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Abstract

Planning with hybrid domains modelled in PDDL+
has been gaining research interest in the Automated
Planning community in recent years. Hybrid do-
main models capture a more accurate representa-
tion of real world problems that involve continuous
processes than is possible using discrete systems.
However, solving problems represented as PDDL+
domains is very challenging due to the construc-
tion of complex system dynamics, including non-
linear processes and events. In this paper we in-
troduce DiNo, a new planner capable of tackling
complex problems with non-linear system dynam-
ics governing the continuous evolution of states.
DiNo is based on the discretise-and-validate ap-
proach and uses the novel Staged Relaxed Plan-
ning Graph+ (SRPG+) heuristic, which is intro-
duced in this paper. Although several planners have
been developed to work with subsets of PDDL+
features, or restricted forms of processes, DiNo is
currently the only heuristic planner capable of han-
dling non-linear system dynamics combined with
the full PDDL+ feature set.

1 Introduction

Over the years, Automated Planning research has been con-
tinuously attempting to solve the most advanced and com-
plex planning problems. The standard modelling language,
PDDL [McDermott et al., 1998], has evolved to accommo-
date new concepts and operations, enabling research to tackle
problems which more accurately represent real-world sce-
narios. PDDL2.1 [Fox and Long, 2003] enabled modelling
numeric variables and temporal information in the domains,
while PDDL+ [Fox and Long, 2006] introduced exogenous
events and continuous processes in the models. PDDL+ is
the most accurate standardised way yet, of defining hybrid
problems as planning domains.

Planning with PDDL+ has been gaining research interest in
the Automated Planning community in recent years. Hybrid
domains are models of systems which exhibit both continu-
ous and discrete behaviour. They are amongst the most ad-
vanced models of systems and the resulting problems are no-
toriously difficult for planners to cope with due to non-linear
behaviour and immense search spaces.

UPMurphi [Della Penna et al., 2009], based on the Dis-
cretise & Validate approach, is the only planner able to han-
dle the full range of PDDL+. However, the main drawback
of UPMurphi is the lack of heuristics, which critically lim-
its its scalability. In this paper, we fill the gap, and intro-
duce DiNo, a new planner for PDDL+ problems with mixed
discrete-continuous non-linear dynamics. DiNo is built on
UPMurphi. It uses the planning-as-model-checking paradigm
[Cimatti ef al., 1997; Bogomolov et al., 2014], and relies on
the Discretise & Validate approach [Della Penna ef al., 2009]
to handle continuous change and non-linearity.

DiNo uses a novel relaxation-based domain-independent
heuristic for PDDL+, Staged Relaxed Planning Graph+
(SRPG+). The heuristic guides the Enforced Hill-Climbing
algorithm [Hoffmann and Nebel, 2001]. In DiNo we also ex-
ploit the deferred heuristic evaluation [Richter and Westphal,
2010] for completeness (in a discretised search space with
a finite horizon). The SPRG+ heuristic which improves on
the Temporal Relaxed Planning Graph and extends its func-
tionality to include information gained from PDDL+ features,
namely the processes and events.

The domain-independent SRPG+ heuristic makes DiNo
the only heuristic planner capable of handling non-linear sys-
tem dynamics combined with the full PDDL+ feature set.

We begin by discussing the related work done in the area
of PDDL+ planning in section 2. We then outline the basis of
the Discretise & Validate method on which DiNo is based and
the underlying UPMurphi architecture in section 3. In section
4 we describe the SRPG+ heuristic. Section 5 describes the
experimental evaluation. Section 6 concludes the paper!.

2 Related Work

Various techniques and tools have been proposed to deal
with hybrid domains [Penberthy and Weld, 1994; McDer-
mott, 2003; Li and Williams, 2008; Coles et al., 2012;
Shin and Davis, 2005]. Nevertheless, none of these ap-
proaches are able to handle the full set of PDDL+ features,
i.e. non-linear domains with processes and events. More re-
cent approaches in this direction have been proposed by [Bo-
gomolov er al., 2014], where the close relationship between
hybrid planning domains and hybrid automata is explored.
[Bryce et al., 2015] use dReach with a SMT solver to handle
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hybrid domains. However, dReach does not use PDDL+, and
cannot handle exogenous events.

