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Abstract 

Law Enforcement Agencies (LEAs) are nowadays taking advantage of a wide range of information 

and intelligence sources (e.g., human intelligence (HUMINT), open source intelligence (OSINT), 

image analysis (IMINT)) to anticipate potential terroristic actions. Urban environments are nowadays 

associated with a wide range of vulnerabilities, which create fertile ground for terrorists planning 

actions against assets and/or citizens. These vulnerabilities stem from the characteristics of the urban 

environment (e.g., presence of civilians, availability of many and diverse physical infrastructures, 

complex social/cultural/governmental interactions, high value targets, etc.) have been repeatedly 

manifested as part of major terrorist attacks, which took place in some of the world’s most important 

cities (e.g., New York, London, and Madrid). The mitigation of security concerns in the urban 

environment is therefore a top priority in the social and political agendas of cities. ICT technologies 

provide help in this direction, for example through surveillance of urban areas, using the proliferating 

number of low-cost multi-purpose sensors in conjunction with emerging Big Data processing 

techniques for analyzing them. 

The thesis illustrates the TENSOR (clusTEriNg terroriSm actiOn pRediction) framework, a near real-

time reasoning framework for early identification and prediction of potential threat situations (e.g. 

terrorist actions).  

The main objective of TENSOR is to show how patterns of strategic terroristic behaviors, identified 

analyzing large longitudinal data sets, can be linked  to short term activity patterns identified 

analyzing feeds by “usual”  surveillance technologies and that this fusion allows a better detection of 

terrorist threats. 

The framework consists of three different modules with the aim of collecting and processing 

information of the surrounding environment from a variety of sources including physical sensors (e.g. 

surveillance cameras) and “virtual” sensors (e.g. police officers, citizens). The proposed TENSOR 

framework processes information sources at different abstraction levels (e.g. sensor information, 

police inputs, external semantic crafted data sources) and, thru the proposed layered architecture, 

simulates the three main expert user roles (i.e. operational, tactical and strategic user roles), as 

indicated in the intelligence analysis domain literature. The framework transforms all the sensors 

gathered data into symbolic events of interest following a generic scenario-agnostic semantics for 

terrorist attacks described in literature as terrorist indicators. Thru different reasoning and fusion 

techniques, the framework proactively detects threats and depicts the situation in near real-time.  

The framework results have been tested and validated in the European project FP7 PROACTIVE.  
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1. Introduction 

Terroristic attacks have spiked dramatically on European soil, both in terms of frequency and loss 

of human life making for an increasing awareness of the need of novel approaches to fight 

radicalization and terrorism. 

The International NY Times, March 30 2016 pointing out the scale up of recent attacks wrote that 

“for years authorities have discounted small attacks as isolated random acts”. 

Quite to the contrary in the last 2 months investigations have shown that terrorist cells, largely ISIS 

controlled, have been revving up their machinery at least since early 2014 carrying out smaller 

attacks, while the devastating ones were in the making. 

“It’s a factory out there” an arrested terrorist is quoted in the same NYT issue as saying after the 

Bruxelles events. 

Academia as well as government institutions have been aware quite a long time of this fact: 

terrorism thrives in some conditions, it may look like an “impromptu” individual act but requires 

instead a complex machinery to “produce” different kinds of terrors: shooting, kidnapping or 

bombing. 

Security studies have time ago recognized the need to characterize the “modus operandi” of 

different groups and which conditions/events are to more likely to trigger attacks. 

A main objective of TENSOR framework was to show how patterns of strategic behavior of 

different groups, identified analyzing large longitudinal data sets, can be linked to short term 

activity patterns identified analyzing feeds by “usual”  surveillance technologies and that this 

fusion allows a better detection of terrorist threats. This point is debated in the thesis during 

explanations of TENSOR layered framework ability to leverage Long term reasoning and Short 

term surveillance into a more robust threat estimation. 

There is now a general agreement that data driven pattern analysis, based on statistical learning, as 

TENSOR framework, will be the technology of choice for the development of new systems: still it 

has to be noted that terrorist offers some unique challenges: contrary to the wealth of data in digital 

marketing  digital traces left by terror machinery are few and scattered, terrorism reinvents itself so 

it’s difficult to match novel patterns into stored behavior so raising the alarm level is linked to an 

anomalous activity from a characteristic pattern. 

 Topic relevance 1.1.

According to the definition in [Enders and Sandler, 2011] terrorism is the premeditated use or 

threat to use violence by individuals or sub-national groups to obtain a political or social objective 

through the intimidation of a large audience beyond that of the immediate victims. 
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Such a definition emphasizes that the true target of the anxiety-generating attacks is a wider public, 

who may pressure the government to concede to the demands of the terrorists. 

Early studies mainly due to the absence of data, took a conceptual and historical approach to the 

study of terrorism focused on the definition of terrorism, the myriad causes of terrorism, the tactics 

of the terrorists, and the identity of the primary terrorist groups and movements (e.g. [Crenshaw, 

1981]; [Wilkinson, 1986]). 

Moreover, scholars of the analytical approach, such as William Landes [Landes, 1978], viewed 

terrorists as rational actors: If changes in terrorists’ constraints, say through government policies, 

result in predictable behavioral responses by the terrorists, then terrorists are rational actors. 

Whether terrorists are rational, is widely debatable because they usually do not achieve their 

sought-after and stated objectives.  

Indeed [Jones and Libicki, 2008] indicated 132 campaigns where the terrorist groups renounced 

terrorism and achieved their stated goals joining the political process.  

The collection of event data gave a further boost to the analytical approach. In his landmark study 

of skyjackings, [Landes, 1978] used US Federal Aviation Association (FAA) data on skyjackings 

to estimate the deterrent effects of US antiterrorism policies against skyjackings during 1961–79.  

After 2001 (9/11), there was an explosion of terrorism literature, both conceptual and analytical. 

More to the point for this thesis 9/11 opened a period of unprecedented investments by government 

and in turn companies into applications of advanced ICT into security and antiterrorism. 

In addition to the proven importance of the matter in the literature, also from the economic point of 

view, terrorism has generated a significant commercial activities focus on providing different 

services, from physical protection against terrorist attacks (IBIS Corporation Counter-Terrorism 

International) [S1], to more widespread education on emergency management in case of attack (S2 

Safety & Intelligence Institute) [S2], but also about the provision of a complete service for the anti-

terrorist security as risk analysis, emergency response, industrial security program management, 

and security system technology implementation (Watermark Risk Management International, LLC) 

[S3]. 

Above references identify as antiterrorism became a major area of scientific and technological 

investigation spawning specific research domains and peculiar methods. 

 Contextualization and contributions 1.2.

The domain addressed by this thesis is to investigate how data driven approaches might be relevant 

for modeling, detection and tracking of terrorist groups and their intents and provide actionable 

knowledge to LEA officers. In particular, this work is focused on development of automated 

techniques for detection and tracking of potential terrorist networks. 

The starting point of the analysis concerns the study of the long term behavioral patterns of terrorist 

groups, that can be “observed” by considering past attacks. This information has been gathered 

from various research groups, who have created and shared several historical data sets. 
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One of the first repository used in the research community is the International Terrorism Attributes 

of Terrorist Events (ITERATE), a dataset that codes many variables (e.g. incident date, country 

location, target entity, attack type, casualties, perpetrators’ nationalities, terrorist group, victims’ 

nationalities, and logistical outcome) for transnational terrorist incidents. Currently, ITERATE’s 

coverage is 1968–2011, with yearly updates. [Mickolus et al., 2012] ITERATE, like other event 

databases, relies on the news media. For hostage-taking incidents, ITERATE also contains 

negotiation variables, which have been invaluable in studies on hostage taking (e.g. [Sandler et al., 

2009]). Another  dataset is the RAND terrorist event database [RAND, 2012], which codes terrorist 

incidents for 1968–2009. After 1997, the RAND dataset began recording domestic terrorist 

incidents, so that it identifies transnational terrorist incidents for 1968–2009 and domestic terrorist 

incidents for 1998–2009. 

The Minorities at Risk Organizational Behavior (MAROB) [S4] dataset is a subsidiary of the 

Minorities at Risk (MAR) Project. The project has identified 118 organizations representing the 

interests of all 22 ethno political groups in 16 countries of the Middle East and North Africa, 

operating between 1980 and 2004. While The Global Terrorism Database (GTD) records both 

domestic and transnational terrorist incidents [LaFree and Dugan, 2007]. For GTD, this partition of 

domestic and transnational terrorist incidents was first accomplished by [Enders et al., 2011] for 

1970–2007 and has been updated by them through 2014.  

In order to characterize the long term behavioral patterns of terrorist groups, in this thesis 2 

databases have been analyzed: MAROB [S4] and GTD [GTD Codebook 2015]. These datasets 

include whole downloadable resources concerning codebook and data and they are focused on 

different aspects: 

 MAROB is focused on organizations that represent the interests of ethnic groups around 

the world who have experienced state repression 

 GTD represents a complete picture of terrorist incidents providing information about the 

actions carried out during an attack and the contest in which the attack occurred 

(contextualization). 

A limitation of these data sets is that they provide just historical data and information about 

terrorist attacks. This information is useful for LEAs officers in order to detect and possibly 

prevent terrorist activities. However, in the last decade ICT technology was able to provide great 

help in this direction. In particular an ubiquitous surveillance of urban areas was provided through 

the use of a number of multi-purpose sensors in conjunction with emerging Big Data processing 

techniques for the data streams analysis [Sormani et al., 2016]. 

The long term behavioral patterns of terrorist and the data streams provided by sensors have been 

used in this thesis for two different tasks: online detection, that is focused on the early 

identification of a possible threat, and prediction, focused on the anticipation of potential future 

attacks. 

The final result of this work is to develop a unique analysis and decisional ICT layered framework 

(TENSOR) for criticality assessment of terrorist related events at different time scales. In particular 

we contemplate: 



4 

 

 Long Term Reasoner (LTR) layer (section 6), based on an off-line clustering analysis of 

existing databases describing previous terrorist attacks 

 Short Term Reasoner (STR) layer (section 5), based on Hidden Markov Models (HMM) to 

assess the criticality of a  particular situation (Microenvironment). 

LTR and STR are linked by a Medium Term Reasoner (MTR) layer (section 7) which leverages the 

output of STR into a decision, keeping into account the output of LTR. 

Although research on automated information extraction from multimedia data has yielded 

significant progress, the development of automated tools for analyzing the results of information 

extraction and correlate them with specific events has been significantly slower. Moreover some  

features of terrorist networks, such as low Signal to Noise Ratio (SNR) (in the sense of sparse 

relevant observations superimposed upon a large background of benign ones) and a wide 

geographic distribution operating in different socio economic conditions, make them difficult to 

observe. 

Terrorist networks are often a string of small cells, and interconnection among cells are purposely  

weak and therefore very difficult to detect. While a terrorist cell has its own “modus operandi”, in 

order to maintain a low profile, terrorist cells can move around geographically, alter their personnel 

and change their intended target. 

A first relevant project aimed at developing an integrated layered framework for forecasting 

terroristic events is ASAM (Adaptive Safety Analysis and Monitoring system)  [Popp et al., 2005] 

whose basic assumption is that terrorist networks can be evaluated using significant links between 

people, places and things that appear to be suspicious. To capture these relations and their changing 

nature ASAM uses dynamic Bayesian networks (DBNs) and Hidden Markov Models (HMMs). 

The HMMs detect the monitored terrorist activity and measure threat levels, whereas BNs combine 

the likelihoods from many different HMMs to evaluate the cumulative probability of terrorist 

activity. 

Indeed the sequence of events might indicate, much more than the single events, a reason to be 

concerned: it may or may not arise from terrorist activity, but ought to be flagged for more careful 

scrutiny. 

Our effort aims at increasing the resources available both to intelligence analysts, policy makers 

investigating reports of terrorist activities and LEA officers. With more effective tools for analysis, 

policy makers will have more and better information when planning some form of counter-terrorist 

action. The process of intelligence gathering and assimilation is largely automated but still 

unintegrated across the multiple agencies whose responsibilities might include responding to such 

events [Allanach et al., 2004]. 

Models based on relations and linked events are very efficient because instead of wasting resources 

interpreting  the whole amount of data, they only have to look for significant links between the 

data. However, we want to point out that the number of instances of terrorism is (thankfully) very 

low and hence a “learning from data” approach is problematic. 
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The fundamental structure considered in this thesis is ascribable to HMMs. In our approach, a set 

of HMMs is used to model the evolution of threat level over time. In particular, for each monitored 

zone, a software component called Micro-environment is proposed for the online threat detection 

activity. Each Micro-environment interprets information provided by sensors (i.e. events detected 

in a specific zone) using a set of three HMMs. Each HMM implements a different interpretation 

strategy that takes in consideration the alert level of the monitored zone (i.e. the probability to have 

a threat in that zone) and the past sequence of events represented by the current HMM’s state in 

order to associate a threat probability to every detected event. For every monitored zone, three 

different alert levels (Low, Medium and High) can be set – automatically or supervised by an 

expert. In particular the Low alert level refers to a normal condition (very low probability to have a 

threat), while at the opposite side, the High alert level refers to a very high threat risk condition. 

ASAM system implements a hierarchical process, where lower levels correspond to HMMs, and 

higher levels are modeled through BNs [Singh et al., 2004]. Every HMM is used to represent a 

specific strategy to plan a type of terrorist attack (i.e. chemical attack, truck bomb attack). Each 

HMM’s node represents a specific phase needed for the realization of a characteristic attack (e.g. 

members or money requirement, logistic organization, terroristic cells communications, etc.). Input 

for every HMM is the set of features that characterize each specific node (i.e. for communication 

are considered media activity, electronic communication activity, etc.). The BNs layer combines 

the updated information provided by different HMMs to evaluate the overall threat of inspected 

areas or social political events as probabilities distribution. Practically, BN represents the 

overarching terrorist schema and the HMMs (which are related to each BN node) represent more 

detailed terrorist operational methods. 

Differently to ASAM framework, the TENSOR approach employs three different layers: at the 

lower level (STR), for every monitored zone, a Micro-environment (composed by a set of HMM) is 

used to model the evolution of threat level over time. 

At the second level (MTR), we evaluate not only results from lower level as ASAM, but also zone-

specific historical data, zone-specific alert level, spatial constrains between zones and predicted 

alert level provided by the highest level (LTR). MTR analysis is performed by a reasoning kernel 

that estimates the criticality of each zones (i.e. the alert levels). This module supports overall 

decision making by re-evaluating the alert level within a longer temporal scope than STR module 

and shorter temporal scope than LTR module. 

As this thesis aims at producing timely proactive responses by relying on reliable forecasts about 

terrorists’ actions, one can see a direct correspondence to event processing systems. CEP engines 

are designed for implementing logic in the form of queries or rules over continuous data flows. 

Typically, they include a high level declarative language for the logic definition with explicit 

support for temporal constructs. The need for CEP technology is rooted in various domains that 

require fast analysis of incoming information. Since the role of MTR reasoning module in the 

TENSOR approach is to process numerous incoming events of different nature and update the 

sensitivity of the STR in near real-time, we believe that event processing approaches fit 

requirements of the MTR module. 
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The last level, LTR, provides to MTR predictions of alert levels with respect to different types of 

physical zones (e.g. squares, churches, government buildings, etc.). This feature is not provide by 

ASAM framework. In order to carry out this activity the LTR uses information generated by STR 

(i.e. detected events and threats notifications) and external data stored in the terrorist data sources 

aforementioned. In particular external data sources are used to build a clustering based prediction 

model, that is used by LTR in its activities. 

However, a further requirement was emerged during the design and development of TENSOR, and 

was related to the need of updating the STR’s detection models. This activity needs a huge amount 

of information, which may be collected through the interactions between system (STR layer) and 

users, as presented in section 6.3. 

The activity leading to this thesis has been partially conducted within the European project 

PROACTIVE (fp7 security call). Interactions with the partners have enabled the validation of 

TENSOR framework and the collection of users’ feedback for further developments.  

 Thesis Outline 1.3.

The thesis is organized as follow. In Section 2 we introduce the application domain addressed by 

this thesis. Section 3 presents an overview of the AI based event detection approaches related to 

security domain and the specific methods and algorithms investigated in this work. Section 4 

presents the TENSOR framework that supply help at different users that work in counter-terrorism 

domain. Section 5, Section 6 and Section 7 present the three different reasoning components 

provided by the TENSOR framework (STR, LTR and MTR). Finally, in Section 8, conclusions are 

drawn. 
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2. Application domain 

Security  monitoring of urban areas is one of the main requests from citizens around the world. 

This was evidenced by the past series of terrorist attacks  against New York’s World Trade Center 

in 2001, Madrid’ s train system in 2004, London Underground in 2007, Moscow Metro in 2010 and 

Paris in 2015. These incidents have exposed vulnerabilities of urban environments against terrorist 

actions, which mainly stem from their diversity, heterogeneity and complexity [Petris et al., 2014]. 

The challenges of the urban environment are unique with particular and very specific issues. The 

urban environment is characterized by the presence of buildings, city infrastructures and other 

man-made structures, over and underground, as well as considerable number of civilians [Hummel 

et al., 2012]. 

In order to cope with the complexity of operations in the urban environments, security and defense 

agencies have been increasingly turning in the last years to pervasive multi-sensory technologies 

for enhancing their ability to acquire, analyze and visualize events and situations. However, 

numerous challenges are associated with such technologies. The large scale nature of both the 

geographically dispersed environment and the volume of the data, the multiple distributed 

heterogeneous components that need to be assembled spanning sensors, sensor processing, signal 

processing components often from multiple vendors, are some of the issues that need to be 

addressed. Moreover, we need to take in consideration that some activities need to be automated 

(i.e. video analysis since manual observation of multiple camera is not possible, high-level 

intelligent reasoning for event inference), as these are features without which the added value of 

the system is limited. 

Recent advances in multi-sensor systems and data analytics enable the development of systems that 

can collect and process information from a wide variety of sources, including structured and 

unstructured data, but also real-time and non-real time data. Closely related to multi-sensor systems 

is the internet-of-things (IoT) paradigm [Whitmore et al., 2015], which enables the orchestration 

and coordination of a large number of physical and virtual Internet-Connected-Objects towards 

human-centric services in a variety of sectors including logistics, trade, industry, smart cities and 

ambient assisted living.  

A valuable solution could be a server-side middleware approach, running in a cloud computing 

environment. The middleware layer collects data through gateways or sink nodes. They have less 

control over sensor network operations. The components in this layer are unable to control low 

level operations such as routing though, they have more knowledge about the environment as they 

can analyze sensor data received through different sensors. 

Todays’ IoT systems rely on non-functional properties such as context awareness and semantic 

interoperability. Middleware systems can bundle those functionalities together to be reused in 

many applications [Wang et al., 2015]. These new type of middleware systems have more control 

of low level operations of network such as network routing, energy consumption, etc. This layer is 

much closer to the hardware but, it lacks the overall knowledge about the environment. 
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It is important that systems providing advanced capabilities for urban security and surveillance 

advance and integrate all above functionalities in order to handle multiple heterogeneous sensors 

suitable for the monitoring activity of urban environment. At the same time, these systems need to 

support JDL fusion level mandates by deploying various fusion techniques and algorithms 

[Hummel et al., 2012]. 

Modern  multi-sensor and IoT systems, have been extensively used in order to collect and visualize 

information about the surrounding environment, based on sensor information fusion and common 

operational picture generation tools. However, despite their suitability, they have not been used for 

predicting terroristic attacks. In this thesis we introduce a layered framework, integrated in an IoT 

system for the prediction of terrorist attacks in urban environment, that provides help at the 

different users of the system. The framework process information sources at different abstraction 

levels (e.g. sensor information, police patrol inputs, external semantic crafted data sources) and 

methods designed to act (i.e. simulate) various expert user roles indicated as crucial in the 

intelligence analyst work flow (i.e. operational, tactical and strategic user roles).  

 Users classification 2.1.

In order to design our layer framework we taking into account both the abstraction levels of the 

potential information sources (sensor information, police patrol inputs, news events, external 

semantic crafted data sources) and the expert user roles that are currently defined as crucial in the 

intelligence analyst flow for analyzing/detecting potential terrorist threats. 

According to the classification proposed by The US Department of Defense in [Department of 

Defense, 2010], three different type of users were identified: operational, tactical and strategic 

users. These users operate at three different levels as follows: 

 The Operational level refers to regional Intelligence services with more focus on the 

regional threat level. In this level local terrorist actions may increase the alert state at the 

regional level but still may not affect the National level. 

 The Tactical level refers to local Intelligence Units (e.g., intelligence units of local police). 

At this level the alert state changes with even small scale terror actions. The threat 

assessment is limited in time and space. 

 The Strategic level is a National Intelligence Service, where threat assessment covers the 

whole country. At the National level the alert state does not change instantly based on 

isolated small scale terrorist events. The threat assessment is broader in space and time.    

It is important to note that, serious terror actions with political consequences at a local level may 

have serious impact to the National threat level based again on the “gravity” of the event. The level 

of gravity cannot be precisely defined and it is up to National Authorities and the higher political 

level to define the seriousness of a terror event based on National policies. 

In a counter-terrorism applications, operational users have the aim to identify and notify tactical 

users about suspicious situations in a physical environment of limited size and complexity (i.e., a 

city zone) taking into account short histories of events provided by sensors (human or device). 
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Tactical users need to analyze a medium term history (sensor data and threats notification) coming 

from different zones in order to infer the sensitivity/criticality (i.e. the alert levels, see section 2.2) 

of the current situation in each monitored zone. Finally, strategic users work in order to predict the 

criticality of each monitored zone tacking into account historical data and external data sources. 

  Alert level 2.2.

An important outcome of an end user workshop was a specific requirement that has been 

considered for the framework design. In this workshop with domain experts from EU countries, 

users have expressed the need to have the possibility to summarized in a synthetic way the alert 

level (i.e. the criticality level) of each monitored zone. This user requirement can be paragoned to 

the UK Threat Level [UK Mi5] and the DEFCOM [Department of Defense, 2010] level used by the 

United States Armed Forces. These different alert levels give a broad indication of the likelihood of 

a terrorist attack and a specific reaction policy that security agencies have to adopt (Table 1). 

 

Table 1 UK and US Threat levels. 

