
Leveraging Structural Information in Ontology
Matching

Cheng Xie∗, Melisachew Wudage Chekol†, Blerina Spahiu‡, Hongming Cai∗
∗Shanghai Jiao Tong University

{chengxie, hmcai}@sjtu.edu.cn
†University of Mannheim

mel@informatik.uni-mannheim.de
‡University of Milan-Bicocca

spahiu@disco.unimib.it

Abstract—Ontology matching is an important part of enabling
the semantic web to reach its full potential. Most existing ontology
matching methods are mainly based on linguistic information
(label, name, title and comment) but from the results achieved
it is realized that this information is not sufficient. The latest
ontology matching research works are trying to deeply dig into
the structural information of ontologies by using “similarity-
flooding” method. However, there are several innate issues in
similarity-flooding methods that lead to wrong matching results.
In this paper, we report the problems of similarity-flooding in
ontology matching and propose a novel method to effectively
leverage the structural information of the ontology. The eval-
uation is conducted on OAEI ontology matching benchmarks
from 2011 to 2015. The result shows that the proposed approach
performs comparatively well with other state of the art matching
systems.

I. INTRODUCTION

A. What are the main purposes of ontology matching?
Many traditional challenges in classic applications can be

viewed as matching problems such as schema intergration,

data warehousing, data integration and catalogue integration

[2]. In recent years, applications started to make use of

ontologies to describe the semantic of their data. More and

more data are being published by different sources making

the web a gold mine for people to consume and integrate

data. An ontology is referred to a vocabulary that describes

a domain of interest and specifies the meaning of terms used

in that specific vocabulary [1]. By the increasing usage of

ontologies in applications, traditional matching problems are

rising to ontology matching problems.

B. What are the challenges?
To understand and integrate data, consumers have to deal

with variation in meaning and ambiguity in interpreting it.

Syntactic heterogeneity: is referred to the usage of different

ontology languages, which can be solved by translating them

into one language [3]. Terminological heterogeneity: is re-

ferred to the variations in names (title, label, comment, etc.)

when referring to the same entity in different ontologies. e.g.

“Abstract” and “Summary” are usually used to describe the

same concept in the academic domain.
Semantic heterogeneity: might happen due to the usage

of different (and, sometimes, equivalent) axioms for defining

concepts or due to the usage of totally different concepts,

e.g., in some situations, “Abstract” might be an abstract of

a technical paper but “Summary” might be a conclusion of

financial report that makes “Abstract” and “Summary” not the

same concept anymore.

C. How state of the art systems deal with these challenges?

With the substantial development of ontology models within

the last ten years, such as Jena Model [5] and OWL API

[4], which accept various ontology representations, syntac-

tic heterogeneity is no longer an unchallengeable concept.

Nowdays, state of the art ontology matching systems also

handle terminological heterogeneity well by applying various

string-based matchers including TF-IDF, Levenstein distance,

Jaccard similarity, Wordnet-based matching, etc [6]. In last

five years, advanced ontology matching systems, such as

AML [7], Logmap [8], DKP-AOM [9], etc. have designed

terminological methods and achieve a very high accuracy

in ontology matching. However, even with these elaborated

methods, semantic heterogeneity cannot be effectively solved

since terminological methods cannot directly match semantic

heterogeneity. Current ontology matching systems are trying

to treat semantic heterogeneity as structural heterogeneity in

ontology structure. The idea of the method is to transform an

ontology into a graph in which semantic heterogeneity can

be represented by structural heterogeneity of the graph. The

mainstream method to apply such structural matching is using

similarity flooding algorithm [10]. From 2011 to 2015, the top

3 matching system, YAM++ [11], LILY [12] and CroMatcher

[13], in OEAI ontology matching benchmark test are all using

the idea of similarity flooding and obtained a relatively high

performance.

However, eventhough applying similarity flooding seems to

achieve high performance there is still a problem hiding behind

this mainstream method that will be discussed in details in

Section III.

II. PRELIMINARIES

RDF Triples: An RDF (Resource Description Framework)1

triple is a statement that describes the relations between two

1http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

2016 IEEE 30th International Conference on Advanced Information Networking and Applications

1550-445X/16 $31.00 © 2016 IEEE

DOI 10.1109/AINA.2016.64

1108

objects which is of form subject ⊆ IRI ∪ BlankNode,

predicate ⊆ IRI , object ⊆ IRI ∪ Literal ∪ BlankNode.

For example, “<lamb> <eats> <grass>” is a RDF triple in

which <lamb> is the subject, <eats> is the predicate and

<grass> is the object. Formally, IRI2 is the short name of

Internationalized Resource Identifier that is used to uniquely

identify an RDF resource. BlankNode3 is an intermediate node

that is used to connect other nodes together. In RDF triples,

Literals4 are used for values such as strings, numbers, and

dates.
RDF Graph: An RDF graph G is a set of RDF triples and

is defined as:

G = (N,E), N ⊆ subject ∪ object, E ⊆ predicate

In an RDF Graph, subject and object of a triple can be

nodes of the graph while the predicate denotes the relationship

between them and can be represented by an arrow. An RDF

Graph example is shown in Fig. 1 (a).
OWL: Web Ontology Language (OWL) is a Semantic Web

language designed to represent rich and complex knowledge

about things, groups of things, and relations between them.