On the other hand, many works have been proposed in
the model checking and control communities to handle hy-
brid systems. Some examples include [Cimatti et al., 2015;
Cavada et al., 2014; Tabuada et al., 2002; Maly et al., 2013],
sampling-based planners [Karaman et al., 2011; Lahijanian et
al., 2014]. Another related direction is falsification of hybrid
systems (i.e., guiding the search towards the error states, that
can be easily cast as a planning problem) [Plaku er al., 2013;
Cimatti et al., 1997]. However, while all these works aim to
address a similar problem, they cannot reason with PDDL+
domains. Some recent works [Bogomolov er al., 2014;
2015] are trying to define a formal translation between
PDDL+ and standard hybrid automata, but so far only an
over-approximation has been defined, that only allows prov-
ing plan non-existence. PDDL+ also presents important fea-
tures, including Timed Initial Literals/Fluents, no-moving tar-
get rule, epsilon separation of actions. Currently, no control-
based approaches can handle PDDL+ models.

To date, the only viable approach in this direction is
PDDL+ planning via discretisation. UPMurphi [Della Penna
et al., 2012], which implements the Discretise & Validate ap-
proach, is able to deal with the full range of PDDL+ fea-
tures. UPMurphi’s main drawback is the lack of heuristics
which strongly limits its scalability. However, UPMurphi
was successfully used in the multiple-battery management
domain [Fox et al., 2012], for urban traffic control [Vallati
et al., 2016], and for unit commitment problem [Piacentini et
al.,2016] . In all cases, a domain-specific heuristic was used.

3 Discretise & Validate Approach

As a successor to UPMurphi, DiNo relies on the Discretise &
Validate approach [Della Penna er al., 2012] which approx-
imates the continuous dynamics of systems in a discretised
model with uniform time steps and step functions. Using a
discretised model and a finite-time horizon ensures a finite
number of states in the search for a solution. Solutions to the
discretised problem are validated against the original contin-
uous model using VAL [Howey er al., 2004]. If the plan at
a certain discretisation is not valid, the discretisation can be
refined and the process iterates. An outline of the Discretise
& Validate process is shown in Figure 1.

In order to plan in the discretised setting, PDDL+ models
are translated into finite state temporal systems, as formally
described in the following?.

Definition 1. State. Let P be a finite set of propositions
and V.= {v1,...,v,} a set of real variables. A state s is
a triple s = (p(s),v(s),t(s)), where p(s) C P, v(s) =
(v1(8), ..., v (s)) € R™ is a vector of real numbers, and t(s)
the value of the temporal clock in state s. We also denote with
v;(s) the value of variable at the i-th position in v(s).

Note that real variables and temporal clock are discretised,
according to the Discretise & Validate approach.

Definition 2. A—Action. A A-action updates the state dur-
ing the search. It can be of three types: an instantaneous

2Our notation was inspired by Metric-FF [Hoffmann, 2003].
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Figure 1: The Discretise & Validate process

PDDL action, a snap action [Long and Fox, 2003], or a time-
passing action, tp.

The effect of instantaneous actions and snap actions, is to
update the state variables in the state resulting from their ap-
plication, and to start/end a durative action, respectively.

The time-passing action implements the step function used
to discretise the system dynamics, its effects are: (i) updating
all numeric state variables affected by the combined effect
of all processes that are active at the time of application, (ii)
updating all state variables affected by events, and (iii) ad-
vancing time by At.

Definition 3. Finite State Temporal System (FSTS).
Let a Finite State Temporal System S be a tuple
(S, 80, AA, D, F,T) where S is a finite set of states, sy € S
the initial state, AA is a finite set of A-actions and D =
{0, At} where At is the discretised time step. F : S x AA X
D — S is the transition function, i.e. F(s,Aa,d) = s’ iff ap-
plying A-action Aa with a duration d € D to a state s yields
a new reachable state s'. T is the finite temporal horizon.

