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1 Introduction

Systems of massless higher spin fields which are transformed under a reducible representation of
the Lorentz group have attracted a great deal of attention (see e.g. [IH23]), since, as was shown
30 years ago [1L2], they arise in a tensionless limit of string theory in a flat background and may,
therefore, shed light on a possible relation between string theory and higher spin gauge theory. The
simplest of these systems consists of three symmetric tensor fields of rank s, s — 1 and s — 2. This
motivated Francia and Sagnotti [6] to call them higher-spin triplets. The simplest massless bosonic
triplets form reducible multiplets of physical fields with even or odd spins (or helicities) running,
respectively, from 0 or 1 to s, while the fermionic triplets consist of physical fields with half-integer
spins running from 1/2 to s . More complicated systems involve tensor fields of mixed symmetry.
Since 1986 higher-spin triplets have been studied from different perspectives (see e.g. [IH27]). For
a review and references on difference aspects of higher spin theory see e.g. [12128-38]).

Fermionic triplets of tensor-spinor fields were introduced in [3] and independently in [6]. Their
origin from a tensionless limit of a Ramond-Neveu-Schwarz string was studied in detail in [7]. The
Lagrangian formulations (i.e. the actions and equations of motion) for bosonic triplets are known
in flat and anti de Sitter spaces, both in metric-like and frame-like formulations of the higher spin
fields. For the fermionic triplets, however, the metric-like actions and equations of motion have
been constructed only in flat space-time, while the generalization of this construction to the anti-de
Sitter spaces encountered obstacles [7,[10] and have not been fulfilled by now. On the other hand, in
the frame-like formalism the Lagrangian description of reducible fermionic higher-spin systems in
AdS was constructed in [13] and it was outlined therein that the metric-like Lagrangian formulation
of the fermionic triplets in AdS can be obtained from the frame-like one by a certain redefinition
of fields.

The purpose of this note is to accomplish this goal and to derive an explicit form of the metric-
like action, equations of motion and local symmetries of the fermionic triplets in AdS from their
frame-like counterparts. In passing we will clarify a subtlety regarding a physical spin-1/2 field
one should deal with when relating the reducible fermionic frame-like higher-spin system to the
metric-like fermionic triplet. A motivation for presenting these results is that having got the gauge
invariant metric-like Lagrangian formulation of the fermionic (and bosonic) higher-spin triplets in
AdS one can perform its BRST analysis (already carried out in the bosonic case in [7]) with the
aim of understanding whether and how these systems may be obtained by taking a tensionless limit
of a String Theory in an AdS background.

Our main notation and conventions are given in the Appendix.

2 Fermionic triplets in flat space-time

2.1 Metric-like formulation

In the metric-like formulation in D-dimensional space-time a fermionic higher-spin triplet consists
of three symmetric tensor-spinor fields WA #7 ybr# =1 and Mo'"*"~2 where u; =0,1,...,D —1
are D-dimensional space-time indices, « is a spinor index which we will usually skip, and r = s — %

'The conventional notion of spin and helicity are associated with irreducible representations of the four-dimensional
Poincaré group. In what follows we will formally use this terminology also in higher-dimensional theories associat-
ing the “spin” with the rank of symmetric tensor-spinors which transform under irreducible representations of the
SO(1, D — 1) Lorentz group.



with s denoting the highest spin in the spectrum of the triplet fields. In flat space-time they satisfy
the following equations of motion [6]

Jura--pr g Z'a(mxuz---ur) =0,
O, WV Hr—1 _ 8(#1 )\Mz---urﬂ) + Z’)gxm---urﬂ =0, (2'1)
ﬁ)\ﬂ/l---ﬂ/r72 + Z'al,XV’“"'“T*Z — 0’
which are invariant under the gauge transformations
SpHtpr — Hlm Auz---ur),
GyH b=t = AP 1 (2.2)
5)\/>‘1~~~/Jr'72 — 8VAV;U'1~~~/JT'72.