OWL is based on the basic elements of RDF but adds more

vocabulary for descibing web of ontology. Therefore, an OWL

graph is actually an RDF graph. An example of OWL can be

found in Fig. 1 (b).

Fig. 1. (a) An example of RDF graph. (b) An Example of OWL graph, here,
an OWL predicate owl:disjoint is used to declare that lamb is different from
grass.

Similarity-Flooding: Similarity-Flooding is a general graph

matching algorithm that is used to calculate similarity between

nodes in one or two graphs. It assumes that the similarity

between two nodes can be also propagated to their neighbors

(adjacent nodes). Furthermore, the more neighbors two nodes

have, the less similarity they can propagate to each neighbor.

The exact amount of similarity that two nodes can propagate

is equal to the inverse number of their neighbors’ product, i.e.,

the propagation is 1
N1×N2

, where N1 and N2 are the neighbors

of two nodes respectively. Obviously, similarity propagation

is an iterative process since a node pair can only propagate

similarity to direct neighbors at a time. For instance, a classic

example of similarity flooding is showed in Fig. 2.

III. PROBLEM STATEMENT

Ontology is described in triples which can be connected as a

directed graph. The idea of matching semantic heterogeneity

2http://www.w3.org/TR/rdf11-concepts/#dfn-iri
3http://www.w3.org/TR/rdf11-concepts/#dfn-blank-node
4http://www.w3.org/TR/rdf11-concepts/#dfn-literal

Fig. 2. The classic example of similarity flooding. S0(x, y) means the initial
similarity between x and y is always set as 1.0. S1(x, y) means the similarity
after first iteration. O1 and O2 are two RDF graphs.

is to apply mature graph matching algorithms on ontology

graph. In practice, three state of the art matching systems,

YAM++, LILY and CroMatcher use similarity flooding as its

core structural matcher and achieve an impresive performance

in 2013 and 2015 OAEI ontology matching contest [13].
However, there still exist an innate problem hiding in sim-

ilarity flooding approach that might lead to wrong matching.

Error Propagation: Correct mapping pairs propagate simlar-

ity to their neighbors but incorrect mapping pairs propagate

wrong similarity to their neighbours. As Fig. 3 shows, land
and sea are asserted as equal due to the incorrect similarity

propagated from (lamb, grampus) and (grass, seal) which are

wrong mappings. In this case, two ontologies describe two

different things but share similar graph structure which is

constituted by two edges, eats and found. Indeed, similarity-

flooding-based ontology matching would fail if two ontologies

share similar graph structure but describe different domains,

e.g., an ontology about land animal with an ontology about

sea animal.

Fig. 3. An example of error propagation in ontology matching by using
similarity flooding. In this case, the calculation reach the fixpoint after eight
iterations, marked as S8

The authors of LILY [12] also report such problem.They

try to use more strict constrains and thresholds to prevent

errors from one mismatched pair to propagate similarity to

their neighbors. However, such constrains and thresholds are

hard to set since different evironments or different ontologies

would require different constrains and thresholds. Further-

more, ontology matching tasks ususally do not have a training

set for threshold learning. YAM++ [11] assumes that error

propagation can be eliminated after several iterations but they

did not give the evidence to support this assumption.
In this paper, we propose a novel structural matching

approach which fundamentally resolve the error propagation

in ontology matching. The idea behind our approach is quite

simple: if two ontologies can be matched, they must share

some concepts. More specifically, similarity should not be

1109

Fig. 4. Overview of the approach. The first step is Ontology as Graph which is used to transform an OWL ontology to a proper RDF graph. The second
step is Terminological Matching which applies various string matchers to connect two ontology in terminological level. Structural Matching, the third step,
is trying to deeply match the ontologies in structural level. The last step is Candidates Selection which is used to select the final mappings.

calculated if two ontology graphs are not intersected. The

details of the approach are desrcibed in section V and section

VI.

IV. OVERVIEW OF THE APPROACH

The global pipeline of the approach, as shown in Fig.

4, consists of four processes named Ontology as Graph,

Terminological Matching, Structural Matching and Candidates
Selection.

OWL ontology can be equivalently transformed into RDF

triples using OWL-Triple5. In order to keep the consistency

between OWL-ontology and OWL-triples, OWL-Triple applies

BlankNode to express restriction and collection. However,

BlankNode lengthen the graph distance between two relative

nodes, though hiding their semantics. Thus, the first process

Ontology as Graph creates a complete ontology graph in

which relative nodes are directly connected. The details of

OWL ontology transformation are described in Section V.

Reminding that the idea of the approach is that the similarity

between ontology nodes can be measured iff two ontology

graphs are intersected somewhere (i.e. ontology matching

requires at least one shared node between two ontologies).