Note that d can be 0 to allow for concurrent plans and in-
stantaneous actions. In fact, d will equal At only in the case
of the ¢p action. The finite temporal horizon T makes the set
of discretised states .S finite.

Definition 4. Trajectory. A trajectory, m, in an FSTS
S = (8,50,AADF) is a sequence of states, A-
actions and durations ending with a state, i.e. T =
S0, Aag, dg, 81, Aay, dy, ..., S, where ¥i > 0,8, € Sis a
state, Aa; € AA is a A-action and d; € D is a duration.
At each step 1, the transition function F yields the subsequent
state: F(s;, Aaj,d;) = Sit1-

Given a trajectory 7, we use 75 (k), 7o (k), mq(k) to denote
the state, A-action and duration at step k, respectively. The
length of the trajectory based on the number of actions it con-
tains is denoted by || and the duration of the trajectory is
denoted as T = Z‘QJI mq(2) or, simply, as T = t(m4(n))

Following from Definition 1, each state s contains the
temporal clock ¢, and t(s) counts the time elapsed in the



current trajectory from the initial state to s. Furthermore,
Vsi, 85 € St F(si,Aa,d) = sj, t(s;) = t(s;) + d. Clearly,
for all states s, t(s) < T.

Definition 5. Planning Problem. In terms of a FSTS,
a planning problem P is defined as a tuple P =
((S,s0,AA,D,F,T),G) where G C S is a finite set of goal
states. A solution to P is a trajectory 7 where |1*| = n, T <
T,7%(0) = sg and % (n) € G.

3.1 Handling the PDDL+ Semantics through
Discretisation

In the following we show how FSTS are used to handle the
PDDL+ semantics, and describe how this approach has been
first implemented in UPMurphi?.

Time and Domain Variable Discretisation. UPMurphi
discretises hybrid domains using discrete uniform time steps
and corresponding step functions. The discretisations for the
continuous time and the continuous variables are set by the
user. Timed Initial Literals and Fluents are variables whose
value changes at a predefined time point [Edelkamp and Hoff-
mann, 2004]. UPMurphi can handle Timed Initial Literals
and numeric Timed Initial Fluents to the extent that the dis-
cretisation used is fine enough to capture the happenings of
TILs and TIFs. On the other hand, the time granularity of
TILs and TIFs can be used as a guidance for choosing the
initial time discretisation.

Actions and Durative-Actions. Actions are instanta-
neous, while durative-actions are handled following the start-
process-stop model introduced by [Fox and Long, 2006]. A
durative-action is translated into: (i) two snap actions that ap-
ply the discrete effects at start and at end of the action; (ii) a
process that applies the continuous change over the action ex-
ecution (iii) and an event that checks whether all the overall
conditions are satisfied in the open interval of the durative-
action execution. Following Definition 2, actions in UPMur-
phi are used to model instantaneous and snap actions, while
the special action time-passing ¢p is used to advance time and
handle processes and events.

Processes and Events. UPMurphi uses the tp action to
check preconditions of processes and events at each clock-
tick, and then apply the effects for each triggered event and
active process. Clearly, the processes/events interleaving
could easily result in a complex scenario to be executed, as
for example an event can initiate a process, or multiple events
can be triggered at a single time point. To address this kind of
interaction between processes and events, UPMurphi works
as follows: first, it applies the continuous changes for each
active process and the effects of each triggered event. Second,
it assumes that no event can affect the parts of the state rele-
vant to the preconditions of other events, according to the no
moving target definition provided by [Fox and Long, 2003].
In this way, the execution of events is mutually-exclusive, and
their order of execution does not affect the final outcome of
the plan. Third, UPMurphi imposes that, at each clock tick,
any event can be fired at most once, as specified by [Fox et
al., 2005], for avoiding cyclic triggering of events.

3UPMurphi can also be used as Universal Planner, where a policy
is generated, while we focus here on finding single plans.

