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Abstract
Coherent sources of light are easily available to university undergraduate
laboratory courses and the demonstration of electro-magnetic wave diffraction
is typically made with light. However, the construction of arbitrary patterns for
the study of light diffraction is particularly demanding due to the small linear
scale needed when using sub-micrometer wavelengths, limiting the possibility
to thoroughly investigate diffraction experimentally. We describe and test a
simple and affordable method to develop arbitrary light diffraction patterns
with first year undergraduate or last year high school students. This method is
exploited to investigate experimentally the connection between diffraction and
the Fourier transform, leading to the development of the concept of spectral
analysis of a (2D) signal. We therefore discuss the possibility of building a
teaching unit for first year undergraduate or last year high school students on
the interdisciplinary topic of spectral analysis starting from an experimental
approach to light diffraction.

S Online supplementary data available from stacks.iop.org/EJP/37/065701/
mmedia

Keywords: optics, diffraction, optics education, Fourier transform

(Some figures may appear in colour only in the online journal)

1. Introduction

Coherent light that is partially obstructed by an object (sharp edges or tiny apertures), does
not propagate as straight rays but along distinct angles and forms fringes on the observation
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plane. Secondary schools and undergraduate students can easily appreciate that the fringe
separation scales inversely with the size of the aperture [1]. However the quantitative study of
diffraction is often limited by the uncertainty on the size of the diffractive elements: even high
quality objects produced by photolithography or electron beam lithography [2] are affected by
an intrinsic variability. Moreover, only very simple and regular patterns are available com-
mercially for use in lab courses [3]. Diffraction experiments from every-day objects, such as
those found in life science [4] and in electronics [5], have been recently proposed. Arbitrary
patterns would be extremely useful in teaching physical optics basics but are difficult to
obtain for low cost experiments [6].

The lack of basic calculus tools by undergraduate first year students additionally limits
the efficacy of teaching units on this topic. There is an intrinsic complexity in the concept and
use of waves and in their superposition. On the other hand, even at the level of the advanced
undergraduate courses in optics, there is a wide misconception on the application of the
Fourier transform (FT). Most of the time students have a theoretical knowledge of the FT,
with no direct practical skills.

The typical situation in first year undergraduate courses and secondary schools is to
organize lab demonstrations of the diffraction phenomenon with laser light impinging on
regular patterns leaving the impression in the students that: (1) only narrow apertures produce
non-straight propagation of light, (2) only regular patterns give rise to interference, (3) only
light is affected by diffraction compared to other electro-magnetic and non-electromagnetic
wave perturbations. During the undergraduate first year the theoretical introduction to dif-
fraction often starts from the Huygens principle but the direct connection between diffraction
and the mathematical tool of the FT is not drawn. This connection, particularly relevant in
optics itself (image formation) and in a number of applied physics fields (electronics, radio
communications), is often misunderstood by first year undergraduate students and seems to be
out of reach for high school students.

Few pilot projects can be found on the internet that explore the possibility to work at the
educational level on diffraction as a FT1 [7] and [8]. An example is the spatial filtering lab
modulus developed at the University of California at Santa Barbara (see footnote 1), in which
spatial filtering was performed by small pieces of wires or meshes set in the lens focal plane.
Other approaches discussed the diffraction from complex shapes, such as snow-flakes [8] or
helices [7]. In particular, Lucas et al [7] simulated in the optical range the x-ray diffraction
from the DNA helix by exploiting the size reduction of photograph slides [7]. Kits for high
school students on Fourier optics have been developed by the pedagogical research of
Waldorf schools [9] and are available on the internet.

We explore here the possibility to have a mixed laboratory–theoretical approach to
diffraction that can help students, also through an interdisciplinary approach, to grasp the
basic hypothesis that lie at its foundations and understand its connection to the FT. The
proposed teaching unit should also support teachers in providing students with a direct view
of the use of spectral analysis in various fields, from electronics (in one dimension) to optics
(in two dimensions).

1 University of California at Santa Barbara, ‘Spatial Filtering’, Lab course schematics for the Physics
Department:http://web.physics.ucsb.edu/~phys128/experiments/spatial/spatial.pdf
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2. Introducing FT by means of light diffraction

We exploit the commercially available microfiche printing technology for the construction of
arbitrary patterns that can be used for diffraction experiments. This technology is based on
photographic reproduction and reduction of the image on a support of cellulose acetate. It
uses the silver halide process to create silver images and differs substantially from the Xerox-
copying of photocopiers in which an electrostatic replica of the text is created on a drum. This
approach allows students to study experimentally light diffraction and teachers to help stu-
dents to discover its relation to the mathematical tool of the FT. Students can devise and build
their own diffractive patterns by printing it on microfiches at very low cost. They can then
compare the experimental diffraction patterns with those predicted according to the FT the-
ory, therefore retrieving the basic properties of the FT while understanding the features of
light diffraction.