Thus, the second process Terminological Matching is designed

to discover easy-to-find mappings in order to connect two

ontologies as much as possible. Terminological Matching

usually applies string-based matchers to match the information

about label, name, title, comment and other string informa-

tion between two ontologies. As string-based matchers can

be used Jaccard-Similarity, Levenshtein-Distance, Wordnet-

based-Similarity or other metrics. In our approach, Lin-

Similarity [19], a wordnet-based similarity metric, and Lev-

enshtein combined with Jaccard-Similarity are applied for

Terminological Matching.

Once Terminological Matching process has finished, a con-

nected graph is generated. The graph consists of the two

ontologies connected by mapping nodes from Terminological

Matching. Then, the Structural Matching process is applied on

graph to discover correspondences between two ontologies. In

5http://www.w3.org/TR/owl-parsing/

this paper, we propose a novel approach on structural matching

that is discussed in section VI in details.
After matching, mapping candidates are listed. In candi-

dates selection process, all candidates are ranked and selected

according to one-to-one mapping rule, conspicuousness and

similarity threshold.

V. ONTOLOGY AS GRAPH

In order to take advantage of the structured information of

an ontology, we need to treate it as a graph. As in section

IV the first step of the approach is to transform ontology

into a graph. Ontologies we deal with are usually OWL

ontologies which are based on RDF triples, or RDF graph.

In OWL ontology classes, instances, properties, restrictions

and statements can be transformed into RDF triples according

to OWL-Triples transformation rules.
Though OWL ontology can be completely transformed into

RDF graph by OWL-triples transformation rules, there are

still two elements in OWL ontology which cannot fit our

requirements after transformation. These elements are Restric-

tion and Collection which added at least one BlankNode while

building the graph, thus reducing its semantics. Considering

the example shown in Fig. 5, a restriction restricts that a lamb
can eat grass. In RDF graph, this restriction is represented as

the node lamb is a subclass of a BlankNode “ :a” which

has owl:someValue link with grass. The BlankNode “ :a”
contains very weak semantics in this RDF graph because it

is used just to hold a position to connect lamb, eats and

grass together. Therefore, lamb, eats and grass are indirectly

linked while these nodes are supposed to be directly linked

instead. To solve this disadvantage, we extend RDF graph by

introducing Similarity Graph.
Definition 1: a Similarity Graph Gs is an extended RDF

Graph defined as:.

Gs = (N,E ∪ Eaux)

where N ⊆ subject ∪ object

E,Eaux ⊆ predicate, E ∩ Eaux = ∅
Similarity Graph Gs is an extension of OWL/RDF graph by

adding auxiliary edges Eaux on OWL Restriction and RDF

1110

Collection. Eaux is a new edges set (i.e., E ∩ Eaux = ∅).

Edges in Eaux hold different semantic meanings from the

edges in E. For instance, an auxiliary edge aux:range does

not share the same semantics with rdfs:range. In ontology

matching, auxiliary edges are treated as different edges with

respect to original edges. We create two transformation rules

for adding auxiliary edge into OWL graph.

Transformation Rule 1: Restriction: IF N1

rdfs:subClassOf N2 AND N2 rdf:type owl:Restriction
AND N2 owl:onProperty N3 AND N2 condition N4, THEN,

a new triple N1 aux:localname(N3) N4 is added. Here, the

condition is a set of OWL restriction properties6 such as

owl:someValueFrom, owl:allValueFrom, owl:cardinality, etc.

An example of restriction transformation is shown in Fig. 5.

Fig. 5. Ontology Restriction as RDF-Triples. Using auxiliary edge aux:easts
to directly link lamb and grass

Transformation Rule 2: RDF Collection. IF N1 edge
N2 AND N2 rdf:type rdf:List, THEN, add new triples N1

aux:localname(edge) (each nodes in N2). An example of

collection transformation can be found in Fig. 6.

Fig. 6. RDF Collection as RDF-Triples. Using auxiliary edge aux:range to
directly link found, land and sea

To summarize, an OWL ontology can be represented as an

RDF Graph according to OWL-Triple transformation rules.

However, Restriction and Collection of OWL ontology are

transformed into RDF graph by adding BlankNodes which

lengthen the distance between relative nodes. In order to take

advantage of the structural information in ontology matching,

we extend RDF graph by adding auxiliary edges to directly

connect relative nodes on transforming of Restriction and

Collection.

VI. STRUCTURAL MATCHING

As shown in Fig. 4, the first process of ontology matching

is Ontology as Graph, which tranforms two ontologies into

a proper graph. The second process Terminological Matching
initially connects two ontologies together by finding easy-to-

match pairs between which an owl:sameAs link is then added.

In this section, we will explain the core method of Structural

6http://www.w3.org/TR/2004/REC-owl-features-20040210/#s3.4

Matching. As discussed, similairity flooding is widely used to

discover deep mappings in ontology matching. It implies that

similarity can be propagated from one similar pair to their

neighbor pairs (adjacent vertex pair). However, the key issue

is how to identify similar pairs at first place. In the example

in Fig. I, incorrect similairity is propagated due to the wrong

initial mapping pairs, where (Land and Sea are initialized as

similar pair and propagate similarity to Lamb and Grampus).

