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Chaotic social interaction via endogenous reactivity
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We propose a framework to analyse the dynamical process of decision and opinion
formation of two economic homogeneous and boundedly rational agents that interact
and learn from each other over time. The decisional process described in our model is
an adaptive adjustment mechanism in which two agents take into account the
difference between their own opinion and the opinion of the other agent. The smaller
that difference, the larger the weight given to the comparison of the opinions.
We assume that if the distance between the two opinions is larger than a given
threshold, then there is no interaction and the agents do not change their opinion
anymore. Introducing an auxiliary variable describing the distance between the
opinions, we obtain a one-dimensional map for which we investigate, mainly via
analytical tools, the stability of the steady states, their bifurcations, as well as the
existence of chaotic dynamics and multistability phenomena.

Keywords: adaptive decisional mechanism; bifurcations; multistability; complex
dynamics

AMS Subject Classification: 37N40; 39A28; 39A60; 91B55

1. Introduction

In this paper we propose an approach according to which economic and social decisions

are the result of social interactions of homogeneous and boundedly rational agents that

learn from each other over time. In fact, differently from the traditional economic models,

in our framework the dynamical process is not explained by optimal intertemporal

trajectories that are defined by constant preferences and well-defined budget constraints,

but rather by the behaviour of homogeneous interacting agents that adapt their decisions in

accordance with the other players’ choices. Our model conforms with some approaches

analysing the motivations of decision-making within disciplines such as sociology,

psychology and marketing [2]. In the present paper we do not consider what is called

intrinsic utility of the decision process, that is, utility derived from the economic and social

activities. We take into account only external influences derived from the observation of

the others’ behaviour: we adopt such an approach in order to highlight the role of social

interaction as a source of continuous update of the decisional process.

More precisely, in the present paper we propose a framework with two interacting

agents, in which each agent weights the decision or the opinion of the other agent to a

certain extent in forming his/her own new decision or opinion. This process is modelled by

an adaptive adjustment mechanism. In particular, similarly to what was assumed in [5,14],
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the weight with which an agent takes into account the difference between his/her own

opinion and the opinion of the other agent is related to the distance between the two

opinions, that is, the smaller that distance, the larger the weight given to the comparison of

the opinions. However, differently from [5,14], we assume that if the distance between the

two opinions is larger than a given threshold, then there is no interaction and each agent

does not change his/her own opinion anymore.

Given this decisional mechanism, we tackle the issue of the evolution of the opinions over

time, that is, whether they converge towards unanimity or whether they give rise to other kinds

of dynamical behaviours. In doing this, we introduce an auxiliary variable, describing the

distance between the two agents’ opinions. In such a way, we are led to consider a one-

dimensional (1D) dynamical system, for which we find a steady state in the origin,

corresponding to the unanimity scenario, and a continuum of steady states related to the

situation in which opinions are much different and thus agents do not interact and do not

modify their opinions anymore. From a dynamical point of view, the only interesting steady

state is the origin, given the instability of all other steady states. We find that an excessive

reactivity destabilizes the unanimity fixed point through a first period-doubling bifurcation. A

further increase in the reactivity parameter destabilizes the period-two cycle that, differently

from the classical period-doubling bifurcation scenario, gives rise, through a double pitchfork

bifurcation of the second iterate, to two coexisting period-two cycles, which in turn bifurcate

giving rise to a sequence of coexisting attractors of the same type until the emergence of chaos.

Among the results above, we analytically investigate the stability of the unanimity steady

state and the flip bifurcation through which it loses the stability, the double pitchfork

bifurcation of the second iterate and the presence of chaotic dynamics. In particular, the

existence of chaos is proved via the expander method in [7]. For the reader’s convenience,

we recall which concepts that technique is based on and we compare it with other well-

known approaches in the chaos literature, explaining why, in the present framework, they are

not convenient, or simply not working. In doing this, we also prove the existence of an

absorbing interval for our dynamical system when the reactivity parameter is not too large.

On the other hand, due to the complexity of the computations involved, we show only

numerically the subsequent period-doubling bifurcations of the coexisting periodic

attractors leading to two coexisting periodic attractors, which merge into a unique attractor

when increasing the reactivity parameter.

The remainder of the paper is organized as follows. In Section 2 we present our model.

In Section 3 we perform the stability and bifurcation analysis, both analytically and

numerically. In Section 4 we rigorously prove the presence of an absorbing interval and of

complex dynamics, and we compare the technique we employ with other techniques in the

existing chaos literature. In Section 5 we discuss our results and draw some conclusions.

2. The model

Consider two agents, A and B, between whom a decision formation process takes place.

