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Abstract. Reaction systems, a formalism describing biochemical reac-
tions in terms of sets of reactants, inhibitors, and products, are known
to have a PSPACE-complete configuration reachability problem. We
show that the complexity of the problem remains unchanged even for
some classes of resource-bounded reaction systems, where we disallow
either inhibitors or reactants. We also prove that the complexity decreases
to NP in the specific case of inhibitorless reaction systems using only
one reactant per reaction.

1 Introduction

During the last decades, many new computing models have been introduced. Each
one was meant to more clearly illustrate some features or provide new settings for
developing new computing technologies. In most cases, nature has been the main
source of inspiration. In 2004, Ehrenfeucht and Rozenberg introduced reaction
systems (RS in the following) as an abstract model of chemical reactions in
living cells [5,6]. Indeed, in living cells, a biochemical reaction takes place only
whenever reactants are present and inhibitors are missing. Hence, a reaction can
be represented by a triple (R, I, P) where R is the set of reactants, I the inhibitor
and P is the set of products which are left once the reaction is finished. Of course,
one has to require that RN I = &. Informally, a RS is a (finite) collection of
reactions.

The simple definition of the model contrasts with its computing capabilities. In
fact, RS are capable of simulating any space-bounded Turing machine computation
(many constructions have been provided, one is also given in Section 3). Moreover,
they provide new examples of natural problems in higher levels of the polynomial
hierarchy [8,7]. As a third argument in favour of studying RS, one may advocate
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that they are a reference model for other finite systems. Indeed, in [7], it is proved
that RS provide lower complexity bounds for Boolean automata networks (BAN).
We remark that in the context of BAN, the complexity of relatively few problems
is known (see for instance [14]).

This paper pursues the study of complexity problems for RS in the same
vein as [8] and subsequent papers [7,9,3]. The new focus is on resource-bounded
computation. The idea is to take a classical and important reference problem,
namely the reachability problem, and try to see how its complexity varies according
to constraints that are put on reactions. The constraints we impose consist in
limiting the maximum number of reactants and inhibitors involved in each
reaction; this changes how much of the current state can be “observed” by a single
reaction. In principle, the resulting dynamical behaviours of reaction systems are
less rich than for unrestricted systems, although this does not necessarily reduce
the complexity of the reachability problem.

From [11], it is known that result functions (state transition functions) of
RS can be completely classified into five classes of functions over lattices, which
correspond to specific limitations on the number of reactants and inhibitors
allowed in each reaction of the corresponding RS. Theorems 1 and 2 prove that
the reachability problem is PSPACE-complete for three out of the five classes.
The class of result functions computed by RS with no reactants and no inhibitors
corresponds to constant functions, making the reachability problem very simple.
Concerning the fifth class, we only succeeded in proving that reachability is in
NP (Theorem 4) but we suspect that it is also NP-hard. Indeed, a slight variant
of the reachability problem is NP-complete for this class. The proof of this last
result is also of some interest in its own. Indeed, it uses the Prime Number
Theorem to precisely evaluate the complexity of the reduction.

2 Basic Notions

This section briefly recalls the basic notions about RS as introduced in [6]. We
remark that in this paper the set of reactants and inhibitors of a reaction are
allowed to be empty, unlike what is often required in literature. The reason for
this generalised definition is that, as it will be shown later (Corollary 1), the
reachability problem for “minimal” RS [13], having exactly one reactant and one
inhibitor per reaction, is already PSPACE-complete.

Definition 1. Consider a finite set S, whose elements are called entities. A
reaction a over S is a triple (Rq, 1o, Pa) of subsets of S. The set R, is the set of
reactants, I, the set of inhibitors, and P, is the nonempty set of products. The
set of all reactions over S is denoted by rac(S).

Definition 2. A reaction system (RS) is a pair A = (S, A) where S is a finite
set, called the background set, and A C rac(S).

