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Abstract 

Similarity searching, a technique used for ligand-based virtual screening in drug discovery, 

exploits the structural information of known active compounds to find new ones with the 

desired biological activity. The effectiveness of similarity searching can be enhanced by 

combining independent searches, executed with different reference structures, through the so-

called fusion rules. In this pilot study, we applied for the first time the weighted Power-

Weakness Ratio (wPWR) as a fusion rule. wPWR was recently proposed as a multi-criteria 

decision-making and ranking comparison technique that, unlike existing parameter-free fusion 

rules, (1) is based on pairwise comparisons between compounds, and (2) can use weighting 

schemes. We compared wPWR with six fusion rules on four datasets using six evaluation 

metrics. The results indicated that wPWR has a mediocre performance but also the most 

robust behavior. Moreover, in one case, wPWR had the best accumulation curve on the top 25 

compounds. These aspects are important for prospective applications. Weighting the reference 

structures according to their activity did not show a net beneficial effect on one analyzed 

dataset and, thus, further investigations are needed. 

1 Introduction 

The underlying principle of many chemoinformatics techniques asserts that similar 

chemical structures are likely to exhibit similar physical-chemical properties and biological 

activities. Built on this basis, ligand-based virtual screening embraces a collection of 

approaches that aim at finding compounds with a desired biological activity on a specified 

biological target by exploiting the structural information of known actives [1]. Virtual 
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screening aims at directing the experimental biological testing on a smaller set of compounds, 

which have a higher probability of showing the desired activity. 

Similarity searching, in particular, directly uses the structural similarity between known 

actives and a database of compounds and it is probably the most widely used approach to 

virtual screening [2][3]. Typically, an active compound against the specified target is chosen 

as a reference structure. The chemical similarity is then evaluated by a chosen measure of 

similarity [4] (e.g. Jaccard-Tanimoto coefficient) on a set of molecular descriptors, 

substructures or binary fingerprints [5], which encode structural features. The compounds in 

the database are then ranked by decreasing similarity, with the top-ranked molecules assumed 

to having the highest probability of being active. 

The effectiveness of similarity searching can be improved by the so-called data fusion (or 

consensus scoring) approaches, in which the output of different independent searches is 

combined into a single final score, which is used to rank the structures in the database. Data 

fusion is implemented in two different fashions: (a) in similarity fusion, a single reference 

structure is used and the independent searches are based on different sets of molecular 

descriptors/fingerprints or similarity measures; (b) in group fusion, the set of 

descriptors/fingerprints and similarity measures is fixed and the independent searches use 

different reference structures. The individual similarity values (or the induced ranks) are 

combined together by means of fusion rules [6]. Generally, no fusion rule behaves the best in 

all cases – Chen et al. [7] indicate the rRKP rule (see Section 2.2 for details) as providing 

always the best results; our results confirm rRKP as being on average the best rule, but not 

always the best. Moreover, the different searches being combined (whether similarity or 

group fusion) are given equal importance. On the other hand, a weighting scheme can enable 

additional criteria to be taken into account, e.g. weighting the reference structures on their 

potency, ease of synthesis or economical cost. Hence, the focus on new fusion rules for virtual 

screening with optimal and stable behaviour and embedding a weighting scheme is of 

relevance. 

In this pilot study, we applied the weighted Power-Weakness Ratio (wPWR) as a group 

fusion rule. The main goal was to have preliminary indications on whether wPWR has a 

potential for application in virtual screening. wPWR was recently proposed as a weighted 

multivariate index for multi-criteria decision-making and ranking comparison. Its salient 

features are: (a) being based on pairwise comparisons between compounds, and (b) the 

possibility to weigh the considered criteria. We re-adapted wPWR to virtual screening 

problems and compared the results with most of the parameter-free rules investigated by Chen 
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et al. [7]. The comparison was carried out using four publicly available datasets and the 

performance was quantified by means of several benchmarking virtual screening metrics, i.e. 

RIE, BEDROC, ROC, enrichment factor and AUAC (see Appendix A) [8], and relative 

scaffold diversity. 

2 Theory 

The following notation is used: N is the total number of compounds in the database and n 

is the number of actives. Ra and Ri are the ratio of actives (n/N) and inactives ((N-n)/N), 

respectively; sik is the similarity score of the i-th compound in the database with respect to the 

k-th reference structure and rik is the corresponding rank derived from the similarity scores 

(si); p is the total number of reference structures used and it is a subset of the actives (p ≤ n).  