Fig. 7. An example of similarity matrix initialization and iteration. Supposing
that there are n nodes in two ontologies, a n × n similarity matrix can be
created for all node pairs. The values in the matrix will be updated after each
iteration

In our approach, we do not identify similar pairs at first

place. Instead, we initialize a similarity matrix for all node

pairs in two ontologies before structrual matching. As Fig. 7

shows, each two nodes in the matrix constitute a node pair

which has a [0,1] value for measuring their similarity, e.g.

(n1, n2) = 0.0 and (n2, n3) = 0.0. Specifically, self-pairs,

such as (n1, n1) and (n2, n2), have initially 1.0 similarity

score. Obviously, in such similairity matrix, only self-pairs can

propagate similarity to their neighbors that guarantes corrected

propagations. In structural matching, the similairity calculation

is conducted in an iterative way such that the similairity values

will be updated after each iteration.

A. Decompositing Similarity Graph by edges

Suppose that the second process Terminological Matching
finds an easy-to-match pair O1:Mammal and O2:Mammal in

Fig. 3 that connects two ontologies together. Then, the RDF

Graph in Fig. 3 can be transformed into Fig. 8 (a). The

ontology graph in Fig. 8 (a) consists of three edges that are

type, eats and found. Each edge hold its own semantics thus

we cannot just treat them as only one edge. Therefore, for

each type of edge, a sub-graph is built.

Definition 2. Sub Similarity Graph G′s is a similarity

graph set that each similarity graph in the set only contains

edges that have same name.

G′s = (Ns, Es), Es ∈ E ∪ Eaux, Ns ∈ N

For each Ns in G′s, there is at least one Es link to Ns. For

instance, a Sub Similarity Graph G′type is showed in Fig. 8

(b) that is built on the edge type. In the same way G′eats and

G′found can be built as shown in Fig. 8 (c) and Fig. 8 (d).

1111

Fig. 8. (a) Two ontologies are connected on the node pair (Mammal,Mammal).
(b) The sub graph G′

type on the edge type. (c) The sub graph G′
eats on the

edge eats. (d) The sub graph G′
found on the edge found.

B. Calculating similarity on Sub Similarity Graph

Let Sk(a, b) denote the similarity between node a and b at

the kth iteration of the complete ontology graph. Ns(a) and

Ns(b) denote the neighbors of a and b in Sub Similarity Graph

G′s respectively. The similarity between a and b at the (k +
1)th iteration in this sub graph can be calculated by averaging

all their neighbor pairs’ similarity, marked as Sk+1
s (a, b). The

formal expression is addressed in Equation 1.

Sk+1
s (a, b) =

1

|Ns(a)||Ns(b)|
Ns(a)∑

i

Ns(b)∑
j

ws(i, j)S
k(i, j) (1)

In Equation 1, Sk(i, j) denotes the aggregated similarity

in ontology graph. Similarity aggregation will be introduced

in next sub section. w(i, j) denotes the weight of similarity

contributed by any two neighbour nodes i and j of a and b.
The idea of weight is that the more edges are linked to these

two nodes, the less weight they obtain. Therefore, the weight

of (i, j) is inversely proportional to the number of neighbors

they have. The formal expression of weight w is defined in

Equation 2.

w(i, j) =

{
2

|e(i)|·(|e(i)|−1) i = j
2

(|e(i)∪e(j)|)·(|e(i)∪e(j)|−1) i �= j
(2)

In Equation 2, |e(i)| denotes the number of edges that are

linked to i and |e(j)| denotes the number of edges that are

linked to j. If i �= j the weight is inversely proportional to

the number of combination pairs in e(i)∪ e(j), otherwise, the

weight of (i, j) is the inverse proportion of the number of

combination pairs in e(i).

In practice, the direction of the edges also needs to be

taken into account. For each edge on each pair (a,b), in-degree

and out-degree should be calculated separately using Equation

1. Then, the average value on in-degree and out-degree is

calculated as the similarity value of the pair in this sub graph.

C. Aggregating similarity from sub graphs

At the end of each iteration, similarity will be aggregated

from all sub graphs. There are many aggregation strategies

including arithmetic or harmonic mean, maximum selection,

weighted mean and others. We tried different strategies in

pratice and found out that applying arithmetic mean achieves

the best performance. The formula of similarity aggregation

is addressed in Equation 3.

Sk(a, b) =
1

|G′s|
G′

s∑
s

Sk
s (a, b) (3)

In Equation 3, the similarity Sk(a, b) of a and b in complete

ontology graph is the average value of their similarity values

in all sub graphs while G′s is the set of all sub graphs.

D. Iteration Fixpoint

Fixpoint is a final status that indicates that iteration and

similarity are stable. In the approach, we compare the results

of current iteration to the results of the previous iteration. If

nothing has changed, then we stop iterating, else we continue

to the next one. In some cases, no fixpoints can be reached

due to the loop structure of the ontology graph. Thus, a

maximum iteration number should be set. In our experiment,

the maximum iteration number is set as 50.