UK Threat Levels US DEFCOM Levels 

Critical 
An attack is expected 

imminently. 
DEFCON 1 Nuclear war is imminent 

Severe An attack is highly likely. DEFCON 4 Next step to nuclear war 

Substantial 
An attack is a strong 

possibility. 
DEFCON 3 

Increase in force readiness 

above that required for 

normal readiness 

Moderate 
An attack is possible, but 

not likely. 
DEFCON 2 

Increased intelligence 

watch and strengthened 

security measures 

Low An attack is unlikely. DEFCON 1 Lowest state of readiness 

 

Following ideas for the first three levels of the UK Threat Levels and the domain expert workshop, 

in this thesis a simpler ranked alert levels are introduced. In particular, a new set of level’s labels 

(Low, Medium and High) was adopted in order to simplify the association between the alert classes 

and the likelihood of a terrorist attack. 

 Threat type overview 2.3.

In this section we focus on the various types of threats that could occur. Note that threats could be 

malicious threats due to terror attacks or non-malicious threats due to inadvertent errors. According 

to [Mahmood and Rohail, 2012] the types of terrorist threats include: 

 Information related terrorism 

 Non-information related terrorism 

 Bio-terrorism and chemical/nuclear attacks 
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However all the mentioned threats type can be grouped into two categories; non real-time threats 

or real-time threats. In a way all threats are real-time (a non real-time threat could turn into a real-

time threat) as we have to act in real-time once the threats have occurred. However, some threats 

are analyzed over a period of time while some others have to be handled immediately. Biological, 

chemical and nuclear threats have to be handled in real-time, other threats instead do not have to be 

handled in real-time, for example consider the behavior of suspicious people that maybe they are 

member of terrorist organization. In this case, one has to monitor these people, analyze their 

behavior and predict their actions. 

 Non-information related terrorism 2.3.1.

Non-information related terrorism means terrorism not focus on computers and networks. In this 

type of threat are present terrorist attacks like car bombing, vandalism, bomb explosion,  building 

intrusion and so on. These threats can be perform from people inside an organization that attack 

others around them (e.g. an agent from an intelligence agency committing espionage). This type of 

threats is called insider threat, while if the threat is carry out by an external person (e.g. a mentally 

deranged person of a society, a member of a foreign terrorist group) are called external threats. 

As an example, transportation systems security violations can be an example of external (or 

internal) threat. Buses, trains and airplanes are vehicles that can carry tens of hundreds of people at 

the same time and any security violation could cause serious damage and even deaths. 

 Information related terrorism 2.3.2.

Information related terrorism refers to attacks that damage electronic information (computers 

and/or networks components). Examples of these attacks can be viruses or information security 

violations.  Note that threats attacks can occur from outside or from the inside of an organization. 

Cyber-terrorism is one of the major terrorist activity, there are so much information available 

electronically that an attack on a network (computers, databases) could be devastating to 

businesses. These intruders may be human intruders or Trojan horses set up by humans. Intrusions 

can also occur on databases. Intruders posing as legitimate users can pose queries such as SQL 

queries and access the data that they are not authorized to know. Information security violations 

typically occur due to access control violations. 

There are numerous security attacks that can occur from the web and these attacks are applicable to 

any information system such as networks, databases and operating systems. These threats include 

access control violations, integrity violations, sabotage, fraud and infrastructure attacks.  

Other examples of these threats are credit card frauds, but a more serious theft is identity theft in 

which one assumes the identity of another person and start to carried out all the transactions under 

the other person’s name. 
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  A general architecture used in urban security domain 2.4.

In urban security monitoring the role of IoT systems consist, mainly, in identification, management 

and potential prediction of characteristic events that reveal the likelihood of a terrorist attack. 

While traditional ambient security systems were focused on the extensive use of arrays of single-

type sensors [Monekosso and Remagnino 2007], modern  systems aim to combine information 

coming from different types of sources [Petris et al., 2014]. 

Data fusion is the process of combing information from a number of different sources to provide a 

robust and complete description of an environment or process of interest [Azimirad and Haddadnia, 

2015]. Data fusion is of special significance in any application where a large amount of data must 

be combined, fused and distilled to obtain information of appropriate quality and integrity on which 

decisions can be made. 

A standard model for data fusion that was proposed by the US Department of Defense to facilitate 

discussion, component reuse and system integration is the Joint Directors of Laboratories (JDL) 

data fusion model. This model offers a multi-level functional model that describes how processing 

is organized in a military data fusion system and more generally, the JDL data fusion model is 

recognized as a de facto standard in data fusion issues [Foresti et. al., 2015]. 

 JDL model 2.4.1.

The JDL Model [Hall and Llinas, 2001] [Klein, 2004] is a well-established reference model, which 

provides a sound basis for the identification of the major abstraction levels to be considered in the 

proposed solution approach. In this section we summarize the layered JDL model. Figure 1 recalls 

the functionalities of the JDL levels and the information flows between levels, no matter how 

information is processed inside each level and how processing activities are grouped in software 

components. 

Figure 1 highlights that levels 0 – 3 are directly involved in the real-time upstream information and 

processing flow from data sources to end users.  JDL level 4, whose functionalities belong to 

medium and long term activities, is not directly involved in the real-time upstream information 

flows from sensing devices to end users. 
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Figure 1 JDL Layers. 

 

JDL Level 0 

Level 0 (Source pre-processing in JDL parlance) is in charge of processing raw data from 

individual sensors. Its activities include filtering and extraction of low-level features (e.g., 

barycenter, area and speed of a blob in the reference system of the sensor image), which model 

low-level perceptions [Sabzevar, 2015]. A perception is characterized by: 

 Timestamp (though not necessarily, in a global reference time); 

 Perception type, dependent on the sensor type (e.g., image blob or acoustic 

perception); 

 Features dependent on the sensor type. 

Level 0 activities deal with strictly local data from individual sensors. Perceptions are located in a 

sensor-specific space (e.g., the image plane of a camera).  Signal refinement is bound to strong 

real-time constraints (tenth of ms) and has a high frequency (tenths of events for second for each 

sensor). 

JDL Level 1 

Level 1 (Object refinement) is in charge of translating perceptions into states of objects that model 

significant domain entities (e.g., persons and cars) in a local context [Golestan et al., 2016]. 

Possibly this can be done by fusing information from a set of related sensors. Object states are 

characterized by: 

 Unique id of the object in a local context;  

 Object type; 

 Timestamp in a global reference time; 

 Localization in a local reference system (e.g., the area covered by a sensor or by a set 

of sensors); 

 Sensor preprocessed features (e.g., the speed of a car). 
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Level 1 activities are local, as they deal with information from individual sensors or from sets of 

strongly related sensors (e.g., a camera and an associated microphone). Objects are localized in a 

local but sensor-independent space (e.g., the Cartesian co-ordinates in the area covered by a 

sensor). The generation of object states is bound to strong real-time constraints, possibly an order 

of magnitude lower than event generation (say hundreds of ms). The same holds for the frequency 

(say from one to ten states for second). 

JDL Level 2 

Level 2 (Situation refinement) is in charge of fusing states of objects from Level 1, which are 

defined in sensor-local contexts, into higher level situations in the context of a micro-scenario 

[Pires et al., 2016]. A micro-scenario models a target (e.g. a building, a metro station, a limited set 

of streets, etc.), which can be monitored by a set of information providers (i.e. devices and/or 

persons). Each micro-scenario defines a spatial reference system (e.g. the map of the building). 

A situation is the abstract representation of a set of observations of one or more objects, deriving 

from the temporal and positional fusion of the states of objects coming from Level 1 (for example, 

observations of a car from different cameras around a building is fused into a situations modelling 

the movement of the car in the reference space of the micro-scenario). Situations are characterized 

by: 

 Unique id of the situation (and of the objects they include) in the spatio-temporal 

context of the micro-scenario; 

 Situation type; 

 Timestamp in a global reference time; 

 Localization in the spatial reference system of the micro-scenario (e.g., the GPS 

reference system or a route model in an urban area); 

 High-level symbolic features (e.g., the movement of a group of logically related 

people, though they are not physically close). 

Level 2 activities are local to individual micro-scenarios, as they fuse and contextualize 

information items that, tough coming from different sources, are related to a specific micro-

scenario. The generation of situations is bound to real-time constraints that depend on end-user 

requirements (say one second) and on the requirements of Level 3. 

JDL Level 3 

Level 3 (Threat refinement) is in charge of interpreting situations (in this work, threat detection) by 

assigning them threat levels which are presented to the final users (typically, through GUIs) 

[Sabzevar, 2015]. Threats are characterized by: 

 Unique id of the threat (and of the situations it includes) in the micro-scenario context; 

 Threat type and level; 

 Timestamp in a global reference time; 

 Localization in the spatial reference system of the micro-scenario (e.g., the GPS 

reference system or a route model in an urban area); 

 High-level symbolic features. 
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Level 3 activities are bound to real-time constraints, which are less strong than those of lower 

levels (say a few seconds: we deal with terrorism in a urban environment, not with driving a 

fighter). Moreover, the identification and notification of threats falls inside a “man-in-the-loop” 

scheme, so that the timing constraints are consistent the decision delays of the users. Even the 

frequency is relatively low if compared with the frequency of lower level activities and flows, at 

least to avoid information overflow. 

JDL Level 4 

Level 4 (Process refinement) [Pires et al., 2016] is a meta-layer, whose major role is to generate, 

train and tune the fusion models, which are exploited by lower layers of the system and, in 

particular, by the Level 3 (threat detection). Level 4 is not directly involved in the real-time 

upstream information flow from sensing devices to end users. L4 activities are not bound to strong 

real-time constraints. 

 The data available in security domain 2.5.

The majority of urban surveillance systems focus on situation awareness and common operation 

picture generation, and pay limited or even no attention to the task of predicting potential terrorist 

actions. This is a significant limitation given that the anticipation of terrorist actions could allow 

Law Enforcement Agencies (LEAs) to proactively deal with them thereby minimizing their adverse 

effects. The development of systems for predicting potential terrorist attacks hinges on devising 

appropriate reasoning and analytics techniques that could operate over information collected from 

various sources, including sensor sources, human operators and open source information [Sormani 

et al., 2016]. 

These techniques can be typically classified as Big Data processing schemes [Wu et al., 2014], 

since they have to deal with large data volumes stemming from multiple heterogeneous sources and 

featuring varying velocities. A serious set-back to the development and operation of appropriate 

reasoning and analytics techniques for anticipating terrorist events is the lack of ground-truth 

datasets, which could be used to train the respective reasoners. Typically, LEAs do not possess 

large sequences of events that are associated with terrorist attacks, since their databases are usually 

limited to the set of events that have been observed before the occurrence of past attacks. 

In this subsection, after a brief excursus on the available datasets containing different information 

about terrorist activities, some  tools and techniques for simulating terrorist attacks as a means of 

producing training data sets are presented. 

 Security databases 2.5.1.

The datasets available on the web are focused on various terroristic aspects, starting from the 

description of the terrorist groups (e.g. MAROB dataset) to the description of terrorist attacks with 

targets and weapons used (e.g. GTD dataset) or more general datasets containing news about 

terroristic threats (e.g. Rand dataset). We focused our attention on the analysis of the following 

datasets: 
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 Iterate (International Terrorism –Attributes of Terrorist Events) 

 GTD (Global Terrorism Database) 

 Rand (Rand Database of Worldwide Terrorism Incidents) 

 MAROB (Minorities at risk Organizational Behaviour) 

 ACLED (Armed Conflict Location and Event Dataset) 

 WITS (Worldwide Incidents Tracking System) 

Almost all of these datasets are accompanied with a codebook that describes the information 

contained (Table 2). 

Table 2 Short description of terrorist datasets. 

 ITERATE RAND GTD MAROB ACLED 

Overview 

International 

Terrorism–

Attributes of 

Terrorist Events 

Rand Database of 

Worldwide 

Terrorism 

Incidents 

Global Terrorism 

Database 

Minorities at Risk 

Organizational 

Behavior 

Armed Conflict 

Location and 

Event Dataset 

DB Operator 

University 

Michigan and 

Vinyard Software 

RAND (Original 

PIs: Jenkins, 

Hoffman) 

START 

University 

Maryland 

(LaFree) 

Department of 

Homeland 

Security 

International 

Peace Research 

Institute (PRIO) 

Website 

www.icpsr.umich

.edu/icpsrweb/IC

PSR/studies/7947

?q=ITERATE 

www.rand.org/ns

rd/projects/terrori

sm-incidents 

www.start.umd.e

du/gtd 

www.cidcm.umd.

edu/mar/data.asp 

www.acleddata.c

om/ 

Unit of analysis 

Scope of events 

Events 

International 

Events 

International + 

domestic 

Events 

International + 

domestic 

Events 

International 

Events 

International + 

domestic 

Time span 1968- 2008 1968- 2009 1970- 2011 1980 and 2004 1997- 2012 

# of events ~13,000 ~36,000 ~13,000 ~36,000 ~104.700 ~1790 ~75,000 

# of features 42 
15 + narrative 

description 
~124 ~175 25 

Coding 

transparency 

and consistency 

Provides detailed 

codebook 

Provides basic 

information for 

coding of 

variables on 

website 

Provides criteria 

for incident 

inclusion and 

coding scheme in 

a codebook. 

Provides detailed 

codebook 

Provides detailed 

codebook 

Online 

availability/ 

Partial/incomplet

e 
Full Full Full Full 

Free Download No 
Partially/on 

request 
Yes Yes 

Partially/on 

request 

Reference 

Mickolus, Edward 

F. InTErnational 

terroRism: 

Attributes of 
Terrorist Events, 

1968-1977 

[ITERATE 2]. 
ICPSR07947-v1. 

Ann Arbor, MI: 

Inter-university 
Consortium for 

Political and Social 

Research, 1982. 

“RAND Database 

of Worldwide 

Terrorism 
Incidents”http://sma

pp.rand.org/rwtid 

National 

Consortium for the 
Study of Terrorism 

and Responses to 

Terrorism 
(START). (2012). 

Asal, Victor, Amy 

Pate and Jonathan 

Wilkenfeld. 2008. 
Minorities at Risk 

Organizational 

Behavior Data and 
Codebook Version 

9/2008 

Raleigh, Clionadh, 

Andrew Linke, 

Håvard Hegre and 
Joakim Karlsen. 

2010. Introducing 

ACLED-Armed 
Conflict Location 

and Event Data. 

Journal of Peace 
Research 47(5) 1-

10. 

 

http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/7947?q=ITERATE
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/7947?q=ITERATE
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/7947?q=ITERATE
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/7947?q=ITERATE
http://www.rand.org/nsrd/projects/terrorism-incidents
http://www.rand.org/nsrd/projects/terrorism-incidents
http://www.rand.org/nsrd/projects/terrorism-incidents
http://www.start.umd.edu/gtd
http://www.start.umd.edu/gtd
http://www.cidcm.umd.edu/mar/data.asp
http://www.cidcm.umd.edu/mar/data.asp
http://www.acleddata.com/
http://www.acleddata.com/
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According to the specific reported in Table 2, we focus only on two fully available datasets, which 

include whole downloadable resources concerning codebook and the full data (all instances and 

features). 

 Minorities at Risk Organizational Behaviour (MAROB) 2.5.2.

The first analyzed data source is the MAROB dataset (Minorities at Risk Organizational 

Behaviour) dataset, a subsidiary of the Minorities at Risk (MAR) Project. The purpose of this 

project is to answer fundamental questions focusing on the identification of those factors that 

motivate some members of ethnic minorities to become radicalized, to form activist organizations, 

and to move from conventional means of politics and protest into violence and terrorism. Focusing 

initially on the Middle East and North Africa, the MAROB project provides information on the 

characteristics of those ethno political organizations most likely to employ violence and terrorism 

in the pursuit of their perceived grievances with local, national, or international authority 

structures. MAROB is directed by Jonathan Wilkenfeld (University of Maryland), Victor Asal 

(University at Albany), and Amy Pate (University of Maryland). 

The project has identified 118 organizations representing the interests of all 22 ethno political 

groups in 16 countries of the Middle East and North Africa, operating between 1980 and 2004. 

The project developed a set of criteria for the inclusion of organizations into the MAROB dataset, 

specifically satisfying at least one of these: 

 The organization makes explicit claims to represent the interests of one or more ethnic 

groups and/or the organization’s members are primarily members of a specific ethnic 

minority. 

 The organization is political in its goals and activities. 

 The organization is active at a regional and/or national level. 

 The organization was not created by a government. 

 The organization is active for at least three consecutive years between 1980 and 2006. 

Organizations were selected on the basis of their basic longevity. This was operationalized in the 

following manner: the first year that an organization is mentioned in a source as being active, it is 

put on a “watch list” for potential inclusion. Once the organization is mentioned in sources for 

three consecutive years, it is included in the dataset, coded from the first year of the three 

consecutive years. If an organization included in the dataset disappears from source material for 

five consecutive years, it is no longer coded for following years. If after that time, it is again 

mentioned for three consecutive years, it is again included but as a separate organization. 

The dataset contains information on 1789 terrorist attacks occurred from 1980 to 2004 focusing on 

the description of the organization behind those attacks operating in 16 countries, as depicted in 

Figure 2. 
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Figure 2 MAROB attacks for year grouped by country. 

 

 Global Terrorist Database 2.5.3.

As reported in Table 2 one of the data source with the highest number of recorded events is the 

Global Terrorism Database (GTD) [GTD Codebook 2015], an open-source database including 

information on terrorist events around the world from 1970 through 2014. Unlike many other event 

databases, the GTD includes systematic data on domestic as well as transnational and international 

terrorist incidents that have occurred during this time period and includes 141.996 instances. For 

each GTD incident, information is available on the date and location of the incident, the weapons 

used and nature of the target, the number of casualties, the group or individual responsible and 

other information (each instance is encoded by 124 features). 

 

 

Figure 3 Trend attacks in the period 1970- 2014. 

 

The Global Terrorism Database was created in 2001 when researchers at the University of 

Maryland obtained a large database originally collected by the Pinkerton Global Intelligence 

Services (PGIS). From 1970 to 1997, PGIS trained researchers to identify and record terrorism 
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incidents from wire services, government reports, and major international newspapers in order to 

assess the risk of terrorism for their clients. With funding from the National Institute of Justice, the 

Maryland team finished digitizing the original Pinkerton data in December 2005, making 

corrections and adding additional information wherever possible. PGIS lost data for 1993 in an 

office move and these data have never been fully recovered. 

As stated in the introduction, this database represents a validated source of information about 

historical terroristic attacks for the LTR prediction analysis. In this dataset is possible to distinguish 

between two principal categories of features: 

 The “context” features describing the context of the attack, (e.g. The type of the target) 

 The “action” features describing of the actions performed during the attack (e.g. Type of 

action performed) 

In order to introduce the link between the detected events (provided by sensors) and GTD events, 

we would like to focalize the attention on the analysis of the following features: “target type” and 

“attack type”. 

Target type 

This feature can assume 22 different values representing the different type of target of each 

terroristic attack (ex. Business, government, etc.). In order to have an overview of the values 

assumed by this feature in the database, we propose two different figures depicting the distribution 

of the different attacks grouped by year and type. 

 

 

Figure 4 Number of instances for each target type. 
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Figure 5 Attacks per Year grouped by target type. 

 

For a better understanding of each kind of target depicted into the previous figures, we report  a 

brief explanation of each  possible value assumed by the variable “target type”. This description 

has been extracted from the GTD codebook [GTD Codebook 2015]. 

 Businesses are defined as individuals or organizations engaged in commercial or 

mercantile activity as a means of livelihood  

 Government Any attack on a government building; government member, former 

members, including members of political parties in official capacities, their convoys, or 

events sponsored by political parties. 

 Police This type includes attacks on members of the police force or police installations; 

this includes police boxes, patrols headquarters, academies, cars, checkpoints, etc. 

 Military Includes attacks against army units, patrols, barracks, and convoys, jeeps, etc. 

 Abortion related Attacks on abortion clinics, employees, patrons, or security personnel 

stationed at clinics.  

 Airports & Airlines An attack that was carried out either against an airplane or against an 

airport. Attacks against airline employees while on board are also included in this value..  

 Government Attacks carried out against foreign missions, including embassies, 

consulates, etc. 

 Educational institution Attacks against schools, teachers, or guards protecting school 

sites. Includes attacks against university professors, teaching staff and school buses.  

 Food or water supply Attacks on food or water supplies or reserves are included in this 

type. This generally includes attacks aimed at the infrastructure related to food and water 

for human consumption.  

 Journal & media Includes, attacks on reporters, news assistants, photographers, 

publishers, as well as attacks on media headquarters and offices.  

 Maritime (includes ports and maritime facilities) Implies civilian maritime. Includes 

attacks against fishing ships, oil tankers, ferries, yachts, etc.  
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 Non-governmental organizations Includes attacks on offices and employees of non-

governmental organizations (NGOs). This type include large multinational non-

governmental organizations such as the Red Cross and Doctors without Borders.  

 Other This type includes acts of terrorism committed against targets which do not fit into 

other categories.  

 Private citizens & Property This type includes attacks on individuals, the public in 

general or attacks in public areas including markets, commercial streets, busy intersections 

and pedestrian malls.  

 Religious figures/institutions This type includes attacks on religious leaders, (Imams, 

priests, bishops, etc.), religious institutions (mosques, churches), religious places or objects 

(shrines, relics, etc.). This type also includes attacks on organizations that are affiliated 

with religious entities that are not NGOs, businesses or schools 

 Telecommunication This includes attacks on facilities and infrastructure for the 

transmission of information.  

 Terrorist/Non-state militias Terrorists or members of identified terrorist groups within 

the GTD are included in this value. Membership is broadly defined and includes 

informants for terrorist groups, but excludes former or surrendered terrorists.  

 Tourists This type includes the targeting of tour buses, tourists, or “tours.” Tourists are 

persons who travel primarily for the purposes of leisure or amusement. Government tourist 

offices are included in this value.  

 Transportation Attacks on public transportation systems are included in this type. This 

can include efforts to assault public buses, minibuses, trains, metro/subways, highways (if 

the highway itself is the target of the attack), bridges, roads, etc.  

 Unknown The target type cannot be determined from the available information.  

 Utilities This type pertains to facilities for the transmission or generation of energy. For 

example, power lines, oil pipelines, electrical transformers, high tension lines, gas and 

electric substations, are all included in this type. 

 Violent political parties This type pertains to entities that are both political parties (and 

thus, coded as “government” in this coding scheme) and terrorists. 

In order to complete the information presented into the previous section, a brief description of the 

main types of action performed by terrorists during the execution of an attack is reported. In GTD 

this feature is called “type of action” and can assume 9 different values as depicted in the Figure 6. 
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Figure 6 Number of instances for each action performed. 

 

As for the target nature analysis, we report in the number of attacks grouped by year for each type 

of action performed by terrorists. 

 

 

Figure 7 Attacks for year grouped by actions performed. 