We suppose that each agent takes into account the decision of the other agent to a certain

extent in forming his/her new own decision. This dynamic adaptive decision process can

be repeated again and again and leads to a dynamical process in discrete time. It is

assumed that the decision of each agent is expressed by a real number, that is, the process

is represented as a continuous decision dynamics, in contrast to the case of binary decision

dynamics. For each agent i [ fA;B}; we denote his/her decision at time t [ f0; 1; 2; . . . }
by yiðtÞ. Thus, yiðtÞ is a real number and the two-dimensional (2D) vector yðtÞ ¼
ðyAðtÞ; yBðtÞÞ [ R2 represents the decision profile at time t. Fixing an agent i [ fA;B}, the
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variation between his/her decisions at time t þ 1 and at time t is proportional to the

difference between his/her own decision and the decision of the other agent at time t and to

an endogenous nonnegative reactivity, we denote by giðtÞ. With this notation, decision

formation of agent i can be described by the following adaptive scheme

yiðt þ 1Þ ¼ yiðtÞ þ giðtÞðyjðtÞ2 yiðtÞÞ; i – j [ fA;B}; ð2:1Þ
where giðtÞ is an endogenous reactivity decreasing with the distance between the decisions
of the two agents. More precisely, we assume that the agents are homogeneous in the

reactivity, that is, gAðtÞ ¼ gBðtÞ ¼ gðtÞ, with

gðtÞ ¼
a2 bjyAðtÞ2 yBðtÞj; for jyAðtÞ2 yBðtÞj # a

b
;

0; for jyAðtÞ2 yBðtÞj . a

b
;

8>>><
>>>:

ð2:2Þ

where a and b are positive constants.

Inserting gðtÞ from (2.2) into (2.1), we obtain the 2D system

yAðt þ 1Þ ¼ yAðtÞ þ gðtÞðyBðtÞ2 yAðtÞÞ;
yBðt þ 1Þ ¼ yBðtÞ þ gðtÞðyAðtÞ2 yBðtÞÞ:

8<
: ð2:3Þ

Introducing the auxiliary variable zðtÞ ¼ yAðtÞ2 yBðtÞ, representing the difference between
the two decisions at time t, and subtracting the two equations in (2.3), we obtain

zðt þ 1Þ ¼

ð12 2aÞzðtÞ2 2bzðtÞ2; for 2
a

b
# zðtÞ , 0;

ð12 2aÞzðtÞ þ 2bzðtÞ2; for
a

b
$ zðtÞ $ 0;

zðtÞ; else:

8>>>>>><
>>>>>>:

ð2:4Þ

Through the change of variable2 xðtÞ ¼ 2ð2b=ð12 2aÞÞzðtÞ; we can rewrite (2.4) as

follows

xðt þ 1Þ ¼

ð12 2aÞðxðtÞ þ xðtÞ2Þ; for
2a

12 2a
# xðtÞ , 0;

ð12 2aÞðxðtÞ2 xðtÞ2Þ; for 2
2a

12 2a
$ xðtÞ $ 0;

xðtÞ; else :

8>>>>>><
>>>>>>:

ð2:5Þ

Setting now m ¼ 2ð12 2aÞ, we finally obtain

xðt þ 1Þ ¼

2mðxðtÞ þ xðtÞ2Þ; for 2
mþ 1

m
# xðtÞ , 0

2mðxðtÞ2 xðtÞ2Þ; for
mþ 1

m
$ xðtÞ $ 0

xðtÞ; else

8>>>>>>><
>>>>>>>:

ð2:6Þ
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with m positive parameter (since a . 1=2), whose influence we will investigate in the next
sections. Indeed, the dynamic equation in (2.6) is the one we are going to consider in the

remainder of the paper because, differently from the 2D formulation in (2.3), it can be

studied analytically and still allows to get results that are easily interpretable. For instance,

as we shall see in Section 3, the unique dynamically interesting steady state is the origin,

which coincides with the conformism scenario.

In view of the subsequent analysis, it is expedient to consider the 1D map f : R! R

related to (2.6), defined as

f ðx;mÞ ¼

2mðxþ x 2Þ; for 2
mþ 1

m
# x , 0;

2mðx2 x2Þ; for
mþ 1

m
$ x $ 0;

x; else:

8>>>>>>><
>>>>>>>:

ð2:7Þ

When comparing the dynamical system generated by the reactivity in (2.2) with the one

analysed in [14], some crucial differences emerge. Indeed, although the striking similarity

between the shape of the graph of the maps generating the two dynamical systems, we

stress that map f in (2.7) permits an analytical treatment, we are going to perform in the

next sections, while the map considered in [14] is studied mainly numerically, because of

the complexity of the computations involved. Moreover, as observed in Section 1, also the

decisional mechanisms leading to their formulations differ. In fact, in the present

framework, the reactivity in (2.2) vanishes when the distance between the two opinions is

large enough, while the reactivity considered in [14] is decreasing with the distance

between the two opinions and tends to zero in the limit, but it never vanishes.

3. Stability and bifurcation analysis

As a first step in the analysis of our system, in the next result we study the stability

conditions for the fixed point x ¼ 0. There exists in fact also the continuum of symmetric

fixed points f^x : x [ ½ðmþ 1Þ=m;þ1Þ}, but they are not locally asymptotically stable

and thus not interesting in view of the subsequent bifurcation analysis.