This training module has been first tested and revised during laboratory sessions with
high school classes visiting the educational laboratory LABEX at the University of Milano-
Bicocca in the year 2014–15. It will be extended to first year undergraduate students during
the 2017 academic year.

Figure 1. Diffraction from an aperture (projection on the z–y plane). (A) Far field
(Fraunhofer) approximation. It is typically sketched without the lens that is necessary to
obtain the far diffraction limit: we compare the path difference of two diffracted rays
that are parallel due to the action of the lens. In this case the path difference depends on
the product y2y1 (notice that .b a@ ) The lower inset shows the ray tracing when a lens
is used to collect light. (B) Paraxial (Fresnel) approximation: we compare the skewed
ray (dashed line) with the un-deviated ray (parallel to the z-axis). r12 is the distance of a
particular point (x1; y1; 0) on Π1 to a selected point on Π2 plane (x2; y2;D):
r D12 d= + ¢ . Since the deviation angle α is very small (not to scale in the figure), we
can approximate ’d with ,Cd the deviation of 2P with respect to the circle of radius D
(circleD), and further approximate Cd with ,Pd the deviation of 2P with respect to the
parabola best approximating circleD, that has a focus F=D/2 to the left of .2P The
discrepancy Pd is then y F y D4 2P

2 2d @ D = D( ) ( ).
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2.1. Where is the connection between diffraction and FT?

Prerequisites for the training module are a basic knowledge of the trigonometric functions, a
description of the electric field as a plane and spherical wave, the concept of phase of a wave,
the Huygens principle and the relation between our visual sensations and the field intensity
(power per unit area), proportional to the square of the electric field. We assume that the light
is monochromatic with wavelength λ (typically λ≅0.5 μm), wave vector k=2π/λ and
angular frequency c2w p l= .

The first approach to the relation between diffraction and the FT is based on the sketch in
figure 1(A). The electric field impinging on the 1P plane is assumed to be a simple plane wave
propagating along the optical axis, E x y A x y k z t, , cos .z1 1 1 1 1 1 w= -( ) ∣ ( )∣ [ ] The amplitude
A x y,1 1 1∣ ( )∣ describes the transmission of the diffractive object and the incident field is uni-
form. We first imagine observing the image at infinite distance on :2P the rays leaving
different areas of the diffractive object on 1P are drawn as a parallel bundle leaving the
diffractive object. This scheme, typically found in textbooks, poses two orders of logical
problems in the students. First, the sketch is apparently nonsense because a parallel bundle of
rays becomes, in the same picture, a focused beam on the observation screen. Second, smart
students may ask whether the amount of energy collected on a screen at an infinite distance is
enough to observe the diffraction pattern. Moreover, students may have already realized in a
lab session that a clear diffraction pattern can also be observed at a finite distance. These
issues pose a severe challenge for teachers to be solved with students at the conceptual level.

The answer to these concerns is the use of a lens (inset of figure 1(A)) set at the focal
distance from the observation plane, .2P The lens conveys then all parallel rays into small
areas on the observation screen. The bundles of rays are focused on different positions on the
diffraction (observation) plane, depending (almost linearly) on the angle between them and
the optical axis. It is this very simple property, often overlooked by students and teachers, that
makes the path difference between the propagating electric fields linear in their mutual
distance, as sketched in figure 1(A). In analogy with the Huygens principle [10] we can then
assume that the total electric field on the 2P plane will be the sum of all these wavelets and,
referring to the definitions in figure 1(A), we can approximately write that

E x y A x y k
x
D

x k
y

D
y t, , cos . 1R

x y
2 2 2

,
1 1 1

1
2

1
2

1 1 1

å w» + -
ÎP

⎡
⎣⎢

⎤
⎦⎥( ) ∣ ( )∣ ( )( )

( )

Equation (1) reads: take the amplitude A x y,1 1 1∣ ( )∣ of the field arising from on each point (or
area) of the diffractive plane ,1P multiply it by a harmonic plane wave with k-vector

k k
x
D

y

D
,

2
,

2
x y

2 2p
l

p
l

= ⎜ ⎟⎛
⎝

⎞
⎠( ) (i.e. plane waves, but in the wave front plane!) and sum them

over all the diffractive aperture. It gives a transformation rule between the two functions
E x y,R

2 2 2( )( ) and A x y, ,1 1 1∣ ( )∣ that is proportional to the real form of the FT [10]. It is also
important to notice that the use of equation (1) stands on the scaling rule between the 1P and
the 2P coordinates through the definition of the spatial frequency vector, k k,x y( ).