 

Also for this feature, a brief summary of the description of each   possible value assumed by the 

variable “type of action performed” is reported [GTD Codebook 2015]. 

 Assassination An act whose primary objective is to kill one or more specific, prominent 

individuals.  

 Armed assault An attack whose primary objective is to cause physical harm or death 

directly to human beings by use of a firearm, incendiary, or sharp instrument (knife, etc.).  

 Bombing/Explosion An attack where the primary effects are caused by an energetically 

unstable material undergoing rapid decomposition and releasing a pressure wave that 

causes physical damage to the surrounding environment.  
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 Hijacking An act whose primary objective is to take control of a vehicle such as an 

aircraft, boat, bus, etc. for the purpose of diverting it to an un-programmed destination, 

force the release of prisoners, or some other political objective. 

 Hostage taking (barricade incident) An act whose primary objective is to take control of 

hostages for the purpose of achieving a political objective through concessions or through 

disruption of normal operations.  

 Hostage taking (kidnapping) An act whose primary objective is to take control of hostages 

for the purpose of achieving a political objective through concessions or through disruption 

of normal operations. Kidnappings are distinguished from Barricade Incidents (above) in 

that they involve moving and holding the hostages in another location. 

 Facility/infrastructure attack An act, excluding the use of an explosive, whose primary 

objective is to cause damage to a non-human target, such as a building, monument, train, 

pipeline, etc. 

 Unarmed assault An attack whose primary objective is to cause physical harm or death 

directly to human beings by any means other than explosive, firearm, incendiary, or sharp 

instrument (knife, etc.). 

 Unknown The attack type cannot be determined from the available information. 

As already clear in the previous sections, during the reported analysis of the two data sources (GTD 

and MAROB), we mapped the features reported in both dataset to those that are required for the 

alert prediction activity. While MAROB dataset is focused on organizations that represent the 

interests of ethnic groups around the world who have experienced state repression, the GTD 

database represents a complete picture of terrorist incidents. In fact, GTD provides more 

information about the characteristics of an attack (e.g the instruments used: guns, bombs) and about 

the contextualization of that. This contextualization is strongly related to the description of the 

physical monitored environments used in this thesis. Also the number of events stored into GTD is 

bigger than those of MAROB, as reported into Table 2. 

For all these reasons GTD is selected as data source for train and test the long term clustering 

prediction approach (see section 6.1 and 6.2). 

 Gaming data  2.5.4.

Computerized serious games have received a lot of attention lately as they have been used for a 

variety of educational and training purposes, to raise awareness and funds for good causes, to 

collectively solve difficult and important problems, to detect, evaluate and enhance social and 

business skills, as well as for diagnostic and therapeutic purposes [Susi et al., 2007]. 

These games are typically built based on realistic requirements provided by LEAs. Therefore, they 

are appropriate not only for training officers in effectively engaging in terrorist situations, but also 

for: 

 Developing expert system rules that can be used to raise alarms on the risk of terrorist 

attacks; 
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 For generating sequences of data that will be used to train expert systems (such as 

reasoners) into classifying situations and reaching automated decisions about the 

probability of an impending attack. 

Role playing games have a long history of use in armed and security forces training even before 

computerized games emerged [Smith, 2009]. Computerized games in counter-terrorism activities 

have also been developed and used to train security forces and first responders. Most of them fall 

into two major categories: active engagement combat like missions against terrorists attacking a 

target [Silverman et al., 2006] or crisis management during and after terrorist attacks. In the first 

category there exist even some very popular commercial computer games such as Counter Strike. 

Finally, there are a few games aiming to train security forces at screening suspects, setting up 

checkpoints, patrolling land and sea borders and inspecting suspicious vehicles or vessels [Caspian 

learning, 2008].  

There are few games aiming to train the security forces to efficiently deploy resources and predict 

terrorist attacks in an urban environment. A prominent such game is SIBILLA [Bruzzone et al., 

2009]. The main focus in SIBILLA is in the collaboration between different agencies by sharing 

information in a way which maximizes their chances not only to prevent terrorist attacks but to beat 

other agencies in doing so. In SIBILLA each player assumes the role of a collaborating agency, 

while the role of the terrorists is carried out by the computer program. Another simulator training 

tool that can be used to train camera operators to spot suspicious behavior (either terrorist or 

criminal) in camera feeds from crowded areas is EyeObserve [VSTEP]. In terms of technology, 

several serious games and simulators employ ergonomic and motivating technologies for engaging 

end-users, such as virtual reality technologies [Zyda, 2005]. 

Most of the above-listed games are used for training and simulation, but are not used for generating 

data sets that can be used for prediction of real-life settings. 

A lot of attention has been also given into modeling terrorist action and counter-action using game 

theoretic analysis tools. Since the relevant literature is quite large to be summarized in a couple of 

paragraphs, we refer the reader to the overview papers [Sandler and Siqueira, 2009] and [Eiselt et 

al., 2013] and references within. [Sandler and Siqueira, 2009] provides an overview of game 

theoretic modeling of various aspects of the anti-terrorist war. In particular, it investigates the 

government’s allocation of a fixed budget to counter attacks against potential targets, the choice 

between proactive and defensive countermeasures, along with the impact that domestic politics has 

on this choice, the interaction between political and militant factions within terrorist groups, the 

role of asymmetric information, and suicide terrorism. [Eiselt et al., 2013] uses game theory 

models to analyze three important counter-terrorism tasks: the detection and neutralization of 

terrorist cells, the fortification and protection of assets and the optimal evacuation of people from 

an area hit by a terrorist attack.  

There are works which combine game theory and serious games. In the scope of a prominent 

example [Silverman et al., 2006], the authors use a game theory matrix of utilities in order to build 

“rational actor” models for decision making that are used in implementing software agents 

representing terrorists in simulated training environments. 
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3. State of the art 

The relevance of Artificial Intelligence (AI) in event detection has been growing steadily bringing 

many approaches to the attention of researches and practitioners, whose mentions is really outside 

the scope of this work. For a general overview see [Atefeh and Khreich, 2015] and [Zuech et al., 

2015]. More to the point of this thesis we analyze in more details AI based event detection related 

to security (section 3.1) and modelling algorithmic approaches that have been specifically 

investigated (section 3.2). 

  AI threat detection approaches 3.1.

In order to detect threats, data mining is usually applied on data that has been gathered over 

extended period of time, with the goal to analyze data and make deductions and predict future 

trends. Ideally it is used as a decision support tool. In the literature many algorithms have been 

investigated for threat and/or anomalous situation detection, in this section an overview of this 

methods is resented. 

 Information Extraction 3.1.1.

A variety of information extraction techniques can be applied in analysis of terrorists and 

extremism, including topic mining and summarization. Websites and forum frequented by these 

groups are particularly rich sources of information. The main body of research tends to focus on 

either white supremacist groups in the United States or Islamic fundamentalists. 

[Yang and Ng, 2008] relate how a clustering opinion-extraction method targeted specifically at 

opinions expressed in online discussion is experimented on a corpus drawn from MySpace. 

[Jayanthi and Sasikala, 2011] describe a process of mining hyperlinks from terrorist webpages as 

part of link analysis, but only a simulation of output from a toolkit is provided. 

[Inyaem et al., 2009] focus on gathering open-source information about terrorism via 

summarization of web-based news articles. Though some details appear obscured by poor 

translation, the authors seem to find support for an ontological approach to detection of terrorist 

events, comparing this approach to a gazetteer and a grammatical parser in an evaluation on Thai 

news articles. 

 Machine Learning 3.1.2.

Machine learning is deployed both in identifying terrorists from their online footprint and in 

detecting terrorism-related activities. 

Identify terrorists from online footprint 

[Cheong and Lee, 2011] explores microblogging within the terrorism informatics domain. They 

perform an observational analysis of the Twitter network’s response to two real-life terrorist 

events, and use this as inspiration for the design of an information gathering framework. They later 
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apply the framework to a synthetic dataset of events which share some properties with terrorism 

events. They also apply a variety of common machine-learning analyses to their dataset in an 

exploratory manner. 

[Tinguriya and Kumar, 2010] suggest a self-organizing map (SOM) approach to classifying web 

users from usage data. They provide no evaluation or appraisal of their proposed system, and 

minimal description of its proposed operation. 

In [Endy et al., 2010] the authors have developed what they term an intelligent search procedure 

for web mining cyberterrorism information, feeding a vector representation of 600 articles, half 

related to cyberterrorism, into an SOM, the results of which they then briefly dissect. Their 

presentation of the SOM as a heat-colored grid seems ill-suited for law enforcement analysts. 

[Sahito et al., 2011] links streams of Twitter data to other resources through open data mechanisms. 

They apply named entity recognition to the content of Tweets. They mention the terrorism domain, 

their aim being to allow for structural links to entities to be imposed on unstructured Twitter data to 

better allow law enforcement to parse and respond to events detected via Twitter. However, the 

implementation of this is relegated to future work. 

[Shen and Boongoen, 2012] uses a qualitative formalism as the basis for a fuzzy analysis, applying 

this to link analysis and the determination of aliases. They evaluate their system against 

unspecialized, unsupervised learning systems on a constructed terrorism dataset gathered from web 

articles, an author publication dataset (DBLP) and an email dataset. Their system appears to 

outperform a number of similar link based algorithms. 

[Yang et al., 2012] focus on identifying extremist content in social media sites, drawing their 

design inspiration from biological immune systems. They build a mathematical representation of 

lymphocytes which incorporates lexical, sentiment, and syntactic features of text as a precursor to a 

semi supervised classification system. In an evaluation of this system on violent messages scraped 

from a white supremacist web forum, their system outperformed two benchmark labelling systems. 

[Chung, 2012] studies appropriate machine-learning systems for categorizing temporal events 

collected from web data. Using a case study involving web articles related to an incident of 

domestic terrorism, the performance of Naive Bayes, SVM, and neural-network methods at 

applying temporal group labels across a range of feature set sizes is demonstrated. The results show 

that while all three systems performed in a satisfactory manner, SVM and Naive Bayes increased in 

accuracy as the number of features increased, while the neural network peaked at 70 features. 

[Nizamani et al., 2013] evaluates a number of machine-learning methods (the ID3 decision-tree 

algorithm, logistic regression, Naive Bayes and SVM) for the purpose of detecting suspicious 

emails. As well as developing a terrorism-related email dataset for the purposes of this comparison 

(including real messages gathered from newsgroups), they develop a feature-selection system that 

provides consistent improvement on the results of all of the tested classifiers. They report that, for 

their application, logistic regression and ID3 outperformed the Naive Bayes and SVM classifiers. 
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Detect terrorist activities 

After the 9/11 terrorist attacks, more artificial intelligence research and development projects have 

focused on facilitating knowledge acquisition, assisting in the formation of terrorism-related 

knowledge bases, and supporting the processes of analysis and decision making in counterterrorism 

[Markman et al., 2003]. This subsection presents an overview of these research works. 

The University of Arizona’s AI Lab developed web-based counterterrorism knowledge portals 

[Reid et al., 2004]. The main focus of this project is to provide advanced methodologies for 

analyzing terrorism research, terrorists, and the terrorized groups (victims). This project uses 

pattern matching algorithms which takes in input a query in natural language from the user and 

matches the input to one of the questions in their question/answer script, then picks out the 

appropriate response. 

[Popp et al., 2005] proposes a collaborative analysis environment, termed NEMESIS, that utilizes 

various information technologies to collaborate, evaluate, share, and act on the information faster 

to detect and prevent terrorist attacks. The two analysis tools integrated within the NEMESIS 

environment are the ASAM system and the ORA tool. The ASAM system combines the HMM and 

BN methods to detect terrorist activities and generate global threats. The ORA tool, based on social 

network analysis, models the information flow within terrorist networks and the evolution of the 

terrorist networks over time. 

In [Vu et al., 2007] the authors studied the Timely Energy-efficient k-Watching Event Detection 

problem (TEKWED) for composite event detection and alarming in Wireless Sensor Networks 

(WSNs). In order to solve this problem, they proposed a novel scheme that is able to detect events 

and deliver timely warnings in WSNs. Based on this scheme, an algorithm that considers topology 

of the network and routing capabilities is proposed. This algorithm builds a set of detection 

strategies that have several advantages, including the short notification time, energy conservation, 

and tunable quality of surveillance requirements in event alarming applications. Another statistical 

event detection approach based on statistical signal processing techniques is proposed in [Gupchup 

et al., 2009]. In this work, the authors used Principal Component Analysis (PCA) technique to 

build a compact model of the observed phenomena that detects various events from the collected 

measurements in environmental monitoring, such as seasonal trends or rain events. The authors use 

the divergence between actual collected measurements and model predictions to detect the 

existence of discrete events within the collected data streams. 

Five U.K. universities launched DScent, a joint project that “combines research theories in the 

disciplines of computational inference, forensic psychology and expert decision-making in the area 

of counterterrorism” and it includes the use of neural networks to identify deceptive behavior of 

terrorists with an average of 60% success rate [Dixon et al., 2011a]. 

In [Curtis et al., 2016] the authors are concerned with alleviating the burden of an operator that 

constantly monitors several video feeds to detect suspicious activities around a secured critical 

infrastructure. The automated solution proposed in this wok extracts the objects of interest (i.e., car, 

person, bird, ship) from the image using an iteratively updated background subtraction method, 

then the object is classified by an artificial neural network (ANN) coupled to a temporal Bayesian 

filter. The next step is determining the behavior of the object, e.g., entering a restricted zone or 
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stopping and dropping an object. Relevant alerts are issued to the operator should a suspicious 

event be identified. The authors tried their approach in the automated monitoring of a dumpster, a 

doorway and a port. 

To counter piracy attempts, maritime operators need to quickly and effectively allocate some 

mobile resources (defender units) to assist a target given the available information about the 

attackers. In [De Simio et al., 2016] the authors introduce a Decision Support System (DSS) to that 

end. The DSS has been designed using Game Theory in order to handle the attractiveness of targets 

and model strategies for attackers and defenders. Game Theory has proved to be a robust tool to 

identify the best strategy for the defenders given the information and capabilities of opponents. In 

the proposed framework, the optimal strategy is modeled as the equilibrium of a time-varying 

Bayesian-Stackelberg game. 

[Rao, 2016] elaborates on an architectural approach for designing composable, multiservice and 

joint wargames that can meet the requirements of several military establishments. This architecture 

is realized by the design and development of common components that are reused across 

applications and variable components that are customizable to different training establishments’ 

training simulators. Some of the important Computational Intelligence (CI) techniques (such as 

fuzzy cognitive maps, game trees, case-based reasoning, genetic algorithms and fuzzy rule-based 

systems) that are used to design these wargame components are explained with suitable examples, 

followed by their applications to two specific cases of Joint Warfare Simulation System and an 

Integrated Air Defence Simulation System for air-land battles. 

Text mining techniques are important for security and defense applications since they allow 

detecting possible threats to security and public safety (such as mentions of terrorist activities or 

extremist/radical texts). [Inkpen, 2016] discusses information extraction techniques from social 

media texts (Twitter in particular) and showcases two applications that make use of these 

techniques: (1) extracting the locations mentioned in tweets and (2) inferring the users’ location 

based on all the tweets generated by each user. The former task is accomplished via a sequence-

based classifier followed by disambiguation rules whereas the latter is tackled through deep neural 

networks. 
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 Investigated  approaches 3.2.

In this subsection a literature overview of the specific AI approaches adopting in this work thesis 

are presented. In particular we put the focus on: 

 The HHMs approach (adopted in section 5 for the development of STR component) 

 The clustering approach (adopted in section 6 for the development of LTR component) 

 The CEP approach (adopted in section 7 for the development of MTR component). 

 HMM 3.2.1.

The term asymmetric threat refers to tactics employed by, e.g., terrorist groups to carry out attacks 

on a superior opponent, while trying to avoid direct confrontation. Terrorist groups are elusive, 

secretive, amorphously structured decentralized entities that often appear unconnected. Analysis of 

prior terrorist attacks suggests that a high magnitude terrorist attack requires certain enabling 

events to take place. 

In previous works HMMs have been shown to provide powerful statistical techniques, and they 

have been applied to various problems such as speech recognition, DNA sequence analysis, robot 

control, fault diagnosis, and signal detection, to name a few. Excellent tutorials about HMMs can 

be found in [Norris, 1998], [Dymarski, 2011] while a compressive mathematical definition can be 

gathered in section 5.3. 

The basic motivation for modeling terrorist activities via HMMs is twofold. Firstly, carrying out a 

terrorist activity requires planning and preparations, following steps that form a pattern. This 

pattern of actions can be modeled using a Markov chain. Secondly, the terrorists leave detectable 

clues about these enabling events in the observation space. The clues are not direct observations of 

the planning and preparations, but are rather related to them, meaning that the states in the Markov 

model are hidden. For example, an observation of a purchase of chemicals could be indicative of 

intentions to produce a chemical weapon. However, a purchase of chemicals could very well be a 

benign event, which motivates inclusion of a model of observations that are unrelated to the HMM. 

The applicability of HMMs for terrorist activity modeling and other national security problem 

situations has been illustrated in previous work. 

[Schrodt, 2000] uses "hidden Markov models" to measure similarities among international crises. 

The models are first estimated using the Behavioral Correlates of War data set of historical crises, 

then applied to an event data set covering political behavior in the contemporary Middle East for 

the period April 1979 through February 1997. A split-sample test of the hidden Markov models 

perfectly differentiates crises involving war from those not involving war in the cases used to 

estimate the models. The models also provide a high level of discrimination in a set of test cases 

not used in the estimated, and most of the erroneously-classified cases have plausible 

distinguishing features. The difference between the “war” and “nonwar” models also correlates 

significantly with a scaled measure of conflict in the contemporary Middle East. 

[Singh et al., 2004] develops a tool to detect and track terrorist activity. Authors follow two 

probabilistic approaches: HMMs and Bayesian networks (BNs). Authors assert that HMMs, which 
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are used for modeling partially observed stochastic processes, are an ideal way to make inferences 

about the evolution of terrorist networks. The HMMs detect the monitored terrorist activity and 

measure threat levels, whereas BNs combine the likelihoods from many different HMMs to 

evaluate the cumulative probability of terrorist activity. In other words, BNs represent the 

overarching terrorist plot and the HMMs, which are related to each BN node, represent detailed 

terrorist subplots. A case study for the 2004 Olympics is presented in this paper as an example. 

The authors of [Coffman and Marcus, 2004] present the methodology and results of a study that 

applies HMMs to time-varying social network analysis metric values, in order to classify the 

evolution of simulated social networks.  They motivate and present results from a case study using 

a simulation of suspicious groups communicating in a normal background population. They 

achieved 96% classification accuracy on novel synthetic data using two 35-state univariate HMMs 

trained to model normal and suspicious evolutions of the characteristic path length metric. 

In this work [Weinstein et al., 2009], the authors describe an approach and some initial results on 

modeling, detection, and tracking of terrorist groups and their intents based on multimedia data. In 

particular it describes the development and application of a new Terror Attack Description 

Language (TADL), which is used as a basis for modeling and simulation of terrorist attacks. 

Examples are shown which illustrate the use of TADL and a companion simulator based on a 

HMM structure to generate transactions for attack scenarios drawn from real events. They also 

describe the techniques for generating realistic background clutter traffic to enable experiments to 

estimate performance in the presence of mix of data. 

In [Singh et al., 2009], the authors introduced feature-aided tracking combined with HMMs for 

analyzing asymmetric threats. HMMs can detect, track, and predict the potential threat activities in 

the presence of partial and imperfect sequential data. The proposed approach can also serve as a 

what-if analysis tool by allowing users to modify models (i.e., states in the HMMs) and/or 

transaction sequences. The authors utilized a transaction-based probabilistic method to detect and 

track a pattern consistent with the Development of a Nuclear Weapons Program (DNWP). The 

simulation results demonstrate that the developed Hidden Markov Models and Feature-Aided 

tracking method (HMMFA) is an effective method to track asymmetric threats with high accuracy. 

Performance analysis shows that the detection of HMMs improve with increase in the number of 

states in an HMM. They have also provided a detailed performance comparison between the 

HMMFA method and the ML-based data mining method for all the HMMs in the DNWP model. 

The authors of [ Andersson and Johansson, 2010] propose a two-stage method based on multiple 

distributed sensors for detection of piracy operations at sea. The proposed method is based on 

fusion of evidence from radar and optical sensors as well as Automated Identification System 

(AIS) signals. In the first stage, the sensors perform detection, tracking and classification locally. 

The outputs act as input to the second stage which performs high-level fusion and disambiguation 

of the first-stage information. The high-level fusion is performed by HMMs. The reported results 

show that this approach is able to detect piracy operation at an early stage, i.e. close to the time, or 

possibly before, the attack has occurred. 

[Raghavan et al., 2013] develops a HMM framework to model the activity profile of terrorist 

groups. Key to this development is the hypothesis that the current activity of the group can be 
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captured completely by certain states/attributes of the group, instead of the entire past history of the 

group. In the simplest example of the proposed framework, the group’s activity is captured by a 2 

state HMM with the states reflecting a low state of activity (Inactive) and a high state of activity 

(Active), respectively. In either state, the days of activity are modeled as a discrete-time Poisson 

point process with a hurdle-based geometric model being a good fit for the number of attacks per 

day. While more general models can be considered, even the simplest framework is sufficient for 

detecting spurts and downfalls in the activity profile of many groups of interest. Their results show 

that the HMM approach provides a competent alternate modeling framework to the Threshold 

Auto-Regressive (TAR) model [Enders and Sandler, 2002] and Self-Exciting Hurdle Model 

(SEHM) approaches [Porter and White, 2012], both in terms of explanatory and predictive powers. 

HMMs used in [Granstrom et al., 2015] for modeling asymmetric threats. The observations 

generated by such HMMs are generally cluttered with observations that are not related to the 

HMM. In this works the authors  proposed a Bernoulli filter which processes cluttered observations 

and is capable of detecting if there is an HMM present, and if so, estimate the state of the HMM. 

The presented results show that the proposed filter is capable of detecting and estimating an HMM 

except in circumstances where the probability of observing the HMM is lower than the probability 

of receiving a clutter observation. 