Given a state T' C S, a reaction a is said to be enabled in T when R, C T
and I, N'T = @. The result function resy: 2% — 29 of a, where 2° denotes the
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Class of RS Subclass of 2% — 2° (via k-simulation)
RS(00, 0) all RS(1,1)
RS(0, 00) antitone RS(0,1)
RS (c0,0) monotone RS(2,0)
RS(1,0) additive RS(1,0)
RS(0,0) constant RS(0,0)

Fig. 1. Functions computed by restricted classed of RS.

power set of S, is defined as res,(T) = P, if a is enabled in T, and res,(T) = @
otherwise. The definition of res, naturally extends to sets of reactions: given T C §
and A C rac(S), define resa(T") = [J,c 4 resa(T"). The result function res4 of a
RS A = (S, A) is resy, i.e., the result function on the whole set of reactions. In
this way, any RS A = (S, A) induces a discrete dynamical system where the state
set is 2% and the next state function is res 4. The set of reactions of A enabled in
a state T is denoted by en4(T).

The orbit or state sequence of a given state T of a RS A is defined as the
sequence of states obtained by iterations of res4 starting from 7', namely the
sequence (T, res4(T'),res%(T), .. .). Being finite systems, RS only admit ultimately
periodic orbits, i.e., orbits ending up in a cycle.

‘We now recall the classification of RS in terms of number of resources employed
per reaction [11].

Definition 3. Let r,i € N. The class RS(r,i) consists of all RS having at
most r reactants and i inhibitors for reaction. We also define the unbounded
classes RS(00,1) = Uy g RS(r,4), RS(r,0) = Uieo RS(r,1), and RS(c0, 00) =
Uro UiZo RS(r, ).

We remark that this classification does not include the number of products
as a parameter, since RS can always be assumed to be in singleton product
normal form [2]: any reaction (R, I,{p1,...,pm}) can be replaced by the set of
reactions (R, 1,{p1}),...,(R,I,{pm}), since they produce the same result.

Several of the above defined classed have a characterisation in terms of func-
tions over the Boolean lattice 2% [11]. Recall that a function f: 2% — 25 is anti-
tone if X CY implies f(X) 2 f(Y), monotone if X CY implies f(X) C f(V),
additive (or an upper-semilattice endomorphism) if f( X UY) = f(X)U f(Y). We
say that the RS A = (S, A) computes the function f: 29 — 25 if res 4 = f. Fur-
thermore, we say that the RS A = (S', A) computes a function f: 2% — 25 via k-
simulation if S C S” and res’ (T)NS = f(T) for all T C S. The (distinct) classes
of functions computed by restricted classes of RS are illustrated in Figure 1. These
results show that, in a sense, the classes RS(1,1), RS(0,1), and RS(2,0) capture
the expressiveness of the whole classes RS(00,>0), RS(0,00), and RS(c0,0),
respectively (i.e., they simulate the more generic RS with a polynomial slowdown).

We conclude this section by recalling the formulation of the problem addressed
in this paper.
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Definition 4. The reachability problem for the class RS(i,r), with i and r
possibly infinite, consists of deciding, given A € RS(i,r) and two of its states T, U,
whether U is reachable from T, i.e., whether resy(T) = U for some t > 0.

For the notions of complexity theory, such as the definitions of the classes of
problems NP and PSPACE, we refer the reader to any relevant textbook, such
as [12].

3 Inhibitorless Classes RS(o0,0) and RS(2,0)

We begin by describing how inhibitorless RS are able to efficiently simulate Turing
machines with bounded tape. A similar simulation was previously published [7],
but it required both reactants and inhibitors.

In the following, let M be any single-tape deterministic Turing machine
using m tape cells during its computation; let 3’ be the tape alphabet, ) the
set of states, and §: Q x X — @ x X' x {—1,0,+1} the transition function of M.
We are going to define a RS M = (S, A) € RS(2,0) simulating M.

Entities. The set of entities of M is
S={aj:aeX1<j<m}U{qg:qeQ,1<j<m}U{M;:1<j<m}

that is, it consists of all symbols of the alphabet, states, and the extra item @,
each of them indexed by every possible tape position.

