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Chapter 1

Introduction

In the last decades, string theory has become the most important and studied model
for a microscopic description of the fundamental physics including gravity. According to
its historical ideas, at distances of the order of the Planck scale, the pointlike particles
description of nature breaks up and a new one—dimensional object (the string) must be
introduced. The oscillations of these fundamental constituents give rise to a spectrum of
particles with different energies and spin which look like localized pointlike objects to a low
energy observer. Moreover, all string theories contain a massless spin—two particle which
can consistently interact with others particles only by gravitational means. Therefore string
theory turns out to be a fundamental model which has the appeal to contain gravity in a
natural way and which can be reduced to classical quantum field theory in the low energy
limit. Even though it has not been possible to test any of its predictions so far, string
theory keeps attracting growing attention for its beautiful mathematical formulation and
for the high non—triviality of the challenges it poses.

Besides the approach to string theory as a microscopic model for nature, in the last
ten years a new strong tendency showed up, recovering with some surprise the original
motivation string theory was introduced for. In fact, string theory was originally formulated
in the late 1960s as an attempt to explain the large number of mesons and hadrons that
were being produced in the accelerator experiments of those days. Hadronic resonances
seemed to exist with rather high spin so that it was not plausible that they were all
fundamental. The idea was to consider all these particles as different oscillation modes of
a single element: the string. Some of the characteristics of the hadron spectrum turned out
to be well described by the string model. For instance, the mass m of the lightest hadron
with fixed spin obeys the relation m? ~ T J? + const; the relation between mass and
angular momentum can be understood if we consider the hadron as a rotating relativistic
string of mass m and tension 7. On the other hand, some phenomenological as well as
theoretical aspects were not in accord with the string model and led to its progressive
decline. After the discovery of non-abelian gauge theories and their successful application
to strong interactions, the idea to give a stringy description of hadrons was definitively
abandoned.

After few years, however, there was a strong revival of the idea of a string—gauge con-
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nection, since 't Hooft [1] observed that a SU(NN) gauge theory could be considered under
a particular limit, namely sending N — oo, in such a way that its diagrammatic pertur-
bative expansion resembled very much a genus expansion of a string theory with coupling
constant proportional to 1/N. This argument suggested that could exist proper string
descriptions for the planar limit of general gauge theories. That is to say, a single physical
system could have two dual descriptions, one in terms of a canonical quantum field theory
and one other in terms of a string theory; these formulations could be appropriate and
best suited for different energetic regimes. This nice proposal remained a rather abstract
possibility for more than twenty years, until Maldacena suggested a specific realization of
it known as the AdS/CFT conjecture [2, 3, 4].

As we can deduce by its name, the correspondence is realized by a particular con-
formal invariant field theory. Conformal invariance is a very non—trivial property to ask
for a four—-dimensional quantum field theory but supersymmetry, along with its conse-
quent non-renormalization theorems, comes in some help. In fact the maximally (rigid)
supersymmetric field theory in four dimensional space-time, the so called N' = 4 Super
Yang—Mills, turns out to be a full quantum conformal field theory and therefore is invari-
ant under the four dimensional conformal group SO(4,2). Beside this global symmetry
1. the theory is invariant under the SU(4) R-symmetry group. A string theory dual for-
mulation of NV = 4 SYM should live in a background which respects the symmetries of
the field theory. Locally there is only one space with SO(4,2) isometry: five-dimensional
Anti-de-Sitter space. Moreover, we expect strings associated to N' = 4 SYM to be su-
persymmetric too and thus live in a ten dimensional space. Since the gauge theory has
an SU(4) ~ SO(6) global symmetry it is natural to think that the five extra dimensions
needed should be given by an S° space. Therefore it would be plausible if the superstring
theory associated to N/ = 4 SYM lived in the ten dimensional space AdSs x S°.

This heuristic argument just provides a symmetry based indication about the dual
theories which enter the correspondence. More precisely, the conjecture is deduced by
taking two different low energy limits of a single system and comparing the results. The
starting system consists in Type IIB strings propagating in ten—-dimensional Minkowsky
background where N coincident D3-brane have been placed. Then this system is analyzed
at low energies considering two different points of view. On the one hand it is studied
the low energy dynamics on the world—volume of the D—-branes, which decouples from the
bulk gravity dynamics and gives rise to AV = 4 SYM. On the other hand, the system is
studied in its supergravity approximation, searching for a solution which carries the right
fluxes and charges. Then, in the low energy limit, the near horizon physics of the solution
decouples from bulk free supergravity and leads to AdS5 x S® geometry. Hence it is natural
to identify the two different systems found in the low energy limiting process. As a final
result, the AdS/CFT conjecture states that N'= 4 SYM theory with gauge group SU(N)
is in duality correspondence with Type IIB strings moving on a AdSs x S® background
with N flux unit of five-form Ramond-Ramond field strength Fj.

"'We will give a much more detailed and precise description of the global symmetries of N' = 4 Super
Yang—Mills in the main text.



Having recognized these dual descriptions, an entire dictionary between the two theories
is drawn in order to compare them. For instance, the spectrum of scaling dimensions of
gauge invariant operators in the CF'T is put in correspondence with the spectrum of energies
of string states.

However a direct comparison between quantities in the two theories is not easy to
perform. In fact it is important to notice that the two descriptions are perturbatively valid

in different regimes of the coupling constants. The precise parameter connection is given
by:

R* 1 4dmg
2 s
N=\=— — =
4 A a'?’ N A

(1.0.1)

where ¢ is the Yang-Mills coupling constant, o the inverse string tension, g, is the topo-
logical expansion parameter in string theory and R the common radius of AdSs x S5. As
we can see from (1.0.1), after taking the planar limit, the perturbative regime in the field
theory is obtained for small values of the 't Hooft coupling A. From the string side, sending
N — oo corresponds to neglect g, corrections. Then the perturbative o’ expansion is valid
for big values of A. It becomes clear that the duality is of the strong/weak type and, if we
want to check its validity, we cannot use pure perturbative results.

It is fundamental then to find exact quantities, objects that do not depend on the
energy scale. For instance, from the field theory side, one could study non-renormalization
properties of some special operators, or search for those particular sectors for which the
anomalous dimension can be computed exactly with some non—perturbative argument. If
one is able to find such a kind of objects, then a direct comparison with the correspondent
string energy spectrum can be done. The chiral primary operators (CPO) of N =4 SYM
are an example of protected objects which are suitable to check the correspondence. Lot of
tests have been done computing anomalous dimensions, energies and correlation functions
and up to now a successful matching has been obtained. As a consequence of these and
other checks, nowadays we consider the AdS/CFT correspondence well established and not
anymore a simple conjecture.

The natural sequel was to extend the original conjecture to some more general and less
constrained theories, with the aim to get as near as possible to models of phenomenological
interest. A first obvious attempt was to try and break the maximal supersymmetry of
N = 4 to some lower degree adding proper terms to the Lagrangian and arguing the
correspondent deformation in the supergravity side. This issue has been pursued along
different directions and considering various limits. One the most intriguing possibility is to
try to break supersymmetry while preserving superconformal invariance in the deforming
process. We will call this process marginal deformation of AdS/CFT conjecture.

If we want to analyze the field theory side of this procedure, we should consider adding
marginal operators to the N' = 4 action in order not to break scale invariance. The exact
marginality of an operator at the quantum level is not an easy property to determine.
However, in [5] a systematic analysis of this problem has been done and the form of the
most general marginal deformation of N/ =4 SYM has been found. Leigh-Strassler (LS)
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deformed theories were object of studies ([63]-[71]) even before their role in AdS/CFT
context was completely clarified. Then, when Lunin and Maldacena [6] (see also [7]) found
the supergravity solution dual to one particular subclass of these deformations (the so
called f—deformations), we had a renewed interest in their analysis. In fact, with Lunin-
Maldacena conjecture a more general correspondence involving an A/ = 1 superconformal
theory and a brand new playground to check the string—gauge duality ideas emerged.

The aim of this thesis is to give a throughout analysis of the field theory side of this new
correspondence and, in more generality, to give a detailed description of the whole class of
marginal deformations of N' =4 SYM. We will start with an introductory part (Chapter
2), where, after a description of N =4 SYM, the whole issue of its marginal deformations
will be treated in details. We then conclude Chapter 2 introducing the Lunin—-Maldacena
supergravity solution dual to the f—deformed theory and briefly explaining how this was
found.

With Chapter 3 and 4 we start reviewing and extending the results obtained in ([8]-[12]).
Chapter 3 is devoted to analyze the problem of finding under what conditions the deformed
actions obtained following the Leigh—Strassler arguments are actually superconformal. In
fact, as will become clear after reading Chapter 2, LS analysis of marginal deformations of
N = 4 SYM gives the final result for the superconformal actions in a somewhat implicit
form. According to LS procedure, we should consider the following ' = 1 action:

— ) 1
S = /dsz Tr (e’qu)iequﬂ) + ﬁ/dﬁz Tr(WW,) +
g

1 % f
—|—z’h/d6z Tr (q D Dy®; — — @1q>3q>2) + % /d% Tr(®} + @) + @) +
q
. i [ s =3 =3 —3
+2h d°z Tr - (I)l(bg(bg — qq)lq)gq)g — ? d°z TI'(q)l + (I)Q + (133) (102)
q

which we write here in superfield formalism (with notations introduced in the main text)
and that can be easily reduced to N' =4 SYM by choosing b’ =0, ¢ =1 and h = g. How-
ever, this action does not describe a superconformal theory by itself because its couplings
must satisfy a specific constraint in order to select a fixed point of the renormalization
group. As we will see in details, the superconformal condition on the couplings turns out
to coincide with the requirement of vanishing anomalous dimension for the elementary

fields:

7¢(h7h/7Qag) =0 (103)

Therefore, in order to obtain the actual superconformal action, the above constraint must
be explicitly solved. The solution of (1.0.3) is not known a priori and, in general, it is not
at all trivial. One of our aims will be therefore to give an explicit realization of the fixed
point condition in order to finally deal with a true superconformal action.



In Chapter 3 we will study extensively this problem considering the subclass of the the-
ories in (1.0.2) obtained by choosing A’ = 0. These theories are known as f-deformations
of N'=4 SYM because it is often used the reparametrization ¢ = e"™*. We will see that,
depending on the choice made on the values for the couplings, qualitatively different sce-
narios will show up, revealing very subtle differences between similarly deformed theories.
We will start analysing this problem in the planar case, which is the relevant one in the
AdS/CFT context, and then we will extend the analysis to finite N values. We will see
that for the simple case of planar real -deformation (the most significant in the AdS/CFT
context) an exact solution for the constraint (1.0.3) can be given. This is done in a sim-
ple and elegant way just exploiting a formal analogy that can be found between the real
[—deformed theory theory and non commutative quantum field theories. As a result the
exact form of the planar superconformal action will be given, providing a very non trivial
example of four dimensional N' = 1 supersymmetric quantum conformal theory.

In all the other cases, the problem must be approached in a perturbative fashion and its
solution will become more involved. We will see that a physical (not scheme dependent)
perturbative definition of the surface of fixed points can be given for complex values of
the § parameter only for the full finite N theory. In fact the physical request of scheme
independence in the definition of the theory is achieved thanks to subleading contributions.
Therefore, taking the planar limit we will be forced to restrict to the already mentioned
real—( case.

As an aside of this analysis, we will use the marginally deformations of N' =4 SYM to
study and extend the validity of finiteness theorems for the gauge beta—functions.

In Chapter 4 a very different problem will be addressed. As we already stressed, since
it has been found a new and more general example of AdS/CFT correspondence, it is then
obvious to try to reproduce the checks done for the original case and find whether they work
or not for the deformed one. In this context, we will concentrate on the relevant problem
of finding operator protected under renormalization. We specialize on the structure of
the chiral ring of the theory and propose an alternative procedure, with respect to the
resolution of the mixing problem, to find CPO’s in a general superconformal theory. The
method we propose is based on the perturbative computation of the effective superpotential
and we will see that in some cases it drastically simplify the calculations with respect to
the classical method. Using this procedure we give a detailed description of the chiral ring
of the marginally deformed theories.

We conclude this introduction, raising the attention to the huge amount of literature
that has been produced with regard of marginal deformation of AdS/CFT. In [72] the effec-
tive action of these theories have been analyzed while instanton calculations were performed
in [73]. For considerations about string configurations relevant for the correspondence see
also [95]-[102]. Integrability issues have been treated for instance in [74]-[85]. D-brane
configurations [103]-[114] or relation with dipole theories [115]-[118] were also studied. For
further interesting papers see [86]-[94].
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Chapter 2

N =4 SYM and its Marginal
Deformations

Our starting point is N' = 4 super Yang—Mills theory. In this Chapter we describe its most
important features, with particular attention to its finiteness properties. Then we show
how we can deform the theory breaking supersymmetry down to N’ = 1 while preserving
superconformal invariance. As a result, we obtain the most general marginal deformation
of N =4 SYM which will be the object of interest in the following Chapters. We conclude
this introductory part by giving a brief description of the AdS/CFT interpretation of
these marginally deformed quantum field theories and describing their dual supergravity
geometries.

2.1 N =4 SYM and finiteness

Four dimensional N' =4 SYM is a very special quantum field theory because, on the one
hand it is simple to treat and analyze because of its rich symmetry structure; on the other,
its constrained nature does not prevent it to exhibit some very non trivial properties. In
this Section we will review some of these characteristics, focusing on what will turn out to
be useful in the description of the marginal deformations of the theory itself. Meanwhile
we will introduce our main conventions, referring the reader to [13] for further details.

N = 4 SYM is the maximally supersymmetric quantum field theory in four dimen-
sional space-time because supersymmetry transformations are generated by sixteen real
supercharges; a larger number would require the inclusion of gravity in the theory. The
request of maximal supersymmetry totally constrain both the matter content and the form
of the action of the theory. To be specific, the N' = 4 super Yang—Mills multiplet consists
in six real scalars ¢;, four complex Weyl spinors A; and a gauge field A,. All of these
fields are massless and transform in the adjoint representation of the gauge group which
will be chosen to be SU(N) (of course the gauge group is not a priori determined by
supersymmetry).

As for the action, there exist several equivalent descriptions encoding the above matter
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content and the correct supersymmetry invariance. For instance, one could choose different
component formulations or use N' = 1 or N' = 2 superfields. We will find convenient to use
N = 1 superfield formalism in order to easily take advantage of D-algebra techniques. In
this framework, the field content just described is reorganized in the following way: three
chiral superfields ® 5 3 and their complex conjugates contain the six real scalars and three
of the four complex Weyl spinors; a real vector superfield V' includes the gauge field A, and
the remaining Weyl spinor as a gaugino. In terms of these N = 1 superfields the action
can be written as:

— . 1
S = /dsz Tr (e79V ;e ®") + ﬁ/d% Tr (WeW,) +
9

+/Lg / dGZ Tr(@lq)gq)g - q)lq)g(bg) + Zg / dGE Tr(516263 - 616362) (211)

Whe2re we have defined d®z = d*z d20 d%0 and d°z = d*x d%0. We also introduced W, =
iD (e79V Dye9"), the superfield strength associated to V. In what follows we will be
interested only in studying perturbative properties of N' = 4 SYM and its deformations
and the gauge coupling g will be chosen to be real. In this way the quadratic term in
W, is hermitian up to surface contributions. It is worth noticing that in order to have
maximal supersymmetry it is crucial that the superpotential coupling coincides with the
gauge coupling g, so that the theory depends only on one parameter.

Let us now analyse the classical symmetries of the theory. Of course, by construction
the theory is invariant under N = 4 extended super—Poincare’ transformations, whose
generators form an algebra which has an SU(4)g automorphism group, the R—symmetry
group of the theory. Moreover only dimensionless couplings appear in the action, so that
we have classical scaling invariance in addition to the super—Poincare’ one. It can be shown
that all of these transformations sum up to build the A/ = 4 superconformal algebra (see
[13] for details). This algebra generates all the classical global symmetry transformations
of the theory. Notice that in the formalism we have chosen (i.e. using N = 1 superfield
representations), only an SU(3) x U(1) subgroup of the R-symmetry group remains man-
ifest: the ®’s transform in the 3 of SU(3), the antichiral superfields in the 3 and V is a
singlet under SU(3). The U(1) factor behaves like a sort of residual R-symmetry for the
N = 1 superfield notation. The remaining transformations that complete this subgroup
to SU(4)r cannot be directly read from the action as they are too complicated but they
can be of course written out [13].

Having introduced the action and the classical symmetries of the theory we now turn
on describing what happens at the quantum level. We will consider the so called supercon-
formal phase of NV =4 SYM, choosing the vacuum with null expectation values for all the
scalar moduli. In this way N' =4 SYM can be shown to be a finite (conformal invariant)
full quantum theory.

A conformal quantum theory is defined by requiring that the beta functions of the
coupling constants exactly vanish. Therefore, to analyze this feature in the case of N' = 4
SYM, we just need to consider the running of the coupling g, looking for instance at its



2.2. LEIGH-STRASSLER ANALYSIS 11

renormalization as a superpotential parameter. In superfield formalism, from dimensional
analysis, it is clear that a vertex coupling three chiral superfields is finite. Then, if we
are interested in computing the beta function of g, we should only concentrate on the
renormalization of the ® wave function. This is to say that we just need to compute the
propagator of the chiral superfield and the corresponding multiplicative renormalization
factor Z,. Hence, using dimensional regularization, the beta function will read

A%

2
B(g) ~ g 99

(2.1.2)

where Zél) is the coefficient of the simple pole term in the Fourier transform of the chiral

superfield propagator. Remembering the definition of anomalous dimension of the elemen-
tary field ¢, we immediately deduce that

B(g) ~ 7o (2.1.3)

We then observe that non-renormalization properties of the superpotential relate beta
functions to anomalous dimensions of elementary fields. In the N' = 4 SYM case the
relation is trivial because we just have a single coupling g and a very symmetric superpo-
tential. However, as we will see in the next Sections, this fact is still valid for more general
supersymmetric theories.

Coming back to N' = 4 SYM, from (2.1.3) we see that to check out finiteness one
has to study perturbatively the pole structure of the ® two—point function, showing that
there are no divergences loop by loop. At one and two—loop level, component formulations
were sufficient to demonstrate finiteness [14, 15]. Taking advantage of the power of super-
space techniques it has also been possible to prove that 3, is vanishing up to three loops
[16][17][18].

Besides these perturbative checks, there exist proofs of all order finiteness of the theory.
In [20] this result is achieved using a light cone superspace formulation while in [21] an
anomaly based approach has been used. In [19] the use of extended superspace jointly
with non-renormalization properties related to the N' = 2 formalism has been sufficient to
prove the finiteness of the theory. In view of all these results, from now on we will assume
that A" =4 SYM is finite at all orders of perturbation theory. This assumption is crucial,
as will be the starting point for the whole analysis of marginal deformations of N' = 4
SYM that we will pursue in the next Chapters.

2.2 Leigh-Strassler analysis

We now turn to consider the most general marginal deformation of N' =4 SYM. For the
reasons discussed in the introduction, we would like to modify the action in (2.1.1) adding
terms which (partially) break supersymmetry while preserve superconformal invariance.
In order to do this we have to carefully choose the operators we want to add to the
Lagrangian. We remind that, in a n dimensional field theory, the qualitative behaviour
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of operators under renormalization group flow can be classified in terms of their scaling
dimension A. If we call p the energy scale at which we evaluate the operators, we can
distinguish three different cases:

e Relevant operators (A < n) for which the normalization grows with increasing p
e Irrelevant operators (A > n), which dies away with renormalization flow
e Marginal operators (A = n) whose normalization does not depend on p

If we want to deform the theory consistently with conformal invariance, it is clear that
we should only concentrate on marginal operators. Otherwise we would introduce a di-
mensionful parameter in the theory therefore breaking scale invariance. As soon as we
add to the action a term 0L = h O, where O is marginal even at the quantum level, new
fixed points are generated starting from the N' = 4 ones and are parametrized varying h.
As a consequence we obtain a line of conformal field theories but break supersymmetry
down to A" = 1. In general proving quantum marginality of an operator turns out to be
a difficult task. The situation simplify slightly in the case of supersymmetric theories. In
[6] a systematic analysis of this problem has been performed and we are going to review it
hereafter.

The analysis is based on the structure of beta functions for the gauge and superpotential
couplings in a generic N' = 1 theory. Given a superpotential term of the form:

W =ho,. . o, (2.2.1)

the beta function for the h coupling can be written as:

Bn ~ (—dw + ; [d(cbk) - %mD (2.2.2)

where dy is the canonical dimension of the superpotential term W, d(®y) is the canonical
dimension of the field ®; and vg, is its anomalous dimension. For what concern the gauge
beta function of a generic N' = 1 theory, it is known [22] that there exists a specific scheme
23, 24] in which it can be written as:

By ~ ([302@) — ) T(Ry) +ZT(Rk)v@k> (2.2.3)

where Cy(G) is the quadratic Casimir of the adjoint representation of the gauge group of
the theory and T'(Ry) is the quadratic Casimir of the representation in which ®; appears.
The relations (2.2.2) and (2.2.3) are valid for a generic A/ = 1 theory. Starting from these
expressions for the beta functions one can examine the conditions for a fixed point, thus
requiring that they vanish simultaneously. In a general quantum field theory, associated
to k couplings we have k independent beta functions. Therefore fixed points (if exist)
turn out to be isolated points in the space of the couplings. However it may happen that
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some of the beta functions are linearly dependent. In this case we only have p equations
on k parameters, where p is the number of independent beta functions. So, if a solution
to the conformal conditions exists, it generically selects a (k — p)—-dimensional surface of
fixed points in the space of couplings. Translation on this surface corresponds to varying
a coupling constant associated to a marginal operator which remains marginal even at
the quantum level. As a consequence, the idea is to find out whether it is possible that
conformal conditions coming from (2.2.2) and (2.2.3) become linearly dependent. In our
case, as we want to study marginal deformations of the action in (2.1.1), we would just have
to concentrate on a superpotential of the form of the N'= 4 SYM one with the addition of
classically marginal terms. Then we would have to study the problem of proportionality
of the beta functions with the help of (2.2.2) and (2.2.3).

In order to easily visualize this procedure let us consider, as an introductory exercise,
the following A = 1 action:

— ) 1
S = /dsz Tr (e79" ®;e9" @) + ﬁ/dﬁz Tr (WeW,) +
g
+1 h/dﬁz TI'(q)l(DQ(Dg — (1)1(1)3(1)2) + 1 B / dﬁf Tr($15253 - 616362) (224)

which differs from the one of N' = 4 SYM just for the superpotential coupling constant
that is now chosen to be generical. Once again, the gauge group is SU(N) and all the fields
are in the adjoint representation. This theory can be thought to be obtained by adding the
cubic ® interactions to the free theory without superpotential. We can now use equation
(2.2.2) substituting the values dy = 3 and d(®;) = 1 and obtaining:

Bh ~ Yo (2.2.5)

Note that in the present case, as for N' =4 SYM, the anomalous dimensions -, are the
same for all £ and we are denoting their common value with v5. Now we consider the
gauge beta function in (2.2.3) and impose T(Ry) = C2(G), as all the fields appear in the
adjoint representation. Then it’s easy to see that:

By ~ e (2.2.6)

So we conclude that both the gauge and chiral beta functions are proportional to the
anomalous dimension of the elementary field ®. In order to have fixed points we just have
to solve the constraint v¢(h, g) = 0, which defines a curve in the space of the couplings h
and ¢g. In principle we could try to satisfy this constraint order by order in perturbation
theory. Up to the order we were able to push the perturbative calculation, we should
obtain that y¢ = 0 iff |h|? = ¢?. As already stated, this result could be demonstrated
to all orders in perturbation theory using the full N' = 4 supersymmetry but it is worth
noticing that the approach to select finite theories just described makes only use of N = 1
supersymmetry and thus can be generalized to more interesting cases. As a final result we
obtain the curve of fixed points in the space of couplings (Fig. 2.1) that, in the example
we are treating, coincides with N' = 4 theory at different values of the coupling g.
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g? Ih?= g2

Ihl?