For a direct comparison of equation (1) to the observed diffraction patterns we need to
consider the effect of the parity of the diffractive object on the diffracted field. There is no
reason to use a cosine function to describe the wavelets instead of a sine wave. By reasoning
on the symmetry of these function (cos(x)=cos(−x) and sin(x)=−sin(−x)), we can easily
convince ourselves and students that diffractive patterns which are even in the coordinates
will give diffracted fields described by equation (1), and that diffractive patterns which are
odd in the coordinates will give diffracted fields described by a similar equation
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E x y A x y k
x
D

x k
y

D
y t, , sin . 2I

x y
2 2 2

,
1 1 1

1
2

1
2

1 1 1

å w» + -
ÎP

⎡
⎣⎢

⎤
⎦⎥( ) ∣ ( )∣ ( )( )

( )

The field diffracted by a generic diffractive pattern, with no defined parity, will be given by
the sum of equations (1) and (2). Since any light detector, our eye as well as the CCD camera
of the students’ smartphones, is sensitive to the intensity that is the average of the square of
the electric fields, we can state that the diffracted light intensity is proportional to the sum of
the two components, E x y E x y, ; ,R I

2 2 2 2 2 2( ) ( )( ) ( ) [2]

I x y E x y E x y

E x y k x k y A x y

E x y k x k y A x y
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, cos ,
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We have therefore written the intensity as the composition of two transforms of the original
source distribution, E x y E x y, ; , .R I

2 2 2 2 2 2( ) ( )( ) ( ) For students of the last years of an
undergraduate course, it should also be possible to recognize in these functions the real
and imaginary parts of the same complex FT of A x y, .1 1 1( ) The limitation of this approach for
first year undergraduate students or last year high school students may be that we purposely
avoid using the complex number notation and choose to deal with the phases of the fields.

In all cases the relation between the FT transformation rule (equation (3)) and the
observed pattern is straight forward if we know the behavior of the FT. Conversely, if we
observe the behavior of the light diffracted by diffractive patterns of various shapes, we can
infer the mathematical properties of the FT. This is the core message of the proposed training
section.

2.2. Fourier transform black-box

In the proposed activity students gain first geometrically (figure 1(A)) the meaning of
equation (2) and then compute the fast Fourier transform (FFT) of arbitrary patterns. The FT
is taken as an operator: an input function, g x y, ,( ) with domain in the 2D space of plane Π1,
enters the black box denoted F [] and is modified in a new output function
F g x y g k k, , ,x y=[ ( )] ˆ ( ) with domain in a 2D Fourier space, k k, .x y( ) The scaling rule,
k k kx ky, , ,x y 2 2l l=( ) ( ) allows us to cast the FFT spectrum onto the real observation
space Π2. From the FT of a few basic functions and a few general transformation properties of
the FT, students can qualitatively predict the diffraction profiles of arbitrary diffractive pat-
terns, and compare them with observed profiles. For more complex profiles, numerical
simulations can be performed either by means of freeware software for symmetric profiles
that have real FT (for example ImageJ [11]), or of simple custom programs2 in Python or
Matlab, for asymmetric profiles for which both the cosine (equation (1)) and sine
(equation (1)) components should be computed.

Table 1 summarizes the FT of a set of 1D functions that allows us to predict a wide
variety of intensity patterns from 2D aperture profiles. A few important properties of the FT
[12] help students to predict a variety of diffraction patterns starting from table 1.

The FT linearity property mathematically states the superposition principle of the electro-
magnetic field. From the optical point of view, a diffractive pattern composed as the

2 A Python code that can be used to compute the 2D diffraction profile can be downloaded from the following
link:https://drive.google.com/open?
id=0B8B9d2LsyXlcfjRyWmo3LUwyemNLWFphSThFQzlGcGt2Y0tDb1Jad05VQzdyODhqbWR5ekE
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superposition of two patterns will produce a diffraction profile that is the sum of the dif-
fraction profiles of the two individual diffractive patterns. Analytically we can write

