
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gdea20

Download by: [Universita' Milano Bicocca] Date: 24 May 2016, At: 07:09

Journal of Difference Equations and Applications

ISSN: 1023-6198 (Print) 1563-5120 (Online) Journal homepage: http://www.tandfonline.com/loi/gdea20

Two different routes to complex dynamics in an
heterogeneous triopoly game

Ahmad Naimzada & Fabio Tramontana

To cite this article: Ahmad Naimzada & Fabio Tramontana (2015) Two different routes to
complex dynamics in an heterogeneous triopoly game, Journal of Difference Equations and
Applications, 21:7, 553-563, DOI: 10.1080/10236198.2015.1040403

To link to this article:  http://dx.doi.org/10.1080/10236198.2015.1040403

Published online: 21 May 2015.

Submit your article to this journal 

Article views: 48

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=gdea20
http://www.tandfonline.com/loi/gdea20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10236198.2015.1040403
http://dx.doi.org/10.1080/10236198.2015.1040403
http://www.tandfonline.com/action/authorSubmission?journalCode=gdea20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gdea20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10236198.2015.1040403
http://www.tandfonline.com/doi/mlt/10.1080/10236198.2015.1040403
http://crossmark.crossref.org/dialog/?doi=10.1080/10236198.2015.1040403&domain=pdf&date_stamp=2015-05-21
http://crossmark.crossref.org/dialog/?doi=10.1080/10236198.2015.1040403&domain=pdf&date_stamp=2015-05-21
http://www.tandfonline.com/doi/citedby/10.1080/10236198.2015.1040403#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/10236198.2015.1040403#tabModule


Two different routes to complex dynamics in an heterogeneous triopoly
game
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We study a triopoly game with heterogeneous players. The market is characterized by a
nonlinear (isoelastic) demand function and three competitors. The main novelty is the
double route to complex dynamics that we find and is quite rare in heterogeneous
triopoly models. We show that the two routes have important implications for the
economic interpretation of the dynamics emerging when the Cournot–Nash
equilibrium becomes locally unstable. Moreover the model displays multistability of
different attractors, requiring a global analysis of the dynamical system.
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players; global analysis
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1. Introduction

Oligopoly is the market structure in which the consequences of the bounded rationality of

economic agents are more evident. In this kind of markets a higher level of rationality is

required in order to make the best choice. In fact, firms do not only have to know the

shape of the demand function, but they also have to be able to foresee the output choices

of the competitors, because they are in a situation of strategic interdependence caused by

the influence of each single firm on the market price. In the literature, many papers are

devoted to the development and the analysis of the simplest oligopolistic case: duopoly.

Both homogeneous and heterogeneous firms cases are considered1 (see

[2,7,9,11,17,20,21,26] for a few papers on homogeneous duopolies, [10] for a recent

survey and [4,5,8,24] for heterogeneous duopolies). The authors of these papers

underscore the complicated (and complex) dynamics that may emerge whenever firms

have some degree of bounded rationality. A more complicated case is the case of

triopoly. Differently with respect to duopolies, the case with three firms is not present in

the literature as well. One of the main reasons behind this low number of triopoly papers

lies on the complexity of the models describing the dynamics of the quantities that must

be at least three-dimensional. Only under some particular restriction it is still possible to

analytically study this kind of models. For example, it is almost always possible to deal

with the equations governing the dynamics of homogeneous triopolies (see [1,3,6,22,23]

for some examples), at least for what concerns the local stability of Nash equilibria

(NEs). More difficult to study, but more realistic, is the case with three heterogeneous

firms. In such a case the study must be necessarily performed by instruments both
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analytic and numeric. The development of quite powerful computers permits now to be

able to handle this case (see [14–16]).

To the best of our knowledge, the heterogeneous triopoly game developed by [25] is

the only one displaying a route to complex dynamics different from the cascade of period-

doubling bifurcations scenario. Such a case only produces realistic disequilibrium

dynamics for the combinations of parameters for which a chaotic attractor is reached.