Figure 2.1: Fixed point line in the space of the parameters

2.3 Marginal deformations of N' =4 SYM

The procedure described in the previous paragraph can be applied to the case of marginal
deformation of the action in (2.1.1). The superpotential of N' =4 SYM can be written as:

% > IR0 Py) (2.3.1)

ik

where the coefficients f“* are completely antisymmetric in 4, j, k. The general classically
marginal deformation consists in adding terms like

> d Te(D,0,;Dp) (2.3.2)

ijk

where now d”* is completely symmetric in 7, §, k and therefore we are adding 10 independent
superpotential terms. Now we want to study which of these operators keeps being marginal
even at the quantum level for the deformed action. Once these combinations have been
selected one finds the form of the most general marginal deformation of AV = 4 SYM.
One can easily see [6] that among the contributions in (2.3.2) one should consider only:

SW = dy Tr(® Py P35 + O P3Dy) + doTr (D3 + O3 + D3) (2.3.3)

Thus we add these terms to the N' = 4 action and conveniently rename the coupling con-
stants obtaining:

— . 1
S = /dgz Tr (e 9V ®;e9" @) + 2—92/6162 Tr(WW,) +

. 6 1 in 6 3 3 3

—I—Zh d’z Tr qq)lq)gq)g — = @1@3@2 + ? d’z TI'(@I + @2 + (1)3) + (234)
q

. [ iW [ 6 =3 =3 —3

+Z]'L d°z Tr - q)lq)gq)g - qcI)ch)g,(I)Q — T d°z TI'(‘I)l + @2 + CI)3>
q
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We can then check using (2.2.2) and (2.2.3) that:
Brr ~ Bhg ~ ﬁ% ~ Bg ~ Yo (2.3.5)
Thus the action in (2.3.4), supplied with the condition
Yo(h,h.q,9) =0 (2.3.6)

defines the most general marginal deformation of N'= 4 SYM. We can immediately reduce
to the undeformed theory putting b’ =0, g =1, h = g.

We stress again that the action (2.3.4) alone does not describe a conformal invariant
quantum field theory because we additionally have to ask that v (h, ', q,g) = 0. In gen-
eral, this constraint selects a 3—complex manifold of fixed points in the space of couplings.
Of course it is of vital importance to try to find an explicit realization of the conformal
condition on the parameters. This issue has been studied extensively choosing different
deformed actions and will be the subject Chapter 3. As we will see, we can distinguish qual-
itatively different behaviours associated to different choices for the value of the couplings
and a very rich and intriguing scenario will show up.

Let us finally describe the symmetries of the action in (2.3.4). Of course, supersymmetry
is broken from A = 4 down to A/ = 1 and the R-symmetry group from SU(4)g to U(1)x.
However, some discrete symmetries survive as a left-over of this breaking. In fact we have
two Z3 symmetries: the first consists in cyclic permutations of (®y, P9, P3) and a second
corresponds to

(1, Py, P3) — (g, 2Po, 2°P;) (2.3.7)
where z is a cubic root of unity. Moreover, the action is invariant under

1
O, =D, iF#]g and q— —— (2.3.8)
q

In [25] it has been advocated that the full discrete symmetry group of (2.3.4) is given by
the trihedral group A(27).

A far more rich symmetry pattern shows up if we restrict to the case A’ = 0. In this
case the theory has action

— , 1
S = /dsz Tr (e‘gV(I),»eQVCI)’) + —/dﬁz Tr(WW,,)

2¢?
1
—l—ih/dﬁz Tr( ¢ &,PyP35 — — O D3P, ) (2.3.9)
q
_ 1 — — — _ .
+z’h/d62 Tr( = &,0,85 — 7 B, P3Py ), qg=emb

4q
and it is better known as —deformed N =4 SYM for the particular reparametrization of
¢ in terms of the complex  coupling.
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One can easily see that the action in (2.3.9) is invariant under an extra global U(1); x U (1)
non-R symmetry group, which acts on the fields as

U(l)l . (q)l, @27 @3) — (@1’ eiOq @27 e—ioq @3)
U(1)y : (@1, @y, P3) — (e*iaz Py, e <I>2,<I>3) (2.3.10)

For simplicity, we will choose the charge values to be oty = as = 1. The presence of this
extra global symmetry turned out to be fundamental in the discovery of the gravity dual
of the f—deformed theory, as we will explain in the next Section. The gravity dual of the
much less symmetric action in (2.3.4) still has to be found.

2.4 The Lunin-Maldacena solution

The theory in (2.3.9) is the most interesting case of marginal deformation of N’ =4 SYM
because it has a gravity dual description in the context of AdS/CFT correspondence [6]. In
this Section, for completeness, we briefly review the essential properties of the supergravity
solution dual to S—deformed N =4 SYM.

The general idea of Lunin and Maldacena is the following: if we start with a gravity
background with two U(1) symmetries that are realized geometrically (i.e. the geometry
contains a two torus), one can generate a new, non singular solution by performing the
SL(2, R) transformation:

-
1+ 87

T=B+i/g— 13= (2.4.1)

where B is the two—form field, /g is the volume of the two-torus and 3 is, for the moment,
a real parameter. The substitution in (2.4.1) should be seen as a solution generating trans-
formation. Namely, one has to reduce the ten dimensional theory to eight dimensions on
the two torus. The eight dimensional gravity theory is invariant under SL(2, R) transfor-
mations acting on 7. The deformation (2.4.1) is one particular element of SL(2, R). This
particular element has the interesting property that it produces a non-singular metric if
the original metric was non-singular. The SL(2, R) transformation could only produce sin-
gularities when 7 — 0. But we see from (2.4.1) that 75 = 7+ o(7?) for small 7. Therefore,
near the possible singularities the ten dimensional metric is actually same as the original
metric, which was non-singular by assumption.

Then it is conjectured that applying the transformation (2.4.1) to the AdS5 x S5 geom-
etry one obtains a supergravity solution that is dual to the S—deformed theory of action
(2.3.9). Let us begin by finding the deformed solution and then we will motivate the above
conjecture. In the notations of [6], one rewrites the S5 metric in the following form:
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3
> dp} + pldg; with  » pf =1
=1 7
da? 4 s2d0% 4 A (dp — dps)? + s2ca(dip + dpy + dps)? + s2si(dy — dipy)?
2 .2 .2
do? + 2d6? + —LaSatw_gy> (2.4.2)

2 2 .2
4cz + 525,859
2

dyp

(—ca + 252596

2 2422
Cs + S;SeCh

+52 [do1 + cidps + capdi)] 24 (A $2sacd) |:de +

where s, = sin«, ¢, = cos «, etc. Now the two U(1) symmetries act by shifting ¢ and ¢
so that the two torus has a metric given by the last line in (2.4.2). One can compute the
T parameter of this two torus

T =i/go = i[R*s5(ch + shsiep)|? = iR(uiug + pipd + piug)'? (2.4.3)

where R = (47g,N)'/4. Then one applies the transformation (2.4.1) and finds the solution
corresponding to the gravity dual of the deformed theory

ds?

G—l

€2¢

BNS

Cy

Cy

Fy

where wgs
frame.

is

R dshas, + > _(dpf + Guidg?) + F°Guingus (D dei)?

L+ B2 (uips + paps + pins) . B=RB,  R'=4dme™N

2P @G

BRAG(13p3dordes + piapideadss + pipidgsder) (2.4.4)
—3[(167N)wdy with  dw; = cq52 sgcodadf

(167 N)(wy + Gwido1dpodgs)

(167TN) (u)AdSS + Gw55) s Wgs = dw1d¢1d¢2d¢3 s WAdSs = dw4

the volume element of a unit radius S® and the metric is written in string
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To motivate the conjectured duality we note the following facts. From the field theory
side the superpotential in (2.3.9) can be written as:

Tr (6“1—'6(1)1(1)2(1)3 — Giiﬂﬂq)lq)gq)g) ="Tr ((I)l * (I)Q * (I)g — (I)l * (I)g * @2) (245)

where we have introduced the star—product:

; (1) ~(2) _ ~(2) (1)
fxg= e’ (Qf Qo —QrQ )f g (2.4.6)

and (QW, Q@) are the charges under the U(1); x U(1)y symmetry of (2.3.10). Deforming

the theory is then in complete formal analogy with the insertion of a Moyal star—product in

0 1

-1 0

in the fact that the phase introduced by (2.4.6) depends on charges instead of momenta.
From the string theory side, we know that on a stack of D-branes in a background with

B # 0 we have a non commutative field theory with non—commutative parameter 6:

the presence of a non-commutative background of matrix . The difference stays

1
0~ — 2.4.7
- (24.7)
Then it follows that the transformation
1 1
- —40 (2.4.8)
T T

can be interpreted as switching on a non-commutative parameter § = (. This correspon-
dence motivated the conjectured duality between the supergravity background of (2.4.4)
and the f—deformed SYM theory in (2.3.9).

All we have said so far is valid for the case of a real 3 parameter. The case of complex
[ is more complicated and could present some subtleties. In general, it can be recovered
by performing SL(2, R), transformations of the solutions of the real 5 case . Here we are
referring to the SL(2, R)s symmetry group of the ten dimensional theory, which should
not be confused with the SL(2, R) group that we used in (2.4.1). In other words, one
starts with AdSs x S° and performs a more general SL(3, R) transformation in the eight
dimensional theory.
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The resulting solution is the following

ds’ = RRG™V*|dsys, +Z dp? + Guide?) + WTR%u?uﬁui chbz
e = mGVPHT X = Tos0 (7 — T150)H ' go.;p + Tis
-1 _ [y — ms0]? _ 2 :
G = 1+—T28 9o.E H=1+m0g0p, Ts=Tis+ T2
gop = Rp(uius+psus +pip3) , Ry =4nN (2.4.9)
Bys — 7 T;“"R Guws — 012R w, dy
Cy = [~Ts0+ %(7 — 7150)|R5Gwy — Y12REw, dyp
dw; = 452 sgcodadd wy = (P2 paderdds + papadosds + papsdosdd: )
F5 = AR}(wags, + Gwgs) | wgs = dwidpidpades

where we wrote # = 7 — 75 0 in terms of the complex structure 7, of the two-torus and two
real parameters v and o; the metric is in the Einstein frame.
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Chapter 3

Conformality and Finiteness

This Chapter is devoted to the study of an explicit realization of the condition (2.3.6) we
must impose on the coupling constants of the action (2.3.4) in order to obtain a super-
conformal theory. This issue has been widely analyzed in literature ([26]-[34]). Here we
present a “state of the art” of our contribution on the subject, describing in detail the
features associated to different deformation choices. We start from the simplest case, the
planar real f—deformed theory, where an exact solution to the problem has been found [8].
Then we add an imaginary part to the § parameter and describe how the scenario changes
[10, 11]. Finally, although we loose the direct connection with AdS/CFT, we relax the
planar condition considering the theory at finite N [12].

As an aside, we will use [11, 12] the deformed models to check and generalize the validity
of finiteness theorems for the gauge beta functions first proposed in [35, 36].

3.1 Planar real f—deformation
Let us start by analysing the simplest marginal deformation of N' = 4 SYM, namely
the SU(N) p—deformed theory, where [ is chosen to be real. To get contact with the

supergravity dual we will consider the theory in the planar limit. We write again the
action of the theory:

S = /dsz Tr (e79V®;e?" @) + —/dﬁz Tr(WW,,)

29>
1
+zh/dﬁz Tr( ¢ ®1PyP3 — — &3P, ) (3.1.1)
q
_ 1 — — — _ .
+Zh/d65 TI'( - q)lq)zq)g — q_ CI)1<I)3CI)2 ) s q= 6“1-6
q

where now [ and ¢ are real parameters, while h is in general left complex. We remind
that the superconformal invariance condition (i.e. vanishing of beta functions) can be
expressed as the vanishing of the anomalous dimensions of the elementary superfields.

21
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Therefore, in order to study superconformal invariance, it is sufficient to focus on the
divergent corrections to the propagators of the elementary fields. As we already stated,
the condition v¢(h,q,g9) = 0 can be in general satisfied only perturbatively. However, in
the particular case of real § parameter, one is able to find the form of the surface of fixed
points at all order of perturbation theory [8]. Therefore, finding the exact relation between
the coupling constants which ensures conformal invariance, we provide a very non-trivial
example of planar N’ = 1 superconformal action in four space—time dimensions.

Let us see in detail how we can derive this result. In the f—deformed theory we consider
a generic L—loop diagram contributing to the propagator of the ®; superfield. The crucial
observation is the following: If we prove that at the planar level, as long as qg = 1, this
diagram does not depend on ¢, then we are sure that |h|*> = ¢? is the exact solution of the
superconformal invariance equations. In fact, if it is independent of ¢, the corresponding
perturbative contribution is the same for any deformed theory, independently of the choice
of the g—deformation. In particular, it is the same for any deformed theory (¢ # 1) and
for the underformed one (¢ = 1). Focusing on the undeformed case we can conclude that
|h|? = ¢g? is the exact condition for the planar superconformal invariance, since ¢ = 1 and
|h|* = ¢? bring us back to the A' = 4 case which is known to be exactly superconformal.
The independence of the perturbative corrections on ¢ allows to extend this statement to
any deformed theory.

To conclude the proof we need to show that the contribution from a generic self-energy
planar diagram never depends on ¢q. We can focus on diagrams containing only matter
vertices because adding vector propagators cannot introduce any ¢g-dependence. We exploit
the formal analogy between the deformed theory and noncommutative (nc) field theory.
As observed in Section 2.4, the deformed potential can be written as

@'h/dﬁz Tr(®) % Py + B3 — Py x Py« Dy) + hec. (3.1.2)

where A o o)
f*g — elwﬁQf MijQQ f . g , (313)

QY. i = 1,2 being the non-R-symmetry U(1); x U(1)y charges and M the antisymmet-
ric matrix ( _01 (1] . When drawing a Feynman diagram we can consider the flow of
the charges inside the diagram. Observing that the charges are conserved at any vertex
and propagate through the straight lines we can formally identify them with the ordinary
momenta in noncommutative diagrams. A known property of planar diagrams in nc field
theory is that the star product phase factors dependent on the loop momenta cancel out
(for a proof see [37, 38, 39]) and only an overall phase depending on the external momenta
survives. In our case, exploiting the formal identification of charges with momenta, we can
use the same arguments to conclude that any planar diagram will have a phase factor from
(3.1.3) depending only on the configuration of the external charges.

In the particular case of self-energy diagrams the overall phase factor is given by:
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V(Qan, Q) = €™ %1 M Q5] _ (imd (@405 -051Q5)) _
’ 1

In other words, any self-energy planar diagram always contains an equal number of ¢ = %
and § = é vertices. This concludes the proof of the ¢ independence of perturbative self—
energy corrections.

As a conclusion, we state [8] that in the N — oo limit the exact condition for supercon-
formal invariance is simply |h|> = ¢g?. Therefore, in the planar limit the theory described
by the action

— ) 1
S = /dsz Tr (e_gvéiequ)’) + 2—92
+ig / dS2 Tr(e™ @, y®y — e ™D D3 ®y) + h.c. (3.1.4)

/ d®z TeWew,,

represents a N = 1 superconformal invariant theory for any value of 3 real without addi-
tional conditions on the couplings. In the context of the AdS/CFT correspondence [2, 3, 4]
this is exactly the theory whose strong coupling phase is described by the supergravity dual
found in [6]. We conclude our analysis by noticing that the proof we have presented makes
repeated use of the requirement g7 = 1 (5 real) and cannot be immediately extended to
more general cases.
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3.2 Planar complex f—deformation

The aim of this Section is to study how the conformal invariance condition can be imple-

mented for the case of complex —deformation of N' =4 SYM. The simple addition of an

imaginary part to the § parameter turns out to change dramatically the whole scenario.

In fact an exact treatment of the problem in analogy with the case of real 3 is not possible.

The solution must be found from a perturbative point of view as we are going to describe.
We rewrite here the action of the theory:

— . 1
S = / d®z Tr (e ®;e9" @) + 57 / d°z Te(WeW,)
g

1
—|—ih/d6z Tr( g ®1PyP3 — — O P3D, ) (3.2.1)
q
_ 1 — — — — .
+Zh/d65 TI'( - q)lq)zq)g — q_ q)lq)gq)g ) s q= 6“1-6
q
where now we are considering 3 and h complex and a real g. We immediately notice that
the phase of h can always be reabsorbed by a field redefinition, so that the effective number
of independent real parameters in the superpotential is actually three.
Since we are interested in studying the theory in the planar limit, from now on we will
be considering 't Hooft rescaled quantities

h — — g — (3.2.2)
in our perturbative analysis. In order to perform higher order perturbative calculations
it is very efficient to rely on N/ = 1 superspace techniques. Supergraphs are evaluated
performing standard D-algebra in the loops and the corresponding divergent integrals are
computed using dimensional regularization in D = 4 — 2e. We have collected superspace
Feynmann rules togheter with some relevant color identities in Appendices A and B. All the
bosonic integrals necessary to the computations can be found in Appendix C. In Subsection
3.2.1, we will try to impose loop by loop the condition v¢(h, q,g) = 0 and we will see that,
differently from the real § case, the one—loop condition is not sufficient to ensure finiteness
at higher loops. To deal with this problem, we will be led to expand the superpotential
couplings in terms of the gauge one, following the coupling constant reduction (CCR)
program [40]. Then a study of the pole structure arising from this expansion is performed
[10].

In Subsection 3.2.2, the vanishing conditions for the gauge and chiral beta functions are
discussed within the CCR context. We will see that scheme dependence problems in the
definition of the theory arise, suggesting that the fixed point surface is well defined only
for real values of the  parameter [11]. Moreover we will discuss the validity of finiteness
theorems [35, 36] for the gauge beta function, extending them to the CCR framework
(11, 12].
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3.2.1 Pole analysis and CCR program

Let us begin by trying to require direct finiteness for the two-point chiral correlator [10].
When ¢q # 1, in order to isolate the relevant terms and drastically simplify the analysis, it
is convenient [28] to study the condition of conformal invariance considering the difference
between contributions computed in the -deformed theory and the corresponding ones in
the A/ = 4 SYM theory (which is finite and with vanishing beta function). The simpli-
fication is due essentially to the following facts: when computing the difference between
graphs in the 3-deformed and in the N = 4 theory we do not need to consider diagrams
that contain only gauge-type vertices since their contributions is the same in the two theo-
ries. Instead we concentrate on divergent graphs that contain either only chiral vertices or
mixed chiral and gauge vertices. In fact the relevant terms come from the chiral vertices
that are actually different in the two theories. Addition of vectors simply modifies the
color due to the chiral vertices by the multiplication of ¢? factors which are the same for
both theories.

We can now begin our perturbative analysis. At one loop the analysis is very simple
and mimics exactly what happens in the ( real case. The divergent supergraphs are shown
in Fig. 3.1

N

fa) (b} fe)

Figure 3.1: Supergraphs contributing at one loop. The wavy line represents a gauge
superfield propagator while the full line a chiral superfield one. The dot indicates antichiral
vertices.

The D-algebra is the same for the two configurations and its completion gives rise to a
logarithmically divergent momentum integral of Fig. 3.1(c). The diagram in Fig. 3.1(b)
containing a vector line is the same in the N’ = 4 and in the S-deformed SYM theory, since
it only depends on the gauge coupling g. The diagram in Fig. 3.1(a) contains the chiral
couplings: in the deformed theory it gives a contribution

(‘4};‘)2 (qq+ q_lq) % (3.2.3)

while in the N = 4 theory it is proportional to g*

26 1
gz (3.2.4)
€

(47)?
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where we remind that we are using rescaled quantities in (3.2.2) and refer the reader to
Appendix C for the integral values. In order to achieve finiteness one has to impose that the
difference between the two results be finite. This implies that to this order the §-deformed
theory is conformal invariant if

1
|n|? (qq—+ q—g) = 2¢° (3.2.5)

Now we consider higher-loop contributions. Since we look at the difference between
the two-point correlators computed in the 3-deformed theory and in the NV = 4 SYM, we
do not need to consider diagrams that contain only gauge-type vertices their contributions
being the same in the two theories. Therefore we concentrate on divergent graphs that
contain either only chiral vertices or mixed chiral and gauge vertices. Moreover we observe
that a chiral loop can close only if it has the same number of chiral and antichiral vertices,
i.e. no polygonal configurations with an odd number of vertices are possible. With these
rules in mind it is straightforward to analyze the two- and three-loop contributions. At

two loops we have the diagrams shown in Fig. 3.2.
(a) (b) (c)
(d) (e) (f)
Figure 3.2: Supergraphs contributing at two loops

For all the different configurations the D-algebra leads to the same bosonic integral in Fig.
3.2(f) (see Appendix C). It is very simple to compute the various color factors: we have
for the (-deformed theory

Fig.3.2(a) — =2 [’th (qur q%)r

Fig.3.2(b) +3.2(c) + 3.2(d) + 3.2(e) — 2 {|h|2 <qq + é)] 9 (3.2.6)
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while correspondingly for N'= 4 SYM we find

Fig.32(a) — —8¢*
Fig.3.2(b) +3.2(c) + 3.2(d) + 3.2(¢) — 4g* (3.2.7)

If we compute the difference of the results in (3.2.6) and in (3.2.7) and use the condition in
(3.2.5), we obtain a zero result. This means that the relation we found at one loop ensures
finiteness also at two loops. In fact repeating a similar analysis at three loops one can
easily show that (3.2.5) makes the divergent diagrams computed in the deformed theory
equal to the corresponding ones in the A/ = 4 SYM. In the planar limit under the condition
in (3.2.5) the two-point correlators do coincide up to three loops [28]. Up to this order
the situation is completely parallel to the case of the real g-deformation: there qq = 1
and the condition in (3.2.5) was simply given by |h|?> = ¢g®. This condition was actually
sufficient to implement finiteness of the two-point correlator in the planar limit to all orders
in perturbation theory . Moreover the two-point correlator of the real $-deformed theory
becomes exactly equal to the one computed in the N/ = 4 theory.

Now we proceed in the study of the S-complex case and examine the situation at four
loops. We will find that at this order we are forced to modify the condition in (3.2.5).
This should not come as a surprise because of the following reason: as explained above
the divergence at one loop is linked to the color factor of the chiral bubble in Fig. 3.1(a)
and this leads to the condition in (3.2.5). At two and three loops divergent graphs are
constructed either by inserting vector lines on chiral bubbles or by assembling chiral bubbles
together. Since the addition of vectors simply modifies the color due to the chiral vertices
by the multiplication of g2 factors, in both cases the condition in (3.2.5) suffices to achieve
finiteness. In fact this same reasoning applies also to all the four-loop diagrams that either
contain vector lines on chiral bubbles or consist of various arrangements of chiral bubbles:
for all these cases the condition in (3.2.5) makes these graphs equal to the corresponding
ones in the N = 4 theory. The novelty is that at four loops a new type of chiral divergent
structure does arise. We will be able to implement the cancelation of divergences at order
g% but, differently from the real 3 case, when (3 is complex finite parts survive in the
B-deformed two-point function which are absent in the corresponding N = 4 two-point
function.

