DFT investigation of the CO₂ activation at the active site of Carbon Monoxide Dehydrogenases Raffaella Breglia*a, Claudio Grecoa, Luca De Gioiaa, Maurizio Bruschia ^a Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy. ntroduction: The sustainable production of chemical fuels from non-fossil sources and reduction of greenhouse gas emissions are two of the biggest societal challenges. Sequestration of CO₂ by its conversion to liquid fuels could play a role to solve these problems. In this context, carbon monoxide dehydrogenases are of fundamental interest for their capability to catalyze the reversible reduction of CO₂ to CO. The high efficiency and the absence of expensive metals in their active site make the CODHs a very promising target for reverse engineering studies aimed at the development of bioinspired catalysts. Aim of the work: Quantum mechanics calculations have been carried out in the framework of the Density Functional Theory (DFT) on a very large model of the active site to better understand the enzyme reactivity. CO₂ binding to different redox states of the active site have been investigated. Methods: Two DFT models obtained from the active site of the **3B52** X-ray structure. [1] **BP86/def-TZVP-SVP** Terminal atoms restrained to the X-ray positions. Protein environment modelled by continuum dielectric with $\varepsilon=4$ (COSMO). Spectroscopic studies: EPR, ENDOR, Mössbauer, and IR spectroscopies allowed to characterize three redox states of the C-cluster: [2] - C_{ox} : diamagnetic inactive state occurring in oxidizing conditions, S=0 - C_{red1} : active state obtained from the monoelectron reduction of C_{ox} , S=1/2 - C_{red2} : two electrons more reduced than C_{red1} , S=1/2 Another undetected diamagnetic state, called C_{int} , is postulated to arise from the one-electron reduction of C_{red1} or from the one-electron oxidation of C_{red2} . In all of the characterized redox state the Ni atom is diamagnetic and may switch between Ni²⁺ and Ni⁰ during the redox process. [3][4] For C_{red1} Mössbauer measurements suggest high spin Fe²⁺, Fe²⁺, Fe³⁺ formal oxidation states for the [Fe₃S₄] subsite and high spin Fe²⁺ state for Fe_u. [2][5] Electronic structure of the C-cluster: The antiferromagnetic coupling of the Fe atoms have been treated within the broken symmetry approach. Of the six possible non equivalent spin coupling schemes, the broken symmetry states in which the Fe₁Fe₁ pair is coupled Two different binding modes of CO₂ to the C-cluster, using the SS and the LS models of the active site, have been investigated: Both models adequately reproduce the 3B52 structure ## μ_2 - $\eta^2_{C,O}$ CO₂ binding mode: **3B52** x-ray structure (d_{min}=1.5 Å) of the CO₂ bounded form of the C-cluster in the C_{red2} state C_{red2}-bCO₂-SS C_{red2}-bCO₂-LS $O_2 - \varepsilon NH_{(His93)} (d = 1.47 \text{ Å})$ O_1 -NH_{3(Lys563)} (d = 1.83 Å) O_1 -OH_{2(Lys563)} (d = 1.85Å) Partial charge of the bound CO₂ confirm a **net electron transfer** from the C-cluster to CO₂. In addition, the predicted bent CO₂ geometry is very similar to that found in the recent true atomic resolution **4UDX** structure (d_{min}=1.03 Å). [6] Distortion from linearity of bound CO₂ suggests the **CO₂ reductive activation**. Selected bond distances (Å) and angles (°) | | C-O ₁ | C-O ₂ | O ₁ -C-O ₂ | |-------------------------------|------------------|------------------|----------------------------------| | SS | 1.30 | 1.25 | 124.1 | | LS | 1.32 | 1.26 | 122.0 | | 3B52 | 1.25 | 1.26 | 132.6 | | 4UDX | 1.32 | 1.30 | 117.2 | | free CO ₂ | 1.17 | 1.17 | 179.9 | | CO_2^- | 1.25 | 1.25 | 135.2 | | CO ₂ ²⁻ | 1.32 | 1.32 | 117.9 | | | | | | NBO charge and Mulliken spin population of the bound CO₂ | | q CO ₂ | S CO ₂ | |----|-------------------|-------------------| | SS | -1.02 | 0.09 | | LS | -1.06 | 0.03 | The spin population and the geometry comparison of the bound CO₂ with those computed for the free CO₂ and its mono- and di-reduced species suggest the two-electron reduction to the formal CO₂²⁻ species: C_{red2}-CO₂ adduct better described as C_{red1}-CO₂²⁻ this work refer to coupling scheme No experimental structures corresponding to the terminal binding of CO₂ to Ni. As found for the bCO₂ isomers, the partial charge of the terminally bound CO₂ is about -1. ### $\Delta E (tCO_2 \rightarrow bCO_2) (Kcal/mol)$ +5.2 -16.5 +3.2 +1.5 SS model: tCO₂ slightly more stable than bCO₂ **LS model:** only in the C_{red2} state the CO_2 terminally binds the Ni atom. However, C_{red2}-bCO₂ is largely more stable than C_{red2} -t CO_2 . The C_{int} -t CO_2 and the C_{red1} -t CO_2 isomers are unstable as they converge to the bCO₂ species. **E bCO₂-binding** (Kcal/mol) | SS | LS | |-------|---------------| | -12.1 | -35.1 | | +1.4 | -27.3 | | +6.4 | -12.9 | | | -12.1
+1.4 | E tCO₂-binding (Kcal/mol) | | <u> </u> | | |-------------------------------------|----------|-------| | | SS | LS | | C _{red2} -tCO ₂ | -17.4 | -18.7 | | C _{int} -tCO ₂ | -1.8 | / | | C _{red1} -tCO ₂ | +4.9 | / | $\Delta E_{LS} > \Delta E_{SS}$ $\Delta E_{Cred2} > \Delta E_{Cint} > \Delta E_{Cred1}$ ## **Conclusions:** - > The crucial role of the protein environment in tuning the CO2-binding to the C-cluster is highlighted by the comparison of results obtained using the different sized models. - > The μ2-η2C,O CO2 binding is largely stabilized by the formation of a network of H-bond. - > The conformation in which CO₂ is terminally coordinated to Ni can play a key role in the binding/dissociation of this molecule. - > The release of CO₂ should promote an electron transfer from the C-cluster to the other FeS clusters. - > According to experiments, CO₂ binds in the Cred₂ state. [7]