E. Summary of structural matching

In order to express the core method more clearly, we address

the key-part of structural matching algorithm into pseudocode

in Algorithm 1.

Algorithm 1 Structural Matching

Input: Similarity Graph Gs and Sub Similarity Graph G′s
Output: Similairity Maritx M .

1: while Mcurrent �= Mlast and iteration < Maximum do
2: Mlast ←Mcurrent

3: Mcurrent ← 0 Matrix

4: for each node a in Gs do
5: for each node b in Gs do
6: sum← 0
7: for each sub graph in G′s do
8: sum← Ss(a, b) + sum
9: end for

10: Mcurrent(a, b)← sum
|G′

s|
11: end for
12: end for
13: end while
14: return Mcurrent

We apply our approach using similarity flooding on the

ontology in Fig. 8 (a). The results for each iteration are listed

in Table 1. The approach properly leverages the structural

information in ontology matching. From the results of Table

I, it is shown that error propagation has been effectively

prevented. Dissimilar pairs such as (lamb, grampus) and (land,

sea) are ranked properly with low similarity score, e.g., 0.116

1112

and 0.020 compare to 0.732 and 1.0 in similarity flooding.

Furthermore, the similarity gradient is more reasonable than it

is in similarit flooding, e.g., (lamb, grampus) has relatively

higher similarity score than (grass, seal) which itself has

higher similarity score than (grass, sea). In summary, the

approach can generate proper similarity score and reasonable

similarity gradient. In practice, proper similarity score facil-

itates matching system to discover potential mapping pairs

more broadly. Reasonable similarity gradient helps matching

system to remove incorrect mapping pairs more accurately.

TABLE I
SIMILARITY CALCULATION ON EACH ITERATION OF FIGURE 8 (A)

Pair S1 S2 S3 S4 Sim-Flooding

(lamb,grampus) 0.111 0.111 0.116 0.116 0.732
(lamb,seal) 0.111 0.111 0.112 0.112 0.359

(lamb,penguin) 0.0 0.0 0.0 0.0 0.0
(grass,seal) 0.0 0.012 0.013 0.014 0.379

(grass,penguin) 0.0 0.012 0.012 0.013 0.225
(land,sea) 0.0 0.018 0.019 0.020 1.0

(Mammal,Mammal) 1.0 1.0 1.0 1.0 1.0

VII. EVALUATION

In this section, we conduct several experimental studies.

Firstly, we provide several representative examples to give

a subjective expression on the ontology matching. Then, we

compare the approach with the state of the art matching

systems on OEAI bechmark dataset from 2011 to 2015. At

last, we discuss the proper threshold for the approach.

A. Dataset preparation

The dataset we use is selected from OAEI benchmark7.

and it is created from a bibliographic ontology which we call

source ontology. From the source ontology, 106 corresponding

ontologies are built by applying different tranformation rules8

such as random string, synonyms name, different conventions,

other languages, expansed hierarchy, suppressed properties,

etc. To match the transformed ontology with the reference one

we need to match 106 tasks which have non-sequential number

from 101 to 266, and evaluate the results on the corresponding

reference.

According to the transformation rules, the dataset can be

divided into 4 groups: (1) 101-104: in this group the ontology

is compared to a totally irrelevant one, also language general-

ization and ontology restriction are applied. (2) 201-210: the

ontology structure is preserved, but the textual information is

partially suppressed. (3) 221-247: the textual information of

the ontology is preserved, but the structure of the information

is partially changed. (4) 248-266: This is the most difficult test

set. The textual information of the ontology is suppressed, and

also the structure of the information is partially changed.

7http://oaei.ontologymatching.org
8Transformation Rule: http://oaei.ontologymatching.org/tests/

B. Result and comparison

To evaluate the performance of our approach we used

precision, recall and F-measure. Let R1 be the real matching

result of the approach and R2 be the reference result, then the

precision, recall and F-measure are calculated as defined in

Equation (4).

Precision =
|R1 ∩R2|
|R1| , Recall =

|R1 ∩R2|
|R2|

F−measure =
2 · Precision ·Recall

Precision+Recall

(4)

Based on four groups, we first conduct the full experiments

on OAEI benchmark 2014 (101-266, including all sub-tasks)

and compare with 11 state of the art matching systems using

the same data environment. The results are shown in Table II.

TABLE II
EVALUATION ON OAEI BECHMARK BIBLIO ONTOLOGY 2014 (FULL TEST

CASES).