N

~_

Figure 3.3: Four-loop supergraph and its associated relevant bosonic integral
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The new type of chiral supergraph, i.e. not containing chiral bubble insertions, is the one
drawn in Fig. 3.3. Completing the D-algebra in the loops one obtains the bosonic graph
depicted in the same Figure. The corresponding integral (see appendix C) is divergent

o /d"k drq d'r d"t 1
v @2r)in Rk +6)2(q + k)2(q + )2(q + p)22r2(t + 1)?
1
(47)3

1
(p?)*

The color factor is also easily computed: one has to sum over all the various possibilities
at the chiral vertices and in so doing one finds

a |

= —5¢(5) (3.2.8)

Cy= |h® {(qq‘)‘l + + 6] (3.2.9)

1
(q9)*

The factor in (3.2.9) can be rewritten as

(qq + q—1q>4 + (qq —~ é)éll (3.2.10)

In this way it is easy to compare the result with the one we would have obtained in N' = 4
SYM. In fact using the condition in (3.2.5) we find that the g-deformed two-point function
at four loops differs from the corresponding N = 4 two-point function by the contribution

h8

5 11 1 e 1Y
hi= =53¢0 g 1 gt (- o) (3211)

If we want the propagator to be finite this term has to be cancelled. The only way out
is to modify the relation in (3.2.5), so that a contribution from a lower-loop order might
cancel the unwanted four-loop divergence.

In the spirit of [5], in the space of the coupling constants we are looking for a surface
of renormalization group fixed points. To this end we set:

and reparametrize these couplings in terms of the gauge coupling g. In fact since in the
planar limit for each diagram the color factors from chiral vertices is always in terms of the
products |h]? and |hy|? we express directly |hi|* and |hs|? as power series in the coupling
g? as follows

[ |” = a19” + asg* + asg® + ...
|hol® = big® + bag” + bsg® + . .. (3.2.13)
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Therefore, in the planar case, the number of independent real superpotential couplings
which enter the color structure and thus we need to reparametrize, is just two.

In Section 3.3 we will see that keeping N finite all of the three independent real cou-
plings will enter the color structures. This difference will turn out to be crucial for a
physically meaningful definition of the superconformal theory. In the planar case, the two
coefficients a; and b; will be determined by imposing that divergences from various loop
orders, subtracted by the corresponding A/ = 4 results, vanish order by order in the g?
expansion.

In order to make the comparison with the A’ = 4 calculation simpler we find convenient
to determine the general structure of the color factors of the relevant diagrams. At L—loop
order the color factor is a homogeneous polynomial in |h|?, |hy|* and ¢? of degree L.
Moreover, as a consequence of the invariance of the theory under the global symmetry
hi < —hy and ®; < ®;, i # j, it has to be symmetric under |hy|* < |ho|>. These
properties, together with the requirement of having a smooth limit to (2¢g*)% in the N' = 4
limit (|h1|?, |he|?> — g¢?), constrain the L-loop color factor to have the following form !

FE(h? + [hel?) + (1haf* = [ho*)? G2 ([ha 2, [hol?) (3.2.14)

with F(1)(2¢%) = (2¢g%)". The functions F*) and G*~?) depend also on the coupling g2, but
for notational simplicity we have chosen not to write it explicitly. They are homogeneous
polynomials of degrees L and (L — 2) respectively, symmetric in |h;|?, |ho|?. Their general
form is

L

FO([hal? + [haf?) = > ([hal® + [haf)" (267)" 7" fi
k=0
[(L—2)/2]
GE (P hal) = > (af* = [hef)?* PE2720 (I, hol?) - (3.2.15)
k=0

with constant coefficients f; satisfying Zi:o fi = 1 and P22k homogeneous polyno-
mials not vanishing for |hy|> = |hal?.

We note that for pure chiral diagrams, the ones we will be mainly interested in, there is
no g>~dependence in F'*) and G*~2) and, in particular, F")(|hy|2+|ha|?) = (|h1|>+]|ho|?)E.

At L-loop order, after we take the difference with the N’ = 4 result what is left over is
given by

0O = [FO ([ + [haf?) = (267)" + (Ia]” = [ho*)* GE2 (|, b)) 1) (3.2.16)

where [ C(lij) denotes the divergent factor from the L-loop integral. Finally summing over all
loops and using the expansions in (3.2.13) we end up with

SOT® = ST [FO(R2 4 h2) — (260" + (h — B2 G (2, h2)] 1Y)
L

= > A () (3.2.17)

'We do not worry about an overall normalization factor since it is irrelevant for our general argument
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Finiteness is achieved imposing
A =0 (3.2.18)

order by order in g2

Thus we go back to the one-loop calculation and apply concretely the general procedure
described above. From the results quoted in (3.2.3) and (3.2.4) we see that GV = 0 and
find

OO = [FO(hf + haf) = @0))] 1) = 5 [+ ol =2 = (32.19)

a |

1
(4m)?
Therefore using the expansions in (3.2.13) at order g? we have to impose the condition

O(g%) : A =0 — ai+b—2=0 (3.2.20)

In fact since we have shown that the condition in (3.2.5) ensures finiteness up to three
loops, up to order ¢°, we find the following additional requirements

O<g4)2 AQZO —_— a2+b2:0
O(g°) : A3 =0 — as + by =0 (3.2.21)

At this point it should be clear that, according to the procedure we have illustrated
above, we do not need consider anymore diagrams containing insertions of chiral bubbles
like the one in Fig. 3.1(a): once the condition (3.2.20) is satisfied these diagrams do not lead
to new divergent contributions. Therefore at every loop order we have to isolate diagrams
corresponding to new chiral structures with eventually vector propagators inserted on them.

Now we reexamine the results we have obtained up to four loops, i.e. up to order g5
From the four-loop calculation (see egs. (3.2.8) and (3.2.10)) we have

5 1 1 1) 1\
E TR
5 1 1 2 2\4 2 2\4
= —5¢06) (An)F € (17 + B2 ) + ([P ? = [haf*)] (3.2.22)
Therefore we find
PO = 2 C0) e ¢ [0+ ) = 6) 4 (= )] (3229

Now we insert into (3.2.17) the results we have found so far, i.e. (3.2.19) and (3.2.23) and
use the expansions in (3.2.13) with the conditions in (3.2.20) and (3.2.21). In this way we
find that the finiteness condition at order ¢® is satisfied if

O(g®) : Ay=0 — ag+by— g ¢(5) (ay —b)* =0 (3.2.24)

(47)¢
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Figure 3.4: Planar supergraphs with 1/e? divergences at five loops

Up to this point we have ensured that the two-point function is finite up to the order g8
The finite contributions explicitly depend on ¢ and vanish in the corresponding terms of
the N' = 4 theory. The next step leads us to order ¢'°: we have to consider the new five-
loop diagrams and the two-loop diagrams that will talk to the five-loop graphs once the
condition (3.2.24) is imposed. Following the procedure described so far, i.e. implementing
the finiteness condition order by order in the couplings, at the order ¢® we ended up
adding contributions coming from one-loop integrals and from four-loop integrals. Now
these structures show up at order ¢'° as subdivergences in two-loop and five-loop integrals
respectively and they are responsible for the insurgence of 1/e%-pole terms. In Fig. 3.2
and in Fig. 3.4 we have drawn the two- and five-loop diagrams which give rise to 1/e?-pole
terms. Having cancelled divergences at lower orders one might be tempted to believe that
these 1/¢* terms would automatically add up to zero. Indeed this would be the case if we
were cancelling divergences order by order in loops. As emphasized above we are proceeding
order by order in the coupling g?. At the order ¢® imposing the relation (3.2.24) we have
cancelled the 1/e pole from the one-loop diagram in Fig. 3.1(c) with the 1/e pole appearing
from the graph at four loops in Fig. 3.3. Essentially if we write schematically the one-loop
result as

(3.2.25)
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and the four-loop result as

—_

1
B =
¢ (p?)%
imposing the relation in (3.2.24) we have set A + B = 0. When we go one loop higher we
have to deal with the bosonic integrals shown in Fig. 3.5

(3.2.26)

Figure 3.5: Subtraction of subdivergences at order g'°

The 1/€? term in Fig.3.5(a) arises from

1 1 1
- " — - I'(2 2.2
Ae/d k(p+k)2(k2)1+6 A6 (2€) (3.2.27)
The 1/€* term in Fig.3.5(b) arises from
1 1 1
- " — - 2.2
B - /d bR B - I'(5¢) (3.2.28)

It is clear that setting A + B = 0 is not enough to cancel the 1/¢? poles.

In order to check this general argument we have computed the 1/¢? divergent terms
explicitly. At order ¢'° from the two-loop graphs shown in Fig. 3.2, denoting with I, the
divergent integral in Fig. 3.5(a) we have

Fig.3a = —2 (q§+ %)2 |h|*I, — —8(ay + by) 15 (3.2.29)
Fig.3b = +4 (qq + %) |h|?g* I, — +4(ay + by) Iy (3.2.30)
Fig.3c = +2 (qq + q_1§> |n|?g* I, — +2(ay + by) 15 (3.2.31)
Fig.3d = —2 (qq+ %) REE — —4(ay + by)Io (3.2.32)
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1
Fig.3e = —2 (qq+ ﬁ) |h|?g* I, — —4(ay + by) Iy (3.2.33)

Summing up all of the contributions we get

1
(4m)°

1 1
(4m)* 2¢2

—6(ay + by)lo — —15¢(5) (ay — by)* (3.2.34)
where we have used the relation in (3.2.24). In the same way from the five-loop graphs
shown in Fig. 3.4, denoting with /5 the divergent integral in Fig. 3.5(b), we obtain (see

Appendix C)

1 1

Fig.5b = —2 ((qq)4 + +6 | |h®g° 15 — —(ay — by)*I5 (3.2.36)

|h|sg2l5 — +(6L1 - 61)4]5 (3237)

Fig.he = +2 ((qq)4 +

1
(q9)*
Summing up all of the contributions we get

1 ¢(5)

3(&1 — b1)4j5 — 3(&1 — b1)4 WG—Q

(3.2.39)

Clearly the terms in (3.2.34) and (3.2.39) do not add up to zero and in fact they reproduce
the mismatch anticipated in (3.2.27) and (3.2.28) when A + B = 0. Therefore at order g*°
the cancelation of the 1/€* poles requires that (see also (3.2.20) and (3.2.24))

a; = b1 =1 ay + b4 =0 (3240)

Once the conditions in (3.2.40) have been imposed, at the order ¢g'° all the 1/e diver-
gences from diagrams at five and two loops are automatically cancelled. Thus at this order
the only divergence comes from the one-loop bubble and we are forced to impose

as + b5 =0 (3241)

At this stage one may ask why there are no further contributions from 5-loop diagrams
to 1/€® pole at order ¢'°. In fact we will show now that all the other 5-loop graphs
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O

Figure 3.6: Diagrams with a gauge line connected to the external leg

potentially 1/e*~divergent actually do not contribute. To this end let us consider all the
possible diagrams obtained by adding a gauge propagator to the 4-loop new chiral graph
of Fig. 3.3. Let us start looking at diagrams with a gauge line connected to the external
leg. Beside the ones in Fig. 3.4, we can draw also the diagrams in Fig. 3.6 where it has
been shown the bosonic integrals appearing after the completion of the D-algebra. They
are clearly 1/e—divergent since they do not contain subdivergences, so we will neglect them.
Let us see what happens if we insert a gauge propagator in order to correct an antichiral
vertex. The diagrams one can draw are depicted in Fig. 3.7.

They still diverge as 1/e, since they do contain just triangles. Analogously, if we look at
a gauge correction to a chiral vertex, we get the diagrams in Fig. 3.8, which are still just
1/e-divergent.
The situation does not change if we consider the two diagrams in Fig. 3.9 while things
change drastically if we consider the diagrams depicted in Fig. 3.10. After completing
the D-algebra one is left with a large number of diagrams, most of which diverge as 1/e, as
they are made up of triangles. Still there appear some non—trivial contributions presenting
subdivergences. In particular both of the graphs in Fig. 3.10 produce three potentially
1/€e*~divergent diagrams, depicted in Fig. 3.11.

Quite surprisingly, the graph (¢) with two derivatives exactly cancels the contribution
coming from the graphs (a) and (b). We have thus demonstrated that only the diagrams
in Fig. 3.4 actually contribute to the 1/¢? pole at order g'°.

Before proceeding to the next order ¢'2, let us note that this pattern of cancelling
divergences between the one-loop bubble in Fig. 3.1(a) and the four-loop diagram in Fig.



3.2. PLANAR COMPLEX $-DEFORMATION 35

\

|
s
!

+
+

) © (@
N L LV
© ) © @

Figure 3.7: Diagrams with a gauge correction to an antichiral vertex

3.3 will repeat itself at order ¢'® while the cancelation of the 1/e? poles will show up at
the order ¢'® and will involve again the diagrams at two and five loops that we have just
considered. Indeed at this stage from the divergent contribution of the four-loop diagrams,
using the conditions imposed so far on the coefficients of the expansions in (3.2.13), the
first divergence will be proportional to

(a2 = bs) g"]" = (2a2)" ¢"° (3.2.42)

So for the time being, having ensured finiteness of the theory up to the order ¢'°, we
proceed and examine the situation at six loops. The new divergent chiral diagrams are
shown in Fig. 3.12: they are all logarithmically divergent.

Their color factor is easily evaluated: it can be written in the following form

5 2 5
(Il +1ha")” + (1l = [Bal*)* Gl + S 1Pl hal® + S1hal*) (3.2.43)

Thus we find that in the g? expansion the first nonvanishing term from the six-loop diver-
gence will be proportional to

[(a2 = ) g']" ¢" = (2a2)" ¢ (3.2.44)

Thus once again to the order ¢'? the only divergence arises from the one-loop bubble and
its cancelation requires
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(d)

Figure 3.8: Diagrams with a gauge correction to a chiral vertex

We keep on going and look for divergent terms at the order ¢'*. The diagrams at seven
loops have a color factor proportional to

(Pl + 1)+ ([Pl = )" (B[ + 5lha[* Rl + 57 [*|haf* + 3[Ra|®)  (3.2.46)
which, using the expansion in (3.2.13), gives as first relevant term
[(ay — by) ¢*]* ¢° = (2a0)* g** (3.2.47)

Therefore once again the only divergence at the order ¢'* comes from one loop and leads
to the condition

In accordance with the general discussion around equations (3.2.14, 3.2.15) and what
we have found by the explicit calculations we have reported up to seven loops, we write
the L-loop color structure of the pure chiral divergent diagrams in the following form

([hal?+1ha*)" + ([hal® = [ha )" lu([ha )5 4+ B )7 [hal* 4+ - -+ ([hal*) 7] (3.2.49)

We note that the only arbitrary assumption with respect to the general form that one can
infer from (3.2.14, 3.2.15) is the absence of a term proportional to (|hi|* — |hs]?)?. Even
if we do not have a general argument for the absence of such a term we are very well
supported by the results up to seven loops illustrated so far.

If we take into account the conditions found so far for the coefficients in (3.2.13), then
(3.2.49) immediately implies that the various diagrams at L loops will give contributions
in the ¢ expansion whose first relevant term is proportional to

[(ay — by) g** g*F7% = (2a9)* g*1 8 (3.2.50)
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Figure 3.9: Two diagrams with an internal gauge correction

The conclusion is that diagrams at six loops or higher will start contributing at the earliest
when we reach order g%, as we have explicitly seen in (3.2.44) and (3.2.47). Therefore if
we now turn to the order ¢'%, as previously anticipated, the only divergent contributions
come from the one-loop bubble proportional to ag + bg and from the four-loop diagram
proportional to aj (see eq. (3.2.42)). In order for the divergences to cancel at this order
we have to require

5 1

O(g"%) : As=0 — ag+bs— 3 ¢(5) W(@

Going up to the order ¢'® we have to cancel the 1/e? poles from the two and five-loop
diagrams: following the same steps as before we are forced to impose
as + bs =0 a9 = bg =0 (3252)

With these conditions on the coefficients in the expansion (3.2.13), at order ¢'® the 1/e
poles come only from the one-loop bubble and they cancel out once

— b))t =0 (3.2.51)

ag+ by =0 (3.2.53)
Since in (3.2.52) we have imposed as = 0, automatically we find that the various divergences
from six, seven, ..., L-loop diagrams are pushed up
6 loops — [(as — b3) ¢°* g* = (2a3)* ¢*®
7 loops — [(as — b3) ¢°]* ¢° = (2a3)* ¢*°

L loops — [(as — b3) ¢°* g*F 7% = (2a3)* g*L 10 (3.2.54)
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Figure 3.10: Diagrams potentially 1/e*~divergent

(a) (b)

(a) (b) (c)

Figure 3.11: 1/e?>~divergent bosonic diagrams coming from graphs in Fig. 3.10

It becomes clear that everything is ruled by the cancelation of divergences at one and
four loop and by the subsequent cancelation of the 1/¢? poles at two and five loops. This
happens at the order (g?)* and at the order (g?)**! respectively. The new chiral graphs
at six loops and higher never enter the game due to the specific form of their color structure
as in (3.2.49). The mechanism works as follows: up to the order (¢?)*~! we find that the
coefficients have to satisfy

a; — b1 =1 aj—1 = 0 Q451 + b4j_1 =0 j = 2, c. ,l{ (3255)

At O((¢*)*) in order to cancel the divergent contributions from one and four loops we

have to impose
5 1

A4+ bar — 5 ¢(5) (a0

Then at O((g?)**1) the divergences from two and five loops need to be cancelled and we
are forced to require

(ar, —bp)* =0 (3.2.56)

Qg + bap =0 ap, =b, =0 (3.2.57)
Finally this leads to

a;=b =1 a,=b,=0 n=23, ... (3.2.58)
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Figure 3.12: New planar chiral diagrams at six loops

These conclusions have been drawn based on the general expression given in (3.2.49) for
the color structure of pure chiral diagrams where we have assumed the absence of a term
quadratic in (h? — h3). Now which control do we have on this assumption in the higher-
loop divergent chiral diagrams? We have computed explicitly all the color structures up to
ten loops; with the help of Mathematica we have evaluated the color factors of arbitrarily
chosen higher-loop graphs; in addition we have explicit formulas for several classes of chiral
diagrams. We have found consistently that all of them can be cast in the form given in
(3.2.49). So we conclude that the only way to reach finiteness for the chiral propagator
with an expansion such as in (3.2.13), is to restrict to the case [ real. We emphasize that
this result is independent of the renormalization scheme: had we done the calculation using
a different scheme the condition of finiteness would have led us to the solution 3 real.

We stress that our investigation has been carried on perturbatively, ignoring completely
possible nonperturbative effects. In particular, we have assumed the gauge coupling con-
stant to be real. It would be interesting to extend our analysis to g complex and to
understand if the embedding of all the couplings in a complex manifold leads to nontrivial
superconformal conditions.

3.2.2 Conformal condition and scheme dependence problem

In this Subsection we will relax the direct finiteness requirement [11]. We want to find
the condition that the couplings have to satisfy in the large N limit in order to guarantee
the vanishing of the chiral and gauge beta functions. We will find that in this case com-
plex values of (3 are allowed but the resulting conformal invariant theory depends on the
renormalization scheme.

Let us consider once again the action in (3.2.2) and compute perturbatively in the large
N limit the chiral and gauge beta functions. The request of vanishing beta functions will
identify a conformal field theory.
First we consider the chiral beta function (3. It is well-known that in minimal subtraction
scheme (3, is proportional to the anomalous dimension v of the elementary fields and the
condition 3, = 0 can be conveniently traded with v = 0. In our case, even working in
a generic scheme, one can easily convince oneself that at a given order in g2 the propor-
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tionality relation between (), and ~ gets affected only by terms proportional to lower order
contributions to 7. Therefore, if we set v = 0 order by order in the coupling, we are
guaranteed that (3, vanishes as well.

Thus we impose the vanishing of v which we obtain from the computation of the two-
point chiral correlator. Up to three loops nothing new happens: the condition in (3.2.5)
insures the vanishing of v up to the order ¢° and correspondingly also (3, is zero. Moreover
up to this order we can use the results in [36] and we are guaranteed that also the gauge
beta function 3, is zero up to the order ¢°. This is easily understood since in spite of the
redefinition in (3.2.13) the requirement of vanishing anomalous dimensions up to order g°
works order by order in the loop expansion so that general finiteness theorems [35, 36]
hold. At this stage the coefficients in (3.2.13) have to satisfy

O(g%) : a;+b—2=0
O(g") : as + by =0
O(g°) : az+ by =0 (3.2.59)

Things become more subtle at O(¢g®): here the only way to achieve the vanishing of v
is to mix contributions from one loop with contributions from four loops. Repeating the
calculation of the divergent integrals, the result is proportional to

A (“—2) +B (“2)41 _ LA B)+(A+4B) I (g) L0 (3.260)

€ p? F €

where we have introduced

1 1
A= W(M + by) B = —g§(5)w(a1 —b)* (3.2.61)
and we have explicitly indicated the factors coming from dimensionally regulated integrals
at one and four loops (here p is the external momentum and p is the standard renormal-
ization mass). The anomalous dimension is given directly by the finite log term in (3.2.60)

and then we see that at order ¢® the vanishing of the anomalous dimension v requires

O(g®) : A+4B =0 (3.2.62)

We emphasize that at this order this condition ensures the vanishing of v and (3, , but as
it appears in (3.2.60) the theory is not finite. We will come back to this point and discuss
its implications below. First we want to show that the condition in (3.2.62) is sufficient to
insure that 3, is zero up to the order g''.

Contributions to the gauge beta function at O(g'!) come from two- and five-loop di-
agrams. Using standard superspace methods the two-loop calculation is straightforward,
but at five loops the number of diagrams involved is large and the calculation looks rather
daunting.?

2We recall that in [23] a calculation of similar difficulty was attempted: the four-loop gauge beta
function including nonplanar graphs. In that case the relevant coefficient was obtained by an indirect
assumption because a direct calculation was too involved.
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In fact using the background field method and covariant supergraph techniques we
are able to perform this high loop calculation exactly. We take advantage of the results
obtained in [36] where the structure of higher-loop ultraviolet divergences in SYM theories
was analyzed using the superspace background field method and supergraph covariant D-
algebra [59]. Using this approach contributions to the effective action beyond one loop can
be written in terms of the vector connection I', and the field strengths W,, Wy, but not of
the spinor connection I',,. This result allows to draw strong conclusions on the structure of
UV divergences in SYM theories. It was shown [36] that in regularization by dimensional
reduction UV divergent terms can be obtained by computing a special subset of all possible
supergraphs. The reasoning can be summarized as follows: at any loop order (with the
exception of one loop), after subtraction of UV and IR divergences, the infinite part of
contributions to the effective action is local and gauge invariant. By superspace power
counting and gauge invariance it must have the form

I = z(e) Tr / d*z d0 T°T,(5,0 — 6,°) (3.2.63)

where I'* is the vector connection from the expansion of the covariant derivatives, i.e.
V., = 9, —il',, produced in the course of the D-algebra. z(e) is a singular factor from
momentum integration of divergent supergraphs and the n-dimensional Sab is produced
from symmetric integration. Using the rules of dimensional reduction and the Bianchi
identities in terms of covariant derivatives one can show that

Tr / d*z d*0 TT,(0,) — 6,0) = —e Tr / d*z d*0 WeW, (3.2.64)

From the above relation it is clear that in order to obtain a divergence the coefficient z(¢) in
(3.2.63) must contain at least a 1/¢? pole. Moreover the complete result can be obtained by
calculating tadpole-type contributions with a T'%T",6,° vertex and then covariantizing them
by the substitution 6,2 — 8,> — §.>. Thanks to all of this even the five loop computation
becomes manageable.