The field equations (Z1]) follow from the flat-space action which we present in the form similar to
that given in [6]

o (r— o v p(r— IV u(r— i = r
S :/dD‘T |:ZXM( 1)HX;,L(T—1) +XM(T’—1)8V\I/ uir=1) + 0, ¥ a 1)Xu(7’—1) + ;\II“( )ﬁ\PM(T’)

+(r—1) (_2‘5\“(’"_2)ﬁ)\u(r_2) + 8V)ZVM(T_2))\M(T_2) + 5\”(,,_2)8,,{”(7"2)” , (2.3)

where, for brevity, the collective index p(k) stands for k& symmetrized indices p . . . fig.

The construction of the metric-like Lagrangian formulation of fermionic higher-spin triplets in
AdS spaces, however, encountered difficulties [7,[10] and has not been accomplished by now. In
what follows we will show how this puzzle is resolved by deriving the metric-like action for the
fermionic higher-spin triplets in AdS from their frame-like Lagrangian formulation.

2.2 Frame-like formulation

In the frame-like formulation [I3] the fermionic triplet is associated with a 1-form that takes values
in the space of symmetric tensor-spinors:

¢gl---ar'71 — d$ﬂwglp~~ar71 .

This form is not subject to any gamma-trace conditions@.
In flat space the gauge transformation of 1% % ~1 has the following form

Sep@ =1 — gardr-1 _ d$b£a1---ar71,b7 (2.4)

where the tensor-spinor gauge parameters £~ ~1 and £ -1.0 are gzero forms that remove from

¥ " the unphysical degrees of freedom. The second parameter is associated with a connection-
like 1-form qbzl"'a“l’b. The connection field is auxiliary and expressed (modulo the pure gauge

degrees of freedom) as a function of zbﬁl"'a"’l via the torsion-like constraint
Tar-ar-1 _ d¢a1---ar71 —dxe A wm---ar—l,b -0 (2'5)

2 Remember that the frame-like fermionic field transforming under an irreducible representation of the Lorentz
group of a spin s = + 1 is gamma-traceless [39H41]

aj...a,._sbec

,ybel.A.arfﬂ =0 =— nb6¢u =0.



The torsion is invariant under the gauge transformations (Z4) and that of 1@ -@r-1.b

5¢a1---ar—1,b — dé‘al---arflyb o dxcfal...arfl,bc' (26)

For the consistency of the construction (see Section [2.3]), while the higher-spin vielbein is uncon-
strained, the connection ¥ %1% and the gauge parameters £%-9r-1.0 and ga1-ar—1.0¢ ghould
satisfy the following (gamma-)trace constraints

A =0, e rshe = g, (27)
,ybéal...ar,l,b — 0, nbcga1...ar726,c =0, (2.8)

,ybéral...arfl,bc — 0’ ndbgal...arfzd,bc —0.

The metric-like triplet fields ¥,y and A introduced in Section 2.1 are related to wﬁl"'ar’l by
the following identifications motivated by the form of the gauge transformations (2.2))

Por-ar — 5“(%7/151'“%71)7 o101 = Z',yuwzuﬂr—l’ N1 ar—2 = 52‘7.71 zl"'a”"*l, (2.9)
where we introduced “hatted” quantities which differ from ¥, y and A by a total trace, as we will
explain nowﬁ.

The splitting (2.9) manifests the fact that the representation in which %1 sits is not
irreducible, as it may have .- and 7, -traces. As a result, this field contains physical states with
spins going down from s = r + % to 3/2, while its spin 1/2 state is a pure gauge. This is due to the
fact that the three fields (29), being all derived from ;' *"~", are not completely independent.
Indeed, let us define the complete trace T of a tensor-spinor T4 ag

T Najas * " ° nar,larTall“'“T .if 7“.is even (2.10)
Navas * * * Nap_sapr_1Va, L% if ris odd.
Then, in the metric-like description, the equations of motion imply that for s = r + %
i) @—7‘5\>:0 if 7 is even
- - (2.11)
7 \I/—)Z—(r—l))\) =0 ifris odd.
Their form allows us to identify the spin % field as
T —r) if r is even
p={-" _on (2.12)
U—x—(r—1)X ifrisodd

In the frame-like formulation, by virtue of ([2.9]), we find that p =0 .