2.1 Weighted Power-Weakness Ratio (wPWR) 

An extensive description of the original Power-Weakness Ratio (PWR) and its weighted 

variant (wPWR) can be found in Todeschini et al. [9]. Here we briefly introduce the 

philosophy of wPWR and describe its adaptation to virtual screening. The idea of PWR is to 

compare a set of objects on a number of different criteria in a pairwise manner. The pairwise 

comparisons allow compiling a square non-symmetric matrix (T), where each element (tij) 

indicates the number of criteria for which the i-th object wins (i.e. is better) over the j-th 

object. In case of a draw, 0.5 is given to both objects. This matrix encodes the “power” of 

each object, i.e. its ability to win over the others. The elements of the transposed T matrix 

(T
T
), indicate the number of criteria for which the i-th object was defeated (i.e. it was worse) 

by the j-th object. Hence, the T
T 

matrix indicates the “weakness” of each object. In the 

weighted variant of PWR (wPWR), the element tij of the T matrix is the sum of the weights 

(instead of the count) of the criteria where the i-th object “wins” over the j-th object. Each tij 

element is obtained according to Equation 1: 

 (1)  

where wk are the normalized weights pre-assigned to each of the p criteria. 

The Perron-Frobenius eigenvector ( PFe ) associated to the largest eigenvalue of the T 

matrix has large values for objects that win many times. On the other hand, the eigenvector  
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e ) associated to the largest eigenvalue of the T

T 
matrix has low values for objects that are 

defeated few times. The wPWR score of the i-th object is defined as: 
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 (2)  

where ie  is the i-th element of the PFe  eigenvector obtained from T and *
ie  is the i-th element 

of the *

PF
e eigenvector obtained from T

T
. The parameter α was introduced by Todeschini and 

co-authors to avoid singularities or spikes and to obtain reasonable scales. Objects that win 

many times and are defeated few times have large (w)wPWR scores.  

In the case of virtual screening, the objects being compared are the compounds in the 

database and the criteria are the p similarity vectors (or the corresponding rankings) with 

respect to the p reference structures. When an active compound is taken as a reference 

structure, it is deleted from the list and then it is re-introduced when another active is chosen 

as a reference structure. This means that each reference compound has a missing value in the 

similarity vector when it was the reference structure (i.e. the self-similarity of the reference 

compound is neglected). When we generate the T matrix of pairwise comparisons, the 

comparison with a missing value is ignored. Consequently the number of valid comparisons 

is: a) p for two compounds never selected as a reference structure; b) p-1 for comparisons 

where one compound was selected as a reference and the other one not; c) p-2 for 

comparisons between two compounds both selected as a reference. The weights are 

normalized on the number of valid comparisons. 

2.2 Benchmark fusion rules 

Six parameter-free combination rules were used for comparison. Five of these were applied 

to both the similarity scores and the imputed ranks in accordance with Chen et al. [7]. The 

ranks were derived in increasing order so that the highest similarity score corresponds to rank 

one and accounting for ties. After the application of the fusion rules to the ranks, the scale is 

inverted (decreasing order) so that the most promising compounds have high scores in 

agreement with the scores obtained from the application of the combination rules to the 

similarity vectors. The prefix s or r is used to distinguish the rules applied to the similarity 

scores or to the ranks, respectively. 

The MIN rule takes the minimum similarity and the lowest rank, accordingly; on the 

contrary, the MAX rule takes the maximum similarity and the top rank. The SUM and MED 

rules take the average and the median similarity score or rank, respectively. The EUC rule 
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computes the Euclidean distance of the similarity scores or ranks. The last rule, RKP, is the 

summation of the reciprocal ranks. As suggested in Chen et al., this rule is not applied to the 

similarity scores to avoid the risk of a null denominator. The formulas are collated in Table 1. 

Table 1. Parameter-free combination rules compared in this study. 

Rule Formula Rule Formula 

sMIN { }mini ikScore s=  sEUC  

rMIN { }maxi ikScore r=  rEUC  

sMAX { }maxi ikScore s=  sMED { }mediani ikScore s=  

rMAX { }mini ikScore r=  rMED { }mediani ikScore r=  

sSUM  rRKP  

rSUM  wPWR *

i

i

i

e
Score

e

α +
=
α+

 

3 Material and methods 

3.1 Data sets 

Four publicly available datasets with pharmaceutical relevance were chosen as study cases. 