System
Group-1 Group-2 Group-3 Group-4
101-104 201-210 221-247 248-266

Prec Rec F Prec Rec F Prec Rec F Prec Rec F
baseline 0.64 1.00 0.78 0.26 0.41 0.32 0.75 1.00 0.86 0.28 0.39 0.33

AOT 2014 0.97 0.97 0.97 0.77 0.66 0.71 0.99 0.98 0.98 0.54 0.39 0.45
AOTL 0.96 0.96 0.96 0.77 0.66 0.71 0.98 0.98 0.98 0.57 0.38 0.45

LogMapLite 0.56 0.99 0.72 0.30 0.39 0.34 0.60 1.00 0.75 0.35 0.39 0.37
LogMap-C 0.58 0.96 0.72 0.30 0.36 0.32 0.55 0.86 0.67 0.32 0.31 0.31
LogMap 0.56 0.96 0.7 0.29 0.36 0.32 0.50 0.86 0.63 0.30 0.31 0.30

MaasMtch 1.00 1.00 1.00 0.99 0.61 0.75 0.71 0.26 0.38 0.25 0.16 0.19
AML 0.00 0.00 0.00 0.71 0.26 0.38 0.95 0.95 0.95 0.69 0.32 0.44

XMap2 1.00 1.00 1.00 0.80 0.26 0.39 1.00 0.96 0.98 0.78 0.31 0.44
RSDLWB 1.00 1.00 1.00 0.79 0.39 0.52 1.00 1.00 1.00 0.77 0.39 0.52

OMReasoner 0.87 1.00 0.93 0.60 0.40 0.48 0.80 1.00 0.88 0.51 0.39 0.44
This Paper 1.00 1.00 1.00 0.99 0.86 0.92 0.99 1.00 0.99 0.96 0.68 0.79

In Table II, the baseline is a pure string-based matching

system which is used to show the base performance on this

dataset. From the results we can see that current matching

systems have all outpeformed baseline. Especially, in Group-1

(101-104) and Group-3 (221-247), most of the systems obtain

very high performance and some of them even get 100% F-

measure, such as RSDLWB [22] and XMap2 [22]. Therefore,

it can be inferred that state of the art matching systems perform

quite well on terminological matching since Group-1 and

Group-3 did not suppress textual information in ontologies.

However, in Group-2(201-210), the average performance of

all systems is relatively lower than the performance of Group-

1 and Group-3. In contrary, our approach remains stable and

gets a good result (F-measure is 24% higher than the best

system in Group-2). More prominent, compared to the systems

in Group-4 which suppress almost all textual information, our

approach gets a relatively good result(F-measure is 57% higher

than the best system in Group-4).

In order to clearly show the importance of structural infor-

mation in ontology matching, we remove all sub-tasks (e.g.

248-2, 248-4, etc.) from Group-2 and Group-4 since sub-tasks

contain richer textual information while the main tasks (e.g.

248, 249, 250, etc.) do not. The new results are shown in Table

III.

1113

TABLE III
EVALUATION ON OAEI BECHMARK BIBLIO ONTOLOGY 2014 (NO

SUB-TASKS).

System
Group-1 Group-2 Group-3 Group-4
101-104 201-210 221-247 248-266

Prec Rec F Prec Rec F Prec Rec F Prec Rec F
baseline 0.64 1.00 0.78 0.02 0.03 0.02 0.75 1.00 0.86 0.01 0.02 0.01

AOT 2014 0.97 0.97 0.97 0.48 0.45 0.46 0.99 0.98 0.98 0.00 0.00 0.00
AOTL 0.96 0.96 0.96 0.49 0.45 0.47 0.98 0.98 0.98 0.00 0.00 0.00

LogMapLite 0.56 0.99 0.71 0.00 0.00 0.00 0.60 1.00 0.75 0.00 0.00 0.00
LogMap-C 0.58 0.96 0.72 0.00 0.00 0.00 0.55 0.86 0.67 0.00 0.00 0.00
LogMap 0.56 0.96 0.70 0.00 0.00 0.00 0.50 0.86 0.63 0.00 0.00 0.00

MaasMtch 1.00 1.00 1.00 1.00 0.36 0.53 0.71 0.26 0.38 0.17 0.06 0.09
AML 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.95 0.95 0.00 0.00 0.00

XMap2 1.00 1.00 1.00 0.00 0.00 0.00 1.00 0.96 0.98 0.00 0.00 0.00
RSDLWB 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

OMReasoner 0.87 1.00 0.93 0.00 0.00 0.00 0.80 1.00 0.89 0.00 0.00 0.00
This Paper 1.00 1.00 1.00 0.98 0.85 0.91 0.99 1.00 0.99 0.90 0.38 0.53

As the results show in Table III, almost all systems fail to

match the ontologies in Group-2 and Group-4 when almost all

textual information is removed. In Group-2, except of baseline,

only three systems, AOT 2014, AOTL and MaasMtch, could

get nonzero result compare to only one system with nonzero

result in Group-4. In contrary, our approach still gets a good

result in Group-2 (0.98 precision and 0.85 recall) and a

relatively good result in Group-4 (0.90 precision and 0.38

recall). Comparing to other systems in OAEI 2014 bechmark

test, we get 72% increase on F-measure in Group-2. In Group-

4, in which all textual information are removed, it is hard to

compare the results since almost all other systems cannot find

any matchings.

For a more complete evaluation, we also conduct four

experiments on OAEI benchmark dataset from 2011 to 2014.

The results are shown in Table IV.