[Shahir et al., 2015] is focused on the monitoring activity of critical infrastructures like sea lanes, 

ports, offshore structures (like oil and gas rigs) in order to prevent illegal activities (i.e. smuggling 

of drugs and weapons, human trafficking), piracy and terrorist attacks. The authors propose a novel 

situation analysis approach to analyze marine traffic data and differentiate various scenarios of 

vessel engagement for the purpose of detecting anomalies of interest for marine vessels that operate 

over some period of time in relative proximity to each other. They consider such scenarios as 

probabilistic processes and analyze complex vessel trajectories using machine learning to model 

common patterns. Specifically, in this work the common patterns are represented through HMMs 

and such patterns are classified using Support Vector Machines. To differentiate suspicious 

activities from unobjectionable behavior, the authors explore fusion of data and information, 

including kinematic features, geospatial features, contextual information and maritime domain 

knowledge. The reported experimental evaluation shows the effectiveness of the proposed 

approach using comprehensive real-world vessel tracking data from coastal waters of North 

America. 

The HMMs approach used in this thesis (see section 5.2) differs from those proposed in the above 

ones at a knowledge representation level. The proposed one is richer and more realistic, in fact it 

takes into account the context information and classifies event based on their relevance and domain 

information. 

 Clustering 3.2.2.

During the last decade different computational approaches has been proposed both for improving 

both data collection (structured or unstructured data analysis) and for the analysis of that data 

through the construction of different machine learning models with the aim to forecast long term 

activities of some terrorist groups or to suggest strategies against terrorists analyzing their past 

behaviors. In these way all these approaches have the same objectives of those of the LTR 
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prediction activity. Following the literature analysis we could classify all these computational 

approaches in three principal macro categories mainly based on the approach used and on the 

objective of the analysis. Starting from the “statistical modelling” related approaches, with 

particular focus on those having the aim of estimating the risk of particular events, the attention is 

focalized on “algorithmic approaches” (both supervised and unsupervised) and their link with 

network based approaches. 

The first category, the statistical modelling approaches, includes conventional time series 

approaches [Pevehouse and Brozek, 2010] and, more recently, a substantial amount of work using 

vector auto-regression [Brand and Williams, 2007] for conflict early warning. A different approach 

is that proposed in [Hosmer et al., 2008] that, rather than trying to predict the value of a behavior at 

a specific time, tries to predict probabilities of events, and in particular analyses the change in 

probability over time of the next event occurring. This kind of approaches suffers of different data 

quality related problems and in particular of the so called zero (non-event) observations in 

terrorism-event data sets. Some other approaches based on “rare events analysis” has been 

investigated in [McMorrow, 2009] and [King and Zeng, 2001]. Particular attention must be given 

to the approach proposed in [Clauset and Woodard, 2013] which goal is to estimate the probability 

of observing at least one “catastrophic” event of size x (where x is the rarest event in the dataset) in 

an empirical sample. The proposed method provides an objective estimate of the historical or future 

probability of a rare event, for example, an event that has occurred exactly once. 

The second category, the “algorithmic” approaches have proven effective and particularly relevant 

to forecasting terroristic events. As stated in [Schrodt et al., 2013], these models are less dependent 

on rigid assumptions about the data generating process and underlying distributions, like the 

previous ones. In this way algorithmic approaches try to be similar to an human analysts or a 

decision maker. The vast majority of quantitative studies related to terroristic event employ data 

that meet the requirements of supervised algorithms, between all we could focalize the attention on 

linear models, neural networks and Tree-Based Algorithms [Hastie et al., 2009]. Although most 

works with neural networks seems far removed from terrorism, in [Dixon et al., 2011b] the authors 

chose the neural network approach in order to distinguish terrorist and non-terrorist behaviors using 

data generated by a game designed by psychologists and criminologists. 

Unlike supervised learning algorithms that train a model based on relationships between a matrix 

of covariates and a corresponding vector of observed dependent variables for each observation, 

unsupervised approaches are applied to datasets for which dependent variables are ‘latent’ and 

therefore not directly provided. As already underlined, in the domain of terroristic events analysis 

and forecast one of the important task is to reduce the dimensionality of the space in order to 

reduce computation and in particular avoid redundant data elements. Analyzing the literature the 

unsupervised approaches range from factor analysis to reduce the dimensionality of matrix of 

potential covariates by identifying latent attributes, like Principal Component Analysis (PCA) 

[Ghahramani, 2004], to clustering approaches (e.g. k-means methods, mixture models, and kernel 

methods) similar to dimension reduction in that they attempt to identify latent classes amongst a set 

of observations, but differ in that they identify discrete, rather than continuous solutions like PCA. 

A benefit of clustering approaches is that features are similar to measured data making the results 

easier to interpret, however, the binary assignments reduce flexibility. Analyzing unsupervised 
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approaches applied in this domain, k-means approaches are among the most commonly used 

clustering algorithms. [Malathi et al., 2011] uses k-means clustering with some enhancements to 

aid in the process of identification of crime patterns. While K-means algorithm is used in particular 

for the analysis of database in which each feature is described thru numerical attributes, another 

frequently used approach, it’s the CLOPE algorithm for categorical attributes analysis [Yang et al., 

2002], [Mahmood and Rohail, 2012]. 

A major drawback of k -means is that it cannot separate clusters that are non-linearly separable in 

input space. Two recent approaches have emerged for tackling such a problem. One is kernel k-

means, where, before clustering, points are mapped to a higher-dimensional feature space using a 

nonlinear function, and then kernel k-means partitions the points by linear separators in the new 

space. The other approach is spectral clustering algorithms, which use the eigenvectors of an 

affinity matrix to obtain a clustering of the data [Von Luxburg, 2007]. Another kind of approaches 

are those proposed by [D’Orazio et al., 2011] who suggest an archetype-driven approach to 

sequence analysis with the explicit goal of predicting political violence that uses sequence analysis 

to build features on which a statistical or algorithmic model produces out-of-sample forecasts. For 

this archetype approach be succeed, it requires the existence of a distinct pattern of events (i.e. an 

archetype) that tends to precede a given outcome-of-interest. If such an archetype exists, then a 

model may be able to forecast the outcome of interest based on the extent to which a sequence 

whose outcome is unknown (for example, events being observed in real time) is similar to the 

archetype sequence. An approach that include both the basis of archetype-driven approaches and 

unsupervised approaches, is that proposed in [Martinez et al., 2008] and [Xue et al., 2011]. 

[Martinez et al., 2008] uses the so called CONVEX and SitCAST algorithms to predict future 

actions of terroristic groups assuming normal behavior. The authors based their study on the 

database MAROB (see section 2.5.2). More in detail, the algorithm views each instance of as a pair 

of two vectors: context vector and action vector. The first contains the values of the context 

variables associated with the terrorist group, while the other one the values of the action variables. 

In this way the algorithm describes an instance-based learning process (e.g., k-nearest neighbors) 

used to identify k most similar contexts to the query context based on a historical dataset and 

predict, through the so called SitCAST algorithm, future behaviors using action features associated 

with context features. 

In the last category of computational approaches, the Network Approaches, we could find works 

with different goals, like forecast source information in a transnational terroristic network or find 

hidden links between different organizations. Important work proposed by [Desmarais and 

Cranmer, 2013] analyzes data by coding nationalities of terrorists and the location of their attack, 

develops an approach to forecasting the network of transnational terrorist attacks in order to 

forecast source information. A more complex approach is proposed by [Dawoud et al., 2013], in 

which is introduced a novel framework which integrates network methods and data mining 

techniques to model and analyze terrorism networks. First the algorithm builds the terror/criminal 

network searching the co-occurrences of some keywords which are provided by a domain expert. 

Then, it partitions it into sub-networks by considering different link types and studies them in order 

to find hidden links between terroristic groups. The application presented in this kind of approaches 

are outside the objectives of our LTR prediction task (section 6.2), but are interesting in order to 

better capture the hidden relations between terroristic events. 
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 CEP 3.2.3.

As this thesis aims at producing timely proactive responses by relying on reliable forecasts about 

threat actions, one can see a direct correspondence to event processing systems. The overall field of 

event processing refers to a broad area with applications in environmental monitoring, monitoring 

for transportation and logistics, trading for financial markets, security application for intrusion 

detection, bio-hazard attacks etc. Since the role of Medium Term Reasoning module in the 

developed framework is to process numerous incoming events types of different nature and update 

the sensitivity of the STR in near real-time manner, we believe that event processing approaches 

fits requirements of the MTR module. 

In [Etzion and Niblett, 2010] an event is defined as “an occurrence of something that has happened, 

or is considered as having happened”. Events can be primitive (atomic) events (e.g. sensor data, 

water level, trading ticks, credit card transaction, a mouse click, network signals) and complex 

(composite) events (e.g. flood, landslide, terrorist attack, plane landing, intrusion detected, credit 

card fraud). While primitive events don't contain other events, complex events are composed of 

other primitive and/or complex events. 

In an event processing systems continuous event stream are received from different event sources 

(e.g. sensors, software applications). As data sources (e.g. temperature sensors) have become 

relatively cheap and are able to produce thousands of measurements every day, the need to 

continuously process incoming data streams in near real-time has become crucial leading to 

development and evolution of new tools. In [Cugola and Margara, 2012] the authors propose an 

abstract framework for event processing (information flow processing) systems that are able to 

manage multiple data stream sources and derive new information about the data stream through use 

of a set of processing rules. Two main types of existing information flow processing systems are 

defined: Data Stream Management Systems (DSMS) and Complex Event Management Systems 

(CEP). On one hand DSMS are rooted in classical data base management systems (DBMS) they 

deal with constantly updating data-streams and continuously execute queries as new data arrives. 

Similarly to DBMSs, they process incoming data through a sequence of transformations based on 

common SQL-like operators and continuously update the results. On the other hand CEP systems 

filter and combine incoming events of particular patterns from the external world to understand 

what high-level complex events have occurred and notify relevant actors or be reused as an input in 

the CEP solution. 

As event patterns must specify complex relationships among input events entering the system they 

can rely on two types of languages for this [Etzion and Niblett, 2010]: stream-oriented style and 

rule-oriented style language. The stream-oriented (transforming) style is inspired by SQL and 

relational algebra (e.g. CQL [Arasu et al., 2006] from the STREAM project) and is used in DSMSs. 

The rule-oriented (detecting) style, commonly used in CEP systems, defines detecting rules by 

separately specifying the firing conditions (event patterns) and the actions to be taken when such 

conditions are satisfied (e.g. event-condition-action (ECA) rules [McCarthy and Dayal, 1989], 

Snoop rules [Chakravarthy and Mishra, 1994]). 

Neither of the above mentioned language solutions can satisfy both the expressivity and 

effectiveness needs of CEP applications on their own. Hence, alternative CEP languages have been 
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proposed that combine and extend operators from both language styles as in [Wu et al., 2006] and 

[Wang et al., 2009]. Promising research directions consider using both background knowledge to 

reason about the events (e.g. ETALIS [Anicic et al., 2011] a logic-rules based CEP that uses 

contextual knowledge and defines semantic relations between events) and statistical knowledge to 

detect patterns of interest in event streams. 

Even though a crucial feature in CEP systems is real-time processing in order to assure timely 

reaction, in a certain number of applications (e.g. terrorist threat, credit card fraud) the importance 

is on proactively preventing events before they occur and not only reacting after they happen. The 

value of the detected/predicted complex events decreases with time (terrorist threat notification in 

near real-time as opposed to a day after) as described in [Fülöp et al., 2012] and shown in Figure 8. 

The described setting satisfied the requirements of the thesis domain and its need to proactively 

detect and react to terrorist threats. Hence to address this issue we jointly consider both CEP 

systems and predictive analytics approaches, in this way enabling processing online streams of 

events while inferring decisions based on past and current data concerning prediction of future 

events of interest. We accomplish this by learning predictions from both long-term and short-term 

historical data and integrating the mentioned predictive analytics approaches with real–time 

complex event processing, the mentioned combination is particularly useful in application where a 

certain level of uncertainty regarding complex events is allowed. 

 

 

Figure 8 Knowledge value of complex events for an online event stream processing system [Fülöp et al., 2012]. 

 

 Software tools and technologies 3.3.

This section is aimed at presenting the current state of the art about technologies and tools for the 

analysis of big and stream data. Some of the following tools and technologies were developed 
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concurrently with this thesis, so they have not been used in the development of TENSOR 

framework. However This overview is particularly relevant in order to provide a more precise 

positioning of the TENSOR proposed approach and to envisage which are the most suitable 

solutions for its future extension and development, in particular with respect to the overall 

architecture.  

 Big Data Mining 3.3.1.

In 1997, Cox and Ellsworth [Landset et al., 2015] were among the first authors in scientific 

literature to discuss big data in the context of modern computing. Their work focused on data 

visualization, but their observations about the big data problem can easily be extrapolated to 

general data analytics and machine learning. The big data problem, according to them, consists of 

two distinct issues: 

 Big data collections are aggregates of multiple datasets that are individually manageable, 

but as a group are too large to fit on disk. The datasets in these collections typically come 

from different sources, are in disparate formats, and are stored in separate physical sites 

and in different types of repositories. 

 Big data objects are individual datasets that by themselves are too large to be processed by 

standard algorithms on available hardware. Unlike collections, they typically come from a 

single source. 

 

Today, the problem of big data collections is often solved through distributed storage systems, 

which are designed to carefully control access and manage in a fault-tolerant manner. 

The Big Data phenomenon is intrinsically related to the open source software revolution. Large 

companies such as Facebook, Yahoo!, Twitter, LinkedIn benefit and contribute to open source 

projects. Big Data infrastructure deals with Hadoop, and other related software as [Fan et al., 

2013]: 

 Apache Hadoop: software for data-intensive distributed applications, is based on 

MapReduce programming model and a distributed file system called Hadoop Distributed 

Filesystem (HDFS). Hadoop allows writing applications that rapidly process large amounts 

of data in parallel on large clusters of compute nodes. A MapReduce job divides the input 

dataset into independent subsets that are processed by map tasks in parallel. This step of 

mapping is then followed by a step of reducing tasks. These reduce tasks use the output of 

the maps to obtain the final result of the job. 

 Apache Hadoop related projects: Apache Pig, Apache Hive, Apache HBase, Apache 

ZooKeeper, Apache Cassandra, Cascading, Scribe and many others. 

 Apache S4: platform for processing continuous data streams. S4 is designed specifically 

for managing data streams. S4 apps are designed combining streams and processing 

elements in real time. 

 Storm: software for streaming data-intensive distributed applications, similar to S4, and 

developed at Twitter. 



36 

 

In Big Data Mining, there are many open source initiatives. The most popular are the following: 

 Apache Mahout: Scalable machine learning and data mining open source software based 

mainly in Hadoop. It has implementations of a wide range of machine learning and data 

mining algorithms: clustering, classification, collaborative filtering and frequent pattern 

mining. 

 R: open source programming language and software environment designed for statistical 

computing and visualization. R was designed by Ross Ihaka and Robert Gentleman at the 

University of Auckland, New Zealand, beginning in 1993 and is used for statistical 

analysis of very large data sets. 

 MOA (Massive Online Analysis): Stream data mining open source software to perform 

data mining in real time. It has implementations of classification, regression, clustering and 

frequent item set mining and frequent graph mining. It started as a project of the Machine 

Learning group of University of Waikato, New Zealand, famous for the WEKA (Waikato 

Environment for Knowledge Analysis) software. The streams framework provides an 

environment for defining and running stream processes using simple XML based 

definitions and is able to use MOA, Android and Storm. SAMOA (Scalable Advanced 

Massive Online Analysis) is a new upcoming software project for distributed stream 

mining that will combine S4 and Storm with MOA. 

 Vowpal Wabbit: open source project started at Yahoo! Research and continuing at 

Microsoft Research to design a fast, scalable, useful learning algorithm. VW is able to 

learn from terafeature datasets. It can exceed the throughput of any single machine network 

interface when doing linear learning, via parallel learning. 

There are many future important challenges in Big Data management and analytics that arise from 

the nature of data: large, diverse, and evolving [Fan et al., 2013]. These are some of the challenges 

that researchers and practitioners will have to deal with in the years to come: 

 Analytics Architecture. It is not clear yet how an optimal architecture of an analytics 

systems should be constructed to deal with historic data and with real-time data at the same 

time. An interesting proposal is the Lambda architecture of Nathan Marz. The Lambda 

Architecture solves the problem of computing arbitrary functions on arbitrary data in real-

time by decomposing the problem into three layers: the batch layer, the serving layer, and 

the speed layer. It combines in the same system as Hadoop for the batch layer, and Storm 

for the speed layer. The properties of the system are: robust and fault tolerant, scalable, 

general, extensible, allows ad hoc queries, minimal maintenance, and debuggable. 

 Evaluation. It is important to achieve significant statistical results, and not be fooled by 

randomness. As Efron explains in his book about Large Scale Inference, it is easy to go 

wrong with huge data sets and thousands of questions to answer at once. Also, it will be 

important to avoid the trap of a focus on error or speed as Kiri Wagstaff discusses in her 

paper “Machine Learning that Matters”. 

 Distributed mining. Many data mining techniques are not trivial to paralyze. To have 

distributed versions of some methods, a lot of research is needed with practical and 

theoretical analysis to provide new methods. 
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 Time evolving data. Data may be evolving over time, so it is important that the Big Data 

mining techniques should be able to adapt and in some cases to detect change first. For 

example, the data stream mining field has very powerful techniques for this task.  

 Compression. Dealing with Big Data, the quantity of space needed to store it is very 

relevant. There are two main approaches: compression where we don’t lose anything, or 

sampling where we choose data that is more representative. Using compression, we may 

take more time and less space, so we can consider it as a transformation from time to 

space. Using sampling, we are losing information, but the gains in space may be in orders 

of magnitude.  

 Visualization. A main task of Big Data analysis is how to visualize the results. As the data 

is so big, it is very difficult to find user-friendly visualizations. New techniques, and 

frameworks to tell and show stories will be needed, as for example the photographs, 

infographics and essays in the beautiful book “The Human Face of Big Data”. 

 Hidden Big Data. Large quantities of useful data are getting lost since new data is largely 

untagged file based and unstructured data. The 2012 IDC study on Big Data explains that 

in 2012, 23% (643 Exabytes) of the digital universe would be useful for Big Data if tagged 

and analyzed. However, currently only 3% of the potentially useful data is tagged, and 

even less is analyzed. 

 Machine Learning for Big and Streaming Data 3.3.2.

One solution for the problem of big data objects in machine learning is through parallelization of 

algorithms. This is typically accomplished in one of two ways [Bekkerman et al., 2011]: 

 Data parallelism, in which the data is divided into more manageable pieces and each 

subset is computed simultaneously, 

 Task parallelism, in which the algorithm is divided into steps that can be performed 

concurrently. 

While Hadoop is ubiquitous as a big data framework, there are a number of other open source 

options for machine learning that do not use it at all. MOA is a WEKA-related project offering 

online stream analysis on a number of (WEKA) algorithms and with the same user interface. 

MADlib is a collection of SQL-based algorithms designed to run at scale within the database rather 

than porting data between multiple runtime environments. It includes clustering, classification, 

regression, and topic models as well as tools for validation. Dato, formerly GraphLab, is a 

standalone product that can be connected with Hadoop for graph analysis and Machine Learning 

tasks. It was fully open source, but in late 2014, they transitioned into a commercial product. Their 

C++ processing engine Dato Core has been released to the community on Github along with their 

interprocess communication library (for translating between C++ and Python) and graph analytics 

implementations. Their machine learning libraries are unavailable outside of their enterprise 

packages. Distributed processing on Hadoop enables large-scale learning, while non-distributed 

tools for machine learning are widely available, and are thus more mature for use in projects that 

do not handle Big Data. 

Table 3 Data processing engines for Hadoop [Landset et al., 2015]. 
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 Current 

stable 

release 

(as of 

June 1, 

2015) 

Execution 

model 

Supported 

languages 

Associated 

ML tools 

In-

memory 

processing 

Low 

latency 

Fault 

tolerance 

Enterprise 

support 

MapReduce 2.7.0 Batch Java Mahout X X ✓ X 

Spark 1.3.1 Batch, 

streaming 

Java, 

Python, R, 

Scala 

MLib, 

Mahout, 

H2O 

✓ ✓ ✓ ✓ 

Flink 0.8.1 Batch, 

streaming 

Java, Scala Flink-ML, 

SAMOA 

✓ ✓ ✓ X 

Storm 0.9.4 Streaming Any SAMOA ✓ ✓ ✓ X 

H2O 3.0.0.12 Batch Java, 

Python, R, 

Scala 

H2O, 

Mahout, 

MLib 

✓ ✓ ✓ ✓ 

 

The MapReduce approach to Machine Learning performs batch learning, in which the training data 

set is read in its entirety to build a learning model. The biggest drawback to this batch model is a 

lack of efficiency in terms of speed and computational resources. In a typical batch-oriented 

workflow, the set of training data is read from the HDFS to the mapper as a set of key-value pairs. 

The output, a list of keys and their associated values, is written to disk. In a classification task, for 

example, the initial key-value pair might be a filename and a list of instances, and the intermediate 

output from the mapper would be a list of each instance with its associated class. This intermediate 

data is then read into one or more reducers to train a model based on this list. 

These frequent I/O operations can become very expensive in terms of time, computational 

resources, and network bandwidth. Any model parameters that need to be tuned after the initial 

evaluation stage further add to the costs. These issues become more apparent in cases where it is 

necessary to update models with changing data, which is often the case in real-world Machine 

Learning production environments. While this approach may be suitable for certain projects such 

as analyzing past events, it becomes problematic when data evolves, as the full process must be 

repeated each time a model requires updating. 

Spark is an Apache top-level project based on MapReduce but addresses a number of the 

deficiencies described above. It supports iterative computation and it improves on speed and 

resource issues by utilizing in-memory computation. Spark’s approach to processing has seen 

widespread adoption in both research and industry. The main abstractions used in this project are 

called Resilient Distributed Datasets (RDD), which store data in-memory and provide fault 

tolerance without replication. RDDs can be understood as read-only distributed shared memory. 

This model streamlines the learning process through in-memory caching of intermediate results, 

significantly cutting down on the number of read and write operations necessary. The RDD API 

was extended in 2015 to include DataFrames, which allow users to group a distributed collection of 

data by column, similar to a table in a relational database. Spark is easy to program and part of that 

reason is due to the fact that it can be coded in Java, R, Python, or Scala. For machine learning 

tasks, Spark ships with the MLlib and GraphX libraries and the latest version of the Mahout 

library offers a number of Spark implementations as well.  
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Storm is used for processing data in real-time and was initially conceived to overcome deficiencies 

of other processors in collecting and analyzing social media streams. Development on Storm began 

at BackType, a social media analytics company and continued at Twitter after a 2011 acquisition. 