The Beta-glucocerebrosidase (GC) dataset, retrieved from ChEMBL (ID: 

CHEMBL1613818) [10], comprised 11,377 records with potency expressed as  concentration 

that produces 50% activation/inhibition (AC50). Deficiency of GC triggers Gaucher’s disease, 

a genetic disorder that affects several organs with diverse symptoms. Inhibitors of GC are able 

to restore the function of mutant proteins by acting as chaperones [11].  

The Pyruvate kinase isoenzyme M2 (PKM2) dataset, obtained from ChEMBL (ID: 

CHEMBL1613996), contained AC50 values for 6,331 records. Pyruvate kinase catalyzes the 

transfer of phosphoryl groups in the glycolytic pathway. The embryonic isoform PKM2 is a 

selective target for cancer therapy because it is re-expressed in cancer tissues, where it 

promotes aerobic glycolysis [12]. 

The Aldose reductase (ALDR) dataset, consisting in 9,159 records flagged as 

active/inactive, was retrieved from the DUD-E website [13]. Differences between structures 

are considered at the level of protonation state. Aldose reductase is involved in the reduction 

of glucose to sorbitol. Inhibitors of ALDR are potential agents in diabetic therapies because 

accumulation of sorbitol is hypothesized to cause diabetes [14]. 
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The GSK TCAMS dataset derives from a screening of 1,986,056 compounds performed by 

GlaxoSmithKline (GSK) against the proliferation of Plasmodium falciparium strain 3D7 in 

human erythrocytes [15]. The dataset contains concentrations producing 50% inhibition 

(XC50) for the 13,533 compounds that showed at least 80% inhibition of parasite growth at a 

concentration of 2 μM. P. falciparium is one of the Plasmodium species that cause malaria, an 

infectious disease that affects both humans and animals. 

3.2 Data curation  

A common curation procedure was applied to the datasets. Potency values reported as 

“greater/smaller than” (> or <) were removed (applicable only to the GC, PKM2 and GSK 

datasets). For replicates (multiple experimental measurements for the same chemical), the 

mean potency was calculated for the GC, PKM2 and GSK datasets, whereas for ALDR the 

agreement between class assignations was examined (no disagreement detected). 

Disconnected structures and structures considered not valid by Dragon [16] were removed. 

Only the GSK TCAMS dataset was considerably reduced because of the large number of 

disconnected structures (5234). Ninety-six invalid structures were detected, all in the ALDR 

dataset. These compounds had pentatomic N-containing rings with incorrectly defined 

aromatic bonds. All of them were inactive. 

Characteristics of the datasets with number of records before and after data curation are 

reported in Table 2.  

Table 2. Characteristics of the analyzed datasets. 

Dataset Response 
Initial no. 

records
a
 

Final no. 

records
b
 

Class 

distribution 

Cutoffs 

[μM] 
Source 

PKM2 AC50 6331 6111 5965/146
c
 0.5 [10] 

GC AC50 11377 10477 10260/183/34
d
 0.5/0.1 [10] 

GSK 

TCAMS 
XC50 13533 8000 7750/250

c
 0.1 [15] 

ALDR Class 9159 9062 8903/159
c
 1.0 [13] 

a 
number of records retrieved from database; 

b 
number of records after data curation;

 c
 

inactive/active; 
d
 inactive/moderate/potent. 

 

3.3 Data preparation 

The potency values of the PKM2, GC and GSK datasets were converted into activity 

classes using the cutoff values of Table 2. Three classes (inactive, moderate and potent) were 

defined for the GC dataset in order to investigate the weighting ability of wPWR.  
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Structural information was encoded by extended connectivity binary fingerprints (ECFP) 

[17][18], a benchmark in virtual screening. ECFP of 1024 bits were generated setting the 

radius to four. The other parameters used to discriminate fragments were: atom type, 

connectivity (total), attached hydrogens, charge, aromaticity and bond order. 

3.4 Selection of reference structures 

For each dataset, 10% of the active compounds were selected as the reference structures. 

Two sets of reference structures were generated using the k-Means method, an iterative 

distance-based clustering technique that partitions n objects into a predefined number of 

clusters [19]. First, the n actives were partitioned into k clusters, with k equal to the number of 

reference structures (k = n*0.1), using the Hamming distance [20]. Then, the two sets of 

reference structures were taken: 1) Set1 collects one reference structure from each cluster in 

order to maximize their diversity; 2) Set2 gathers k reference structures from the biggest 

cluster to pursue high similarity among them, as opposed to Set1. 