This analysis tells us that the triplet fields (Z.9) obtained from 1, """ are not quite the same
as those appearing in the equations (21]): their complete traces do not match. Of course, we can
fix this issue by simply adding a spin—% massless field p to the frame-like action of the theory, which

3The imaginary unit factor i in the definition of x is introduced because in our conventions when D = 4 the
gamma-matrices are purely imaginary in the Majorana representation.



we will introduce in the next section. Then the original metric-like triplet fields ¥,y and A are
related to the fields (2.9) as follows
P - = \ilal...ar + T](ala2' . ’T]ar*lar)p,
A=z = N01tr— 4 plaraz . par=30r-2) 5 for ¢ even (2.13)

and

PO — \Jo1--Gr m(maz, . 'nar72ar71,7ar')p
AW Gr—2 = \@1.Gr—2 Z'n(awz, . _77ar74ar73,},arfz)p7 (2.14)
Xal...a7_1 = pOal-Gr-1 4 2n(a1a2' . ’T]ar*zar*l)p for r odd.

2.3 Frame-like action for fermionic triplets in flat space

The frame-like action that reproduces, upon making the identifications (2.9)), (Z13)) and ([2.14]), the
equations (21 can be found by an ansatz motivated by some simple requirements. It should be
gauge-invariant under (2.6]) and have a schematic form of a free fermion action i1)y9vy, where
stays for a product of gamma-matrices and 1 is the Dirac conjugate of 1. Therefore, to construct
the action we use the gauge invariant higher-spin torsion 2-form

TOLOr =1 = Jo)@-Gr=1 _ (o A ¢a1---ar717b’ (2.15)

which is considered to be non-zero off the mass shell (compare with (2.5])). Then, terms like ipyANT
are gauge invariant under the transformations of ¢ but not 1. The most general Lorentz-invariant
action constructed using such 3-forms is [13]

S = z‘/d:pal A NdTP=3 A ey ap_scdf (z/?bl---bH AT (2.16)
+qub1---br72c /\,}/dbelb772) ,

where €4, 4, is the D-dimensional completely antisymmetric Levi-Civita tensor and c is an arbi-
trary constat.

This action has three issues to tackle. It is not invariant under the gauge transformations of v,
it is not real and contains the auxiliary field )~ -1.% that should be completely determined by
™21 through (Z3]). These three issues are fixed by choosing a proper c. Indeed, it is possible
to show that for ¢ = —6(r — 1) and if 1% -1 is constrained as in (7)), all the terms proportional
to this auxiliary field disappear. Then (2.I6]) becomes simply

S =i / dz™ A - ANdx™P=3 Aoy ap_scdf (&bl---bwl AYY dipy, b, (2.17)
—6(7" o 1)1;b1...b7-,26 A Vddqﬁ];l___brfz) ]
Integrating (2.I7) by parts we can turn it (modulo total derivatives) into its complex conjugate, so

([2.17)) satisfies the reality condition. Moreover, due to our choice of ¢, in the Hermitian conjugate
version of (ZI7) we can restore the (vanishing) terms proportional to 1)@ -1 and rewrite the



action as
_ al ap_3 7b1...br—1 cdf
Ss = z/dm A ANdx N €ay...ap_scdf <T AY Yy by
—6(r = TPt oty ),

which is therefore equivalent to (ZI6]) up to total derivatives. The variation of (ZI7)) under gauge
transformations can be then schematically rewritten as

0ST 7557-
5 - —5 6 — = .
S 50 P+ 0y 50 0

It vanishes because of the manifest gauge invariance of 7% %1 and 7% -1 and provided that
the gauge parameters £41% 10 satisfy the constraints (Z8).

One can show [I3] that the equations of motion derived from the frame-like action (2ZI7) are
equivalent to the metric-like ones (ZI)) modulo the subtlety with the spin—% field p, which can
be included into the frame-like formulation by simply adding to the action the massless Dirac
Lagrangian L 1= 1Py O p-

3 Fermionic higher-spin triplets in anti-de-Sitter spaces

3.1 The frame-like formalism in AdS

The frame-like description of the field ¢ % -1 can be generalized to the anti-de-Sitter space by
employing a proper AdS covariant derivative in place of the flat-space derivative and by using a
local basis for the AdS tangent space given by the vielbein e® = dz™ e, (z). Actually, to construct
the covariant derivatives we will employ two kinds of connections. The one associated with the
invariance under SO(1, D — 1) local Lorentz transformations and containing the spin—connection
1-form w® = —w® will be denoted by