We describe here the main steps that apply both to the two-loop and to the five-loop
calculation. As emphasized above we need to consider graphs with only internal chiral
lines. Thus, according to the rules in [59], at a given order in loop one draws vacuum
diagrams with chiral covariant propagators and V2, V? factors at the chiral vertices. Now,
in order to reduce as much as possible the number of terms produced in the course of the
V-algebra, we do not perform the covariant V-integration at this stage but modify the
procedure as follows. We want to single out tadpole-type contributions proportional to
T, therefore we have to figure out which are the potential sources of such terms. The
explicit representation of the chiral covariant propagators is given by

1 ) 1 - L
Oy =3 vava—iwava—%(V“WJ O-=3 V“Va—iW“Va—%(V“Wa) (3.2.65)

Therefore in the expressions above we can disregard the terms involving the field strengths
since they do not enter the structure in (3.2.63). The I'*I", terms can arise only from the ex-
pansion of the covariant operator V¢V, or from contracted covariant derivatives V¢...V,
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(@) (b)

Figure 3.13: Vacuum diagrams: (a) two-loops and (b) five-loops contributions

Figure 3.14: Bosonic two-loop integral

produced while performing the V-algebra. The net result is that we can immediately
expand the covariant propagators as follows

1 1 1
- —— =

O. 1vav, O

11 _,.1
+ 3 EF Fai (3.2.66)
where [] = %8"&1 is the flat propagator. We can drop all the rest since it will not con-
tribute to the structure we are looking for. In this way we obtain two types of diagrams:
I. the ones with flat D? and D? factors at the vertices, flat propagators and one I'*T',
insertion, for which now standard D-algebra can be performed
and
I1. the vacuum diagrams with flat propagators but V2, V2 factors at the chiral vertices in
which the I'*T", vertex will have to appear after completion of the V-algebra.

The relevant terms will be the ones that after subtraction of ultraviolet and infrared sub-
divergences give rise to 1/€% contributions.

At the two-loop level the analysis is very simple: the vacuum diagram to be considered
is shown in Fig. 3.13(a). Following the procedure described above, it is straightforward to
realize that only I-type diagrams can give rise to 1/€? poles and so the calculation reduces
to the one presented in [59].

We briefly summarize it here. Expanding the covariant propagators as in (3.2.66) one
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obtains three times the diagram in Fig. 3.14 which corresponds to the term

| &k dg 1
— Tr (I'*T 2.
570 [ (3.2.67)

This integral contains a one-loop ultraviolet subdivergence and it is infrared divergent. It
is convenient to remove the IR divergence using the R* subtraction procedure of [41]. After
UV and IR subtraction one isolates the 1/€? term and rewrites the result in a covariant
form. Using (3.2.64) it can be recast in the standard divergent part of the two-loop effective
action giving a total contribution (see Appendix C)

1 3,1 Tr/d4x d*0 Wew, (3.2.68)

(4m)2 47 € ¢ o
where we have reinserted the A factor defined in (3.2.61).

Now we are ready to tackle the five-loop calculation which amounts to start with the
vacuum diagram in Fig. 3.13(b). First we consider the I-type diagrams. In this case
expanding the covariant propagators as in (3.2.66) we produce twelve times the diagram
in Fig. 3.15. We perform standard D-algebra in the loops and look for a contribution that
after subtraction of IR and UV subdivergences gives rise to a 1/e? divergent term. One
easily obtains a single contribution corresponding to the bosonic integral shown in Fig.
3.15

1 Tr (T°T d"k d"q d"r d"s d"t 1
2 (FTa) / (27)5n r2(r + q)2s%(s + q)?t2(t + r)2(t + s)%(q + k)2k*
(3.2.69)
The IR divergence is treated as before via R* subtraction [41] so that, inserting all the
factors, the final result is given by (see Appendix C)
1 6.1

—— —B = Tr [ d*z d*0 WW, 2.
@ 50 ¢ r/ x Wew, (3.2.70)

with B defined in (3.2.61).

In the class of II-type diagrams we have to analyze the vacuum diagram in Fig. 3.16. We
operate directly with the covariant spinor derivatives, pushing them through the propaga-
tors. Unlike in ordinary D-algebra, covariant spinor derivatives and space-time derivatives
contained in the propagators do not commute but it is easy to realize that they generate
field strength factors which are not interesting for our calculation. Thus we can commute
the V,’s through the (0-!. The relevant contributions arise when we produce terms like

_ 1 e _ 1 _
ViVAVE =0V — - 3 rer,v: VAVAVE =[O, V2 - — 3 rr,v?

VoVaV? =iV, V2 — T,V? VaVaV2 =iV, V2 — T,V? (3.2.71)

After all these preliminary observations, now one has to perform the covariant V-
algebra explicitly and isolate the diagrams that could produce 1/¢* ultraviolet divergences.
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D?| D? D?| D?

DZ\DZ D? D? DZ/‘ D?

D? D?

Figure 3.15: Five-loop supergraph and its associated relevant bosonic integral

It turns out that some cleverness must be used in order to reduce the number of the
resulting contributions. We show in Fig. 3.16 the successive manipulations that we used
to obtain the final answer. As indicated in the Figure the first integration by parts of the
V? factor produces three terms: we have denoted by

1oy 1 Ier
= 2 L - - = 2 = =0,—1 2.
/| = = 1 5 5 »=V,=0,—il, (3.2.72)

At this stage we have to work separately on the three graphs and complete the V-
algebra by disregarding contributions which do not contain 1/e* divergent terms. (An
example of diagram which is not interesting is the one shown in Fig. 3.17. It arises from
the second diagram in Fig. 3.16 and would produce only 1/e divergent terms.) In fact if we
judiciously move the V’s only very few relevant terms are generated, the ones schematically
shown in Fig. 3.18. Now it is straightforward to show that by integration by parts these
potentially relevant graphs do cancel out completely.

In conclusion, the only relevant contributions to the gauge beta function at order g'!
come from (3.2.68) and (3.2.70). Using the ordinary prescription to compute beta functions,
we find

O(g'h) : B, =0 & A+4B =0 (3.2.73)

Therefore a single condition on the A and B coefficients is sufficient to define the theory
at its conformal point up to the order ¢® and to insure that, despite of the non-finiteness
of the theory, the gauge beta function vanishes at the next order.

Now we want to come back to the fact that at order g8 we have found that the theory
subject to the condition (3.2.62) for its renormalized couplings is not finite. In order to
understand the implications of the lack of finiteness on the conformal condition, we need
to consider the counterterm which renormalize the propagator at this order. As it follows
from (3.2.60) this will be proportional to the divergence in the form

§° (A+B) (% +p) (3.2.74)
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Figure 3.16: Five-loop vacuum diagram and V-algebra operations

where p is an arbitrary constant linked to the choice of a finite renormalization. It is worth
noticing that the results obtained so far are completely independent of the subtraction
scheme we have adopted. In fact even for the calculation of 8, at O(g'') the arbitrary
parameter p does not enter in the evaluation of the coefficient of the 1/€? poles from which
we read 3,. The issue that now we want to address is what happens to the next order.

If we were to push the conformal invariance condition one order higher we should
compute the chiral beta function at order ¢'°. We have several sources of nontrivial contri-
butions to 7 at this order: one coming from the one-loop bubble proportional to (a5 + b5),
one from two-loop diagrams and one from five-loop diagrams. In addition we need take
into account the contribution from the counterterm in (3.2.74) which gives

4 (A+ B) (% +9) % (]‘;—z) (3.2.75)

This last contribution is necessary to appropriately subtract diagrams that contain subdi-
vergences at two and five loops, i.e. the ones that contain 1/e? poles considered in Subsec-
tion 3.2.1. The condition for vanishing -, obtained as usual from the finite log terms, gives
an algebraic equation involving A, B and (as + bs) which, together with (3.2.62) allows
to determine A and B parametrically and not necessarily vanishing. However the result
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N,

Figure 3.17: Example of diagram not contributing to the % divergence
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Figure 3.18: Relevant bosonic integrals associated to the five-loop graph

depends unavoidably on the arbitrary constant p which appears in the form
(A+B)p (3.2.76)

If we wanted to kill the scheme dependence of the result we would need to impose A+B = 0
which together with (3.2.62) would lead immediately to A = B = 0, i.e. the theory is finite
and Img3 = 0.

The comparison of these results with the ones of the previous Subsection leads to
the conclusion that the requirement of conformal invariance via the vanishing of the beta
functions is less restrictive than requiring finiteness but the result is scheme dependent.

Pushing the calculations higher we expect to draw the same conclusion: conformal
invariance via vanishing beta functions allows for Im3 # 0 but this value and ultimately
the conformal theory depend on the choice of the particular renormalization scheme we use.

Differential renormalization approach

In order to show that our findings do not depend on the particular regularization used,
we reconsider the calculation of the chiral propagator up to the order ¢® in the scheme of
differential renormalization.

Differential renormalization works strictly in four dimensions. In its original formulation
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[42] it is a renormalization without regularization, i.e. it allows for a direct computation of
renormalized quantities without the intermediate step of regularizing divergent integrals.
In coordinate space the procedure consists in replacing locally singular functions (functions
which do not admit a Fourier transform) with suitable distributions defined by differen-
tial operators acting on regular functions, where the derivatives have to be understood in
distributional sense. The simplest example is the function 1/(x?)? from the one-loop con-
tribution to I'®. This function has a non-integrable singularity in # = 0. The prescription
required by differential renormalization in order to subtract such a singularity is

e We substitute | low 1222
1 _log M*x

where M is identified with the mass scale of the theory.

e We understand derivatives in the distributional sense, i.e.

/d%f(x)D

for any regular function f.

log M?2x?
22

log M?2x?
22

E/d4me(x) (3.2.78)

The two expressions in (3.2.77) are identical as long as x # 0, whereas they differ by
a singular term for x — 0. The substitution (3.2.77) can then be understood as adding a
suitable counterterm [43]-[45]:

— = SO0 4 (@)dW(x) (3.2.79)

where ¢(«) can be computed in some regularization scheme and becomes singular when
the regularization parameter « is removed.

Having in mind to study conformal invariance and/or finiteness for the deformed theory
we need compute both the renormalized chiral propagator and its divergent contributions.
As long as we are interested in Fg) we apply the standard differential renormalization
prescription (3.2.77) order by order in g%, whereas in order to identify the divergent coun-
terterms which in (3.2.77) are automatically subtracted we need introduce a regularization
prescription. We compute divergences using the analytic regularization [46].

As noticed above we are interested in computing the difference (Fffe)formed — Fﬁ): 4). Thus
at one-loop in coordinate space the contribution from the self-energy diagram is
PO = L (h 4 hef? - 207 (3.2.80)
4 (472)2
1 1

= — @40 =2)¢" + (0 + b2)g" + (a5 +b3)9° + (a1 + ba)g” + - -] e
We renormalize this amplitude by the prescription (3.2.77). At order g*> we find the con-
dition (3.2.20) which guarantees finiteness and vanishing of the beta functions.
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As already discussed, once the condition (3.2.20) is satisfied we can neglect all higher
loop diagrams which contain bubbles. In particular, at two and three loops we do not find
relevant diagrams. Therefore, at orders g* and ¢® only the one-loop expression (3.2.80)
contributes and the conditions (3.2.59) are sufficient to cancel the renormalized and the
divergent parts of 1/x%.

At order ¢® the pattern changes since besides the contribution from (3.2.80) we have
the new diagram in Fig. 3.3. After D-algebra, in configuration space it corresponds to

1 1 / diy d*z diw
(4m?)® a2 ] y?22(y — 2)*(y — w)*(z — w)*(z — y)*(z — w)?
This expression has a singularity for x ~ y ~ z ~ w ~ 0. To compute its finite part, away

from x = 0 it is convenient to rescale the integration variables as y — |z|y, z — |z|z and
w — |z|w. We are then left with

1
(o — b)) (3.2.81)

1
——(al - 51)498

4, g4, g4
: 1 1/ d*y d*z d*w (3.2.82)

(@n2)" ot | 4222y — 2)°(y — w)*(z — w)*(1 — y)*(1 — w)?
The integral is finite and uniformly convergent for x — 0. It has been computed e.g. in

[47] and it gives 207°C(5). At order g8, summing this contribution to the one-loop result
and renormalizing 1/z* as in (3.2.77) we obtain

O

472 2

(3.2.83)

1 _log M2
r§§>|g8:(A+4B)( °8 x)

where A and B are given in (3.2.61).

Therefore, the condition of vanishing v from Fg) requires A + 4B = 0. This is exactly
the condition we have found working in dimensional regularization and momentum space.
This is consistent with the fact that the Fourier transform of Dng# is 4% log p?/ M?.

Now we concentrate on the evaluation of the divergent contributions from the one-
loop self-energy diagram and from the four-loop diagram in Fig. 3.3. Using analytic
regularization in four dimensions, at one loop and order ¢ we have (for simplicity we

neglect (27) factors)

1

AW (3.2.84)

whereas at four loops we need to evaluate the integral

—%(&1 —b)*g® @2)% X (3.2.85)
/ d*y d*z d*w
(y2)1+/\(22)1+>\[<y _ 2)2]1+’\[(y _ w)?]l—i-)\[(Z _ w)Q]H)‘[(x _ y)Q]H_)‘[(I _ w)Q]H—)\

Dimensional analysis allows to compute this integral and obtain (20{(5) + O(A))W
This gives the final answer 4B/(z%)*"® for the diagram in Fig. 3.3.
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Now using the general identity

1 1

and summing the one and four-loop results we find that the divergent contribution is

1 1 1
A(x2)2+2>\ +4B (22)287 — (A+B) BY 8 )(IB) (3.2.87)

Therefore the cancellation of divergences at order ¢® requires A + B = 0. If we were to
compute the divergences arising at order ¢'° we would find results in total agreement with
the results found using dimensional regularization. Going higher in loops we would meet
the same pattern an infinite number of times and we would be led to the final result for
the coefficients as in (3.2.58).

Collecting the results of this Section, the general situation can be then summarized
as follows. If we impose the cancellation of UV divergences at a given order we obtain
conditions on the coefficients in the expansion (3.2.13) which do not set automatically to
zero the contribution to the chiral beta function at the same order. In particular, in the
planar limit the first nontrivial order where this happens is ¢®. However, if we move one
order higher and still require the cancellation of divergences we obtain more restrictive
conditions on the coefficients and as a by—product all the beta functions at that order
vanish. This pattern repeats itself at any order in perturbation theory and leads to the
following result: The finiteness condition selects a unique expansion (3.2.13) for h;(g) which
corresponds to sinh (2rIm/3) ~ (h? — h2) = 0, i.e. to a real deformation parameter (3.

On the other hand, if we implement superconformal invariance by requiring directly
vanishing beta functions regardless of finiteness we obtain less restrictive conditions on
the coefficients in (3.2.13) and more general solutions h;(g) to the renormalization group
equation F'(g, h;) = 0 which defines the surface of fixed points. These solutions correspond
in general to theories which are not finite and allow for a complex deformation parameter.

However, while finiteness is a well-defined, scheme independent and then physically
meaningful statement, the conditions £, 3, = 0 turn out to be scheme dependent, and
thus the physical meaning and the predictive power of a quantum theory defined by these
conditions is not clear.

In the presence of coupling constant reduction we are not guaranteed that finiteness
theorems [35, 36] for the gauge beta function are true in their standard version. However,
pushing the perturbative calculation up to five loops, we have found that given the vanish-
ing of the chiral beta function at order ¢°, then the gauge beta function is automatically
zero at order g''. Our result suggests that the finiteness theorems might be generalized
as follows: If the matter chiral beta function vanishes up to the order (¢g”) then the gauge
beta function vanishes as well up to the order (g"2).
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3.3 Finite N fg—deformation

In this Section we consider the SU(N) 3-deformed N = 4 super Yang-Mills theory working
perturbatively with a complex deformation parameter 3 at finite N [12]. As in the previous
Section we address the issue of finding a surface of renormalization fixed points by requiring
the theory to have vanishing beta functions and using the coupling constant reduction
(CCR) procedure.

First, we concentrate on the chiral beta function 3, up to O(g7). If we want to work
with a well-defined and a physically meaningful quantum field theory, the condition 3, = 0
should not be affected by scheme dependence. Scheme independence of the conformal def-
inition of the theory introduces a further constraint on the couplings. Here comes the
novelty with respect to the planar case studied in Section 3.2. The planar limit involves
only two of the three independent superpotential constants in (3.2.2) and scheme inde-
pendence of the theory forces 5 to be real. On the other hand, keeping N finite, all of
the three parameters |h;|?, |hs|?, |h3]? enter the superconformal condition allowing for a
complex deformed theory which is scheme-independent at least at O(g'°). We expect this
pattern should hold even for higher orders.

Then we consider the gauge beta function ;. In Section 3.2.2 a generalization of the
standard finiteness theorems has been proposed: if 8, = 0 up to O(¢*"*') then 5, = 0
up to O(g?"™3). This statement has been checked in the planar limit for n = 4 using an
alternative procedure for covariant V—algebra. Here we provide another highly non-trivial
confirmation of this proposal in the non—planar theory for n = 3. Moreover, we explicitly
check that the simplified V—algebra technique used in Section 3.2.2 is equivalent to the
standard one.

3.3.1 Chiral beta function and conformal condition

Let us write down one more time the N =1 —deformed action:

S = /d8z Tr (e79" ®e9" @) + 502 /dﬁz Tr(WW,,)
g

1
+ih/d6z Tr( g 1Pyd3 — — &, P3P, )
q

_ 1 — — — )
+Zh/d62 TI'( - (qu)gq)g — q q)lq)3q>2 ) q = 6”1—/6 (331)
q
Here h and (8 are complex couplings and ¢ is the real gauge coupling constant. Although
we work at finite N, we will be considering once again 't Hooft rescaled quantities
h g

ho— = 7 e (3.3.2)

in order to easily make contact with the planar limit. For what we said in Section 3.2.1, the
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number of real independent couplings in the superpotential is three. For later convenience
we choose them to be |h{|?, |ho|? and |h3|?, where

h

hi=hgq ho hs =hq— 4 (3.3.3)

| =

In complete analogy with the analysis of the previous Sections we apply the coupling
constant reduction program and express the renormalized Yukawa couplings in terms of
the gauge one:

|hi|? = a1g* + asgt 4+ asg® + . ..
|ho|? = big® + bag* + bsg® + ... (3.3.4)
|hs|? = 19 + cog® + c3g® + ...

To single out a conformal theory we will ask for the chiral and gauge beta functions to
vanish. Let us start analyzing (), computing as usual the two—point chiral correlator.

In Section 3.2 this issue has been analyzed by considering the planar limit where only
two independent real constants enter the color factors, namely |h|* and |hg|?. As a result
the definition of the conformal theory was found to be scheme dependent as long as [
was complex. In the non—planar case all of the three parameters enter the calculation of
the two—point chiral correlator. We will see that this difference will be important in the
definition of the fixed point surface [12].

Let us start at order ¢2, considering the difference between divergent diagrams in the
(3—deformed and in the N' = 4 theory. This amounts to the evaluation of the chiral bubbles
in Fig. 3.19 which give the following divergent contribution to the chiral propagator

1 2 INVATAN
Pl + hol® — = |hs|* —2¢°| = |5 3.3.5
R e I (33.5)
where we have explicitly indicated the factors coming from dimensionally regulated integral
(here p is the external momentum and p is the standard renormalization mass).
At this stage, in order to obtain a vanishing chiral beta function, the following condition
has to be imposed

2
O(gQ) : a; + bl - mCl =2 (336)

Moreover, by now it should be clear that

2
[a? + hal* = <5 ks = 297 (3.3.7)
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Figure 3.19: One loop diagrams

ensures 7 = 0 up to two loops. So, looking at the chiral two—point contribution (3.3.5) at
order g%, we have the following additional requirement

O(g") : ag+by — ~—=co =0 (3.3.8)

It is easy to see that equations (3.3.6) and (3.3.8) reduce to the (3.2.59) in the large N limit.
When we move up to the next order the situation becomes more involved with respect to
the planar case. In fact, working with finite N we need to consider the non—planar graph
in Fig. 3.20, whose contribution is (see Appendix C):

(471r)6 2(3) J—“% (’;—2) (3.3.9)

where F = F (|hi|?, |ha|?, |h3|?, N?) reads [28, 9]

N4 N%+5
F= -

2
e

(1hsl*)* = 3lhsl*(|ha|* + [ha|*) + 3(|ha]* — [h2]*)*|  (3.3.10)

Notice that the color factor in (3.3.10) is suppressed as 1/N? for large N. Due to the
expansion in (3.3.4) both the one loop (3.3.5) and three loops (3.3.9) structures contribute
to the evaluation of v at O(g%). The final result can be recast as

IORIO)

where we have defined for simplicity

1
€

A=

as + b3 — —5C3 (3312)

(47)? ( N2 )
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Figure 3.20: Three loop non—planar diagram

2¢(3) N2 —4 N?+5
— C
(4r)6 N2 ' | N?

B= ¢ —3ci(ay +b1) + 3(ay — by)? (3.3.13)

The vanishing condition of the anomalous dimension at order g° can be read directly from
the finite log term in (3.3.11):

3B
O(g°) : At 55 =0 (3.3.14)

We emphasize that at this order the condition for the vanishing of v and 3}, is completely
scheme independent. However, from now on we will have to care about the scheme de-
pendence in the definition of the fixed points. To see this, let us consider the counterterm
needed at this stage to properly renormalize the propagator in an arbitrary scheme:

¢ (At 1) (2 +0) (3.3.15)

where p is a constant related to the choice of finite renormalization. In fact, if we were
to push the conformal invariance condition one order higher we should compute the chiral
beta function at order ¢°. We expect to have several sources of nontrivial contributions to
~ at this order: one coming from the one-loop bubble proportional to (as + by — %04),
then from two-loop, three-loop and four—loop diagrams. All of the diagrams containing
subdivergences, namely the two and four loop contributions, will be subtracted making use
of the appropriate counterterms. To be specific, a term like

g® (A+ %) (% + p) % (Z_j) (3.3.16)

will appear in the calculation of 7. Therefore the requirement of vanishing anomalous
dimension depends unavoidably on the arbitrary constant p which appears in the form

B

(A+55) (3.3.17)
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If we wanted to kill the scheme dependence of the result we would also need to impose
the vanishing of the combination A + B/N? which together with (3.3.14) would lead im-
mediately to A = B = 0. The crucial observation is that in the non—planar case we deal
with three parameters and at this stage we have enough freedom to eliminate the scheme
dependence from the conformal condition without reducing to the real 3 case. In fact, the
constraint A = 0 gives

2
as + bg - ng =0 (3318)

while the condition B = 0 combined with equation (3.3.6) yields

{ ot b=2 (3.3.19)

or,if ¢; #0

a1+b1 = 2(1—}-%)
(3.3.20)

a—b = 420 (1- 2t e)

These solutions allow for a non vanishing imaginary part of 3 (which is proportional to the
combination |hy|* — |hg]?). At the same time, they define the surface of renormalization
fixed points without any ambiguity related to the choice of regularization scheme. It is
clear that in the planar limit only the condition coming from A = 0 survives as the B =0
condition is subleading. So we are left with as 4+ b3 = 0, in complete agreement with the
result found in (3.2.59).