Proposition 3.1. For map f in (2.7) the fixed point x ¼ 0 is locally asymptotically stable if

m , 1:

Proof. The conclusion immediately follows by observing that for every x in a sufficiently

small neighbourhood of 0; it holds3 that

›f

›x
ðx;mÞ ¼

22mx2 m; for x # 0;

2mx2 m; for x $ 0:
:

8<
:

Thus ð›f=›xÞð0;mÞ ¼ 2m [ ð21; 1Þ if and only if ð0 ,Þm , 1: A

Hence, for m , 1, the origin is a stable fixed point and it loses its stability for m just

above 1: In Lemma 3.2 below we show that the stability is lost via a period-doubling
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bifurcation. In the proof we will use ([6], Theorem 2.7, p. 79) which, like other results we

will need hereinafter, requires to work with the second iterate of map f :We notice that the

formulation of f 2 slightly changes according to the value of m: Indeed, if the maximum

value of f does not exceed the value of the fixed point ðmþ 1Þ=m (and, symmetrically, the

minimum value of f is above the value of the fixed point 2 ðmþ 1Þ=m), which, as shown
in Proposition 4.2, happens for m , 2þ ffiffiffi

8
p

; then there exists an absorbing interval and the
expression of f 2 gets slightly simplified as follows:

f 2ðx;mÞ ¼

m2 xð1þ xÞð12 mxðxþ 1ÞÞ; for x [ 2
mþ 1

m
;21

� �
;

m2 xð1þ xÞð1þ mxðxþ 1ÞÞ; for x [ ½21; 0�;
m2 xð12 xÞð1þ mxðx2 1ÞÞ; for x [ ½0; 1�;

m2 xðx2 1Þðmxðx2 1Þ2 1Þ; for x [ 1;
mþ 1

m

� �
;

x; else:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð3:1Þ

Since in the results below we will consider 1þ ffiffiffi
6

p
as largest value for m, this is the only

formulation of f 2 we will use.

Lemma 3.2. For map f in (2.7) a period-doubling bifurcation occurs at x ¼ 0 when m ¼ 1:

Proof. In view of ([6], Theorem 2.7, p. 79), we just have to check the following conditions:

ðC1Þ f ð0;mÞ ¼ 0; for all m in a neighbourhood of 1;

ðC2Þ ›f

›x
ð0; 1Þ ¼ 21;

ðC3Þ ›2f 2

›x›m
ð0; 1Þ – 0:

Condition ðC1Þ is trivially satisfied since f ð0;mÞ ¼ 0; for all m:
As regards ðC2Þ; notice that ð›f=›xÞð0;mÞ ¼ 2m: Hence ð›f=›xÞð0; 1Þ ¼ 21; as

desired.

In order to check ðC3Þ, a direct computation starting from (3.1) shows that

ð›2f 2=›x ›mÞð0;mÞ ¼ 2m. Thus ð›2f 2=›x›mÞð0; 1Þ ¼ 2 – 0. This concludes the proof. A

In order to understand when new points of period two get born in the region ½21; 1�,
that is, the interesting area from a dynamical viewpoint,4 let us consider f 2j½21;1�. In fact,

since map f is odd, and thus f 2 is odd, too, we will restrict our attention to f 2j½0;1�. The
conclusions drawn there will then hold for f 2j½21;0� as well, just changing sign where needed.

The next result gathers some information about the period-two points on ½0; 1� and
their stability.

Proposition 3.3. In addition to the fixed point x ¼ 0, the points of period two for f on

½0; 1� are:
. for m . 1, ~x ¼ ðm2 1Þ=m;

A. Naimzada and M. Pireddu1226
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. for m . 3, �x ¼ ððmþ 1Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 2m2 3

p Þ=ð2mÞ and x�� ¼ ððmþ 1Þþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 2m2 3

p Þ=ð2mÞ.
In particular, ~x gets originated when the origin undergoes a period-doubling bifurcation

for m ¼ 1 and ~x is locally asymptotically stable for 1 , m , 3. For m ¼ 3, ~x undergoes a

pitchfork bifurcation and �x and x�� get born, which are locally asymptotically stable for

3 , m , 1þ ffiffiffi
6

p
.

Proof. The points of period two ~x; �x and x�� are found by solving the equation

f 2ðx;mÞj½0;1� ¼ m2xð12 xÞð1þ mxðx2 1ÞÞ ¼ x [ ½0; 1�. As usual, the stability conditions

are determined by setting ð›f 2=›xÞðx̂;mÞ [ ð21; 1Þ, where x̂ is one of the periodic points
found above. The period-doubling bifurcation of the origin has been proven in Lemma 3.2,

while, according to [21], the pitchfork bifurcation of ~x can be shown by checking the

following conditions:

ðC10Þ f 2ð~x; 3Þ ¼ ~x;

ðC20Þ ›f 2

›x
ð~x; 3Þ ¼ 1;

ðC30Þ ›f 2

›m
ð~x; 3Þ ¼ 0;

›2f 2

›x2
ð~x; 3Þ ¼ 0;

›2f 2

›x ›m
ð~x; 3Þ – 0;

›3f 2

›x3
ð~x; 3Þ – 0:

As regards ðC10Þ, a direct computation shows that f 2ð~x;mÞ ¼ ~x, for every m . 1. With

regard to ðC20Þ, it is easy to prove that, for m . 1, ð›f 2=›xÞð~x;mÞ ¼ 1 if and only if m ¼ 3.