TABLE IV
EVALUATION ON OAEI BECHMARK BIBLIO ONTOLOGY. COMPARISON

WITH TOP-15 MATCHING SYSTEMS FROM 2011 TO 2014

System
2011 2012 2013 2014

F-meas F-meas F-meas F-meas
YAM++ 0.74 0.83 0.89 -

CroMatcher - - 0.88 -
AROMA - 0.77 - -

CIDER-CL - 0.75 - -
IAMA - 0.73 - -
CODI 0.73 - - -
CSA 0.72 - - -

ODGOMS - - 0.71 -
AUTOMSv2 - 0.69 - -
Wikimatch - 0.62 0.69 -
MaasMtch - 0.60 0.069 0.56

Hertuda - 0.68 0.68 -
Hotmatch - 0.66 0.68 -
RSDLWB - - - 0.66

AOTL - - - 0.65
This Paper - 0.88 0.88 0.88

We could not obtain consistent results in 2011 with other

systems since the dataset published on the site today is differ-

ent from the dataset that have been used in the competition.

However, from 2012, the dataset of the benchmark becomes

stable, meaning that if a system gets a result in 2014, it is

likely to get the same or similar result in 2013, and 2012.

As the results in Table IV shows, the best matching system

YAM++, started from 2011, keeps progressing each year (from

0.74 in 2011 to 0.89 in 2013). It is not only an effective

ontology matching approach but also a well designed matching

system. Similar to YAM++, CroMatcher also gets a good result

(0.88) in 2013. Although YAM++ and CroMatcher have good

performance, our approach can achieve comparable result with

them. Furthermore, since the paper is aimed to show how

structural information helps ontology matching and how to

correctly leverage structural information in ontology matching,

it is not yet a matching system.

C. Summary of the experiment

The results from four experiments on OAEI benchmark

from 2011 to 2014 show that the proposed approach is a good

method to be applied in ontology matching. From the result

of Group-1 and Group-3 in Table 2 and Table 3, our approach

can achieve comparable performance with other state of the

art matching systems. Significantly, on matching structural

ontologies (Group-2 and Group-4 in Table II and Table III), the

approach significantly outperforms other matching systems. As

showed in Table IV, compare to all ontology matching sys-

tems from OAEI-2011 to OAEI-2014, our approach achieves

comparatively high performance on the benchmark test (0.88

F-measure).

VIII. RELATED WORKS

As discussed in the paper, there are two main approaches

in ontology matching classified by the orientation of the

ontologies. Rich-text ontologies require more effort on string

matching, such as biomedical ontologies9 and anatomy ontol-

ogy10. In the contrary, rich-structure ontologies require more

effort on structure matching such as Biblio11 and DogOnto12.

Note that string-based and structure-based methods are used

together in ontology matching systems.

A. String-based ontology matching

String-based ontology matching methods are summarized in

[14]. In this paper it is also shown how well can pure string

matchers perform in ontology matching. From the results

pure string-based methods achieve comparable results with

state of the art ontology matching systems applied in rich-

text ontologies (anatomy and multifarm ontology). In general,

the classic of pure string-based methods include Jaccard,

Levenstein, TF-IDF [6], Jaro-Winkler [21] and WordNet series

(e.g. in [15] wup measure calculates relatedness by considering

the depth of two synsets in WordNet taxonomies) are widely

used in state of the art ontology matching systems. AROMA

[16] is a well designed matching system based on Jaro-

Winkler string matcher. Since it mainly relies on textual

information, it cannot obtain good recall when alteration

affects text annotation both in class/property description and

9http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2014/
10http://oaei.ontologymatching.org/2014/anatomy/anatomy-dataset.zip
11http://oaei.ontologymatching.org/tests/101/onto.rdf
12http://elite.polito.it/ontologies/dogont.owl

1114

in their individual/property values in ontologies. CODI [17]

combines Cosine, Levenshtein, Jaro Winkler, Simth Waterman

Goto, Overlap Coefficient and Jaccard similarity measures

with specific weights that guarantee high precision in ontology

matching. Innovatively, SILK [18] applies an unsupervised

algorithm to automatically combine all above string-based

matchers to obtain good results in different ontology matching

environments. Even so, both CODI and SILK cannot obtain

good recall matching ontologies where textual information is

rare.

B. Structure-based ontology matching
Similarity-Flooding [10] and Simrank [20] are two basic and

widely used structural matching approaches. The former as-

sumes that the similarity between two nodes can be propagated

to their neighbors by shared links. But the latter realizes that

two nodes are similar if all their neighbors are similar. As we

mentioned in section II, error propagation is an inevitable fea-

ture of similarity flooding since errors can be also propagated

when similarities are propagating. Nevertheless, after many

improvements, designing and parameters learning, a few but

not many state of the art matching systems based on similarity

flooding have already achieve a good performance in ontology

matching where textual information is rare. Representatively,

YAM++ [11] and LILY [12] are two best matching systems

in OAEI benchmark test which implement similarity flooding

as their core matcher. By applying more strict constrains

and thresholds in specific datasets, error propagation can be

prevented. However, it is hard to dynamically set proper

constrains and thresholds for generic usage.