If we move to the next order, a new scenario will show up. Having imposed (3.3.19)
or (3.3.20) only three graphs will contribute to the anomalous dimension at order ¢® (Fig.
3.21).

(i
N

Figure 3.21: Diagrams contributing to v at order ¢®
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Since these diagrams are primitively divergent (no subdivergences are present) the condi-
tion for v = 0 at this order turns out to be completely scheme independent. In fact we
have to consider the following expression:

2\ € / 2\ 3e€ 9\ 4e
ey B (p Iz
() +wm(5) - () ] .

1
€

where we have denoted

Al = (471T>2 (a4 + by — % 04) (3.3.22)

6C(3) N? 4 . NP .
(47)6 N2 [(Ch —b1)%ex + 01( Nz G +4 (a1 — b1)(az — m) — 402>] (3.3.23)

2
= _j(if))s {(al =)'+ (a1 + b))t + % (al,bl,cl, %) - —16<NN;“ 12)] (3.3.24)

where f can be read from Appendix D and we have used the relations (3.3.6) and (3.3.8).
The vanishing of v reads

3B’

O(g®) : A+ Nz

+4H =0 (3.3.25)

Again, in order to remove scheme dependence from the O(g'®) conformal condition we
have to impose:

/!

B
At 5+ H=0 (3.3.26)

At this stage, independently of the choice (3.3.19) or (3.3.20), we have enough parameters
to solve both equations without restricting to the real 3 case as in the planar theory. On
the other hand, if one sends N — oo, equations (3.3.25) and (3.3.26) reduce to the ones
found in Section 3.2. This large N limit turns out to be smooth and does not present any
sort of singularity, so there is no contradiction between our results and those found in [11].
We observe that a scheme—independent definition of the complex 3 conformal theory can
be achieved only thanks to subleading coefficients which are projected out by the planar
limit.

3.3.2 Gauge beta function and finiteness theorems

Now we turn to consider the gauge beta function. Standard finiteness theorems [35, 36]
ensure the vanishing of 3, at L4+1-loops once (3, has been set to zero at L-loops. Here, as
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N

Figure 3.22: Two and four loop vacuum diagrams

a consequence of coupling constant reduction, we are forced to work order by order in ¢?
instead of loop by loop and it is not obvious that such theorems still hold. Nevertheless in
Section 3.2.2 it was shown that in the planar f—deformed theory the vanishing condition
for 3, at O(g”) was sufficient to have vanishing 3, at O(g'"). This result was a strong
indication that finiteness theorems could be generalized as follows: if the matter chiral beta
function vanishes up to order ¢®>"*! then the gauge beta function vanishes as well up to
order g?"*3. Here we are going to check this result at finite N and for n = 3. In order to do
this, we take advantage of covariant supergraph techniques combined with background field
method [59]. The standard procedure consists in looking at vacuum diagrams at a given
perturbative order and performing covariant V—algebra. Then by expanding propagators
one extracts tadpole type contributions with vector connections as external legs. Moreover
one only selects diagrams containing at least a 1/€* pole (see [36] for details). In the
present case, contributions to the gauge beta function at O(g?) come from two and four
loop vacuum diagrams (Fig. 3.22).

The analysis of the two loop diagram is straightforward and completely analogous to the
one in [36]. Expanding the covariant propagators one obtains three times the diagram in
Fig. 3.23 which corresponds to the term

Lo [k 1
5 T (I°T.) / e R (3.3.27)

where I', is the vector connection.

Figure 3.23: Two loops tadpole diagram
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This integral contains a one-loop ultraviolet subdivergence and it is infrared divergent.
It is convenient to remove the IR divergence using the R* subtraction procedure of [41].
After UV and IR subtractions one isolates the 1/e? term and rewrites the result in a
covariant form (see Appendix C), obtaining the following contribution to the two loop
effective action:

1 3(N?-1)
(4m)? 4N

1
A—Tr/d4x 20 Ww, (3.3.28)
€

where we have inserted the A factor defined in (3.3.12).

(@) (b) (0

Figure 3.24: V-algebra operations on four-loop vacuum diagram

Now we turn to consider the four loop contributions. In this case the computation is
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much more involved because we need to perform very non trivial V-algebra operations. In
Section 3.2.2 an analogous problem was solved by using an alternative procedure, though
different from the one just described which turned out to be too hard to deal with. Here
we want to consider both methods and show that they indeed give the same result. Let
us start with the standard procedure. A detailed explanation of V—algebra operations can
be found in Fig. 3.24. Starting from the top vacuum diagram and performing integration
by parts we end up with three different graphs. Each of them gives rise to a single bosonic
diagram: Fig. 3.24 (a), (b), (c), where we have denoted

1ygaey 1 T°l,
— 2 a _ = =
// = N — 1 5 =

O

0“0, > =V, =0,—il, (3.3.29)

N | —

Now we are ready to expand the covariant propagators to extract tadpole—type contribu-
tions. It is easy to see that Fig. 3.24(a) and (b) diagrams are equivalent and give rise to
the tadpole graphs shown in Fig. 3.25.

Fig. 3.24(a) = Fig. 3.24(b) = @ R

Figure 3.25: Tadpole contributions from propagator expansions of diagrams in Fig. 3.24(a)
and (b)

Analogously the Fig. 3.24(c) diagram can be expanded to give the relevant tadpole con-
tributions as indicated in Fig. 3.26. The latter integrals are much harder to compute
because of the presence of four derivatives, indicated by the black arrows. However, after
some appropriate integrations by parts, they can be reduced to simpler scalar integrals, as
depicted in Fig. 3.27. Notice that in the whole procedure we have neglected all tadpole
graphs with 1/e divergences, which do not contribute to the four-loop effective action.
Now we just need to sum up the various contributions generated by Fig. 3.24(a), (b) and
(c) diagrams. Actually there is no need to compute all these integrals explicitly thanks to
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Fig. 3.24(c) = e

—»24f5+2 +

<

Figure 3.26: Tadpole contributions from relevant propagator expansions of diagram (c)

a beautiful diagrammatic cancellation. In fact, the only surviving terms sum up to give
nine times the same diagram, shown in Fig. 3.28. The corresponding bosonic integral is:

5 Tr([T) / @ B @E(r—qP r+ 0P L+ ) (r+ FP

(3.3.30)

So the total four-loop contribution to the effective action, after inserting color and com-
binatorial factors and subtracting IR and UV subdivergences is given by (see Appendix

C):

1 9(N2—1)
(4m)?2 8 N3

1
B—Tr/d4xd26 Wew, (3.3.31)
€

with B defined as in (3.3.13). This completes the computation of the four loops contribu-
tion with the standard method.

Had we followed the alternative procedure developed in Section 3.2.2 we would have first
expanded each of the nine propagators of the four-loop vacuum diagram in Fig. 3.13 and
then performed V—-algebra. In this case, the only possible contributions would come from
two types of diagrams:

I. the ones with flat D? and D? factors at the vertices, flat propagators and one tadpole
insertion, for which now standard D-algebra can be performed

and
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SRR
C S
SRS

= -2

Figure 3.27: Scalar reduction of integrals with derivatives

II. the vacuum diagrams with flat propagators but V2 and V? at the chiral vertices in
which the tadpole insertion will have to appear after completion of the V—-algebra.
Analogously to Section 3.2.2, it is easy to see that only type I diagrams contribute. The
computation is now straightforward. As the vacuum diagram is completely symmetric we
have nine equivalent choices for the propagator to expand. Once a choice has been made
the standard D—algebra gives rise to a unique contribution, producing precisely the result
depicted in Fig. 3.28. We have therefore checked that as expected the two methods actu-
ally give the same answer.

Now we come back to the computation of the gauge beta function and combine (3.3.28)
and (3.3.31). We can easily read the vanishing condition at order ¢°:

3B
A+ S5 =0 (3.3.32)
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which is exactly the one obtained by requiring the vanishing of 3, at order ¢”. Thus we
provide one more confirmation that finiteness theorems for the gauge beta functions hold
even in the CCR context.

Fig. 3.24(a) + (b) + (c) = 9

Figure 3.28: Four loops total contribution to the gauge beta function
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Chapter 4

Chiral Ring and Protected Operators

A considerable effort has been devoted to provide tests of the AdS/CFT correspondence in
its marginal deformed version. As for the AdSs x S° original correspondence, perturbative
properties of the field theory have been investigated. One of the most effective perturbative
test consists in verifying non-renormalization properties of composite operators in the
chiral ring; alternatively one can check anomalous dimension expressions perturbatively
for those sectors where an exact result can be given and then it is possible to get contact
with the gravity side.

In this Chapter we would like to review some of these aspects, starting from an example
of computation of the anomalous dimension v for spin—2 operators ! of the form Tr(®{®,)
[8]. For this class of operators, an exact expression for 7 can be given. This expression
will be checked to be valid up to two loops to provide an example of how this kind of
calculations are performed in our notations.

Then we turn to analyze the chiral ring of the marginally deformed theories in a more
systematic way [9]. We will work at finite N and then take into account mixing among
sectors with different trace structures. Exploiting the definition of quantum chiral ring
we reduce the determination of protected operators up to order n in perturbation theory
to the evaluation of the effective superpotential up to order (n — 1). Precisely, from the
knowledge of the effective superpotential we determine perturbatively all the quantum
descendant operators of naive scale dimension Ag, and find the CPQO’s as the operators
which are orthogonal order by order to the descendants.

For the f—deformed theory we investigate the spin—2 sector and applying our procedure
to simple cases (Ag = 4,5) we determine the protected operators up to three loops. In the
sectors we have studied we can always define descendant operators which do not receive
quantum corrections. This seems to be a general property of the spin—2 operators: Despite
the nontrivial appearance of finite perturbative corrections to the effective action, the
quantum descendant operators defined in terms of the effective superpotential coincide
with their expressions given in terms of the classical superpotential (up to possible mixing
among them).

'We use the notation of [78] and call “spin-n” the sector containing operators made by products of n
different flavors.

63
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We then investigate the spin—3 sector where, due to the appearance of Konishi-like
anomalies, we need restrict our analysis at two loops in order to avoid dealing with mixed
gauge/scalar operators. Up to this order the descendant operators we consider are the
classical ones. However, in this sector we expect higher order corrections to the descendants
to appear together with a nontrivial dependence on the anomaly term. Therefore, the non—
renormalization properties of the descendant operators that we find for the spin—2 sector
are not a general feature of the theory.

We generalize our procedure to the study of protected operators for the N’ = 1 super-
conformal theory associated to the full Leigh-Strassler deformation (2.3.4). Even if the
gravity dual of this theory is not known yet, it is anyway interesting to figure out the
general structure of its chiral ring. Still at finite N, we study explicitly the weight-2 and
weight—3 sectors up to two loops and perform a preliminary analysis of the general sectors
at least at lowest order in the couplings. An interesting result we find is that, because of
the discrete Z3 symmetries of the theory, the sectors corresponding to conformal weights
which are multiple of 3 have a different operator structure from the other ones.

4.1 A first simple example

To introduce our procedure we begin with a simple example of perturbative computation
of 7 for a class of operators whose anomalous dimension is known exactly [8]. We consider
the case of planar real f—deformed theory at his superconformal point |h|*> = g?. Then we
choose to analyze the class of non-protected operators 2

Oy = Tr(®]d,) (4.1.1)

These operators are charged under the U(1); x U(1)s global symmetry group with charges
(1,1-=1J).
Using the equations of motion from the action (2.3.9) (from now on we neglect factors

of e*9V since they are not relevant to our purposes)
P . 1
D?*®, = —ih®}®5 [g(abc) — a(acb)] (4.1.2)
it is easy to see that
' _ — 1
O, = ﬁDzTr(q){_lq{g) + 7 Tr(@] ) Tr(@,,) (4.1.3)
q —_ =

q

Aslong as J > 1, in the large N limit the operator O; becomes descendant of the primary
Tr(®{~'®3), whereas for finite N the combination Oy — +Tr(®{~")Tr(®;P,) is descendant.
The exceptional case J = 1 corresponds to the chiral primary operator whose protection
has been proven perturbatively in [26, 27].

2The choice of ®; and @, superfields is totally arbitrary and we expect the operators Tr(®;®y), for
any ¢, k with ¢ # k to have similar quantum properties. We will comment on this point later on.
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4.1.1 Perturbative evaluation of the anomalous dimensions

We compute the anomalous dimension of O, in (4.1.1) perturbatively, up to two loops.
For generic values of J we perform the calculation in the large /N limit in order to avoid
dealing with mixing with multitrace operators.

In order to compute anomalous dimensions we evaluate one—point correlators (O jeSint)
where S;,; is the sum of the interaction terms. Divergent contributions proportional to
the operator itself are removed by a multiplicative renormalization which in dimensional
regularization reads

- N
o¢d =0, (1 +y a2 4, N) )) =20, (4.1.4)

where we have introduced the 't Hooft coupling A = ig . We have not indicated the
explicit dependence on the h coupling since we are at the superconformal point |h|? = g%

The anomalous dimension is then given by

dal(Av q, N)
d\

Therefore, at any order it is easily read from the simple pole divergence.

At the lowest order the only contribution to the one—point function for the operator
O, is the one given in Fig. 4.1 where, using the notation introduced in [48], the horizontal
bold line indicates the spacetime point where the operator is inserted.

v =2\ (4.1.5)

Figure 4.1: One-loop contribution to the O; anomalous dimension
The corresponding contribution is proportional to the self-energy integral

1 1 1
L= | d% ~ - 4.1.
= | P~ o

Evaluating the color factor, the combinatorics and taking into account a minus sign from
D-algebra we obtain

, 1 1,|h]*N
Diagram 1 — — - lq — a| n)? (4.1.7)
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Using the one-loop superconformal condition in the planar limit (g2 = |h|?) and the defi-
nition (4.1.5) we immediately find the one-loop anomalous dimension

1 12
<1)__‘ __’ A 4.1.8
Y 2115 (4.1.8)

At two loops (order A\?) the diagrammatic contributions are drawn in Fig. 4.2.

(@) ()

©) (d)

Figure 4.2: Two-loop contributions to the O; anomalous dimension

Performing the D—algebra we reduce all the diagrams to ordinary Feynman diagrams con-
taining the loop structure as in Fig. 4.3.

p1+p2-k2 ki

P1-ki-kz

pP1+p:2 K> P1

Figure 4.3: The two-loop bosonic integral
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The associated momentum integral is

1
k3 (p1 — ky — k2)2k3(p1 + p2 — k2)?

As long as we are only concerned with UV divergences we can safely set one of the external
momenta to zero. Thus the graph is easily evaluated being proportional to two nested
self-energies. We obtain (in the G-scheme [60])
1 1 1
Iy~ —— — (14 5€¢)—— 4.1.10
2™ Tyt 230 2 G 10
where we have kept only divergent terms. Performing the subtraction of the subdivergence
we finally have

[L2] g, ~ @ {—2%2 + 2%} (4.1.11)

Computing the combinatorics, the color factors and taking into account minus signs from
the vector propagator we find that the factors in front of (4.1.11) for the various diagrams
are

, 1.1
Fig.42(a) — —2(q— 5)(‘] - 5)92‘h|2N2
| 1.1
Fig.4.2(b) — 2(q — 5)@ - 5)92|h|2N2
| 11
Fig.42(c) — 2(q — 5)(61 - 5)92%‘2]\72
. L, 1. (q q 4772
Fig.42(d) — —(q¢—-)(g— = (—+—> h|*N 4.1.12
(d) ( q)( q) 7t q Ig ( )

Summing all the contributions, using the planar superconformal condition |h|*> = ¢* and

the definition (4.1.5), we find
4

1 1
@ — A2 (4.1.13)

7= 3 q q
We observe that the diagrams contributing to the anomalous dimensions for our operators
are exactly the same as the ones for BMN operators in N' = 4 SYM in the planar limit
[49, 48]. In fact, up to this order the calculation is exactly the same under the formal
identification |[g—2|* < —(e"*+e7*—2), where ¢ is the phase of BMN operators [49, 48, 50].
We expect that the same pattern will persist at any order in perturbation theory. In
particular, as in the BMN case, the graphs relevant for the calculation are only the ones
where the interactions are close to the “impurity” ®,: at L-loop order the interactions
may involve at most the ®; lines which are L-steps far away from the impurity. As an
important consequence, in the large J limit the anomalous dimensions do not grow with

J.

In conclusion we note that the result we have found for the anomalous dimensions of
the operators Tr(®{®,) at large N is actually valid for any operator of the form Tr(®; ®;)



68 CHAPTER 4. CHIRAL RING AND PROTECTED OPERATORS

with ¢ # k. In fact the superpotential is invariant under cyclic permutation of (®y, ®o, @3),
and in addition it becomes invariant if non—cyclic exchanges of fields are accompanied by

1
q— —= (4.1.14)

q
Since the anomalous dimensions are proportional to powers of the effective coupling a =

2
Ag — % which is invariant under (4.1.14) we conclude that the result is valid for any
operator of the form Tr(®/®;), i # k.

4.1.2 The exact anomalous dimensions

Motivated by the formal correspondence of the previous calculation with the BMN case,
we are going to compute the exact anomalous dimensions in the large N, large J limit by
using the procedure introduced in [50] for BMN operators. In the context of f—deformed
theories this procedure has first been applied to the more general BMN operator class [71].
The result we present here can be considered as a particular case of the one found in [71].

We concentrate on the operator O, which, as follows from eq. (4.1.3), in the planar
limit satisfies

_ 1
DUy = —ihlqg — E]OJ+1 (4.1.15)

where we have defined B
U; = Tr(O] D) (4.1.16)

As already noticed, this shows that the O, operators are descendants of the U/ ones.
Being part of the same superconformal multiplet they share the renormalization properties,
i.e. they will have the same scaling dimension and the same perturbative corrections to
their overall normalization. Moreover since U; is not a Konishi-like operator it is not
affected by the Konishi anomaly.

As discussed in details in [50], in any N = 1 superconformal field theory the two—point
function for a primary operator A, is fixed and given by (2 = (z,6,0))

_ _ 1 _ _ .
< A(S’g)(z)A(&g) (Z,) >= fA(927 N7 h’7 h’) {§DQD2D0¢ + A [Da’ Da]iaad

(Ao + )

(Bo+7) +w? = 2(Bo+7) | 80—
4(Ao+7)(Ao+7—1) |z — 2/ |2(Bo+Y)

(4.1.17)

where Ay = s+ 5 is the tree-level dimension of the operator, w = s — § is its R—symmetry
charge ? and v is the exact anomalous dimension.

The relation (4.1.17) can be straightforwardly applied to our primary operators Uj.
The analysis of the two-point correlator for the O;’s is somewhat subtler since, as we see

3We assume w not to renormalize. In fact, once the R-symmetry of the elementary fields is fixed by
requiring the exact R—symmetry of the superpotential, any composite operator has a fixed charge given
by the sum of the charges of its elementary constituents.
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from eq. (4.1.15), these chiral operators are not primaries and in principle the relation
(4.1.17) cannot be applied to their correlators. However, as we are going to show, in the
large J limit these operators turn out to behave as CPO’s and (4.1.17) can be safely used.

To this end we remind that in general given a chiral operator A, the condition for
the operator to be non—protected (anomalous dimension acquired) is equivalent to the
condition that its chiral nature is not maintained under superconformal transformations,
ie. D(0gA) ~ {S,D}A # 0 (see for instance [51]). In fact, writing schematically the
superconformal algebra relation for a scalar operator as {S, D} = A — w, we have

(S, D}A = (A—w)A=[(DAg+7) —w] A=A (4.1.18)

where we have used A = Ay +~ and for a chiral operator w = A,. Therefore if v # 0, SA
is not chiral anymore. Viceversa, if {S, D}A = 0, then SA is still chiral and the dimension
is protected by the well-known condition A = w.

An alternative proof goes through the simple observation that the conditions

s+5=Ag+7 s—5=2»_7g (4.1.19)
imply
3=A0+% g:% (4.1.20)

The appearance of 5 # 0 signals the lack of chirality of the quantum operator.

We now apply the previous argument to our operators O; to prove that in the large
N, large J limit the violation of chirality is suppressed and they behave as CPO’s. In the
limit of large R—symmetry w = J it is more natural to consider

1 .- A
5{8.D}0, = ( Oj T 1) 0, = %OJ (4.1.21)

As discussed in the previous Section, at any fixed order in perturbation theory the anoma-
lous dimension 7 does not grow with J. It follows that in the large J limit the r.h.s. of eq.
(4.1.21) is suppressed and the operator behaves as a chiral primary. In particular, in this
limit it is consistent to apply eq. (4.1.17) for the evaluation of its two—point function.
Supported by these considerations we can now proceed exactly as in [50] and find

< D*U;(2)D*U; () >=

NI+ (1 J—1 _
— D {‘D”‘DZDQ + [D°, D]ies

(4m2)7+1 2 A(J+1+7)
(J+1+7)2+(J—1)2—2(.]+1+7)D D? 540 — 0"

4 +1+7)(J +7) @ — 2P
NJ+1 54(9_0/)

N 2 2 2
= (47T2)J+1f (v" +2y)D°D z — /202

(4.1.22)
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e N7+2 50— 0)
N2 12 —
(47T2)J+2 fD°D |:c — 3;/‘2(J+2+'y)

where f is the common normalization function not fixed by superconformal invariance.
From the relation (4.1.15) the two correlators are related by

< 07:1(2)0541(2) >= (4.1.23)

(DU, () DUy () =:|m2p——§f<ofﬂ<wéx+mzv> (4.1.24)

Therefore, inserting in (4.1.24) the explicit expressions (4.1.22) and (4.1.23) we end up
with an algebraic equation
Py = hPlg— o[ (4.1.25)
ql 4r? o
which allows to find the exact expression for the anomalous dimensions

vy o= —1+\/1+|h|2

1 112 N 1
—h2 __‘___hél
51hl%|a 2| 12 g0l

1’2N
¢ ql 4m?

114 N?
Q‘a\uﬁv

o (4.1.26)

Up to the second order this expression coincides with the perturbative results obtained in
the previous Section.

We note that our operators O; can be thought as dual to the 0-modes of the BMN
sector considered in [6, 71, 79, 78]. Formula (4.1.26) is in agreement with the results
presented in those papers for the spectrum of the 0—modes.

4.2 The chiral ring of the (#-deformed theory

After the simple example of the previous Section, we start a systematic analysis of protected
operators focusing on the chiral scalar sector of the theory [9]. Once again we first consider
the real f—deformed theory (2.3.9) but keeping N finite to provide a more general analysis.
We remind [52] that, for a generic N/ = 1 SYM theory, scalar operators in the chiral
ring can be constructed as products of scalar chiral superfields ®; and/or times (W*W,,),
where W, is the chiral field strength. In what follows we will focus only on the ®-sector,
neglecting operators with a dependence on W,,.

In [67, 68, 6] the single-trace sector of the chiral ring has been identified as given by
chiral operators of the form Tr(®7' ®32®2%) with weight Ag = J, +Jo+J5 and (Jy, Ja, J3) =
(J,0,0),(0,J,0),(0,0,J),(J,J,J). In [26, 27] it has been shown perturbatively that also
the assignments (Jy, Jo, J3) = (1,1,0),(1,0,1), (0,1, 1) give protected operators.