F g x f x g k f k linearity 4x xa b a b+ = +[ ( ) ( )] ˆ ( ) ˆ ( ) ( )
where α and β are coefficients. The FT scaling property states that a geometric expansion on
the diffractive patterns will produce a contraction in the diffractive profiles. This is the
mathematical formulation of the observation that fine structures in the diffractive plane give
rise to widely separated fringes in the diffraction profiles and can be written as

F g bx
b

g
k
b

1
scaling. 5x= ⎜ ⎟⎛

⎝
⎞
⎠[ ( )] ˆ ( )

Shifting the spatial variable results instead in the multiplication by an oscillating factor in the
frequency domain. If we combine the shifting with the linearity property and take into
account that the observed intensity is (proportional to) the square modulus of the FT, we can
write that

F g x g x a k a g k2 1 cos shifting. 6x x
2 2+ o = +∣ [ ( ) ( )]∣ ( ( ))∣ ˆ ( )∣ ( )

Equation (6) states that if we build a diffractive pattern as the superposition of two shifted (by
dx=a) replicas of the same diffractive pattern, the resulting diffraction (intensity) profile is
the original diffraction pattern modulated by fringes with the wavelength Λ=Dλ/a,
(figure 1) scaling inversely with the spacing a. We can extend this property to a collection of
many (2N+1) replicas of equally spaced (spacing=d) identical diffractive elements f (x)

f x f x id . 7
i N

i N

å= -S
=-

=+

( ) ( ) ( )

This case can deal in general with the so called convolution theorem (of which we do not give
the general formulation here) that allows us to write [12] the diffracted field as the product of
the original diffracted pattern times a multi-periodic function

F f x f k k di1 2 cos sampling. 8x
i

N

x
1

å= +S
=

⎛
⎝⎜

⎞
⎠⎟[ ( )] ˆ ( ) ( ) ( )

Equation (8) can be derived from the application of the shifting and linearity property and
implies that the FT of the grating is the FT of the single slit multiplied by a complex harmonic
modulation factor. We will apply equation (8) for a finite N 10@( ) number of replicas, in
contrast to most text books [10, 12]. Finally we notice that the diffraction patterns are often
described by separable functions of the coordinates on the diffraction plane. In this case we

Table 1. Fourier transform of useful profiles.

g x( ) g xˆ ( )
x

x r
x r

rect
1
0r

0

0
0 .=

<⎧⎨⎩( ) r rsinc 20 0x( )

x y
x y r

x y r
circ ,

1

0
r

2 2
0
2

2 2
0
20 .

=
+ <

+⎪
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⎩( ) rr somb0

2
0p x( )

Fourier transform, F g x g xg x x
1

2
d cos 2 ,òx

p
px= =

-¥

+¥
[ ( )] ˆ ( ) ( ) [ ] of two basic functions. The

Fourier variables are x and .h The sinc() function is defined as sinc sin .x px px=( ) ( ) ( )/ The
rsomb ( ) function can be seen as a generalization of the sinc() function in the radial coordinate. It

is defined as r J r rsomb 2 2 2 ,1 p p=( ) ( ) ( )/ where J r21 p( ) is the first order Bessel function, and an
exemplary plot is reported in figure 5(B), left inset.
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Figure 2. Exemplary transmission confocal images of a square diffraction pattern (A1),
of an array of squares (A2) and of a circle (A3), printed on microfiches. Plot (B) reports
the transmission signal measured along the straight lines showed superimposed to the
transmission images (gray dashed lines).

Figure 3. Comparison of Xerox-printed (panels (A)–(D)) to microfiche printing (panel
(E)). The white bars report the linear size in each panel or blow up (as in panel (A)).
Panels (A)–(D) are printed rectangular arrays with spacing 330�S�60 μm. Panel
(E) is a 400×400 μm2 square aperture printed on a microfiche. Panel (F) reports the
profiles of the square aperture (panel (E)) and of two periods of the S=330 μm
rectangular array (panel (A)) as solid and dashed lines, respectively. Panel (G) is a
photo of the laser and microfiche holder setup.
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can simply compute independently the transforms over the two axes

f x y g x h y

F f x y g k h k

,

,
separability. 9

x y

=

=

⎧⎨⎩
( ) ( ) ( )
[ ( )] ˆ ( ) ˆ ( ) ( )

This property will allow us to refer to table 1 when dealing with 2D diffractive patterns that
can be described by the product of two 1D profiles.