In this way, the generic configuration where M is in state ¢ € @, its tape head
is located on cell 7, and its tape contains the string x = x1 - - - x,y, is encoded as
the following 2m-entity state:

T={z;;:1<j<m}uU{qiuU{d;:1<ji<m,j#i}CS

In other terms, 7' contains each symbol z; of the string x indexed by its position
on the tape as element x; ;, an entity ¢; storing both the current state and the
head position, and m — 1 entities #;, one for each position j # ¢ on which the
tape head is not located.

Ezxample 1. Consider a Turing machine M working in space m = 4 and the
configuration where M is in state ¢, its tape head is located on cell 3, and its tape
contains the string abba. The state of the RS M encoding such a configuration

of M is then T' = {ahb27b37a47.17ﬁ27Q37‘4}~

Reactions. Each transition 6(q,a) = (r,b,d) of M, with ¢,r € @, a,b € X, and
d € {-1,0,+1}, gives rise to the following two sets of reactions:
({in ai}v 9, {Tj+d> bl}) for 1 <i<m (1)
({gi,a:}, 2, {#; : 1 <j<m,j#i+d}) for 1 <i<m. (2)

If the tape head of M is located on cell i, then the i-th reaction from (1) produces
the entity encoding both the new state and the new tape head position of M,
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as well as the symbol written in the position ¢ over the head. The production of
one #; for all the tape positions j # i + d, i.e., those on which the tape head is
not located after the transition of M, is assured by the i-th reaction from (2).

Finally, the following reactions preserve the encoding of the tape cells j where
the head is not located, i.e., those indicated by the presence of #;:

({#, a5}, 9, {a;}) for 1 <j <m. (3)

The set A of the reactions of M is defined as the union of the three sets of
reactions from (1), (2), and (3).

It is easy to see that if T' C S is an encoding of a configuration of M using
space m (i.e., it contains, for all 1 < j < m, a single entity a; for some a € X,
a single entity ¢; for some ¢ € ) and some 1 < ¢ < m, and entities #; for
all 1 < j < m with j # 4), then the next state respy((7) encodes the next
configuration of M.

We remark that all reactions of M have exactly two reactants and no inhibitors,
that is M € RS(2,0). We are now able to prove the following:

Lemma 1. Reachability for RS(2,0) is PSPACE-hard.

Proof. We reduce reachability of configurations of polynomial-space Turing ma-
chines (one of the canonical PSPACE-complete problems [12]) to this problem.
Given a Turing machine M working in space m and two configurations Cy, Cy
of M, it is possible to build the RS M € RS(2,0) simulating M as described
above; the construction can be done in polynomial time, since the reactions can
be built by iterating over all entries of the transition table of M and the range
of the m possible tape positions. The question then becomes whether in the
RS M the encoding of the configuration Cs is reachable from the encoding of the
configuration Cp; the construction of M assures that this happens if and only
if Cy is reachable in M from C;. Therefore, the reduction holds and reachability
for RS(2,0) is then PSPACE-hard. O

We conclude this section with the complexity result for the inhibitorless
classes.

Theorem 1. Reachability for RS(c0,0) and for RS(2,0) is PSPACE-complete.

Proof. Recall that reachability for RS (00, 00) can be decided in polynomial space,
by storing the current configuration of the involved RS and applying the reactions
one by one at each time step. The thesis follows as a consequence of this fact
and Lemma 1. O

4 Reactantless Classes RS(0,1) and RS(0, co)

It is known [11] that each RS from RS(c0,0) can be simulated with a linear
slowdown by a RS from RS(0, 1). Since the two classes of RS are equivalent from
this point of view, it is reasonable to assume that their reachability problems have
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the same complexity, with reachability for RS(0, 1) being PSPACE-complete as
well. However, the original simulation does not directly imply this result, since
each state of the simulating RS contains a number of auxiliary entities, and it is
not obvious which auxiliary entities must appear in the target state.