This classification identifies the CPO’s according to their dimension and their charges
with respect to the two U(1) global invariances of the theory. However, it does not give
any information on the precise form of the protected operator corresponding to a given set
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(J1, J2, J3), which turns out to be in general a linear combination of single-trace operators
with different order of the fields inside the trace. Moreover, if we work at finite N, mixing
with multi—trace operators is also allowed.

A first example has been studied in [26] for the weight—3 sector. There, it has been
shown that the correct expression for the protected operator corresponding to (Jq, Jo, J3) =
(1,1,1) is a linear combination

TI'((I)l(I)Q(I)g) + OéTI'((I)l(I)gq)g) (421)
where at one-loop
(N2 —2)g* +2
= 4.2.2
CT N 24 2p? (42.2)

showing an explicit dependence on the coupling 3.

We are interested in the generalization of this result to higher loops in order to investi-
gate whether and how the linear combination gets modified order by order. Moreover, we
extend this analysis to other sectors of the chiral ring in order to discuss mixing at finite
N.

In general, given a set of primary operators O; with the same dimension Ay and the
same global charges, we can read their anomalous dimensions perturbatively from the
matrix of the two—point correlation functions. Precisely, this matrix has the form

(O()0;(0)) = > (Ay — pilogi®a® + - ) (4.2.3)
where dots stay for higher powers in log u?z?. Here A is the mixing matrix, whereas p
signals the appearance of anomalous dimensions. Both matrices are given as power series
in the couplings.

In order to determine the anomalous dimensions we need to diagonalize the two ma-
trices by performing the linear transformation @' = LO which maps the operators into an
orthogonal basis of quasi—primaries. In a perturbative approach it is easy to see [53, 54]
that the diagonalization of the p matrix at order n fixes the correct orthogonalization (res-
olution of the mixing) at order (n — 1) uniquely, up to a residual rotation among operators
with the same anomalous dimension. This means that in general an order n calculation
is required to determine the anomalous dimensions at this order and the correct linear
combinations of operators O; at order (n — 1) which correspond to quasi—primaries with
well-defined anomalous dimensions up to order n.

In our case, since we are interested into chiral primary operators, the procedure to
determine perturbatively the correct linear combination which corresponds to a protected
operator is made simpler if we also use the definition of chiral ring.

In our conventions the chiral ring is the set of chiral operators which cannot be written,
by using the equations of motion, as D?X, being X any scalar operator.

In general, given a set of linearly independent chiral operators C;, © = 1,--- ,s char-
acterized by the same classical scale dimension Ay and the same charges under the two
U(1) flavor groups they will mix and we need solve the mixing in order to compute their
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anomalous dimensions. Since we are working with chiral operators, we know a priori that
once we have orthogonalized as C; = L;;C; in order to have well-defined quasi-primary
operators, some of them will turn out to be descendant, i.e. they can be written as D?X
for some proper operator X. The remaining operators will be necessarily primary chirals
with vanishing anomalous dimensions.

Exploiting this simple observation, in order to find the correct expression for the pro-
tected operators, we then proceed as follows: In a given (.J;, Jo, J3) sector, we first select
all the descendants, that is all the linear combinations

D; =Y dc (4.2.4)
J
which satisfy the condition
D, - DX, (12,5)
Let us suppose that there are 1 = 1,--- ,r < s independent linear combinations of this

type. Then, for a generic operator P = ;¢;C; we impose the orthogonality condition
(PD;) =0 i=1,---,r (4.2.6)

where D indicates the hermitian conjugate of D. These constraints provide r equations
for the s unknowns ¢;. In this way we select a (s — r)-dimensional subspace of operators
orthogonal to the descendant ones. We can choose an appropriate (orthogonal) basis in
this subset, obtaining (s — r) independent operators which are protected. This procedure
has been already applied in the undeformed N = 4 case [55].

The problem of determining the CPQO’s of the theory is then translated into the problem
of finding all the linear combinations of operators which satisfy the condition (4.2.5). In
particular, since we are interested into a perturbative determination of the chiral ring we
need find descendants which solve eq. (4.2.5) order by order in perturbation theory. This
can be done by introducing a perturbative definition of quantum chiral ring, as we are now
going to explain in detail.

4.2.1 The perturbative quantum chiral ring

As previously discussed, the chiral ring is defined as the set of chiral operators orthogonal
to null operators, i.e. linear combinations of chirals which can be written in the form D?X,
X primary. At the classical level a linear combination (4.2.4) gives rise to a null operator

every time the coefficients dy) are such that the operator D; can be rewritten as a product

of chiral superfields times :SS(TW,Q’ where W is the classical superpotential®

4This is true only for operators which are not affected by Konishi-like anomalies or as long as these
anomalies do not enter the actual calculation.
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Indeed, if this is the case, we can use the classical equations of motion D*®;, = —% to
express the operator as in (4.2.5). It follows that we can alternatively define the chiral ring

as
C = {chiral op.'s P | (PD) = 0, for any D ~ (@@%)} (4.2.8)

where in D we do not indicate trace structures and flavor charges explicitly. In the un-
deformed N = 4 theory, an immediate consequence of the definition (4.2.8) is that all
the CPO’s correspond to completly symmetric representations of the SU(3) C SU(4) R-
symmetry group [4].

This definition for the chiral ring allows for a straightforward generalization at the
quantum level. Since the quantum dynamics of the elementary superfields is driven by
the effective superpotential rather than the classical W, it appears natural to define the
quantum chiral ring as

5W€ff
0P )

Co = {chiral op.’s P | (PDg) =0, for any Dg ~ (..9...D... (4.2.9)

where now Dg is a quantum null operator. Using the quantum equations of motion
D? g‘g = —Mgf;f . where K is the effective Kahler potential which takes into account pos-
sible perturbative D-term corrections, it is easy to see that D¢ is a null operator at the
quantum level. In the undeformed N = 4 case the symmetries of the theory constrain
Dg to be proportional to D and the quantum chiral ring coincides with the classical one
(4.2.8).

When W,y is determined perturbatively, eq. (4.2.9) gives a perturbative definition of

chiral ring. Precisely, given W, at a fixed perturbative order®

Wepp = W+ AW+ WS+ 4 M W) (4.2.10)

e

we can construct independent descendants ¢ at that order as

sw
D="Dy+\D; + XDy +---+ A\'D, | Di:@..% (4.2.11)
and determine the protected operators P by imposing the orthogonality condition (PD) =
0 order by order. Since P will be in general a linear combination of single/multitrace
operators, these conditions allow to determine the coefficients of the linear combination
order by order in the couplings. If we set

P =Py + AP+ /\2732 + -+ /\LPL (4'2'12)

°In principle, perturbative corrections to Wess would depend on both g and h couplings. Here we
mean to use the superconformal invariance condition to express |h|? as a function of g? and write the
perturbative expansion in powers of the 't Hooft coupling A\ = ‘iﬁ .

6As long as we are interested in orthogonalizing with respect to the whole space generated by the de-
scendants, we do not need the precise form of pure descendants, but just a suitable set of linear independent

states. From now on we will refer to this definition of quantum descendants.
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the perturbative corrections P; will be determined by

O\ - (PoDo)o =0
O\ (PoD1)o + (PoDo)1 + (PiDo)o = 0 (4.2.13)
O(.)\L) : <P05L>0 + (PoDr-1)1+ -+ (PoDo)r. + (PiDr_1)o + - -+ + (PrDo)o = 0

where ( ); stands for the two—point function at order M.

Conditions (4.2.13) together with the general statement that orthogonalization at order
(n — 1) is sufficient for having well-defined quasi-primary operators at order n, brings us
to formulate the following prescription: In order to determine perturbatively the correct
form of chiral operators with vanishing anomalous dimension at order n it is sufficient to
determine the effective superpotential at order (n — 1), select all the descendant operators
at that order by (4.2.11) and impose the conditions (4.2.13) up to order (n—1). In so doing,
we gain a perturbative order at each step. Moreover, in order to have all the descendants
at a given order it is sufficient to compute the effective superpotential once for all.

As follows from its definition, the structure of the chiral ring is directly related to
the structure of the effective superpotential. Therefore, the perturbative corrections to the
CPO’s depend on the perturbative corrections to the effective superpotential. In particular,
this explains universality properties of the protected operators we will discuss later, as for
example the fact that in any case the orthogonalization at tree level is sufficient for the
protection up to two loops.

4.2.2 The effective superpotential at two—loops

Since we are dealing with a superconformal (finite) theory any correction to the effective
action must be finite. By definition, the effective superpotential corresponds to perturba-
tive, finite F—terms evaluated at zero momenta. It is given by local contributions which are
constrained by dimensions, U(1) x U(1) flavor symmetry charges, reality and symmetry
(2.3.8) to have necessarily the form

Wesp = ih [b Tr(®®y®5) — b Tr(®1®3P5)] + h.c. (4.2.14)

The constant b is given as an expansion in the couplings, b = g(1 + b\ + by A% + - -+ ), with
coefficients b; which are functions of ¢ and N, whereas b is the hermitian conjugate. We
note that in principle the symmetries of the theory would only constrain the form of the
superpotential to Wess = {ih [b(q) Tr(P1P2®P3) + b(—q) Tr(P1P3P2)] + h.c.}. However, it
is easy to show that b(—g) = —b(q) since the b; coefficients are rational functions of ¢* with
real coefficients (loop diagrams always give real contributions and they always contain an
even number of extra chiral vertices compared to the tree-level vertex).

At a given order L we can have two kinds of corrections to Wes¢: Corrections which do

not mix the two terms in the superpotential and are then of the form

W)~ AE W (4.2.15)
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where W is the classical superpotential. These contributions do not affect the structure of

: sw)
the descendant operators at order L since —sz/t ~ ‘% and Dy, ~ Dy. As a consequence at

order L the correlation function (PyDy ) in (4.2.13) vanishes and the protected operator
is determined only by loop corrections to its two—point function with descendants of lower
orders.

The second kind of corrections to W,y mixes the two terms in W and gives rise to

a linear combination We(;} of the form (4.2.14) which is not proportional to the classical

superpotential anymore. For these corrections the request for the protected operator to
. swik) e :
be orthogonal to a descendant proportional to —£/ modifies in general its structure by

contributions of order A\X proportional to (PyDp)o.

In this Section we evaluate explicitly the effective superpotential up to two loops. Our
result is useful for determining the correct CPQO’s up to three loops.

The diagrams contributing to the effective superpotential up to this order are given in
Fig. 4.4 where the grey bullets indicate the one-loop corrections to the chiral and gauge—
chiral vertices, respectively.

TN
AL

Figure 4.4: Diagrams contributing to the effective superpotential up to two loops.

These corrections are exactly the ones of the undeformed N = 4 theory once we use the
one—loop superconformal invariance condition:

1
|h|? [1 - N2

The one-loop diagram 4.4b), compared with the tree level diagram 4.4a), does not contain
any extra g—deformed vertex. Moreover, using standard color identities it is easy to see
that its contribution is proportional to AW, where W is the classical superpotential.

2] =g (4.2.16)
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The same happens at two loops for the diagrams 4.4c), 4.4d) and 4.4e) which do not
contain any extra g—deformed vertex and have a color structure which does not mix the
two traces, so reproducing W.

Diagram 4.4f) vanishes for color reasons.

Diagram 4.4g) contains four extra g—deformed vertices. Moreover, by direct inspection
one can easily see that the nonplanar chiral structure which corrects the tree level dia-
gram mixes nontrivially the two terms of W. As a result at two loops the superpotential
undergoes a nontrivial modification of the form

W ~ ih [q P Te(®,85®3) — G P Tr(®838,)] + hc. (4.2.17)
with 2 _ {)3[N2 2(3N2 _ | 2
p_ @~ )2[ T3+ ¢ (BN" —10+7¢%)] (42.18)
Plg*t +1+ (N? = 2)¢*
Here we have used ¢ = 1/gq. We note that the nontrivial g-dependence of this diagram
is a direct consequence of its nonplanarity. In fact, as discussed in Section 3.1, planar
diagrams depend on the particular combination gg = 1, while the nonplanar ones have
generically nontrivial phases. Moreover, a g—dependence has also been introduced by using
the superconformal condition (4.2.16) to express the coefficient |h|* from the four chiral
vertices in terms of A\%.

To evaluate the various contributions from Fig. 4.4 we first perform D-algebra to
reduce superdiagrams to ordinary loop diagrams and compute the corresponding integrals
in momentum space. As reported in Appendix C the one and two—loop integrals are all
finite and they give a well-defined, local value for external momenta set to zero. Therefore,
collecting all the contributions, at two loops the superpotential has the structure (4.2.14)
with

3
b=q|(1+ ey + Ne) + )\2§§(3)P (4.2.19)

where the coefficients ¢y, co are numbers, independent of ¢ and N, determined by the loop
integrals 4.4b) and 4.4c)—4.4e), respectively (we do not need their explicit values).
It follows that in general a descendant at this order will have the form

DQ = (1 + /\Cl + )\202)2)0 + >\2D2 (4220)

4.2.3 Chiral Primary Operators in the spin—2 sector
The (J,1,0) flavor:

We start considering operators of the form Tr(®{®,). In this case, due to the ciclicity
of the trace, there is no ambiguity in the ordering of the operators inside the trace. In
the large N limit these operators do not belong to the chiral ring, they are descendants
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and their anomalous dimensions have been computed exactly in Section 4.1 for J large.
However, for finite N they can mix with multitraces and give rise to linear combinations
of single and multi—trace operators which are protected. We are going to construct them
perturbatively up to three loops. For simplicity we consider first the particular cases of
J = 3,4 and postpone the discussion for generic J at the end of this Section.

The (3,1,0) case:

The first nontrivial example where mixing conspires to give rise to protected operators
is for J = 3. This sector contains the two operators

Ol = TI'(@?@Q) y OQ = TI'((I)%)TI'((I)l(I)Q) (4221)
Using the classical equations of motion (4.1.2), it is easy to see that

_ _ 1
Lﬂi&(@ie—ﬂﬂiyﬂv)::13-(@2§H£) ::—dh(q——@)ﬂk(éfég)——jVTYObﬁﬂk(®1®2ﬂ

150,
(4.2.22)
and a descendant can be constructed as (we always forget about the normalization of the
operators)

1

The knowledge of Dy allows us to determine the one-loop protected operator. We consider
the linear combination

Po =01+ ag Oz (4.2.24)
which, for any oy # —%, gives an operator in the chiral ring. We then impose the
orthogonality condition (PyDy)o = 0 and find

N?2 -6
2N

ay = (4.2.25)
This result coincides with the one found in [28] where the one-loop CPO has been deter-
mined by diagonalizing directly the one-loop anomalous dimension matrix.

In order to extend our analysis to higher loops we need establish the correct form of
the descendant operator order by order, as described in Section 4.2.1. If we look at its
perturbative definition (4.2.11) and the way the equations of motion work in this case,
we easily realize that as long as the effective superpotential has the structure (4.2.14) we
obtain

Tr (@f%) — il (b— B) [Tr(®3) — %Tr(qﬁ)Tr(cplcpz)] (4.2.26)

whatever b might be (determined perturbatively at a given order). It follows that the linear
combination on the r.h.s. of this equation, which is nothing but the operator (4.2.23), is
always a descendant operator independently of the order we have computed the coefficient
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b. Therefore we conclude that (4.2.23) is the ezact quantum descendant up to an overall
coupling-dependent normalization factor, that is Dg ~ Dj.
An alternative way [55] to establish the relation Dg ~ Dy is to consider the combination

_ _ 1
D*Tr(®3e 9V ®3e9Y) +ih (q — q) [Tr(P3d,) — NTr(cbf)Tr(cbl@z)] (4.2.27)

which is zero at tree level and check that it is order by order orthogonal to the three
monomials D?>Tr(®2e9V B3e9"), Tr(P3®,) and Tr(P?)Tr(P,P,), separately. In fact, if this
is the case, there is no extra mixing of the linear combination (4.2.27) with the three
operators at the quantum level and (4.2.27) must be necessarily zero at any order in
perturbation theory. We have checked the absence of mixing perturbatively up to two
loops confirming our conclusion.

In order to determine the protected operator we consider the linear combination

P=01+a0, (4.2.28)
with o given as an expansion in A
a=ag+a; A+ azA? +0(N) (4.2.29)

In the notation previously introduced, we have Py = O;+ a0 with o already determined
in (4.2.25) and P; = ;0.
As a consequence of the relation Dy ~ Dy the orthogonality conditions (4.2.13) become

O(A) - {(PoDo)1 + (P1Do)o = 0 (4.2.30)
O(N?):  (PyDo)2 + (P1Do)1 + (P2Do)o = 0 (4.2.31)

The first condition (4.2.30) gives
o = {01+ 200) Do), (4.2.32)

<02@0>0

In order to select the diagrams which contribute to the two—point function at the numerator
we note that the tree level correlation function at the denominator, when computed in
momentum space and in dimensional regularization (n = 4 — 2¢), is 1/e divergent. This
divergence signals the well-known short distance singularity of any two—point function of
a conformal field theory.

If the denominator of (4.2.32) goes as 1/e¢, in the numerator we can consider only
divergent diagrams (finite diagrams would not contribute in the ¢ — 0 limit). It is easy
to show that at this order the only diagram which we need take into account is the one
in Fig. 4.5 where on the left hand side we have an insertion of the operator (O; + ayOs)
while on the right hand side we have Dj.

By a direct calculation one realizes that if ag is chosen as in (4.2.25) this diagram
vanishes. The reason is very simple to understand: If we cut the diagram vertically at
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Figure 4.5: One-loop diagram contributing to the evaluation of a;.

the very right end, close to the Dy vertex, from the calculation it comes out that the left
part would be nothing but a one-loop divergent contribution to the operator (O; 4+ apOs)
which vanishes since « has been determined just to give a protected (not renormalized)
operator at one-loop.

From the one-loop constraint we then read a; = 0 and the expression (4.2.24) with aq
as in (4.2.25) corresponds to the protected chiral operator up to two loops.

Next we analyze the constraint (4.2.31). Setting P; = 0 there, we obtain

(O 4+ apOs) 250>2
(O3 Do)

Qg = — (4.2.33)

and consequently the exact expression for the CPO up to three loops.

Again we select only divergent diagrams contributing to the numerator. They are given
in Fig. 4.6. We have not drawn diagrams associated to the two-loop anomalous dimension
of the operator (O; + apO2) which vanish when «y is chosen as in (4.2.25).

~— D
S

Figure 4.6: Two-loop diagrams contributing to the evaluation of as.

These diagrams contribute nontrivially to as since, cutting the graphs at the very right
hand side, their left parts cannot be recognized as corrections to the tree-level operator
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(nontrivial mixing between O; and Oy occurs). Evaluating the diagrams by using the

results in Appendix C we obtain

(N2 —9)(¢* — 1)?[(N* —8N? —8)(¢* + 1) + 2(N* + 8)¢?]
80N[g* + 1+ (N? —2)¢?]?

¢(3) (4.2.34)

Qo =

where we have used the one-loop superconformal condition (4.2.16) to express all the
contributions of Fig. 4.6 in terms of \? and set ¢ = 1/¢.
Therefore the protected operator P up to three-loops can be written as

N2 - 6 2
P=0, — N (147 X°) Oy (4.2.35)
with
Con 9N =9)(¢" — D[N = 8N? = 8)(¢* + 1) + 2(N* + 8)¢”]
"Ta 40(N2 —6)[g* + 1+ (N2 — 2)¢?]? ¢3) (4.2:36)

We note that in the 't Hooft limit, N — oo and A fixed, O, dominates and gives the
protected operator up to three loops. This is consistent with the fact that, in the absence
of mixing, the only primary operators in a given A, sector are necessarily products of
single-trace primaries Tr(®7*) and Tr(P;D,).

The (4,1,0) case:

It is interesting to analyze this case in detail since it is the first case where more than
one descendant appears.
This sector contains three independent operators

O = Tr(®1®,y) | Oy = Tr(0)Tr(d1Py) , O3 = Tr(dF)Tr(PTd,) (4.2.37)

Using the classical equations of motion (4.1.2), we can write

_ _ oW 1

D*Tr(®%e 9V d3e") = Tr (@?r{)g) = —ih(q — q) [Tr(®1dy) — NTr(éf)Tr(cbl%)]
(4.2.38)

_ - ow

D? [Tr(®2) Tr(®re 9" Bye?")] = Tr(@3)Tr (élr%) = —ih (q — q) Tr(®3)Tr(P2®,)
(4.2.39)

Therefore, in this case we can consider the two descendants
1
P =0, - 70 DY = 0, (4.2.40)

or any linear combination which realizes an orthogonal basis in the subspace of weight—5
descendants.
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As in the previous example it is easy to prove that, given the particular structure
(4.2.14) of the effective superpotential and the way the equations of motion enter the
calculation, the linear combinations Dél) and D(()Q) provide two independent descendants
even at the quantum level.

Proceeding as before we consider the linear combination

P=01+a0;+ 303 (4.2.41)

and choose the constants o and 3 (expanded in powers of A) by requiring P to be orthogonal
to the two descendants up to two loops.
Solving the constraints (POD((f)}o at tree level we determine the correct expression for
the operator characterized by a vanishing one-loop anomalous dimension
N? —12

2
Po= 0, — —3N Oy — N Os (4'2'42)

As in the previous case, this operator is automatically orthogonal to D(()l) and 'D(()2) also at
one loop and so we expect it to be protected up to two loops.

The orthogonality at two loops can be imposed exactly as in the previous case and
allows to determine the corrections ay and 2. The diagrams contributing are still the ones
in Fig. 4.6 with one extra free chiral line running between the two vertices. Performing
the calculation we find the final expression for the operator protected up to three loops

N2 —12 ) 2 )
where
o (N?16)(¢7 — 1P [(1IN? + 21)(g" +1) + 2(N? — 21)¢”] (@)
YT 4N =12)[¢" + 1 + (N2 — 2)¢2]?
B (N 16)(¢— (N2 4 5) (g 1) + 2N~ 5)g?
= S 1T (O =27 C(3)  (4.2.44)

Again, the coefficients depend on N in such a way that in the large N limit only the O,
operator in (4.2.37) survives in agreement with the chiral ring content of the theory in the
planar limit.

We note that these coefficients, as well as r in (4.2.36) are real. This is a consequence
of the fact that in the sectors studied so far the descendant operators are g-independent
and the two—point correlation functions are real.

The previous analysis can be applied to the generic operators of the form (®{®,).
The peculiar pattern Dy ~ Dy for the descendants occurs in any (J,1,0) sector since it
only depends on the particular structure of the superpotential and the particular way the
equations of motion work for this class of operators. Therefore, the determination of CPO’s
proceeds as before. In particular, we expect the tree level orthogonality condition to be
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still sufficient for protection up to two loops since the only one-loop diagram relevant for
the calculation would be the vanishing one-loop anomalous dimension diagram in Fig. 4.5.
At two loops diagrams of the kind drawn in Fig. 4.6 should be still the only relevant ones.

Without entering the details of the calculations which would be quite involved and
not very illuminating, we can determine the dimension of the corresponding chiral ring
subspace, i.e. the number of independent protected operators corresponding to U(1) flavors
(J,1,0).