In fact, it appears quite unrealistic in the long period the persistence of periodic dynamics.

Even if the firms are assumed to be boundedly rational, it seems reasonable that they are

able to recognize a periodic path, modifying as a consequence their decisional process.

In heterogeneous duopoly games [4,8,24] the possibility that the NE loses stability via flip

bifurcation is always accompanied with the possibility to observe a Neimark–Sacker (NS)

bifurcation, for some values of the parameters. This is, in our opinion, a quite realistic

scenario in which, after the bifurcation, orbits display a quasiperiodic motion, that require

a higher degree of rationality for the firms in order to be recognized. In [8,24] the double

route to complex dynamics seems to be somehow related to the assumption of isoelastic

demand function. In the present model we analyse an heterogeneous triopoly model taking

[15] as a benchmark. We adopt the following alternative assumptions:

. We adopt a microfounded isoelastic demand function (see [21]) and linear costs,

instead of a linear demand function and quadratic costs.

. Weassume a different decisionalmechanism for one of the three players: instead of the

adaptive player we introduce a firm that approximates the demand function linearly

around the last realized couple of quantity and market price (see [12,18–20,27]).

We show that these assumptions permit to obtain the double route to chaos already founded

in some heterogeneous duopoly and in [25], where the demand function is again isoelastic.

Our work is also related to the triopoly game studied by [25], that shares with our model the

demand and cost functions, but differs with respect to the decisional mechanism adopted by

oligopolists. This is quite important, because we conjecture that the emergence of the two

routes to chaotic dynamics in heterogeneous oligopolies is not related to the number of

players or their decisional mechanisms, but to the particular form of nonlinearity of the

demand function (i.e. isoelastic). Moreover, the main novelty of our triopoly game with

respect to the other heterogeneous triopoly games already existing in the literature consists

in the fact that we numerically found multistability of different coexistent attractors.

We perform a global analysis through numerical simulations in order to identify the basins

of attraction of the attractors, that is the initial conditions leading to one attractor or the

other. The paper is organized as follows: in Section 2 we introduce the model whose NE is

obtained in Section 3 together with its local stability. Section 4 is devoted to the close

examination of the flip bifurcation of the NE. Section 5 concerns the NS bifurcation of the

NE, while in Section 6we show the ambiguous role of themarginal costs.Multistability and

some numerical global analysis are given in Section 7. Section 8 concludes.

2. The model

Let us consider a market populated by three firms producing homogeneous goods. The

demand function is isoelastic, implying the hypothesis of Cobb–Douglas utility function

of the consumers (see [21]):

p ¼ f ðQÞ ¼ 1

Q
¼ 1

q1 þ q2 þ q3
; ð1Þ
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where Q is the total supply and qi, i ¼ 1; 2; 3 represents the level of production of the ith

triopolist. The cost function is linear:

CiðqiÞ ¼ ciqi; ð2Þ
where ci for i ¼ 1 to 3 are the constant marginal costs.

The first player does not know the shape of the demand function and at each time

period t it builds a conjectured demand function through the local knowledge of the real

demand function (1). In particular, the firm observes the current market price pðtÞ and the

corresponding total supplied quantityQðtÞ. By using market experiments, the player is able

to linearly approximate the demand function around the point ðQðtÞ; pðtÞÞ. In other words,

it obtains the slope of the demand function in that point and, in the absence of other

information, it conjectures the linearity of the demand function that must pass through the

point corresponding to the current market price and quantity (see [18,19,25] for recent

applications of this mechanism in a duopolistic heterogeneous framework and [12,27] for

applications in other contexts). Given this assumption, the first player defines the

conjectured demand for the following period t þ 1:

pe1ðt þ 1Þ ¼ pðtÞ þ f 21ðQðtÞÞðQeðt þ 1Þ2 QðtÞÞ; ð3Þ
where f 21ðQðtÞÞ is the inverse demand function and Qeðt þ 1Þ represents the aggregate

conjectured production for time t þ 1. By using the demand function we obtain

pe1ðt þ 1Þ ¼ f ðQðtÞÞ þ f 21ðQðtÞÞðq1ðt þ 1Þ þ qe2ðt þ 1Þ þ qe3ðt þ 1Þ2 QðtÞÞ: ð4Þ

