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ABSTRACT

A comprehensive study of geometric and topological properties of torus knots and
unknots is presented. Torus knots/unknots are particularly symmetric, closed, space
curves, that wrap the surface of a mathematical torus a number of times in the longitu-
dinal and meridian direction. By using a standard parametrization, new results on local
and global properties are found. In particular, we demonstrate the existence of inflection
points for a given critical aspect ratio, determine the location and prescribe the regular-
ization condition to remove the local singularity associated with torsion. Since to first
approximation total length grows linearly with the number of coils, its nondimensional
counterpart is proportional to the topological crossing number of the knot type. We
analyze several global geometric quantities, such as total curvature, writhing number,
total torsion, and geometric ‘energies’ given by total squared curvature and torsion, in
relation to knot complexity measured by the winding number. We conclude with a brief
presentation of research topics, where geometric and topological information on torus
knots/unknots finds useful application.

Keywords: Torus knots; parametric equations; curvature; torsion; linking number;
writhe.
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1. Introduction

Torus knots and unknots are particularly simple, closed, space curves that by def-
inition wrap the surface of a mathematical torus in the longitudinal and meridian
direction, forming highly symmetric configurations (see Fig. 1). In this case, they
provide a rare example of nontrivial, closed, space curves, whose geometric and
topological properties can be easily investigated by analytical means. For these rea-
sons, torus knots and unknots represent an interesting case study where relations
between geometry and topology can be explored accurately. This makes them a
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(a)

(b)

Fig. 1. (Color online) Torus knots/unknot (red online) on the mathematical torus. (a) Standard
trefoil knot T2,3 and torus knot T3,2 topologically equivalent to T2,3. (b) Poloidal coil T1,7 and
toroidal coil T7,1, both topologically equivalent to the standard unknot (i.e. the standard circle).

privileged object in a broad spectrum of disciplines, from pure mathematics to
physics, biology and engineering, where aspects of structural complexity are impor-
tant in their own right, or in relation to function.

Elastic filaments in the shape of torus knots have been studied in relation to
bending and torsional energy [1], in terms of Möbius ‘energy’ [2], and to understand
packing and structural complexity properties of ideal knots [3] and polymers [4, 5].
As solutions to differential equations, torus knots have been found in the theory
of integrable systems [6], in Maxwell’s theory of electromagnetism [7], as phase
singularities in optics [8, 9], and even as Wilson loops in Chern–Simons topological
quantum field theory [10, 11]. In fluid flows, torus knots and unknots have been
studied in the context of classical and superfluid vortex dynamics [12, 13], and they
may arise as Bose–Einstein condensates of ultracold atoms [14], as colloids [15] and
in many other physical, chemical and biological contexts.

A systematic, comprehensive study of their geometric and topological properties,
however, seems to be missing in literature. With the present work, we want to fill
this gap by presenting a collection of results (mainly geometric in character) of
interest in pure and applied mathematics. A formal definition of torus knots and
unknots is given in Sec. 2, by introducing standard parametrization, and symmetry
aspects. A detailed analysis of local properties is presented in Sec. 3, by examining
curvature, inflection points and torsion. For every torus knot/unknot, we determine
the conditions for the existence and location of inflection points (Theorem 3.2)
and prescribe the regularity conditions necessary to remove the local singularity
associated with torsion (Theorem 3). Global properties are discussed in Sec. 4.
Since to a first approximation total length grows linearly with the number of coils we
show that its nondimensional counterpart is proportional to the topological crossing
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number. We analyze several global geometric quantities, such as total curvature,
writhing number, total torsion, total squared curvature and torsion (where the
latter two are related to bending and torsional energy of elastic rods) in terms of
knot complexity given by the winding number. By using information on the tangent
indicatrix, we show how the development of inflectional configurations contributes
to the growth of the writhing number and the jump of intrinsic twist in the framed
knot. In the last section, we conclude with a brief discussion of possible applications
in active areas of current research.