4 Staged Relaxed Planning Graph+

This section describes the Staged Relaxed Planning Graph+
(SRPG+) domain-independent heuristic designed for PDDL+
domains and implemented in DiNo.

The SRPG+ heuristic is based on Propositional [Hoffmann
and Nebel, 2001], Numeric [Hoffmann, 2003] and Tempo-
ral RPGs [Coles et al., 2010; 2012]. Like its predecessors,
SRPG+ relaxes the original problem and ignores the delete
effects of actions on propositional facts. Numeric variables
are represented as upper and lower bounds which are the the-
oretical highest and lowest values each variable can take at
the given fact layer. Each layer is time-stamped to keep track
of its time of occurrence.

The SRPG+, however, extends the capability of its RPG
predecessors by tracking processes and events to capture the
continuous and discrete evolution of the system.

For clarity, we denote SRPG+ as the heuristic and SRPG
as the internal relaxed planning graph structure.

4.1 Building the SRPG

Apart from the inclusion of processes and events, the
SRPG+ significantly differs from the Temporal RPG in time-
handling. The SRPG contains every fact layer with the corre-
sponding time clock, and in this sense the RPG is staged”,
as the finite set of fact layers are separated by At. In con-
trast, the TRPG takes time constraints into account by time-
stamping each fact layer at the earliest possible occurrence
of a happening. Only fact layers where values are directly
affected by actions are contained in the TRPG.

Definition 6. Fact Layer. A fact layer S is a tuple
(pT(3),vT(5),v™(5),t(5)) where p*(5) C P is a finite set
of true propositions, v" (3) is a vector of real upper-bound
variables, v~ (S) is a vector of real lower-bound variables,
and t(3) is the value of the temporal clock.

Notationally, v;" (s) and v; (s) are, respectively, the upper
and lower-bound values of the variable at position 7 in v(s).

In the following we give a formal definition of an SRPG,
starting from the problem for which it is constructed.

Definition 7. SRPG. Let P = (S, G) be a planning problem
inthe FSTS S = (S, s0, AA, D, F,T), then a Staged Relaxed

Planning Graph Sisa tuple (§7 So, 374, At, 13, T) where S
is a finite set of fact layers, Sy is the initial fact layer, AA
is a set of relaxed A actions, At is the time step. F' : S x

984 At — S is the SRPG transition function. T is the finite
temporal horizon.

The SRPG follows the priority of happenings from VAL,
i.e. each new fact layer 5’ is generated by applying the effects
of active processes in §, applying the effects of any triggered
events and firing all applicable actions, respectively. Note
that, as for the FSTS, also in the SRPG the time passing action
tp is used for handling processes and events effects and for
advancing time by At.

Fact layers and relaxed actions in the SRPG are defined as
in the standard numeric RPG, except for the fact that each fact
layer includes also the temporal clock.

Effects are defined as a tuple eff(x) =

where

(p* (eff (), p~ (eff (2)), v* (eff (x)), v~ (eff ()



Algorithm 4.1: Building the SRPG
Data: P = ((S, s0, AA, D, F,T),G);
Proc = Set of processes;

Ev = Set of events;
Result: return a constructed SRPG object if exists
1 §:= s0;
= {So};
= (5,5, 84, AL F, T);
4 while (Vg€ G:pT(9) LpT(3) Vv
(Fvi € v(g) 1 vi <v; (3) Vv > v (3)) do
5 if ¢(s) > T then

6 | return fail;
7 forall proc € Proc do
8 if p(pre(proc)) € p* (3) A
(Vi € v(pre(proc)) : vi > vi (3) Avi < v (3))
then
9 Yo, € vT (eff (proc)) : v (3) := v} () + vs;
10 L Y; € v~ (eff (proc)) : v; (5) :==v; (8) — vs
u | forall & € Ev do
12 if p(pre(év)) C pt(8) A
(Vu; € v(pre(év)) : v; > v; (3) Av; < v (5))
then
13 pr(E) =p () Up (eﬁ(€ );
14 Yu; € v ( (éV)) : v (8) := mazx (v} (8),v:)
Vv, € v~ (eff (év)) : v; (5) := min(v; (5),vs)
15 5, :=75;
16 forall @ € AA do
17 if p(pre(a)) C p*(5) A
(Vos € v(pre(@) : v > o7 (82) A vi < vF(52)
then
18 Pt (5) =p"(5) UpT(eff (a)):
19 Vu; € v1(eff (@) : v (3) := maz(v] (3),v:)
20 Vo, € v (eff (@) : v; (8) := min(v; (5),v:);