3. Examples

The diffraction patterns were drawn (Draw, OpenOffice™) as black profiles on a white
background (A4 page size, 400 dpi resolution, 21×30 cm, 23 times reduction). The typical
linear size of the apertures on the A4 page is 1 cm, which corresponds on the microfiches to a
linear size ≈430 μm. The spatial resolution on the microfiches was 11±2 μm, as estimated
from the sharpness of the boundary profile measured by confocal transmission microscopy
(SP5, Leica Microsystems, transmission mode). The transmittance was estimated by dividing
the pixel content by the dynamic range (255) of the image (figure 2, panels A1 and B). The S/
N ratio was computed as S N I I ,2 1= where I2 and I1 are the transmission signal collected in
the bright and the dark regions, respectively, of the diffractive patterns. The average value
is S N 8 0.6= o .

By comparison, direct Xerox-printing on acetate substrates at 1200 dpi provides in
principle only 22 μm resolution. Moreover, the Xerox-printing on acetate sheets is intrinsi-
cally less accurate. The optical transmission microimaging of diffractive patterns obtained by
Xerox-printing, reported in figures 3(A)–(D), compared to the one obtained on a microfiche
(figure 3(E)) indicates that details smaller than 220–240 μm cannot be realized with good S/N
(figure 3(F)). It is likely that the electrostatic toner transfer produces spurious dots on the slide
that severely affect the S/N ratio (S/N≅3.5±1.9; figure 3(F)) and the sharpness of the
patterns with details smaller than 300 μm.

The conventional microfiche printing provides the negative of the original drawing: we
obtain therefore transparent apertures on a dark background. The transmittance of the
background is 11±2% compared to that of the apertures that is 87±9% (see the discussion
of figure 2). The microfiches were read by means of an extremely simple and low cost setup.
A He–Ne laser beam (λ=0.633 μm, power 5 mW, Melles-Griot, USA) passes through a 4×
beam expander (two lenses with focal lengths f1=10 mm and f2=40 mm set at a distance
d=f1+f2) to obtain a uniform beam ≈5 mm in diameter that is diffracted by the microfiche
(figure 3(G) and the supplementary material (SM), ‘Sketch of the optical setup’, figure SM1).
Snapshots of the diffraction patterns were taken on a screen D=1.5 m away from the
microfiche by means of a smartphone digital camera3. The laser beam was not spatially
filtered. A hole (with a radius r ≈ 8 mm) was cut at the center of the screen in order to get rid
of the bright central spot. The hole shadows all the spatial frequencies smaller than1 200 ,l( )/
which corresponds to details on the sample with angular size 5 mrad- .

We devised and tested a series of diffraction patterns printed on microfiches that should
allow students to explore the basic FT theorems outlined above (equations (4)–(9)). Num-
erical simulations of the expected pattern can be performed using a Python program (see
footnote 2), and qualitative theoretical predictions can be made from equations (4)–(9).

3 We employed a smartphone camera. A sharping mask was applied to the images reported in the figures. Please
note that the naked eye observation offers a better on-field visualization of the diffraction patterns.
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3.1. Square aperture (separability)

The function that models this aperture is

r x y
x
b

y
b

x
b

y
b

, rect , rect rect 10= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )

Figure 4. (A) Square diffraction pattern on the microfiche as detected by confocal
transmission microscopy. (B) Screen shot of the optically generated diffraction pattern
measured at D=1.5 m from the microfiche. The lower left inset shows the numerically
simulated diffraction pattern (no noise added, bar=2 cm). The lower right inset shows
the square pattern printed on the A4 size page.

Figure 5. Circular diffraction pattern. (A) Circular pattern printed on the microfiche as
detected from confocal transmission microscopy. (B) Screen shot of the optically
generated diffraction pattern measured at D=1.5 m from the microfiche. Lower right
inset: diffractive element to be printed on the microfiche. The size of the page is A4.
Lower left inset: numerically simulated diffraction pattern (no noise added). The upper
left inset reports the average profile along the radial coordinate on the diffractogram.
The vertical arrows indicate the zeros of the somb(x) function as discussed in the text.
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where b is the full width of the square aperture, b=385±10 μm. The analytical FT is a sinc
() function in the FT variables x D y D, , .2 2x h l l=( ) ( ( ) ( )) According to the separability
property (equation (9)) we can write the FT of equation (10) as

r
b

x b
D

x b
D

,
1

sinc sinc . 11
2

2 2x h
l l

= ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ˆ ( ) ( )

On the recorded diffractogram (figure 4(A)), we can appreciate the presence of the two
sinc() functions that intersect each other at the center of the diffraction image on the screen.
This feature can be retrieved on the simulated pattern (figure 4(B), lower left inset). The fringe
spacing can be computed from the number of zeros observed within a linear size=40 mm,
averaged over the two symmetry axes. We measure a fringe spacing ≈2.7 mm, in very good
agreement with the expected value D b 2.6 0.6 mm,l = o which is the first zero (x=1)
of the sinc(x) function (D=1.5±0.02 m).