2. Torus Knots and Unknots: Standard Parametrization
and Symmetry Aspects

Torus knots and unknots can be represented by particularly symmetric, closed
curves, that lie on the surface of a mathematical torus, wrapped uniformly around
it. A torus knot/unknot Tp,q wraps the torus p times along the longitudinal (or
toroidal) direction, and q times along the meridian (or poloidal) direction [16,
pp. 136–141]. Torus knots are given by taking p > 1 and q > 1, with {p, q} co-prime
integers (see Fig. 1(a)). If either p = 1 or q = 1 we have multiply coiled curves (see
Fig. 1(b)) topologically equivalent to the unknot, i.e. the standard circle. The ratio
w = q/p (w > 0) is the winding number of Tp,q, and provides a measure of geomet-
ric complexity of the knot/unknot. Note that for any p finite and fixed, if q → ∞
the curve tends to cover the mathematical torus in the poloidal direction with
infinitely many turns to form a poloidal hollow ring. Similarly, for any q finite and
fixed, if p → ∞ the curve covers the torus with infinitely many turns in the toroidal
direction forming a toroidal hollow ring.

In general for given p and q the two knots Tp,q and Tq,p are topologically equiv-
alent, i.e. one can be transformed into the other by continuous deformation; hence
Tp,q ∼ Tq,p. A standard measure of topological complexity of knots is provided by
the minimum crossing number cmin, that for torus knots [17] is given by

cmin(Tp,q) = min[p(q − 1), q(p − 1)]. (2.1)

Since cmin is a topological invariant of torus knots, for given p and q we have
cmin(Tp,q) = cmin(Tq,p). If q > p, then q(p − 1) < p(q − 1) and cmin = q(p − 1)
(alternatively if p > q, then cmin = p(q − 1)).

The standard parametrization of a torus knot/unknot Tp,q of winding number
w is given by

X = X(α) :




x = (R + r coswα) cos α,

y = (R + r coswα) sin α,

z = r sinwα,

(2.2)

where X = (x(α), y(α), z(α)) denotes the vector position of a point on Tp,q and
α ∈ [0, 2πp) is a parameter on the curve; R and r are respectively the toroidal and
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poloidal radius of the torus, with 0 < r < R (for r = 0 the torus collapses to the
standard circle of radius R, and for r ≥ R the torus develops self-intersections).
Any prescription r = r(α, β) smooth function of the toroidal and poloidal angles
α and β = wα gives rise to more general toroidal curves with periodic functional
dependence on both directions, more general knot presentations of same knot type.
The geometric features discussed below are therefore qualitatively preserved under
composition of continuous maps.

By introducing the aspect ratio λ = r/R with λ ∈ (0, 1), Eqs. (2.2) become

X = X(α) :




x = R(1 + λ cos wα) cos α,

y = R(1 + λ cos wα) sin α,

z = Rλ sin wα.

(2.3)

Every knot/unknot parametrized by Eqs. (2.3) is a smooth and simple curve (i.e
C∞ without self-intersections) in R

3.
Standard torus knots/unknots can be thought of as generated by the action of

(q − 1) rigid rotations around the z-axis of the fundamental section of the curve
given by α ∈ [0, 2π/w) (see Fig. 2), with the fundamental sector in between the
half-planes θ = 0 and θ = 2π/q. The geometry of the curve is thus completely
determined by the properties of the curve in the fundamental section of period
2π/w.

(a)

(b)

Fig. 2. (Color online) Knot fundamental section (blue curve online) and fundamental sector
(darker region). (a) Knots T2,3 and T3,2. (b) Unknots T1,3 and T3,1.
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3. Local Properties: Curvature, Inflection Points and Torsion

3.1. Curvature and inflection points

In general, a smooth curve parametrized by r(t) (t ∈ [a, b] ⊂ R) is said to be regular
if the tangent vector r′(t) (where prime denotes differentiation) never vanishes for
all values of t. By direct application of this definition one can prove the following:

Theorem 3.1. Every Tp,q parametrized by Eqs. (2.3) is a regular curve in R
3.

A point where r′(t) = 0 (for some t ∈ [a, b]) is said to be a singular point of
order 0; if r′′(t) = 0 with r′(t) �= 0, the point is a singular point of order 1, or an
inflection point of the curve. From the standard definition [18] of curvature

c(t) =
|r′(t) × r′′(t)|

|r′(t)|3 , (3.1)

a point on a smooth and regular curve, where curvature c(t) = 0 in isolation, is
called an inflection point. The study of inflectional configurations is important in
its own right, as well as for applications. Let us call λcr the critical aspect ratio for
Tp,q in inflectional state (i.e. when Tp,q has at least one inflection point in isolation).
We have:

Theorem 3.2. Every Tp,q of winding number w, parametrized by Eqs. (2.3), has
at least q points of inflection, placed at α = (2k + 1)π/w (k = 0, 1, 2, . . . , q − 1),
when λ = λcr = (1 + w2)−1.