21 t(s) :=
2 S:=8U%

23 return S;

pt(eff(x)),p~(eff (z)) C P (add and delete effects respec-
tively), vT (eff (z)) and v~ (eff (z)) are effects on numeric
values (increasing and decreasing, respectively), and = can
be any A-action, process, or event. Preconditions are defined
analogously: pre(z) = (p(pre(z)),v(pre(z))) where
p(pre(z)) C P is a set of propositions and v(pre(z)) is a
finite set of numeric constraints. p; (eff (z)) € p*(eff(z))
is effect on the i-th proposition in p(s), v; (eff (z)) and
v; (eff (z)) are the real values of the i-th increasing and
decreasing effects affecting upper bound vj' (s) and lower
bound v, (s), respectively.

The SRPG transition function F is a relaxation of the origi-
nal FSTS transition function F', and follows the standard RPG
approach: effects deleting any propositions are ignored and
the numeric effects only modify the appropriate bounds for

each numeric variable. Note that the set AA of relaxed A
actions includes the time passing action tp as from Defini-
tion 1. Also in the SRPG the ¢p is responsible for handling
processes and events, whose effects are relaxed in the stan-
dard way. The construction of SRPG is shown in Algorithm
4.1. The first fact layer consists of the initial state (lines 1-3).
Then the SRPG is updated until a goal state is found (line 4)
or the time horizon is reached (line 5). In the former case,
the SRPG constructed so far is returned, and the relaxed plan
is extracted using backwards progression mechanism intro-
duced in [Hoffmann, 2003]. In the latter case, a heuristic
value of infinity (h(s) = oo) is assigned to the current state.
To construct the next fact layer, first the active processes are
considered (lines 7-8) and the relaxed effects are applied to
update upper and lower bounds of variables (lines 9-10). The
same is then applied for events (lines 11-15) and instanta-
neous actions (lines 16-20), that can also add new proposi-
tions to the current fact layer. The last step is to increment
the temporal clock (line 21), and the new fact layer is then
added to the SRPG (line 22).

Note that, as a back-up strategy, DiNo reverts to a breadth-
first search if the SRPG+ is unable to extract sufficient infor-
mation from the domain to reach the relaxed goal within the
set temporal horizon T (i.e. h(s) = oo for all states).

4.2 Time Handling in the SRPG

The time-passing action plays an important role as it propa-
gates the search in the discretised timeline. During the nor-
mal expansion of the Staged Relaxed Planning Graph, the
time-passing is one of the A-actions and is applied at each
fact layer. Time-passing can be recognised as a helpful ac-
tion [Hoffmann and Nebel, 2001] when its effects achieve
some goal conditions (or intermediate goal facts). However,
if, at a time ¢, no helpful actions are available to the planner,
time-passing is assigned highest priority and used as a help-
ful action. This allows the search to quickly manage states at
time ¢ where no happenings of interest are likely to occur.

This is the key innovation with respect to the standard
search in the discretised timeline performed, e.g., by UPMur-
phi. Indeed, the main drawback of UPMurphi is in that it
needs to expand the states at each time step, even during the
idle periods, i.e., when no interesting interactions or effects
can happen. Conversely, SRPG+ allows DiNo to identify
time-passing as a helpful action during idle periods and thus
advance time, mitigating the state explosions.