Concerning the expectations about the rivals’ outputs, we use the Cournotian hypothesis of

static expectations, then the expected quantities for the next period are the same as those

supplied in the current one. By using this assumption in (4) we have

pe1ðt þ 1Þ ¼ f ðQðtÞÞ þ f 21ðQðtÞÞðq1ðt þ 1Þ2 q1ðtÞÞ: ð5Þ
The choice of q1ðt þ 1Þ is made in order to maximize the expected profit:

q1ðt þ 1Þ ¼ argmax
q1ðtþ1Þ

pe
1ðt þ 1Þ ¼ argmax

q1ðtþ1Þ
pe1ðt þ 1Þq1ðt þ 1Þ2 c1q1ðt þ 1Þ� �

: ð6Þ

The first-order condition is the following:

›pe
1ðt þ 1Þ

›q1ðt þ 1Þ ¼ f ðQðtÞÞ þ 2q1ðt þ 1Þf 21ðQðtÞÞ2 q1ðtÞf 21ðQðtÞÞ2 c1 ¼ 0: ð7Þ

It is easy to verify the second-order condition. So, the evolution of the output of the first

player is given the following first-order nonlinear difference equation:

q1ðt þ 1Þ ¼ q1ðtÞ
2

þ c1 2 f ðQðtÞÞ
2f 21ðQðtÞÞ ð8Þ

that is

q1ðt þ 1Þ ¼ 2q1ðtÞ þ q2ðtÞ þ q3ðtÞ2 c1ðq1ðtÞ þ q2ðtÞ þ q3ðtÞÞ2
2

: ð9Þ
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The second player knows the shape of the demand function but it has to conjecture the

choices of the other two players. We assume that it also is a naive player, that is it uses

static expectations like the first player and then it maximizes the expected profit given by

q2ðt þ 1Þ ¼ argmax
q2ðtþ1Þ

pe
2ðt þ 1Þ ¼ argmax

q2ðtþ1Þ
pe2ðt þ 1Þq2ðt þ 1Þ2 c2q2ðt þ 1Þ� �

: ð10Þ

By using the demand function (1) and static expectations we obtain

q2ðt þ 1Þ ¼ argmax
q2ðtþ1Þ

pe
2ðt þ 1Þ ¼ argmax

q2ðtþ1Þ
q2ðt þ 1Þ

q1ðtÞ þ q2ðt þ 1Þ þ q3ðtÞ2 c2q2ðt þ 1Þ
� �

ð11Þ

that permits to derive the dynamic equation:

q2ðt þ 1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ðtÞ þ q3ðtÞ

c2

r
2 q1ðtÞ2 q3ðtÞ: ð12Þ

The third player adopts the so-called myopic adjustment mechanism (see [13]), that is

q3ðt þ 1Þ ¼ q3ðtÞ þ aq3ðtÞf3ðQðtÞÞ; ð13Þ
where f3ðQðtÞÞ is the marginal profit of the third triopolist, that is

f3ðQðtÞÞ ¼ f3ðq1ðtÞ þ q2ðtÞ þ q3ðtÞÞ ¼ ›p3ðq1ðtÞ þ q2ðtÞ þ q3ðtÞÞ
›q3ðtÞ

¼ q1ðtÞ þ q2ðtÞ
ðq1ðtÞ þ q2ðtÞ þ q3ðtÞÞ2

2 c3: ð14Þ

In other words, the third firm increases/decreases its output according to the information

given by the marginal profit of the last period. The positive parameter a represents the

speed of adjustment. By substituting (14) in (13) we finally obtain the dynamic equation:

q3ðt þ 1Þ ¼ q3ðtÞ þ aq3ðtÞ þ q1ðtÞ þ q2ðtÞ
ðq1ðtÞ þ q2ðtÞ þ q3ðtÞÞ2

2 c3

� �
: ð15Þ

If we use x; y; z instead of q1; q2; q3 in (9), (12) and (15) we have that the dynamics of the

firms’ outputs are given by the following discrete time dynamical system:

ðx0; y0; z0Þ ¼ Tðx; y; zÞ :

x0 ¼ 2xþyþz2c1ðxþyþzÞ2
2

;

y0 ¼
ffiffiffiffiffiffi
xþz
c2

q
2 x2 z;

z0 ¼ zþ az 2c3 þ xþy

ðxþyþzÞ2
h i

;

8>>>>><
>>>>>:

ð16Þ

where 0 denotes the unit-time advancement operator.

3. NE stability

In order to analyse the relationship between the stationary state of the dynamical system

(16) and the NE, we must seek the equilibrium point as the solution of the following
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algebraic system:

y *þz *2c1ðx *þy *þz *Þ2
2

¼ 0;ffiffiffiffiffiffiffiffiffiffi
x *þz *

c2

q
2 x * 2 y* 2 z* ¼ 0;

z* 2c3 þ x *þy *

ðx *þy *þz *Þ2
h i

¼ 0;

8>>>>><
>>>>>:

ð17Þ

which is obtained by setting x0 ¼ x ¼ x *, y0 ¼ y ¼ y* and z0 ¼ z ¼ z* in (16). The

algebraic system (17) is solved by the origin O and by the point

E :
2ðc2 þ c3 2 c1Þ
ðc1 þ c2 þ c3Þ2

;
2ðc1 þ c3 2 c2Þ
ðc1 þ c2 þ c3Þ2

;
2ðc1 þ c2 2 c3Þ
ðc1 þ c2 þ c3Þ2

� �
: ð18Þ

We do not consider the origin O because our map is not defined in such a point. It is

possible to prove (see [12,20]) that E is the only other stationary state of the system. It is

the NE of the static game. We note that such equilibrium is the same equilibrium obtained

by [22] in an equivalent triopoly setting. The Jacobian matrix of the map T is the

following:

Jðx; y; zÞ :

12 c1ðxþ yþ zÞ 1
2
12 2c1ðxþ yþ zÞ� �

1
2
12 2c1ðxþ yþ zÞ� �

xþz
c2

	 
21=2
1
2c2

2 1 0 xþz
c2

	 
21=2
1
2c2

2 1

az z2x2y

ðxþyþzÞ3
h i

az z2x2y

ðxþyþzÞ3
h i

12 ac3 þ aðxþ yÞ xþy2z

ðxþyþzÞ3
h i

2
666664

3
777775
:

In order to analyse the local stability of the NE, you need to evaluate the Jacobian

matrix at the NE and calculate the eigenvalues. Unfortunately the expressions defining the

eigenvalues are so complicated that nothing can be said analytically. We can still say

something through numerical simulations. After several numerical computations, we have

found that a generic two-dimensional bifurcation diagram in the ða; c3Þ parameters’ plane

is in almost all the cases qualitatively similar to the one represented in Figure 1.

Figure 1 is representative of the ways by which the NE becomes unstable. We can see a

double route to instability: by period doubling or by NS bifurcation.

4. Flip bifurcation

The first one is via period-doubling bifurcation (also called flip bifurcation). This kind of

local bifurcation is not new in the literature on both homogeneous and heterogeneous

triopolies. It occurs when moving the value of a parameter, one of the eigenvalues of the

Jacobian matrix calculated at the NE becomes lower than21, while the other two are still

lower than 1 in absolute value. A 2-cycle appears and it attracts all the orbits previously

attracted by the fixed point. The bifurcation diagram Figure 2 shows that this is what

happens by increasing the value of the speed of reaction parameter a, keeping fixed the

marginal costs at c1 ¼ 0:5, c2 ¼ 0:55 and c3 ¼ 0:15 (the direction A in Figure 1).