Therefore, in the next Lemma, we provide a construction, with no auxiliary
entities appearing, of an RS from RS(0, 1) simulating a given RS from RS (o0, 0).
In this simulation, the states at even time steps of the former coincide exactly
with the states of the simulated RS.

Lemma 2. Let A= (S, A) € RS(c0,0) be a RS such that \J{P,:a€ A} =8
and resA(S) = S. Then, there exists a RS B = (5", A’) € RS(0,1) such that, for
any T C S, the following condition holds:

VteN resy (T) = res’,y (T) A S C resi T (T).

Proof. Set 8" = SU{a:a € A}, that is, S’ is obtained by adding to S one barred
entity for each reaction of A. For each reaction a = (R,, <, P,) € A, the set A’
contains the reactions

(2,{s},{a}) for s € R, (4)

which produce the entity a if at least one of the reactants of a is missing in
the current state (i.e., if @ is not enabled in it). Furthermore, for each a =
(Ra, 9, P,) € A the set A’ also contains the reaction

(@.{a}. P.) o)
which gives the same products as @ when a is missing in the current state, or,
equivalently, when a is enabled.

Thus, for any state T C S and any state 7" C {a@ : a € A} it holds
that resg(T) ={a:a ¢ ena(T)} U S and resg(T’) = J{P.:a € A,a ¢ T'}.
Choose now an arbitrary state T C S. We are going to prove the the-
sis condition by induction on ¢. Clearly, res?(T) = T = res%(T). Further-
more, since T' contains no entity a, all reactions of type (5) are enabled, and
so resyp TN (T) D U{P, 1 a € A} = S.
Assume now that the thesis condition holds for ¢. Then,
resz(tH)(T) = resg (resg (T))
= resy (resy (1))
=resp ({@:a ¢ eng(resy(T))} US)

Since S disables all reactions of type (4), it follows that
res%(tﬂ)(T) =resp ({@:a ¢ eng(resy(T))})
= U{Pa :a € eng(resy(T))}
= res’{ 1 (T)

In particular, due to the reactions of type (5), one obtains that S C resj ™ (T)
for all t € N. O
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By exploiting Lemma 2 we can finally show the complexity of reachability for
reactantless RS.

Theorem 2. Reachability for RS(0,1), and thus for RS(0,00), is PSPACE-
complete.

Proof. It is enough to prove the PSPACE-hardness of the problem for RS(0, 1),
which will be accomplished by reduction from reachability for RS (oo, 0) as follows.
Givena RS A = (S, A) € RS(0,0), let A" = (5’, A’) be the RS with §' = SU{&#}
for some & ¢ A, and A’ = AU{(5',,5")}. Clearly, A’ € RS(00,0) and it has
the same behaviour of A as long as its initial state does not contain &, i.e.,
res o/ (T) = res4(T) whenever & ¢ T.

Moreover, A’ satisfies the hypotheses of Lemma 2 as a consequence of the
changes made to build it from A. Let B € RS(0,1) be then the RS obtained
from A’ using that lemma. Notice that that the mapping A’ + B can be computed
in polynomial time.

For any two states U,V C S, it holds that res’,(U) = V for some ¢ € N if
and only if res® (U) = V. Furthermore, we have resy ' (U) # V for all s € N,
because # € S’ C 1re:5123-5+1(U)7 while & ¢ S and, in particular, & ¢ V. Hence, the
state V' is reachable from U in the RS B if and only if the same occurs in A.
Therefore, reachability for RS(c0,0) is reducible to reachability for RS(0,1) in
polynomial time and the thesis then follows from Theorem 1. O

As a consequence of Theorem 2, we also obtain the PSPACE-completeness
of the reachability problem for RS(1,1) and for the class RS(co, 00) (the latter
having already been proved in a different way [7]).