Figure 6. Linearity of the FT. (A) Snapshots of the diffraction patterns obtained from
the individual diffractive patterns (horizontal dash, vertical dash and inverted ‘c’) used
to build the ‘5’ shape diffractive pattern. The panels on each snapshot are the
corresponding diffractive patterns: the paper size is not in the A4 scale for display
purposes. (B) Diffractive pattern (symbol ‘5’) on the microfiche as detected from
confocal transmission microscopy. The inset is the corresponding diffractive pattern
(A4 size). (C) Screen shot of the optically generated diffraction pattern measured at
D=1.5 m from the microfiche. (D) Numerically simulated diffraction pattern (no
noise added).
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3.2. Circular aperture (Airy disc)

The diffraction pattern of a circular aperture has the shape of the Airy function (Airy
(x)=somb2(x), table 1 and figure 5(B), left inset). The diffractive pattern has a
diameter=370±5 μm as imaged by confocal transmission microscopy (figure 5(A)). At
the observation distance D=1.5 m, the first minimum falls at ≈1.62 mm from the center of
the diffractogram. It is noteworthy that the higher order zeros are not equally spaced (inset of
figure 5(B)), in agreement with the shape of the Airy function (table 2).

3.3. Number 5 (linearity)

We have investigated the superposition principle on a composite pattern, the symbol ‘5’,
whose building blocks are two rect() functions and a ‘C’ mirrored through a vertical line
(figure 6(A)). The measured diffraction patterns are two orthogonal sinc(x) functions and one
Airy(x)=somb2(x) function (figure 6(A)). The diffraction pattern generated from the symbol
‘5’ printed on the microfiche (figure 6(B)) shows a slanted cross shape superimposed on a set

Table 2. Airy function zeros.

Zero position [mm] j jn n1 exp+( )( ) j jn n1 Airy+( )( )

1.62±0.06
3.1±0.06 1.8±0.2 1.8
4.1±0.06 1.4±0.1 1.45
5.2±0.06 1.3±0.1 1.31
6.6±0.06 1.2±0.1 1.24

Analysis of the position of the minima in the diffractogram obtained from the circular aperture (see figure 5). The
position of the minima are indicated as j .n n 1,2...={ } The ratio of these positions can be taken as a good measure of the
shape of the Airy function.

Figure 7. Diffraction pattern used to test the convolution properties of the FT. (A)
Confocal transmission microscopy image of the rectangular array of square apertures.
(B) Screen snapshot of the optically generated diffraction pattern measured at
D=1.5 m from the microfiche. Lower right inset: the square regular array to be
printed on the microfiche substrate (A4 paper size). Lower left inset: numerically
simulated diffraction pattern (no noise added).
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of concentric rings (figure 6(C)). This pattern can indeed be obtained as the linear combi-
nation of the FT spectra reported in figure 6(A), and is confirmed by the numerical simula-
tions (figure 6(D)). Although the diffraction rings cannot be discerned clearly in the
diffraction pattern (figure 6(C)), the slanted cross is clearly visible.

3.4. Sampling and convolution

This FT sampling property (equation (8)) is more easily analyzed directly on the diffractive
pattern than studied on the analytical expression. A regular rectangular array of square
apertures printed on a microfiche (figure 7(A)) produces the diffraction pattern reported in
figure 7(B), which is in close agreement with the prediction (figure 7(B), lower left inset). If
we compare figure 4(B) to figure 7(B), the presence of the complex harmonic modulation
factor (see equation (8)) in the measured pattern is evident. The diffraction pattern is that of a
single square slit, a double sinc() pattern, which is sampled regularly by the comb function as
predicted by the FT sampling property (equation (8)).