An illustrative example is shown in Figure 2, that com-
pares the branching of the search in UPMurphi and DiNo
when planning with a Solar Rover domain. The domain is
described in detail in Section 5. Here we highlight that the
planner can decide to use two batteries, but the goal can only
be achieved thanks to a Timed Initial Literal that is triggered
only late in the plan. UPMurphi has no information about the
future TIL, therefore it tries to use the batteries at each time
step. On the contrary, DiNo recognises the time-passing as a
helpful action, and this prunes the state space dramatically.

4.3 Processes and Events in SRPG+

As the SRPG+ heuristic is tailored for PDDL+ domains, it
takes into account processes and events. In the SRPG, the
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Figure 2: Branching of search trees (Blue states are explored,
orange are visited. Red edges correspond to helpful actions)

continuous effects of processes are handled in the same man-
ner as durative action effects, i.e. at each action layer, the
numeric variables upper and lower bounds are updated based
on the time-step functions used in the discretisation to ap-
proximate the continuous dynamics of the domain.

Events are checked immediately after processes and their
effects are relaxed as for the instantaneous actions. The
events can be divided into “good” and “bad” categories.
“Good” events aid in finding the goal whereas “bad” events
either hinder or completely disallow reaching the goal. Cur-
rently, DiNo is agnostic about this distinction. However, as
a direct consequence of the SRPG+ behaviour, DiNo exploits
good events and ignores the bad ones. Future work will ex-
plore the possibility of inferring more information about good
and bad events from the domain.

5 Evaluation

In this section we evaluate the performance of DiNo on
PDDL+ benchmark domains. Note that the only planner able
to deal with the same class of problems is UPMurphi, which
is also the most interesting competitor as it can highlight the
benefits of the proposed heuristic. For sake of completeness,
where possible, we also provide a comparison with other
planners able to handle (sub-class of) PDDL+ features, i.e.
POPF [Coles et al., 2010] and dReach [Bryce et al., 2015]*.

For our experimental evaluation, we consider two bench-
mark domains: Generator and Car. In addition, we also
consider two more domains that highlight specific aspects of
DiNo: Solar Rover that shows how DiNo handles TILs, and
Powered Descent that further tests its non-linear capabilities.

Note that to achieve the results a discretisation of At = 1.0
was chosen, except non-linear Generator where some prob-
lems required refinement to At = 0.5.

For a fair comparison, all results were achieved by running
the competitor planners on a machine with an 8-core Intel
Core i7 CPU, 8GB RAM and Ubuntu 14.04 operating system.
For more information visit kcl-planning. github.io/DiNo

*We do not consider [Bogomolov et al., 2014] as they only focus
on proving plan-non-existence.

Generator. This domain [Howey and Long, 2003] is well-
known across the planning community and has been a test-
bed for many planners. The problem revolves around refuel-
ing a diesel-powered generator which has to run for a given
duration without overflowing or running dry. We evaluate
DiNo on both the linear and non-linear versions of the prob-
lem. In both variants, we increase the number of tanks avail-
able to the planner while decreasing the initial generator fuel
level for each subsequent problem.

The non-linear Generator models fuel flow rate using Tor-
ricelli’s Law which states: Water in an open tank will flow out
through a small hole in the bottom with the velocity it would
acquire in falling freely from the water level to the hole. The
fuel level in a refueling tank (V) is calculated by:

Vfuel = (_ktr + V Vvinit)2 tr € |:Oa V]inltil (1)

Vinie the initial volume of fuel in the tank, k the fuel flow
constant (which depends on gravity, size of the drain hole, and
the cross-section of the tank), and ¢, is the time of refueling
(bounded by the fuel level and the flow constant). The rate of
change in the tank’s fuel level is modelled by:

deuel _ Qk(l{itr _ /‘/;nit) tr c |:O, ‘/znlt:| (2)

dt k

This domain has been previously encoded in PDDL
by [Howey and Long, 2003].

The results for the linear Generator problems show that
DiNo clearly outperforms its competitors and scales really
well on this problem whereas UPMurphi, POPF and dReach
all suffer from state space explosion relatively early.