Proof. Let us consider λ a kinematic parameter; Eqs. (2.3) describe a deformation
process of the curve through an inflectional configuration. By using (2.3) and (3.1),
from c = 0 in the fundamental section we have α = π/w. Since for every Tp,q there
are exactly q − 1 repeats over the whole curve we have at least q inflection points
in isolation for α ∈ [0, 2πp). In general, we have

α =
π

w
: c =

1 − λ − λw2

R(1 − λ)2 + λ2w2
; (3.2)

hence, from (3.2) and c = 0, we have

1 − λ − λw2 = 0 ⇔ λ = λcr =
1

1 + w2
. (3.3)

By using information on geodesic and normal components of curvature, Fuller
[19, pp. 42–54] proved that Tp,q has exactly q points of inflection in isolation, and
that λ = λcr is the only critical aspect ratio.

Curvature c, plotted in the fundamental section against α, is shown in Fig. 3
for several values of λ (R = 1). Note that for λ = λcr the curvature vanishes and
the inflection point is in the middle of the curvature period. For example the knot
T2,3 has 3 inflection points at α = 2π/3, 3(2π/3) and 5(2π/3) when λcr = 4/13.
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Fig. 3. (Color online) Curvature c plotted against α in the fundamental section, for several values
of λ with R = 1 (online: λ = 0.1 red, λ = 0.5 green, λ = 0.9 blue and λ = λcr black). Top row:
knots T2,3 and T3,2; bottom row: unknots T1,2 and T2,1.

As λ → λcr, the curvature develops two maxima, a generic feature of all torus
knots/unknots. When toroidal wraps dominate, c → 1/R when λ → 0 (i.e. when
the torus collapses to the standard circle); when poloidal wraps dominate, c → 1/λ

when λ → 1 (i.e. when the hole of the torus shrinks to a point).

3.2. Torsion

In general, torsion [18] is defined by

τ(t) =
(r′(t) × r′′(t)) · r′′′(t)

|r′(t) × r′′(t)|2 . (3.4)

At an inflection point torsion τ becomes singular, but integrable [20, 21]. For Tp,q

the singularity is removable by continuity, by taking the limit from both sides along
the curve. By taking Taylor’s expansion of the numerator and denominator of τ near
α = π/w (in the fundamental section), one can prove the following result.

Theorem 3.3. Let Tp,q be a torus knot/unknot parametrized by Eqs. (2.3) with
λ = λcr. The singularity of torsion at the inflection point is removable by continuity
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Fig. 4. (Color online) Torsion τ plotted against α in the fundamental section, for several values
of λ with R = 1 (online: λ = 0.1 red, λ = 0.5 green, λ = 0.9 blue and λ = λcr black). Top row:
knots T2,3 and T3,2; bottom row: unknots T1,2 and T2,1. Torsion has been regularized by applying
Eq. (3.5) for λ = λcr.

by taking

α =
π

w
: τ = − (10 + 7w2 + w4)(1 + w2)

2Rw(2 + w2)2
. (3.5)

The diagrams of Fig. 4 show an application of Theorem 3.3, where the singularity of
torsion has been removed by applying Eq. (3.5). From the limiting form of torsion
at the point of inflection, we have

Corollary 3.4. The value of torsion at the inflection point never vanishes.

Several bounds on aspect ratio and winding number for nonvanishing torsion were
found by Rodriguez Costa [22].

4. Global Properties

4.1. Total length

From standard definition and by using the parametrization (2.3) total length L of
Tp,q is given by

L =
∫ 2πp

0

|X′(α)|dα = R

∫ 2πp

0

√
(1 + λ coswα)2 + λ2w2dα. (4.1)
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It is useful to consider nondimensional quantities: by normalizing L with respect
to L0 = 2πR (length of the torus axis), we have

L =
1
2π

∫ 2πp

0

√
(1 + λ coswα)2 + λ2w2dα. (4.2)

The normalized total length is plotted in Fig. 5 (top–left diagram) against w, for
several knots and unknots. The following result can be easily proven:

Theorem 4.1. Let Tp,q be a torus knot/unknot with L given by Eq. (4.2). We have:

(i) for given p, if q 	 p, then L ≈ λq;