Corollary 1. Reachability for RS(1,1), and thus for RS(oo,o0), is PSPACE-
complete. O

5 Single-Reactant Inhibitorless Class RS(1,0)

We proved that disallowing either reactants or inhibitors does not decrease the
complexity of reachability problems. However, reducing the number of reactants
to 1 in inhibitorless RS makes the evolution of each single entity “context-free”,
i.e., not influenced by the presence or absence of other entities. Indeed, the result
functions of the RS from RS(1,0) are always upper-semilattice endormorphisms,
that is, resg(U U V) = resa(U) Uresy(V) for all A € RS(1,0) and arbitrary
states U,V [11]. It is thus reasonable to conjecture that reachability for RS(1,0)
might be easier than for other variants, as the entities of the target configuration
can be traced back to a set of originating entities independently one from
another, and the only difficulty is to find a common number of backwards steps.
In this section we show that this is actually the case, under the assumption
that NP # PSPACE.

We begin by recalling the notion of influence graph [1], which describes static
causality relations in a RS. Given a RS A = (S, A), the associated influence
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graph is the directed graph G = (S, F), where (x,y) € E if and only if there
exists a reaction (Rg, I, P,) € A such that © € R, U1, and y € P,. In other
words, there is an edge (x,y) whenever the presence or absence of x contributes
to the appearance of y.

In particular, if A € RS(1,0) we have (z,y) € E if and only if y € res4({z}).
An entity y appearing at time ¢t can thus be recursively traced back to a single
entity occurring in the initial state of the RS (or to multiple independent entities,
only one of which needs to occur in order that y appears at time ¢).

Recall that the powers G* of the Boolean adjacency matrix of any graph G
can be computed in polynomial time even for exponential values of ¢, by repeated
squaring; the entry ij is 1 if and only if a (not necessarily simple) path of
length ¢ exists between v; and v;.

Let A = (5,A) € RS(1,0) be a RS with S = {s1,...,s,} and let G be its
influence graph. Any state U C S can be viewed as a column vector in {0,1}",
where U; = 1 if and only if s; € U. Then, a state V C S is reachable from a
state U C S in A if and only if G'U = V, where G'U is the product of the
matrix G* and the vector U. This observation allows us to prove the following
result:

Theorem 3. Reachability for RS(1,0) is in NP.

Proof. Consider a RS A € RS(1,0) and two states U, V. Let G be the influence
graph of A. Since G? can be computed in polynomial time, the validity of the
equation G*U = V can be checked in polynomial time for any fixed ¢, even when
the latter is exponential with respect to the number n of entities. It is enough to
use the guessing power of a nondeterministic Turing machine to choose an n-bit
integer 0 < t < 2™, since state V is either reached within 2™ — 1 steps, or it is
never reached. O

It is unknown whether this problem is also NP-hard. The variant where the
target state V' consists of a single entity is in NL, being the reachability problem
(with several possible source vertices) for the influence graph in NL too. It is
actually NL-complete, since every graph is the influence graph of a RS (the one
just having the vertex set as background set and reactions ({u}, &, {v}), one for
each edge (u,v) of the graph). On the other hand, the variant where we check if
a superset of V is reachable is NP-complete.

Theorem 4. It is NP-complete to decide, given a RS A = (S, A) € RS(1,0)
and two states U,V C S, whether V' C res’y(U) for some t € N.

Proof. Membership in NP is proved in a similar way to what has been done in the
proof of Theorem 3, i.e, for a RS A = (S, A) € RS(1,0) and two states U,V C S,
by guessing 0 < ¢t < 2" and checking whether V' < G'U, where G is the influence
graph of A and the comparison is made element-wise.

The NP-hardness of the problem is proved by reduction from Boolean satisfi-
ability of CNF formulae [12]. Let ¢ = @1 A -+ A ¢, be a CNF formula with m
clauses C' = {¢1,...,m} over the n variables X = {z1,...,z,}.
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Denote by p; the i-th prime number and set X; = {z; ; : 0 < j < p;}. Define
the RS A = (5, 4) € RS(1,0), where S = X; U---U X,, UC and A consists of
the reactions described in the following.