The project was open sourced and became an Apache top-level project in September 2014. The 

machine learning community has been placing growing importance on real-time processing, and as 

a result, Storm is seeing increased adoption both in production and in research environments. The 

Storm architecture consists of spouts and bolts. A spout is the input stream (e.g. Twitter streaming 

API), while bolts contain most of the computation logic, processing data in the form of tuples from 

either the spout or other bolts. Networks of spouts and bolts, which are represented as directed 

graphs, are known as topologies. Storm was built as a stand-alone system independent from 

Hadoop, but since Hadoop moved to YARN, work has been done to integrate the two projects. 

Hortonworks added Storm to their Hadoop distribution beginning in version 2.1 and Yahoo! is 

working on an integration as well. The principal developer of Storm, Nathan Marz, coined the term 

“Lambda Architecture”, describing a generalized approach to combine multiple paradigms into 

one system by breaking down processing into three layers: batch, serving, and speed. The batch 

layer stores the master dataset and computes views which are sent to the serving layer for indexing 

and keeping track of the most current results. The speed layer looks at new data only, as it arrives, 

and makes updates in real-time. New data is sent to both the batch layer and the speed layer for 

computation and results from each are merged when the system is queried. In terms of the 

processing engines we have discussed so far, the lambda architecture can be seen as a way to 

quickly run jobs on MapReduce and Storm simultaneously and combine the results. This unifies 

the processing of both real-time and historical data. Storm does not ship with a Machine Learning 

library, but SAMOA, a platform for mining big data streams, currently has implementations for 

classification and clustering algorithms running on Storm. H2O has also offered a way to link the 

two projects. 

Flink graduated the Apache incubation stage in January 2015 and is now a top level project. It 

offers capability for both batch and stream processing, thus allowing for the implementation of a 

Lambda Architecture as described above. It is a scalable, in-memory option that has APIs for both 

Java and Scala. It has its own runtime, rather than being built on top of MapReduce. As such, it can 

be integrated with HDFS and YARN, or run completely independent from the Hadoop ecosystem. 

Flink’s processing model applies transformations to parallel data collections. Such transformations 

generalize map and reduce functions, as well as functions such as join, group, and iterate. Also 

included is a cost-based optimizer which automatically selects the best execution strategy for each 

job. Flink is also fully compatible with MapReduce, meaning it can run legacy code with no 

modifications. Like Spark, Flink also offers iterative batch as well as streaming options, though 

their streaming API is based on individual events, rather than the micro-batch approach that Spark 

uses. This is the same model that Storm uses for true real-time processing. Connectors are offered 

which allow for processing data streams from Kafka, RabbitMQ (a platform-independent 

messaging system), Flume, Twitter, and user-defined data sources. The project is still in its infancy 

but machine learning tools are in development. Flink-ML, a machine learning library, was 

introduced in April 2015. Additionally, an adapter is available for the SAMOA library. 

H2O is an open source framework that provides a parallel processing engine, analytics, math, and 

machine learning libraries, along with data preprocessing and evaluation tools. Additionally, it 
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offers a web-based user interface, making learning tasks more accessible to analysts and 

statisticians who may not have strong programming backgrounds. For those who wish to tweak the 

implementations, it offers support for Java, R, Python, and Scala. In addition to its native 

processing engine they have also released a project called Sparkling Water which integrates 

Spark and Spark Streaming into their platform. This is only supported in version 3.0. Additional 

efforts have been made towards integration with Storm for real-time streaming. H2O’s engine 

processes data completely in-memory using multiple execution methods, depending on what is best 

for the algorithm used. The general approach used is Distributed Fork/Join, a divide-and-conquer 

technique, which is reliable and suitable for massively parallel tasks. This is a method which breaks 

up a job into smaller jobs which run in parallel, resulting in dynamic fine-grain load balancing for 

MapReduce jobs as well as graphs and streams. They claim to be the fastest execution engine, but 

as of the time of this writing, no academic studies have been published which verify or refute these 

claims and further research is needed in this area. 

A variety of machine learning toolkits have been created to facilitate the learning process but many 

researchers and practitioners reject them for various reasons, most often because they lack needed 

features or are difficult to integrate into an existing environment. One issue is that machine 

learning is a broad field of study and many of the available toolkits lack important functionality. 

Another problem is that without true expertise in the areas of programming and system 

architecture, many people lack a full understanding of what the various platforms are capable of. 

 

Table 4 Overview of machine learning toolkits [Landset et al., 2015]. 

 Mahout MLlib H2O SAMOA 

Interface language Java Java, Python, Scala Java, Python, R, 

Scala 

Java 

Associated platform MapReduce, spark 

(H2O and flink in 

progress) 

Spark, H2O H2O, Spark, 

MapReduce 

Storm, S4, Samza 

Current version (as 

of 

June 1, 2015) 

0.10.1 1.3.1 3.0.0.12 0.2.0 

Graphical user 

interface 

- - ✓ - 

Classification and regression algorithms 

Decision tree - ✓ - ✓a 

Logistic regression ✓b ✓a ✓ - 

Naïve Bayes ✓ ✓ ✓ - 

Support vector 

machine 

- ✓ - - 

Gradient boosted 

trees 

- ✓ ✓ - 

Random forest ✓ ✓ ✓ - 

Adaptive model rules - - - ✓a 

Generalized linear 

model 

- - ✓ - 

Linear regression - ✓a ✓ - 



41 

 

Clustering algorithms 

k-Means ✓ ✓ ✓ - 

Fuzzy k-means ✓ - - - 

Streaming k-means ✓ ✓a - - 

Power iteration - ✓ - - 

Spectral clustering ✓ - - - 

CluStream - - - ✓a 

Collaborative filtering (cf ) algorithms 

User-based CF ✓ - - - 

Item-based CF ✓ - - - 

Alternating least 

squares 

✓ ✓ - - 

Dimensionality reduction and feature selection tools 

Principal component 

analysis 

✓ ✓ ✓ - 

QR decomposition ✓ - - - 

Singular value 

decomposition 

✓ ✓ - - 

Chi squared ✓ - - - 

Additional algorithms 

Association rule 

learning 

✓ ✓ - ✓a 

Deep learning - - ✓ - 

Topic modeling ✓ ✓ ✓ - 

a Real-time streaming implementation. 
b Single machine, trained using Stochastic gradient descent. 

 

 Evaluating Machine Learning for Big and Streaming data 3.3.3.

Mahout is one of the more well-known tools for Machine Learning. It is known for having a wide 

selection of robust algorithms, but with inefficient runtimes due to the slow MapReduce engine. In 

April 2015, Mahout 0.9 was updated to 0.10.0, marking something of a shift in the project’s goals. 

With this release, the focus is now on a math environment called Samsara, which includes linear 

algebra, statistical operations, and data structures. The goal of the Mahout-Samsara project is to 

help users build their own distributed algorithms, rather than simply a library of already-written 

implementations. They still offer a comprehensive suite of algorithms for MapReduce and many 

have been optimized for Spark as well. Integrations with H2O and Flink are currently in 

development. 

The algorithms included in Mahout focus primarily on classification, clustering and collaborative 

filtering, and have been shown to scale well as the size of the data increases. Additional tools 

include topic modeling, dimensionality reduction, text vectorization, similarity measures, a math 

library, and more. One of Mahout’s most commonly cited assets is its extensibility and many have 

achieved good results by building off  baseline algorithms. However, in order to take advantage of 

this flexibility, strong proficiency in Java programming is required. Committer Ted Dunning noted 
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“It’s not a product. It’s not a package. It’s not a service. Batteries are not included.” Some 

researchers have cited difficulty with configuration or with integrating it into an existing 

environment. On the other hand, a number of companies have reported success using Mahout in 

production. Notable examples include Mendeley, LinkedIn, and Overstock.com, who all use its 

recommendation tools as part of their big data ecosystems. Overstock even replaced a commercial 

system with it, saving a significant amount of money in the process. 

MLlib covers the same range of learning categories as Mahout, and also adds regression models, 

which Mahout lacks. They also have algorithms for topic modeling and frequent pattern mining. 

Additional tools include dimensionality reduction, feature extraction and transformation, 

optimization, and basic statistics. In general, MLlib’s reliance on Spark’s iterative batch and 

streaming approaches, as well as its use of in-memory computation, enable jobs to run significantly 

faster than those using Mahout. 

However, the fact that it is tied to Spark may present a problem for those who perform machine 

learning on multiple platforms. MLlib is still relatively young compared to Mahout. As such, there 

is not currently an abundance of published case studies that have used this library, and there is very 

little research providing meaningful evaluation. The research that has been published indicates it is 

considered to be a relatively easy library to set up and run, helped in large part by the fact that it 

ships as part of its processing engine, thus avoiding some of the configuration issues people have 

reported with Mahout. 

The documentation is thorough, but the user community is not nearly as active as the community 

developing for it. This issue is expected to improve as more people are migrating from MapReduce 

to Spark. The large and active group of developers means that many complaints are fixed before 

they are even published. Notable examples of companies that use MLlib in production are 

OpenTable and Spotify, both for their recommendation engines. 

For classification, MLlib offers Supports Vector Machines, Logistic Regression, Naïve Bayes, 

Decision Trees, Random Forest, and Gradient-Boosted Trees. Clustering algorithms include k-

Means, Gaussian Mixture, and Power Iteration Clustering. They offer implementations for Linear 

Regression and Isotonic Regression, and one collaborative filtering algorithm using Alternating 

Least Squares. For online learning, streaming versions of Logistic Regression, Linear Regression, 

and k-Means Clustering are included. For all other algorithms, models can be learned offline using 

historic data and applied online to new streaming data. MLlib includes APIs for development in 

Scala, Java and Python, but not every tool is available in all languages. 

Building machine learning pipelines can be a difficult task, particularly when working with a 

combination of disparate tools. Spark ML, a set of uniform APIs for creation and tuning of 

pipelines was introduced in version 1.2 to address these issues, making it easier to combine 

multiple algorithms into one workflow. This package includes tools for dataset transformations and 

combining algorithms. It works by representing a pipeline as a sequence of dataset transformations. 

An easy example of this is to think of a learner which transforms a DataFrame with features into 

one with predictions. This package is designed to handle all steps of the learning process, starting 

with importing data from a source, to extracting features, and training and evaluating models. 
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H2O is the only one that can be considered a product, rather than a project. While they offer an 

enterprise edition with two tiers of support, nearly all of their offerings are available open source as 

well and can be used without the purchase of a license. The most notable features of this product 

are that it provides a graphical user interface (GUI), and numerous tools for deep neural networks. 

Deep learning has shown enormous promise for many areas of machine learning, making it an 

important feature of H2O. There is another company offering open source implementations for 

deep learning, Deeplearning4j, but it is targeted towards business instead of research, whereas H2O 

targets both. Additionally, Deeplearning4j’s singular focus is on deep learning, so it doesn’t offer 

any of the other types of ML tools that are in H2O’s library. There are also other options for tools 

with a GUI, such as Weka, KNIME, or RapidMiner, but none of them offer a comprehensive open 

source machine learning toolkit that is suitable for big data. 

Programming in H2O is possible with Java, Python, R and Scala. Users without programming 

expertise can still utilize this tool via the web-based UI. Because H2O comes as a package with 

many of the configurations already tuned, set up is easy, requiring less of a learning curve than 

most other free options. While H2O maintains their own processing engine, they also offer 

integrations that allow use of their models on Spark and Storm. 

As of May 2015, the machine learning tools offered cover a range of tasks, including classification, 

clustering, generalized linear models, statistical analysis, ensembles, optimization tools, data 

preprocessing options and deep neural networks. On their roadmap for future implementation are 

additional algorithms and tools from these categories as well as recommendation and time-series. 

Additionally, they offer seamless integration with R and R Studio, as well as Sparkling Water for 

integration with Spark and MLlib. An integration with Mahout is currently in the works as well. 

They offer thorough documentation and their staff is very communicative, quickly answering 

questions in their user group and around the web. 

SAMOA, a platform for machine learning from streaming data, was originally developed at 

Yahoo! Labs in Barcelona in 2013 and has been part of the Apache incubator since late 2014. Its 

name stands for Scalable Advanced Massive Online Analysis. It is a flexible framework that can be 

run locally or on one of a few stream processing engines, including Storm, S4, and Samza. This is 

done through a minimal API designed for a general distributed stream processing engine which 

allows users to easily write bindings to port SAMOA to new stream processors. 

Though they currently offer far fewer algorithms, they like to call themselves “Mahout for 

streaming.” SAMOA’s algorithms are represented as directed graphs, referred to as topologies 

(borrowing terminology from Storm). The algorithms implemented so far can be used for 

classification, clustering, regression, and frequent pattern mining, along with boosting, and bagging 

for ensemble creation. Additionally, there is a common platform provided for their 

implementations, as well as a framework for the user to write their own distributed streaming 

algorithms. It does not yet have an active community, but it offers thorough documentation. This 

platform is meant for users with very big data that is constantly being updated.  

Streaming models are for projects aimed at finding out what is happening right now, and feedback 

occurs in real-time. SAMOA was designed with the goals of flexibility in updating the library 

(developing new implementations as well as reusing existing ones from other frameworks), 
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scalability in its handling of an increasing amount of data, and extensibility in terms of the APIs 

described above. Internal tests have resulted in high speed and accuracy. 

So far, there are only a few learning tools implemented in SAMOA, but they cover the many of the 

common ML tasks. For clustering, they now offer CluStream, and for classification there is the 

Vertical Hoeffding Tree, which utilizes vertical parallelism on top of the Very Fast Decision Tree, 

or Hoeffding Tree. This is the standard decision tree algorithm for streaming classification tasks. 

Regression can be accomplished through the Adaptive Model Rules Regressor, which includes 

implementations for both vertical and horizontal parallelism. The library also includes Distributed 

Stream Frequent Itemset Mining. Prequential Evaluation is available as well, which enables 

measurement of model accuracy, either from the start or based on a sliding window of recent 

instances. Bagging, Adaptive Bagging, and Boosting can be used to create ensembles of classifiers. 

For additional learning algorithms, there is a plugin available called SAMOA-MOA which allows 

the use of MOA classifiers and clustering algorithms inside the SAMOA platform. However, it is 

important to keep in mind that this does not change the underlying implementations of MOA’s 

algorithms, which are not distributed. SAMOA is a very young project and new tools are 

continually being developed to expand the library. There is not a great deal of independent research 

on this platform, though that is likely to change as SAMOA becomes more well-known and online 

learning becomes more widely used. 
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4. TENSOR: the proposed architecture 

This work thesis illustrates a general analytics layered framework that supply help at different users 

that work in counter-terrorism domain. A brief remark about different users types and their roles in 

the system (section 2.1) is outlined before describing the overall framework. 

We evaluated three different types of users: 

 Operational users have the aim to identify and notify tactical users about suspicious 

situations in a physical environment of limited size and complexity (i.e., a city zone) taking 

into account short histories of events provided by sensors (human or device). 

 Tactical users need to analyze a medium term history (sensor data and threats notification) 

coming from different zones in order to infer the sensitivity/criticality of the current 

situation in each monitored zone. 

 Strategic users work in order to predict the criticality situation of each monitored zone 

tacking into account historical data and external data sources. 

 Framework overview 4.1.

The overall aim of the Analytics Framework (AF) is to detect and predict the activities of terrorist 

groups, analyzing terrorist group previous behaviors and real time information provided by virtual 

sensors. In this work, the term “virtual sensors” refers to a heterogeneous set of sensors composed 

by devices (e.g. cameras and their image analysis algorithms correlated) and people (that send 

information into the system through specific applications/devices) while the term “event” refers to 

the notification of an abnormal situations provided by virtual sensors. 

We approach the design of the framework by taking into account both the abstraction levels of the 

potential information sources (sensor information, police patrol inputs, news events, external data 

sources) and the expert user roles that are currently defined as crucial in the intelligence analyst 

flow for analyzing/detecting potential terrorist threats (section 2.1). 

In particular, this framework is designed to provide: 

 Easy integration of multiple sensors and fusion algorithms at multiple levels (including 

JDL levels); 

 Support for both low-level rule-based and high-level event-based fusion capabilities; 

 A set of general-purpose modules that can be implemented in various ways, including 

different algorithms and designs; 

 Transparent interfaces for processing modules and data sensors for quick integration of 

third party components; 

 Multiple data stream sources management and new information about the data stream 

extraction; 

 Real-time delivery of relevant information in a functioning format; 

 Prediction of events before they occur and not only reacting after they happen. 
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 Sensor data collection 4.1.1.

AF needs to enable processing, combination and fusion of multiple data feed, stemming from 

heterogeneous sources. Our implementation of the framework architecture is based on open source 

GSN (Global Sensor Networks) middleware [Ha et al., 2015]. GSN provides a flexible middleware 

for the gathering and processing of data streams generated from different sensors, based on its 

virtual sensor concept. According to the description of virtual sensors and their deployment in the 

GSN middleware, the GSN platform supports: 

 Data acquisition from various sensors 

 Filtering of data based on SQL syntax 

 Execution of customizable algorithms on the query results 

 Communication of the generated data. 

Moreover, the GSN sensor middleware ensures: 

 Support for virtually any type of sensor and data stream 

 Flexibly addition of new types of sensor networks without interruption of on-going system 

operation. 

 Support for very large numbers of data producers and consumers with a variety of 

application requirements. 

Finally, the last goal of the data processing sensor middleware is to translate, in a common Event 

Detection Dictionary (EDD), the different sensors output formats. Since the AF has to be generic 

and usable for detecting terroristic attacks across multiple scenarios, the EDD takes into account 

the most common known activities that when are observed, are able to give subjections on 

terroristic attacks. According to [Bennet, 2007], there are eight families of indicators of future 

terroristic attacks and relevant security incidents. These families indicate a potential taxonomy of 

terroristic events, which are used to classify the various events provided by virtual sensors. Table 5 

illustrates the event detection dictionary with the eight different categories of terrorist indicators, 

along with some sample set of indicators for each category. 

 

Table 5 Classification of Terrorist Indicators. 

Terrorist Indicator Category Sample Indicators (examples) 

Preoperational Surveillance 

 Foot surveillance involving two or three individuals working 

together. 

 Mobile surveillance using bicycles, scooters, motorcycles, sport 

utility vehicles, cars, trucks, boats or small aircraft. 

Seeking and Eliciting Information 
 Inquiries about size of security force. 

 Inquiries concerning access to sensitive areas. 

Probing and Testing Security Measures 
 Initiation of false alarms (e.g., a bomb threat). 

 Attempts to penetrate physical security barriers. 
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Intrusion (against physical security or 

cybersecurity measures) 

 An intruder enters a restricted area with malicious intent, 

damaging or manipulating some system of the target. 

 Intrusion into a computer network. 

Acquiring Supplies 

 Suspicious or improper attempts to acquire official vehicles, 

uniforms, badges, access cards, or identification for key facilities 

 Theft of two-way radios or scanners. 

Identification of Suspicious People 

 Persons or vehicles observed in the same location on multiple 

occasions and/or those who engage in unusual behavior 

 Persons observed near a potential target using or carrying video, 

still camera, or visual enhancement devices (telescopes, 

binoculars, night vision goggles). 

Dry Run or Trial Run of an Attack 

 Suspicious persons sitting in a parked car for an extended period 

of time for no apparent reason. 

 Persons observed monitoring a police radiofrequency and 
recording emergency response times 

Deploying Assets and Getting in Position 
 Loading Weapons and other supplies in vehicles 

 Suspicious Behaviors 

 

 User requirements 4.1.2.

Essential user requirements were collected by mean of recommendations obtained during domain 

expert users consultations. Main criteria to perform requirements analysis are in accordance with 

discriminations adopted by Baxter and colleagues [Baxter et al., 2015]: 

 User roles; 

 User needs; 

 User expectations. 

As describe in section 2.1, AF must interact with different users who have different needs 

according to their different roles. During this analysis, taking in consideration different user roles, 

we tried to collect the user requirements separately, in order to avoid the possibility that users 

influence each other [Baxter et al., 2015]. However, there are some general requirements which 

have been expressed by the majority of users. These uses requirements can be summarized: 

 System enabling the detect of terrorist attacks regardless specific scenario. This 

requirement implies that AF must be able to easily adapt to specific monitored area (e.g. a 

city composite of different zones like squares, parking, etc.). 

 System for assisting intelligence analysts to perform tasks in a more efficient way. Users 

reported that intelligence analysts receive a large amount of data including text, audio, 

video, images, etc. The framework should play a leading role in decision makers support 

releasing intelligence information to recognize potential targets. 
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 Specific user friendly GUIs. Users express the concept that the information reported in the 

various GUIs must be consistent with the role played by users. Moreover, these GUIs must 

summarize in an easy way all the information needed by users to make their activities. 

This kinds of functionalities correspond to a sort of a decision support system for end uses. This 

system will help human decision makers (e.g. intelligence analysts) by efficiently capturing, fusing 

and processing large amounts of multi-sensor information. However, as expressly requested by 

users, such a system should only propose a possible choice, allowing end users to make final 

decision. 

Subsequently to general user requirements, it’s appropriate to analyzes specific requirements for 

each users role. We start with the operational user, who have expressed the need to develop a 

system able to: 

 Detect potential threat situations in a specific monitored zone. Receiving as input all 

detected events (from virtual sensors), AF will generate potential threat notifications that 

will be notified at operational users, providing zone-specific threat detection strategies. In 

particular, AF has to provide a reasoning component that reduce the information overflow 

generated by sensors and notifies only events that can be “labelled” as potential symptoms 

of threat situations. 

 Change threat detection strategy according to the alert level of a zone. According to what 

express in section 2.2, each monitored zone has an associated alert level that summarize 

the probability to have a terrorist threat in that zone. By this requirement, operational users 

suggest us that in order to analyze the event stream provide by virtual sensors, the threat 

detection strategies implemented in the AF, must take in consideration also the alert level 

of the zone. 

 Store events stream and threat notifications for future evaluations. The possibility to 

consult what happened in a zone is crucial for operational users, especially for establish if 

the threat notification provided by AF refers to a real threat situation or not. However, the 

framework must allow each operational user to consult only information related to the 

specific zone of competence. 

 Provide almost a complete prospective of on-going terrorist action, in order to prepare their 

operational plans. The system will provide the potentialities to detect and analyze activities 

indicating potential attacks. It contributes to this requirement, inferring the alert level of a 

specific monitored zone and analyzing its relationships with the other monitored zones. 

 Customize threat detection strategies. During operational users interaction, the system 

needs to collect feedbacks in order to implement a self-adaptive threat detection strategy 

customization. 