(ii) for given q, if p 	 q, then L ≈ (1 + λ)p.
(4.3)

Since for q 	 p, cmin = q(p − 1), by the first of (4.3) we have

L ≈ λ

p − 1
cmin. (4.4)

Similarly, for p 	 q:

L ≈ 1 + λ

q − 1
cmin. (4.5)

Lower and upper bounds for L can be readily found by using |coswα| ≤ 1 and
by direct integration of (4.2) we have

p
√

(1 − λ)2 + λ2w2 ≤ L ≤ p
√

(1 + λ)2 + λ2w2. (4.6)

4.2. Total curvature and writhing number

The total curvature of Tp,q is given by

K =
∫ 2πp

0

c(α)|X′(α)|dα, (4.7)

a nondimensional quantity. The top–right diagram of Fig. 5 shows K = K(w) for
several torus knots/unknots considered. Since length grows linearly with the number
of wraps, and each wrap contributes equally to K, a more informative quantity is
the total curvature per unit length K (also a dimensionless quantity), given by

K =
K

L
. (4.8)

Figure 5 shows the plot K = K(w) for λ = 0.5, R = 1. As w → 0, K → 2π (total
curvature per unit length of the torus axis); as w → ∞, K → 2π/λ (total curvature
per unit length of the torus cross-sectional circle).

The writhing number Wr [23] of Tp,q is given by

Wr =
1
4π

∫ 2πp

0

∫ 2πp

0

(X′(α) × X′(α∗)) · (X(α) − X(α∗))
|X(α) − X(α∗)|3 dαdα∗, (4.9)

where X(α) and X(α∗) are two points on Tp,q. The writhing number is a pure, real
number of considerable importance in applications (see last section). Straightfor-
ward computation of (4.9) based on (2.3) gives negative values of Wr = Wr(w) due
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Fig. 5. Top diagrams: normalized total length L and total curvature K; central diagrams:
total curvature per unit length K and writhing number |Wr|; bottom diagrams: total torsion
T and total torsion per unit length T . All plots are for λ = 0.5 and R = 1 against w: Tp,1

and T1,q , p, q = {2, 3, 4, 5, 6, 7, 8}; Tp,2 and T2,q, p, q = {3, 5, 7, 9, 11, 13, 15}; Tp,3 and T3,q,
p, q = {4, 5, 7, 8, 10, 11, 13}; Tp,4 and T4,q, p, q = {5, 7, 9, 11, 13, 15, 17}. Interpolation is made
for visualization purposes.

to the handedness associated with the parametrization chosen. Since total curvature
and writhe are quantities closely related, for ease of comparison we plot |Wr(w)|
instead (see Fig. 5, center–right diagram).

The presence of inflectional configurations has important consequences for
writhe. The relation can be made explicit by mapping Tp,q to the tangent indi-
catrix (tantrix ) It on the unit sphere by the tangent map t [24, 25] (see Fig. 6). Let
A be the total area on the unit sphere (solid angle in steradians, counted with mul-
tiplicity [26]), enclosed by the tantrix curve (with its own self-intersections). The
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Fig. 6. (Color online) Knot T2,3 and tantrix It (on the right) for λ = 0.2 < λcr (top), λ = 4/13 =
λcr (center) and λ = 0.5 > λcr (bottom). Note the three cusps on the critical tantrix (center–right
diagram); for λ > λcr a single loop develops from each cusp, contributing with additional spherical
area (in grey) to total writhe.

writhing number of Tp,q admits interpretation in terms of spherical area, according
to [24]

Wr =
A

2π
+ 1 (mod 2). (4.10)

Since the unit tangent to the tantrix is the unit normal vector to Tp,q, q inflec-
tion points on Tp,q are mapped to q cusps on the corresponding tantrix (see the
center–right diagram of Fig. 6). By considering the deformation of the tantrix as λ

increases, we see the development of q cusps (at λ = λcr), each generating a single
loop when λ > λcr; each loop contributes to the total area with an additional area
given by the grey regions of Fig. 6 (bottom–right diagram), hence according to
Eq. (4.10) to total writhe.
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4.3. Total torsion

The total torsion of Tp,q is given by

T =
∫ 2πp

0

τ(α)|X′(α)|dα. (4.11)

Since T is the inverse of a radius of torsion (the second radius of curvature in
R

3), total torsion is also nondimensional. The bottom–left diagrams of Fig. 5 show
T = T (w) for w < 1 and w > 1 (λ = 0.5). As expected, poloidal wraps tend to
contribute more than toroidal wraps to total torsion (in absolute value).