To be definite we consider J even (J = 2p). In this case the list of chirals we can
construct is

single — trace Tr(D2PD,)

double — trace  Tr(®™™) Tr(dF ™ d,) my=2,--+,2p—1
triple — trace Tr(®M) Tr(P72) Tr(PF "™ ™ d,)
m1:27"'7p_17 m2:m17"'72p_1_m1
p—trace Tr(®F) - - Tr(®]) Tr(®7Dy) , Tr(P) Tr(®3) - - Tr(d3) Tr(d,Ps)

(4.2.45)

In order to find how many independent primaries we can construct out of (4.2.45) we
need first count how many descendants of the form (4.2.5) we have. As explained in the
previous simple examples, given the generic n—trace, Ay = J sector, null conditions come
from considering the operators

Te(®T) - - - Te(® 1) D*Tr(PP M1 e=9V HaedV) (4.2.46)

as long as 2p — 1 —my — ... — m,_; > 1. In fact, once we act with D? on ®5 and use the
equations of motion (4.1.2) we generate the linear combination

TH(@]) -+ TH(@] Ta(@F ™1y

1 —1l-mj—...—mp_—
—NTr((D’l’“)---Tr(@{”"*l)Tr(CDfp M T Ty (B By) (4.2.47)

which is then a descendant. Therefore, the complete list of descendants is

single — trace D? Tr(®* e 9V Oged)
double — trace  D* [Tr(®}™) Tr(®F e 9V dyeV)] my=2,---,2p—2
triple — trace D? [Te(®7") Tr(@72) Tr(@3 '™ ™29V 0ye9")]
my=2,---,p—1, ma=mq,---,2p—2—my
p—trace D? [Te(®F) - -+ Tr(PF) Tr(Pre 9" Pge?")] (4.2.48)

Counting how many operators we have in (4.2.45) and subtracting the number of descen-
dants in (4.2.48) we find that the number of protected chiral operators is > *_, X,, where
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X, is the number of partitions of (2p — 1) objects into (n — 1) boxes with at least 2 objects
per box. Analogously, the number of chiral primary operators for J odd is ZZJ:Q X

This result is consistent with the number of primary operators which survive in the
large N limit where mixing effects disappear and the chiral ring reduces to products of
single-trace operators Tr(®¥), Tr(®,®,).

The (2,2,0) flavor:

In the class of more general operators with weights (J, J2,0) we consider the particular
case J; = Jy = 2. This sector contains four operators, two single— and two double—traces

O = Tr(P23) : Oy = Tr (0, P,P,D,)
03 = TI'(@%)TI‘(@%) y 04 = Tr(@1®2)Tr((I)1(I)2) (4249)

Using the classical equations of motion (4.1.2), we can write
D? [Tr(®1Pae " ®3e?) — Tr(PoPre 9" P3e")] = —ih(q+ q)[O2 — O4]
_ - _ 2
D? [Tr(®1®2e™ 9" P3e?") 4 Tr(PePre 9V @3e)] = —ih(q — q)[O1 + Oy — Noﬂ
(4.2.50)

We note that on the right hand side of these equations the g—dependence is still factored
out as it happened in the previous cases (see eqgs. (4.2.22, 4.2.39)). Therefore, tree level
descendants can be defined as linear combinations

Dél) — 02 - 01
(2) 2
Dy’ = O1+0,— NO4 (4.2.51)

Because of their g-independence these operators correspond indeed to a suitable choice of
quantum descendants.
The general structure of a chiral primary operator in this sector is

P = Oé@l +ﬁ02+’}/03+(504 (4252)

where the coefficients are determined order by order by the orthogonality conditions
(7)75(()1)> and (7775(()2)>. Having two conditions for four unknowns we expect to single out
two protected operators.

At tree level, for the particular choice ag = 2,58, =1 and ag = 1, By = —1, we find

N2 -6
2N
N
PA -0, -0, — ZO3 + NO, (4.2.53)

PY =20, + O, — (O3 + 20)
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These are one-loop protected operators and coincide with the ones found in [28]. They are
not orthogonal but a basis can be easily constructed by considering linear combinations.

According to the general pattern already discussed for the previous cases we expect the
operators (4.2.53) to be protected up to two loops. The condition for these operators to
be protected up to three loops requires instead nontrivial A*-corrections to (4.2.53) which
can be determined by solving the orthogonality constraints at this order. The diagrams
contributing nontrivially to the 2-point functions are still the ones in Fig. 4.6. Since the
final expressions are quite unreadable, we find convenient to fix ay = 5 = 0 for both the
CPO’s and we obtain

N? -6 N2 -6

PO =20, + Oy — (14t A2)O05 — (14t A Oy

N
PO =01 = 0y = (14 u X)O0s + N(L+ 42 3)0,4

(4.2.54)
where
[ — (N = 9)(¢* — DP[(N* — 6N —4)(¢" + 1) + 2(N* — 2N? + 4)¢?] )
20(N? — 6)&(1 +1+4 (N2 —2)¢)?
2= 10(QJEIN— 6)[21( +1 +22( 2 ;;qz] ¢(3) (4.2.55)
and
uy = 9@® = D(N® = ON* — 16N + 18)(¢" + 1) + 2(N® — 14N 4 34N — 18)¢’]

20N2[g* + 1+ (N2 —2)¢?]?
9(¢* — 1)*[(N* = 31IN? — 18)(¢" + 1) — 2(TN* — 13N? — 18)¢?

v = A0N2[g* + 1+ (N2 — 2)¢2)2 ¢3) (42.56)

4.2.4 Chiral Primary Operators in the spin—3 sector

This sector contains operators of the form (®¥®L®5) with all possible trace structures.
The simplest case is for kK =1 = m = 1 and involves the two weight—3 operators

(91 = TI'((I)1<I>2<I>3) s 02 = Tr(<I>1(I>3(I>2) (4257)

As already mentioned, the correct one-loop expression for the protected operator has
been determined in [26] by computing directly the anomalous dimension at that order. It
turns out that the protected operator is a linear combination of the two operators (4.2.57)
with coefficient « as in (4.2.2). The result has been confirmed in [28] by using a simplified
approach based on the evaluation of the difference between the one-loop two-point function
of the deformed theory and the one for the N/ = 4 case. This approach is very convenient
since it avoids computing many graphs containing gauge vertices but, as recognized by the
authors, in this case it cannot be pushed beyond one loop.
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Using our procedure, we can easily re-derive the Freedman—Gursoy result by working
at tree level and extend it to two—loops by performing a one-loop calculation. The correct
application of our procedure beyond this order would require a substantial modification in
the definition of quantum chiral ring (4.2.9) since in this sector descendants of Konishi-like
operators are present and the equations of motion need be supplemented by the Konishi
anomaly term. As a consequence the corresponding chiral ring sector necessarily contains
operators depending on W*W,,.

In fact, from the anomalous conservation equation for the Konishi current we can write

D?*Tr(e 9V ;e ®;) = —3ih[q Tr(® Py ®3) — qTr (P P3P5)] +

Te(WW,) (4.2.58
We remind that in our conventions W, = iD?*(e 9" D,e9") and it is at least of order g.
From the previous identity it follows that a descendant operator has to be constructed out
of the two operators (4.2.57) plus the anomaly term

l

Dy = q0; — qO
0=qY1 —¢q 2+96772h

Te(WOW,) (4.2.59)

However, since the operator Tr(W*W,) is of order g? and has vanishing tree level two—
point function with O; and O, it does not enter the orthogonality conditions at tree level
and one-loop. Therefore we can safely use our procedure to find CPO’s up to two loops
forgetting about the anomaly.

Thus we consider the linear combination

Po =01+ ag Oy (4.2.60)

for any value of ag # —@*. In order to determine the exact expression for the CPO at
one—loop we need impose the operator to be orthogonal to the descendant (4.2.59) at tree
level. A simple calculation proves that (7702_)0>0 = 0 iff ap is given in (4.2.2), in agreement,
with the result of [26].

At one loop first we need determine the correct expression for the descendant at this
order. As it follows from the calculations of Section 4.2.2 at one loop the effective su-
perpotential is proportional to the tree level W and the corresponding descendant op-
erator is still proportional to Dy in eq. (4.2.59). Given the generic linear combination
P = 01 + (g + a1 A) Oy we then impose the orthogonality condition up to order A to
uniquely determine «; as in (4.2.32). As in the previous examples, if o is given in (4.2.2)
the ay coefficient is identically zero being this a consequence of the one-loop protection of
Po. Therefore the expression (4.2.60) with aq given in (4.2.2) corresponds to the protected
chiral operator up to two loops.

The next case we investigate is for k = 2, [ = m = 1. There are five operators

Ol = TI'((I)%(I)Q(I)?) ) 02 = TI'(@%@:;@Q) R 03 = TI'(CI)l(I)Q(I)l(I)g)
Oy = Tr(®2)Tr (D ®s) : Os = Tr(®P,) Tr (P, P3) (4.2.61)
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Using the classical equations of motion (4.1.2) we can write three descendants

1

D(()l) = qO03—q0y — N(C] —q)0s
1

DY = ¢O, —qOs — N<q —q)0s (4.2.62)
1

DY = 4O, - GO, - N(q —q)0,4

We expect to find out two protected operators of the form

P:&01+602+703+504+605 (4263)

By imposing the tree-level orthogonality condition with respect to the three D(()i) we can

fix for instance v, 0 and € in terms of a and (3. The calculation proceeds exactly as in the
previous case and we find

alg' —2¢* +1 - N? - B[(1 — N?)¢* — 2¢° + 1]
N?(q* —1)
af(N? +2)¢* + 2(N? — 2)¢* + N* — 5N? + 2]
2N3(q* — 1)
BI(N* —5N? 4+ 2)¢* + 2(N? — 2)¢* + N? + 2]
2N3(¢* - 1)
a[2(N? +1)¢* + (N* — 4)¢* + N* — 4N? + 2]
N3(g* —1)
BI(N* —4AN? 4+ 2)¢* + (N* — 4)¢*> + 2(N? 4+ 1)]
- N3(q* — 1)

(4.2.64)

We expect these operators to have a vanishing anomalous dimension at one loop. If we set
a=pfF=1and a = —fF = 1, we recover the two protected operators found in [28].

As in the previous cases, the operators Dél), D(()Q) and D((Js) keep being good descendants
at one loop. Moreover, the one-loop orthogonality conditions do not modify the CPO’s
(4.2.63, 4.2.64) and we expect these operators to have a vanishing two—loop anomalous
dimension.

If we were to push our calculation beyond this order we should first determine the
descendant operators at two loops. It is easy to realize that in this case the relation
Dg ~ Dy does not hold anymore, for two simple reasons:

1) At higher orders the Konishi anomaly cannot be ignored anymore. In particular, the
correct expression for the descendant operators from two loops on will have a nontrivial
dependence on (W*W,).

2) Differently from the spin—2 case, the nontrivial corrections to the effective superpotential
which appear at two loops determine nontrivial corrections to the descendants since in this
case they depend on ¢ not only through an overall coefficient (see eq. (4.2.62)).
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4.3 The full Leigh—Strassler deformation

From a field theory point of view it is interesting to investigate the quantum properties of
the full Leigh-Strassler N' = 1 deformation of the A" = 4 SYM theory given by the action
we found in Section 2.3:

— , 1
S = /dsz Tr (e’qu)iequﬂ) + 2—92/d62 Tr(WW,) +
: 6 1 in 6 3 3 3
+ih | &’z Tr [ g P1PoP5 — — D1 P3P, | + 3 A’z Tr(®7 + &5 + O3) + (4.3.1)
q
= [ 6 1 — — = = i [ s =3 =3 —3
+1ih d’z Tr - (I)l(bg(bg — qq)lq)gq)g — ? d’z TI'(q)l + (I)Q + (133)
q

The equations of motion derived from (4.3.1) are

D?*(e79Vd5ed) = —ih®5®5 [q(abe) — G(ach)] — ih' @D (abe)
D?(e7 9V ®hedV) = —ih®® [q(abc) — Glach)] — ih/ P3PS (abe) (4.3.2)
D*(e79Vd5ed) = —ih®i®Y [q(abc) — G(ach)] — ih/ LD (abe)

where once again keeping [ real we can interchange ¢ « %. As widely discussed, the

requirement of vanishing anomalous dimensions of the elementary chiral superfields guar-
antees the theory to be superconformal invariant. Since the three chirals have the same
anomalous dimension due to the cyclic Z3 symmetry, superconformal invariance requires
a single condition (g, h, k', 3) = 0 and we find a three-dimensional complex manifold of
fixed points. We evaluate the anomalous dimension of the chiral superfield ®; up to two
loops. The calculation can be carried on exactly as in the case of h' = 0 by taking into
account that compared to the previous case the present action contains three extra chiral
vertices of the form %°d,, ®¢PiPe, i = 1,2, 3.

As long as we deal with diagrams which do not contain the new A’ vertices we have
exactly the same contributions as in the A’ = 0 theory. We only need evaluate all the
diagrams which contain these extra vertices.

At one loop, besides the h—chiral and the mixed gauge—chiral self-energy diagrams [27]

we have a h/—chiral self-energy graph whose contribution is proportional to |A’|?. This new
diagram modifies the one-loop superconformal condition (4.2.16) as
1 N2 —4
M (1-=lg—q° )+ W fP"s| =4 4.3.3
I (1 gzl + PG = (433)

in agreement with [56, 64, 71]. As for the b’ = 0 case it is easy to verify that the one-loop
condition is sufficient to guarantee the vanishing of the beta functions (i.e. superconformal
invariance) up to two loops.

Once the theory is made finite we are interested in the perturbative evaluation of finite
corrections to the superpotential. In this case the symmetries of the theory force the
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effective superpotential to have the form

"
Wepr = ih/dﬁzTr[b(q) DDy P3 + b(—q) P P3Py] + %d/d%Tr(q)i’ + @3+ ®3) + hec.

(4.3.4)
where the coefficients b and d are determined as double power expansions in the couplings h
and i/ 7. In particular, the invariance under cyclic permutations of the superfields requires
the d correction to be the same for the three ®? terms, whereas the other global symmetries
force the particular ¢ dependence of the corrections to (®;Po®P3) and (P, P3Py). We note
that in this case we cannot apply the previous arguments (see the discussion after eq.
(4.2.14)) to state that b(—7) = —b(q) since the perturbative corrections to (®;®,®3) and
(®,P3,) are not always proportional to ¢ times functions of ¢®. In fact, it is still true that
diagrams contributing to the effective potential contain an even number of extra chiral
vertices compared to the tree level diagrams, but part of these vertices could be h'-vertices
not carrying any ¢-dependence.

The topologies of diagrams contributing to the superpotential up to two loops are still
the ones in Fig. 4.4 where now chiral vertices may be either h or A’ vertices. Performing
the explicit calculation as in Section 4.2.2 we discover that at one loop the various terms
in the superpotential do not mix and receive separate corrections still proportional to the
classical terms. Precisely, we find that We(}} coincides with W, up to an overall constant
coefficient. This is also true at two loops for the diagrams 4.4c), 4.4d) and 4.4e), whereas
the diagram 4.4g) with all possible configurations of h and A’ vertices mixes nontrivially the
various terms of the superpotential. Similarly to what happens for the f-deformed theory,
this leads to a nontrivial correction Wg} which has the form (4.3.4) but with the b and
d coefficients nontrivially corrected by functions of ¢ and N. We then expect descendant
operators to get modified at this order as in the previous case (see discussion around eq.
(4.2.20)).

The exact supergravity dual of the theory (4.3.1) is still unknown even if few steps
towards it have been undertaken in [63]. However, it is interesting to investigate the
nature of composite operators of the superconformal field theory waiting for the discovery
of the exact correspondence of these operators to superstring states.

The chiral ring for the h'-deformed theory is not known in general (however, see [68, 25]).
Compared to the chiral ring of the f—deformed theory (A’ = 0) which contains operators
of the form Tr(®/), Tr(®{®PyPJ) plus the particular operators Tr(®;®;), i # j, we expect
the chiral ring of the present theory to be more complicated because of the lower number
of global symmetries present.

Here we exploit the general procedure described in Section 4.2 to move the first steps
towards the determination of chiral primary operators. In particular, we concentrate on
the first simple cases of matter chiral operators with dimensions Ay = 2,3 and study
how turning on the h’-interaction may affect their quantum properties. We then take
advantage of these results to make a preliminary discussion of the CPO content for generic

THere we use the superconformal condition (4.3.3) to express g2 as a function of A and h/. Any other
choice would be equally acceptable.
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scale dimensions.

4.3.1 Chiral ring: The Ay = 2 sector

Weight-2 chiral operators are Tr(®?) and Tr(®;P,), ¢ # j. These operators can be classified
as in Table 4.1 according to their charge Q with respect to the Z3 symmetry (2.3.7).

o0 [ o-1 | ©o-3 ]
011 = TI'(@%) 033 = TI'((I)g) 022 = TI'(@%)
023 = Tr(<I>2<I>3) 012 = Tr((I)lfl)Q) 013 = Tr(<I>1<I>3)

Table 4.1: Operators with Ay = 2.

The charged sectors can be obtained from the Q = 0 one by successive applications of
cyclic Zs—permutations ®; — ®,,;. This is the reason why the three sectors contain the
same number of operators. In the A’ = 0 theory their anomalous dimensions have been
computed up to two loops and found to be vanishing [26, 27]. According to our discussion,
this was an expected result since for these operators there is no way to use the equations
of motion (4.1.2) to write them as D?X. Therefore they must be necessarily primaries
and belong to the classical chiral ring. Since this sector does not contain descendants this
property is maintained at the quantum level. In the A’ = 0 case these operators have
different U(1) flavor charges and do not mix. The matrix of their two—point functions is
then diagonal and receives finite corrections at two loops [27].

The same analysis can be applied in the present case. Again, there is no way to write
these operators as descendants by using the classical equations of motion (4.3.2). Therefore,
we expect them to belong to the chiral ring.

In order to check that these operators do not get renormalized but their correlators
might receive finite corrections we compute directly their two—point functions.

The smaller number of global symmetries surviving the h'~deformation do not prevent
the operators to mix. For instance the operator Tr(®?) can mix with Tr(®,®3) since they
have the same charge under the Z3 symmetry (2.3.7). Therefore, we need to compute the
non—diagonal matrix of their two—point functions.

To this purpose we concentrate on the operators O;; and Os3 and evaluate all the
correlators up to two loops. The calculation goes exactly as in the h' = 0 theory with the
understanding of adding contributions from diagrams containing the new h'—vertices.

At one-loop, as in the undeformed and the [f-deformed cases we do not find any
divergent nor finite contributions to the two—point functions as long as the superconformal
condition (4.3.3) holds.

At two loops the topologies of diagrams which contribute to (O1;011) and (Oa3043)
are the ones in Fig. 4.7.

Here the grey bullets indicate two—loop corrections to the chiral propagator and one—
loop corrections to the mixed gauge—chiral vertex. Using the superconformal condition
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Figure 4.7: Two-loop diagrams for (O;;01;) and (O230,3).

(4.3.3) their g, h, h’ dependence disappears and these corrections coincide with the ones of
the N' = 4 theory [16, 61, 62]. Therefore the first three diagrams give the same kind of
contribution to both correlators.

The last two diagrams contain chiral vertices and they instead differ in the two cases
for the number of h vs. A’ insertions: Diagram 4.7d) gives contributions proportional to
|h|* and |W|* to (O11011), and contributions proportional to |h|* and |h|?|1/|? to (Oy30s3).
Analogously, diagram 4.7e) contributes to (O1;0y;) with a term proportional to g2|h’|?
and to <023@23> with 92‘}1‘2

Diagrams contributing to the mixed two—point function (O;; @23) at two loops are of
the type 4.7d) with two h and two k' vertices (contributions proportional to h2h'?), with
three h and one A’ (contributions proportional to |h|2h'h) and 4.7e) with one h and one A’
vertices (contributions proportional to g?hh’).

Performing the D-algebra and computing the corresponding loop integrals in momen-
tum space and dimensional regularization, it is easy to verify that the diagrams 4.7a)—d)
have at most 1/e poles which correspond to finite corrections to the two—point functions
when transformed back to the configuration space.

The only potential source of anomalous dimension terms would be the graph 4.7e) since,
after D—algebra, the corresponding integral has a 1/¢? pole, that is a log (u%2?) divergence in
configuration space. However, when computing the correlators (0;;01;) and (O1,0y3) this
diagram gives a vanishing color factor, whereas for the third correlator there is a complete
cancellation between the contribution corresponding to a particular configuration of the
®,, @5 lines coming out from the O3 vertex and the one with the two lines interchanged
(the same happens in the A’ = 0 theory [27]).

Therefore, all the correlators in configuration space are two-loop finite, the anomalous
dimension matrix vanishes and the two operators are protected up to this order.

It is interesting to give the explicit result for the two—loop corrections to the correlators.
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We find
] 3 (0, — 03)
(@) () T (2200~ T T
_ 09 (0, — )
Tr(P,® Tr(P,® loops N T oy 4.3.5
(Tr(@os) (2) Tr(@2®2) () 2tooms ~ 7= s T (4:3.5)
where
N%—4 NZ -1
o 4 _|2 —12
Fi o= [!h! ~e la—d ( vz 14— —1)
(N? — 20)(N? — 4) N? —4 1 )
+ W) i — PN (1= =’ )| (436)
and
N?—4 (N? — 4)?
o 4 4 na\-* ;7
N2 —4 N%—5 _
+ [P P C%— N2lq—ﬂﬁ] (4.3.7)

We note that all the g* contributions cancel and we are left with expressions which vanish
in the N' = 4 limit (8 = ' = 0, |h|? = ¢g*). Moreover, both the contributions survive in
the large N limit in contradistinction to the h’ = 0 case where F; is subleading [27].

4.3.2 Chiral ring: The Ay = 3 sector

The next sector we investigate contains operators with naive scale dimension Ay = 3. We
classify them according to their Zs—charge as in Table 4.2.

Q= | Q=1 | Q=2 |
01 = Tr(CD:f) 06 = TI‘(@%(PQ) Og = Tr((ID%CI)g)
02 = TI'((I)%) 07 = TI'((I)%(I);),) 010 = Tl‘(q)gq)g)
03 = Tr((bg) 08 = Tr(@%@l) 011 = TI'((I)%(I)1>
Oy = Tr(®, B, D3)

O5 = Tr(®, B3 D,)

Table 4.2: Operators with Ay = 3.

We note that the neutral sector does not contain the same number of operators as
the charged ones. This is due to the fact that, in contradistinction to the previous case,
the @ = 0 sector is closed under the application of cyclic permutations ®; — ®,,; and
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transformations (2.3.8). Therefore, we cannot generate the charged sectors from the neutral
one by using these mappings.

The charged sectors are also closed under permutations but they get exchanged un-
der transformations (2.3.8). This is the reason why they still have the same number of
operators.

We first focus on the set of operators with @ = 0. As for the A’ = 0 theory, in this sector
the Konishi anomaly enters the game when we try to use the equations of motion to write
descendants which involve O, and Os. However the Konishi anomaly can be neglected
as long as we are interested in the construction of CPO’s up to two loops. We will then
restrict our analysis at this order.

Using the equations of motion (4.3.2) we can write three descendant operators

DY = h(qgO,—qO;5)+H O,
D® = h(qgO,—GOs5) +h O, (4.3.8)
D(g) = h(q(’)4 —CYOE,) +h/03

According to the discussion of Section 4.2 we expect to single out two protected operators.
We consider the most general linear combination

P:(X01+ﬁ02+’703+(504+605 (439)

and require tree-level orthogonality to the three descendants. These constraints provide
the condition @ = § = v = a (as expected because of the Z3 symmetries of this sector)
and the extra relation

Bah'(N? —4)g+ h [6 (N? =24 2¢%) —e ((N* = 2)¢* +2)] =0 (4.3.10)

which can be used to express a in terms of two arbitrary constants.
Any CPO in this sector has then the following form

P:a(01+02+03)+504+605 (4311)

An explicit check on its two—point function at one loop leads to (P P), finite, independently
of the choice of § and €. One can choose the two constants in order to select two mutually
orthogonal operators.