Analyzing requirements collected from operational users, it is deducible that their requirements are 

consistent with their partial view of monitored area. Conversely, according to the different 

activities carried out by tactical users, it is appropriate to focus on whole monitored area. These 

users’ requirements are related to the alert level selection activity and can be outlined in: 



49 

 

 Provide alert level estimations of each monitored zone. AF will assign a new alert level for 

each monitored zone tacking into account: 

o A medium term history of events and threat notifications occurred during a time 

window in the order of 15/20 minutes; 

o The actual alert levels of each monitored zones; 

o The predicted alert level for each types of monitored zone (provided by AF); 

o Eventual intelligence information provided by users. 

 Provide a system in which it is possible to specify some spatial constraints among different 

monitored zones. During the configuration phase of the monitored area, the framework  

needs to allow tactical user to set some spatial constraints between different monitored 

zones. This requirement suggested us to take in consideration even some spatial constraints 

for alert level selection activity. 

 Summarize to tactical users all the information needed for alert level selection activity. To 

realize this it was provided a GUI containing all the above information considered for the 

alert level selection. 

Analyzing carefully tactical requirements, we can note that tactical users require a system that 

correspond to general requirement for a DSS functionalities. 

Finally, we analyzed strategic user needs, which role is mainly focused on predict the criticality of 

each monitored zone, taking into account historical data and external data sources too. Strategic 

users, therefore, require to: 

 Provide Long-term predictions of potential target type of terrorist actions. Receiving in 

input all detected events, alert levels for each monitored zones, in addition to information 

provided by external data sources, AF will suggest as output alert level prediction to adopt 

for each type of monitored zone. 

 Provide a system in which Long-term prediction can be set/updated by users. Also in this 

case, strategic users require to change the Long-term prediction provided by AF according 

to their experience. The Long-term GUI needs to enable this requirement. 

 TENSOR Framework architecture 4.1.3.

The architecture of proposed analytics framework, called TENSOR (clusTEriNg terroriSm actiOn 

pRediction), is depicted in Figure 9. Note that the “event detection task” (i.e. sensors stream 

analysis) is not addressed by this work thesis, but it is reported only for clarity. The information 

provided by virtual sensors are input of TENSOR but are provided by external components of the 

framework. 
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Figure 9 Layered solution approach. 

 

TENSOR is composed of three different modules, that work in different time constrains: 

 Short Term Reasoning (STR) (seconds) 

 Medium Term Reasoning (MTR) (15/20 minutes) 

 Long Term Reasoning (LTR) (few days/ a weak) 

The goal of STR is to reduce the information overload of operational users induced by various data 

sources. The STR implements the capability to aggregate alerts together and to capture patterns that 

might be related to suspicious situations, therefore reducing the amount and improving the 

relevance of information that an operational user needs to consider. The STR role is the real time 

threats detection, based on events occurred in a short time-window (some seconds). All the 

detected events and all the threat notification are store in a database in order to be used by other 

modules, MTR and LTR, and users consultations. 

MTR assists tactical users on the re-evaluation of the alert level. MTR takes in consideration 

different information like: (1) the used alert level (from STR), (2) the predicted alert level (from 

LTR), and (3) the medium-term histories of short-term events and threat notification occurred in a 

time window of 15/20 minutes. 

The LTR analyzes histories of threats and their associated detected events on a long time horizon, 

in order to help strategic users in the alert levels prediction activity. In particular, LTR provides 

alert levels predictions for specific types of physical zones (e.g., public buildings, metro stations, 

and so on). For this activity, LTR module also uses information provided by external sources. 

Moreover, LTR supplies a “user in the loop” procedure for threat detection modules update. 
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As shows in Figure 9, during all the TENSOR’s activities, there is a direct interaction with the 

users. However, according to the users requirements, TENSOR proposes numerous choices, 

leaving the final decision to the users. 

 STR - MTR - LTR in the JDL model 4.1.4.

Figure 10 recalls the functionalities of the JDL levels and highlights where each developed module 

enters the stage. In this figure, it is possible to see that: 

 STR is directly involved in the real-time upstream information and processing flow from 

data sources to end users. However it is located in Level 3, in which the identification and 

notification of threats falls inside a “man-in-the-loop” scheme, so that the timing 

constraints are consistent with the decision delays of the users. 

 MTR and LTR are in Level 4, and their activities are not bound to strong real-time 

constraints. Level 4 activities are related to tactical and strategic issues and are executed 

off-line or in background in respect to the real-time activities of levels 0–3. 

 

 

Figure 10 JDL Layers and STR, MTR and LTR . 

 

According to the previous consideration, in Figure 10 it is possible to see that Level 3 is focus on 

the threat detection activity, while Level 4 is focus on the alert level selection, alert level prediction 

and modules update activities.  
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5. Short Term Reasoning layer 

The threat detection is a typical short term activity [Petris et al., 2014] aimed at the identification of  

significant occurrence or pattern that is unusual comparing to the normal patterns of the system. In 

particular, the TENSOR threat detection component analyzes short term events provided by sensor 

in order to detect potential threat. 

 

 

Figure 11 Short Term Reasoning. 

 

As it is possible to see in Figure 11, all the detected events and the threat notifications are stored in 

order to be reused in the next activities. Note that a threat notification does NOT mean that there 

has been a terrorist action. Instead, it means that a recognized event is properly turned into a threat 

notification, according to the expectation of an experienced user (typically an operational user) . 

The threat detection activity is carry out by Micro-environments. A Micro-environments is a 

software component that interprets events coming from a limited zone in order to identify potential 

threats. For the Micro-environments implementation it is used an HMM approach. 

 Hidden Markov Model 5.1.

Hidden Markov Model (HMM) is a statistical Markov model in which the system being modeled is 

assumed to be a Markov process with unobserved (hidden) states. One of the bases of HMM is the 

Markov Chains.  A Markov Chain [Norris, 1998] is a stochastic process with the Markov property 

on a finite or countable state space. The term Markov Chain refers to the sequence (or chain) of 
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states such a process moves through. Usually a Markov chain is defined for a discrete set of times. 

The Markov property states that the conditional probability distribution for the system at the next 

step depends only on the current state of the system, and not additionally on the state of the system 

at previous steps. 

In Markov Chain the changes of state of the system are called transitions, and the probabilities 

associated with various state-changes are called transition probabilities. The process is 

characterized by a state space, a transition matrix describing the probabilities of particular 

transitions and an initial state or initial distribution across the state space. 

In order to define a Markov Chain model, the following three elements have to be defined: 

1. The N states of the Model, defined by S = {S1, … , SN} 

2. The State transition probability distribution  = {aij} , where aij is the probability that the 

state at time t + 1 is Sj, is given when the state at time t is Si. The structure of this 

stochastic matrix defines the connection structure of the model. If a coefficient aij is zero, 

it will remain zero even through the training process, so there will never be a transition 

from state Si to  Sj.  

 

aij = p(qt+1 = j | qt = i), 1 ≤ i, j ≤ N 

 

Where qt denotes the current state. The transition probabilities should satisfy the normal 

stochastic constraints, aij ≥ 0, 1 ≤ i, j ≤ N and ∑ aij = 1N
j=1 . 

 

3. The initial state distribution  π = {πi}, where πi is the probability that the model is in state 

Si at the time t = 0 with πi = p(q1 = i) and  1 ≤ i ≤ N. 

 Description of HMMs approach 5.2.

A Hidden Markov Model (HMM) is a finite stochastic automaton [Dymarski, 2011] that 

summarizes a kind of double stochastic process: 

 The first stochastic process is a finite set of (hidden) states, each associated with a 

multidimensional probability distribution. The transitions between states are statistically 

organized by a set of probabilities (transition probabilities). In the thesis’s context two 

hidden states (Threat and Not Threat) model whether a threat is present in a Micro-

environment; more precisely, the probability of the Threat state models is the probability of 

a threat in the Micro-environment. 
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Figure 12 HMM transition states. 

 The second stochastic process models the probability that an event is observed in each state 

(observation probability). In this case observable events represent abnormal situations 

observed by sensors (including low-level processing algorithms and human beings). 

Abnormal situations are classified according to several levels of relevance; for example 

NotRelevant (NR), Low (L), Medium (M), High (H), AlarmCeased (AC). 

 

Figure 13 HMM observation probability. 

 

The model evolves at discrete times. At each step the new probability of the hidden states is 

computed according to the transition probabilities and tuned according to what has been observed 

and to the observation probabilities in each state. The result is that the new probabilities of the 

states subsume in a synthetic way the previous history of observations.  

In general, the “natural” evolution of the model in absence of relevant abnormal situations leads to 

lower probabilities of the Threat state, whereas the observation of abnormal situations raises it (see 

also the discussion about alert levels in section 5.5). 

Whenever the probability of the Threat state overcomes a threshold, a threat notification is 

delivered in real time to operational users and is stored for further processing (Medium and Long-

term TENSOR activities or users' consultations).  
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The model is trained by capturing both the states (i.e., the presence of “real” threats) and the 

corresponding observations. This can be done by exploiting either real data or data simulated. In 

general, an experienced user working at the operational level should be in charge of rating the 

threat notifications i.e., to recognize false positives and (possibly) negatives. 

 Mathematical definition 5.3.

Each Hidden Markov Model is defined by states, state probabilities, transition probabilities, 

emission probabilities and initial probabilities. 

In order to define an HMM completely, the following five Elements have to be defined: 

1. The N states of the Model, defined by S = {S1, … , SN} 

2. The M observation symbols per state V = {V1, … , VM} 

3. The State transition probability distribution = {aij} , where aij is the probability that the 

state at time t + 1 is Sj, is given when the state at time t is Si. The structure of this 

stochastic matrix defines the connection structure of the model. If a coefficient aij is zero, 

it will remain zero even through the training process, so there will never be a transition 

from state Si to Sj.  

 

aij = p(qt+1 = j | qt = i), 1 ≤ i, j ≤ N 

 

Where qt denotes the current state. The transition probabilities should satisfy the normal 

stochastic constraints, aij ≥ 0, 1 ≤ i, j ≤ N and ∑ aij = 1N
j=1 . 

4. The Observation symbol probability distribution in each state, B = {bj(k)} where bj(k) is 

the probability that symbol vk is emitted in state Sj.  

 

bj(k) = p(ot = vk | qt = j), 1 ≤ j ≤ N, 1 ≤ k ≤ M 

 

where vk denotes the kth observation symbol in the alphabet, and ot the current parameter 

vector. The following stochastic constraints must be satisfied: 

 

bj(k) ≥ 0, 1 ≤ j ≤ N, 1 ≤ k ≤ M and ∑ bj(k)

M

k=1

= 1 

 

5. The HMM is the initial state distribution π = {πi}, where πi is the probability that the 

model is in state Si at the time t = 0 with πi = p(q1 = i) and  1 ≤ i ≤ N. 
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 Assumption 5.4.

We will make two Markov assumptions: 

1. The limited horizon assumption is that the probability of being in a state at time 𝑡 depends 

only on the state at time 𝑡 − 1. The intuition underlying this assumption is that the state at 

time 𝑡 represent “enough” summary of the past to reasonably predict the future. 

2. The stationary process assumption is that the conditional distribution over next state given 

current state does not change over time. 

Additional assumptions in TENSOR context: 

3. Micro-environments are characterized by an alert level, which is set by MTR or expert 

users according to medium/long term forecasts. We define three alert levels (Low, 

Medium, High). Therefore there are three different HMMs; which model is active depends 

on the criticality (summarized by the alert level) of the Micro-environment. 

4. The three models differ for the lowering speed of the probability of having a threat in 

absence of relevant abnormal situations (on Low criticality the probability of Threat 

decreases faster than on High criticality where that probability remains constant). 

 

 

Figure 14 Trend of threat probability without observation. 

 

5. The three models differ for the effect of the observations (on High criticality the 

observation of an abnormal situation raises the probability of Threat faster). 

In particular: 

a. On High alert level a single low relevance anomaly is sufficient to overtake Threat 

threshold (Figure 15) while on Low alert level the probability of Threat increases 

but does not reach the threshold (Figure 16). 

b. In the case of multiple low relevance anomalies, models behave in the same way. 

On High alert level the probability of Threat remains above the threshold (Figure 

17) while on Low alert level it would take a large number of low relevance 

anomalies to reach the threshold  (Figure 18). 
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6. When the alert level changes, the last state of the current model becomes the initial state of 

the new model (Figure 19). 

 

 

Figure 15 High Alert level with one Low relevance observation. 

 

 

Figure 16 High Alert level with one Low relevance observation. 

 

 

Figure 17 High Alert level with many Low relevance observations. 
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Figure 18 Low Alert level with many Low relevance observations. 

 

 

Figure 19 Change of alert level: from Low to High alert level. 

 Alert levels 5.5.

The behavior of a Micro-environment is basically “context-free”, as the HMM micro-model relies 

on its local history only. Though this approach provides a sound basis for a highly modular and 

extensible system, its major drawback is that it does not take into account the overall state of the 

scenario. Therefore MTR is in charge of tuning the alert level of individual Micro-environments, so 

that they behave differently according to their alert level.  

The tuning of the alert level of individual Micro-environments is performed by MTR on a medium-

term time scale by relying both on overall forecasts and on hints provided by strategic human 

decision makers. 

The alert level is a sort of compromise between false positive and false negative threats detection. 

When the monitored zone is in a normal (or quit) situation (i.e. when the probability of a threat is 

very low? “Low alert level”) a high percentage of false positive isn’t accepted but there is a greater 

tolerance for false negative (in low alert level some symptoms of potential threat can be 

“neglected”). In a “Low alert level” the gap from false positive and false negative is unbalanced in 

favor of false negative. 
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If the alert level changes from Low to Medium this gap thins. In a “Medium alert level” situation, 

there is a higher probability of threats; thus a higher percentage of false positive and a lower 

percentage of false negative is accepted. 

Accordingly, during a period of “High alert level” (i.e. a situation where there is almost the 

certainty of a threat) the gap between false negative and false positive changes in favor of false 

positive. In this situation the tolerated percentage of false positive is very high but there aren’t 

tolerances for false negative occurrences. 

To get this behavior each Micro-environment includes three HMMs, one of which is selected 

according to the alert level. In this way it is possible to adapt the behavior of a Micro-environment 

when a particular interest for an environment by terrorist is forecasted (medium term activities). 

A change of alert level is performed by MTR activities when: 

 There is one or more potential threats symptoms in a physical monitored environment or 

into the neighbor environments (STR threats evaluation) 

 There is a new forecast about particular interest for an environment by terrorists (LTR 

long-term activities) 

 A strategic user decides to change one or more alert levels basis on his experience or 

reasoning 

 Micro-environments 5.6.

A Micro-environment is a software component, which runs in the TENSOR architectural 

framework presented in section 4.1.3. It models a target (for example a building, a metro station, a 

limited set of streets…), which can be monitored by a set of virtual sensors, be they devices or 

persons. A Micro-environment:  

 Gets events (abnormal situations) from virtual sensors  

 Recognizes the relevance of the events according to a static, Micro-environment specific 

mapping 

 Adjusts its threat state according to its Hidden Markov (micro) Model  

 Notifies threats to operational user interface and stores it into the database. 
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Figure 20 Micro-environment structure. 

 

A Micro-environment first classifies an abnormal situation according to its relevance. This is up to 

an inner layer, which defines the relevance of the abnormal situation in the specific context of the 

Micro-environment (for example, a parked car in a parking lot may be of low or no relevance, 

whereas a car parking in front of the Ministry may be of medium or high relevance). The mapping 

from abnormal situations to relevance levels is static and context-specific. It depends on the 

specific Micro-environment, whereas it does not depend on the current threat state nor on the 

criticality of the Micro-environment. 

Then a Micro-environment adjusts its threat state according to its Hidden Markov (micro) Model 

and possibly generated a threat. 

Micro-environments are characterized by an alert level, which is tuned by higher system layers 

(Medium Term Reasoning or expert users) according to medium term forecasts. The alert level 

affects the behavior of the micro-models in order to dynamically get a reasonable compromise 

between false negatives and information overflow. 

A Micro-environment component receives as input: 

 Events (from virtual sensors)  

 Alert level (from MTR) 

If the Micro-environment states that there is a dangerous situation it returns as output a threat 

notification. 

 Micro-models 5.6.1.

A micro-model summarizes the threat state of a Micro-environment by relying on a Hidden 

Markov Model. 
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Each micro-model is composed by three different HMMs, one for each alert levels (high, medium 

and low). At a specific time instant, only the HMM associated with the current alert level is used to 

detect potential threat situation. 

 

 

Figure 21 Micro-model structure. 

 

As seen before, the inputs of micro-models are values of relevance associated to incoming events. 

Before the threats detection activity, each Micro-environment classifies the events according to the 

specific static mapping from events to relevance that depends on the features of each physical zone 

and is established by expert users (typically operational or tactical users). The introduction of this 

classification stage allows: 

 Clustering events into macro-categories according to their relevance 

 Limit the size of the HMM observation matrix 

 Decrease the training time and complexity of the micro-models. 

 Training the micro-models 5.6.2.

This activity is focus on the definition and training of the micro-models. This long-term activity 

(performed by LTR) produces the micro-models, which are viewed as “nearly-static” in the context 

of the Micro-environments performing short-term activities. 
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Figure 22 Micro-models training. 

 

Note that this activity is implemented by the component that does not run in the STR module. They 

interact with STR components via database only. This is coherent with the fact that real-time threat 

recognition (Short-term activities) and offline micro-model generation (Long-term activities) are 

performed at different time scales. 

 Exploiting historical series 5.6.3.

The training micro-models activity requires information about: 

 Historical series about events including for each event: 

o Space contextualization (each historical series includes events occurred in a 

specific physical zone)  

o Time stamp (instant at which the event has been identified by a virtual sensor) 

o Event description 

o The current alert level of the Micro-environment 

 Historical series about potential threat situations including: 

o Space contextualization  

o Time stamp 

o A reference to the event (or events) that generated the potential threat situation 

 The mapping relation from events and their value of relevance (for each monitored 

physical zone). 

From that information it is possible to build, for each zones and for each alert level, several 

historical series composed by pairs {Threat State, Abnormal situation}, where Abnormal situation 

is the value of relevance associated with each event and the Threat state represent if that Event 

represents a significant symptom of a possible attack. After this “build” phase of historical series it 

is possible training each micro-model. 
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 Gaming data 5.7.

A serious set-back to the development and operation of appropriate reasoning and analytics 

techniques for anticipating terroristic events is the lack of ground-truth datasets, which could be 

used to train the respective reasoners. Typically, LEAs do not possess large sequences of events 

that are associated with terrorist attacks, since their databases are usually limited to the set of 

events that have been observed before the occurrence of past attacks. 

One approach to simulating and generating such data sets employs serious games [Bruzzone et al., 

2009], notably games that are used to train security forces into assessing and responding to a 

similar situation. However, these games  are appropriate not only for training officers in effectively 

engaging in terroristic situations, but also for: 

 Developing expert system rules that can be used to raise alarms on the risk of terrorist 

attacks 

 Generating data sequences that will be used to train machine learning algorithms. 

In this thesis, a serious game is used for the generation of datasets that were used for the micro-

models training activity. The game involves two parties (i.e., the LEA and the attackers) which 

have conflicting goals. In particular, the attacker attempts to complete a number of prerequisite 

steps prior to launching an attack, notably the steps identified in [Bennet, 2007], which are 

conveniently called terroristic indicators. On the other hand, the LEA attempts to identify the 

actions of the terrorists (early on), thereby preventing an attack. 

The PROACTIVE game 

The PROACTIVE game [Sormani et al., 2016] is used in order to generate training data sets for the 

Micro-environments, notably training data sets that comply with the event detection dictionary 

(section 4.1.1). It is a turn based game, typically played by two players (namely the LEA and the 

terrorists) and it is implemented as an Excel WorkBook (with multiple sheets). The game is divided 

in time slots, in which each player makes a move. The LEA and the terrorists use different sheets 

of the WorkBook (“Police Moves” and “Terrorist Moves”) to enter their moves so that they can’t 

see each other’s moves. 

The players (typically the LEA), before play a round, they have to specify: 

 The set of monitored zones (M) 

 The set of actions that can carry out a terrorist (A) 

 The set of resources that the police use to monitor the zones, which can be: 

o Devices (D), like cameras 

o Human patrols (P) 

In the PROACTIVE game, it is always assumed that the LEA does not have the resources needed 

to cover all the monitored zones (i.e. |M| > |D| + |P|). There is no restriction to moving cameras 

around zones, but in this work thesis, in order to simulate a more realistic scenario, the zone of 
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each camera has been fixed, while human patrols can move between zones (note that a zone can 

have both camera and human patrol assigned to it). 

The goal of the game is for the terrorists to complete an attack against a specific zone and for the 

LEA to prevent the attack. The terrorists need to: 

 Observe a specific zone 4 times (either in-vehicle or on-foot) 

 Acquire information on the target (i.e. the zone) 

 Test the security of the checkpoint and 

 Execute the attack. 

Each one of the previous steps can be executed only if all previous steps have been already 

executed. However, steps for different zones might be performed in an alternating way (but not in 

the same timeslots). For each one of the listed steps, the terrorist actions might generate events 

(belonging to the event detection dictionary) that are detected by the police. The generation of an 

event from an action is a random process which depends on whether police force is assigned to 

guard and/or a camera to survey the specific zone at the time slot of the terrorists’ action. In Table 

6 some examples are reported. 

 

Table 6 Probability of actions generating events. 

Terrorist action Detected event Probability of detection 

by the police 

Probability of detection 

by camera 

On-foot surveillance Person observing building 1 0,5 

Test security checkpoint Security checkpoint alarm 1 0,4 

Place bomb (execute the 

attack) 

Suspicious unattended 

object spotted 
0,9 0,6 

 

So, the LEA sees the moves of a terrorist in specific zones in cases where they have deployed 

cameras or human patrols in those locations and if the device or the patrol is able to identify the 

event. Similar to the previous case, the terrorist sees whether their actions have been perceived by 

the LEA according to a configurable probability. 

The LEAs detect and prevent the terrorist attack (and win the game) if two events of any type are 

generated for the same location (this number can be set by the players during the configuration 

phase). The terrorists win if the 7 steps are completed for a single location and at most one event 

has been generated for each location (in this case it is assumed that the police have not detected the 

terrorists). 

Validation scenario 

The output of playing the PROACTIVE game is sequences of events containing the following 

information: a time stamp, the sensor (human or device) which detects the event, the zone in which 

the event was detected and who (terrorist or normal people) carried out the action that triggered the 

event. All this information is used in order to train the different Micro-environments. 
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The validation scenario (Figure 23) included three different zones: the Ministry of Finance, the 

square and the church. The Ministry of Finance and the square are close to each other while the 

church is further away. 

 

 

Figure 23 Validation Scenario Map. 

