(88)90039-6
http://dx.doi.org/10.1007/978-3-319-14370-5_18
http://dx.doi.org/10.1007/978-3-319-14370-5_18
http://dx.doi.org/10.3233/FI-2015-1201
http://dx.doi.org/10.3233/FI-2015-1201
http://dx.doi.org/10.1007/978-3-540-77312-2_23
http://dx.doi.org10.1007/s11047-010-9244-7
http://dx.doi.org10.1007/s11047-010-9244-7
http://www.gcn.us.es/3BWMC/Volumen.htm
http://dx.doi.org/10.1007/978-1-4471-0313-4_21
http://dx.doi.org/10.1007/978-1-4471-0313-4_21
http://iospress.metapress.com/content/95t4416hp5w165m2/
http://iospress.metapress.com/content/95t4416hp5w165m2/

	Introduction
	Basic notions
	Properties of monodirectional P systems
	Simulation of monodirectional P systems
	Simulation of ¶NP machines
	Further results
	Conclusions