The bifurcation diagram also shows that if we keep increasing the value of a a cascade

of period doubling bifurcations occurs (see the bifurcation diagram in Figure 2(a)). This is
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a typical route to chaos, as it is confirmed but the maximal Lyapunov exponent, in Figure 2

(b). A chaotic attractor in the three-dimensional phase space is shown in Figure 3(b).

5. NS bifurcation

Another route to complicated dynamics occurs whenever the NE undergoes a NS

bifurcation. This happens when increasing the value of a the system enters in the yellow

region of the parameters plane as shown in Figure 1. Figure 4(a) shows the locally

attractive closed invariant curve that is created after the local bifurcation. Differently from

the flip bifurcation case, now the dynamics are quasi-periodic. A further increase in the

value of a may lead to chaotic dynamics (as evidenced by the numerical computation of

the maximal Lyapunov exponent in Figure 4(b),(c)). The annular chaotic attractor is

shown in Figure 5(b). The double route to chaos (via NS and via flip bifurcation) is new

with respect to [15] and also with respect to the other triopoly games, with the only

exception of [25]. Our model and the [25] model share the isoelasticity of the market

demand function, so we can conjecture that it is somehow related to the emergence in a

couple of these scenarios. This double route to chaos is an important feature from an

economic point of view, because it means that firms may face both periodic and quasi-

Figure 1. (Colour online) Two-dimensional bifurcation diagram in the ðc3;aÞ parameters plane.
The value of c1 is fixed to 0.5, while c2 ¼ 0:55. In the blue region the NE is locally stable. Moving
the parameter a along the direction A a couple of complex and conjugated eigenvalues becomes
higher than 1 in modulus. Along the direction B, the value of one eigenvalue decreases until it
becomes lower than 21 entering in the yellow region. Finally, direction C corresponds to a more
complicated path altering aperiodic trajectories, convergence to the NE, periodic motion and
convergence to the NE again.

Figure 2. In (a) one-dimensional bifurcation diagram with respect to the parameter a. The fixed
parameters are c1 ¼ 0:5, c2 ¼ 0:55 and c3 ¼ 0:6. In (b) the corresponding maximum Lyapunov
exponent, displaying a chaotic behaviour for high values of a.
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periodic dynamics. While the former can be recognized by a rational enough firm, the

latter are very hard to detect by looking at the time series of the quantities. This means that

immediately after the NS bifurcation the system displays complicated dynamics (with the

exception of some periodicity windows), differently from what happens after the period

doubling bifurcation in which a periodic attractor appears.

6. The role of the marginal costs

The two-dimensional bifurcation diagram shown in Figure 1 permits us to also say

something about the role played by the marginal costs. We can see that this role is

ambiguous, especially for high values of the speed of adjustment. In fact, it is possible to

have a situation in which for low values of the marginal cost the NE is unstable and the

orbits converge to a chaotic attractor or a closed invariant curve. For intermediate values

Figure 3. In (a) a 2-cycle obtained with a ¼ 6:5. The chaotic attractor in (b) is obtained by using
a ¼ 8. The values of the variables on the three axes vary between 0 and 0.5.

Figure 4. In (a) one-dimensional bifurcation diagram with respect to the parameter a. The fixed
parameters are c1 ¼ 0:5, c2 ¼ 0:55 and c3 ¼ 0:1. In (b) the corresponding maximum Lyapunov
exponent, displaying a chaotic behaviour for high values of a with a magnification of the relevant
region in (c).
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of a the NE is locally stable but increasing again the marginal cost it loses stability via flip

bifurcation and then, with higher values of a the NE becomes locally stable again (see the

bifurcation diagram in Figure 6 that corresponds to the direction C in Figure 1).