 

The scenario includes one camera for each zone and one human sensor (policeman), that can move 

across areas according to the gaming. Gaming sessions were played for each zone and different 

alert levels (sensitivity of situation). Generated sequences of events span over a predefined time of 

2 days horizon (e.g., 04/03/2015 and 05/03/2015) and include terrorist moves observed by either a 

police patrol (i.e., human sensor) or detected by a camera. They also include around 60% of events 

that are not generated as gaming moves but simulate the behavior of normal people. The STR 

modules were trained using these sequences. Table 7 reports some Short Term Events (first column 

of Table 7) that can be detected from sensors and the output of Micro-environment analysis (third 

column of Table 7). As it is possible to see, the Micro-environment output changes according to its 

associated alert level (second column of Table 7). 

 

Table 7 Symbolic Event Example. 

Symbolic Event 
Micro-environment Alert 

Level of the 
Micro-environment output 

Person Observing Building 

Low No threat notification. 

Medium 
No threat notification for a single event. 

Threat notification for frequently repeated events. 

High Threat notification even for single event. 

People Not Fitting In 

Environment 

Low 
No threat notification for a single event. 

Threat notification for frequently repeated events. 

Medium Threat notification even for single event. 

High Threat notification even for single event. 

Unusual Movement Of 

Vehicle Close To Target 

Low Threat notification even for single event. 

Medium Threat notification even for single event. 

High Threat notification even for single event. 

 

In order to evaluate the training phase of Micro-environments, additionally testing sequences were 

generated for all three physical environments and for different alert levels and span over a period of 
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4 hours from 9AM to 12PM the following day 06/03/2015. The average length of these sequences 

is 110 events. In this testing scenario where only STR was used without recommendations/update 

of alert levels by the MTR and LTR module, we asked domain expert users to check the 

notification output of Micro-environments. In particular they were asked to evaluate for each event 

if the Micro-environment threat notification is right (i.e., in this particular time instance, with this 

specific alert level, this event is rightly/wrongly labeled as a potential symptom of a threat 

situation) or if the missing threat notification is right (i.e., this event is rightly/wrongly labeled as 

not a potential symptom of a threat situation). The information provided to expert users was: 

1. The event sequence generated with gaming 

2. The Micro-environment alert level 

3. The output of Micro-environment (threat/no threat). 

In order to evaluate the Micro-environment threat detection performance, we decided to use 

traditional machine learning metrics like: 

 Precision: the ratio of the number of relevant threat notifications to the total number of 

irrelevant and relevant threat notifications. 

 Recall: the ratio of the number of relevant threat notifications to the total number of 

relevant threat notifications in the considered set. 

 F-Measure: the harmonic mean of precision and recall. 

 

Table 8 Traditional evaluation metric. 

 Alert level 

Metric Low Medium High 

Precision 0,75 0,72 0,88 

Recall 0,54 0,58 0,80 

F-Measure 0,63 0,65 0,84 

 

The discrete performance evaluation obtained calculating the traditional metrics (Table 8) has led 

us to identify some different metrics that can be inferred from the user’s expectations. So, we asked 

domain experts users what they expected from the threat detection modules (i.e., Micro-

environments) and in particular how the Micro-environments should be able to change their threat 

detection strategy according to the selected alert level. As expected, different users provided 

different answers, but all the users have expressed the need to have a threat detection module that 

was able to use a more severe strategy when the alert level is set to “High” and a soft strategy when 

the alert level is “Low”. In other words, they prefer to have a lot of threat notifications, even if the 

event that trigger the threat notification may not be a potential symptom of a threat situation, when 

they set the alert level to “High” and they accept to lose some notifications (i.e., events that may be 

symptoms of a threat situation are not notified) when they set the alert level to “Low”. According 

to this concept, the evaluation metrics selected for the evaluation of the STR module are: 

 False positive rate =  ∑ False positive / ∑ Condition negative 

 False negative rate = ∑ False negative / ∑ Condition positive 
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Where 

 ∑ Condition positive (negative) represents the total number of the events that expert users 

recognize as potential (not potential) symptoms of threat situations. 

 False positive represents the total number of threat notifications related to events that 

expert users recognize as not potential symptoms of threat situations. 

 ∑ False negative represents the total number of missing threat notifications related to 

events that expert users recognize as potential symptoms of threat situations. 

 

Table 9 User’s evaluation metrics. 

 Alert level 

Metric Low Medium High 

False positive rate 4,44% 15,15% 16,67% 

False negative rate 45,45% 41,30% 20,00% 

 

The results reported in Table 9 reflect the user expectation since it is evident that the False positive 

rate increases with increased alert level while the False negative rate decreases when the alert level 

decreases. 
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6. Long Term Reasoning layer 

As introduced before, the Long Term Reasoning has the aim to provide help at strategic users. In 

Figure 24 (red lines) is shown the two main activities carry out by LTR, the alert level prediction 

and the modules update activity. 

The main goal of the LTR is to identify the alert levels of each type of physical environments 

through the analysis of historical data (for example external data sources containing previous 

terrorist behaviors and attacks) and observed threats (events history). 

 

 

Figure 24 Long Term Reasoning (red lines). 

 

The alert level prediction activity provides information about alert levels for specific types of 

Micro-environments that correspond to types of physical zones (e.g., public buildings, metro 

stations, and so on). For this activity, the LTR uses information provided by external sources (e.g., 

external historical datasets), like intelligence scenarios and/or scheduled activities (e.g., planned 

high-profile events like “visit of a minister”). 

The LTR also performs the Micro-environments update activity using the data stream provided by 

sensors (i.e. detected events), the detected threats provided by Micro-environments and the 

operational user feedback collecting during the interaction with the system. 
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Pre-processing steps 

Data pre-processing is one of the most critical steps in the data mining process which deals with the 

preparation and transformation of initial dataset. Also in this case we apply different pre-processing 

steps to the GTD (section 2.5.3) dataset starting from the feature selection step to the missing 

values replacement and feature binarization. 

Following a brief description of each step: 

 Feature selection: as described into the [GTD Codebook 2015] the initial GTD dataset 

consists of 124 features. During the feature selection step we have mapped the GTD 

feature space into the validation scenario ones (see section 5.7). In this way we have 

obtained a new dataset configuration containing features describing the actions (the 

activities carried out during an attack) and the context of the attack. In particular we have 

36 features describing the actions and 22 describing the context. Finally all the features has 

been binarized (e.g. assume 0 or 1 value). 

 Missing values analysis: One of the other main steps to apply before analyzing a dataset, is 

the so called “missing values replacement”; this step is very important since the presence 

of missing data can reduce the representativeness of the sample and can therefore distort 

inferences about the population. 

 Mapping between GTD data and event dictionary 6.1.

As stated previously, in order to use the GTD database as data sources for the Long Term 

Reasoning component, it is necessary to map GTD feature space information and the validation 

scenario ones. 

Two different kinds of mapping have been applied: 

 Physical environment mapping: mapping between GTD “target type” feature and the 

validation scenario physical environment. For simplicity we note that the GTD target type 

feature captures the general type of the attack and consists of 22 different categories. 

 Event mapping: mapping between action features defined in GTD and events that can be 

provided by intelligence or LEAs. These events are called “long term events” because they 

are not processed by Micro-environments but they are store into the database typically by 

tactical/strategic user’s. However LTR takes also in consideration “short term events” 

provided by sensors and the threat notification provided by Micro-environments.  

In the following tables we reported the two mappings explained above. 

 

Table 10 Physical environment mapping. 

GTD Target Type Validation Physical Environment 

Government Ministry of Finance 

Tourists Square 

Religious figures/institutions Church 
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Table 11 GTD action features mapping. 

GTD Action Features GTD Action Features Values Validation Scenario Events 

Attacktype 

Assassination Person killed 

Armed assault Pistol found, firearm found 

Bombing/explosion Bomb found 

Hijacking Bus hijacked 

Hostage taking (barricade incident) Person taken hostage 

Hostage taking (kidnapping) Kidnapped person 

Facility / infrastructure attack Sabotage security system, test security system 

Weaptype 

Handgun Handgun found 

Grenade (not RPGs) Grenade found 

Mine Mine found 

Projectile (rockets, mortars) Projectile found 

Vehicle Suspicious vehicle 

Arson/Fire Fire detected 

Knife or Other Sharp Object Knife found 

Dynamite/TNT Dynamite found 

Sticky Bomb Bomb identified 

Hostkidoutcome Hostage(s) killed (not during rescue attempt) Hostage killed 

Claimmode 

Letter Letter 

Call (post-incident) Call (post-incident) 

Call (pre-incident) Call (pre-incident) 

E-mail E-mail 

Note left at scene Note left at scene 

Video Video 

Posted to website, blog, etc. Posted to website, blog, etc. 

Personal claim Personal claim 

Ishostkid The victims were taken hostage or kidnapped Person kidnapped 

Ransom The incident involved a demand of ransom. Ransom request 

 Prediction activity 6.2.

Taking into account all the considerations reported in the previous subsection, a clustering 

approach is used to model “sets of actions” that map to the validation scenario symbolic events; 

furthermore we analyze their association with contexts which map to types of validation physical 

environments. The goal of LTR is to capture commonalities across different terroristic actions and 

contexts in order to predict alert levels for different types of physical environments based on event 

history. 

In order to achieve this we use spectral clustering as it very often outperforms traditional clustering 

algorithms (e.g. k-means algorithm, k-nearest neighbors). The main reason for better performance 

lies in the fact that spectral clustering doesn’t make any assumptions regarding the shape of it 

clusters and can therefore model different cluster shapes that need not be necessarily convex as in 

case of k-means. Furthermore, spectral clustering can be efficiently implemented even for large 

datasets in case the similarity matrix is sparse. Still it is a very sensitive approach regarding choices 

of parameters and if carefully configured can give extremely good results. Therefore in this section 
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we describe our approach and perform detailed parameter and performance analyses for the 

specific terrorist domain. An additional reason for selecting a clustering approach is its ability to 

deal in an unsupervised manner with large sets of history events. 

 

 

Figure 25 Long Term Reasoning module. 

 

The approach (depicted in Figure 25) allows us to group instances (either validations histories or 

terrorist attacks from GTD) from the selected dataset into clusters that ideally capture models of 

similar threat events (validations history) and/or of attacks (in case of GTD dataset). The instance 

are represented as multi-dimensional feature vectors comprised of action features which are 

mapped to validation events and of context features which are mapped to types of physical 

environments in the validation scenario (see section 5.7 for more details): 

fi = [fa
i , fc

i] 

where fi is the feature vector for the instance , i = 1, N is the number of instances in the dataset, fa
i  

and fc
i are the feature vectors in the action and context subspaces. 

The action feature space is used as bases for building the cluster models and capturing the 

underlying similarity. Furthermore as for each instance the set of action features is linked to a 

corresponding set of context features, we capture the distribution of different physical environment 

context features across the clustered action feature space. We assume that in this way we can model 

the correlation between combinations of actions (validation scenario events) and corresponding 

physical validation scenario environments. 
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Through building these models we aim at capturing the “typical behavior” of a terrorist attack that 

can potentially lead to a threat and the related physical environment. 

In the analyses and verification stage described in the remaining of the section, we measure the 

ability of this approach to correctly predict the types of physical environments related to the 

particular combination of actions. 

In the operational run-time stage when new events are introduced in the system enabling histories 

of threat/no threat events to be used. The reasoning phase of this module will take as an input 

aggregated event capturing the short-term histories of threats and validation events across a time 

window of analyses (~1h) and position it in the closest cluster defined in the action feature space. 

Furthermore we can now take into account the previously captured associations of different context 

features (mapping to physical environments) across action clusters and predicts the amount of 

presence of each type of validation physical environments in the identified cluster. These numbers 

together with the presence of threat events enable us to infer the probability of a threat event 

happening in each type of physical environment leading to corresponding alert level values. 

Briefly, the activities of LTR can be summarized as follows and reported in more detail in 

subsections 6.2.1 and 6.2.2: 

1. Building models representing different groups of instances (attacks from GTD or 

validation events from history) using the action feature space and calculating the 

corresponding associations of context features over the clusters 

2. Generating aggregated events representation that captures the state of the STR component 

during the last time window of analysis (~1h). 

3. Identifying the cluster that is closest to the aggregated events in the action feature space 

and estimating the relevance of threat for each type of physical environment for the 

identified cluster hence their criticality values 

4. Passing the predicted criticality levels (PCLs), to the MTR module 

As depicted in Figure 25, the LTR module can be divided into two different phases: the model 

generator phase that learns the cluster models and the long-term prediction phase that using these 

models to infer the criticality levels of each type of physical environment. 

 Spectral clustering vs k-means 6.2.1.

For completeness we are also analyzing performances of our implemented spectral clustering 

approaches in comparison to those obtained by K-means clustering approach. 

We show only this comparison, however we have performed additional tests with other state of the 

art clustering algorithms like farthest-first, partitioning around medoids (PAM). 

In this case, we report the performances of both algorithms taking into account the Silhouette and 

Calinski Harabasz indexes and varying the number of clusters. 

Different configurations of both spectral clustering algorithm and k-means algorithm have been 

tested, Figure 26 and Figure 27 depict the results obtained with the best configuration of the 

Spectral Clustering algorithm (using hamming distance and L =2) and the K-means one. 
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Figure 26 Spectral clustering vs K-means (Silhouette index). 

 

 

Figure 27 Spectral clustering vs K-means (Calinski Harabasz index). 

 

From the above picture, we can conclude that the spectral clustering outperforms the k-means 

approach. We take this as a confirmation for the choice of spectral clustering as our approach. 

Basically classical clustering approaches achieve lower performance than the worst case obtained 

with spectral clustering approach. 

 Experimental settings and performance evaluation 6.2.2.

In the analyses and verification stage described in the follow-up we measure the ability of our 

approach to correctly predict types of physical environments related to a particular combination of 

actions. For these experiments we used a subset of the GTD dataset with 10,000 instances. We 

select a subset in order to verify the performance of our approach.  

The set of  N = 10,000  instances is randomly selected from the database and we run our 

experiments with 10-fold cross validation. In every iteration of the learning algorithm 9 folds of 
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data were used to learn the model, and 1 fold to make the predictions. We experimented with 

different parameter configurations in respect of distance metrics, number of eigenvalues and cluster 

numbers. As discussed in section 6.2 for GTD we have categorical features describing information 

regarding actions as well as categorical features describing context.  In the binarized feature space 

we end up with 278 features for the action feature space and 22 features the context feature space.  

For each feature fa
i , i = 1,278 of the action feature space and each feature of the context feature 

space fc
i, i = 1,22  we calculate Ta

i  and Tc
i, the percentages of instances that contain that particular 

feature across the  database with N instances.  

We then perform spectral clustering using only the action feature space and obtain K clusters. 

Furthermore for each cluster k , where k = 1, K we calculate a centroid ck in the following manner: 

 We calculate the presence of each feature from both the action and context feature spaces 

in the cluster; that is Ta
k and Tc

k, the percentages of instances of the cluster k that contain 

that particular feature across the whole cluster  with Nk instances.  

 The cluster centroid ck  = [ca
k, cc

k] vector contains two sub-vectors representing a centroid 

ca
k in the action feature space in which the clustering into k clusters was performed, and a 

centroid in the context features space cc
k by taking into account the context features of the 

member instances of cluster k. 

 We generate values of the centroid ca
k = [ca,i

k ]
i=1,278

  in the following manner, for each 

feature fa
i  of the action feature space if the value Ta

k ≥ Ta
i then ca,i

k = 1, otherwise it’s 0. 

 We perform exactly the same steps for the centroid in the context space cc
k = [cc,i

k ]
i=1,22

 , if 

the value Tc
k ≥ Tc

i then cc,i
k = 1, otherwise it’s 0.  

 When a new instance is used in the testing phase, we calculate the distance of the new 

example from each centroid in the action feature space ca
k, k = 1, K using distance metric 

M. The closest centroid indicates the cluster into which we classify our new instance. In 

this manner the values of the centroid in the context feature space cc
k are used as predicted 

labels for each feature of the context space (where each context feature maps to a type of a 

validation physical environment). In this way our problem can be viewed as a multi-class 

classification scenario. 

 F-measure and accuracy are calculated in a macro fashion that is, across all classes for each 

new instance, and then averaged in a 10-fold cross-validation scenario. 

The above mentioned steps were repeated for different configurations by combining following 

parameters: distance metrics M (Hamming, Jaccardbin and Cosine), L of eigenvector L=2, number 

K of clusters (from 2 to 50). 

For completeness, a brief definition of the two measures is reported: 

 Accuracy: 

Accuracy =
tp + tn

tp + tn + fp + fn
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Where: tp= true-positive, tn=true negative, fp= false positive and fn=false negative 

 F-Measure:  

F − measure =
2 ∗ precision ∗ recall

precision + recall
 

 Where: 

o Precision =
tp

tp+fp
 

o Recall =
tp

tp+fn
 

In the following figure we report the values of the performances indexes for the different 

configuration as explained previously. 

 

 

Figure 28 F-measure spectral clustering. 

 

 

Figure 29 Accuracy spectral clustering. 
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Analyzing the plots depicted into Figure 28 and Figure 29 and taking into consideration the 

previous conclusion, we could state that the configuration with the best performances is:  

 Distance metric M= Hamming distance 

 Number of eigenvectors L = 2  

 Number of clusters K=10, we emphasize that in each of the analysis (analysis for 

selecting  the number of eigenvectors, the comparative analysis between k-mean and 

spectral clustering, and evaluation of the performances) yields same best value for 

the number of clusters k=10  ( as  is  indicated with vertical lines in Figure 28 and 

Figure 29). 

 Models update 6.3.

As describe in subsection 5.6.2, the Micro-environments training activity is performed by LTR 

with a traditional learning base approach (Figure 22). However, using a traditional learning base 

approach the threat detection modules (i.e. Micro-environments) are trained only once and in this 

way they reflect only what is present in the training set. Moreover in this approach the users are not 

involved in the training phase with the disadvantage of not being able to enrich the Micro-

environments with the user (possibly expert user) experience. 

 User-in-the-loop approach 6.3.1.

The main idea that is the basis of the “User-in-the-loop” learning base approach is the possibility to 

customize the Micro-environments on the base of the user expectations. The aim of this approach is 

to train threat detection modules that try to approximate the user experience in order to supply to 

the user a threat detection module that reflected their expectations. 

 

 

Figure 30 User-in-the-loop learning approach. 
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As it is possible to see in Figure 30 during the online activity of the system, several information is 

stored in order to be reused in the following periodic Micro-environment retraining activities. In 

particular, the new information that is collected is: 

 The data stream provided by sensors (i.e. the detected events) 

 The threat notifications provided by Micro-environments 

 The user feedback (typically operational user feedback) 

The collection of this information allows the implementation of an extended learning base 

approach in which Micro-environments are able to adapt their behavior (i.e. change/modify their 

threat detection strategy) on the bases of: 

 Changing on sensors detection capabilities; If new type of sensors (i.e. new device) or 

signals analysis algorithms (i.e. video analysis) are introduce into the system, they can 

produce events that  are not covered by the initial training set. 

 User expectation; Users can express their opinion specifying if a threat notification is a 

correct threat notification (i.e. true positive) or it is a wrong threat notification (false 

positive). Note that a true positive does NOT mean that there has been a terrorist action. 

Instead, it means that a recognized event is properly turned into a threat notification, 

according to the expectation of an experienced user. 

 Micro-environments Self-Adaptive System 6.3.2.

The extended learning base approach can be considered as a self-adaptive system. Different 

definitions are present in literature for the self-adaptive system concept, but the most significant for 

this case is the ones present in [Naqvi, 2012]. A self-adaptive system consists of a closed-loop 

system that changes its behavior according to changing on user requirements, system properties 

and environmental characteristics. As we can speak of “Micro-environments self-adaptive system”, 

in this subsection an analysis of  the self-adaptive goals, the modelling dimensions and the 

engineering approach of the Micro-environments self-adaptive system is reported. 

The self-adaptive goals 

The main goals of the Micro-environments self-adaptive system can be summarized in: 

 Provide to the users some threat detection modules (i.e. Micro-environments) that reflect 

their expectations 

 Update the Micro-environments threat detection strategies according to the collected user 

feedback 

 Increase the Micro-environment’s threat detection performance 

If we try to analyze the goals dimensions it is possible to see that: 

 In this system, a dynamic evolution is required. The models update activity must be 

constantly held since, sensor capabilities and user expectations may change over time. 
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 The system has a constrained flexibility value because the models update activity is 

strongly connected with the feedback collection activity. 

 The duration of these goals is persistent because for the entire life of the system these goals 

must be guaranteed. 

 There are multiple goals that are dependent to each other. 

Causes of Self-Adaptivity Dimension 

The origins of the changes in the Micro-environments self-adaptive system are two, the change of 

sensor capabilities and the feedback provided by user during the interaction with the system. 

The change of sensor capabilities is an internal cause that is due to hardware replacement or 

introduction of new analysis algorithms. The type of this change is technological because new 

hardware or new software is introduced. The frequency of this change can be frequent (in order of 

months) and it can be foreseeable. 

The change due to the user feedback is an external and non-functional case which aims to increase 

the Micro-environments performance. Also this change can be frequent (in the order of weeks) and 

foreseeable. 

Reaction Mechanisms Dimension 

This section wants analyze the system’s reaction towards the change. As described before, in this 

case study we have: 

 The change of sensor capabilities that is: 

o A hybrid change because it can influence both of parametric and structural fields 

of the system 

o Assisted because there is the human influence/interaction 

o Decentralized and local because it can be distributed among several components 

o It has a short duration because the replacement of one or more sensors requires at 

most few hours 

o The adaptation is event-based. 

 The change due to the user feedback that is: 

o Parametric because in this change only some HMM parameters are updated 

o Assisted because during the interaction with the system, users provide their 

feedback 

o Centralized and local because during the Micro-environments update activity, each 

Micro-environment is updated independently 

o It has a medium duration because the collection activity of users feedback takes 

several months 

o The adaptation can be event-based (e.g., a user starts the threat detection models 

update activity) or  time-based (e.g., every two months the system triggers the 

threat detection models update activity). 
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Effects Dimension 

The effects dimension captures the impact of the adaptation on the system. If we try to analyze the 

impact on the system in case of some fails on the self-adaptivity activity (i.e., the criticality), we 

can note that for both the changes the two activities are quite critical because in the first case 

(hardware change) some Micro-environments can receive some information that they cannot 

analyzed, while in the second change users cannot customized each Micro-environments on the 

bases of their expectations. Both of the changes are non-deterministic because the consequences of 

self-adaptivity cannot be predicted in value and time. 