For each variable z;, we build a cycle of prime length p; iterating across all
elements of X; by means of the reactions

({zij} @, {2i (j+1) mod p; }) for 0 < j < p;. (6)

We define a “well-formed” state T" of A as a state containing exactly one entity x; ;
for each 1 < i < m. Such a state T is interpreted as the truth assignment v: X —
{0,1} to ¢ defined as

(z:) 1 ifx;0eT
v\T;) =
0 otherwise

that is, all elements x; ; with j > 0 denote a false value of x;.

Since the lengths of the cycles associated to the variables of ¢ are pairwise
coprime, all 2" assignments of ¢ will be eventually reached in A, possibly with
several repetitions (since distinct states encode the same truth assignment).
Therefore, if the initial state of A is U = {x1,0,...,Zn,0}, then a state encoding
the assignment v: X — {0,1} will be reached at time step [];-; p;(zi).

We are going to introduce the remaining reactions in A. They have the role of
evaluating formula ¢ under the assignment encoded by the x; ;’s. We map each
entity z; ; to the set of clauses satisfied by v(z;) =1 (if j = 0) or by v(z;) =0
(if 5 > 0) by the following reactions:

{zio}, 2, {pvr}) if x; implies oy (7)
({zi;}, 2, {eox}) for j > 0 if —z; implies (8)

The influence graph of the resulting RS for a sample Boolean formula is shown
in Figure 2.

As a consequence of the above construction, given a well-formed assign-
ment Y C X U---UX,, it follows that res4(Y) = DUY’ where D C C' is
exactly the set of clauses satisfied by Y, and Y’ is the next truth assignment
in the order given by the reactions of type (6). Since they do not appear as
reactants in any reaction, the entities representing the clauses of ¢ appear only
if the previous state encodes an assignment satisfying them.

Consider now the states U = {x1,0,...,2n0} and V = C. According to
the above reasoning, a superset of V is reachable from U, or, equivalently,
V Cresy (U) for some ¢ € N, if and only if there exists a truth assignment for X
satisfying all clauses, i.e., the entire formula .

It remains to be proved that the mapping ¢ — (A, U, V) can be computed in
polynomial time. In particular, we need to show that we can find in polynomial
time n primes of polynomially bounded value.

First of all, the Prime Number Theorem [4]| implies that p, is asymptoti-
cally nlnn; thus, we only need to check the first O(nlnn) integers. These can
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Fig. 2. The influence graph for the RS encoding the formula ¢ = p1 A w2 A p3 A @4,
where 1 = 21V "2, 2 = 21 V 22, 3 = 21 V 722 V 23, and w4 = x2 V x3. The thick
edges represent the reactions of type (6), the continuous thin ones those of type (7),
and the dashed thin ones those of type (8).

be checked for primality in polynomial time via a brute force algorithm, since
they are polynomial in value with respect to n. The reactions of type (6) are
then simple to compute, while those of types (7) and (8) only require to check
whether variable z; appears as a positive or negated literal in .

Therefore, Boolean satisfiability of CNF formulae is reducible to the considered
problem in polynomial time and then the thesis follows. O

6 Conclusions

We proved that the reachability problem for RS remains PSPACE-complete, as in
the general case, even when inhibitors or reactants are disallowed in each reaction.
The problem only becomes easier (assuming NP # PSPACE) for inhibitorless
RS using only one reactant per reaction: this variant has been proved to be in NP.
It is left as an open problem to establish whether this problem is also NP-hard,
as it is in the case where we check the reachability a superset of a given state.
It would also be interesting to examine further problems related to the
dynamics of RS, such as the detection of fixed points, global and local attractors,
and “Gardens of Eden”, in order to check whether these become easier for resource-
bounded RS. As a simple example, establishing the existence of fixed points,
which is NP-complete for RS (00, 00) [8], becomes entirely trivial for RS (o0, 0),
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since monotonic functions over complete lattices always admit a fixed point by
the Knaster-Tarski theorem [10].
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