As concerns ðC30Þ, it holds that, for m . 1, ð›f 2=›mÞð~x;mÞ ¼ ðð32 mÞðm2 1ÞÞ=m2 ¼ 0 if

and only if m ¼ 3. Moreover, ð›2f 2=›x2Þð~x;mÞ ¼ 2mð2m2 þ 5m2 6Þ ¼ 0 for m ¼ 3 and

ð›2f 2=›x ›mÞð~x; 3Þ ¼ 2 – 0. Finally, ð›3f 2=›x3Þð~x; 3Þ ¼ 2108 – 0. This concludes the

proof. A

With regard to the points of period two on ½0; 1� found in Proposition 3.3 and their

symmetric counterpart on ½21; 0�; it is easy to check that

f
m2 1

m
;m

� �
¼ 12 m

m
;

f
ðmþ 1Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 2 2m2 3
p
2m

;m

 !
¼ 2ðmþ 1Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 2 2m2 3
p
2m

and

f
ðmþ 1Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 2 2m2 3
p
2m

;m

 !
¼ 2ðmþ 1Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 2 2m2 3
p
2m

:

From the previous results, it looks evident that an increasing value for m makes the

behaviour of map f more and more complex, with the loss of stability of the previously

existing periodic points and the emergence of new periodic orbits. We illustrate this
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phenomenon in Figures 1 and 2. In particular, in Figure 1(A) parameter m is set equal to 0:5
and thus, according to Proposition 3.1, the unique fixed point, i.e. the origin, is locally stable.

In Figures 1(B) and 2(A), where we setm ¼ 2, according to Lemma 3.2, the origin has lost its

stability via a flip bifurcation and, according to Proposition 3.3, the points of period two

~x ¼ ð1=2Þ and its symmetric counterpart 2 ~x have emerged. In Figure 2(B) we increase

parameter m to 3:3, so that, according to Proposition 3.3, the two periodic points ^ ~x ¼
^0:69 lose their stability via a double pitchfork bifurcation and the period-two points

�x ¼ 0:479 and �x�¼ 0:823, as well as their symmetric counterparts 2 �x and 2 �x�, emerge. In

Figure 2(C) we set m ¼ 3:7 . 1þ ffiffiffi
6

p
and thus, according to Proposition 3.3, also ^ �x ¼

^0:39 and ^ �x� ¼ ^0:88 are no more stable.

When comparing the process described above with what happens to the logistic map

when increasing the corresponding parameter, in addition to several similarities, we also

remark a crucial difference. In fact, instead of undergoing the standard period-doubling

route to chaos characteristic of the logistic map, we observe for map f in (2.7) that when the

first orbit of period two becomes unstable, two new cycles of period two, coexisting with the

Figure 1. The graph of f with m ¼ 0:5 in (A) and m ¼ 2 in (B), respectively.
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Figure 2. The graph of f 2 with m ¼ 2 in (A), m ¼ 3:3 in (B) and m ¼ 3:7 in (C), respectively.
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old one, emerge through a double pitchfork bifurcation of f 2: Such new cycles are stable at

the beginning, but increasing m they lose stability via period-doubling bifurcations leading

to two coexisting cycles of period four, which again become unstable for larger values ofm.
Due to the difficulty in computing the forth iterate of map f, we omit the analytical

treatment of the latter steps and in the next sectionwe directly prove the existence of chaotic

dynamics. For the reader’s convenience, we however present in Figure 3 the bifurcation

diagram of f with respect to m, which illustrates the steps above and also shows that the

chaotic regime is interrupted by some periodicity windows. We stress that there is a perfect

agreement between the theoretical results and the first bifurcation values in Figure 3. In

particular, we observe the pitchfork bifurcation of the period-two cycle whenm ¼ 3 and the

subsequent emergence of two coexisting period-two cycles, which in turn bifurcate when

m ¼ 1þ ffiffiffi
6

p
< 3:45 giving rise to two coexisting period-four cycles. The latter bifurcate for

m < 3:545 generating two coexisting period-eight cycles, which in turn give rise to two

coexisting chaotic attractors in eight pieces when m < 3:574; generating two coexisting

chaotic attractors in four pieces when m < 3:576. Those give rise to two coexisting chaotic
attractors in two pieces when m < 3:593, which generate a unique chaotic attractor in two
pieces when m < 3:673, which in turn generates a unique chaotic attractor in one piece

when m ¼ 4. A periodicity window can be observed for instance for m < 3:82. As we shall
see in Proposition 4.2 below, for m , 2þ ffiffiffi

8
p

, there exists an absorbing interval

I , ð2ððmþ 1Þ=mÞ; ðmþ 1Þ=mÞ. When however m exceeds that threshold, then, for any

initial condition, the iterates of map f will eventually hit the set ð21;2ððmþ 1Þ=mÞ�<
½ðmþ 1Þ=m;þ1Þ; entirely composed of fixed points. This is the reason why in Figure 3 for

m . 2þ ffiffiffi
8

p
< 4:828 the chaotic band ends and two segments appear in its place.