As it happened in the previous cases, these operators are guaranteed to be protected
up to two loops as a consequence of their one-loop protection plus the result We(;} ~ W
which insures that the classical descendants (4.3.8) keep being good descendants also at
one loop.

The sectors characterized by Z3 charges Q = 1,2 do not contain protected operators.
In fact, one can see that any charged operator in Table 4.2 can be written as O; = D?X;
by using the classical equations of motion. We expect this result to be valid at any order
of perturbation theory since the structure of the effective superpotential for what concerns
its superfield dependence cannot change.
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To summarize, in the Ay = 3 sector we have found two protected operators which are
linear combinations of Tr(®?), i = 1,2,3, Tr(®;P,P3) and Tr(P;P3P,). We note that
among all possible weight-3 operators these are the only ones which belong to the chiral
ring of the 3-deformed theory. The rest of weight-3 operators which were descendants for
h' = 0 keep being descendants.

The protected operators we have found are neutral under the Z3 symmetry (2.3.7). As
discussed in [68], the neutral sector of the chiral ring (the untwisted sector) coincides with
the center of the quantum algebra generated by the F—terms constraints. In particular, for
the h’'~deformation one element of the center has been constructed explicitly (eq. (4.83) in
[68]). This element coincides with one of the CPO’s (4.3.11) we have found, once we set
DU = 0 in the chiral ring (see eq. (4.3.8)), use these identities to express the operator O
in terms of the other ones and make a suitable choice for the coefficients § and e.

4.3.3 Comments on the general structure of the chiral ring

The Ag = 2, 3 sectors studied in the previous Section are very peculiar and do not provide
enough information to guess the structure of the sectors for generic scale dimension. In
fact, for Ag = 2 no descendants are present and we cannot even apply the orthogonality
procedure to construct CPO’s. The Ay = 3 sector contains only protected operators which
are Z3 neutral and are linear combinations of “old” CPQ’s, that is operators which were
protected for b’ = 0.

A naive generalization of our results to higher dimensional sectors would lead to the
conjecture that the chiral ring for the h'-deformed theory, at least for what concerns
its neutral sector with Ay = 3J, would be given by linear combinations of Tr(®3/) and
Tr(®{®J®J). However, we expect more general operators of the form Tr(®3/ =" " dr),
m + 2n = mod(3) to appear. Moreover, nontrivial Zs—charged sectors should appear for
Ag = 3.J even if they are absent in the particular case Ay = 3.

To investigate these issues we should extend our analysis to higher dimensional sectors
and this would require quite a bit of technical effort. However, without entering any
calculative detail, but simply performing dimensional and Z3—charge balances we can figure
out few general properties of the Q—sectors of the chiral ring.

We consider the generic chiral operator O; = (®¢®5P5) for any trace structure with
scale dimension Ay = a + b+ ¢ and Zz—charge Q1 = b + 2¢ with respect to the symmetry
(2.3.7).

We now perform @; < ®; exchanges according to the symmetry (2.3.8) and Z3 permu-
tations. In this way of doing we generate all the operators with the same trace structure
in a given A sector. Let us consider for example the operators Oy = (PIPPS) and
O3 = (PIPLDS) obtained by a ®; +» &, exchange and a cyclic permutation, respectively.
They have charges Qs = a + 2c and Q3 = 2a + ¢. It is easy to see that if Ag = 3.J then
Qy = Q3 = 0 (mod(3)) iff Q1 = 0 (mod(3)). This property holds for any operator that
we can construct from ; by the application of the two discrete symmetries. On the other
hand, if Q; = 1,2(mod(3)) operators obtained from it by cyclic permutations still maintain
the same charge, but the application of field exchanges (2.3.8) map charge—1 operators into
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charge—2 operators and viceversa.

Therefore, for Ag = 3J the @ = 0 class is closed under the action of Z3—permutations
and (2.3.8) symmetry, and being independent, may contain a different number of operators
compared to the charged sectors which instead are related by (2.3.8) mappings. In partic-
ular, as it happens for Ay = 3 charged classes of the chiral ring might be empty while the
corresponding neutral one is not.

If Ag # 3J a simple calculation leads to the conclusion that starting from operators
with zero Zs—charge we generate operators with Q@ = 1 by applying ®; < &, if Ag = 3J+1
and a cyclic permutation if Ay = 3J+2. Correspondingly, we obtain operators with Q = 2
by applying a cyclic permutation in the first case and a ®; < ®, exchange in the second
case. Therefore, in any sector with Ay # 3J the number of operators with Q@ = 1 is the
same as the ones with @ = 2 and coincides with the number of neutral operators.

If we apply the same reasoning to the descendant operators of each sector (to simplify
the analysis we work at large N to avoid mixing among different trace structures) we
discover that every time Ay # 3.J the descendants of the charged classes can be obtained
from the neutral ones by field exchanges. As a consequence, the three classes contain the
same number of descendants and then the same number of protected operators.

To summarize, the sectors of the chiral ring behave differently according to their scale
dimension: If Ay # 3.J the corresponding operators are equally split into the three Q
classes. On the contrary, if Ay = 3J the neutral class is independent and may contain a
different number of CPO’s.

As a further example we have studied the Ag = 4 operators. In the large N limit and at
the lowest order in perturbation theory we have found that the neutral single—trace sector
contains one independent CPO (we have eight single-trace chirals and seven descendants).
Therefore, we conclude that also the charged sectors contain one single protected operator
and we know how to construct it once we have found the Q = 0 operator explicitly. In the
single-trace sector the protected operator turns out to be a linear combination of

Te(P7)
Tr(®,®3) |, Tr(®®3) |, Tr(did2) , Tr(Pyd3P,d5)
Tr(P10y®5) , Tr(®iP3®y) , Tr(®PyP ;) (4.3.12)

It remains the open question whether for Ay = 3.J, J > 1, the charged sectors are
trivial as in the weight-3 case. A systematic analysis of the charged protected operators
is a difficult task in general. However, working at large N it is easy to realize that for J
even and J > 1, there are nontrivial protected operators for @ = 1 and Q = 2. These are
operators with the 3.J chiral superfields split into the maximal number of traces allowed by
SU(N), i.e. 3J/2. In fact, for these operators it is impossible to exploit the equations of
motion and write them as descendants. For J odd the same arguments do not lead to any
definite conclusion. However, we expect to generate nontrivial charged protected operators
by multiplying the neutral CPO’s of weight 3 previously constructed by 3(J — 1)/2 traces
containing two operators each and carrying the right Z3 charge.
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4.4 Summary and results

In this Chapter we have focused on the perturbative structure of the matter (not gauge)
quantum chiral ring defined as in (4.2.9) in terms of the effective superpotential. According
to our general prescription, CPO’s can be determined by imposing order by order the
orthogonality condition (4.2.6) to all the descendants of a given sector. This requires
constructing first the descendants as a power expansion in the couplings. According to
the definition (4.2.9), this can be easily accomplished once the effective superpotential is
known at a given order.

For the real f-deformed theory (2.3.9) we have studied quite extensively the spin—2
sector of the theory. For the particular examples of weights (J,1,0) and (2,2,0) we have
considered, a special pattern arises which allows for a drastic simplification in the study of
the orthogonality condition: In any of these sectors descendants can be always constructed
at tree level which turn out to be good independent descendants even at the quantum
level. This is due to the particular form (4.2.14) of the superpotential and the peculiar
way the equations of motion work which allow for constructing g—independent descendants,
insensible to the quantum corrections of the theory. This property persists even for other
examples of the form (J;, J2,0). Therefore, we conjecture that it might be a property of
the entire spin—2 sector: For any weight (J;, J3,0) quantum descendant operators can be
constructed which coincide with the descendants determined classically.

We have then studied the spin—3 sector. In this case the determination of quantum
descendants of weights (Ji, J2, J3) cannot ignore the Konishi anomaly term. Being its
effect of order A it only enters nontrivially the orthogonality condition from two loops on,
that is it will affect the form of the protected operators at least at three loops. For weights
(1,1,1) and (2,1,1) we have determined the CPO’s up to two loops. In particular, for
the first case we have proved that up to this order the correct CPO is the one found in
[26]. Higher order calculations would require computing two—point correlation functions
between matter chiral operators and Tr(W*W,,). It would be interesting to pursue this
direction since it represents the first case where the descendant operators, apart from
acquiring an explicit dependence on the Konishi anomaly term, get modified nontrivially
at the quantum level due to the nontrivial corrections to the superpotential which start
appearing at order \2.

We have extended our procedure to the study of protected operators for the full Leigh—
Strassler deformation. We can think of this theory as a marginal perturbation of the
fB—deformed theory induced by the h'-terms in (4.3.1). In this case the determination of
the complete chiral ring is a difficult task and only few insights have been discussed in
(68, 25]. We have moved few steps in this direction by studying perturbatively the simple
Ay = 2, 3 sectors. For operators of scale dimension two we have found that the A'-deformed
theory has still the same CPQ’s as the b/ = 0 one, i.e. Tr(®?) and Tr(®;®;), i # J.

For the Ay = 3 sector we have found a two-dimensional plane of CPO’s given as linear
combinations of the CPO’s of the corresponding i’ = 0 theory, i.e. Tr(®?) and Tr(®;PoP3).
In fact, in this case the lower number of global symmetries surviving the deformation allows
for mixing among the operators who were protected in the previous case and belonged to
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different U(1) x U(1) sectors. The class of protected operators we have found contains the
central element of the quantum algebra proposed in [68].

What turns out is that in the Ay = 2 sector the chiral ring is made by operators which
are both charged and neutral with respect to the Zz—symmetry (2.3.7) that the theory
inherits from the parent A’ = 0 theory. On the other hand, in the Ay = 3 sector all CPO’s
we can construct are neutral under (2.3.7). The generalization of our results to higher
dimensional sectors leads to the result that the chiral ring for the h'~deformed theory can
be divided into two subsets: Sectors with scale dimension Ay = 3J have an independent
Q = 0 class which may contain in general a different number of CPO’s. Instead, whenever
Ay # 3J we can generate the chiral primary operators of the charged classes from neutral
CPQO'’s by the use of the other discrete symmetries, i.e. cyclic permutations of the three
superfields and the symmetry (2.3.8). It then follows that the three classes contain the
same number of protected operators. In particular, for any non—empty neutral sector (for
instance Ay = 2,4) the corresponding charged ones are nontrivial. Neutral CPO’s will be
in general linear combinations of operators of the form Tr(®{ =" "®1®%) with m+2n = 3p.

The Z3 periodicity we have found in the chiral ring structure should have a counterpart
in the spectrum of BPS states of the dual supergravity theory. Therefore, it might be of
some help in the construction of the dual spectrum.

For all the cases we have investigated the CPO’s do not get corrected at one-loop,
whereas they start being modified at order A\2. This one-loop non-renormalization found
for a large class of chiral operators is probably universal for all the CPO’s and might be
traced back to the one-loop non-renormalization properties of the theories. Precisely, the
conditions (4.2.16, 4.3.3) which insure superconformal invariance at one-loop are main-
tained at two loops, i.e. the superconformal theories at one and two loops are the same. It
is then natural to speculate that the corresponding chiral rings should be the same. The
theory instead changes at three loops where the superconformal condition gets modified
by terms of order A? [28]. Therefore we expect that at this order the chiral ring will be
modified by effects of the same order.



Appendix A

Color Conventions and Identities

We give a brief description of color conventions and a series of useful identities involving
the group generators. For a general simple Lie algebra we have:

[TaaTb] - Z.fabcTc (AO].)

where T, are the generators and f,. the structure constants. The matrices T, are normal-
ized as

Tr (TaTb) = (5ab (AO2)

We specialize to the case of SU(N) Lie algebra whose generators T,, a =1,..., N? —1
are taken in the fundamental representation, i.e. they are N x N traceless matrices. The
basic relation which allows to deal with products of the T, is the following

1
5Ty = (5z‘l5jk - N(Sijékl) (A.0.3)

From this identities, we can easily obtain all the identities used to compute the color
structures associated to the Feynmann diagrams relevant for the two—point correlation
functions.

In particular fusion and splitting rules between traces with contracted inidices are re-
peatedly used in the computation of colours. We introduce the notation Tr(T%T%T*...) =
(abc...). If we need to contract two indices (say c¢) appearing in different traces the fusion
rule states that

(a1 e Qp—1Capy1 - - aN) (bl e bm—l Cbm+1 e bM) = (AO4)
= (an+1 o.anaq ... an_lbm+1 e b]\/jbl N bm—l) +
1
— (CLl - p10p4q - - - CLN) (bl Ce bm—lbm+1 e bM)
N

If we need to contract two indices ¢ appearing inside the same trace the splitting rule
states that
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(@1 .. Qp1 COpyq - Ay COpyq - .. AN) = (A.0.5)
1
= (@mi1---ana1 .. A 1)(Qpg1 - Q1) — —=(Q1 .. Ay 1Qpi1 - Q11 - - - QN)
N

These rules can be used to derive some useful identities

Jacafoea = 2N dap (A.0.6)

Ffabm feam + feom faam + favm faem = 0. (A.0.7)
(abed) (abed) %(NQ C (N2 +3) (A.0.8)
(abed) (abdc) — —%(z\/2 _ (N2 —3) (A.0.9)
(abed)(dcba) = %(NQ — 1)(N* = 3N? +3) (A.0.10)
(cadb) feme fams = —(0cadfp + O paden) (A.0.11)

(cdab) feme fams = def0ap + N (efab) (A.0.12)



Appendix B

Superspace Feynmann Rules and
Notations

We resume here the main ingredients necessary to perform perturbative computations in
superfield formalism. From the action:

— ) 1
S = /dgz Tr (79 e?" @) + 202 /d6z TTWew, + (B.0.1)
9
; 6 1 i 6 3 3 3
—|—Zh d’z Tr qq)lq)gq)g - 6@1@3@2 + ? d’z TI'(Cpl + CI)Q + @3) + h.c.

quantized in the Feynman gauge we can read the superfield propagators and the vertices.
We write V = VT,, ®; = ®¢T, where T, are SU(N) matrices in the fundamental repre-
sentation (see Appendix B and notations therein). Then the propagators are:

1
(Vevh)y = — (sz? 5 (0, — )
—b 1
(7 @) = 6”-6“’?]; 3 (01 — ) (B.0.2)
and the three—point vertices
1
(B1P2®P3) yortex  —  1h PIDEDG [q(abc) — a(acb)] (B.0.3)

_ - —g—b—c 1
(cbl(I)Q(I)?))vertex - _Zh (1)1(1)2(1)3 |:q<aCb) - 5(@1)0)}
(Eivq)i)vertex - gijqu)zc [(abc) - (G’Cb)]

h/
(D3 vortex  — g<1>§<1>§?c1>g(abc) i=1,...,3
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After performing D-algebra inside the loops the computation is reduced to the resolu-
tion of standard bosonic integrals, calculated in dimensional regularization in n = 4 — 2¢
dimensions. A list of relevant integrals is given in Appendix C.



Appendix C

Relevant Integrals

In this Appendix we list the results for loop integrals that we have used along the calcula-
tions. All the integrals are computed in the framework of dimensional regularization and
choosing the G-scheme [60]. We work in n dimensions, with n = 4 — 2¢ and in momentum
space. Having this in mind we now list the relevant integrals and their 1/e expansion. The
momentum integrals can be computed by making repeated use of the one loop results

/ — _ Platb=5)P(E-a)T(5-0) 1
(Rl -k F@TOT(—a—b) ()3
Ko 1 n—2a A"k
o .- T 2n_a_pled 5 C.0.1
/ () l(p— k2~ Zn—a-b / () [(p = k) (o0

and, for the more complicated ones, by using uniqueness methods (see for instance [47]).
We begin with the integrals relevant for Chapter 3 computations. At one loop we are
interestd in the bubble integral of Fig. 3.1(f)

d"k 1 1 11 .
h= / (2m)" k2 (p + k)? - (47)2 € (p?)° + O(e") (C.0.2)

At two loops we have to consider the bosonic integral in Fig. 3.2 or Fig. 3.5(a)

= / 2m) K2 (q+ k)2 (p+ k)2 (4m)* € (p?)* [2 +O( )} (C.0.3)

At three loops we need the value for the bosonic integral in Fig. 3.20

[ d'kd"qd"s 1 111 6
L= [ TR R G G (R [QC(g)tféi

At four loops we have the integral associated to Fig. 3.3
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I /d”kd”qd”rd”t 1 _
4 @my R k0 (g R (g + 1) (g +p)P 22 (E+7)7
11 1
= Tnp oy OO (€02)

and at five loops the one in Fig. 3.5(b)

Lo / d"sd"kd"qd"r d"t 1 _
° (2m)5n 2212 k2 (s+1)2 (g + )2 (q+7)2 (k+q)2(t+r)2(p+ k)2
= L )+ 0) (C.0.6)

(4m)10 €2 (p?)

Finally we give the expressions for the tadpole type integrals used for the gauge beta—
function computation, after IR and UV subtraction. At two loop we consider the integral
in Fig. 3.14 of in Fig. 3.23

d"k d"q 1 1 1
/ (2m)2 ¢2(q + k)2k* 7 (47)4 <_ %2 + 0(1/5)) (C.0.7)

and its five loop companion of Fig. 3.15

/ d"k d"q d"r d"s d"t 1 .
(2m)5n r2(r 4 q)2s2(s + q)?t2(t +1)2(t + 5)%(q + k)2k*
(A 6
O < o T o(1/ )) (C.0.8)

The four loop integral of Fig. 3.28

/dkdqdrdt 1 ot <—§<(3)+(9(1/e)>
(2m)4n Era?t?2 (r—q)? (r+ )2 (t+ q)? (r + k)2 (47)8 2 €2
We stress that these last three integrals must be multiplied by the color and combinatoric
factors of the correspondent graphs and, after using eq. (3.2.64) one can obtain the formulae
in (3.2.68), (3.2.70) and (3.3.31).
We turn to the integrals used in Chapter 4. We begin by considering the momentum
integrals associated to the one-loop and two-loop diagrams in Fig. 4.4 for the perturbative
corrections to the superpotential. At one loop, after performing D-algebra, the diagram
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4.4(b) gives the standard triangle contribution [57]. Assigning external momenta p; (p; +
po + p3 = 0) we have

dq 1 1
2 _ 1)
D = O (x,y) + O(e C.0.9
| G = e 9+ 00 (C0.9)
where ) )
_ D _ P
3 3 ( )

The p2 in front of the integral is produced by D-algebra. The function ®)(z,y) can be
represented as a parametric integral

' dg y
(1) ¥
O (z,y) /0 Y [ — <log - 210g§> (C.0.11)

Since we look for a local contribution to the superpotential we are interested in the result
of the integral for external momenta set to zero. A consistent way [58] to take the limit of
vanishing external momenta is to set p? = m? for any i so having z,y = 1 and let the IR
cut—off m? going to zero at the end of the calculation. In the limit we obtain a finite local

result [58]
b log€(1-¢)
_/0 s (C.0.12)

At two loops two types of integrals appear. From diagrams 4.4(c) and 4.4(d) we have
integrals of the form

oo [ dtqd"r 1 B
(v5) / @ (r v p)2(a + )2 — p2)?(q — pa)ri(g — 1)
1

= ) d@ (z,) + O(e) (C.0.13)

with 2 and y as in (C.0.10). The function ®®(xz,%) is defined by [57]

1! d& ) )

(2) - 4 4
P (1, y) = 2/0 v+ (—a =y xlogf(logx—l—logf) <logx+210g<§> |
C.0.14

As in the one—loop case, the limit x,y — 1 gives a finite local contribution to the effective
superpotential.
From diagrams 4.4(c)—(g) this kind of integral also appears

o [d'qd"r 1 1 )
A | G e~ G ST 00 (o)

where one of the external momenta has been already set to zero (in this case we can safely
set one of the external momenta to zero from the very beginning since we do not introduce
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fake IR divergences). This is already the local finite contribution we obtain by setting also
2

When we deal with two-point correlation functions, at tree-level we have (kK = A is
the free scale dimension of the operators involved and p is the external momentum)

/ d"qy ...d"qi—1 1
(2m)nt=1 " gi (g — q1)* (g3 — q2)%-. (P — qr—1)?

[ M (=pk k-2
= - [( ) ] q () Dy o(1) (C.0.16)

ir)? k— 1)

At two loops we are interested in the four diagrams listed in Fig. 4.6. From the graph
4.6(a) we obtain

/ dn(]3 dnqk_l 1 y
@m0 (g — g3)2 (0 — a1 )?
d"kd"ldrd®s 1*(qz — 1)
/ K212k — 0)2(r — k)2(r — )2(s — 1)2(r — 5)2(qs — r)2(q3 — 5)2 (C.0.17)

L[ ()R- .
— ] e 96 — 2B o)

The momentum integral for the graph 4.6(b) gives

/ an3 dnqk_l —qg

X
(2m)nH+D - (gy — g3)%.(p — qr—1)?

/ d"kd*ld"rd"s
R — 02— RP(s = 1P = 5P (aa — 1)(aa — o)

_ 1 1 k+1 (—1)k(/€—1) o)
€ l(zmp} [(k_l)!]z(k+1)40ﬁ(5)(p) “+0(1)

(C.0.18)

Finally, the graphs 4.6(c) and 4.6(d) lead to the same contribution

/ d'rd"qy...d"qr—1 1 .
(27 )n(+1) (g2 — 1)2(qs — 2)2%.(p — q1)?
d"k d"l
/ k212(k — 1)2(r — k)2(r —1)2 (C.0.19)

(
. 1 1 k+1 (_1)k<k o 1) , s
e {(4%)2] [(k— DI2(k + 1)6C(3)(p )e 4+ 0(1)



Appendix D

Color of H-Type Diagram

In this Appendix we report the full non—planar expression for the color of the four loop
diagram depicted in Fig. 3.21:

Ko = 5[0+ haP) + (il — )] +
+ % [|h3|8 — 4{ns|°(|ha]? + |h2|?) + 2|hs| " (3ha]* + 4]ha|?|ho|* + 3|ho|*) +
— 2|hs*(3|h|® + 5[ [*|hal + 5[ [*| o] * + 3[2|®) +
+ (]* + 8|7 || + 6] [*[ ha]* + 8|7 |?|ha]® + !h2\8)} +
- % [5!h3|8 = 20[ P3| * (| [* + [Ral?) + 120 R (|ha|* + [T [?| ol + [Ra|*) +

— 8l (|| = |ha|*hel? = |ha|? ha|* + \h2|6)] +

4 256
g [100hs* + 820 ([ ? + [haf?) = 8lhal [ *al?] + S5 B

From this formula one can easily obtain the explicit value of the f function in (3.3.24):
fo=8 [ai‘ + 8a3by 4 6a2b? + 8ayb? + bt — 2(ay + by)(3a? + 2a1by + 3b3)ey +

8
4+ 2(3a} + darby + 362)c2 — 4(a; + by)c: + c‘ll] + [8(@1 —b1)(a1 + by)er +

N2
8
— 12(0,% + a1b1 + b%)cf + 20(@1 + b1>0§) - 5011] + m [8&11)10% - 32(@1 + bl)C‘z’ - 10041L +
512 ,
+ Wcl
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