3.5 Weighting schemes 

Three classes of activity were defined for the GC dataset, namely inactive, moderate and 

potent. The activity class was used to give different weights to the reference structures in 

order to understand the effect of the weighting scheme in wPWR. The hypothesis was that the 

weighting scheme could be used to place on the top of the final ranked list compounds more 

similar to the reference structures with higher weights. To test this, the weights unbalance 

between the moderate and potent class was increased as follows: 1:1 (unweighted), 1:2, 1:4 

and 1:8, respectively. 

3.6 Evaluation of virtual screening 

The ability of the fusion rules to place active compounds in the top positions of the final 

ranked list was compared by means of five metrics: (a) Boltzmann-Enhanced Discrimination 

of Receiver Operating Characteristic (BEDROC) [8], (b) Enrichment Factor (EF) [21], (c) 

Area Under the Accumulation Curve (AUAC) [8], (d) area under the Receiver Operating 

Characteristic (ROC) [22] and (e) Robust Initial Enhancement (RIE) [23]. The interested 

reader can find a thorough discussion in the work of Truchon and Bayly [8]. The discrete 

formulas are presented in Appendix A. The enrichment factor was calculated on the top 5% of 

the final ranked list; BEDROC and RIE were calculated with 10 ( )Log Nα= . 

It is often desired that the top ranked actives are also as different as possible, because this 

gives medicinal chemists additional possibilities. The ability to retrieve diverse active 
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structures is called scaffold hopping ability. We investigated this property for the analyzed 

fusion rules using the relative Murcko scaffold diversity (%), calculated on the actives in the 

top 100 positions of the final ranked list [24]. 

3.7 Software 

Dataset curation was carried out in KNIME v. 2.9.0 [25] by means of workflows designed 

by the authors. Dragon 7 [16] was used to check the validity of the SMILES strings and 

generate the extended connectivity fingerprints; the node RDKit Find Murcko Scaffolds v. 

2010/06/12 of KNIME was used to generate the Murcko scaffolds. K-Means clustering was 

carried out with the statistics toolbox of MATLAB v. R2012a [26]. All the calculations 

(application of fusion rules and evaluation of the virtual screening) were carried out in 

MATLAB v. R2012a [26] by means of a toolbox written by the authors.  

 

Table 3. Results on the ALDR and GSK TCAMS datasets; no weighting scheme 

applied to wPWR. The best and worst result within each metric is highlighted in 

bold face. 