4. Chaotic dynamics

In order to prove the presence of chaotic dynamics for our system, we apply the expander

method from [7]. More specifically, in Proposition 4.1 below we will use the Chaos

Figure 3. (Colour online) The bifurcation diagram for fw.r.t.m [ ð0; 7�. Source: The blue dots refer to
the initial condition xð0Þ ¼ 20:5, while the green dots are obtained for the initial condition xð0Þ ¼ 0:5.
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Lemma in [7]. With this respect, we recall hereinafter some useful definitions. We warn

the reader that sometimes we will replace the general setting in [7] with the specific

framework we are considering.

Let Q be a metric space, Q0 be a compact subset of Q and f : Q0 ! Q be a continuous

map. Let S1 and S2 be non-empty, compact and disjoint subsets of Q0 and let E be a non-

empty family of non-empty subsets of Q such that, for each E [ E and each Si; i [ f1; 2};
there exists a compact set Pi , E> Si such that fðPiÞ [ E. The family E is called family

of expanders in [7] and each E [ E is called expander.

The Chaos Lemma (cf. [7], Lemma 4) states that if the assumptions above are fulfilled,

then there exists a compact, invariant set Q* , Q0 such that map f displays on it sensitive

dependence with respect to initial conditions and each sequence on two symbols is

followed by the f orbit of a point in Q*:
Before going on with the description and the application of the results in [7], let us

illustrate through some pictures what is the idea behind the definitions above. The

expander method is in fact related to the literature on ‘topological horseshoes’ (see, for

instance [4,13,19,22]), which has as starting point the celebrated construction by Smale

[18]. The problem with the original Smale horseshoe is that in the applications it requires

to verify suitable differentiability and hyperbolicity conditions, which either are not

fulfilled or are hard to check for a given map. Hence, more general and less stringent

definitions of horseshoe have been suggested in order to reproduce some geometrical

features typical of the Smale horseshoe while discarding the hyperbolicity conditions.

Since the original horseshoe map is 2D, let us start with a planar illustration of the

expander method, explaining then how it looks like in the 1D context we are going to

consider in our application. In fact, in Figure 4 we represent a rotated version of the

original Smale horseshoe.5

In this case we enter the framework in [7] with the following positions: Q is the

Euclidean plane, Q0 is the unit square and f : ½0; 1�2 ! R2 is the ‘rotated Smale

horseshoe map’, which acts on the unit square as shown in Figure 4. The square is first

shrunk uniformly along the vertical direction and expanded along the horizontal one.

Subsequently, the elongated rectangle obtained in the previous step is bent in order to

cross the original square twice. The resulting map f is a diffeomorphism transforming

the horizontal lines of the square into lines crossing twice the domain horizontally. For

instance, in Figure 4 we show how the horizontal rectangle E is transformed by f. In
particular, we depicted with a darker colour the sub-rectangles P1 and P2 – as well as

their image-set – obtained intersecting the horizontal rectangle E with the vertical

rectangles S1 and S2; respectively. Notice that fðP1Þ and fðP2Þ are two rectangles

crossing the square horizontally, like E does. Hence, by the genericity of E, we can

conclude that, for the above choice of S1 and S2; every rectangle (more generally, every

compact and connected set) joining the vertical sides of the square, and thus crossing

Figure 4. A graphical illustration of how the ‘rotated Smale horseshoe map’ acts on the unit square.
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the latter horizontally, is an expander,6 as the f images of its intersections with S1 and

S2 have the same property.

Let us now illustrate how the concepts in [7] work in the 1D context. To such aim, we

will consider the well-known logistic map restricted to [0,1], that is

f : ½0; 1�! R; x 7! mxð12 xÞ, so that Q is the real line and Q0 is the unit interval. It

is easy to see that, as long as m . 4, the maximum value of f exceeds 1: Calling then

x1 :¼ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ð4=mÞp
2

; x2 :¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ð4=mÞp
2

the two solutions to the equation fðxÞ ¼ 1 for m . 4, we set S1 ¼ ½0; x1�; S2 ¼ ½x2; 1� and
we claim that E ¼ ½0; 1� is an expander. Indeed, defining Pi ¼ E> Si ¼ Si; i [ f1; 2}, it
holds that fðP1Þ ¼ fðP2Þ ¼ ½0; 1� ¼ E (see Figure 5). Actually, E ¼ ½0; 1� is the only

possible (connected) expander. In fact, the latter framework may be seen as a ‘flattened’

version of the 2D context exposed above, in which the length of the vertical sides of the

unit square tends to zero and the role played in the previous example by horizontal

rectangles can now be played just by the unit interval. In order to pursue further the

comparison with the Smale horseshoe, we finally notice that in the 1D framework the

image-set is placed on the y-axis but, to have a better analogue of the planar setting, it

should be rather imagined on the x-axis.