VT = dT* +w% AT? (3.1)

and will act on the D-dimensional vectorial tangent-space indices. For the spinorial indices one can
also use the connection associated to the whole symmetry group of AdSp, namely the isometry
group SO(2,D — 1), which includes, in addition to the Lorentz transformations generated by J,
the non-commuting translations generated by P%:

{Pa7pb] — AJ,
where A is a negative cosmological constant which defines the AdS curvature
RY = dw® 4w Awb = —Ae® Aeb. (3.2)
We denote this covariant derivative by
Difo = i + 500 () A g + ¢ (P A, (33)

where in the spinorial representation
Jab:_ [ a’,yb} 7 Pa:_% /_A,Ya.
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Note that, in view of (3.2]), when acting on the spinors the product of the two external differentials
D vanishes (33)
D¥)p=0. (3.4)

When dealing with tensor-spinors we will assume that D acts as a covariant differential on
vector indices and as (B.3]) on spinorial ones. In particular, the matrices v* are annihilated by V

but not by D .
i .
D’ya = —5 V —Aeb |:/7b7/7ai| =1 _Aeb’yba‘ (35)

In view of (3.2) and (B.4)), the following identity holds for the symmetric tensor-spinors
D2yYartr = Y2prar = _pe(ar g g p go2-arlb (3.6)

The AdS counterpart of the fermionic higher-spin torsion (2.I5]) is defined as follows
T -t = D Grt _ g A qf01tr—1,b. (3.7)

In virtue of ([B.0)), it is gauge invariant under the following AdS-deformation of the gauge transfor-

mations (2.0))

6¢a1...a7a,1 — Dgal...ar,l . ebé-al...arfl,b (3 8)
s .
6¢a1...arfl,b — Dé‘al---arflvb o ecgal...arfl,bc

+A (e(ar71£a1---ar72)b —(r— 1)eb£a1---ar71) ’

which coincide with (Z.6]) in the flat limit A — 0.

In flat space, for consistency, we required the gauge parameters to satisfy the constraints (2.8]),
which guarantee that the y-trace of the higher-spin vielbein of rank r = s — % transforms under
the gauge transformations in the same way as a higher-spin vielbein of rank r = s — % In the
AdS space, in view of ([B.5), the same requirement leads to the following constraints on the gauge

parameters
5 (7b¢a1---ar72b) = DEMGr—2 _ o D01l -2,C

where
=a1...Qr—2 — at...ar—2b =ai...ar—2,c — ./ c ¢ai...ar—2b at...ar—2b,c
—al 2 ,751 2’ —ai 2 7 A,ygl r—2 ,751 26,¢.

The symmetrization properties of the parameter =% -2¢ impose the following constraint on
guar—1b wwhich is the AdS generalization of (28]

,ybgal...a,,«,l,b — _Z'\/__A,y(albgaz...ar,l)b‘
Correspondingly, one imposes the analogous constraint on the auxiliary higher-spin connection
1 = iRy g, (3:9)

The relations involving contractions with the metric 7y, in (27) and (2.8]) do not change.



3.2 The frame-like action in AdS

We construct the frame-like action for the reducible higher-spin fermionic field ¢* %=1 in the
anti-de Sitter space in the same way as in flat space, i.e. with the use of the higher-spin torsion
1) and fix the coefficient by requiring that the action reduces to (210 in the A — 0 limit. We
thus get

Sadas = i/eal Ao NePT3N €ay...ap_scdf (&blmbril A 70df7771-..br71 (3'10)
—6(r — 1),1/_)b1n.b7“720 A 7dTl{1...br,2) .

This time the terms in this action containing the independent components of the auxiliary field
p®-9r-18 cancel each other due to the deformed constraint (3:9). So, in comparison with (ZI7)
the action (BI0) contains more terms than in the flat space, namely

, o Thibeo1 cd
Sads :Z/Eal,...,apgcdfeal R {¢ by Dy g

Jv—A . _
Do 26 [6(7’ — 1)1/1b1"'b“zd’}’f’ygl/}bl...b,.,gg (3.11)

30— 1) (P Ty = T )

<6t 1) ((r = ety D@t )]

—6(r — 1)1/7’1"'bT*QC’ydDwglmbriQ +1

where to simplify the appearance of the above expression we have skipped the wedge products of
the differential forms. In the form (B.I1)) the AdS action was constructed in [I3] by a “brute force”,
i.e. without the help of the gauge-invariant higher-spin torsion (B.1).