Rule 
ALDR - Run1 ALDR - Run2 

AUAC ROC EF5% RIE BEDROC AUAC ROC EF5% RIE BEDROC 

rRKP 0.93 0.94 14.72 3.38 0.86 0.87 0.88 12.83 3.03 0.77 

rMIN 0.74 0.74 5.41 2.09 0.53 0.84 0.84 11.57 2.79 0.71 

sMIN 0.73 0.73 4.03 1.97 0.49 0.85 0.86 11.95 2.87 0.73 

rMAX 0.93 0.93 14.72 3.34 0.85 0.87 0.87 12.08 2.94 0.75 

sMAX 0.92 0.92 14.09 3.27 0.84 0.86 0.87 12.08 2.91 0.74 

rSUM 0.84 0.85 10.06 2.76 0.70 0.86 0.86 12.83 2.96 0.76 

sSUM 0.88 0.88 12.45 3.00 0.77 0.86 0.87 13.21 3.02 0.77 

rEUC 0.82 0.83 8.30 2.60 0.66 0.85 0.86 12.45 2.92 0.74 

sEUC 0.88 0.89 12.83 3.06 0.78 0.87 0.87 13.21 3.03 0.77 

rMED 0.84 0.84 10.94 2.79 0.71 0.86 0.86 13.08 2.96 0.75 

sMED 0.84 0.85 11.19 2.79 0.71 0.86 0.87 13.08 2.98 0.76 

wPWR 0.84 0.84 9.81 2.74 0.70 0.86 0.86 12.83 2.96 0.75 

Rule 
GSK TCAMS - Run1 GSK TCAMS - Run2 

AUAC ROC EF5% RIE BEDROC AUAC ROC EF5% RIE BEDROC 

rRKP 0.68 0.69 6.08 1.95 0.51 0.48 0.48 2.00 1.12 0.28 

rMIN 0.44 0.44 0.88 0.85 0.21 0.42 0.42 0.64 0.80 0.19 

sMIN 0.49 0.49 1.04 1.00 0.25 0.50 0.50 1.36 1.11 0.28 

rMAX 0.68 0.69 5.44 1.94 0.51 0.50 0.50 2.40 1.16 0.29 

sMAX 0.64 0.65 4.16 1.71 0.44 0.46 0.46 1.68 0.98 0.24 

rSUM 0.45 0.44 0.56 0.87 0.21 0.40 0.40 0.96 0.77 0.19 

sSUM 0.54 0.54 1.76 1.22 0.31 0.40 0.40 1.28 0.78 0.19 

rEUC 0.43 0.43 0.56 0.85 0.21 0.40 0.40 0.88 0.77 0.19 

sEUC 0.58 0.58 2.32 1.44 0.37 0.40 0.40 1.20 0.77 0.19 

rMED 0.44 0.43 0.80 0.86 0.21 0.39 0.38 0.64 0.74 0.18 

sMED 0.44 0.44 0.40 0.83 0.20 0.39 0.38 0.88 0.73 0.18 

wPWR 0.45 0.45 0.56 0.87 0.21 0.40 0.40 0.88 0.77 0.19 

-366-



 

4 Results and discussion 

Two runs were executed on each dataset with two different sets of reference structures as 

previously described. Run1 and Run2 are the results obtained with the reference structures in 

Set1 and Set2, respectively.  

Results are discussed by comparing the methods on calculations without weighting scheme 

for wPWR (unweighted cases). The effect of the weighting scheme is analyzed in section 4.2.   

4.1 Unweighted cases 

In the unweighted cases, the moderate and potent classes of the GC dataset were merged 

and considered as a single active class. The results on the four analyzed datasets are collated 

in Tables 3 and 4. 

The results highlighted that the pairs of metrics AUAC - ROC and RIE - BEDROC are 

highly correlated with each other (ρ = 1). Hence, we arbitrarily chose to consider only ROC, 

EF and BEDROC from now on. Tables 3 and 4 suggest that virtual screening is more 

effective on the ALDR dataset as indicated by the higher values of the metrics. By averaging 

the results of each metric for each run, it appears that Run1 gave better results in the GSK and 

PKM2 datasets. The situation is reversed for the ALDR and GC datasets. 

A Principal Component Analysis (PCA) [27] was carried out to analyze the results in a 

holistic way. PCA was calculated on the matrices collecting all the results evaluated by the 

ROC, EF and BEDROC separately (Figures 1a, 1b, 1c). In order to facilitate the 

interpretation, two theoretical rules were added: the Best rule always takes the best result 

among the ones provided by the analyzed combination rules; the Worst rule, on the other 

hand, always takes the worst result. This approach was already adopted to compare methods 

because it allows to stretch the results along the Best-Worst direction, thus enabling easy 

spotting of the methods with better/worse performance [28]. Moreover, the deviation from the 

Best-Worst direction gives an indication of the sensitivity of the methods to the particular 

dataset. In other words, methods close to the line connecting Best and Worst are robust. On 

the contrary, methods far away from this line are more sensitive to the dataset.  

Additionally, a PCA was conducted on the matrix were each combination rule was 

described by its average ROC, EF and BEDROC calculated across all computational runs of 

all datasets (Figure 1d).  
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Table 4. Results on the PKM2 and GC datasets; no weighting scheme applied to 

wPWR. The best and worst result within each metric is highlighted in bold face. 