The overhead that occurred during the adaptation on the system’s performances in both of the 

change is quite insignificant (the models update activity is an off-line activity that not infect the 

online activity of the system). 

 Proposed model update approach   6.3.3.

The proposed approach for the Micro-environments update activity is based on the user feedback. 

As it is possible to see in Figure 24 and Figure 30 an adaptive feedback control loop is proposed. 

During the online activity of the system each Micro-environments analyze the data stream provided 

by sensors according to their threat detection strategy. When a Micro-environment identifies that 

an event is a potential symptom of a threat situations, it sends a threat notification at the user. At 

this point the user analyzes this notification and all this information (detected event, threat 

notification and user feedback) are stored into the database in order to be used for the models 

update activity. 

 The models update activity can be triggered in two ways: 

 Automatically from the system 

 Manually from the user. 

The system can start the update activity according to a time base strategy (e.g. every two months) 

or according to a performance strategy (e.g. if the last twenty user feedback express that last twenty 

threat notifications are wrong then start the models update activity) while the user in every time can 

decide to start the update activity. 

  



80 

 

7. Medium Term  reasoning layer 

As mentioned in Section 4.1.3, TENSOR aims to provide help at different actors and users of the 

system. In this section, the last component (i.e. the Medium Term Reasoning) is presented. 

 

 
Figure 31 Medium Term Reasoning (orange lines). 

 

The MTR module supports overall decision making by re-evaluating the alert level within a longer 

temporal scope than STR module and shorter temporal scope than LTR module. It considers the 

used alert level (STR), the predicted alert level (LTR), the symbolic and threat events and when 

available, feedback from domain expert users regarding the alert level (graphical interface). 

The output of the MTR analysis and the proposed alert levels are shown at tactical users throw a 

GUI. Note that the output of this module is only a proposal, the tactical user can confirm or change 

the  proposal according to his experience. In this sense, the MTR works like a Decision Support 

System (DSS) that presents the information necessary at the user to make his choice and it also 

provides a proposal solution according to the output of its analysis. 

 Decision Support System overview 7.1.

In general, a DSS is a computer system used to give support, more than to automate, the decision 

making process. The support to a decision means to help the people that work alone or in groups to 

gather intelligence, to generate alternatives and to take decisions. Supporting the decision making 

process implies the support of the estimation, the evaluation and/or the comparison between 

alternatives. In practice, references to DSS are usually references to computer applications that 

realize a support function. 
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The decision support systems term has been used in very different ways and has been defined in 

different ways attending to the point of view of the author. Some of the most cited ones are: 

 "DSS is an interactive computer-based system that helps decision makers to utilize data 

and models to solve unstructured problems" [Sprague and Carlson, 1982]. 

 "DSS is a computer-based system that aids the process of decision making" [Finlay, 1994]. 

 "DSS is an interactive, flexible, and adaptable computer-based information system, 

especially developed for supporting the solution of a non-structured management problem 

for improved decision making" [Turban, 1995]. 

Considering above definitions, DSS ranges from systems answering of simple queries to systems 

modeling of a complex human decision making process. Therefore, it is easy to put a variety of 

information systems into the DSS class. 

A DSS supports users who have to make decisions at any level of management [Power et al., 

2015], whether individuals or groups, semi-structured situations and in informal, through the 

combination of human judgment and objective information: 

 Supports multiple interdependent or sequential decisions. 

 Offers assistance in all phases of decision-making process-intelligence, design, selection, 

and implementation, as well as a variety of processes and decision-making styles. 

 It is adaptable by the user at the time to deal with changing conditions. 

 Generates learning, resulting in new demands and refinement of the application, which in 

turn results in further learning. 

 Generally uses quantitative models (standard or custom made). 

 DSS are equipped with an advanced knowledge management component that enables 

effective and efficient solution of complex problems. 

 Can be implemented for use in web or desktop environments on mobile devices. 

 Allows easy implementation of sensitivity analysis. 

As with the definition, there is no universally accepted taxonomy for DSS. Different authors 

propose different classifications. Using the method of assistance as a criterion, [Power et al., 2015] 

distinguishes between: 

 Model-driven DSS’s: Emphasis is placed on the access and manipulation of a statistical 

model, financial, optimization or simulation. Use data and parameters provided by users to 

assist decision makers in the analysis of a situation, which are not necessary intensive data.  

 Communication-driven DSS’s: They have support for multiple people working on the 

same shared task. 

 Data-driven DSS’s: Also called data-oriented, emphasize access and manipulation of time 

series of internal company data and sometimes also external data.  

 Documents-driven DSS’s: Manage, retrieve and manipulate unstructured information in a 

variety of electronic formats. 

 Knowledge-driven DSS’s: They provide experience in the form of facts, rules, 

procedures, or similar structures specialized for solving problems. 



82 

 

While, if we consider the relationship with the user, [Haettenschwiler, 2001] divides DSS into three 

groups: 

 Passive DSS – aids the process of decision making, but cannot bring out explicit decision 

suggestions or solutions. 

 Active DSS – brings out explicit decision suggestions or solutions. 

 Cooperative DSS – allows the decision maker to modify the decision suggestions 

provided by the system. The process is then repeated until a satisfying solution is 

generated. 

As it happen for the definition and taxonomy of decision support systems, also for the architecture 

different authors identify different components of a DSS. For example in [Power et al., 2015] a 

DSS has four basic components: 

 The user’s interface. 

 The data base. 

 The analytic and modelling tools. 

 The DSS’s architecture and net. 

While in [Haettenschwiler, 2001]  five components were identified: 

 Users: With different roles or functions in the decision making process (decision maker, 

consultants, domain experts, system experts, data collectors). 

 Decision context: Must be specific and definable. 

 Target system: This describes most of the preferences. 

 Knowledge basis: Composed of external data sources, knowledge databases, working 

databases, data warehouses and meta-databases, mathematical models and methods, 

procedures, inference and search engines, administrative programs, and systems reports. 

 Work environment: For the preparation, analysis and documentation of decision 

alternatives. 

 The developed approach 7.2.

As described before in section 3.2.3 CEP solutions are aimed at fulfilling the need for continuous 

processing of streaming data in near real-time generating relevant insights and enabling immediate 

reactions. Since the role of MTR reasoning components in TENSOR is to process numerous 

incoming events types of different nature and update the sensitivity of STR in near real time 

manner, we believe that CEP solution perfectly fits requirements for MTR module. Overall from 

the functional point of view we see the developed framework as a CEP solution with predictive 

analytics “soft rules” implemented through STR and LTR modules and declarative rules 

implemented through the MTR module. 

Event patterns specify complex relationships among input events entering the system, their role is 

to define how incoming events should be processed to detect relevant information (e.g. change of 

alert level, occurrence of a threat). A classical approach is to put the responsibility for discovering, 
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defining and monitoring complex event patterns on the human domain expert. This can be done 

either manually based on domain knowledge or by using external tools to discover patterns in data 

and represent in one of the event processing languages. As an example if a domain expert already 

knows examples of suspicious sequence of detected actions that might represent a threat in the 

referred scenario and needs to encode them in a format that can be processed by CEP systems, 

however this is a very difficult and time-consuming approach. 

Hence a domain expert might be offered tools that ease exploration of large datasets in order to 

help him define processing rules. In [Moraru et al., 2012] and [Kenda et al., 2013] the authors 

focus on the domain expert and easing the rule generation and verification process for environment 

sensor data. A unifying user interface displays semantically annotated sensor data from multiple 

sources and numerous aggregates for easing exploration of achieved data, rule generation, testing 

and export. 

The main difference between this scenario and the thesis scenario is the readily availability of data 

(environmental sensor measurements or credit card transaction data) for rule discovery and 

validation as opposed to sensor events representing abnormal actions that constitute a complex 

event of a terrorist threat and hence appropriate historical data for rule validation.  

Alternatively in [Widder et al., 2007] unknown event patterns are found by analyzing the event 

cloud of an organization, discriminative analyses is used to detect a suspicious combination of 

events in the feature space and the pattern can be saved into the database after expert validation. 

We adapt approach of using statistical machine learning for discovering patterns in incoming event 

stream, since the event types coming into the framework can be both from multiple sensors 

(including a “human” sensor) and numerous types (detected actions) and carefully crafting rules in 

a terrorist scenario is a burdensome process even for an expert. Additional statistical modelling of 

sets of suspicious actions into a threat event enables “soft” rules that adapt with time and are able 

to follow the shift in behavior of terrorist groups (the STR module). 

Hence multiple types of user action event streams from different sensors are entering STR module 

which in turn is producing complex events of threat detection. Since the decisions are made using 

automatically discovered soft rules, there is an intrinsic level of data uncertainty accompanying the 

generated primary complex events for detecting threat situations. The detected primary complex 

event is both sent to event consumers and put back into the framework for recursive processing. 

This type of event can be denoted as internal event according to [Adi and Etzion, 2004], who 

differentiates between external events in pushed into the system by external sources in runtime and 

internal events inferred by the system when a particular situation occurs. 

In order to enable the proactive prevention of the system rather than just reaction we combine the 

STR for threat detection with LTR through our MTR module. The LTR module aims at reasoning 

about the event by using external knowledge sources relevant to the domain (as described in the 

previous section) and exploiting accumulated historical information from the predefined time 

period to position the alertness / sensitivity of the overall reasoning module STR to incoming 

unusual events. 
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A general functional view of a CEP system is illustrated in Figure 32. The receiver is responsible 

for receiving events from multiple event streams and passing them along and for modeling 

solutions for periodic input processing (connection to the clock).The decider, processes events 

passed on by the receiver and on arrival of a new event checks the set of predefined rules. When a 

corresponding event pattern is detected appropriate action from the triggered rule is passed to the 

producer who generates an action (e.g. alarm, security threat). The generated complex events are 

either sent to event sinks (user components) or return back into the system for further processing. 

Optional static knowledge about source events can be stored in the knowledge base (e.g. if a 

“earthquake threat alarm” event has been triggered for an area geographically close to a sea front 

then additional “tsunami alert” event can be issued). 

 

 

 

Figure 32 Functional CEP system architecture. 

 

A combination of CEP and predictive analytics is considered in [Fülöp et al., 2012], where 

classical CEP system [Esper Version 4.11.0] has been extended with decision trees approaches. 

The authors use complex events produced by rules of the CEP system to label streams of data, 

generate training sets and statistically model prediction of new complex events. 

In this thesis the inputs into the STR module are symbolic representations of unusual activities, 

sensor-independent events about abnormal situations (e.g., Person Observing Building, People Not 

Fitting In Environment). These events are produced by the low-level fusion algorithms (see section 

4.1) which translate detected sensor inputs into symbolic sensor-independent representations. 

Furthermore the events are processes with a “soft filter” of the STR component and a complex 

event, threat event / or not is generated (see Table 12). The LTR reasoning also acts as a “soft 

filter” (Table 7 Table 13) for aggregated threat data corresponding to a certain “long” period (~1 

day) coming from the STR/database and produces predictions for criticality level based on rules 

(models) trained over long-term historical data and/or external data sources. The MTR module 

function as the core part of a CEP system, based on a set of predefined rules it makes a decision 

about the update of the alert level event that will be passed to the STR module. This decision is 

based upon combining the predicted alert level events coming from the LTR and the used alert 

level by STR modules (which in turn can be either set by a domain expert user through GUI or a 

result of the previous MTR phase) as well as the threat events coming from STR. 
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Table 12 Types of rules from a functional perspective as a CEP engine. 

Framework 

modules 

Input source origin  

Data type 

Rule type and origin  

Update periods 

Output type  

 Destination 

STR 

Sensors  Streams of 

symbolic events 

 

MTR GUI  

User alert level 

 

MTR  

Updated alert  level 

Short-term “soft” rules (Micro – environments )   

Model update (performed by LTR) once a months 

Detected threat 

events -> 

MTR GUI 

 

Used 

alert level -> 

MTR GUI 

 

 

MTR 

Data store  

Symbolic events and 

threat probabilities 

 

STR  

current alert level 

 

LTR 

Predicted alert level 

Medium-term declarative rules  

Generated by domain expert /updated manually or  by 

use of learning algorithms when user feedback 

available 

Updated alert 

level  

STR & MTR 

GUI 

LTR 

Data store 

Symbolic events and 

threat probabilities 

 

Expert user 

User feedback 

Short-term “soft” rules  

Model update (performed by LTR) once a months 

Predicted alert 

level 

MTR & MTR 

GUI 

 

For the implementation of the MTR module we used Drools an open source project written in Java, 

licensed under the Apache License, Version 2.0 [Drools 6.01]. The Drools rules engine started as 

Production Rule System (PRS) rule engine based on the Rete algorithm [Forgy, 1982].  The 

production rule approach has two parts <when: conditions - then: actions> :  the inference engine 

which performs pattern matching of facts (stored in the working memory) against rules (stored in 

the production memory) and infers conclusions which consequently result in actions. This is in 

compliance with the requirements for our MTR CEP component. 

Current Drools rule engine uses two algorithms PHREAK and ReteOO originating from Rete. 

ReteOO is an optimized implementation for object oriented systems and includes several schemes 

for reasoning with imperfect information, and configuration parameters for the architecture [Sottara 

et al., 2010]. PHREAK a goal oriented algorithm where partial matching is aggressively delayed, it 

inherits the enhancements from ReteOO while already being faster and more scalable [Drools 

6.01]. Drools is defined as a Hybrid Reasoning System that combine forward chaining (reactive 

and data driven; a fact is being propagated through the rules until we reach a conclusion) and 

backward chaining (goal-driven derivation queries e.g. Prolog engine; an engine starts from a 

conclusion which it tries to satisfy, if this is not feasible it searches for conclusions that it can 



86 

 

satisfy “subgoals”).  Two main modules are used: the rule engine (Drools Expert) and the module 

enabling the event processing capabilities (Drools Fusion). 

Drools Expert is a framework to build expert systems, it is a declarative, rule based coding 

environment, which is used to define, execute and maintain the rules. Additionally to declared rules 

a complete expert systems must also include domain knowledge in the form of an ontological 

model.  

Drools Fusion module adds event processing capabilities as identifying temporal relationships 

between events, composite and aggregated events, furthermore  the rule engine can be now 

perceive as operating  on events and not only on  facts. Traditional Rete algorithm has been 

enhanced with to provide features such as aggregation of values in time-based windows [Walzer et 

al., 2008]. This makes Drools Fusion suitable to implement standard Complex Event Processing 

scenarios. 

Table 13 shows the set of rules and parameters used to generate a complex event of updating the 

alert level by the MTR module in function of the input event streams. The module currently 

simulates virtual sensors that produce all incoming events. 

Table 13 MTR update Alert Level (AL). 

   AL   

LTR  

 

 

AL STR  

Low Medium High 

Low 

when: <over window : time (N) 

threat events are < T1 % of all 

events> then : <AL:= Low> 

when: <over window : time (N)  

threat events are < T2 % of all 

events> then: <AL Low> 

when: <over window : time (N)  

threat events are < T3 % of all 

events> then : <AL:= Low> 

when: <over window : time (N)  

threat events are >= T1 % of all 

events>  

then : <AL:= Medium> 

when: <over window : time (N) 

threat events are >= T2 % of all 

events> 

then: <AL:= Medium> 

when: <over window : time (N) 

threat events are >= T3 % of all 

events> 

then : <AL:= Medium> 

Medium 

when: <over window : time (N) 

threat events are < (1-T2) % of all 

events> 

then : <AL:= Low> 

when: <over window : time (N) 

threat events are < (1-T1)  % of all 

events> 

then : <AL:= Low > 

when: <over window : time (N)  

threat events are < =MIN % of all 

events> 

then : <AL:= Low > 

when: <over window : time (N) 

threat events >= (1-T2)%  &  < 

MAX% of all events > 

then : <AL:= Medium> 

when: <over window : time (N) 

threat events >= (1-T1) %  &  < 

T1% of all events > 

then : <AL:= Medium > 

when: <over window : time (N) 

threat events > MIN%  &  < T2% 

of all events > 

then : <AL:= Medium > 

when: <over window : time (N)  

threat events are >= MAX% of all 

events> 

then : <AL:= High> 

when: <over window : time (N) 

threat events are >= T1 % of all 

events> 

then : <AL:= High> 

when: <over window : time (N) 

threat events are >= T2 % of all 

events> 

then : <AL:= High> 

High 

when: <over window : time (N) 

threat events are < (1-T3)  % of all 

events> 

then : <AL:= Medium > 

when: <over window : time (N) 

threat events are < (1-T2)  % of all 

events> 

then : <AL:= Medium > 

when: <over window : time (N)  

threat events are < (1-T1) % of all 

events> 

then : <AL:= Medium > 

when: <over window : time (N)  

threat events are >= (1-T3)  % of all 

events> 

then : <AL:= High> 

when: <over window : time (N) 

threat events are >= (1-T2)  % of 

all events> 

then : <AL:= High> 

when: <over window : time (N) 

threat events are >=(1-T1) % of 

all events> 

then : <AL:= High> 
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The parameters at hand are MIN, T1, T2 , T3, MAX and N and the variables of interest are the alert 

level AL = {Low, Medium, High} for STR, LTR, and MTR  modules respectively ALSTR, ALLTR, 

ALMTR. The parameters can be explained in the following manner: 

 T1 is the parameter of the condition, that defines the minimum needed presence of threat 

events among all events for a window of length N in case when  ALSTR and ALLTR  have 

same values, so that the ALMTR coming out of MTR and being sent to STR is a one-step 

incrimination of ALSTR. 

 T2 is the parameter of the condition, that defines the minimum needed presence of threat 

events among all events for a window of length N in case when  ALSTR  has a value one-

step less than ALLTR,  so that the ALMTR coming out of MTR and being sent to STR is a 

one-step incrimination of ALSTR. 

 T3 is the parameter of the condition, that defines the minimum needed presence of threat 

events among all events for a window of length N in case when  ALSTR  has a value two 

steps less than ALLTR, so that the ALMTR coming out of MTR and being sent to STR is a 

one-step incrimination of ALSTR. 

All the other relations and conclusions from Table 13 are extrapolated of the above three 

statements, additionally MAX > T1 > T2 > T3 > MIN and in our initial setting MIN=0, T1=90, 

T2=80, T3=60, MAX=100.  

In case ALSTR was set by a user through GUI interface within a time window N, the rules defined 

in  Table 13 are ignored and the current alert level is maintained until appropriate conditions are 

met. 

However, in the presented set of rules, there is no consideration about spatial constraints present 

between different physical monitored environments. Examples of these constrains referred to the 

validation scenario (Figure 23) can be “What happens in the Ministry of Finance influences also 

the Square” or  “What happens at the Ministry of Finance does not influence the Church”. These 

constraints, for example, can be caused by: 

 Proximity between environments (in the validation scenario the Square and the Ministry 

are close each other while the Church is far from them) 

 Affiliation to the same type of environment (e.g., if in a metro station occurred a condition 

that triggers the rule that set the “High” alert level, in all the other monitored metro stations 

the alert level must be increase of one level). 

During the alert level selection activity, the MTR starts with the evaluation rules for the time series 

analysis (Table 13) and only when this phase is finished for all the STR Micro-environments the 

MTR starts to evaluate the spatial constraints rules (Table 14). 
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Table 14 Example of spatial constraints rules. 

Square 

AL 
Ministry Low AL Ministry Medium AL Ministry High AL 

Low 
when:<MinistryAL = Low > 

then : <AL:= Low > 

when:<MinistryAL = Medium > 

then : <AL:= Medium > 

when:<MinistryAL = High > 

then : <AL:= Medium > 

Medium 
when:<MinistryAL = Low > 

then : <AL:= Medium > 

when:<MinistryAL = Medium > 

then : <AL:= Medium > 

when:<MinistryAL = High > 

then : <AL:= High > 

High 
when:<MinistryAL = Low > 

then : <AL:= High > 

when:<MinistryAL = Medium > 

then : <AL:= High > 

when:<MinistryAL = High > 

then : <AL:= High > 

 

In Figure 33 it is possible to see, the information that the MTR shoes at tactical users. In particular 

for each monitored environments the MTR shoes: 

 The current alert level 

 The alert level proposed by LTR 

 The percentage of detected threats occurred in the last medium term time window 

 and, in the end, a proposed alert level inferred from the rules analysis. 

 

 

Figure 33 Medium Term Reasoner GUI. 

 

As describe before, the MTR does not replace the expert users, in the right part of Figure 33 there 

are graphical component that give at the user the possibility to: 

 Accept  the MTR proposed alert levels (i.e. update or confirm the current alert level used 

by Micro-environment) 

 Manually set the alert levels of each Micro-environments according to his experience 

 Accept in “an automatic way” the MTR updates made to the alert levels. 
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 Improvements for the MTR module 7.3.

As mentioned another major bottleneck of CEP systems is the need for manual definition of rules 

and parameters defining relationships between primitive and/or complex events. Incorrect 

definitions of these handcrafted rules and parameters can lead to incorrect detection of complex 

events and false or missed warnings. As an example the authors in [Turchin et al., 2009] propose a 

generic framework for automating both the initial definition and the update of the rules over time 

based on an online learning with Discrete Kalman Filters. The method was tested in a computer 

network intrusion detection scenario but needs a constant feedback from the expert to verify the 

performance and to update the rules. Since the role of the domain expert users is crucial for the 

functioning of the developed framework, a similar algorithm can be used for the MTR module. 

Future work will also investigate ways to more efficiently tie together the predictive analytics part 

and the CEP system in our implementation. 
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8. Conclusion 

This thesis has shown it's possible to fuse historical information on the behavioral patterns of 

terrorist groups in different socio-economical conditions with short term information like that of a 

monitoring system resulting in a better threat detection. To obtain this result different machine 

learning methods have been shown to be effective at different time frames and for heterogeneous 

data sources.  

Actual data were video feeds but TENSOR's design and software architecture allows to incorporate 

also other digital traces of terrorist activities like social networks, financial transactions or 

individual mobility patterns. 

TENSOR's machine learning methodological kernel could be implemented with minor redesign 

and significant performance improvement using some of the frameworks discussed in 3.3.2 like a 

Lamba architecture and tools like Flink or H2O. 

At the time the system was designed most of these tools were not available moreover the software 

architecture of TENSOR was constrained by the customer requirements from LEA and design 

choices of the PROACTIVE European project.  

From the viewpoint of LEA requirements, TENSOR fits into the vision emerged in the very last 

month that to fight effectively terrorist activities, at least in Europe, a system must look at not only 

the short term activity but at the wider picture of how groups behave and react to different socio-

political conditions and gear up to stage concentrated large scale attacks.  
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