The total gauge invariance and reality of (8.10) (and therefore of (3I1])) is proven in the same
way as in Section 2.3l by showing that the action is equivalent (modulo total derivatives) to the
action constructed with the use of the Dirac conjugate torsion 7 --4r-1,

As in the flat case, to include in the consideration the spin—% field p we add to the action (B.II])
the Dirac action

D —4
51 = / dPzp (wva + T\/—A> 0. (3.12)

3.3 The metric-like action and equations of motion for fermionic triplets in AdS

Having at hand the frame-like action (B.II)+(B3.I12) we are now ready to derive its metric-like

counterpart by replacing in the former the higher-spin vielbein qbzl"'ar’l with the fermionic higher-

spin triplet fields defined in (2.9), (2I3) and (2I4]). This is achieved by first passing from the
differential form expression for the action (.1 to its component form in terms of ¢ “"~" and then

regrouping various terms with v* and 7, contractions. Somewhat tedious but direct calculations



result in the following metric-like action
Sift = /dD@’\/—_g [@Zbl"'b"”/VXbl...bT.,l + Xbyoby_y Va W0
AV U b +;¢’b1"'bTWb1...br
—r—1) (ij\bl"'br’ZV)\bl...brq — VXN —j\bl...br,gvaxabl"'br’2)

D +2r _ D+2r—4_
_1/_A ( Xbl--.brflxblmbril _ 7\Ilblmbr\llbl...br (313)

2 2r

D+ 2r—8- 3. v
A N i = DX

3. < 3 b1 by
_ 51(7, _ 1))\b1mbr72)(b1...br.,2 + §Z)yb1 1Xb1mb7n71
3. _ = b1..by
__ZXblmbril)I{bl...bT-,l +)Fb1 1)?/61..1)7-,1

2
—(7‘ - 1))71.“177'72)(51---17%2 - (T - 1)(T - 2)Xb1"'bT73Xb1---br73)]

This action is gauge invariant under the AdS version of the gauge transformations (2.0))

+(r—1)

6\I/a1...a7~ — v(al gaz...ar) . %M,}/(al Saz...ar)

5Xa1...arf1 — 4 £a1...ar71 + D+ ZT — 2\/_—/\5‘11---‘”*1 — \/_—A,y(mgaz...arfﬂ (3.14)

1
SA\G1Gr—2 vbfal...arfzb _ 5\/_—A}Z/a1...a7a,27

which follow from the first expression in (B.8]). Note that these transformations differ from those
considered in [I0] by terms containing the y—trace of the symmetry parameter.

The fermionic triplet equations of motion obtained by extremising this action have the following
form

<z’V—|— W\/—_IQ Uit — V=AY ¥ 1)

= <V(bl + gi\/——A’Y(m) Xby...by) »
(z‘/VJr %M) Ao by—a =V =D, Xbs. by )

=V“Xaby...br_» +gi\/—_AXb1___br,2 ;

. D +2r
<ZV— 9 \ _A> Xby..bp_1 TV _A’y(bl)(bl--brfl) (3'15)

a 3. 3. —
= _v \Ilabl---b'rfl - EZ _A)?/blmbr'fl + <V(b1 + 52 _A’Y(b1> )\bg...br,l) .

3.4 (%,2) doublet

232
As the simplest example demonstrating basic properties of the above metric-like Lagrangian systems
of fermionic fields in AdS, let us consider a doublet of fields xy and ¥, propagating a spin % and %

8



For this system the action reduces to

Sdoublet = f dDm\/ —g [ZWX + XV e + Va\i/“x + i\i/awa
—V=R (Bf2xx - 2200w, + ol — S + )| (3.16)

and the equations of motion (3.I5) become
. D-2 \ 3
W+ — VA ) U= V=AY = (Vat iv=A | x

D+2
ivawa—g\/—mwa _ <V+z‘ ; \/—A> X (3.17)

These are invariant under the gauge transformations
i
0V, = V.- 5\/ —Av.€, (3.18)
D
ox = iv*'Vi€+ 5\/ —A¢.