Turning back to the description of the results in [7] and, in particular, to the Chaos

Lemma recalled above, we stress that, from the proof given in [7], beyond the properties of

the compact, invariant set Q* , Q0 stated in ([7], Lemma 4) (that is map f displays on Q*

sensitive dependence with respect to initial conditions and each sequence on two symbols

is followed by the f orbit of a point in Q*), it also follows that map f is topologically

Figure 5. (Colour online) The graph of the logistic map with m ¼ 4:5: Source: The yellow and cyan
sets on the x-axis are P1 ¼ S1 and P2 ¼ S2, respectively, and the green interval on the y-axis is their
image-set E ¼ ½0; 1�.
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transitive on Q*: In order to explain the latter step, we need to recall some further

definitions. We name dynamical systems the pairs ðZ; lÞ, where Z is a compact metric space

and l : Z ! Z is continuous and onto. Given z [ Z, we call the set gðzÞ :¼ fl nðzÞ : n [ N}

the forward l orbit of z and we denote by gðzÞ its closure. Given z [ Z; we define the

v-limit set of z as vðzÞ :¼ fx [ Z : ’nj b þ1 with l nj ðzÞ! x}. According to ([20],

Theorem 5.5), vðzÞ is closed, non-empty and invariant by the compactness of Z:Moreover

it holds that gðzÞ ¼ gðzÞ< vðzÞ.
Turning back to the proof of ([7], Lemma 4), therein it is shown that there exists

x* [ Q0 such that x * [ vðx *Þ and, by construction,Q* ¼ vðx*Þ. Since x * [ vðx*Þ, by the
invariance of the v-limit sets, also all iterates of x* belong to vðx*Þ, and thus gðx*Þtvðx*Þ.
Hence gðx*Þ ¼ gðx *Þ< vðx*Þ ¼ vðx*Þ ¼ Q* and then the forward f orbit of x* is dense in

Q*. On the other hand, by the invariance of Q*, the pair ðQ*;fjQ*
Þ is a dynamical system

and, according to ([1], Lemma 3), in every dynamical system the existence of a dense orbit

is equivalent to the topological transitivity of the associated map.

In order to apply the Chaos Lemma to prove the presence of a chaotic set in our

context, in what follows we will consider m . 4 and take7

Q ¼ R; Q0 ¼ ½21; 1�; f ¼ f j½21;1�; ð4:1Þ

S1 ¼ 21;
2m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 4m

p
2m

" #
<

mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 4m

p
2m

; 1

" #
; ð4:2Þ

S2 ¼ 2mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 4m

p
2m

;
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 4m

p
2m

" #
; ð4:3Þ

E ¼ fE} ¼ f½21; 1�}; Pi ¼ E> Si ¼ Si; i [ f1; 2}: ð4:4Þ
See Figure 6 for a graphical illustration of the sets S1 and S2 when m ¼ 4:5.
Observe that, with the choices in (4.1)–(4.4), it holds that fðPiÞ ¼ E; i [ f1; 2}, and

thus the Chaos Lemma in [7] allows us to infer the existence of a chaotic set in ½21; 1�. We

summarize our findings in the next result.

Proposition 4.1. Let m . 4. Then there exists a compact, invariant set I * , ½21; 1� such
that map f displays on it sensitive dependence with respect to initial conditions,

topological transitivity and each sequence on two symbols is followed by the f orbit of a

point in I *.

We stress that we chose to employ the expander method in [7] because in the present

framework the other approaches in the chaos literature we know do not allow to prove the

presence of a complex behaviour or would lead to cumbersome computations. For

instance, an attempt would be that of trying to apply the concept of covering intervals in

[3] plus some tools from the theory of symbolic dynamics in [9,11], in order to show that

map f has positive topological entropy, i.e. one of the trademarks of chaos. Another

attempt would consist in using the ‘stretching along the paths’ (from now on, SAP)

method, already employed, for instance, in [12,17] to prove the existence of chaotic
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dynamics for both discrete and continuous-time dynamical systems. A third approach

would consist in working with the first three iterates of map f in (2.7), in order to find

suitable intervals where to apply Theorem 1 in [10] to prove the existence of chaos in the

sense of Li–Yorke, as described in conditions (T1) and (T2) in that result. This method has

recently been used to rigorously prove the presence of chaotic dynamics in [14] (see [14],

Proposition 4.2). Due to the similarity between the geometry of the present framework and

the one in [14] we strongly believe that technique should work in the present framework as

well. However, it would require to work even with the third iterate of map f, whose

expression here is not quick to compute and easy to handle. For this reason we found more

convenient to rather apply the expander method in [7].

Let us now turn back to the covering interval approach and the SAP method, in order to

explain why they seem not applicable in our framework.

As concerns the covering interval approach, we recall that, given a continuous

mapping g : R! R and two intervals I; J # R, we say that I g covers J if gðIÞ $ J, or

equivalently, if there exists a sub-interval I0 # I such that gðI0Þ ¼ J. Moreover, given a

continuous onto map g : I ! I defined on a compact interval I , R and n $ 2 closed sub-

intervals I0; . . . ; In21 # I, with pairwise disjoint interiors, we associate with the

dynamical system ðI; gÞ the n £ n transition matrix T ¼ Tðj; kÞ, for j; k [ f0; . . . ; n2 1},

defined as

Tðj; kÞ ¼
1 if Ij g covers Ik;

0 else:

(

It is possible to prove (cf. [9], Observation 1.4.2) that, when T is irreducible, i.e. for

every pair of integers j; k [ f0; . . . ; n2 1} there exists a positive integer l such that

Tlðj; kÞ . 0; then htopðgÞ $ logð �lÞ; where �l is the largest real eigenvalue of T in absolute

value, also called Perron eigenvalue of T.