Rule 

PKM2 - Run1 PKM2 - Run2 

AUAC ROC EF5

% 

RIE BEDROC AUAC ROC EF5

% 

RIE BEDROC 

rRKP 0.54 0.54 1.37 1.16 0.30 0.49 0.49 0.96 0.98 0.25 

rMIN 0.50 0.50 0.82 1.01 0.25 0.48 0.48 0.96 0.97 0.24 

sMIN 0.50 0.50 0.41 0.97 0.24 0.51 0.51 1.10 1.07 0.27 

rMAX 0.53 0.53 1.78 1.17 0.30 0.49 0.49 0.82 0.99 0.25 

sMAX 0.54 0.54 1.10 1.15 0.29 0.48 0.48 0.96 0.92 0.23 

rSUM 0.51 0.51 0.96 1.01 0.25 0.49 0.49 1.10 0.96 0.24 

sSUM 0.52 0.52 1.23 1.06 0.27 0.48 0.48 0.96 0.93 0.23 

rEUC 0.51 0.51 0.96 1.03 0.26 0.49 0.49 0.82 0.98 0.25 

sEUC 0.51 0.51 1.37 1.03 0.26 0.48 0.48 1.10 0.93 0.23 

rMED 0.50 0.50 0.82 1.00 0.25 0.49 0.49 1.23 0.98 0.25 

sMED 0.51 0.51 0.96 1.04 0.26 0.49 0.49 1.10 0.97 0.24 

wPWR 0.51 0.51 0.96 1.01 0.25 0.49 0.49 1.10 0.96 0.24 

Rule 

GC - Run1 GC - Run2 

AUAC ROC EF5

% 

RIE BEDROC AUAC ROC EF5

% 

RIE BEDROC 

rRKP 0.48 0.48 0.83 0.93 0.22 0.50 0.50 0.65 0.99 0.24 

rMIN 0.49 0.49 0.74 0.99 0.24 0.52 0.52 1.48 1.10 0.27 

sMIN 0.49 0.49 0.83 0.99 0.24 0.55 0.55 2.12 1.24 0.30 

rMAX 0.49 0.49 0.83 0.94 0.22 0.49 0.49 0.74 0.96 0.23 

sMAX 0.46 0.46 0.74 0.89 0.21 0.49 0.49 0.28 0.94 0.22 

rSUM 0.48 0.48 0.65 0.95 0.23 0.51 0.51 1.29 1.05 0.25 

sSUM 0.48 0.48 0.83 0.94 0.23 0.51 0.51 0.92 1.01 0.24 

rEUC 0.48 0.48 0.74 0.98 0.23 0.51 0.51 1.57 1.06 0.26 

sEUC 0.47 0.47 0.92 0.91 0.22 0.50 0.50 0.55 0.96 0.23 

rMED 0.49 0.49 0.55 0.98 0.24 0.51 0.51 1.11 1.06 0.26 

sMED 0.50 0.50 0.46 0.98 0.23 0.51 0.52 1.01 1.03 0.25 

wPWR 0.48 0.48 0.65 0.95 0.23 0.51 0.51 1.29 1.05 0.25 

 

The score plots agree in indicating rRKP and rMAX as the best performing rules, followed 

by sMAX, sEUC and sSUM, then all the remainders, with rMIN being usually the last one. 

This overall ranking is clearly confirmed by the first component of the PCA on the average 

ROC, EF and BEDROC values (Figure 1d). These considerations confirm the results of Chen 

et al., who indicated rRKP to be the best performing rule [7]. The explanation given by the 

authors was that the reciprocal rank closely approximates the probability that a structure in 

that position shows the same activity as the reference structure. wPWR is always located 

around the central area, indicating that it has mediocre performance. On the other hand, 

wPWR is always very close to the Best-Worst line, which suggests that its behavior is robust 

and not sensitive to the dataset. sMIN and sMAX, instead, seem very sensitive, as they lie far 

from the Best-Worst line in most cases. This can easily be verified by sorting the methods 

using the values reported in Tables 3 and 4. 
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Figure 1. Principal Component Analysis on all the results evaluated by different 

metrics: (a) ROC; (b) EF; (c) BEDROC; (d) mean values of ROC, EF, BEDROC 

together. 

In order to confirm the considerations drawn from the PCA, the performance of each rule 

was summarized by the mean and standard deviation calculated separately for each metric on 

all computational runs of Tables 3 and 4, i.e. average EF5% and standard deviation of EF5% on 

all runs, average RIE and so on. Moreover, the results of Tables 3 and 4 were used to rank the 

combination rules on each run based on each metric separately. From these rankings, the 

average, minimum and maximum rank and corresponding range were computed. For the sake 

of simplicity, we report only the information calculated for EF5% (Table 5). 

Table 5 confirms rRKP and rMAX to be the best performing rules, followed by sMAX, 

sEUC and sSUM, although none of the differences is significant at α = 0.05. The 

considerations regarding wPWR are corroborated, i.e. it has a mediocre performance and low 

sensitivity to the particular dataset. The latter aspect is highlighted by a low standard 

deviation and the lowest range of the ranks, together with rSUM. However, these two rules 

are the ones that reach the highest minimum rank, i.e. they have difficulties giving very good 

results. 
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Table 5.  Average statistics from the EF values on all datasets. 