3.5. DNA diffraction

X-ray diffraction (wavelength ∼0.2 nm) was employed by Rosalind Franklin and Raymond
Gosling [13] in 1952 to investigate the structure of DNA (linear scale ∼1 nm). The

Figure 8. Diffraction pattern used to replicate the Franklin–Goslind experiment on
DNA. (A) The 2D projection of the DNA helix printed on the microfiche (confocal
transmission microscopy). (B) Screen snapshot of the optically generated diffraction
pattern measured at D=1.5 m from the microfiche. The lower right inset reproduces
the famous x-ray diffractogram from aligned DNA fibers. The lower left inset reports
the numerically simulated diffraction pattern (no noise added).
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interpretation that Watson and Crick gave of the x-ray diffractive pattern was largely quali-
tative and based on the general properties of the FT: finely spaced regular arrays give a
diffraction pattern with widely spaced diffraction maxima (scaling theorem, equation (5)).
The Franklin–Gosling experiment was carefully replicated by Lucas et al [7] in the optical
domain by exploiting the photographic reduction of slides. These authors simulated a fiber of
helices with axis perpendicular to the diffracted light and discussed also the (minor) effect of
the 2D projection of the helix onto a plane that contains the cylindrical axis. Here we show
that a clearly discernible diffraction pattern can be obtained from microfiches reporting a
transparency function that is the 2D projection of a single DNA double helix structure
(figure 8(A)).

The diffractive pattern (figure 8(A)) does not reproduce the details of the DNA base
pairs. Therefore both the simulated and measured diffraction patterns do not reproduce all the
details visible in the x-ray diffractogram (figure 8(B), inset). However the characteristic
X-shape can be recognized on the measured diffraction pattern (figure 8(B)) and the ladder
structure that arises from the helix pitch is visible.

4. Applications

We briefly describe the proposal of a basic version of the learning unit to high school students
who attended the LABEX laboratory during a 10 day stage at the University of Milano-
Bicocca in spring 2016. Students from the last year of high school with scientific bachelor
where divided in two 5–7 student groups. First an introduction was given to the concept of
base in algebra and in 2D and 3D vector algebra through the use of the unitary vectors
i j k, ,(ˆ ˆ ˆ) along the three orthogonal axes of a Cartesian system of reference. Then we moved
to the direct observation, starting with a short description of the setup and the observation of
the diffractive patterns from simple geometries (dots, squares). Only geometrical optics
concepts were used at this stage. The students were shown the original enlarged diffractive
patterns on A4 paper sheets and a discussion among their peers about the symmetry of the
diffractive pattern and that of the diffraction pattern was stimulated. Most students were
initially refractory to this qualitative approach (see the SM, ‘Typical activity on the diffractive
microfiche plates’). It must be noted that the observation of the patterns was done more easily
by eye and their recording was done by sketching them in a lab book. The recording of the
patterns with a CCD camera, for example a smartphone, is more difficult and requires some
image processing, at least an ‘edge enhancer’ filter. This was done by the tutors when there
was the need to build a record of the activity.

The second stage of the learning unit consists in a brief introduction to the diffraction
process in order to come to equation (3). As stated in section 3, this requires some pre-
knowledge about the Huygens principle, at least in its very general and qualitative statement.
During the discussion, equation (3) is compared to the expression of a number in different
bases, a concept that should be more familiar to students and would help them in under-
standing the use of a set of basis functions.

The third step of the basic learning unit we proposed deals with an example of a
quantitative observation of the diffractive patterns. This has been done in particular by
comparing the diffractive patterns from single circles (see figure 5 and table 2) and the
theoretical prediction expressed in terms of the Bessel function. The digitization of the
diffractive patterns and analysis with the ImageJ [11] tools involved the application of an
enhance filter and the extraction of six radial profiles from the image. The profile shown in
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figure 5 is obtained by averaging these measurements once they have been shifted along the
radial position to best superimpose the profiles.

A second quantitative example was related to the superposition principle and was based
on the ‘number 5’ example (see figure 6). The proposal ended with a hands-on session in
which the students were observing the diffraction patterns from microfiche patterns reporting
single letters and inferring the letter from it, according to the superposition of the diffraction
patterns of elementary elements (circles, squares, lines) observed previously.

Attendance at the learning unit should be followed by a short form that evaluates the
skills and knowledge acquired by the students. We have set up a preliminary version of this
form (Google Form utility) and shared it with the students. This evaluation form is reported in
the SM (‘Web-form for the post-evaluation of the learning unit’) together with a short analysis
of the survey. This survey, though administered to a restricted number of students, indicates
that the most deeply acquired skills relate to the recognition of the diffraction pattern as a
superposition of basis diffractive patterns. This is not unexpected because this skill was
mainly acquired in the hands-on (third) part of the learning unit. The revision of the form and
its administration to a larger set of students (LABEX is typically attended by 350–400 high
school students per academic year) is scheduled for the next academic year.