Since each wrap contributes to total torsion equally, we introduce the total
torsion per unit length T , defined by

T =
T

L
. (4.12)

The plot of T = T (w) shows that the values of all torus knots/unknots (within each
family w < 1, w > 1) follow the same power law, represented by the single, dotted
curve on the bottom–right diagram of Fig. 5.

4.4. Total squared curvature and torsion

Global functionals of curvature and torsion have been widely studied [27–30]. Par-
ticularly important are the integrals of the squared curvature and squared torsion,
that are related to bending and torsional energy of elastic filaments (see [31]; also,
for example, [1] and [32]). These are given by

Eb =
∫ 2πp

0

c2(α)|X′(α)|dα, Eτ =
∫ 2πp

0

τ2(α)|X′(α)|dα. (4.13)

Nondimensional quantities are obtained by normalizing Eb and Eτ with respect to
the total squared curvature of the unit circle E0 = 2π. These are given by

Eb =
Eb

E0
=

1
2π

∫ 2πp

0

c2(α)|X′(α)|dα,

Eτ =
Eτ

E0
=

1
2π

∫ 2πp

0

τ2(α)|X′(α)|dα.

(4.14)

Plots of Eb = Eb(w) and Eτ = Eτ (w) are shown in Fig. 7 for λ = 0.5 and R = 1.
Note that contributions from torsional energy of Tp,1–Tp,4 are an order of magnitude
smaller than those from bending energy. More generally, the relative contribution
of toroidal/poloidal wraps to bending/torsional energy depends on the particular
aspect ratio, so that two topologically equivalent torus knots/unknots with different
aspect ratio may attain same energy level.
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Fig. 7. Nondimensional bending energy Eb and torsional energy Eτ against winding number w;
all knots/unknots are evaluated for λ = 0.5 and R = 1. Tp,1 and T1,q , p, q = {2, 3, 4, 5, 6, 7, 8};
Tp,2 and T2,q , p, q = {3, 5, 7, 9, 11, 13, 15}; Tp,3 and T3,q , p, q = {4, 5, 7, 8, 10, 11, 13}; Tp,4 and T4,q,
p, q = {5, 7, 9, 11, 13, 15, 17}. Interpolation is made for visualization purposes.

5. Pohl’s Self-Linking Number and Călugăreanu’s Invariant

If Tp,q is endowed with framing (given by a ribbon unit vector field N̂, defined
pointwise normal to the curve), the Călugăreanu–White–Fuller’s theorem [23, 33,
34] (see also [20, 25]) relates Pohl’s geometric self-linking number SL = Wr+T [35]
(where T = T/2π is the normalized total torsion) to the topological self-linking
number Lk, by

Lk = Wr + T + N = SL + N , (5.1)

where the intrinsic twist N (an integer) denotes the number of full rotations of N̂
around the base curve of the ribbon, all along the curve. The quantity T +N = Tw
is the total twist number. In absence of inflection points Pohl’s self linking number
SL is known to be an isotopy invariant of the curve. We have:

Theorem 5.1 ([19]). Let Tp,q be a torus knot/unknot. Then

|SL| =

{
q(p − 1) if 0 < λ < λcr,

pq if λcr < λ < 1.
(5.2)

1650036-12
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In [19] the negative values of SL are given by the parametrization associated with
the handedness of Tp,q. Direct computation of Wr and T for all knots/unknots
considered in Sec. 4 are in good agreement with the results of Theorem 5.1.

The rôle of inflectional states is clarified by comparing the right-hand side of
Eq. (5.1) to (5.2). Since Lk is a topological invariant of the framed Tp,q, Lk remains
unchanged when Tp,q goes through an inflectional configuration at λ = λcr. As
discussed in [20] this produces a jump in SL given by [SL] = pq − [q(p − 1)] = q,
that is the number of poloidal wraps of Tp,q. Since we have

Lk − SL = N = q (5.3)

we can state the following:

Corollary 5.2. Let Tp,q be parametrized by Eqs. (2.3). As Tp,q goes through an
inflectional state given by λ = λcr, we have [N ] = q.