IX. CONCLUSION

Ontology matching is an important part of enabling the

semantic web to reach its full potential. There are two primary

challenges in ontology matching called terminological hetero-

geneity and structural heterogeneity. State of the art match-

ing systems almost solved the terminological heterogeneity.

However, semantic heterogeneity which is cased by the het-

erogenous structure of ontology still remains a challenge to the

current matching systems. In the paper, we proposed a novel

structural matching approach which is focused on solving

structure heterogeneity in ontology matching. By matching

two ontologies on terminological level and only set similarity

to self-pairs before structural matching, the error propagation

that appears in normal structural matching has been effectively

prevented. By aggregating structural similarity from Graph

Slices of ontology, structural information of ontology are

leveraged to facilitate ontology matching. The first try of the

approach on OEAI benchmark test (2011 to 2014) shows

that the approach is quite effective in dealing with structural

heterogeneity in ontology matching.

ACKNOWLEDGMENT

The paper have been supported in part by National Nat-

ural Science Foundation of China under contract number

71171132, and 61373030. We would like to thank Gu Yizhi

for helping running the experiments.

REFERENCES

[1] P. Shvaiko and J. Euzenat, Ontology matching: state of the art and future
challenges, IEEE Transactions on Knowledge and Data Engineering
(2013).

[2] J. Euzenat and P. Shvaiko, Ontology matching, Springer, 2007.
[3] J. Euzenat and H. Stuckenschmidt, The ’Family of Languages’ Approach

to Semantic Interoperability, Knowledge Transformation for the Semantic
Web (2003): 49-63.

[4] M. Horridge and S. Bechhofer The OWL API: A Java API for OWL
ontologies., Semantic Web (2011): Volume 2, number 1, 11-21, .

[5] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and
K. Wilkinson Jena: implementing the semantic web recommendations,
Proceedings of the 13th international World Wide Web conference on
Alternate track papers (2004): 74-83.

[6] W. Cohen, P. Ravikumar and S. Fienberg A comparison of string metrics
for matching names and records, Kdd workshop on data cleaning and
object consolidation, Volume 3, pages 73–78, 2003.

[7] D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. Cruz, and F. M. Couto,
The agreementmakerlight ontology matching system, On the Move to
Meaningful Internet Systems: OTM 2013 Conferences, pages 527–541,
2013.

[8] E. Jiménez-Ruiz, and B. C. Grau, Logmap: Logic-based and scalable
ontology matching, The Semantic Web–ISWC (2011): 273-288.

[9] M. Fahad, M. Nejib, and A. Bouras. Detection and resolution of semantic
inconsistency and redundancy in an automatic ontology merging system.
Journal of Intelligent Information Systems (2012): 535-557.

[10] S. Melnik, H. G. Molina, and E. Rahm. Similarity flooding: A versatile
graph matching algorithm and its application to schema matching. 18th
International Conference on Data Engineering, Proceedings (2002).

[11] N. DuyHoa, and Z. Bellahsene. YAM++: A multi-strategy based
approach for ontology matching task., Knowledge Engineering and
Knowledge Management. Springer Berlin Heidelberg (2012): 421-425.

[12] W. Peng, and B. Xu. Lily: Ontology alignment results for oaei
2008., Proceedings of the Third International Workshop on Ontology
Matching(2008).

[13] B. C. Grau, Z. Dragisic, K. Eckert, J. Euzenat, A. Ferrara, R.
Granada, V. Ivanova, E. Jimenez-Ruiz, A. Kempf, P. Lambrix and O.
Zamazal. Results of the ontology alignment evaluation initiative 2013.,
International Workshop on Ontology Matching, collocated with the 12th
International Semantic Web Conference(2013).

[14] M. Cheatham and P. Hitzler. The properties of property alignment.,
Proceedings of the 9th International Workshop on Ontology Matching
collocated with the 13th International Semantic Web Conference (2014):
13-24.

[15] Z. Wu and M. Palmer. Verb semantics and lexical selection., In Proceed-
ings of the 32nd Annual meeting of the Associations for Computational
Linguistics (1994): 133-138.

[16] J. David and F. Guillet Association Rule Ontology Matching Approach.,
International Journal on Semantic Web and Information Systems 3.2
(2007): 27-49.

[17] J. Huber, T. Sztyler, J. Noessner, and C. Meilicke. CODI: Combinatorial
Optimization for Data Integration Results for OAEI 2011., Ontology
Matching 134 (2011).

[18] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk-A Link Discovery
Framework for the Web of Data., LDOW (2009), 538.

[19] Lin, Dekang. An information-theoretic definition of similarity., ICML.
Vol. 98. 1998.

[20] G. Jeh and J. Widom. SimRank: a measure of structural-context similar-
ity., In Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining (2002): 538-543.

[21] W. E. Winkler. The state of record linkage and current research prob-
lems., Statistics of Income Division, Internal Revenue Service Publication
R99/04 (1999).

[22] Dragisic, Zlatan, et. al Results of the ontology alignment evaluation
initiative 2014. Proceedings of the 9th International Workshop on On-
tology Matching Collocated with the 13th International Semantic Web
Conference (ISWC 2014). 2014.

1115

