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SUPPLEMENTARY INFORMATION

Beam anti-diffraction law in the paraxial KGE
regime

The starting model for the optical amplitude A in the
paraxial approximation, is written as
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Separating the variables,

A(x, y, z) = α(x, z)β(y, z), (2)

α obeys the equation
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while the same equation applies for β with x replaced by
y. Eq. (3) is satisfied by (α0 is an arbitrary constant)
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with a ≡ (1− L2/λ2)/k2w4
0x; wox is the arbitrary initial

beam in the x−direction. The waist of the beam in the
x−direction (analogous for the y−direction) along the
propagation direction z is
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For an initially radially symmetric beam, such that wox =
woy = w0, the circular waist in two transverse dimensions
is given by
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FIG. 1: (Figure S1. ) Thermal hysteresis in the low-frequency
relative dielectric constant εr(0). The macroscopic difference
between the cooling and heating curves signals the presence
of a non-ergodic behavior in proximity of the Curie point.

which, for the paraxial condition kw0 � 1, gives Eq.(1) of
the main text. The effect is expected for all wavelengths
for which photorefractive response is efficient (400-800
nm). For λ1 �= λ2,L1 �= L2 because n0 depends on λi, so
that propagation will be described by L1/λ1 �= L2/λ2 ,
and anti-diffraction will intervene at λi when Li/λi > 1.

Identification of the non-ergodic region near TC

In Fig.(S1) we report dielectric constant measurements
on the sample. The electric field is delivered through
plane parallel electrodes sputtered on the crystal facets
using a precision LCR-meter (Agilent- 4284A) applying a
100 mV voltage at the frequency of 1 kHz. Temperature
variations are achieved through a closed two stage helium
cryostat (in a vacuum configuration) for the range 250-
300 K, with a scan rate of 0.1 K/min. The acquisition
time of 5 ms and the slow T scan rate render each sin-
gle εr(0) measurement isothermal. Temperature is mon-
itored through a calibrated silicon diode. The strong
thermal hysteresis (i.e., dependence of the εr(0) versus
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FIG. 2: (Figure S2. ) (a) Dielectric measurements of the
Fröhlich entropy [3–5] (per volume unit, normalized to the
squared probe-field amplitude) in proximity of the Curie
point and (b) blow-up of shaded region illustrating phase-
fluctuations from liquid-like to solid in the heating stage.

T curve on the fact that cooling or heating is being en-
acted) that emerges in proximity of the temperature at
which the εr(0) peaks (TC) pinpoints the cross-over re-
gion, i.e., where the crystal response is history-dependent
(non-ergodic). To analyze in more detail the nature of
the non-ergodic phase, in Fig.(S2) we report the changes
of entropy (for unit volume) in isothermal conditions in
response to the application of the probing alternating
bias field of amplitude E [1–5]

S(T ) = S0(T ) +
E2ε0
2

∂εr(0)

∂T
= S0(T ) + SE(T ), (9)

where S0 is the entropy of the system at zero field, ε0 is
the vacuum permittivity, εr(0) is the quasi-static relative
dielectric constant (associated to the real part of the di-
electric susceptibility in the low frequency limit), and T
is the absolute temperature of the crystal. Specifically,
SE is the entropy change associated to the polarization
of the dielectric in response to the field, and is propor-
tional to ∂εr(0)/∂T : the application of an electric field
increases the entropy if ∂εr(0)/∂T is positive, while it de-
creases entropy if the same quantity is negative. In dis-
ordered systems, e.g. in liquids, an applied field creates
order, since it orients the electric dipoles (permanent or
field-induced) otherwise randomly arranged. As a con-
sequence, the entropy variation induced by the field is
negative, then ∂εr(0)/∂T is negative. On the contrary,
in crystalline solids under an electric field, a fraction of
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FIG. 3: (Figure S3.) Quasi-isothermal preparation pro-
tocol based on a non-monotonic T (t). Temperature
shocks versus standard cooling. Schematic of the thermal
shock associated to the quasi-isothermal excitation of an out-
of-equilibrium response along with details of the shock, i.e.,
depth of the shock ∆T and duration of the shock ∆t (note
the three examples)

the dipoles undergoes discontinuous transitions between
preferred orientations: this gives rise to an increase of
the entropy of the system, then ∂εr(0)/∂T is positive.
When phase transitions are considered, a solid-solid (or-
der/order) transition manifests itself as a variation of the
positive slope of the εr(0) versus T curve, since the en-
tropy contribution supplied by the field is positive both
before and after the transition, with values in accordance
to the degree of order of the two phases. In turn, a solid-
liquid (order/disorder) transition will amount to a slope
reversal and in SE as a change from positive to nega-
tive values. The rapid and erratic shifts from the low to
the high entropy states reported in Fig.(S2) indicate a
dynamic phase for T − TC > 3◦C.