This result may find useful applications in many physical systems, and justifies the
conjecture made long time ago by Moffatt and Ricca [[20], p. 426] regarding the
inflectional transition of a torus unknot through a critical aspect ratio.

6. Torus Knots/Unknots in Applications

Geometric and topological aspects of torus knots/unknots play an important rôle
in several applied contexts. Here we provide a brief review of some of these appli-
cations.

6.1. Braided magnetic fields in the solar corona and in plasma

physics

Magnetic fields may form highly braided structures at all scales. Evidence for braid-
ing comes from direct observation of coronal structures (see Fig. 8(a)) and photo-
spheric motion. Plasma loops are continuously formed in the solar corona and in
stellar atmospheres as gigantic arches. Since a great amount of energy eventually
released to outer space is initially accumulated in these loops, it is particularly
important to provide mathematical models of magnetic flux loops to understand
basic properties and dynamics; this information can help to estimate energy con-
tents and transfers between regions in space. Various attempts to relate free energy
contents with structural complexity have been carried out [36].

Braiding of magnetic fields also take place inside tokamaks, where fields trapped
within a toroidal vessel (Fig. 9(a)) can get highly twisted by the action of toroidal
and poloidal electric currents.

By identifying the magnetic field with torus knots/unknots strands (see
Fig. 8(b)) one provides an idealized setting to study the effects of geometry and
topology on the dynamics and evolution of plasma loops as well as the behavior of
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(a) (b)

Fig. 8. (Color online) (a) Observation of a typical solar coronal loop (TRACE mission, November
6, 1999, 2 UT). (b) The same event with magnetic fields (red online) superimposed, modeled by
torus knot T9,2 (λ = 0.2, R = 5).

(a) (b)

Fig. 9. (Color online) (a) Twisted magnetic field lines (yellow online) confined to the plasma
region (purple online) in the Tokamak vessel. (b) A trefoil knotted vortex filament in water: the
filament is visualized by the white paths formed by tiny air bubbles trapped by the region of low
pressure [39].

magnetic fields in confined tokamak plasma. In both contexts inflectional configu-
rations play an important rôle by triggering changes in twist/writhe helicity, kink
instability and energy release during evolution [37].

6.2. Vortex filaments in classical fluids, dynamical systems

and quantum fluids

Torus knot solutions to vortex filament motion have been found in the context of
the so-called Localized Induction Approximation (LIA) of the Biot–Savart law for
Euler’s equations [6, 38] and studied in superfluids [12, 13]. Real vortex torus knots
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(a) (b)

Fig. 10. (a) Trefoil knot in Bose–Einstein condensate [14]. (b) DNA torus knot T2,13 produced
by topoisomerase action in laboratory experiments [42].

have been produced in water by laboratory experiments (see Fig. 9(b)) [39]. Search
for torus knot solutions in dynamical systems has led to the discovery of knotted
solutions in Lorenz-type of differential equations [40], as well as in the mathematical
study of Euler’s equations [41]. In the context of quantum fluids, defects in the
shape of torus knots have been found in superfluid helium and in Bose–Einstein
condensates (Fig. 10(a)) [14], and further work on the relations between topological
complexity, energy and helicity is in progress. In these cases, curvature and writhe
information, directly measurable from observations, have proven to be very useful
to provide dynamical and energetic estimates for such systems.

6.3. DNA macromolecules and elastic systems

Various types of torus knots have been produced by topoisomerase actions in lab-
oratory and computational experiments in DNA biology (Fig. 10(b)) [42, 43]. To
extract information on structural and functional aspects of DNA (e.g. morpholog-
ical packaging and protein coding) knot distribution has been analyzed in various
systems revealing, for example, the preferential formation of torus knots in phage
capsids [5]. Further work to establish probability distribution associated with the
preferential formation of torus knots is in progress (Mariel Vasquez, private com-
munication) and attracts considerable attention. Since biological knots are subject
to electrostatic forces and move in a viscous fluid under the action of gravity and
drag, information on the wet surface (associated with global geometric properties of
ideal knots) are also useful to estimate packaging [32] and sedimentation properties
in vivo.

To a first-order approximation, a DNA macromolecule can be modeled by a
flexible elastic filament. Hence, a first-order, linear approximation to elastic energy
is used to extract information on bending and torsional energy due to curvature and
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torsion of the filament axis [1, 44]; relations with lower bound torus knot energy
configurations [45] can be used to estimate energy levels of more complex knot
types.
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