Rule Avg. EF5%
a 

std. dev. EF5%
b 

Avg. Rank
c 

Min. Rank
d 

Max. Rank
e 

Range Rank
f 

rRKP 4.929 5.754 4.4 1.0 10.0 9.0 

rMIN 2.812 3.881 8.8 3.0 12.0 9.0 

sMIN 2.854 3.842 6.7 1.0 12.0 11.0 

rMAX 4.850 5.537 4.9 1.0 11.5 10.5 

sMAX 4.384 5.521 6.4 3.0 12.0 9.0 

rSUM 3.550 4.935 7.1 4.0 10.0 6.0 

sSUM 4.080 5.412 5.1 1.5 8.5 7.0 

rEUC 3.285 4.525 8.1 2.0 11.5 9.5 

sEUC 4.187 5.475 4.3 1.0 11.0 10.0 

rMED 3.647 5.199 7.3 1.0 11.5 10.5 

sMED 3.636 5.278 7.6 3.5 12.0 8.5 

wPWR 3.509 4.894 7.4 4.0 10.0 6.0 

a 
average EF5% calculated on all runs

; b 
standard deviation of EF5% calculated on all runs; 

c 
average 

rank obtained by ranking the rules in each run on EF5%;
 d 

minimum rank obtained by ranking the rules 

in each run on EF5%; 
e 
maximum rank obtained by ranking the rules in each run on EF5%; 

f 
 difference 

between minimum and maximum rank by ranking the rules in each run on EF5%. 

 

We further analyzed the combination rules for their “early recognition” ability, i.e. their 

capability to place the actives in the very top positions of the final ranked list. Early 

recognition is important because in practice only a small percentage of all the compounds, 

selected from the top of the final ranked list, will be experimentally tested. To this end, we 

generated accumulation curves considering the top 1000 and top 100 ranked compounds in 

the list. We report the curves for the two runs were wPWR achieved its best rank (GC Run2) 

and worst rank (GC Run1) based on the ROC and AUAC metrics (Figure 2). Figure 2a and 2b 

indicate wPWR to have an overall intermediate behavior. A closer look at the top 100 

compounds (Figure 2b) shows that sMAX, sMIN and sEUC are the rules that give the best 

“early recognition”. sSUM and sMED do not retrieve any active compound in the top 100, but 

their overall AUAC and ROC values are greater than those of wPWR. This reflects the 

weakness of AUAC and ROC, i.e. their lack of consideration of the “early recognition” 

problem. Figure 2c and 2d report the accumulation curves for GC Run2. According to the 

overall AUAC and ROC, this is the case where wPWR performed the best compared to the 

other methods, even though its tied rank is 6.5, indicating average performance. Nevertheless, 

the accumulation curve of the top 100 compounds (Figure 2d) clearly shows that wPWR has 

the best curve up to the 25th compound in the list and it is overtaken only from position 38. 

From this point, the sMIN and rMIN rules have much nicer curves than all the other rules. 

Interestingly, in this run the rule rRKP, which overall achieves the best performance, does not 

retrieve any active in the top 100 compounds: the first active is ranked 188. 
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Figure 2. Accumulation curves: (a) GC Run1, top 1000 compounds; (b) GC Run1 

top 100 compounds; (c) GC Run2, top 1000 compounds; (d) GC Run2 top 100 

compounds. 

To evaluate the scaffold hopping ability of the investigated rules, we calculated the relative 

scaffold diversity (%) of the actives in the top 100 list using the Murcko scaffolds. To 

visualize the results, we ranked the rules within each computational run and then produced a 

heat map from the ranks (Figure 3). rRKP, rMAX and sMAX appear to achieve the overall 

highest scaffold diversity (darker cells). Again wPWR shows mediocre performance and a 

robust behaviour across the different runs, as indicated by the similar colours. The behaviour 

of other rules, e.g. rMIN and sMIN, swings much more, as indicated by the fact that on the 

GC Run2 they provided the best and second best scaffold diversity, but other times they gave 

the worst scaffold diversity (ALDR Run1 and Run2, PKM2 Run1 and Run2). 

A last remark should be made regarding the computational time of wPWR, which is 

significantly larger than that of the other rules. The step that takes most of the time is the 

compilation of the matrix of pairwise comparison (T), followed by the calculation of the 

eigenvectors. Both steps present also potential memory problems if 10
5
-10

6
 compounds are 

present in the database. In this regard, Chen et al. concluded that best results are obtained 

when only a small percentage of such big databases are submitted to the fusion rules [7]. This 
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would come at hand for wPWR because it would allow to generate smaller T matrices, thus 

saving time and memory. 

 

 

Figure 3. Heat map showing the rank of the fusion rules regarding scaffold 

diversity within each computational run. 

 

4.2 Effect of weighting on wPWR 

The usefulness of the weighting scheme in wPWR was investigated by defining three 

classes of activity (inactive, moderate and potent) from the potency values of the GC dataset. 

In general, one can work with only two classes of activity (inactive/active), but use additional 

criteria (e.g. economical cost, ease of synthesis, patents, etc.) to weigh the reference structures 

accordingly. 