Naturally converging beams in the εm < 0 regime

The εm < 0 regime profoundly alters the effects of
diffraction. In a standard material with ε > 0, point-like
sources give rise to spherical waves: to achieve a point-
like focus, we need to converge light from all possible
directions and, equally, to observe a point-like detail, we
need to collect light from all angles. In practice, only a
part of this ideal sphere is accessible, so that the achiev-
able resolution is much less than that conceptually com-
patible with propagation theory, w0 ∼ λ/2n, where w0
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FIG. 4: (Figure S4.) Time evolution of anti-diffraction.
Time sequence of the HE-KGE transition for the propagat-
ing beams showing how the shrinking beam regime is time
resolved.
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FIG. 5: (Figure S5.) (a) Values of minimum εm as a function
of the amplitude ∆T identifies the existence of a threshold re-
gion that activates the dipolar glass in the equilibrated state
at the operating temperature TB , as expected for a glassy sys-
tem subject to nonmonotonic thermal trajectories. (b) Inde-
pendence of the minimum value of εm for an above-threshold
∆T (t) = 4.7◦C on the dwell time ∆t at the lower quenching
TD of the trajectory.

is the minimum spot size, λ the optical wavelength, and
n the material index of refraction. w0 and the angular
portion of the wave-vectors intercepted ∆k0 form a trade-
off governed by the inequality (∆k0)

2w2
0 > 1/n2 = 1/εr,

where k0 = 2π/λ is the vacuum optical wave-number, εr
the relative material permittivity at optical frequencies.
This trade-off limits all optical systems. For example,
for paraxial beams, in the focal plane of a lens of focal
length f the beam spot is at minimum w0 � fλ/wπn,
where w is the spot of the input beam. This implies that
to observe small micrometric details optically, large ob-
jectives with short focal lengths are required, and this

Here we have normalized graph D to the value at Ip=Ir 
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FIG. 6: (Figure S6.) Scan of output minimum FWHM (in
conditions of anti-diffraction) at different peak intensities nor-
malized to Ir = 1.4kWcm−2. Anti-diffraction is found to be
intensity-independent, as expected from the validity of the
KGE model, apart from a dilation of the time scales of the
response, which grow approximately in proportion to the in-
verse of the beam power P .

limits our ability to observe objects embedded deep in a
sample. In the ε < 0 case, the relative sign of the trans-
verse diffraction operator changes in the paraxial prop-
agation equation, and the trade-off condition poses no
limitations. In this case, beams can be made to converge
irrespective of the intercepted angular spread. The ε < 0
regime overcomes the limits associated to the trade-off
inequality and enhances spatial resolution in a manner
analogous to a perfect lens in metamaterials, but with-
out the requirement of a nearby optical resonance and
a simultaneous µ < 0 response. We underline that close
enough to the point-like focus zc, light will be transferred
into the realm of non-paraxial optics, typical of subwave-
length propagation.
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FIG. 7: (Figure S7.) Precursor phenomena in the formation of ultra-tight beams. The crystal is initially rapidly
cooled (at a cooling rate of 0.08 ◦C/s) to the lower quenching temperature TD = 10◦C. In distinction to previous thermal
shock experiments, the crystal is at this point exposed to the propagating beam. It is then reheated to TB = 14.5◦C, the
final operating temperature, at a heating rate of 0.2 ◦C/s. (a) Wide area (low resolution) images of the intensity distribution.
Initially the beam encounters a locked , cluster-like, structure reminiscent of the ferroelectric state that subsequently gives way
to a disordered structure where clustering is absent. As this occurs, the beam collapses from a highly disordered output intensity
distribution to a localized spot, to then subsequently relax into a once again disordered and scattered output distribution. (b)
Input intensity distribution and three-dimensional rendering. (c) Output intensity distribution and three-dimensional rendering
after 30s from the instant in which TD is reached.
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