Note that qualitatively nothing would change in Figure 1 by using c1 or c2 instead of c3.

7. Global analysis

In this section we present the main novelty of this model with respect to the other

heterogeneous triopolies already studied in the literature. Until now we limited our

analysis to the local stability of the NE. We have also shown that the positivity of the NE

implies that the other fixed points are locally unstable. This is also what happens in the

other triopolies studied so far. The NE, or the attractor originating from its loss of stability,

was the unique outcome of feasible trajectories (i.e. excluding divergent trajectories). This

is not what happens in our triopoly game. In fact, we can find sets of parameters leading to

a bistability of different attractors. Figure 7(b) shows the locally stable NE coexisting with

a locally stable 3-cycle whose points are located around it. From the bifurcation diagram

of Figure 7(a) we can see that the 3-cycle becomes unstable by increasing the value of a,
giving rise to higher periodicity cycles, and even to a chaotic attractor. Nevertheless the

NE still remains locally stable.

This is not only a new interesting feature from a mathematical point of view.

Coexistence has many economic consequences. The two coexisting attractors are

characterized by quite different levels of variance of the quantities produced by the

triopolists. In one case what will happen in the future is much more predictable with

Figure 5. In (a) an attracting closed invariant curve obtained with a ¼ 4:476. The annular chaotic
attractor in (b) is obtained by using a ¼ 5:57. The values of the variables on the three axes vary
between 0 and 0.5.

Figure 6. One-dimensional bifurcation diagram obtained by varying the marginal cost c3 and
keeping fixed the other parameters at the values c1 ¼ 0:5, c2 ¼ 0:55 and a ¼ 5:5.
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respect to the other case. Initial conditions assume a crucial importance in determining to

which attractor the system will asymptotically converge. So, besides the local analysis of

the NE, we need to perform some kind of global analysis. In Figure 8 we can see three

different sections of the basins of attractions in a situation of coexistence between the

locally stable NE (whose basin of attraction is made up of blue points) and a locally stable

3-cycle (whose basin of attraction is in red). The border of the basins is made up of the

stable manifolds of the unstable 3-cycle born through fold bifurcation together with the

stable 3-cycle, so the points of this unstable cycle are located in the border. The structure

of the basins appears quite complicated and this is probably a consequence of the non-

invertibility of the map (16).

The shapes of the basins of attractions when the NE coexists with a chaotic attractor

(Figure 9) are complicated as well. This permits us to conclude that this heterogeneous

triopoly is characterized by a higher degree of unpredictability with respect to other

similar models present in the literature.

Figure 7. In (a) one-dimensional bifurcation diagram with c1 ¼ 0:5, c2 ¼ 0:55 and c3 ¼ 0:2. a
varies between 5.2 and 6.2. The sudden jump from the fixed point to a 3-cycle is caused by the initial
conditions that enter the basin of attraction of the 3-cycle. In (b) the NE coexisting with a locally
stable 3-cycle at a ¼ 5:66. The values of the variables on the three axes vary between 0 and 0.5.

Figure 8. (Colour online) Four different sections of the basins of attraction of the coexisting NE
(basin in blue) and 3-cycle (basin in red). In grey is the basin of attraction of diverging trajectories.
The values of the variables on the x and y axes vary between 0 and 0.5, while those on the z-axis vary
between 0 and 2.
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8. Conclusions

A triopoly game with heterogeneous players is analysed in this paper. Nonlinearities are

present both in the demand function and in the decisional mechanism adopted by the firms.

We have numerically proved the existence of two different routes to complex dynamics:

through a flip bifurcation and through NS bifurcation of the NE. Another important feature

of this model is the arising, for some parameters’ constellation, of multistability between

two different attractors. We have numerically performed some global analyses which

show how complicated can be the basins of attractions.
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Note

1. In this branch of the literature the terms homogeneous and heterogeneous refer to the decisional
mechanism adopted by the firms.
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