To analyze the results we generated accumulation curves for the top 1000 and top 100 

compounds (Figure 4). Accumulation curves were plotted by considering both moderate and 

potent compounds (Figure 4a and 4b) and only potent ones (Figure 4c). Figure 4a seems to 

indicate that there is no net effect provided by the weighting scheme on this dataset. Figure 

4b, which addresses the “early recognition” ability by zooming on the top 100 compounds, 

shows that the curves of weights 1:1 and 1:2 seem to have a better start and are taken over by 

the 1:4 curve at position 89. The 1:8 curve is always below the others, which may indicate a 

too unbalanced weighting scheme. Figure 4c shows the accumulation curve only for the 

potent compounds. It is clear that the curves are not good, since the first potent is found at 
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position 190, 355, 420, 432 with the weighting scheme 1:8, 1:1, 1:4 and 1:2, respectively. A 

partial justification of the poor “early recognition” can be the very low number of potent 

compounds, 34 out of 10477 (Table 2). Again, no net effect of the weighting scheme emerges; 

the most apparent point is though that the 1:8 scheme places the first potent more than 150 

positions ahead than the other schemes. The accumulation curve for the top 100 is not shown 

for obvious reasons. 

 

 

Figure 4. Accumulation curves for wPWR with different weighting schemes: (a) 

moderate and potent top 1000 compounds; (b) moderate and potent top 100 

compounds; (c) potent top 1000 compounds. 
 

5 Conclusions 

In this pilot study, we applied the weighted Power-Weakness Ratio (wPWR) algorithm to 

four publicly available datasets to have indications of its potential as a combination rule for 

group fusion in virtual screening. We compared wPWR with six parameter-free rules by 

means of five metrics for virtual screening. 

The results highlighted that rRKP is in general the best performing rule, thus confirming 

the conclusions of Chen et al., even though it does not always outperform the other rules. 

wPWR achieved mediocre results on the analyzed datasets. However, one characteristic of 

wPWR that emerged in a number of parts of the analysis (PCA, ranks on EF5% and on 

scaffold diversity) is its robustness, i.e. the ability to provide results that vary little with the 

dataset. On the contrary, the other rules seem more sensitive to the dataset and can behave 

either well or bad. The robustness of wPWR is an interesting feature for prospective virtual 

screening where the activity of the compounds in the database is not known and experimental 

testing is needed. Indeed, the use of wPWR would most likely not lead to the best results, but 

would also guarantee that the worst ones are avoided, which could instead happen also with a 

more sensitive well behaving rule.    
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The investigation of the weighting scheme suggested no net effect and difficulty in 

retrieving potent compounds (which were only 34 out of 10477). The investigation on the 

weighting scheme was carried out only on one dataset, hence more studies are needed to have 

better indications in regards to the usefulness of the weights. 

Appendix A 

The discrete formulas of the five metrics used to evaluate the performance of the virtual 

screening are reported here. A thorough analysis and description can be found in Truchon and 

Bayly [8]. 

The following notation is used: N is the total number of compounds in the database and n 

is the number of actives. Ra and Ri are the ratio of actives (n/N) and inactives ((N-n)/N), 

respectively; ri is the rank of the i-th compound in the final list, sorted according to the output 

of the combination rules.  

The Area Under the Accumulation Curve (AUAC) was calculated according to Equation 

A1.  

 (A1)  

where the last term is a correction for the discrete formula. 

The area under the Receiver Operating Characteristic (ROC) was calculated according to 

its relationship with AUAC derived by Truchon and Bayly (Equation A2): 

2

a

i i

RAUAC
ROC

R R
= −  (A2)  

The Enrichment Factor (EF) was computed as: 

 (A3)  

where χ is the top percentage of ranked list that is evaluated and iδ equals one if the i-th active 

is included in the considered top positions and zero otherwise. 

The Robust Initial Enhancement (RIE) was calculated according to the following equation: 

 
(A4)  

where α is a smoothing factor and 1/α has a meaning similar to χ in EF. In this study α was 

defined as: 

10 ( )Log Nα=  (A5)  

The Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic 

(BEDROC) was calculated as a scaled RIE, as follows: 
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min

max min

RIE RIE
BEDROC

RIE RIE

−
=

−
 (A6)  

where RIEmin and RIEmax are: 

( )
min

1

1

aR

a

e
RIE

R e

α

α

−
=

−
 (A7)  

( )
max

1
I

1

aR

a

e
R E

R e

−α

−α

−
=

−
 (A8) 

where α is the smoothing factor. 
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