By taking linear combinations of the equations ([B.I7) we get the disentangled conventional equations
of motion for the gauge-invariant dynamical spin-1/2 field p = y—i7*¥, and the dynamical spin-3/2
field Yo = ¥4 — p5%ap

(iv"Vae+ Z2V=AK) p=0,
VDpibe) =7 (Vip — 5V —=Aypp)1hg = 0. (3.19)

Let us now compare the equations (3I7) with equations for a (3,3) doublet proposed in [7]. The
latter have the following form

(57 + 252 V=R) W, + Y2990, = Vax,
iV, + 22/ Ay, = Wy (3.20)

These equations are also invariant under the gauge transformations ([B.I8]) but, as one can see, they
differ from ([B.I7)). As was shown in [7], the consistency of ([3.20) requires that

X = 17" Vg,

which means that the system (3.20) does not contain the physical spin-1/2 field, the issue which is
solved by the properly modified equations (B.17]).

4 Conclusion and outlook

As was shown in [I3], in the frame-like formulation, the triplet fields are endowed with a geometrical
meaning of higher-spin vielbeins and connections transforming under higher-spin local symmetries.
This allows one to determine in a conventional way gauge-invariant higher-spin torsion and curva-
tures and use them for the construction of simply-looking frame-like actions for these systems both
in flat and AdS spaces.



Starting from the frame-like action for the unconstrained fermionic higher-spin vielbein and
the spin-1/2 field in AdS space, and using the splitting of this vielbein into the metric-like triplet
of fermionic fields, we have resolved a long-standing issue of the construction of the metric-like
Lagrangian description of the fermionic triplets in AdS spaces.

Having now at our disposal the metric-like Lagrangian formulation for bosonic and fermionic
triplets in AdS, one can analyze the BRST structure associated with their gauge transformations
and equations of motion, and use the obtained form of the BRST charge for comparing it with that
of [7] and studying whether and how the triplets in AdS may arise from the quantization of strings
in AdS in a tensionless limit. Since in AdS one may play with two parameters, the string tension
and the AdS radius, the tensionless limit of AdS strings may avoid singularities of its flat space
counterpart. In this respect it will be interesting to revise the procedure and results of taking a
tensionless limit of a bosonic AdS string considered in [42].

As another direction of research, one can proceed with studying interactions of higher-spin
triplet fields (cubic and quartic vertices, current exchanges, etc.) along lines put forward in [12)],
14127]. One of the advantages here is that reducibility of triplet systems can make things simpler,
since a single triplet vertex contains a number of vertices of irreducible higher-spin fields.

Finally, one may study whether the minimal Vasiliev theory [43], describing interacting fields
of the even spins from 0 to infinity (which can be viewed as a single higher-spin “triplet” with
s = 00), could be extended to an interacting theory of infinite sets of “triplets”, as might happen
in string theory. To this end one will need to generalize the unfolded machinery to deal with weak
trace and gamma-trace conditions (like in (2.7]) and (2.8])). First steps in this direction were made
in [13].
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Appendix. Notation and conventions

The signature of the D-dimensional space-time metric is chosen to be almost minus (+,—,...,—).
The Greek letters pu, v, ... denote world indices associated with space-time coordinates z#. The Latin
letters a, b, c... label the components of tangent-space tensors. The world indices are converted into
the tangent space ones by means of the vielbein GZ(:E), which is just the unit matrix J;; in flat
space-time.

Different groups of symmetric indices are separated by commas. Each group corresponds to a
row in the Young tableau associated to the representation the tensor sits in. For example,

¢a1a2---am7b1---bn7 (n < m)

is a tensor whose symmetry properties are defined by the Young tableau

al ag...amj
b1l . |bn

10



ie. ¢(a1a2---am,b1)---bn =0.

Symmetrizations of indices are not weighted and are denoted with round brackets, e.g.
Alo1paas) = Ao poats o o2 Boass 4 Aos Boao
We also use the short-hand notation for contractions involving v matrices, e.g.
}%al...an = ’Yan+17/}a1mana"+17 ﬁ = ’Yuau )
The gamma—matrices obey the Clifford algebra
A 4 b = 2pab

In D = 4 the gamma-matrices are purely imaginary in the Majorana representation.
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