5. Discussion

Though the proposed learning unit is specifically devoted to first year undergraduate and last
year high school students, sophomore or junior undergraduate students may also take
advantage of the proposed experimental approach. In this case, in fact, they should master the
FT as a mathematical tool. However they typically lack comprehension of its physical
meaning and use. Moreover, from the theoretical optics point of view, some confusion may
arise in these students about the connection between the vision of the propagating far field as
a FT, i.e. a superposition of plane waves in the 2D phase wave plane, and the vision provided
by the Huygens principle in terms of superposition of spherical wavelets in 3D space. The
fact that these two visions look very similar and are indeed closely related, but not identical, is
not often recognized by students, even those in the second or third year of undergraduate
courses. In fact, the two descriptions agree if we write the Huygens principle in terms of the
FT with the appropriate approximations. We offer here a simple geometrical argument of this
connection that can be proposed to undergraduate sophomore/junior students after the
experimental unit.

According to the Huygens principle, the field E r t,2 2
G( ) propagated at the point r2

G
is the

sum of spherical wavelets, x y A x y kr t r, cos 2 ,1 1 1 1 1 12 12w pD D - -∣ ( )∣ [ ] each arising from
a small area, r x y ,2

1 1 1D = D D
G

on the aperture plane 1P (see figure 1(B)) with the same
amplitude and initial phase as the origin field E x y,1 1 1( ) but in quadrature with it
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The electric field E x y1 1, 1( ) acts as a transparency function that modulates in amplitude
spherical wavelets with the function A x y1 1, 1∣ ( )∣, which describes the shape of the diffractive
pattern. The distance between the wavelet center and the observation point is
r r r r12 12 2 1= = -

G G G∣ ∣ ∣ ∣ which can be written as r D ,12
2 2r= + D where

x x y y .2
2 1

2
2 1

2rD = - + -( ) ( ) In order to retrieve the linear dependence of the phases
with the coordinates on the diffractive plane, we need to apply two successive
approximations. The first, paraxial (or Fresnel), amounts to approximate the difference
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between the object plane 2P and a sphere of radius D, with the paraboloid that best fits the
sphere (see figure 1(B)). This process leads to the linearization of the optical path

kr kD k
D2

.12

2r
@ +

D
It can be shown analytically that this approximation is valid for

D LDIFF
43 l� , that implies D 30 cm� for a size of the diffraction pattern L 1 cmDIFF @ .

The paraxial approximation of the optical path still does not bring us to the FT of the
diffractive element because it contains a quadratic form k D2 ,2rD composed of three terms.
The quadratic term kr D k x y D2 22

2
2
2

2
2= +( ) counts as a constant phase in equation (12)

and can be disregarded. A second quadratic term kr D k x y D2 21
2

1
2

1
2= +( ) should instead

be summed up in equation (12), raising a difficult calculus issue. Most textbooks introduce at
this stage the Fraunhofer approximation: kr D kL D2 2 ,1

2
OBJ
2 p@ � where the diffractive

element size L 1 mm.OBJ @ Since the size of the diffractive pattern is typically L 2 mm,OBJ @
this condition is more severe than the Fresnel condition, D 2 m.� In this condition we are
left with the cross-term k x x y y D1 2 1 2+( ) that looks actually like a Fourier kernel, since it is
linear in the coordinates of the 1P plane. The Fraunhofer limit, D 2 m,� is geometrically
equivalent to collecting parallel rays from the diffractive plane (see figure 1(A)) and therefore
to using a lens for the observation of the diffracted field.

6. Conclusions

In conclusion we have shown that inexpensive microfiche technology can be used to explore
experimentally light diffraction and its close connection with the mathematical tool of the
Fourier transform. The cost of microfiche printing in a public copying center is approximately
0.15€ per diffraction pattern (or A4 sheet). We suggest that there is no real need for a
university lab or department to own a microfiche printer.

The learning approach described here has been developed for last year high school or first
year undergraduate students, who do not yet have knowledge of the FT as an analytical tool.
The key feature of the learning unit is to offer these students the possibility to produce
arbitrary 2D diffractive patterns. In this way students can actively plan a study of the light
diffraction and actually visualize the basic properties of the FT in 2D space (as an alternative
to the 1D approach of electronics). The building method and the learning unit on the FT were
tested and refined on last year high school students visiting the educational lab LABEX of the
University of Milano-Bicocca in the year 2014–15.

We should finally consider that sophomore and junior undergraduate students, who
should have theoretical knowledge of the FT as an analytical tool, rarely have a clear concept
of the physical meaning and implications of the FT analysis. The possibility to develop
arbitrary diffractive patterns could then be advantageously exploited by these students to fill
this gap.
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