As a first step towards the application of the just explained strategy, we need to find a

compact invariant interval for our map f in (2.7). In the next result we prove that, under

Figure 6. (Colour online) A graphical illustration of the construction behind Proposition 4.1 for f
with m ¼ 4:5: Source: In particular, the yellow and cyan sets on the x-axis are S1 and S2 in (4.2) and
(4.3), respectively.
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certain conditions on parameter m, there exists an absorbing interval, which in particular is
invariant for m $ 2.8

Proposition 4.2. Call m ¼ 1=2 and M ¼ 21=2 the unique local minimum point and local

maximum point of map f , respectively, and set m0 :¼ f ðmÞ and M0 :¼ f ðMÞ. If m , 2þ ffiffiffi
8

p
,

the compact interval I ¼ ½m0;M0� is absorbing, i.e. there exists an open interval J . I such

that, for all �x [ J; there exists �n [ N such that f �nð�xÞ [ I and for any x [ I, f nðxÞ [ I, for

all n [ N.

Proof. We claim that interval J has as extreme points the fixed points P1 ¼ 2ððmþ 1Þ=mÞ
and P2 ¼ ðmþ 1Þ=m, respectively.

Let us show at first that J . I. A simple calculation shows that since m , 2þ ffiffiffi
8

p
, then

P1 ¼ 2
mþ 1

m
, m0 ¼ 2

m

4
, M0 ¼ m

4
,

mþ 1

m
¼ P2;

as desired.

Let us then consider a generic starting point x̂ in J and show that its trajectory will

eventually remain in I.

If x̂ [ I, by definition, m0 ¼ f ðmÞ # f ðx̂Þ # f ðMÞ ¼ M0 and thus f ðx̂Þ [ I, as desired.

Let us now analyse the two remaining cases, i.e. P1 , x̂ , m0 and P2 . x̂ . M0. Since
0 [ I and by continuity f ðxÞ . x, for every P1 , x , 0, and f ðxÞ , x, for every

0 , x , P2, if P1 , x̂ , m0, then its iterates will approach I in a strictly increasing way,

while if P2 . x̂ . M0, then its iterates will approach I in a strictly decreasing way. Once

that a forward iterate of x̂ lies in I, then by construction all its subsequent iterates will be

trapped inside I, as well. This concludes the proof. A

A graphical illustration of the absorbing interval I can be found in Figure 7 for f with

m ¼ 4:5 , 2þ ffiffiffi
8

p
.

Figure 7. The highlighted set on the x-axis is the absorbing interval I from Proposition 4.2.
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Notice that the threshold for the existence of an absorbing interval is higher than the

threshold found in Proposition 4.1 for the existence of chaos. Thus, when m [ ð4; 2þ ffiffiffi
8

p Þ
both features are present in our dynamical system.

Hence, thanks to Proposition 4.2, when 2 # m , 2þ ffiffiffi
8

p
the invariant compact

interval we need in the covering interval strategy is the absorbing interval I ¼ ½m0;M0�.
Moreover, for m . 4 the natural choice for the covering intervals is given by

I0 ¼ 21;
2m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 4m

p
2m

" #
; I1 ¼ 2mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 2 4m
p
2m

;
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 4m

p
2m

" #
and

I2 ¼ mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 4m

p
2m

; 1

" #
;

whose extreme values are zeros of map f or the solutions to the equation j f ðxÞj ¼ 1. Notice

that I0; I1 and I2 are the three intervals highlighted on the x-axis in Figure 6. The

corresponding transition matrix turns out to be

Tf ¼
0 0 1

1 1 1

1 0 0

0
BBB@

1
CCCA

and a simple computation shows that it is not irreducible as

Tn
f ¼

0 0 1

n 1 n

1 0 0

0
BBB@

1
CCCA

when n is odd and

Tn
f ¼

1 0 0

n 1 n

0 0 1

0
BBB@

1
CCCA

when n is even. Thus the covering interval approach does not allow to draw any conclusion

on the existence of chaos, at least for the choice of the covering intervals above.