The non-linear version could only be tested on DiNo and
UPMurphi as the remaining planners do not support non-
linear behaviour. However, the search space proved too large
for UPMurphi, it failed to solve any of our test problems.
DiNo found solutions to problems using At = 1.0. How-
ever, some of the found plans were invalid. Applying the
Discretise & Validate approach, we refined the discretisation
to At = 0.5 and valid solutions were returned. In both vari-
ants of the domain, time horizon was set to 7" = 1000, that is
the duration for which the generator is requested to run.

Though dReach is able to reason with non-linear dynamics,
their results have been left out of our comparison due to the
difficulty with reproducing our domain (written in PDDL+)
using the dReach modelling language. The dReach domain
and problem descriptions are not standardised and extremely
difficult to formulate. Each mode has to be explicitly defined,
meaning that the models are excessive in size (i.e. the files
for 1, 2, 3 and 4-tank problems are respectively 91, 328, 1350,
5762 lines long). Furthermore, compared to our model, Bryce
et al. use a much simplified version of the problem where the
generator can never overflow, the refueling action duration
is fixed (tanks have no defined capacity), and the flow rate
formula is defined as (0.1 * (tank_refuel_time?)). Still, in
this simplified domain, dReach could only scale up to 3 tanks.

In contrast, our variant of the non-linear Generator prob-
lem uses the Torricelli’s Law to model the refueling flow rate
(2), the refueling actions have inequality-based duration de-
pendent on the tanks’ fuel levels (1), and the generator can




LINEAR GENERATOR NON-LINEAR GENERATOR | LINEAR SOLAR ROVER | NON-LINEAR SOLAR ROVER | POWERED DESCENT CAR
PROBLEM DiNo POPF | dReach | UPMurphi DiNo UPMurphi DiNo UPMurphi DiNo UPMurphi DiNo UPMurphi DiNo UPMurphi
1 0.34 0.01 287 140.50 3.62 X 0.70 203.26 1.10 288.94 0.68 0.18 1.74 0.22
2 0.40 0.01 X X 0.78 X 0.92 X 2.58 X 1.04 0.74 4.56 0.30
3 0.50 0.05 X X 2.86 X 1.26 X 4.74 X 1.88 2.98 8.26 0.42
4 0.60 0.41 X X 59.62 X 1.52 X 7.10 X 352 7.18 10.28 0.54
5 0.74 6.25 X X 1051.84 X 1.80 X 9.58 X 2.88 30.08 14.16 0.66
6 0.88 120.49 X X X X 2.04 X 12.86 X 3.14 126.08 1578 0.68
7 1.00 X X X X X 228 X 16.48 X 5.26 322.16 17.08 0.72
8 1.16 X X X X X 2.64 X 21.38 X 382 879.52 18.90 0.72
9 1.38 X X X X X 2.98 X 26.74 X 1.58 974.60 19.30 0.76
10 2.00 X X X X X 3.30 X 29.90 X 2.26 X 19.50 0.78
11 1.84 X X X N/A N/A 3.50 X 35.96 X 11.24 X N/A N/A
12 2.06 X X X N/A N/A 3.74 X 42.54 X 42.24 X N/A N/A
13 2.32 X X X N/A N/A 4.00 X 48.06 X 14.90 X N/A N/A
14 2.46 X X X N/A N/A 438 X 55.46 X 61.94 X N/A N/A
15 2.88 X X X N/A N/A 5.20 X 62.84 X 19.86 X N/A N/A
16 294 X X X N/A N/A 5.40 X 74.50 X 80.28 X N/A N/A
17 3.42 X X X N/A N/A 5.08 X 86.96 X 2.94 X N/A N/A
18 3.54 X X X N/A N/A 5.64 X 95.66 X 2234.88 X N/A N/A
19 3.76 X X X N/A N/A 6.12 X 102.86 X X X N/A N/A
20 4.26 X X X N/A N/A 6.02 X 117.48 X X X N/A N/A

Table 1: Run time in seconds for each problem in our test suite ("X - planner ran out of memory, "N/A” - problem not tested)

easily overflow. As a result, our domain is far more complex
and further proves our improvement.