Somewhat similarly, also the SAP method seems to be not applicable in view of

proving the presence of complex dynamics in our framework. In fact, given a compact

interval I on which map f we are analysing is continuous, that technique in the 1D setting

requires to find (at least) two disjoint compact sub-intervals I0 and I1 of I such that their f
images cover I. In our context, however, taking I ¼ ½21; 1�, if m , 4 then no such sub-

intervals exist for map f, while if m . 4, just one such sub-interval exists, which can be

chosen in several ways. The smallest suitable one is S2 in (4.3), the largest is I itself; any

interval in between works as well. However, as it is easy to check, it is not possible to find

two disjoint compact intervals as required by the SAP method, no matter what the value of

m is. Notice indeed that the f image of the set S1 in (4.2) covers I, but S1 is not an interval.
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This simple example illustrates that, when compared to the expander method in [7], the

SAP technique requires in general stricter conditions in order to be applied. On the other

hand, the latter allows to draw stronger conclusions from a dynamical viewpoint as, for

instance, it ensures the existence of fixed points and, in fact, the periodic orbits are dense in

a suitable invariant set. The technique in [7] guarantees instead neither the existence of

fixed points (see Figure 1.5 in [15], which is inspired to the bulging horseshoe in Figure 4

in [7]), nor of periodic points of any period (cf. [8]). Nonetheless, as seen in Proposition

4.1, the method in [7] still allows to draw some interesting conclusions from a dynamical

viewpoint. For a more detailed comparison between the covering relations in [7,12], we

refer the interested reader to [16].

5. Conclusion and future directions

In this paper we proposed a framework to analyse the dynamical process of decision and

opinion formation of two economic homogeneous and boundedly rational agents that

interact and learn from each other over time. The decisional process presented in our

model is an adaptive adjustment mechanism in which an agent takes into account the

difference between his/her own opinion and the opinion of the other agent. The smaller

that difference, the larger the weight put on the comparison of the opinions. We also

assumed that if the distance between the two opinions is larger than a given threshold, then

there is no interaction and the agents do not change their opinions anymore.

Introducing an auxiliary variable describing the distance between the opinions, we

obtained a 1D dynamical system for which we found a steady state in the origin,

corresponding to the unanimity scenario, and a continuum of steady states related to the

situation with absence of interaction. Analytically, we investigated the stability of the

unanimity steady state, the first flip bifurcation through which it loses the stability and the

double pitchfork bifurcation of the second iterate, as well as the presence of chaotic

dynamics. Numerically, we showed the subsequent period-doubling bifurcations of the

coexisting periodic attractors leading to two coexisting periodic attractors, which then

merge into a unique attractor, when increasing the reactivity parameter.

Future research should focus, for instance, on the extension of the model to the

framework of three interacting agents. In this case, however, it seems in general not

possible to reduce the dimensionality of the problem by introducing some auxiliary

variables and thus the analytical tractability of the model gets drastically reduced.

Another interesting extension would concern the context of heterogeneous agents: in

such case it would still be possible to obtain a 1D model through a change of variable, but

the resulting model would be heavier to analyse than that studied in the present paper.

We finally stress that models of the kind presented here are also suitable to be applied,

for instance, in the context of financial asset markets with boundedly rational agents that

ground their buying and selling decisions on fundamental values, which can be

continuously updated on the basis of a comparative process among agents.

Notes

1. Email: ahmad.naimzada@unimib.it
2. In what follows, we will assume a . 1=2, so that 2 ð2b=ð12 2aÞÞ is a positive quantity and

thus there is no need to reverse inequalities when passing from (2.4) to (2.5). In fact, as it is easy
to see, the case with a # 1=2 is not interesting from a dynamical viewpoint.

3. Notice that map f is continuous on R, it is C 1 on R̂ :¼ Rnf^ððmþ 1Þ=mÞ} and C 2 on R̂nf0}.
However, we do not need to compute derivatives of order higher than one in the origin.
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As regards the fixed points x ¼ ^ððmþ 1Þ=mÞ; we stress that the left partial derivative
ð›f=›xÞ2ððmþ 1Þ=m;mÞ ¼ mþ 2 . 1, while the right partial derivative ð›f=›xÞþððmþ 1Þ=
m;mÞ ¼ 1, and, symmetrically, ð›f=›xÞ2ð2ððmþ 1Þ=mÞÞ;mÞ ¼ 1, while ð›f=›xÞþð2ððmþ 1Þ=
mÞ;mÞ ¼ mþ 2 . 1. For the fixed points y [ f^x : x [ ððmþ 1Þ=m;þ1Þ} it holds instead that
ð›f=›xÞðy;mÞ ¼ 1, for every m. Thus, as stated above, all fixed points but the origin are not
locally asymptotically stable.

4. Simple calculations show indeed that x ¼ ðmþ 1Þ=m, i.e. one of the fixed points, is the only
point of period two for f on ð1; ðmþ 1Þ=m�, and similarly x ¼ 2ðmþ 1Þ=m is the only point of
period two for f on ½2ððmþ 1Þ=mÞ;21Þ. As already remarked, all points in ð21;2ððmþ
1Þ=mÞÞ< ððmþ 1Þ=m;1Þ are fixed points, too.

5. We chose to illustrate a rotated version of the Smale horseshoe map, instead of the original one
in [18], because in this way the connection with the 1D framework will be more evident.

6. Actually, in the definition of expander in [7], connectedness is not required and thus any subset
of E containing S1 < S2 is an expander, too. For simplicity, however, hereinafter we will
consider only connected expanders.

7. Notice that the extreme values for S1 and S2 depending on m are found by solving the equations
f ðxÞj½21;0� ¼ 1 and f ðxÞj½0;1� ¼ 21, respectively. Those values are well defined for m . 4:

8. Indeed, for m $ 2 it holds that m,M [ I.
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