As can be noticed, DiNo scales very well on these prob-
lems, and drastically reduces the number of explored states
and the time to find a solution compared to UPMurphi.
Solar Rover. We developed the Solar Rover domain to
test the limits and potentially overwhelm discretisation-based
planners, as finding a solution to this problem relies on a TIL
that is triggered only late in the plan.

The task revolves around a planetary rover transmitting
data which requires a certain amount of energy. To gener-
ate enough energy the rover can choose to use its batteries or
gain energy through its solar panels. However, the initial state
is at night time and the rover has to wait until daytime to be
able to gather enough energy to send the data. The sunshine
event is triggered by a TIL at a certain time. The set of prob-
lem instances for this domain has the trigger fact become true
at an increasingly further time point (50 to 1000 time units).

This problem has also been extended to a non-linear ver-
sion to further test our planner. Instead of instantaneous in-
crease in rover energy, the TIL triggers a process charging the
rover’s battery at an exponential rate: AE = 0.0025E2.

For both variants of the domain, the time horizon is set
depending on the time point at which the sunexposure TIL is
triggered (as defined in the problems).

DiNo can easily handle this domain and solve all test prob-
lems. UPMurphi struggles and can only solve the smallest
problem instance of either variant. POPF and dReach could
not solve this domain due to problems with handling events.
Powered Descent. We developed a new domain which mod-
els a powered spacecraft landing on a given celestial body.
The vehicle gains velocity due to the force of gravity. The
available action is to fire thrusters to decrease its velocity. The
thrust action duration is flexible and depends on the available
propellant mass. The force of thrust is calculated via Tsi-
olkovsky rocket equation [Turner, 2008]:

Av =1, g2 3)

my
Aw is the change in spacecraft velocity, I, is the specific
impulse of the thruster and ¢ is the gravitational pull. mg
is the total mass of the spacecraft before firing thrusters and
my = mo— qt is the mass of the spacecraft afterwards (where

q is the rate at which propellant in consumed/ejected and ¢ is
the duration of the thrust). The goal is to make a controlled
landing from the initial altitude within a given time-frame.

Powered Descent problems were set with increasing initial
altitude of the spacecraft (from 100 to 2000 metres) under
Earth’s force of gravity. The SRPG time horizon was set to
T = 20 for the first 3 problems and 7" = 40 for the remaining
problem instances based on the equations in the domain.

DiNo clearly outperforms UPMurphi which suffers from
state explosion relatively early.

Car. The Car domain [Fox and Long, 2006] shows that DiNo
does not perform well on all types of problems. SRPG+ can-
not extract enough information from the domain and as a re-
sult loses out to UPMurphi by approximately one order of
magnitude. Table 1 shows results for problems with processes
and events. The plan duration and acceleration are limited,
and the problems are set with increasing bounds on acceler-
ation (corresponding to the problem number). The SRPG+
time horizon was set to 7' = 15 based on the goal conditions.
The reason behind our heuristic struggling in this case is
that the domain is focused on continuous dynamics and, in
fact, little search is required. Also, there is no direct link
between any action and the goal conditions, since only the
processes affect the necessary variables. As a consequence,
DiNo reverts to a blind search and explores the same number
of states as UPMurphi. The results show the overhead gen-
erated by the SRPG+ heuristic in DiNo that fundamentally
depends on the sizes of states and the length of the solution.

6 Conclusion

We have presented DiNo, the first heuristic planner capa-
ble of reasoning with the full PDDL+ feature set and com-
plex non-linear systems. DiNo is based on the Discretise
& Validate approach, and uses the novel SRPG+ domain-
independent heuristic that we have introduced in this paper.
We have empirically proved DiNo’s superiority over its com-
petitors on benchmark problems set in hybrid domains. En-
riching discretisation-based planning with an efficient heuris-
tic that takes processes and events into account is an impor-
tant step in PDDL+ planning. Future research will concen-
trate on expanding DiNo’s capabilities for inferring more in-
formation from the PDDL+ models.
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